WorldWideScience

Sample records for ringdown spectroscopy crds

  1. Plasma-cavity ringdown spectroscopy for analytical measurement: Progress and prospectives

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Sida; Liu, Wei [Research Center of Analytical Instrumentation, Analytical and Testing Center, College of Chemistry, Sichuan University, Chengdu (China); Zhang, Xiaohe [College of Water Resources and Hydropower, Sichuan University, Chengdu (China); Duan, Yixiang, E-mail: yduan@scu.edu.cn [Research Center of Analytical Instrumentation, Analytical and Testing Center, College of Chemistry, Sichuan University, Chengdu (China)

    2013-07-01

    Plasma-cavity ringdown spectroscopy is a powerful absorption technique for analytical measurement. It combines the inherent advantages of high sensitivity, absolute measurement, and relative insensitivity to light source intensity fluctuations of the cavity ringdown technique with use of plasma as an atomization/ionization source. In this review, we briefly describe the background and principles of plasma-cavity ringdown spectroscopy(CRDS) technology, the instrumental components, and various applications. The significant developments of the plasma sources, lasers, and cavity optics are illustrated. Analytical applications of plasma-CRDS for elemental detection and isotopic measurement in atomic spectrometry are outlined in this review. Plasma-CRDS is shown to have a promising future for various analytical applications, while some further efforts are still needed in fields such as cavity design, plasma source design, instrumental improvement and integration, as well as potential applications in radical and molecular measurements. - Highlights: • Plasma-based cavity ringdown spectroscopy • High sensitivity and high resolution • Elemental and isotopic measurements.

  2. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique

    NARCIS (Netherlands)

    Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C. W.; Crosson, E. R.; Van Pelt, A. D.; Steinbach, J.; Kolle, O.; Beck, V.; Daube, B. C.; Gottlieb, E. W.; Chow, V. Y.; Santoni, G. W.; Wofsy, S. C.

    2010-01-01

    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balancao Atmosferico Regional de Carbono na Amazonia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This

  3. Plasma-cavity ringdown spectroscopy for analytical measurement: Progress and prospectives

    Science.gov (United States)

    Zhang, Sida; Liu, Wei; Zhang, Xiaohe; Duan, Yixiang

    2013-07-01

    Plasma-cavity ringdown spectroscopy is a powerful absorption technique for analytical measurement. It combines the inherent advantages of high sensitivity, absolute measurement, and relative insensitivity to light source intensity fluctuations of the cavity ringdown technique with use of plasma as an atomization/ionization source. In this review, we briefly describe the background and principles of plasma-cavity ringdown spectroscopy(CRDS) technology, the instrumental components, and various applications. The significant developments of the plasma sources, lasers, and cavity optics are illustrated. Analytical applications of plasma-CRDS for elemental detection and isotopic measurement in atomic spectrometry are outlined in this review. Plasma-CRDS is shown to have a promising future for various analytical applications, while some further efforts are still needed in fields such as cavity design, plasma source design, instrumental improvement and integration, as well as potential applications in radical and molecular measurements.

  4. Test/QA Plan for Verification of Cavity Ringdown Spectroscopy Systems for Ammonia Monitoring in Stack Gas

    Science.gov (United States)

    The purpose of the cavity ringdown spectroscopy (CRDS) technology test and quality assurance plan is to specify procedures for a verification test applicable to commercial cavity ringdown spectroscopy technologies. The purpose of the verification test is to evaluate the performa...

  5. Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique

    Science.gov (United States)

    Chen, H.; Karion, A.; Rella, C. W.; Winderlich, J.; Gerbig, C.; Filges, A.; Newberger, T.; Sweeney, C.; Tans, P. P.

    2013-04-01

    Accurate measurements of carbon monoxide (CO) in humid air have been made using the cavity ring-down spectroscopy (CRDS) technique. The measurements of CO mole fractions are determined from the strength of its spectral absorption in the near-infrared region (~1.57 μm) after removing interferences from adjacent carbon dioxide (CO2) and water vapor (H2O) absorption lines. Water correction functions that account for the dilution and pressure-broadening effects as well as absorption line interferences from adjacent CO2 and H2O lines have been derived for CO2 mole fractions between 360-390 ppm and for reported H2O mole fractions between 0-4%. The line interference corrections are independent of CO mole fractions. The dependence of the line interference correction on CO2 abundance is estimated to be approximately -0.3 ppb/100 ppm CO2 for dry mole fractions of CO. Comparisons of water correction functions from different analyzers of the same type show significant differences, making it necessary to perform instrument-specific water tests for each individual analyzer. The CRDS analyzer was flown on an aircraft in Alaska from April to November in 2011, and the accuracy of the CO measurements by the CRDS analyzer has been validated against discrete NOAA/ESRL flask sample measurements made on board the same aircraft, with a mean difference between integrated in situ and flask measurements of -0.6 ppb and a standard deviation of 2.8 ppb. Preliminary testing of CRDS instrumentation that employs improved spectroscopic model functions for CO2, H2O, and CO to fit the raw spectral data (available since the beginning of 2012) indicates a smaller water vapor dependence than the models discussed here, but more work is necessary to fully validate the performance. The CRDS technique provides an accurate and low-maintenance method of monitoring the atmospheric dry mole fractions of CO in humid air streams.

  6. Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS technique

    Directory of Open Access Journals (Sweden)

    H. Chen

    2013-04-01

    Full Text Available Accurate measurements of carbon monoxide (CO in humid air have been made using the cavity ring-down spectroscopy (CRDS technique. The measurements of CO mole fractions are determined from the strength of its spectral absorption in the near-infrared region (~1.57 μm after removing interferences from adjacent carbon dioxide (CO2 and water vapor (H2O absorption lines. Water correction functions that account for the dilution and pressure-broadening effects as well as absorption line interferences from adjacent CO2 and H2O lines have been derived for CO2 mole fractions between 360–390 ppm and for reported H2O mole fractions between 0–4%. The line interference corrections are independent of CO mole fractions. The dependence of the line interference correction on CO2 abundance is estimated to be approximately −0.3 ppb/100 ppm CO2 for dry mole fractions of CO. Comparisons of water correction functions from different analyzers of the same type show significant differences, making it necessary to perform instrument-specific water tests for each individual analyzer. The CRDS analyzer was flown on an aircraft in Alaska from April to November in 2011, and the accuracy of the CO measurements by the CRDS analyzer has been validated against discrete NOAA/ESRL flask sample measurements made on board the same aircraft, with a mean difference between integrated in situ and flask measurements of −0.6 ppb and a standard deviation of 2.8 ppb. Preliminary testing of CRDS instrumentation that employs improved spectroscopic model functions for CO2, H2O, and CO to fit the raw spectral data (available since the beginning of 2012 indicates a smaller water vapor dependence than the models discussed here, but more work is necessary to fully validate the performance. The CRDS technique provides an accurate and low-maintenance method of monitoring the atmospheric dry mole fractions of CO in humid air streams.

  7. A Plasma Based OES-CRDS Dual-mode Portable Spectrometer for Trace Element Detection: Emission and Ringdown Measurements of Mercury

    Science.gov (United States)

    Sahay, Peeyush; Scherrer, Susan; Wang, Chuji

    2012-10-01

    Design and development of a plasma based optical emission spectroscopy-cavity ringdown spectroscopy (OES-CRDS) dual-mode portable spectrometer for in situ monitoring of trace elements is described. A microwave plasma torch (MPT) has been utilized, which serves both as an atomization and excitation source for the two modes, viz. OES and CRDS, of the spectrometer. Operation of both modes of the instrument is demonstrated with initial measurements of elemental mercury (Hg). A detection limit of 44 ng mL-1 for Hg at 253.65 nm was determined with the emission mode of the instrument. Severe radiation trapping of 253.65 nm line hampers the measurement of Hg in higher concentration region (> 50 μg ml-1). Therefore, a different wavelength, 365.01 nm, is suggested to measure Hg in that region. Ringdown measurements of the metastable 6s6p ^3P0 state of Hg in the plasma using a 404.65 nm palm size diode laser was conducted to demonstrate the CRDS mode of the instrument. Along with being portable, dual-mode, and self-calibrated, the instrument is capable of measuring a wide range of concentration ranging from sub ng mL-1 to several μg ml-1 for a number of elements.

  8. Miniature Chemical Sensor Combining Molecular Recognition with Evanescent Wave Cavity Ring-Down Spectroscopy

    International Nuclear Information System (INIS)

    Pipino, Andrew C. R.; Meuse, Curtis W.

    2002-01-01

    To address the chemical sensing needs of DOE, a new class of chemical sensors is being developed that enables qualitative and quantitative, remote, real-time, optical diagnostics of chemical species in hazardous gas, liquid, and semi-solid phases by employing evanescent wave cavity ringdown spectroscopy (EW-CRDS). The sensitivity of EW-CRDS was demonstrated previously under Project No.60231. The objective of this project is to enhance the range of application and selectivity of the technique by combining EW-CRDS with refractive-index-sensitive nanoparticle optics, molecular recognition (MR) chemistry, and by utilizing the polarization-dependence of EW-CRDS. Research Progress and Implications

  9. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4 using the cavity ring-down spectroscopy (CRDS technique

    Directory of Open Access Journals (Sweden)

    V. Y. Chow

    2010-03-01

    Full Text Available High-accuracy continuous measurements of greenhouse gases (CO2 and CH4 during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 were derived from laboratory experiments employing measurements of water vapor by the CRDS analyzer. Before the campaign, the stability of the analyzer was assessed by laboratory tests under simulated flight conditions. During the campaign, a comparison of CO2 measurements between the CRDS analyzer and a nondispersive infrared (NDIR analyzer on board the same aircraft showed a mean difference of 0.22±0.09 ppm for all flights over the Amazon rain forest. At the end of the campaign, CO2 concentrations of the synthetic calibration gases used by the NDIR analyzer were determined by the CRDS analyzer. After correcting for the isotope and the pressure-broadening effects that resulted from changes of the composition of synthetic vs. ambient air, and applying those concentrations as calibrated values of the calibration gases to reprocess the CO2 measurements made by the NDIR, the mean difference between the CRDS and the NDIR during BARCA was reduced to 0.05±0.09 ppm, with the mean standard deviation of 0.23±0.05 ppm. The results clearly show that the CRDS is sufficiently stable to be used in flight without drying the air or calibrating in flight and the water corrections are fully adequate for high-accuracy continuous airborne measurements of CO2 and CH4.

  10. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique

    Science.gov (United States)

    Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C. W.; Crosson, E. R.; van Pelt, A. D.; Steinbach, J.; Kolle, O.; Beck, V.; Daube, B. C.; Gottlieb, E. W.; Chow, V. Y.; Santoni, G. W.; Wofsy, S. C.

    2010-03-01

    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 were derived from laboratory experiments employing measurements of water vapor by the CRDS analyzer. Before the campaign, the stability of the analyzer was assessed by laboratory tests under simulated flight conditions. During the campaign, a comparison of CO2 measurements between the CRDS analyzer and a nondispersive infrared (NDIR) analyzer on board the same aircraft showed a mean difference of 0.22±0.09 ppm for all flights over the Amazon rain forest. At the end of the campaign, CO2 concentrations of the synthetic calibration gases used by the NDIR analyzer were determined by the CRDS analyzer. After correcting for the isotope and the pressure-broadening effects that resulted from changes of the composition of synthetic vs. ambient air, and applying those concentrations as calibrated values of the calibration gases to reprocess the CO2 measurements made by the NDIR, the mean difference between the CRDS and the NDIR during BARCA was reduced to 0.05±0.09 ppm, with the mean standard deviation of 0.23±0.05 ppm. The results clearly show that the CRDS is sufficiently stable to be used in flight without drying the air or calibrating in flight and the water corrections are fully adequate for high-accuracy continuous airborne measurements of CO2 and CH4.

  11. Cavity ring-down spectroscopy (CRDS) system for measuring atmospheric mercury using differential absorption

    Science.gov (United States)

    Pierce, A.; Obrist, D.; Moosmuller, H.; Moore, C.

    2012-04-01

    Atmospheric elemental mercury (Hg0) is a globally pervasive element that can be transported and deposited to remote ecosystems where it poses — particularly in its methylated form — harm to many organisms including humans. Current techniques for measurement of atmospheric Hg0 require several liters of sample air and several minutes for each analysis. Fast-response (i.e., 1 second or faster) measurements would improve our ability to understand and track chemical cycling of mercury in the atmosphere, including high frequency Hg0 fluctuations, sources and sinks, and chemical transformation processes. We present theory, design, challenges, and current results of our new prototype sensor based on cavity ring-down spectroscopy (CRDS) for fast-response measurement of Hg0 mass concentrations. CRDS is a direct absorption technique that implements path-lengths of multiple kilometers in a compact absorption cell using high-reflectivity mirrors, thereby improving sensitivity and reducing sample volume compared to conventional absorption spectroscopy. Our sensor includes a frequency-doubled, dye-laser emitting laser pulses tunable from 215 to 280 nm, pumped by a Q-switched, frequency tripled Nd:YAG laser with a pulse repetition rate of 50 Hz. We present how we successfully perform automated wavelength locking and stabilization of the laser to the peak Hg0 absorption line at 253.65 nm using an external isotopically-enriched mercury (202Hg0) cell. An emphasis of this presentation will be on the implementation of differential absorption measurement whereby measurements are alternated between the peak Hg0 absorption wavelength and a nearby wavelength "off" the absorption line. This can be achieved using a piezo electric tuning element that allows for pulse-by-pulse tuning and detuning of the laser "online" and "offline" of the Hg absorption line, and thereby allows for continuous correction of baseline extinction losses. Unexpected challenges with this approach included

  12. Time resolved super continuum Cavity Ring-Down Spectroscopy for multicomponent gas detection

    International Nuclear Information System (INIS)

    Nakaema, Walter Morinobu

    2010-01-01

    In this work, we present a variation of the technique CRDS (Cavity Ring-Down Spectroscopy) to obtain simultaneously a multicomponent absorption spectrum in a broad visible range. This new approach uses the Supercontinuum (SC) spectrum (resulting from irradiation of nonlinear media by femtosecond lasers, or simply generated by compact sources) as a light source to illuminate the cavity. In this context it is described the features of the modules assembling a MC-SC-CRDS (Multicomponent Supercontinuum Cavity Ring-Down Spectroscopy): a set of high reflectivity mirrors, the resonant cavity and the detection system. Some problems related to the multimode excitation, stray light, effective use of the dynamic range of the detector, the poor resolution of the instrument to resolve narrow absorption lines are issued. We present the absorption spectra of H 2 O (polyads 4υ, 4υ + δ) and O 2 (spin-forbidden b-X branch) measured simultaneously by this technique in the visible range and a comparison with the absorption lines based on HITRAN database is made to demonstrate the functionality of this method. (author)

  13. The Development of Cavity Ringdown Spectroscopy as a Toxic Metal Continuous Emission Monitor

    International Nuclear Information System (INIS)

    Miller, Goeroge P.; Winstead, Christopher B.

    2001-01-01

    Innovative program to explore the viability of using Cavity Ringdown Spectroscopy (CRDS) for trace analysis and monitoring of remediation processes for hazardous and radioactive wastes. Cavity ringdown spectroscopy is a measurement of the rate of absorption of a sample within a closed optical cavity rather than the standard measurement of the absorbed signal strength over a given sample path. It is a technique capable of providing ultra-sensitive absorption measurements in hostile environments using commercially available easy-to-use pulsed lasers. The inherent high sensitivity stems from both the long effective sample pathlengths possible and the relaxed constraints on the accuracy of the measurement of the cavity decay time

  14. Quantifying Carbon-14 for Biology Using Cavity Ring-Down Spectroscopy

    OpenAIRE

    McCartt, A. Daniel; Ognibene, Ted J.; Bench, Graham; Turteltaub, Kenneth W.

    2016-01-01

    A cavity ring-down spectroscopy (CRDS) instrument was developed using mature, robust hardware for the measurement of carbon-14 in biological studies. The system was characterized using carbon-14 elevated glucose samples and returned a linear response up to 387 times contemporary carbon-14 concentrations. Carbon-14 free and contemporary carbon-14 samples with varying carbon-13 concentrations were used to assess the method detection limit of approximately one-third contemporary carbon-14 levels...

  15. Optical feedback in dfb quantum cascade laser for mid-infrared cavity ring-down spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Terabayashi, Ryohei, E-mail: terabayashi.ryouhei@h.mbox.nagoya-u.ac.jp; Sonnenschein, Volker, E-mail: volker@nagoya-u.jp; Tomita, Hideki, E-mail: tomita@nagoya-u.jp; Hayashi, Noriyoshi, E-mail: hayashi.noriyoshi@h.mbox.nagoya-u.ac.jp; Kato, Shusuke, E-mail: katou.shuusuke@f.mbox.nagoya-u.ac.jp; Jin, Lei, E-mail: kin@nuee.nagoya-u.ac.jp; Yamanaka, Masahito, E-mail: yamanaka@nuee.nagoya-u.ac.jp; Nishizawa, Norihiko, E-mail: nishizawa@nuee.nagoya-u.ac.jp [Nagoya University, Department of Quantum Engineering, Graduate School of Engineering (Japan); Sato, Atsushi, E-mail: atsushi.sato@sekisui.com; Nozawa, Kohei, E-mail: kohei.nozawa@sekisui.com; Hashizume, Kenta, E-mail: kenta.hashizume@sekisui.com; Oh-hara, Toshinari, E-mail: toshinari.ohara@sekisui.com [Sekisui Medical Co., Ltd., Drug Development Solutions Center (Japan); Iguchi, Tetsuo, E-mail: t-iguchi@nucl.nagoya-u.ac.jp [Nagoya University, Department of Quantum Engineering, Graduate School of Engineering (Japan)

    2017-11-15

    A simple external optical feedback system has been applied to a distributed feedback quantum cascade laser (DFB QCL) for cavity ring-down spectroscopy (CRDS) and a clear effect of feedback was observed. A long external feedback path length of up to 4m can decrease the QCL linewidth to around 50kHz, which is of the order of the transmission linewidth of our high finesse ring-down cavity. The power spectral density of the transmission signal from high finesse cavity reveals that the noise at frequencies above 20kHz is reduced dramatically.

  16. Sensitive and ultra-fast species detection using pulsed cavity ringdown spectroscopy

    KAUST Repository

    Alquaity, Awad

    2015-01-01

    Pulsed cavity ringdown spectroscopy (CRDS) is used to develop a novel, ultra-fast, high-sensitivity diagnostic for measuring species concentrations in shock tube experiments. The diagnostic is demonstrated by monitoring trace concentrations of ethylene in the mid-IR region near 949.47 cm-1. Each ringdown measurement is completed in less than 1 μs and the time period between successive pulses is 10 μs. The high sensitivity diagnostic has a noise-equivalent detection limit of 1.08 x 10-5 cm-1 which enables detection of 15 ppm ethylene at fuel pyrolysis conditions (1845 K and 2 bar) and 294 ppb ethylene under ambient conditions (297 K and 1 bar). To our knowledge, this is the first successful application of the cavity ringdown method to the measurement of species time-histories in a shock tube. © 2015 OSA.

  17. Feasibility Study of Using Short Wave Infrared Cavity Ringdown Spectroscopy (SWIR-CRDS) for Biological Agent Detection

    Energy Technology Data Exchange (ETDEWEB)

    Aker, Pam M.; Johnson, Timothy J.; Williams, Richard M.; Valentine, Nancy B.

    2007-10-01

    This project focused on determining the feasibility of using short wave infrared (SWIR) cavity ring down spectroscopy (CRDS) as a means for real-time detection of biological aerosols. The first part of the project involved identifying biological agent signatures that could be detected with SWIR CRDS. After an exhaustive search of the open literature it was determined that whole biological spores and/or cells would not be good candidates for direct SWIR CRDS probing because they have no unique SWIR signatures. It was postulated that while whole cells or spores are not good candidates for SWIR CRDS detection, their pyrolysis break-down products might be. A literature search was then conducted to find biological pyrolysis products with low molecular weights and high symmetry since these species most likely would have overtone and combination vibrational bands that can be detected in the SWIR. It was determined that pyrrole, pyridine and picolinamide were good candidates for evaluation. These molecules are formed when proteins and porphyrins, proteins and dipicolinic acid, and dipicolinic acid are pyrolyzed, respectively. The second part of the project involved measuring quantitative SWIR spectra of pyrrole, pyridine and picolinamide in PNNL’s FTIR Spectroscopy Laboratory. Spectral information about these molecules, in the vapor phase is sparse – there were only a few prior studies that measured line positions and no information on absorption cross sections. Absorption cross sections are needed in order to estimate the SWIR CRDS detection sensitivity, and line position determines what type of laser will be needed for the sensor. The results of the spectroscopy studies allowed us to estimate the SWIR CRDS detection sensitivity for pyrrole to be 3 x 1012 molec cm-3 or 0.1 ppmv, and for pyridine it was 1.5 x 1015 molec cm-3 or 0.6 ppmv. These detection sensitivity limits are close what we have measured for ammonia. Given these detection limits we then estimated the

  18. Microcontroller based resonance tracking unit for time resolved continuous wave cavity-ringdown spectroscopy measurements.

    Science.gov (United States)

    Votava, Ondrej; Mašát, Milan; Parker, Alexander E; Jain, Chaithania; Fittschen, Christa

    2012-04-01

    We present in this work a new tracking servoloop electronics for continuous wave cavity-ringdown absorption spectroscopy (cw-CRDS) and its application to time resolved cw-CRDS measurements by coupling the system with a pulsed laser photolysis set-up. The tracking unit significantly increases the repetition rate of the CRDS events and thus improves effective time resolution (and/or the signal-to-noise ratio) in kinetics studies with cw-CRDS in given data acquisition time. The tracking servoloop uses novel strategy to track the cavity resonances that result in a fast relocking (few ms) after the loss of tracking due to an external disturbance. The microcontroller based design is highly flexible and thus advanced tracking strategies are easy to implement by the firmware modification without the need to modify the hardware. We believe that the performance of many existing cw-CRDS experiments, not only time-resolved, can be improved with such tracking unit without any additional modification to the experiment. © 2012 American Institute of Physics

  19. Detecting Hydrogen Chloride (HCl) in the Polluted Marine Boundary Layer Using Cavity Ring-Down Spectroscopy (CRDS)

    Science.gov (United States)

    Furlani, T.; Dawe, K.; VandenBoer, T. C.; Young, C.

    2017-12-01

    Oxidation initiated with chlorine atoms yields more ozone than oxidation initiated with hydroxyl radicals. Reasons for this are not fully understood, but the implications for mechanisms of oxidation chemistry are significant.1,2 Chlorine atoms have not been directly measured to date in the atmosphere and its abundance is usually inferred through steady-state approximations from all known formation and loss processes. A major reservoir for chlorine in the troposphere is by proton abstraction of organic compounds to form HCl.3 HCl can also be formed heterogeneously via acid displacement reactions with ubiquitously-found sodium chloride (NaCl) on solid surfaces with nitric acid (HNO3). The majority of the available chloride in the marine boundary layer comes from the sea salt in and around marine derived sea-spray aerosols. HCl is not a perfect sink and can react with hydroxyl radicals or be photolyzed to form chlorine atoms. The balance between loss and formation processes of chlorine atoms from HCl is highly dependent on many external factors, such as the wet and dry deposition rate of HCl. Measuring HCl in the gas and aerosol phase is important to the understanding of chlorine chemistry in the polluted marine boundary layer. HCl levels in the polluted marine boundary layer are typically between 100pptv-1ppbv,3 requiring the sensitive and selective detection capabilities of cavity ring-down spectroscopy (CRDS).4 We measured HCl using a Picarro CRDS in the polluted marine boundary layer for the first time. Measurements were conducted during April and May of 2017 in St. John's, Newfoundland and Labrador. The performance of the instrument will be discussed, as well as observations of HCl in the context of local conditions. References1Osthoff, H. D. et al. Nat. Geosci 1, 324-328 (2008). 2Young, C. J. et al. Atmos. Chem. Phys. 14, 3427-3440 (2014). 3Crisp, T. a et al. J. Geophys. Res. Atmos. 6897-6915 (2014). 4Hagen, C. L. et al. Atmos. Meas. Tech. 7, 345-357 (2014).

  20. High sensitivity detection of NO2 employing cavity ringdown spectroscopy and an external cavity continuously tunable quantum cascade laser.

    Science.gov (United States)

    Rao, Gottipaty N; Karpf, Andreas

    2010-09-10

    A trace gas sensor for the detection of nitrogen dioxide based on cavity ringdown spectroscopy (CRDS) and a continuous wave external cavity tunable quantum cascade laser operating at room temperature has been designed, and its features and performance characteristics are reported. By measuring the ringdown times of the cavity at different concentrations of NO(2), we report a sensitivity of 1.2 ppb for the detection of NO(2) in Zero Air.

  1. Determination of dissolved methane in natural waters using headspace analysis with cavity ring-down spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Hannah M.; Shiller, Alan M., E-mail: alan.shiller@usm.edu

    2015-01-26

    Highlights: • A method for determining low nanomolar dissolved CH{sub 4} was developed. • The methane detection utilizes cavity ring-down spectroscopy (CRDS). • Use of CRDS requires less time, materials and labor than typical of GC analysis. • Relative standard deviations of ∼4% were achieved at low nM CH{sub 4}. • Applications to seawater and river water are presented. - Abstract: Methane (CH{sub 4}) is the third most abundant greenhouse gas (GHG) but is vastly understudied in comparison to carbon dioxide. Sources and sinks to the atmosphere vary considerably in estimation, including sources such as fresh and marine water systems. A new method to determine dissolved methane concentrations in discrete water samples has been evaluated. By analyzing an equilibrated headspace using laser cavity ring-down spectroscopy (CRDS), low nanomolar dissolved methane concentrations can be determined with high reproducibility (i.e., 0.13 nM detection limit and typical 4% RSD). While CRDS instruments cost roughly twice that of gas chromatographs (GC) usually used for methane determination, the process presented herein is substantially simpler, faster, and requires fewer materials than GC methods. Typically, 70-mL water samples are equilibrated with an equivalent amount of zero air in plastic syringes. The equilibrated headspace is transferred to a clean, dry syringe and then drawn into a Picarro G2301 CRDS analyzer via the instrument’s pump. We demonstrate that this instrument holds a linear calibration into the sub-ppmv methane concentration range and holds a stable calibration for at least two years. Application of the method to shipboard dissolved methane determination in the northern Gulf of Mexico as well as river water is shown. Concentrations spanning nearly six orders of magnitude have been determined with this method.

  2. Miniature chemical sensor combining molecular recognition with evanescent wave cavity ring-down spectroscopy

    International Nuclear Information System (INIS)

    Pipino, Andrew C. R.

    2004-01-01

    A new chemical detection technology has been realized that addresses DOE environmental management needs. The new technology is based on a variant of the sensitive optical absorption technique, cavity ring-down spectroscopy (CRDS). Termed evanescent-wave cavity ring-down spectroscopy (EW-CRDS), the technology employs a miniature solid-state optical resonator having an extremely high Q-factor as the sensing element, where the high-Q is achieved by using ultra-low-attenuation optical materials, ultra-smooth surfaces, and ultra-high reflectivity coatings, as well as low-diffraction-loss designs. At least one total-internal reflection (TIR) mirror is integral to the resonator permitting the concomitant evanescent wave to probe the ambient environment. Several prototypes have been designed, fabricated, characterized, and applied to chemical detection. Moreover, extensions of the sensing concept have been explored to enhance selectivity, sensitivity, and range of application. Operating primarily in the visible and near IR regions, the technology inherently enables remote detection by optical fiber. Producing 11 archival publications, 5 patents, 19 invited talks, 4 conference proceedings, a CRADA, and a patent-license agreement, the project has realized a new chemical detection technology providing >100 times more sensitivity than comparable technologies, while also providing practical advantages

  3. Evanescent wave cavity ring-down spectroscopy (EW-CRDS) as a probe of macromolecule adsorption kinetics at functionalized interfaces.

    Science.gov (United States)

    O'Connell, Michael A; de Cuendias, Anne; Gayet, Florence; Shirley, Ian M; Mackenzie, Stuart R; Haddleton, David M; Unwin, Patrick R

    2012-05-01

    Evanescent wave cavity ring-down spectroscopy (EW-CRDS) has been employed to study the interfacial adsorption kinetics of coumarin-tagged macromolecules onto a range of functionalized planar surfaces. Such studies are valuable in designing polymers for complex systems where the degree of interaction between the polymer and surface needs to be tailored. Three tagged synthetic polymers with different functionalities are examined: poly(acrylic acid) (PAA), poly(3-sulfopropyl methacrylate, potassium salt) (PSPMA), and a mannose-modified glycopolymer. Adsorption transients at the silica/water interface are found to be characteristic for each polymer, and kinetics are deduced from the initial rates. The chemistry of the adsorption interfaces has been varied by, first, manipulation of silica surface chemistry via the bulk pH, followed by surfaces modified by poly(L-glutamic acid) (PGA) and cellulose, giving five chemically different surfaces. Complementary atomic force microscopy (AFM) imaging has been used for additional surface characterization of adsorbed layers and functionalized interfaces to allow adsorption rates to be interpreted more fully. Adsorption rates for PSPMA and the glycopolymer are seen to be highly surface sensitive, with significantly higher rates on cellulose-modified surfaces, whereas PAA shows a much smaller rate dependence on the nature of the adsorption surface.

  4. An external-cavity quantum cascade laser operating near 5.2 µm combined with cavity ring-down spectroscopy for multi-component chemical sensing

    Science.gov (United States)

    Dutta Banik, Gourab; Maity, Abhijit; Som, Suman; Pal, Mithun; Pradhan, Manik

    2018-04-01

    We report on the performance of a widely tunable continuous wave mode-hop-free external-cavity quantum cascade laser operating at λ ~ 5.2 µm combined with cavity ring-down spectroscopy (CRDS) technique for high-resolution molecular spectroscopy. The CRDS system has been utilized for simultaneous and molecule-specific detection of several environmentally and bio-medically important trace molecular species such as nitric oxide, nitrous oxide, carbonyl sulphide and acetylene (C2H2) at ultra-low concentrations by probing numerous rotationally resolved ro-vibrational transitions in the mid-IR spectral region within a relatively small spectral range of ~0.035 cm-1. This continuous wave external-cavity quantum cascade laser-based multi-component CRDS sensor with high sensitivity and molecular specificity promises applications in environmental sensing as well as non-invasive medical diagnosis through human breath analysis.

  5. Study of atmospheric air AC glow discharge using optical emission spectroscopy and near infrared diode laser cavity ringdown spectroscopy

    Science.gov (United States)

    Srivastava, Nimisha; Wang, Chuji; Dibble, Theodore S.

    2008-11-01

    AC glow discharges were generated in atmospheric pressure by applying high voltage AC in the range of 3500-15000 V to a pair of stainless steel electrodes separated by an air gap. The discharges were characterized by optical emission spectroscopy (OES) and continuous wave cavity ringdown spectroscopy (cw-CRDS). The electronic (Tex), vibrational (Tv), and rotational (Tr) temperatures were measured. Spectral stimulations of the emission spectra of several vibronic bands of the 2^nd positive system of N2, the 1^st negative system of N2^+, the (0,1,2,3-0) bands of NO (A-X), and the (0-0) band of OH (A-X), which were obtained under various plasma operating conditions, show that Tr, Tv, and Tex are in the ranges of 2000 - 3800, 3500 - 5000, and 6000 - 10500^ K, respectively. Emission spectra show that OH concentration increases while NO concentration decreases with an increase of electrode spacing. The absorption spectra of H2O and OH overtone in the near infrared (NIR) were measured by the cw-CRDS with a telecommunications diode laser at wavelength near 1515 nm.

  6. A portable optical emission spectroscopy-cavity ringdown spectroscopy dual-mode plasma spectrometer for measurements of environmentally important trace heavy metals: Initial test with elemental Hg

    Science.gov (United States)

    Sahay, Peeyush; Scherrer, Susan T.; Wang, Chuji

    2012-09-01

    A portable optical emission spectroscopy-cavity ringdown spectroscopy (OES-CRDS) dual-mode plasma spectrometer is described. A compact, low-power, atmospheric argon microwave plasma torch (MPT) is utilized as the emission source when the spectrometer is operating in the OES mode. The same MPT serves as the atomization source for ringdown measurements in the CRDS mode. Initial demonstration of the instrument is carried out by observing OES of multiple elements including mercury (Hg) in the OES mode and by measuring absolute concentrations of Hg in the metastable state 6s6p 3P0 in the CRDS mode, in which a palm-size diode laser operating at a single wavelength 405 nm is incorporated in the spectrometer as the light source. In the OES mode, the detection limit for Hg is determined to be 44 parts per 109 (ppb). A strong radiation trapping effect on emission measurements of Hg at 254 nm is observed when the Hg solution concentration is higher than 50 parts per 106 (ppm). The radiation trapping effect suggests that two different transition lines of Hg at 253.65 nm and 365.01 nm be selected for emission measurements in lower (50 ppm), respectively. In the CRDS mode, the detection limit of Hg in the metastable state 6s6p 3P0 is achieved to be 2.24 parts per 1012 (ppt) when the plasma is operating at 150 W with sample gas flow rate of 480 mL min-1; the detection limit corresponds to 50 ppm in Hg sample solution. Advantage of this novel spectrometer has two-fold, it has a large measurement dynamic range, from a few ppt to hundreds ppm and the CRDS mode can serve as calibration for the OES mode as well as high sensitivity measurements. Measurements of seven other elements, As, Cd, Mn, Ni, P, Pb, and Sr, using the OES mode are also carried out with detection limits of 1100, 33, 30, 144, 576, 94, and 2 ppb, respectively. Matrix effect in the presence of other elements on Hg measurements has been found to increase the detection limit to 131 ppb. These elements in lower

  7. Development of a pulsed laser with emission at 1053 nm for Cavity Ring-Down Spectroscopy

    International Nuclear Information System (INIS)

    Cavalcanti, Fabio

    2014-01-01

    In this work, a pulsed and Q-switched laser resonator was developed using the double-beam mode-controlling technique. A Nd:LiYF4 crystal with 0,8mol% of doping concentration was used to generate a giant pulse with duration of 5,5 ns (FWHM), 1,2 mJ of energy and 220 kW peak power for the Cavity Ring-Down Spectroscopy (CRDS) technique. The CRDS technique is used to measure absorption spectra for gases, liquids and solids. With the CRDS technique it is possible to measure losses with high degree of accuracy, underscoring the sensitivity that is confirmed by the use of mirrors with high reflectivity. With this technique, the losses by reflection and scattering of transparent materials were evaluated. By calibrating the resonant cavity, it was possible to measure the losses in the samples with resolution of 0,045%, the maximum being reached by 0,18%. The calibration was possible because there was obtained to measure a decay time of approximately 20 μs with the empty cavity. Besides was obtained a method for determining the refractive index of transparent materials with accuracy of five decimals. (author)

  8. Infrared cavity ring-down spectroscopy with a CW diode laser system

    NARCIS (Netherlands)

    Hemerik, M.M.; Kroesen, G.M.W.; Doebele, H.F.; Muraoka, K.

    1999-01-01

    We report on the first measurements with our CRDS setup. Although the diode laser system was out of order, we were able to test the most important parts with the use of a CO laser. The first results show a ring-down time of 1.54 ~is, which is in perfect agreement with the predicted reflectivity of

  9. Physical and chemical study of single aerosol particles using optical trapping cavity ringdown spectroscopy

    Science.gov (United States)

    2016-08-30

    scope that views the trapped particle walking through the ringdown beam step by step. (b) An image that shows the traces of the particle (MWCNT... walking through the RD beam . 5 a b c Fig.3 The OT-CRDS single particle scope views oscillations of a trapped particle. (a) Image of a trapped...and walking single carbon- nanotube particles of ?50 µm in size and viewing those properties via changes of ringdown time. This single- aerosol

  10. Toward real-time measurement of atmospheric mercury concentrations using cavity ring-down spectroscopy

    Directory of Open Access Journals (Sweden)

    X. Faïn

    2010-03-01

    Full Text Available Cavity ring-down spectroscopy (CRDS is a direct absorption technique that utilizes path lengths up to multiple kilometers in a compact absorption cell and has a significantly higher sensitivity than conventional absorption spectroscopy. This tool opens new prospects for study of gaseous elemental mercury (Hg0 because of its high temporal resolution and reduced sample volume requirements (<0.5 l of sample air. We developed a new sensor based on CRDS for measurement of (Hg0 mass concentration. Sensor characteristics include sub-ng m−3 detection limit and high temporal resolution using a frequency-doubled, tuneable dye laser emitting pulses at ~253.65 nm with a pulse repetition frequency of 50 Hz. The dye laser incorporates a unique piezo element attached to its tuning grating allowing it to tune the laser on and off the Hg0 absorption line on a pulse-to-pulse basis to facilitate differential absorption measurements. Hg0 absorption measurements with this CRDS laboratory prototype are highly linearly related to Hg0 concentrations determined by a Tekran 2537B analyzer over an Hg0 concentration range from 0.2 ng m−3 to 573 ng m−3, implying excellent linearity of both instruments. The current CRDS instrument has a sensitivity of 0.10 ng Hg0 m−3 at 10-s time resolution. Ambient-air tests showed that background Hg0 levels can be detected at low temporal resolution (i.e., 1 s, but also highlight a need for high-frequency (i.e., pulse-to-pulse differential on/off-line tuning of the laser wavelength to account for instabilities of the CRDS system and variable background absorption interferences. Future applications may include ambient Hg0 flux measurements with eddy covariance techniques, which require measurements of Hg0 concentrations with sub-ng m−3 sensitivity and sub-second time

  11. Pressure optimization of an EC-QCL based cavity ring-down spectroscopy instrument for exhaled NO detection

    Science.gov (United States)

    Zhou, Sheng; Han, Yanling; Li, Bincheng

    2018-02-01

    Nitric oxide (NO) in exhaled breath has gained increasing interest in recent years mainly driven by the clinical need to monitor inflammatory status in respiratory disorders, such as asthma and other pulmonary conditions. Mid-infrared cavity ring-down spectroscopy (CRDS) using an external cavity, widely tunable continuous-wave quantum cascade laser operating at 5.3 µm was employed for NO detection. The detection pressure was reduced in steps to improve the sensitivity, and the optimal pressure was determined to be 15 kPa based on the fitting residual analysis of measured absorption spectra. A detection limit (1σ, or one time of standard deviation) of 0.41 ppb was experimentally achieved for NO detection in human breath under the optimized condition in a total of 60 s acquisition time (2 s per data point). Diurnal measurement session was conducted for exhaled NO. The experimental results indicated that mid-infrared CRDS technique has great potential for various applications in health diagnosis.

  12. Measurement of absolute concentrations of minor reactive species in flames by cavity ring down absorption spectroscopy (CRDS) method; Mesure de concentrations absolues d'especes reactives minoritaires dans les flammes par la technique d'absorption cavity ring down spectroscopy (CRDS)

    Energy Technology Data Exchange (ETDEWEB)

    Mercier, X.

    2000-11-15

    Combustion processes, which represent our main source of energy today, arouse still numerous questioning. It likes essentially the complexity of the involved chemical mechanisms as well as in the inherent difficulty to the study of an environment which is the field of several thousand simultaneous reactions. Now, even if powerful models exist, allowing the simulation of complex chemical systems, they can not predict any process of combustion and the experimental approach of these ones is still essential for the improvement of the existing models. In particular, the quantitative measure of minor species in flames constitutes a fundamental stage in the validation of the chemical mechanisms with high temperature. It is in this optics that we developed a new technique for flames study, the Cavity Ring-Down Spectroscopy (CRDS). This technique (appeared to the end of the 80's (O' Keefe and Deacon [1988]) within the framework of a spectroscopic study) is similar to a very high sensibility absorption method. The principle of the CRDS technique is based on the measure of the lifetime of an laser pulse injected in an optical cavity within which is an absorbing sample. in this report, we show the interest and the potentialities of the CRDS for the study of homogeneous flames. To do it, we clarify in detail the principle of the CRDS and the care to be taken for the measure of absolute concentrations. Besides, a comparison of the absolute concentrations profiles obtained by CRDS (of CN and CH notably) in a CH{sub 4} /O{sub 2} flame seeded with NO, with those stemming from the modelling by means of the software PREMIX is also presented. The very good agreement which reveals this comparison tends to show that the CRDS, because of its high sensibility and its direct quantitative character, is one of the most efficient methods for the measure of minor species absolute concentrations in homogeneous flames. (author)

  13. An acetone breath analyzer using cavity ringdown spectroscopy: an initial test with human subjects under various situations

    International Nuclear Information System (INIS)

    Wang, Chuji; Surampudi, Anand B

    2008-01-01

    We have developed a portable breath acetone analyzer using cavity ringdown spectroscopy (CRDS). The instrument was initially tested by measuring the absorbance of breath gases at a single wavelength (266 nm) from 32 human subjects under various conditions. A background subtraction method, implemented to obtain absorbance differences, from which an upper limit of breath acetone concentration was obtained, is described. The upper limits of breath acetone concentration in the four Type 1 diabetes (T1D) subjects, tested after a 14 h overnight fast, range from 0.80 to 3.97 parts per million by volume (ppmv), higher than the mean acetone concentration (0.49 ppmv) in non-diabetic healthy breath reported in the literature. The preliminary results show that the instrument can tell distinctive differences between the breath from individuals who are healthy and those with T1D. On-line monitoring of breath gases in healthy people post-exercise, post-meals and post-alcohol-consumption was also conducted. This exploratory study demonstrates the first CRDS-based acetone breath analyzer and its potential application for point-of-care, non-invasive, diabetic monitoring

  14. Comprehensive laboratory and field testing of cavity ring-down spectroscopy analyzers measuring H2O, CO2, CH4 and CO

    Science.gov (United States)

    Yver Kwok, C.; Laurent, O.; Guemri, A.; Philippon, C.; Wastine, B.; Rella, C. W.; Vuillemin, C.; Truong, F.; Delmotte, M.; Kazan, V.; Darding, M.; Lebègue, B.; Kaiser, C.; Xueref-Rémy, I.; Ramonet, M.

    2015-09-01

    To develop an accurate measurement network of greenhouse gases, instruments in the field need to be stable and precise and thus require infrequent calibrations and a low consumption of consumables. For about 10 years, cavity ring-down spectroscopy (CRDS) analyzers have been available that meet these stringent requirements for precision and stability. Here, we present the results of tests of CRDS instruments in the laboratory (47 instruments) and in the field (15 instruments). The precision and stability of the measurements are studied. We demonstrate that, thanks to rigorous testing, newer models generally perform better than older models, especially in terms of reproducibility between instruments. In the field, we see the importance of individual diagnostics during the installation phase, and we show the value of calibration and target gases that assess the quality of the data. Finally, we formulate recommendations for use of these analyzers in the field.

  15. Comprehensive laboratory and field testing of cavity ring-down spectroscopy analyzers measuring H2O, CO2, CH4 and CO

    Directory of Open Access Journals (Sweden)

    C. Yver Kwok

    2015-09-01

    Full Text Available To develop an accurate measurement network of greenhouse gases, instruments in the field need to be stable and precise and thus require infrequent calibrations and a low consumption of consumables. For about 10 years, cavity ring-down spectroscopy (CRDS analyzers have been available that meet these stringent requirements for precision and stability. Here, we present the results of tests of CRDS instruments in the laboratory (47 instruments and in the field (15 instruments. The precision and stability of the measurements are studied. We demonstrate that, thanks to rigorous testing, newer models generally perform better than older models, especially in terms of reproducibility between instruments. In the field, we see the importance of individual diagnostics during the installation phase, and we show the value of calibration and target gases that assess the quality of the data. Finally, we formulate recommendations for use of these analyzers in the field.

  16. Nonlinear estimation of ring-down time for a Fabry-Perot optical cavity.

    Science.gov (United States)

    Kallapur, Abhijit G; Boyson, Toby K; Petersen, Ian R; Harb, Charles C

    2011-03-28

    This paper discusses the application of a discrete-time extended Kalman filter (EKF) to the problem of estimating the decay time constant for a Fabry-Perot optical cavity for cavity ring-down spectroscopy (CRDS). The data for the estimation process is obtained from a CRDS experimental setup in terms of the light intensity at the output of the cavity. The cavity is held in lock with the input laser frequency by controlling the distance between the mirrors within the cavity by means of a proportional-integral (PI) controller. The cavity is purged with nitrogen and placed under vacuum before chopping the incident light at 25 KHz and recording the light intensity at its output. In spite of beginning the EKF estimation process with uncertainties in the initial value for the decay time constant, its estimates converge well within a small neighborhood of the expected value for the decay time constant of the cavity within a few ring-down cycles. Also, the EKF estimation results for the decay time constant are compared to those obtained using the Levenberg-Marquardt estimation scheme.

  17. Deep-ultraviolet cavity ringdown spectroscopy

    NARCIS (Netherlands)

    Sneep, M.C.; Hannemann, S.; van Duijn, E.J.; Ubachs, W.M.G.

    2004-01-01

    The sensitive optical detection technique of cavity ringdown spectroscopy is extended to the wavelength range 197-204 nm. A novel design narrowband Fourier-transform-limited laser is used, and the technique is applied to gas-phase extinction measurements in CO

  18. Hollow waveguide cavity ringdown spectroscopy

    Science.gov (United States)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  19. System for δ13C-CO2 and xCO2 analysis of discrete gas samples by cavity ring-down spectroscopy

    Science.gov (United States)

    Dickinson, Dane; Bodé, Samuel; Boeckx, Pascal

    2017-11-01

    A method was devised for analysing small discrete gas samples (50 mL syringe) by cavity ring-down spectroscopy (CRDS). Measurements were accomplished by inletting 50 mL syringed samples into an isotopic-CO2 CRDS analyser (Picarro G2131-i) between baseline readings of a reference air standard, which produced sharp peaks in the CRDS data feed. A custom software script was developed to manage the measurement process and aggregate sample data in real time. The method was successfully tested with CO2 mole fractions (xCO2) ranging from 20 000 ppm and δ13C-CO2 values from -100 up to +30 000 ‰ in comparison to VPDB (Vienna Pee Dee Belemnite). Throughput was typically 10 samples h-1, with 13 h-1 possible under ideal conditions. The measurement failure rate in routine use was ca. 1 %. Calibration to correct for memory effects was performed with gravimetric gas standards ranging from 0.05 to 2109 ppm xCO2 and δ13C-CO2 levels varying from -27.3 to +21 740 ‰. Repeatability tests demonstrated that method precision for 50 mL samples was ca. 0.05 % in xCO2 and 0.15 ‰ in δ13C-CO2 for CO2 compositions from 300 to 2000 ppm with natural abundance 13C. Long-term method consistency was tested over a 9-month period, with results showing no systematic measurement drift over time. Standardised analysis of discrete gas samples expands the scope of application for isotopic-CO2 CRDS and enhances its potential for replacing conventional isotope ratio measurement techniques. Our method involves minimal set-up costs and can be readily implemented in Picarro G2131-i and G2201-i analysers or tailored for use with other CRDS instruments and trace gases.

  20. Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy.

    Science.gov (United States)

    Pierce, Ashley M; Moore, Christopher W; Wohlfahrt, Georg; Hörtnagl, Lukas; Kljun, Natascha; Obrist, Daniel

    2015-02-03

    A newly developed pulsed cavity ring-down spectroscopy (CRDS) system for measuring atmospheric gaseous elemental mercury (GEM) concentrations at high temporal resolution (25 Hz) was used to successfully conduct the first eddy covariance (EC) flux measurements of GEM. GEM is the main gaseous atmospheric form, and quantification of bidirectional exchange between the Earth's surface and the atmosphere is important because gas exchange is important on a global scale. For example, surface GEM emissions from natural sources, legacy emissions, and re-emission of previously deposited anthropogenic pollution may exceed direct primary anthropogenic emissions. Using the EC technique for flux measurements requires subsecond measurements, which so far has not been feasible because of the slow time response of available instrumentation. The CRDS system measured GEM fluxes, which were compared to fluxes measured with the modified Bowen ratio (MBR) and a dynamic flux chamber (DFC). Measurements took place near Reno, NV, in September and October 2012 encompassing natural, low-mercury (Hg) background soils and Hg-enriched soils. During nine days of measurements with deployment of Hg-enriched soil in boxes within 60 m upwind of the EC tower, the covariance of GEM concentration and vertical wind speed was measured, showing that EC fluxes over an Hg-enriched area were detectable. During three separate days of flux measurements over background soils (without Hg-enriched soils), no covariance was detected, indicating fluxes below the detection limit. When fluxes were measurable, they strongly correlated with wind direction; the highest fluxes occurred when winds originated from the Hg-enriched area. Comparisons among the three methods showed good agreement in direction (e.g., emission or deposition) and magnitude, especially when measured fluxes originated within the Hg-enriched soil area. EC fluxes averaged 849 ng m(-2) h(-1), compared to DFC fluxes of 1105 ng m(-2) h(-1) and MBR fluxes

  1. Comparison between IRMS and CRDS methods in the determination of isotopic ratios 2H/1H and 18O/16O in water

    International Nuclear Information System (INIS)

    Santos, T. H. R.; Zucchi, M. R.; Lemaire, T.; Azevedo, A. E. G.

    2013-01-01

    Traditionally, the method used for measuring the isotope ratios is the Isotope Ratio Mass Spectrometers (IRMS). A new method has been used to determine the isotopic abundances, the Cavity Ring-Down Spectroscopy (CRDS). It consists of a technique of direct absorption, of high sensitivity, which is based on measuring the absorption ratio, as a function of time, of the light confined in a high finesse optical cavity, instead of the magnitude of light beam absorption. The values of 18 O/ 16 O and D/H ratios are determined with respect to international standards VSMOW, GISP and SLAP from the International Atomic Energy Agency (IAEA). In this work, the IRMS and CRDS techniques are compared, verifying that the CRDS technique is promising and has some advantages compared to IRMS. It uses a smaller amount of sample, the isotope measurements are made simultaneously from the steam, reducing the analysis time. It also shows good reproducibility and accuracy, and it does not require a preliminary sample preparation.

  2. 4D Density Determination of NH Radicals in an MSE Microplasma Combining Planar Laser Induced Fluorescence and Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Visser, Martin; Schenk, Andreas; Gericke, Karl-Heinz

    2010-10-01

    An application of microplasmas is surface modification under mild conditions and of small, well defined areas. For this, an understanding of the plasma composition is of importance. First results of our work on the production and detection of NH radicals in a capacitively coupled radio frequency (RF) microplasma are presented. A microstructured comb electrode was used to generate a glow discharge in a hydrogen/nitrogen gas mixture by applying 13.56 MHz RF voltage. The techniques of planar laser induced fluorescence (PLIF) and cavity ring-down spectroscopy (CRDS) are used for space and time resolved, quantitative detection of the NH radical in the plasma. The rotational temperature was determined to be 820 K and, the density 5.1×1012 cm3. Also, time dependent behaviour of the NH production was observed.

  3. 4D Density Determination of NH Radicals in an MSE Microplasma Combining Planar Laser Induced Fluorescence and Cavity Ring-Down Spectroscopy

    International Nuclear Information System (INIS)

    Visser, Martin; Schenk, Andreas; Gericke, Karl-Heinz

    2010-01-01

    An application of microplasmas is surface modification under mild conditions and of small, well defined areas. For this, an understanding of the plasma composition is of importance. First results of our work on the production and detection of NH radicals in a capacitively coupled radio frequency (RF) microplasma are presented. A microstructured comb electrode was used to generate a glow discharge in a hydrogen/nitrogen gas mixture by applying 13.56 MHz RF voltage. The techniques of planar laser induced fluorescence (PLIF) and cavity ring-down spectroscopy (CRDS) are used for space and time resolved, quantitative detection of the NH radical in the plasma. The rotational temperature was determined to be 820 K and, the density 5.1x10 12 cm 3 . Also, time dependent behaviour of the NH production was observed.

  4. Study of the effective inverse photon efficiency using optical emission spectroscopy combined with cavity ring-down spectroscopy approach

    Science.gov (United States)

    Wu, Xingwei; Li, Cong; Wang, Yong; Wang, Zhiwei; Feng, Chunlei; Ding, Hongbin

    2015-09-01

    The hydrocarbon impurities formation is inevitable due to wall erosion in a long pulse high performance scenario with carbon-based plasma facing materials in fusion devices. The standard procedure to determine the chemical erosion yield in situ is by means of inverse photon efficiency D/XB. In this work, the conversion factor between CH4 flux and photon flux of CH A → X transition (effective inverse photon efficiency PE-1) was measured directly using a cascaded arc plasma simulator with argon/methane. This study shows that the measured PE-1 is different from the calculated D/XB. We compared the photon flux measured by optical emission spectroscopy (OES) and calculated by electron impact excitation of CH(X) which was diagnosed by cavity ring-down spectroscopy (CRDS). It seems that charge exchange and dissociative recombination processes are the main channels of CH(A) production and removal which lead to the inconsistency of PE -1 and D/XB at lower temperature. Meanwhile, the fraction of excited CH(A) produced by dissociative recombination processes was investigated, and we found it increased with Te in the range from 4% to 13% at Te definition instead of D/XB since the electron impact excitation is not the only channel of CH(A) production. These results have an effect on evaluating the yield of chemical erosion in divertor of fusion device.

  5. Near Infrared Cavity Ring-Down Spectroscopy for Isotopic Analyses of CH4 on Future Martian Surface Missions

    Science.gov (United States)

    Chen, Y.; Mahaffy P.; Holmes, V.; Burris, J.; Morey, P.; Lehmann, K.K.; Lollar, B. Sherwood; Lacrampe-Couloume, G.; Onstott, T.C.

    2014-01-01

    A compact Near Infrared Continuous Wave Cavity Ring-Down Spectrometer (near-IR-cw-CRDS) was developed as a candidate for future planetary surface missions. The optical cavity was made of titanium with rugged quartz windows to protect the delicate super cavity from the harsh environmental changes that it would experience during space flight and a Martian surface mission. This design assured the long-term stability of the system. The system applied three distributed feedback laser diodes (DFB-LD), two of which were tuned to the absorption line peaks of (sup 12)CH4 and (sup 13)CH4 at 6046.954 inverse centimeters and 6049.121 inverse centimeters, respectively. The third laser was tuned to a spectral-lines-free region for measuring the baseline cavity loss. The multiple laser design compensated for typical baseline drift of a CRDS system and, thus, improved the overall precision. A semiconductor optical amplifier (SOA) was used instead of an Acousto-Optic Module (AOM) to initiate the cavity ring-down events. It maintained high acquisition rates such as AOM, but consumed less power. High data acquisition rates combined with improved long-term stability yielded precise isotopic measurements in this near-IR region even though the strongest CH4 absorption line in this region is 140 times weaker than that of the strongest mid-IR absorption band. The current system has a detection limit of 1.4 times 10( sup –12) inverse centimeters for (sup 13)CH4. This limit corresponds to approximately 7 parts per trillion volume of CH4 at 100 Torrs. With no further improvements the detection limit of our current near IR-cw-CRDS at an ambient Martian pressure of approximately 6 Torrs (8 millibars) would be 0.25 parts per billion volume for one 3.3 minute long analysis.

  6. A free-flowing soap film combined with cavity ring-down spectroscopy as a detection system for liquid chromatography.

    Science.gov (United States)

    Vogelsang, Markus; Welsch, Thomas; Jones, Harold

    2010-05-07

    We have shown that a free-flowing soap film has sufficiently high-quality optical properties to allow it to be used in the cavity of a ring-down spectrometer (CRDS). The flow rates required to maintain a stable soap film were similar to those used in liquid chromatography and thus allowed interfacing with an HPLC system for use as an optical detector. We have investigated the properties of the system in a relevant analytical application. The soap film/CRDS combination was used at 355 nm as a detector for the separation of a mixture of nitroarenes. These compounds play a role in the residue analysis of areas contaminated with explosives and their decomposition products. In spite of the short absorption path length (9 microm) obtained by the soap film, the high-sensitivity of CRDS allowed a limit of detection of 4 x 10(-6) in absorption units (AU) or less than 17 fmol in the detection volume to be achieved. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  7. System for δ13C–CO2 and xCO2 analysis of discrete gas samples by cavity ring-down spectroscopy

    Directory of Open Access Journals (Sweden)

    D. Dickinson

    2017-11-01

    Full Text Available A method was devised for analysing small discrete gas samples (50 mL syringe by cavity ring-down spectroscopy (CRDS. Measurements were accomplished by inletting 50 mL syringed samples into an isotopic-CO2 CRDS analyser (Picarro G2131-i between baseline readings of a reference air standard, which produced sharp peaks in the CRDS data feed. A custom software script was developed to manage the measurement process and aggregate sample data in real time. The method was successfully tested with CO2 mole fractions (xCO2 ranging from  <  0.1 to  >  20 000 ppm and δ13C–CO2 values from −100 up to +30 000 ‰ in comparison to VPDB (Vienna Pee Dee Belemnite. Throughput was typically 10 samples h−1, with 13 h−1 possible under ideal conditions. The measurement failure rate in routine use was ca. 1 %. Calibration to correct for memory effects was performed with gravimetric gas standards ranging from 0.05 to 2109 ppm xCO2 and δ13C–CO2 levels varying from −27.3 to +21 740 ‰. Repeatability tests demonstrated that method precision for 50 mL samples was ca. 0.05 % in xCO2 and 0.15 ‰ in δ13C–CO2 for CO2 compositions from 300 to 2000 ppm with natural abundance 13C. Long-term method consistency was tested over a 9-month period, with results showing no systematic measurement drift over time. Standardised analysis of discrete gas samples expands the scope of application for isotopic-CO2 CRDS and enhances its potential for replacing conventional isotope ratio measurement techniques. Our method involves minimal set-up costs and can be readily implemented in Picarro G2131-i and G2201-i analysers or tailored for use with other CRDS instruments and trace gases.

  8. The application of cavity ring-down spectroscopy to atmospheric and physical chemistry

    Science.gov (United States)

    Hargrove, James Mcchesney

    Cavity ring-down spectroscopy (CRDS) is a sensitive form of absorption spectroscopy. Thousands of reflections between two multilayer dielectric mirrors give CRDS an extremely long path-length. The rate of decay of the signal is measured instead of the magnitude of attenuation, so laser intensity fluctuations do not affect the measurement. At 405.23 nm, NO2 had a detection limit of 150 ppt/10 s (3sigma). Particles were removed by a 0.45 mum filter. Water vapor had a 2.8 ppb NO 2 equivalent interference for 1% water vapor in air, with a simple quadratic dependence on water monomer concentration that might have been due to water dimer. Removing NO2 with an annular denuder coated with guiacol and sodium hydroxide, or reacting the NO2 and NO2 with ozone, allows for an interference measurement. An NOy measurement can be obtained after thermal decomposition of higher oxides and ozone. The interference was easier to accommodate than the quenching found in chemiluminescence. The water dimer hypothesis was supported by temperature studies resulting in thermodynamics consistent with theory. The oscillator strength at 409 nm was roughly three orders of magnitude stronger than the best available calculations, leading to a serious unanswered question of the possible source of the additional enhancement. Measurements at 532 nm found a similar response, and others have measured a response at 440 nm, suggesting the 6th, 7th and 8th overtones of water dimer occur at ˜532 nm, ˜440 nm and 409 nm with a similar magnitude that is possibly larger than the 3rd and 4th overtones that have not been detectable. The excellent NO2 detection sensitivity enabled the measurement of NO2 emitted by ambient particles from thermal decomposition. Gas phase interferences were removed with radial aerosol denuders. PANs, ANs, and ammonium nitrate were measured sequentially at 150°C, 215°C and 250°C by the emitted NO2. This technique was applied to ambient air during the Study of Organic Aerosols in

  9. S-Nitrosothiols Observed Using Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Rad, Mary Lynn; Gaston, Benjamin M.; Lehmann, Kevin

    2017-06-01

    The biological importance of nitric oxide has been known for nearly forty years due to its role in cardiovascular and nervous signaling. The main carrier molecules, s-nitrosothiols (RSNOs), are of additional interest due to their role in signaling reactions. Additionally, these compounds are related to several diseases including muscular dystrophy, stroke, myocardial infarction, Alzheimer's disease, Parkinson's disease, cystic fibrosis, asthma, and pulmonary arterial hypertension. One of the main barriers to elucidating the role of these RSNOs is the low (nanomolar) concentration present in samples of low volume (typically ˜100 μL). To this end we have set up a cavity ring-down spectrometer tuned to observe ^{14}NO and ^{15}NO released from cell growth samples. To decrease the limit of detection we have implemented a laser locking scheme employing Zeeman modulation of NO in a reference cell and have tuned the polarization of the laser using a half wave plate to optimize the polarization for the inherent birefringence of the CRDS mirrors. Progress toward measuring RSNO concentration in biological samples will be presented.

  10. A Novel Method for Analysis of Dissolved Inorganic Carbon Concentration and δ13C by Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Smith, E.; Gonneea, M. E.; Boze, L. G.; Casso, M.; Pohlman, J.

    2017-12-01

    Dissolved inorganic carbon (DIC) is the largest pool of carbon in the oceans and is where about half of anthropogenic carbon dioxide (CO2) emissions are being sequestered. Determining the concentration and stable carbon isotopic content (δ13C) of DIC allows us to delineate carbon sources that contribute to marine DIC. A simple and reliable method for measuring DIC concentration and δ13C can be used to apportion contributions from external sources and identify effects from biogeochemical reactions that contribute or remove DIC. The U.S. Geological Survey has developed a discrete sample analysis module (DSAM) that interfaces to a Picarro G-2201i cavity ring-down spectrometer (CRDS, Picarro Inc.) to analyze CO2 and methane concentrations and δ13C from discrete gas samples. In this study, we adapted the USGS DSAM-CRDS analysis system to include an AutoMate prep device (Automate FX, Inc.) for analysis of DIC concentration and δ13C from aqueous samples. The Automate prep device was modified to deliver CO2 extracted from DIC to the DSAM, which conditions and transfers the gas to the CRDS. LabVIEW software (National Instruments) triggers the Automate Prep device, controls the DSAM and collects data from the CRDS. CO2 mass concentration data are obtained by numerical integration of the CO2 volumetric concentrations output by the CRDS and subsequent comparison to standard materials. CO2 carbon isotope values from the CRDS (iCO2) are converted to δ13C values using a slope and offset correction calibration procedure. The system design and operation was optimized using sodium bicarbonate (NaHCO3) standards and a certified reference material. Surface water and pore water samples collected from Sage Lot Pond, a salt marsh in Cape Cod MA, have been analyzed for concentration by coulometry and δ13C by isotope ratio mass spectrometry and will be used to validate the DIC-DSAM-CRDS method for field applications.

  11. Laser Spectroscopy for Atmospheric and Environmental Sensing

    Directory of Open Access Journals (Sweden)

    Solomon Bililign

    2009-12-01

    Full Text Available Lasers and laser spectroscopic techniques have been extensively used in several applications since their advent, and the subject has been reviewed extensively in the last several decades. This review is focused on three areas of laser spectroscopic applications in atmospheric and environmental sensing; namely laser-induced fluorescence (LIF, cavity ring-down spectroscopy (CRDS, and photoluminescence (PL techniques used in the detection of solids, liquids, aerosols, trace gases, and volatile organic compounds (VOCs.

  12. Water stable isotope measurements of Antarctic samples by means of IRMS and WS-CRDS techniques

    Science.gov (United States)

    Michelini, Marzia; Bonazza, Mattia; Braida, Martina; Flora, Onelio; Dreossi, Giuliano; Stenni, Barbara

    2010-05-01

    In the last years in the scientific community there has been an increasing interest for the application of stable isotope techniques to several environmental problems such as drinking water safeguarding, groundwater management, climate change, soils and paleoclimate studies etc. For example, the water stable isotopes, being natural tracers of the hydrological cycle, have been extensively used as tools to characterize regional aquifers and to reconstruct past temperature changes from polar ice cores. Here the need for improvements in analytical techniques: the high request for information calls for technologies that can offer a great quantity of analyses in short times and with low costs. Furthermore, sometimes it is difficult to obtain big amount of samples (as is the case for Antarctic ice cores or interstitial water) preventing the possibility to replicate the analyses. Here, we present oxygen and hydrogen measurements performed on water samples covering a big range of isotopic values (from very negative antarctic precipitation to mid-latitude precipitation values) carried out with both the conventional Isotope Ratio Mass Spectrometry (IRMS) technique and with a new method based on laser absorption techniques, the Wavelenght Scanned Cavity Ringdown Spectroscopy (WS-CRDS). This study is focusing on improving the precision of the measurements carried out with WS-CRDS in order to extensively apply this method to Antarctic ice core paleoclimate studies. The WS-CRDS is a variation of the CRDS developed in 1988 by O'Keef and Deacon. In CRDS a pulse of light goes through a box with high reflective inner surfaces; when there is no sample in the box the light beam doesn't find any obstacle in its path, but the reflectivity of the walls is not perfect so eventually there will be an absorption of the light beam; when the sample is injected in the box there is absorption and the difference between the time of absorption without and with sample is proportional to the quantity

  13. Calibrated high-precision 17O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance

    Directory of Open Access Journals (Sweden)

    E. J. Steig

    2014-08-01

    Full Text Available High-precision analysis of the 17O / 16O isotope ratio in water and water vapor is of interest in hydrological, paleoclimate, and atmospheric science applications. Of specific interest is the parameter 17O excess (Δ17O, a measure of the deviation from a~linear relationship between 17O / 16O and 18O / 16O ratios. Conventional analyses of Δ17O of water are obtained by fluorination of H2O to O2 that is analyzed by dual-inlet isotope ratio mass spectrometry (IRMS. We describe a new laser spectroscopy instrument for high-precision Δ17O measurements. The new instrument uses cavity ring-down spectroscopy (CRDS with laser-current-tuned cavity resonance to achieve reduced measurement drift compared with previous-generation instruments. Liquid water and water-vapor samples can be analyzed with a better than 8 per meg precision for Δ17O using integration times of less than 30 min. Calibration with respect to accepted water standards demonstrates that both the precision and the accuracy of Δ17O are competitive with conventional IRMS methods. The new instrument also achieves simultaneous analysis of δ18O, Δ17O and δD with precision of < 0.03‰, < 0.02 and < 0.2‰, respectively, based on repeated calibrated measurements.

  14. Cavity Ring-Down Spectroscopy for Gaseous Fission Products Trace Measurements in Sodium Fast Reactors

    International Nuclear Information System (INIS)

    Jacquet, P.; Pailloux, A.; Doizi, D.; Aoust, G.; Jeannot, J.-P.

    2013-06-01

    Safety and availability are key issues of the generation IV reactors. Hence, the three radionuclide confinement barriers, including fuel cladding, must stay tight during the reactor operation. During the primary gaseous failure, fission products xenon and krypton are released. Their fast and sensitive detection guarantees the first confinement barrier tightness. In the frame of the French ASTRID project, an optical spectroscopy technique - Cavity Ring Down Spectroscopy (CRDS) - is investigated for the gaseous fission products measurement. A dedicated CRDS set-up is needed to detect the rare gases with a commercial laser. Indeed, the CRDS is coupled to a glow discharge plasma, which generates a population of metastable atoms. The xenon plasma conditions are optimized to 110 Pa and 1.3 W (3 mA). The production efficiency of metastable Xe is then 0.8 %, stable within 0.5% during hours. The metastable number density is proportional to the xenon over argon molar fraction. The spectroscopic parameters of the strong 823.16 nm xenon transition are calculated and/or measured in order to optimize the fit of the experimental spectra and make a quantitative measurement of the metastable xenon. The CRDS is coupled to the discharge cell. The laser intensity inside the cavity is limited by the optical saturation process, resulting from the strong optical pumping of the metastable state. The resulting weak CRDS signal requires a fast and very sensitive photodetector. A 600 ppt xenon molar fraction was measured by CRDS. With the present set-up, the detection limits are estimated from the baseline noise to approximately 20 ppt for each even isotope, 60 ppt for the 131 Xe and 55 ppt for the 129 Xe. This sensitivity matches the specifications required for gaseous leak measurement; approximately 100 ppt for 133 Xe (4 GBq/m 3 ) and 10 ppb for stable isotopes. The odd isotopes are selectively measured, whereas the even isotopes overlap, a spectroscopic feature that applies for stable or

  15. Evaluation of factors affecting accurate measurements of atmospheric CO2 and CH4 by wavelength-scanned cavity ring-down spectroscopy

    Science.gov (United States)

    Nara, H.; Tanimoto, H.; Tohjima, Y.; Mukai, H.; Nojiri, Y.; Katsumata, K.; Rella, C.

    2012-07-01

    We examined potential interferences from water vapor and atmospheric background gases (N2, O2, and Ar), and biases by isotopologues of target species, on accurate measurement of atmospheric CO2 and CH4 by means of wavelength-scanned cavity ring-down spectroscopy (WS-CRDS). Variations in the composition of the background gas substantially impacted the CO2 and CH4 measurements: the measured amounts of CO2 and CH4 decreased with increasing N2 mole fraction, but increased with increasing O2 and Ar, suggesting that the pressure-broadening effects (PBEs) increased as Ar < O2 < N2. Using these experimental results, we inferred PBEs for the measurement of synthetic standard gases. The PBEs were negligible (up to 0.05 ppm for CO2 and 0.01 ppb for CH4) for gas standards balanced with purified air, although the PBEs were substantial (up to 0.87 ppm for CO2 and 1.4 ppb for CH4) for standards balanced with synthetic air. For isotopic biases on CO2 measurements, we compared experimental results and theoretical calculations, which showed excellent agreement within their uncertainty. We derived empirical correction functions for water vapor for three WS-CRDS instruments (Picarro EnviroSense 3000i, G-1301, and G-2301). Although the transferability of the functions was not clear, no significant difference was found in the water vapor correction values among these instruments within the typical analytical precision at sufficiently low water concentrations (< 0.3%V for CO2 and < 0.4%V for CH4). For accurate measurements of CO2 and CH4 in ambient air, we concluded that WS-CRDS measurements should be performed under complete dehumidification of air samples, or moderate dehumidification followed by application of a water vapor correction function, along with calibration by natural air-based standard gases or purified air-balanced synthetic standard gases with isotopic correction.

  16. Validation of spectroscopic gas analyzer accuracy using gravimetric standard gas mixtures: impact of background gas composition on CO2 quantitation by cavity ring-down spectroscopy

    Science.gov (United States)

    Lim, Jeong Sik; Park, Miyeon; Lee, Jinbok; Lee, Jeongsoon

    2017-12-01

    The effect of background gas composition on the measurement of CO2 levels was investigated by wavelength-scanned cavity ring-down spectrometry (WS-CRDS) employing a spectral line centered at the R(1) of the (3 00 1)III ← (0 0 0) band. For this purpose, eight cylinders with various gas compositions were gravimetrically and volumetrically prepared within 2σ = 0.1 %, and these gas mixtures were introduced into the WS-CRDS analyzer calibrated against standards of ambient air composition. Depending on the gas composition, deviations between CRDS-determined and gravimetrically (or volumetrically) assigned CO2 concentrations ranged from -9.77 to 5.36 µmol mol-1, e.g., excess N2 exhibited a negative deviation, whereas excess Ar showed a positive one. The total pressure broadening coefficients (TPBCs) obtained from the composition of N2, O2, and Ar thoroughly corrected the deviations up to -0.5 to 0.6 µmol mol-1, while these values were -0.43 to 1.43 µmol mol-1 considering PBCs induced by only N2. The use of TPBC enhanced deviations to be corrected to ˜ 0.15 %. Furthermore, the above correction linearly shifted CRDS responses for a large extent of TPBCs ranging from 0.065 to 0.081 cm-1 atm-1. Thus, accurate measurements using optical intensity-based techniques such as WS-CRDS require TPBC-based instrument calibration or use standards prepared in the same background composition of ambient air.

  17. Detection of new VOC compounds with iCRDS

    Science.gov (United States)

    Huang, H.; Leen, J. B.; Gardner, A.; Gupta, M.; Baer, D. S.

    2015-12-01

    The instrument at Los Gatos Research (a member of ABB Inc.) which is based on incoherent cavity ringdown spectroscopy (iCRDS) that operates in the mid-infrared (bands from 860-1060 cm-1 or 970-1280 cm-1) is capable of detecting a broad range of VOCs, in situ, continuously and autonomously, for example, BTEX compounds (benzene, toluene, ethylbenzene, xylene), including differentiation of xylene isomers. Previously, we have demonstrated the measurement of trichloroethylene (TCE) in zero air with a precision of 0.17 ppb (1σ in 4 minutes), and the measurement of tetrachloroethylene (PCE) with a precision of 0.15 ppb (1σ in 4 minutes). Both of these measured precisions exceed the EPA's commercial building action limit, which for TCE is 0.92 ppb (5 µg/m3) and for PCE is 0.29 ppb (2 µg/m3). This ability has been fully demonstrated by the deployment of the instrument to the Superfund site at Moffett Naval Air Station in Mountain View, California where contaminated ground water results in vapor intrusion of TCE and PCE. For two weeks, the instrument operated continuously and autonomously, successfully measuring TCE and PCE concentrations in both the breathing zone and steam tunnel air, in excellent agreement with previous TO-15 data. In this poster, we present laboratory performance data targeting new toxic molecules with the same instrument. We have demonstrated the measurement of trichlorofluolomethane (Freon 11) in zero air with a precision of 1 ppb (3σ at 1075cm-1), and hexafluoropropene in zero air with a precision of about 0.3 ppb (3σ per spectrum). The iCRDS instrument has shown the ability to continuously and autonomously measure sub-ppb levels of toxic VOCs in the lab/field, offering an unprecedented picture of the short term dynamics associated with vapor intrusion and ground water pollution.

  18. Model-Based, Closed-Loop Control of PZT Creep for Cavity Ring-Down Spectroscopy.

    Science.gov (United States)

    McCartt, A D; Ognibene, T J; Bench, G; Turteltaub, K W

    2014-09-01

    Cavity ring-down spectrometers typically employ a PZT stack to modulate the cavity transmission spectrum. While PZTs ease instrument complexity and aid measurement sensitivity, PZT hysteresis hinders the implementation of cavity-length-stabilized, data-acquisition routines. Once the cavity length is stabilized, the cavity's free spectral range imparts extreme linearity and precision to the measured spectrum's wavelength axis. Methods such as frequency-stabilized cavity ring-down spectroscopy have successfully mitigated PZT hysteresis, but their complexity limits commercial applications. Described herein is a single-laser, model-based, closed-loop method for cavity length control.

  19. Rapid-swept CW cavity ring-down laser spectroscopy for carbon isotope analysis

    International Nuclear Information System (INIS)

    Tomita, Hideki; Watanabe, Kenichi; Takiguchi, Yu; Kawarabayashi, Jun; Iguchi, Tetsuo

    2006-01-01

    With the aim of developing a portable system for an in field isotope analysis, we investigate an isotope analysis based on rapid-swept CW cavity ring-down laser spectroscopy, in which the concentration of a chemical species is derived from its photo absorbance. Such a system can identify the isotopomer and still be constructed as a quite compact system. We have made some basic experimental measurements of the overtone absorption lines of carbon dioxide ( 12 C 16 O 2 , 13 C 16 O 2 ) by rapid-swept cavity ring-down spectroscopy with a CW infrared diode laser at 6,200 cm -1 (1.6 μm). The isotopic ratio has been obtained as (1.07±0.13)x10 -2 , in good agreement with the natural abundance within experimental uncertainty. The detection sensitivity in absorbance has been estimated to be 3x10 -8 cm -1 . (author)

  20. Photodissociation of 1,2-dibromoethylene at 248 nm: Br2 molecular elimination probed by cavity ring-down absorption spectroscopy.

    Science.gov (United States)

    Chang, Yuan-Pin; Lee, Ping-Chen; Lin, King-Chuen; Huang, C H; Sun, B J; Chang, A H H

    2008-06-02

    The Br2 elimination channel is probed for 1,2-C2H2Br2 in the B(3)Pi(+)ou-X(1)Sigma(+)g transition upon irradiation at 248 nm by using cavity ring-down absorption spectroscopy (CRDS). The nascent vibrational population ratio of Br2(v=1)/Br2(v=0) is obtained to be 0.7+/-0.2, thus indicating that the Br2 fragment is produced in hot vibrational states. The obtained Br2 products are anticipated to result primarily from photodissociation of the ground-state cis isomer via four-center elimination or from cis/trans isomers via three-center elimination, each mechanism involving a transition state that has a Br-Br distance much larger than that of ground state Br2. According to ab initio potential energy calculations, the pathways that lead to Br2 elimination may proceed either through the electronic ground state by internal conversion or through the triplet state by intersystem crossing. Temperature-dependence measurements are examined, thereby supporting the pathway that involves internal conversion--which was excluded previously by using product translational spectroscopy (PTS). The quantum yield for the Br2 elimination reaction is determined to be 0.120.1, being substantially contributed by the ground-state Br2 product. The discrepancy of this value from that (of 0.2) obtained by PTS may rise from the lack of measurements in probing the triplet-state Br2 product.

  1. Optical re-injection in cavity-enhanced absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leen, J. Brian, E-mail: b.leen@lgrinc.com; O’Keefe, Anthony [Los Gatos Research, 67 E. Evelyn Avenue, Suite 3, Mountain View, California 94041 (United States)

    2014-09-15

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10{sup −10} cm{sup −1}/√(Hz;) an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.

  2. NO2 Analyzer for Miniature Unmanned Aerial Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Small Business Innovative Research (SBIR) effort, Los Gatos Research (LGR) proposes to employ incoherent Cavity Ringdown Spectroscopy (iCRDS) to develop a...

  3. Flask sample measurements for CO2, CH4 and CO using cavity ring-down spectrometry

    Science.gov (United States)

    Wang, J.-L.; Jacobson, G.; Rella, C. W.; Chang, C.-Y.; Liu, I.; Liu, W.-T.; Chew, C.; Ou-Yang, C.-F.; Liao, W.-C.; Chang, C.-C.

    2013-08-01

    In recent years, cavity ring-down spectrometry (CRDS) has been demonstrated to be a highly sensitive, stable and fast analytical technique for real-time in situ measurements of greenhouse gases. In this study, we propose the technique (which we call flask-CRDS) of analyzing whole air flask samples for CO2, CH4 and CO using a custom gas manifold designed to connect to a CRDS analyzer. Extremely stable measurements of these gases can be achieved over a large pressure range in the flask, from 175 to 760 Torr. The wide pressure range is conducive to flask sample measurement in three ways: (1) flask samples can be collected in low-pressure environments (e.g. high-altitude locations); (2) flask samples can be first analyzed for other trace gases with the remaining low-pressure sample for CRDS analysis of CO2, CH4 and CO; and (3) flask samples can be archived and re-analyzed for validation. The repeatability of this method (1σ of 0.07 ppm for CO2, 0.4 ppb for CH4, and 0.5 ppb for CO) was assessed by analyzing five canisters filled with the same air sample to a pressure of 200 Torr. An inter-comparison of the flask-CRDS data with in-situ CRDS measurements at a high-altitude mountain baseline station revealed excellent agreement, with differences of 0.10 ± 0.09 ppm (1σ) for CO2 and 0.9 ± 1.0 ppb for CH4. This study demonstrated that the flask-CRDS method was not only simple to build and operate but could also perform highly accurate and precise measurements of atmospheric CO2, CH4 and CO in flask samples.

  4. Cavity Ring-down Spectroscopic System And Method

    KAUST Repository

    Alquaity, Awad Bin Saud

    2015-05-14

    A system and method for cavity ring-down spectroscopy can include a pulsed quantum cascade laser, an optical ring-down cavity, a photodetector, and an oscilloscope. The system and method can produce pulse widths of less than 200 ns with bandwidths greater than 300 pm, as well as provide temporal resolution of greater than 10 .mu.s.

  5. Cavity Ring-down Spectroscopic System And Method

    KAUST Repository

    Alquaity, Awad Bin Saud; Farooq, Aamir

    2015-01-01

    A system and method for cavity ring-down spectroscopy can include a pulsed quantum cascade laser, an optical ring-down cavity, a photodetector, and an oscilloscope. The system and method can produce pulse widths of less than 200 ns with bandwidths greater than 300 pm, as well as provide temporal resolution of greater than 10 .mu.s.

  6. Improved CRDS δ13C Stability Through New Calibration Application For CO2 And CH4

    Science.gov (United States)

    Rella, Chris; Arata, Caleb; Saad, Nabil; Leggett, Graham; Miles, Natasha; Richardson, Scott; Davis, Ken

    2015-04-01

    Stable carbon isotope ratio measurements of CO2 and CH4 provide valuable insight into global and regional sources and sinks of the two most important greenhouse gases. Methodologies based on Cavity Ring-Down Spectroscopy (CRDS) have been developed and are capable of delivering δ13C measurements with a precision better than 0.12 permil for CO2 and 0.4 permil for CH4 (1 hour window, 5 minute average). Here we present a method to further improve this measurement stability. We have developed a two-point calibration method which corrects for δ13C drift due to a dependence on carbon species concentration. This method calibrates for both carbon species concentration as well as δ13C. In addition, we further demonstrate that this added stability is especially valuable when using carbon isotope data in linear regression models such as Keeling plots, where even small amounts of error can be magnified to give inconclusive results. Furthermore, we show how this method is used to validate multiple instruments simultaneously and can be used to create the standard samples needed for field calibrations.

  7. An intercomparison of HO2 measurements by fluorescence assay by gas expansion and cavity ring-down spectroscopy within HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry

    Directory of Open Access Journals (Sweden)

    L. Onel

    2017-12-01

    Full Text Available The HO2 radical was monitored simultaneously using two independent techniques in the Leeds HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry atmospheric simulation chamber at room temperature and total pressures of 150 and 1000 mbar of synthetic air. In the first method, HO2 was measured indirectly following sampling through a pinhole expansion to 3 mbar when sampling from 1000 mbar and to 1 mbar when sampling from 150 mbar. Subsequent addition of NO converted it to OH, which was detected via laser-induced fluorescence spectroscopy using the FAGE (fluorescence assay by gas expansion technique. The FAGE method is used widely to measure HO2 concentrations in the field and was calibrated using the 185 nm photolysis of water vapour in synthetic air with a limit of detection at 1000 mbar of 1.6 × 106 molecule cm−3 for an averaging time of 30 s. In the second method, HO2 was measured directly and absolutely without the need for calibration using cavity ring-down spectroscopy (CRDS, with the optical path across the entire ∼ 1.4 m width of the chamber, with excitation of the first O-H overtone at 1506.43 nm using a diode laser and with a sensitivity determined from Allan deviation plots of 3.0 × 108 and 1.5 × 109 molecule cm−3 at 150 and 1000 mbar respectively, for an averaging period of 30 s. HO2 was generated in HIRAC by the photolysis of Cl2 using black lamps in the presence of methanol in synthetic air and was monitored by FAGE and CRDS for ∼ 5–10 min periods with the lamps on and also during the HO2 decay after the lamps were switched off. At 1000 mbar total pressure the correlation plot of [HO2]FAGE versus [HO2]CRDS gave an average gradient of 0.84 ± 0.08 for HO2 concentrations in the range ∼ 4–100 × 109 molecule cm−3, while at 150 mbar total pressure the corresponding gradient was 0.90 ± 0.12 on average for HO2 concentrations in the range

  8. Probing the ignored elimination channel of Br2 in the 248 nm photodissociation of 1,1-dibromoethylene by cavity ring-down absorption spectroscopy.

    Science.gov (United States)

    Lee, Ping-Chen; Tsai, Po-Yu; Hsiao, Ming-Kai; Lin, King-Chuen; Huang, C H; Chang, A H H

    2009-03-09

    In the photodissociation of 1,1-C(2)H(2)Br(2) at 248 nm, the Br(2) elimination channel is probed by using cavity ring-down absorption spectroscopy (CRDS). In terms of spectral simulation, the vibrational population ratio of Br(2)(v = 1)/Br(2)(v = 0) is found to be 0.55+/-0.05, which indicates that the Br(2) fragment is vibrationally hot. The rotational population is thermally equilibrated with a Boltzmann temperature of 349+/-38 K. According to ab initio potential energy calculations, the obtained fragments are anticipated to result primarily from photodissociation of the ground electronic state that undergoes 1) H migration followed by three-center elimination, and 2) isomerization forming either trans- or cis-1,2-C(2)H(2)Br(2) from which Br(2) is eliminated. RRKM calculations predict that the Br(2) dissociation rates through the ground singlet state prevail over those through the triplet state. Measurements of temperature and Ar pressure dependence are examined to support the proposed pathway via internal conversion. The quantum yield for the Br(2) elimination reaction is determined to be 0.07+/-0.04. This result is smaller than that obtained in 1,2-C(2)H(2)Br(2), probably because the dissociation rates are slowed in the isomerization stage.

  9. Effect of air composition (N2, O2, Ar, and H2O on CO2 and CH4 measurement by wavelength-scanned cavity ring-down spectroscopy: calibration and measurement strategy

    Directory of Open Access Journals (Sweden)

    K. Katsumata

    2012-11-01

    Full Text Available We examined potential interferences from water vapor and atmospheric background gases (N2, O2, and Ar, and biases by isotopologues of target species, on accurate measurement of atmospheric CO2 and CH4 by means of wavelength-scanned cavity ring-down spectroscopy (WS-CRDS. Changes of the background gas mole fractions in the sample air substantially impacted the CO2 and CH4 measurements: variation of CO2 and CH4 due to relative increase of each background gas increased as Ar 2 2, suggesting similar relation for the pressure-broadening effects (PBEs among the background gas. The pressure-broadening coefficients due to variations in O2 and Ar for CO2 and CH4 are empirically determined from these experimental results. Calculated PBEs using the pressure-broadening coefficients are linearly correlated with the differences between the mole fractions of O2 and Ar and their ambient abundances. Although the PBEs calculation showed that impact of natural variation of O2 is negligible on the CO2 and CH4 measurements, significant bias was inferred for the measurement of synthetic standard gases. For gas standards balanced with purified air, the PBEs were estimated to be marginal (up to 0.05 ppm for CO2 and 0.01 ppb for CH4 although the PBEs were substantial (up to 0.87 ppm for CO2 and 1.4 ppb for CH4 for standards balanced with synthetic air. For isotopic biases on CO2 measurements, we compared experimental results and theoretical calculations, which showed excellent agreement within their uncertainty. We derived instrument-specific water correction functions empirically for three WS-CRDS instruments (Picarro EnviroSense 3000i, G-1301, and G-2301, and evaluated the transferability of the water correction function from G-1301 among these instruments. Although the transferability was not proven, no significant difference was found in the water vapor correction function for the investigated WS-CRDS instruments as well as the instruments reported in the past

  10. 403 nm cavity ring-down measurements of brown carbon aerosol

    Science.gov (United States)

    Kwon, D.; Grassian, V. H.; Kleiber, P.; Young, M. A.

    2017-12-01

    Atmospheric aerosol influences Earth's climate by absorbing and scattering incoming solar radiation and outgoing terrestrial radiation. One class of secondary organic aerosol (SOA), called brown carbon (BrC), has attracted attention for its wavelength dependent light absorbing properties with absorption coefficients that generally increase from the visible (Vis) to ultraviolet (UV) regions. Here we report results from our investigation of the optical properties of BrC aerosol products from the aqueous phase reaction of ammonium sulfate (AS) with methylglyoxal (MG) using cavity ring-down spectroscopy (CRDS) at 403 nm wavelength. We have measured the optical constants of BrC SOA from the AS/MG reaction as a function of reaction time. Under dry flow conditions, we observed no apparent variation in the BrC refractive index with aging over the course of 22 days. The retrieved BrC optical constants are similar to those of AS with n = 1.52 for the real component. Despite significant UV absorption observed from the bulk BrC solution, the imaginary index value at 403 nm is below our minimum detection limit which puts an upper bound of k as 0.03. These observations are in agreement with results from our recent studies of the light scattering properties of this BrC aerosol.

  11. Fluorescence excitation-emission matrix (EEM) spectroscopy and cavity ring-down (CRD) absorption spectroscopy of oil-contaminated jet fuel using fiber-optic probes.

    Science.gov (United States)

    Omrani, Hengameh; Barnes, Jack A; Dudelzak, Alexander E; Loock, Hans-Peter; Waechter, Helen

    2012-06-21

    Excitation emission matrix (EEM) and cavity ring-down (CRD) spectral signatures have been used to detect and quantitatively assess contamination of jet fuels with aero-turbine lubricating oil. The EEM spectrometer has been fiber-coupled to permit in situ measurements of jet turbine oil contamination of jet fuel. Parallel Factor (PARAFAC) analysis as well as Principal Component Analysis and Regression (PCA/PCR) were used to quantify oil contamination in a range from the limit of detection (10 ppm) to 1000 ppm. Fiber-loop cavity ring-down spectroscopy using a pulsed 355 nm laser was used to quantify the oil contamination in the range of 400 ppm to 100,000 ppm. Both methods in combination therefore permit the detection of oil contamination with a linear dynamic range of about 10,000.

  12. Evanescent-wave cavity ring-down spectroscopy for enhanced detection of surface binding under flow injection analysis conditions

    NARCIS (Netherlands)

    Van Der Sneppen, L.; Ariese, F.; Gooijer, C.; Ubachs, W.

    2008-01-01

    In evanescent-wave cavity ring-down spectroscopy, one (or more) of the re°ections inside the cavity is a total internal re°ection (TIR) event. Only the evanescent wave associated with this TIR is being used for prob-ing the sample. This technique is therefore highly surface-speci-c and attractive

  13. Hydrogen and Oxygen stable isotope analysis of water in fruits and vegetables by using cavity ring-down spectrometry

    International Nuclear Information System (INIS)

    Suzuki, Yaeko

    2016-01-01

    We determined oxygen and hydrogen stable isotope ratios (δ"1"8O and δD) of water in fruits (citrus) and vegetables (ginger) using cavity ring-down spectrometry (CRDS) for assessment of their authenticity. The δ"1"8O and δD values of fruits and straight juice had higher than those of concentrated juice. The citrus fruits from Japan had relatively lower δ"1"8O and δD values of than those from Australia, South Africa and the United States. The δD values and d-excess of ginger samples from Japan were relatively higher than those of ginger samples from China. The δ"1"8O and δD values of water in fruits and vegetables would be representative of the ambient water, depending on geographical parameters such as the latitude and altitude. These results suggested that δ"1"8O and δD values of water in fruits and vegetables by using CRDS would be potentially useful for assessment of their authenticity. (author)

  14. Measurements of the Weak UV Absorptions of Isoprene and Acetone at 261–275 nm Using Cavity Ringdown Spectroscopy for Evaluation of a Potential Portable Ringdown Breath Analyzer

    Science.gov (United States)

    Sahay, Peeyush; Scherrer, Susan T.; Wang, Chuji

    2013-01-01

    The weak absorption spectra of isoprene and acetone have been measured in the wavelength range of 261–275 nm using cavity ringdown spectroscopy. The measured absorption cross-sections of isoprene in the wavelength region of 261–266 nm range from 3.65 × 10−21 cm2·molecule−1 at 261 nm to 1.42 × 10−21 cm2·molecule−1 at 266 nm; these numbers are in good agreement with the values reported in the literature. In the longer wavelength range of 270–275 nm, however, where attractive applications using a single wavelength compact diode laser operating at 274 nm is located, isoprene has been reported in the literature to have no absorption (too weak to be detected). Small absorption cross-sections of isoprene in this longer wavelength region are measured using cavity ringdown spectroscopy for the first time in this work, i.e., 6.20 × 10−23 cm2·molecule−1 at 275 nm. With the same experimental system, wavelength-dependent absorption cross-sections of acetone have also been measured. Theoretical detection limits of isoprene and comparisons of absorbance of isoprene, acetone, and healthy breath gas in this wavelength region are also discussed. PMID:23803787

  15. Effect of air composition (N2, O2, Ar, and H2O) on CO2 and CH4 measurement by wavelength-scanned cavity ring-down spectroscopy: calibration and measurement strategy

    Science.gov (United States)

    Nara, H.; Tanimoto, H.; Tohjima, Y.; Mukai, H.; Nojiri, Y.; Katsumata, K.; Rella, C. W.

    2012-11-01

    We examined potential interferences from water vapor and atmospheric background gases (N2, O2, and Ar), and biases by isotopologues of target species, on accurate measurement of atmospheric CO2 and CH4 by means of wavelength-scanned cavity ring-down spectroscopy (WS-CRDS). Changes of the background gas mole fractions in the sample air substantially impacted the CO2 and CH4 measurements: variation of CO2 and CH4 due to relative increase of each background gas increased as Ar < O2 < N2, suggesting similar relation for the pressure-broadening effects (PBEs) among the background gas. The pressure-broadening coefficients due to variations in O2 and Ar for CO2 and CH4 are empirically determined from these experimental results. Calculated PBEs using the pressure-broadening coefficients are linearly correlated with the differences between the mole fractions of O2 and Ar and their ambient abundances. Although the PBEs calculation showed that impact of natural variation of O2 is negligible on the CO2 and CH4 measurements, significant bias was inferred for the measurement of synthetic standard gases. For gas standards balanced with purified air, the PBEs were estimated to be marginal (up to 0.05 ppm for CO2 and 0.01 ppb for CH4) although the PBEs were substantial (up to 0.87 ppm for CO2 and 1.4 ppb for CH4) for standards balanced with synthetic air. For isotopic biases on CO2 measurements, we compared experimental results and theoretical calculations, which showed excellent agreement within their uncertainty. We derived instrument-specific water correction functions empirically for three WS-CRDS instruments (Picarro EnviroSense 3000i, G-1301, and G-2301), and evaluated the transferability of the water correction function from G-1301 among these instruments. Although the transferability was not proven, no significant difference was found in the water vapor correction function for the investigated WS-CRDS instruments as well as the instruments reported in the past studies

  16. An inter-comparison of HO2 measured by Fluorescence Assay by Gas Expansion and Cavity Ringdown Spectroscopy in the Highly Instrumented Reactor for Atmospheric Chemistry.

    Science.gov (United States)

    Brennan, A.; Onel, L. C.; Gianella, M.; Ronnie, G.; Aguila, A. L.; Hancock, G.; Whalley, L.; Seakins, P. W.; Ritchie, G.; Heard, D. E.

    2017-12-01

    HO2 is an important species in the atmosphere, as it is involved in the HOx radical reaction cycle that is critical to the oxidation of atmospheric pollutants and the ultimate cleaning of the troposphere. One of the most widely utilised methods to measure HO2 is Fluorescence Assay by Gas Expansion (FAGE), which indirectly measures HO2 by sampling into a low pressure cell and titrating HO2 with NO to produce OH that is then detected by Laser Induced Fluorescence. This is an indirect and non-absolute detection technique that requires careful calibration to convert the measured signal into [HO2], which involves the photolysis of H2O at 185 nm to produce OH and HO2, and is subject to 30 % errors at 2σ level. The work presented here shows the validation of the FAGE technique and its calibration procedure through inter-comparison experiments between the non-absolute FAGE technique and Cavity Ringdown Spectroscopy (CRDS), an absolute absorption based method. The CRDS system was used to excite the first O-H overtone of the HO2 absorption band at 1506.43 nm, and features a cavity length of 1.2 m and a total path of 60 km. The experiments were performed inside the 2.25 m3 stainless steel Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC), using a synthetic air mixture at 150 and 1000 mbar of pressure and 298 K. HO2 was generated by photolysis of Cl2 at 365 nm in the presence of CH3OH and O2, and the [HO2] was monitored using both instruments. Additionally, monitoring the temporal decay of HO2 during its self-reaction provided an alternative calibration method for the FAGE instrument, and allowed the absorption cross section of HO2 at 1506.43 nm, σHO2, to be measured. FAGE calibration factors determined through the second order decays of HO2 at 1000 mbar agreed within 8 % of the H2O photolysis method, and determinations of σHO2 at 150 and 1000 mbar agree with previously reported data within 20 % and 12 % respectively. [HO2] correlation plots between the two

  17. First measurement of the Rayleigh cross section

    NARCIS (Netherlands)

    Naus, H.; Ubachs, W.

    2000-01-01

    Rayleigh cross section for N2, Ar and SF6 was performed using the technique of cavity ring-down spectroscopy (CRDS). The experiment was based on the assumption that scattering cross section is equal to the extinction in the absence of absorption. The theory explains the molecular origin of

  18. The IAGOS-core greenhouse gas package : a measurement system for continuous airborne observations of CO2, CH4, H2O and CO

    NARCIS (Netherlands)

    Filges, Annette; Gerbig, Christoph; Chen, Huilin; Franke, Harald; Klaus, Christoph; Jordan, Armin

    2015-01-01

    Within the framework of IAGOS-ERI (In-service Aircraft for a Global Observing System - European Research Infrastructure), a cavity ring-down spectroscopy (CRDS)-based measurement system for the autonomous measurement of the greenhouse gases (GHGs) CO2 and CH4, as well as CO and water vapour was

  19. Continuous-wave cavity ringdown spectroscopy based on the control of cavity reflection.

    Science.gov (United States)

    Li, Zhixin; Ma, Weiguang; Fu, Xiaofang; Tan, Wei; Zhao, Gang; Dong, Lei; Zhang, Lei; Yin, Wangbao; Jia, Suotang

    2013-07-29

    A new type of continuous-wave cavity ringdown spectrometer based on the control of cavity reflection for trace gas detection was designed and evaluated. The technique separated the acquisitions of the ringdown event and the trigger signal to optical switch by detecting the cavity reflection and transmission, respectively. A detailed description of the time sequence of the measurement process was presented. In order to avoid the wrong extraction of ringdown time encountered accidentally in fitting procedure, the laser frequency and cavity length were scanned synchronously. Based on the statistical analysis of measured ringdown times, the frequency normalized minimum detectable absorption in the reflection control mode was 1.7 × 10(-9)cm(-1)Hz(-1/2), which was 5.4 times smaller than that in the transmission control mode. However the signal-to-noise ratio of the absorption spectrum was only 3 times improved since the etalon effect existed. Finally, the peak absorption coefficients of the C(2)H(2) transition near 1530.9nm under different pressures showed a good agreement with the theoretical values.

  20. Cavity Ring-down Spectroscopy for Carbon Isotope Analysis with 2 μm Diode Laser

    International Nuclear Information System (INIS)

    Hiromoto, K.; Tomita, H.; Watanabe, K.; Kawarabayashi, J.; Iguchi, T.

    2009-01-01

    We have made a prototype based on CRDS with 2 μm diode laser for carbon isotope analysis of CO 2 in air. The carbon isotope ratio was obtained to be (1.085±0.012)x10 -2 which shows good agreement with the isotope ratio measured by the magnetic sector-type mass spectrometer within uncertainty. Hence, we demonstrated the carbon isotope analysis based on CRDS with 2 μm tunable diode laser.

  1. Precise oxygen and hydrogen isotope determination in nanoliter quantities of speleothem inclusion water by cavity ring-down spectroscopic techniques

    Science.gov (United States)

    Uemura, Ryu; Nakamoto, Masashi; Asami, Ryuji; Mishima, Satoru; Gibo, Masakazu; Masaka, Kosuke; Jin-Ping, Chen; Wu, Chung-Che; Chang, Yu-Wei; Shen, Chuan-Chou

    2016-01-01

    Speleothem inclusion-water isotope compositions are a promising new climatic proxy, but their applicability is limited by their low content in water and by analytical challenges. We have developed a precise and accurate isotopic technique that is based on cavity ring-down spectroscopy (CRDS). This method features a newly developed crushing apparatus, a refined sample extraction line, careful evaluation of the water/carbonate adsorption effect. After crushing chipped speleothem in a newly-developed crushing device, released inclusion water is purified and mixed with a limited amount of nitrogen gas in the extraction line for CRDS measurement. We have measured 50-260 nL of inclusion water from 77 to 286 mg of stalagmite deposits sampled from Gyokusen Cave, Okinawa Island, Japan. The small sample size requirement demonstrates that our analytical technique can offer high-resolution inclusion water-based paleoclimate reconstructions. The 1σ reproducibility for different stalagmites ranges from ±0.05 to 0.61‰ for δ18O and ±0.0 to 2.9‰ for δD. The δD vs. δ18O plot for inclusion water from modern stalagmites is consistent with the local meteoric water line. The 1000 ln α values based on calcite and fluid inclusion measurements from decades-old stalagmites are in agreement with the data from present-day farmed calcite experiment. Combination of coeval carbonate and fluid inclusion data suggests that past temperatures at 9-10 thousand years ago (ka) and 26 ka were 3.4 ± 0.7 °C and 8.2 ± 2.4 °C colder than at present, respectively.

  2. Field-based cavity ring-down spectrometry of δ¹³C in soil-respired CO₂.

    Science.gov (United States)

    Munksgaard, Niels C; Davies, Kalu; Wurster, Chris M; Bass, Adrian M; Bird, Michael I

    2013-06-01

    Measurement of soil-respired CO₂ at high temporal resolution and sample density is necessary to accurately identify sources and quantify effluxes of soil-respired CO₂. A portable sampling device for the analysis of δ(13)C values in the field is described herein. CO₂ accumulated in a soil chamber was batch sampled sequentially in four gas bags and analysed by Wavelength-Scanned Cavity Ring-down Spectrometry (WS-CRDS). A Keeling plot (1/[CO₂] versus δ(13)C) was used to derive δ(13)C values of soil-respired CO₂. Calibration to the δ(13)C Vienna Peedee Belemnite scale was by analysis of cylinder CO₂ and CO₂ derived from dissolved carbonate standards. The performance of gas-bag analysis was compared to continuous analysis where the WS-CRDS analyser was connected directly to the soil chamber. Although there are inherent difficulties in obtaining absolute accuracy data for δ(13)C values in soil-respired CO₂, the similarity of δ(13)C values obtained for the same test soil with different analytical configurations indicated that an acceptable accuracy of the δ(13)C data were obtained by the WS-CRDS techniques presented here. Field testing of a variety of tropical soil/vegetation types, using the batch sampling technique yielded δ(13)C values for soil-respired CO₂ related to the dominance of either C₃ (tree, δ(13)C=-27.8 to-31.9 ‰) or C₄ (tropical grass, δ(13)C=-9.8 to-13.6 ‰) photosynthetic pathways in vegetation at the sampling sites. Standard errors of the Keeling plot intercept δ(13)C values of soil-respired CO₂ were typically7-9 μmol m(-2) s(-1)).

  3. Evaluation of a cavity ring-down spectrometer for in situ observations of 13CO2

    Directory of Open Access Journals (Sweden)

    D. E. J. Worthy

    2013-02-01

    Full Text Available With the emergence of wide-spread application of new optical techniques to monitor δ13C in atmospheric CO2 there is a growing need to ensure well-calibrated measurements. We characterized one commonly available instrument, a cavity ring-down spectrometer (CRDS system used for continuous in situ monitoring of atmospheric 13CO2. We found no dependency of δ13C on the CO2 concentration in the range of 303–437 ppm. We designed a calibration scheme according to the diagnosed instrumental drifts and established a quality assurance protocol. We find that the repeatability (1-σ of measurements is 0.25‰ for 10 min and 0.15‰ for 20 min integrated averages, respectively. Due to a spectral overlap, our instrument displays a cross-sensitivity to CH4 of 0.42 ± 0.024‰ ppm−1. Our ongoing target measurements yield standard deviations of δ13C from 0.22‰ to 0.28‰ for 10 min averages. We furthermore estimate the reproducibility of our system for ambient air samples from weekly measurements of a long-term target gas to be 0.18‰. We find only a minuscule offset of 0.002 ± 0.025‰ between the CRDS and Environment Canada's isotope ratio mass spectrometer (IRMS results for four target gases used over the course of one year.

  4. Isotope Investigations at an Alpine Karst Aquifer by Means of On-Site Measurements with High Time Resolution and Near Real-Time Data Availability

    International Nuclear Information System (INIS)

    Leis, A.; Plieschnegger, M.; Harum, T.; Stadler, H.; Schmitt, R.; Pelt, A. Van; Zerobin, W.

    2011-01-01

    For numerous hydrological investigations as the characterization of storage and discharge dynamics at karst springs on-site isotopic measurements with high time resolution could improve the significance of the investigations. Conventional isotope ratio mass spectrometers (IRMS) can only be used in laboratories because of their technical complexity. Since a short time more compact laser based instruments, the so called cavity ringdown spectrometers (CRDS) are commercially available. For on-site use of such an instrument several adaptations are necessary. This concerns especially a direct sample injection from the outflow of the spring, because this is originally not intended. The studied alpine and mountainous karst system is located in the so called Northern Calcareous Alps in Austria reaching altitudes up to approx. 2300 masl. The spring is situated in the Salza-valley at an altitude of approximately 650 masl. The investigated karst spring is a typical limestone spring type according to having well developed karst conduits. The isotopic composition of the water samples were measured by using cavity ring-down spectroscopy with a WS-CRDS (Wavelength-Scanned Cavity Ring-Down Spectroscopy) instrument (Picarro, Inc.). In order to adapt the System for on-site isotope measurements at the spring the laser spectrometer was coupled to an automatic injection module for continuous measurements of liquid samples based on a VALCO valve. The device replaces the auto-sampler and allows quasi-continuous injections of a 2 ul-water samples into the Picarro L1102-iso-water analyzer via the Picarro vaporizer module.

  5. Evaluation of the accuracy of thermal dissociation CRDS and LIF techniques for atmospheric measurement of reactive nitrogen species

    Science.gov (United States)

    Womack, Caroline C.; Neuman, J. Andrew; Veres, Patrick R.; Eilerman, Scott J.; Brock, Charles A.; Decker, Zachary C. J.; Zarzana, Kyle J.; Dube, William P.; Wild, Robert J.; Wooldridge, Paul J.; Cohen, Ronald C.; Brown, Steven S.

    2017-05-01

    The sum of all reactive nitrogen species (NOy) includes NOx (NO2 + NO) and all of its oxidized forms, and the accurate detection of NOy is critical to understanding atmospheric nitrogen chemistry. Thermal dissociation (TD) inlets, which convert NOy to NO2 followed by NO2 detection, are frequently used in conjunction with techniques such as laser-induced fluorescence (LIF) and cavity ring-down spectroscopy (CRDS) to measure total NOy when set at > 600 °C or speciated NOy when set at intermediate temperatures. We report the conversion efficiency of known amounts of several representative NOy species to NO2 in our TD-CRDS instrument, under a variety of experimental conditions. We find that the conversion efficiency of HNO3 is highly sensitive to the flow rate and the residence time through the TD inlet as well as the presence of other species that may be present during ambient sampling, such as ozone (O3). Conversion of HNO3 at 400 °C, nominally the set point used to selectively convert organic nitrates, can range from 2 to 6 % and may represent an interference in measurement of organic nitrates under some conditions. The conversion efficiency is strongly dependent on the operating characteristics of individual quartz ovens and should be well calibrated prior to use in field sampling. We demonstrate quantitative conversion of both gas-phase N2O5 and particulate ammonium nitrate in the TD inlet at 650 °C, which is the temperature normally used for conversion of HNO3. N2O5 has two thermal dissociation steps, one at low temperature representing dissociation to NO2 and NO3 and one at high temperature representing dissociation of NO3, which produces exclusively NO2 and not NO. We also find a significant interference from partial conversion (5-10 %) of NH3 to NO at 650 °C in the presence of representative (50 ppbv) levels of O3 in dry zero air. Although this interference appears to be suppressed when sampling ambient air, we nevertheless recommend regular

  6. Measurements of the absolute concentrations of HCO and (CH2)-C-1 in a premixed atmospheric flat flame by cavity ringdown spectroscopy

    NARCIS (Netherlands)

    Evertsen, R.; Oijen, van J.A.; Hermanns, R.T.E.; Goey, de L.P.H.; Meulen, ter J.J.

    2003-01-01

    Singlet methylene (1CH2) and the formyl radical (HCO) have been studied in a premixed flat flame of CH4 and air by cavity ring-down spectroscopy at 1 atm. The absorption lines lie in the same spectral region for both species. The 1CH2 radicals were probed via the 1B1 (0,13,0) ¿ã1A1 (0,0,0) band at

  7. Simultaneous multi-laser, multi-species trace-level sensing of gas mixtures by rapidly swept continuous-wave cavity-ringdown spectroscopy.

    Science.gov (United States)

    He, Yabai; Kan, Ruifeng; Englich, Florian V; Liu, Wenqing; Orr, Brian J

    2010-09-13

    The greenhouse-gas molecules CO(2), CH(4), and H(2)O are detected in air within a few ms by a novel cavity-ringdown laser-absorption spectroscopy technique using a rapidly swept optical cavity and multi-wavelength coherent radiation from a set of pre-tuned near-infrared diode lasers. The performance of various types of tunable diode laser, on which this technique depends, is evaluated. Our instrument is both sensitive and compact, as needed for reliable environmental monitoring with high absolute accuracy to detect trace concentrations of greenhouse gases in outdoor air.

  8. Design Of A Novel Open-Path Aerosol Extinction Cavity Ringdown Spectrometer And Initial Data From Deployment At NOAA's Atmospheric Observatory

    Science.gov (United States)

    Gordon, T. D.; Wagner, N. L.; Richardson, M.; Law, D. C.; Wolfe, D. E.; Brock, C. A.; Erdesz, F.; Murphy, D. M.

    2014-12-01

    The ability to frame effective climate change policy depends strongly on reducing the uncertainty in aerosol radiative forcing, which is currently nearly as great as best estimates of its magnitude. Achieving this goal will require significant progress in measuring aerosol properties, including aerosol optical depth, single scattering albedo and the effect of relative humidity on these properties for both fine and coarse particles. However both ground- and space-based instruments fail or are highly biased in the presence of clouds, severely limiting quantitative estimates of the radiative effects of aerosols where they are advected over low-level clouds. Moreover, many in situ aerosol measurements exclude the coarse fraction, which can be very important in and downwind of desert regions. By measuring the decay rate of a pulsed laser in an optically resonant cavity, cavity ringdown spectrometers (CRDSs) have been employed successfully in measuring aerosol extinction for particles in relative humidities below 90%. At very high humidities (as found in and near clouds), however, existing CRDSs perform poorly, diverging significantly from theoretical extinction values as humidities approach 100%. The new open-path aerosol extinction CRDS described in this poster measures extinction as aerosol is drawn through the sample cavity directly without inlets or tubing for channeling the flow, which cause particle losses, condensation at high RH and other artifacts. This poster presents the key elements of the new open-path CRDS design as well as comparisons with an earlier generation closed-path CRDS and preliminary data obtained during a field study at the 300 meter tower at NOAA's Boulder Atmospheric Observatory (BAO) in Colorado.

  9. Quantification of Atmospheric Formaldehyde by Near-Infrared Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Rella, C.; Hoffnagle, J.; Fleck, D.; Kim-Hak, D.

    2017-12-01

    Formaldehyde is an important species in atmospheric chemistry, especially in urban environments, where it is a decay product of methane and volatile hydrocarbons. It is also a toxic, carcinogenic compound that can contaminate ambient air from incomplete combustion, or outgassing of commercial products such as adhesives used to fabricate plywood or to affix indoor carpeting. Formaldehyde has a clearly resolved ro-vibrational absorption spectrum that is well-suited to optical analysis of formaldehyde concentration. We describe an instrument based on cavity ring-down spectroscopy for the quantitative analysis of formaldehyde concentration in ambient air. The instrument has a precision (1-sigma) of about 1 ppb at a measurement rate of 1 second, and provides measurements of less than 100 ppt with averaging. The instrument provides stable measurements (drift < 1 ppb) over long periods of time (days). The instrument has been ruggedized for mobile applications, and with a fast response time of a couple of seconds, it is suitable for ground-based vehicle deployments for fenceline monitoring of formaldehyde emissions. In addition, we report on ambient atmospheric measurements at a 10m urban tower, which demonstrate the suitability of the instrument for applications in atmospheric chemistry.

  10. CRDS with a VECSEL for broad-band high sensitivity spectroscopy in the 2.3 μm window.

    Science.gov (United States)

    Čermák, P; Chomet, B; Ferrieres, L; Vasilchenko, S; Mondelain, D; Kassi, S; Campargue, A; Denet, S; Lecocq, V; Myara, M; Cerutti, L; Garnache, A

    2016-08-01

    The integration of an industry ready packaged Sb-based Vertical-External-Cavity Surface-Emitting-Laser (VECSEL) into a Cavity Ring Down Spectrometer (CRDS) is presented. The instrument operates in the important 2.3 μm atmospheric transparency window and provides a high sensitivity (minimum detectable absorption of 9 × 10(-11) cm(-1)) over a wide spectra range. The VECSEL performances combine a large continuous tunability over 120 cm(-1) around 4300 cm(-1) together with a powerful (∼5 mW) TEM00 diffraction limited beam and linewidth at MHz level (for 1 ms of integration time). The achieved performances are illustrated by high sensitivity recordings of the very weak absorption spectrum of water vapor in the region. The developed method gives potential access to the 2-2.7 μm range for CRDS.

  11. Real-Tme Boron Nitride Erosion Measurements of the HiVHAc Thruster via Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Lee, Brian C.; Yalin, Azer P.; Gallimore, Alec; Huang, Wensheng; Kamhawi, Hani

    2013-01-01

    Cavity ring-down spectroscopy was used to make real-time erosion measurements from the NASA High Voltage Hall Accelerator thruster. The optical sensor uses 250 nm light to measure absorption of atomic boron in the plume of an operating Hall thruster. Theerosion rate of the High Voltage Hall Accelerator thruster was measured for discharge voltages ranging from 330 to 600 V and discharge powers ranging from 1 to 3 kW. Boron densities as high as 6.5 x 10(exp 15) per cubic meter were found within the channel. Using a very simple boronvelocity model, approximate volumetric erosion rates between 5.0 x 10(exp -12) and 8.2 x 10(exp -12) cubic meter per second were found.

  12. Sensitive and ultra-fast species detection using pulsed cavity ringdown spectroscopy

    KAUST Repository

    Alquaity, Awad; Es-sebbar, Et-touhami; Farooq, Aamir

    2015-01-01

    of ethylene in the mid-IR region near 949.47 cm-1. Each ringdown measurement is completed in less than 1 μs and the time period between successive pulses is 10 μs. The high sensitivity diagnostic has a noise-equivalent detection limit of 1.08 x 10-5 cm-1 which

  13. New online method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS)

    Science.gov (United States)

    Affolter, S.; Fleitmann, D.; Leuenberger, M.

    2014-07-01

    A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us simultaneously to measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the online water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δ D robustness. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water, resulting in an artificial water background with well-known δ D and δ18O values. The speleothem sample is placed in a copper tube, attached to the line, and after system stabilisation it is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements, a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain &delta D; and δ18O isotopic compositions of measured water aliquots. Precision is better than 1.5 ‰ for δ D and 0.4 ‰ for δ18O for water measurements for an extended range (-210 to 0 ‰ for δ D and -27 to 0 ‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to the isotope ratio mass

  14. CRDS with a VECSEL for broad-band high sensitivity spectroscopy in the 2.3 μm window

    Energy Technology Data Exchange (ETDEWEB)

    Čermák, P., E-mail: cermak@fmph.uniba.sk [University Grenoble Alpes, LIPhy, F-38000 Grenoble (France); CNRS, LIPhy, UMR 5588, F-38000 Grenoble (France); Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská Dolina, 842 48 Bratislava (Slovakia); Chomet, B. [IES, CNRS, UMR5214, University Montpellier, F-34000 Montpellier (France); Innoptics, Institut d’Optique d’Aquitaine Rue François Mitterrand, 33400 Talence (France); Ferrieres, L.; Denet, S.; Lecocq, V. [Innoptics, Institut d’Optique d’Aquitaine Rue François Mitterrand, 33400 Talence (France); Vasilchenko, S. [University Grenoble Alpes, LIPhy, F-38000 Grenoble (France); CNRS, LIPhy, UMR 5588, F-38000 Grenoble (France); Laboratory of Molecular Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, SB Russian Academy of Science, 1 Academician Zuev Square, 634021 Tomsk (Russian Federation); Mondelain, D.; Kassi, S.; Campargue, A. [University Grenoble Alpes, LIPhy, F-38000 Grenoble (France); CNRS, LIPhy, UMR 5588, F-38000 Grenoble (France); Myara, M.; Cerutti, L.; Garnache, A. [IES, CNRS, UMR5214, University Montpellier, F-34000 Montpellier (France)

    2016-08-15

    The integration of an industry ready packaged Sb-based Vertical-External-Cavity Surface-Emitting-Laser (VECSEL) into a Cavity Ring Down Spectrometer (CRDS) is presented. The instrument operates in the important 2.3 μm atmospheric transparency window and provides a high sensitivity (minimum detectable absorption of 9 × 10{sup −11} cm{sup −1}) over a wide spectra range. The VECSEL performances combine a large continuous tunability over 120 cm{sup −1} around 4300 cm{sup −1} together with a powerful (∼5 mW) TEM{sub 00} diffraction limited beam and linewidth at MHz level (for 1 ms of integration time). The achieved performances are illustrated by high sensitivity recordings of the very weak absorption spectrum of water vapor in the region. The developed method gives potential access to the 2-2.7 μm range for CRDS.

  15. Strong thermal nonequilibrium in hypersonic CO and CH4 probed by CRDS.

    Science.gov (United States)

    Louviot, M; Suas-David, N; Boudon, V; Georges, R; Rey, M; Kassi, S

    2015-06-07

    A new experimental setup coupling a High Enthalpy Source (HES) reaching 2000 K to a cw-cavity ring-down spectrometer has been developed to investigate rotationally cold hot bands of polyatomic molecules in the [1.5, 1.7] μm region. The rotational and vibrational molecular degrees of freedom are strongly decoupled in the hypersonic expansion produced by the HES and probed by cavity ring-down spectroscopy. Carbon monoxide has been used as a first test molecule to validate the experimental approach. Its expansion in argon led to rotational and vibrational temperatures of 6.7 ± 0.8 K and 2006 ± 476 K, respectively. The tetradecad polyad of methane (1.67 μm) was investigated under similar conditions leading to rotational and vibrational temperatures of 13 ± 5 K and 750 ± 100 K, respectively. The rotationally cold structure of the spectra reveals many hot bands involving highly excited vibrational states of methane.

  16. Black hole spectroscopy: Systematic errors and ringdown energy estimates

    Science.gov (United States)

    Baibhav, Vishal; Berti, Emanuele; Cardoso, Vitor; Khanna, Gaurav

    2018-02-01

    The relaxation of a distorted black hole to its final state provides important tests of general relativity within the reach of current and upcoming gravitational wave facilities. In black hole perturbation theory, this phase consists of a simple linear superposition of exponentially damped sinusoids (the quasinormal modes) and of a power-law tail. How many quasinormal modes are necessary to describe waveforms with a prescribed precision? What error do we incur by only including quasinormal modes, and not tails? What other systematic effects are present in current state-of-the-art numerical waveforms? These issues, which are basic to testing fundamental physics with distorted black holes, have hardly been addressed in the literature. We use numerical relativity waveforms and accurate evolutions within black hole perturbation theory to provide some answers. We show that (i) a determination of the fundamental l =m =2 quasinormal frequencies and damping times to within 1% or better requires the inclusion of at least the first overtone, and preferably of the first two or three overtones; (ii) a determination of the black hole mass and spin with precision better than 1% requires the inclusion of at least two quasinormal modes for any given angular harmonic mode (ℓ , m ). We also improve on previous estimates and fits for the ringdown energy radiated in the various multipoles. These results are important to quantify theoretical (as opposed to instrumental) limits in parameter estimation accuracy and tests of general relativity allowed by ringdown measurements with high signal-to-noise ratio gravitational wave detectors.

  17. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Colorado, Utah, and Texas using mobile isotopic methane analysis based on Cavity Ringdown Spectroscopy

    Science.gov (United States)

    Rella, Chris; Winkler, Renato; Sweeney, Colm; Karion, Anna; Petron, Gabrielle; Crosson, Eric

    2014-05-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of carbon dioxide emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation, provided that the fugitive emissions of methane are kept under control. A key step in assessing these emissions in a given region is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis, using the isotopic carbon signature to distinguish between natural gas and landfills or ruminants. We present measurements of methane using a mobile spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in three intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, the Uintah basin in Utah, and the Barnett Shale in Texas. Performance of the CRDS isotope analyzer is presented, including precision, calibration, stability, and the potential for measurement bias due to other atmospheric constituents. Mobile isotope measurements of individual sources and in the nocturnal boundary layer have been combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities. The fraction of total methane emissions in the Denver-Julesburg basin attributed to natural gas emissions is 78 +/- 13%. In the Uinta basin, which has no other significant sources of methane, the fraction is 96% +/- 15%. In addition, results from the Barnett shale are presented, which includes a major urban center (Dallas / Ft. Worth). Methane emissions in this region are spatially highly heterogeneous. Spatially-resolved isotope and concentration measurements are interpreted using a simple emissions model to

  18. Sensitive Spectroscopic Analysis of Biomarkers in Exhaled Breath

    Science.gov (United States)

    Bicer, A.; Bounds, J.; Zhu, F.; Kolomenskii, A. A.; Kaya, N.; Aluauee, E.; Amani, M.; Schuessler, H. A.

    2018-06-01

    We have developed a novel optical setup which is based on a high finesse cavity and absorption laser spectroscopy in the near-IR spectral region. In pilot experiments, spectrally resolved absorption measurements of biomarkers in exhaled breath, such as methane and acetone, were carried out using cavity ring-down spectroscopy (CRDS). With a 172-cm-long cavity, an efficient optical path of 132 km was achieved. The CRDS technique is well suited for such measurements due to its high sensitivity and good spectral resolution. The detection limits for methane of 8 ppbv and acetone of 2.1 ppbv with spectral sampling of 0.005 cm-1 were achieved, which allowed to analyze multicomponent gas mixtures and to observe absorption peaks of 12CH4 and 13CH4. Further improvements of the technique have the potential to realize diagnostics of health conditions based on a multicomponent analysis of breath samples.

  19. New on-line method for water isotope analysis of speleothem fluid inclusions using laser absorption spectroscopy (WS-CRDS)

    Science.gov (United States)

    Affolter, S.; Fleitmann, D.; Leuenberger, M.

    2014-01-01

    A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us to simultaneously measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the on-line water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δD reliability. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water resulting in an artificial water background with well-known δD and δ18O values. The speleothem sample is placed into a copper tube, attached to the line and after system stabilisation is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain δD and δ18O isotopic composition of measured water aliquots. Precision is better than 1.5‰ for δD and 0.4‰ for δ18O for water measurement for an extended range (-210 to 0‰ for δD and -27 to 0‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to Isotope Ratio Mass Spectrometry (IRMS) technique.

  20. Novel Miniature Spectrometer For Remote Chemical Detection

    International Nuclear Information System (INIS)

    Pipino, Andrew C.R.

    2000-01-01

    New chemical sensing technologies are critically important for addressing many of EM's priority needs as discussed in detail at http://emsp.em.doe.gov/needs. Many technology needs were addressed by this research. For example, improved detection strategies are needed for non-aqueous phase liquids (NAPL's), such as PCE (Cl2C=CCl2) and TCE (HClC=CCl2), which persist in the environment due their highly stable structures. By developing a miniature, ultra-sensitive, selective, and field-deployable detector for NAPL's, the approximate source location could be determined with minimal investigative expense. Contaminant plumes could also be characterized in detail. The miniature spectrometer developed under Project No.60231 could also permit accurate rate measurements in less time, either in the field or the laboratory, which are critically important in the development, testing, and ultimate utilization of models for describing contaminant transport. The technology could also be used for long-term groundwater monitoring or long-term stewardship in general. Many science needs are also addressed by the Project 60231, since the effort significantly advances the measurement science of chemical detection. Developed under Project No.60231, evanescent wave cavity ring-down spectroscopy (EW-CRDS) is a novel form of CRDS, which is an the emerging optical absorption technique. Several review articles on CRDS, which has been generally applied only to gas-phase diagnostics, have been published1-3. EW-CRDS4-10 forms the basis for a new class of chemical sensors that extends CRDS to other states of matter and leads to a miniaturized version of the concept. EW-CRDS uses miniature solid-state optical resonators that incorporate one or more total internal reflection (TIR) surfaces, which create evanescent waves. The evanescent waves emanate from the TIR surfaces, sampling the surrounding medium. The utility of evanescent waves in chemical analysis forms the basis for the field of attenuated

  1. δ13C and δ18O measurements of carbonate rocks using Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Lucic, G.; Kim-Hak, D.; Curtis, J. H.

    2017-12-01

    We present a novel, user friendly and cost effective method for the analysis of δ13C and δ18O in CO2 gas obtained from acid digestion of carbonate rocks. 2 to 3 milligrams of pure carbonate, ground to a powder, is digested in a pre-evacuated glass vial using 100% phosphoric acid at 70° C. Vials with the reacted samples are then loaded onto an automated carousel sampler where produced CO2 gas in the headspace is extracted and sent to a Picarro CRDS isotopic C and O analyzer. Once loaded onto the carousel, 49 samples may be analyzed automatically at a rate of one sample every 15 minutes. δ13C and δ18O of the sample are reported in real time with a precision of 0.2 and 0.4 per mil, respectively. The portability and simplicity of the autosampler and CRDS setup opens up potential for permanent and mobile deployments, enabling near-realtime sampling feedback in the lab or on the go in the field. Consumable and operating costs are small when compared to other technology in use, making the CRDS-Carbonate system suitable for large and small research labs. Finally, we present a summary results from a series of validation tests in which standards and natural carbonate rock samples were analyzed and compared to traditional Kiel-IRMS results.

  2. A cavity ring-down spectroscopy sensor for real-time Hall thruster erosion measurements

    International Nuclear Information System (INIS)

    Lee, B. C.; Huang, W.; Tao, L.; Yamamoto, N.; Yalin, A. P.; Gallimore, A. D.

    2014-01-01

    A continuous-wave cavity ring-down spectroscopy sensor for real-time measurements of sputtered boron from Hall thrusters has been developed. The sensor uses a continuous-wave frequency-quadrupled diode laser at 250 nm to probe ground state atomic boron sputtered from the boron nitride insulating channel. Validation results from a controlled setup using an ion beam and target showed good agreement with a simple finite-element model. Application of the sensor for measurements of two Hall thrusters, the H6 and SPT-70, is described. The H6 was tested at power levels ranging from 1.5 to 10 kW. Peak boron densities of 10 ± 2 × 10 14 m −3 were measured in the thruster plume, and the estimated eroded channel volume agreed within a factor of 2 of profilometry. The SPT-70 was tested at 600 and 660 W, yielding peak boron densities of 7.2 ± 1.1 × 10 14 m −3 , and the estimated erosion rate agreed within ∼20% of profilometry. Technical challenges associated with operating a high-finesse cavity in the presence of energetic plasma are also discussed

  3. Simultaneous Measurements of Soil CO2 and CH4 Fluxes Using Laser Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Rachhpal S. Jassal

    2016-04-01

    Full Text Available We present a method of simultaneously measuring soil CO and CH fluxes using a laser-based cavity ring-down spectrometer (CRDS coupled to an automated non-steady-state chamber system. The differential equation describing the change in the greenhouse gas (GHG mixing ratio in the chamber headspace following lid closure is solved for the condition when a small flow rate of chamber headspace air is pulled through the CRDS by an external pump and exhausted to the atmosphere. The small flow rate allows calculation of fluxes assuming linear relationships between the GHG mixing ratios and chamber lid closure times of a few minutes. We also calibrated the chambers for effective volume ( and show that adsorption of the GHGs on the walls of the chamber caused to be 7% higher than the geometric volume, with the near-surface soil porosity causing another 4% increase in .

  4. Application of NIR - CRDS for state selective study of recombination of para and ortho H3+ ions with electrons in low temperature plasma

    Science.gov (United States)

    Varju, J.; Roučka, Š.; Kotrík, T.; Plašil, R.; Glosík, J.

    2010-05-01

    We present a study of H3+ recombination performed at 77 K on the two lowest rotational levels of this ion, which belong to its two different nuclear spin states of the studied ion. A near infrared cavity ring-down spectrometer (~1381 nm, CRDS arrangement) has been used to obtain the time evolution of concentration of both states. From the overall ion density decay during the afterglow we obtained the binary recombination rate coefficient αbin (77 K) = 1.2×10-7 cm3s-1. We have also observed ternary helium assisted recombination of both para and ortho H3+. The process is very slow (at 77 K) and the obtained ternary recombination rate coefficient is in contradiction with the theoretical prediction. It is the first time that the binary and ternary H3+ recombination rate coefficient was measured at a known population of para and ortho H3+ ions in decaying plasma.

  5. Application of NIR - CRDS for state selective study of recombination of para and ortho H3+ ions with electrons in low temperature plasma

    International Nuclear Information System (INIS)

    Varju, J; Roucka, S; KotrIk, T; Plasil, R; Glosik, J

    2010-01-01

    We present a study of H 3 + recombination performed at 77 K on the two lowest rotational levels of this ion, which belong to its two different nuclear spin states of the studied ion. A near infrared cavity ring-down spectrometer (∼1381 nm, CRDS arrangement) has been used to obtain the time evolution of concentration of both states. From the overall ion density decay during the afterglow we obtained the binary recombination rate coefficient α bin (77 K) = 1.2x10 -7 cm 3 s -1 . We have also observed ternary helium assisted recombination of both para and ortho H 3 + . The process is very slow (at 77 K) and the obtained ternary recombination rate coefficient is in contradiction with the theoretical prediction. It is the first time that the binary and ternary H 3 + recombination rate coefficient was measured at a known population of para and ortho H 3 + ions in decaying plasma.

  6. Intercomparison of measurements of NO2 concentrations in the atmosphere simulation chamber SAPHIR during the NO3Comp campaign

    Directory of Open Access Journals (Sweden)

    H. Fuchs

    2010-01-01

    Full Text Available NO2 concentrations were measured by various instruments during the NO3Comp campaign at the atmosphere simulation chamber SAPHIR at Forschungszentrum Jülich, Germany, in June 2007. Analytical methods included photolytic conversion with chemiluminescence (PC-CLD, broadband cavity ring-down spectroscopy (BBCRDS, pulsed cavity ring-down spectroscopy (CRDS, incoherent broadband cavity-enhanced absorption spectroscopy (IBB\\-CEAS, and laser-induced fluorescence (LIF. All broadband absorption spectrometers were optimized for the detection of the main target species of the campaign, NO3, but were also capable of detecting NO2 simultaneously with reduced sensitivity. NO2 mixing ratios in the chamber were within a range characteristic of polluted, urban conditions, with a maximum mixing ratio of approximately 75 ppbv. The overall agreement between measurements of all instruments was excellent. Linear fits of the combined data sets resulted in slopes that differ from unity only within the stated uncertainty of each instrument. Possible interferences from species such as water vapor and ozone were negligible under the experimental conditions.

  7. Nuclear spin state-resolved cavity ring-down spectroscopy diagnostics of a low-temperature H3+ -dominated plasma

    International Nuclear Information System (INIS)

    Hejduk, Michal; Dohnal, Petr; Varju, Jozef; Rubovič, Peter; Plašil, Radek; Glosík, Juraj

    2012-01-01

    We have applied a continuous-wave near-infrared cavity ring-down spectroscopy method to study the parameters of a H 3 + -dominated plasma at temperatures in the range 77–200 K. We monitor populations of three rotational states of the ground vibrational state corresponding to para and ortho nuclear spin states in the discharge and the afterglow plasma in time and conclude that abundances of para and ortho states and rotational temperatures are well defined and stable. The non-trivial dependence of a relative population of para- H 3 + on a relative population of para-H 2 in a source H 2 gas is described. The results described in this paper are valuable for studies of state-selective dissociative recombination of H 3 + ions with electrons in the afterglow plasma and for the design of sources of H 3 + ions in a specific nuclear spin state. (paper)

  8. Nuclear spin state-resolved cavity ring-down spectroscopy diagnostics of a low-temperature H_3^+ -dominated plasma

    Science.gov (United States)

    Hejduk, Michal; Dohnal, Petr; Varju, Jozef; Rubovič, Peter; Plašil, Radek; Glosík, Juraj

    2012-04-01

    We have applied a continuous-wave near-infrared cavity ring-down spectroscopy method to study the parameters of a H_3^+ -dominated plasma at temperatures in the range 77-200 K. We monitor populations of three rotational states of the ground vibrational state corresponding to para and ortho nuclear spin states in the discharge and the afterglow plasma in time and conclude that abundances of para and ortho states and rotational temperatures are well defined and stable. The non-trivial dependence of a relative population of para- H_3^+ on a relative population of para-H2 in a source H2 gas is described. The results described in this paper are valuable for studies of state-selective dissociative recombination of H_3^+ ions with electrons in the afterglow plasma and for the design of sources of H_3^+ ions in a specific nuclear spin state.

  9. Quantification of hydrogen sulfide by near-infrared cavity ring-down spectroscopy

    Science.gov (United States)

    Rella, C.; Hoffnagle, J.; Wahl, E. H.; Kim-Hak, D.

    2017-12-01

    Hydrogen Sulfide is an important atmospheric sulfur species. Primary natural terrestrial sources of atmospheric H2S are volcanos and wetlands; primary anthropogenic sources are landfills; wastewater treatment facilities; sewer systems; natural gas extraction, production, and distribution; and paper manufacturing. The human nose is very sensitive to H2S and other sulfur species, leading to a significant negative impact of industrial processes in which H2S is emitted into the atmosphere. However, there is a relative lack of instrumentation capable of detecting and quantifying H2S at ppb levels and below. We describe an instrument based on cavity ring-down spectroscopy for the quantitative analysis of hydrogen sulfide concentration in ambient air. In addition to H2S, the instrument measures water vapor and methane. The instrument has a precision (1-sigma) of about 1 ppb at a measurement rate of 1 second, and provides measurements of less than 100 ppt with averaging. The instrument provides stable measurements (drift < 1 ppb) over long periods of time (days), and has a response time of just a couple of seconds. We report on ambient atmospheric measurements at a 10m urban tower, which demonstrate the suitability of the instrument for applications in urban sulfur emissions. This instrument is also suitable for soil flux measurements in a recirculating chamber, with predicted detection limit of about 0.6 μg H2S / m2 / hr and 0.45 μg CH4 / m2 / hr in a 10-minute chamber closure time.

  10. The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 μm.

    Science.gov (United States)

    Mondelain, D; Vasilchenko, S; Čermák, P; Kassi, S; Campargue, A

    2015-07-21

    The room temperature self- and foreign-continua of water vapor have been measured near 4250 cm(-1) with a newly developed high sensitivity cavity ring down spectrometer (CRDS). The typical sensitivity of the recordings is αmin≈ 6 × 10(-10) cm(-1) which is two orders of magnitude better than previous Fourier transform spectroscopy (FTS) measurements in the spectral region. The investigated spectral interval is located in the low energy range of the important 2.1 μm atmospheric transparency window. Self-continuum cross-sections, CS, were retrieved from the quadratic dependence of the spectrum base line level measured for different water vapor pressures between 0 and 15 Torr, after subtraction of the local water monomer lines contribution calculated using HITRAN2012 line parameters. The CS values were determined with 5% accuracy for four spectral points between 4249.2 and 4257.3 cm(-1). Their values of about 3.2 × 10(-23) cm(2) molecule(-1) atm(-1) are found 20% higher than predicted by the MT_CKD V2.5 model but two times weaker than reported in the literature using FTS. The foreign-continuum was evaluated by injecting various amounts of synthetic air in the CRDS cell while keeping the initial water vapor partial pressure constant. The foreign-continuum cross-section, CF, was retrieved from a linear fit of the spectrum base line level versus the air pressure. The obtained CF values are larger by a factor of 4.5 compared to the MT_CKD values and smaller by a factor of 1.7 compared to previous FTS values. As a result, for an atmosphere at room temperature with 60% relative humidity, the foreign-continuum contribution to the water continuum near 4250 cm(-1) is found to be on the same order as the self-continuum contribution.

  11. High Precision Continuous and Real-Time Measurement of Atmospheric Oxygen Using Cavity Ring-Down Spectroscopy.

    Science.gov (United States)

    Kim-Hak, D.; Hoffnagle, J.; Rella, C.; Sun, M.

    2016-12-01

    Oxygen is a major and vital component of the Earth atmosphere representing about 21% of its composition. It is consumed or produced through biochemical processes such as combustion, respiration, and photosynthesis. Although atmospheric oxygen is not a greenhouse gas, it can be used as a top-down constraint on the carbon cycle. The variation observations of oxygen in the atmosphere are very small, in the order of the few ppm's. This presents the main technical challenge for measurement as a very high level of precision is required and only few methods including mass spectrometry, fuel cell, and paramagnetic are capable of overcoming it. Here we present new developments of a high-precision gas analyzer that utilizes the technique of Cavity Ring-Down Spectroscopy to measure oxygen concentration and oxygen isotope. Its compact and ruggedness design combined with high precision and long-term stability allows the user to deploy the instrument in the field for continuous monitoring of atmospheric oxygen level. Measurements have a 1-σ 5-minute averaging precision of 1-2 ppm for O2 over a dynamic range of 0-20%. We will present supplemental data acquired from our 10m tower measurements in Santa Clara, CA.

  12. Br2 elimination in 248-nm photolysis of CF2Br2 probed by using cavity ring-down absorption spectroscopy.

    Science.gov (United States)

    Hsu, Ching-Yi; Huang, Hong-Yi; Lin, King-Chuen

    2005-10-01

    By using cavity ring-down absorption spectroscopy technique, we have observed the channel of Br2 molecular elimination following photodissociation of CF2Br2 at 248 nm. A tunable laser beam, which is crossed perpendicular to the photolyzing laser beam in a ring-down cell, is used to probe the Br2 fragment in the B 3Piou+-X1Sigmag+ transition. The vibrational population is obtained in a nascent state, despite ring-down time as long as 500-1000 ns. The population ratio of Br2(v=1)/Br2(v=0) is determined to be 0.4+/-0.2, slightly larger than the value of 0.22 evaluated by Boltzmann distribution at room temperature. The quantum yield of the Br2 elimination reaction is also measured to be 0.04+/-0.01. This work provides direct evidence to support molecular elimination occurring in the CF2Br2 photodissociation and proposes a plausible pathway with the aid of ab initio potential-energy calculations. CF2Br2 is excited probably to the 1B1 and 3B2 states at 248 nm. As the C-Br bond is elongated upon excitation, the coupling of the 1A'(1B1) state to the high vibrational levels of the ground state X 1A'(1A1) may be enhanced to facilitate the process of internal conversion. After transition, the highly vibrationally excited CF2Br2 feasibly surpasses a transition barrier prior to decomposition. According to the ab initio calculations, the transition state structure tends to correlate with the intermediate state CF2Br+Br(CF2Br...Br) and the products CF2+Br2. A sequential photodissociation pathway is thus favored. That is, a single C-Br bond breaks, and then the free-Br atom moves to form a Br-Br bond, followed by the Br2 elimination. The formed Br-Br bond distance in the transition state tends to approach equilibrium such that the Br2 fragment may be populated in cold vibrational distribution. Observation of a small vibrational population ratio of Br2(v=1)Br2(v=0) agrees with the proposed mechanism.

  13. Application of NIR - CRDS for state selective study of recombination of para and ortho H{sub 3}{sup +} ions with electrons in low temperature plasma

    Energy Technology Data Exchange (ETDEWEB)

    Varju, J; Roucka, S; KotrIk, T; Plasil, R; Glosik, J, E-mail: Juraj.Glosik@mff.cuni.c [Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holesovickach 2, Prague 8 (Czech Republic)

    2010-05-01

    We present a study of H{sub 3}{sup +} recombination performed at 77 K on the two lowest rotational levels of this ion, which belong to its two different nuclear spin states of the studied ion. A near infrared cavity ring-down spectrometer ({approx}1381 nm, CRDS arrangement) has been used to obtain the time evolution of concentration of both states. From the overall ion density decay during the afterglow we obtained the binary recombination rate coefficient {alpha}{sub bin} (77 K) = 1.2x10{sup -7} cm{sup 3}s{sup -1}. We have also observed ternary helium assisted recombination of both para and ortho H{sub 3}{sup +}. The process is very slow (at 77 K) and the obtained ternary recombination rate coefficient is in contradiction with the theoretical prediction. It is the first time that the binary and ternary H{sub 3}{sup +} recombination rate coefficient was measured at a known population of para and ortho H{sub 3}{sup +} ions in decaying plasma.

  14. A fully integrated standalone portable cavity ringdown breath acetone analyzer

    Science.gov (United States)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  15. A fully integrated standalone portable cavity ringdown breath acetone analyzer.

    Science.gov (United States)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  16. Implementation of a Novel Laser System for Simultaneous Measurement of 13C/12C and D/H to Food Provenance

    Science.gov (United States)

    Saad, N.; Hoffnagle, J.

    2012-04-01

    Olive oil samples were analyzed using the world's first simultaneous δ13C + δD instrument, the 13C+D Combustion Module-Cavity Ringdown Spectroscopy (CM-CRDS) Isotope Analyzer. Simultaneous measurements of δ13C and δD of the whole oil have been performed on commercially available olive oils produced in Greece, Spain, Italy, California, Lebanon, Israel, Australia and Turkey. Together, the measurements of isotopic ratios of carbon (13C/12C) and hydrogen (D/H) produce statistically significant differentiation between olive oils from different locations around the globe. Stable isotope ratios are exquisitely sensitive to the biochemistry of plant species and the nutrients available to them in a particular geographical location. Isotope ratios provide detailed knowledge useful for forensic applications through a combination of stable-isotope measurements of carbon (13C/12C) and hydrogen (D/H) isotopes of organic matter and can help the associations among specific geographic areas through the measurement of these dual isotopes. We report here on the development of a novel laser spectroscopy based system for the simultaneous analysis of the stable isotope ratios of carbon (13C/12C) and hydrogen (D/H) that is robust, easy-to-use, and is the first stable isotope ratio analysis system to combine the measurement of 13C/12C and D/H in one simple analysis from a bulk organic sample. The system comprises a combustion module to convert the organic sample into CO2 and H2O and a Cavity Ring-Down Spectrometer (CRDS) that analyzes the combustion species inside an optical cavity based on the molecular absorption of individual isotopomers. The CRDS uses dual lasers to target the four isotpomers of interest: 12CO2, 13CO2, H2O and HDO. The system delivers a typical precision of 0.1permil for δ13C and 1.5 permil for δD that parallels that achieved by IRMS, but with an unprecedented simplicity that allows scientists to leverage the science and map out the provenance of the analyzed

  17. Br2 molecular elimination in photolysis of (COBr)2 at 248 nm by using cavity ring-down absorption spectroscopy: A photodissociation channel being ignored

    International Nuclear Information System (INIS)

    Wu, Chia-Ching; Lin, Hsiang-Chin; Chang, Yuan-Bin; Tsai, Po-Yu; Yeh, Yu-Ying; Fan, He; Lin, King-Chuen; Francisco, J. S.

    2011-01-01

    A primary dissociation channel of Br 2 elimination is detected following a single-photon absorption of (COBr) 2 at 248 nm by using cavity ring-down absorption spectroscopy. The technique contains two laser beams propagating in a perpendicular configuration. The tunable laser beam along the axis of the ring-down cell probes the Br 2 fragment in the B 3 Π ou + -X 1 Σ g + transition. The measurements of laser energy- and pressure-dependence and addition of a Br scavenger are further carried out to rule out the probability of Br 2 contribution from a secondary reaction. By means of spectral simulation, the ratio of nascent vibrational population for v = 0, 1, and 2 levels is evaluated to be 1:(0.65 ± 0.09):(0.34 ± 0.07), corresponding to a Boltzmann vibrational temperature of 893 ± 31 K. The quantum yield of the ground state Br 2 elimination reaction is determined to be 0.11 ± 0.06. With the aid of ab initio potential energy calculations, the pathway of molecular elimination is proposed on the energetic ground state (COBr) 2 via internal conversion. A four-center dissociation mechanism is followed synchronously or sequentially yielding three fragments of Br 2 + 2CO. The resulting Br 2 is anticipated to be vibrationally hot. The measurement of a positive temperature effect supports the proposed mechanism.

  18. Br2 molecular elimination in photolysis of (COBr)2 at 248 nm by using cavity ring-down absorption spectroscopy: a photodissociation channel being ignored.

    Science.gov (United States)

    Wu, Chia-Ching; Lin, Hsiang-Chin; Chang, Yuan-Bin; Tsai, Po-Yu; Yeh, Yu-Ying; Fan, He; Lin, King-Chuen; Francisco, J S

    2011-12-21

    A primary dissociation channel of Br(2) elimination is detected following a single-photon absorption of (COBr)(2) at 248 nm by using cavity ring-down absorption spectroscopy. The technique contains two laser beams propagating in a perpendicular configuration. The tunable laser beam along the axis of the ring-down cell probes the Br(2) fragment in the B(3)Π(ou)(+)-X(1)Σ(g)(+) transition. The measurements of laser energy- and pressure-dependence and addition of a Br scavenger are further carried out to rule out the probability of Br(2) contribution from a secondary reaction. By means of spectral simulation, the ratio of nascent vibrational population for v = 0, 1, and 2 levels is evaluated to be 1:(0.65 ± 0.09):(0.34 ± 0.07), corresponding to a Boltzmann vibrational temperature of 893 ± 31 K. The quantum yield of the ground state Br(2) elimination reaction is determined to be 0.11 ± 0.06. With the aid of ab initio potential energy calculations, the pathway of molecular elimination is proposed on the energetic ground state (COBr)(2) via internal conversion. A four-center dissociation mechanism is followed synchronously or sequentially yielding three fragments of Br(2) + 2CO. The resulting Br(2) is anticipated to be vibrationally hot. The measurement of a positive temperature effect supports the proposed mechanism.

  19. Is the Gravitational-Wave Ringdown a Probe of the Event Horizon?

    Science.gov (United States)

    Cardoso, Vitor; Franzin, Edgardo; Pani, Paolo

    2016-04-29

    It is commonly believed that the ringdown signal from a binary coalescence provides a conclusive proof for the formation of an event horizon after the merger. This expectation is based on the assumption that the ringdown waveform at intermediate times is dominated by the quasinormal modes of the final object. We point out that this assumption should be taken with great care, and that very compact objects with a light ring will display a similar ringdown stage, even when their quasinormal-mode spectrum is completely different from that of a black hole. In other words, universal ringdown waveforms indicate the presence of light rings, rather than of horizons. Only precision observations of the late-time ringdown signal, where the differences in the quasinormal-mode spectrum eventually show up, can be used to rule out exotic alternatives to black holes and to test quantum effects at the horizon scale.

  20. High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance

    Science.gov (United States)

    Zare, Richard N.; Kuramoto, Douglas S.; Haase, Christa; Tan, Sze M.; Crosson, Eric R.; Saad, Nabil M. R.

    2009-01-01

    A continuous-flow cavity ring-down spectroscopy (CRDS) system integrating a chromatographic separation technique, a catalytic combustor, and an isotopic 13C/12C optical analyzer is described for the isotopic analysis of a mixture of organic compounds. A demonstration of its potential is made for the geochemically important class of short-chain hydrocarbons. The system proved to be linear over a 3-fold injection volume dynamic range with an average precision of 0.95‰ and 0.67‰ for ethane and propane, respectively. The calibrated accuracy for methane, ethane, and propane is within 3‰ of the values determined using isotope ratio mass spectrometry (IRMS), which is the current method of choice for compound-specific isotope analysis. With anticipated improvements, the low-cost, portable, and easy-to-use CRDS-based instrumental setup is poised to evolve into a credible challenge to the high-cost and complex IRMS-based technique. PMID:19564619

  1. Diagnostics of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    Laux, C.O.; Kruger, C.H.; Zare, R.N.

    2001-01-01

    Atmospheric pressure air plasmas are often thought to be in Local Thermodynamics Equilibrium (LTE) owing to fast interspecies collisional exchanges at high pressure. As will be seen here, this assumption cannot be relied upon, particularly with respect to optical diagnostics. Large velocity gradients in flowing plasmas and/or elevated electron temperatures created by electrical discharges can result in large departures from chemical and thermal equilibrium. Diagnostic techniques based on optical emission spectroscopy (OES) and Cavity Ring-Down Spectroscopy (CRDS) have been developed and applied at Stanford University to the investigation of atmospheric pressure plasmas under conditions ranging from thermal and chemical equilibrium to thermochemical nonequilibrium. This article presents a review of selected temperature and species concentration measurement techniques useful for the study of air and nitrogen plasmas

  2. Modern spectroscopy

    CERN Document Server

    Hollas, J Michael

    2013-01-01

    The latest edition of this highly acclaimed title introduces the reader to a wide range of spectroscopies, and includes both the background theory and applications to structure determination and chemical analysis.  It covers rotational, vibrational, electronic, photoelectron and Auger spectroscopy, as well as EXAFs and the theory of lasers and laser spectroscopy. A  revised and updated edition of a successful, clearly written book Includes the latest developments in modern laser techniques, such as cavity ring-down spectroscopy and femtosecond lasers Provides numerous worked examples, calculations and questions at the end of chapters.

  3. Cavity-enhanced spectroscopies

    CERN Document Server

    van Zee, Roger

    2003-01-01

    ""Cavity-Enhanced Spectroscopy"" discusses the use of optical resonators and lasers to make sensitive spectroscopic measurements. This volume is written by the researcchers who pioneered these methods. The book reviews both the theory and practice behind these spectroscopic tools and discusses the scientific discoveries uncovered by these techniques. It begins with a chapter on the use of optical resonators for frequency stabilization of lasers, which is followed by in-depth chapters discussing cavity ring-down spectroscopy, frequency-modulated, cavity-enhanced spectroscopy, intracavity spectr

  4. Extreme gravity tests with gravitational waves from compact binary coalescences: (II) ringdown

    Science.gov (United States)

    Berti, Emanuele; Yagi, Kent; Yang, Huan; Yunes, Nicolás

    2018-05-01

    The LIGO/Virgo detections of binary black hole mergers marked a watershed moment in astronomy, ushering in the era of precision tests of Kerr dynamics. We review theoretical and experimental challenges that must be overcome to carry out black hole spectroscopy with present and future gravitational wave detectors. Among other topics, we discuss quasinormal mode excitation in binary mergers, astrophysical event rates, tests of black hole dynamics in modified theories of gravity, parameterized "post-Kerr" ringdown tests, exotic compact objects, and proposed data analysis methods to improve spectroscopic tests of Kerr dynamics by stacking multiple events.

  5. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) during BARCA

    Science.gov (United States)

    Chen, H.; Winderlich, J.; Gerbig, C.; Hoefer, A.; Rella, C. W.; Crosson, E. R.; van Pelt, A. D.; Steinbach, J.; Kolle, O.; Beck, V.; Daube, B. C.; Gottlieb, E. W.; Chow, V. Y.; Santoni, G. W.; Wofsy, S. C.

    2009-12-01

    High-accuracy continuous measurements of greenhouse gases (CO2 and CH4) during the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) phase B campaign in Brazil in May 2009 were accomplished using a newly available analyzer based on the cavity ring-down spectroscopy (CRDS) technique. This analyzer was flown without a drying system or any in-flight calibration gases. Water vapor corrections associated with dilution and pressure-broadening effects for CO2 and CH4 were derived from laboratory experiments employing measurements of water vapor by the CRDS analyzer. Before the campaign, the stability of the analyzer was assessed by laboratory tests under simulated flight conditions. During the campaign, a comparison of CO2 measurements between the CRDS analyzer and a nondispersive infrared (NDIR) analyzer on board the same aircraft showed a mean difference of 0.22±0.09 ppm for all flights over the Amazon rain forest. At the end of the campaign, CO2 concentrations of the synthetic calibration gases used by the NDIR analyzer were determined by the CRDS analyzer. After correcting for the isotope and the pressure-broadening effects that resulted from changes of the composition of synthetic vs. ambient air, and applying those concentrations as calibrated values of the calibration gases to reprocess the CO2 measurements made by the NDIR, the mean difference between the CRDS and the NDIR during BARCA was reduced to 0.05±0.09 ppm, with the mean standard deviation of 0.23±0.05 ppm. The results clearly show that the CRDS is sufficiently stable to be used in flight without drying the air or calibrating in flight and the water corrections are fully adequate for high-accuracy continuous airborne measurements of CO2 and CH4.

  6. How well can ultracompact bodies imitate black hole ringdowns?

    Science.gov (United States)

    Glampedakis, Kostas; Pappas, George

    2018-02-01

    The ongoing observations of merging black holes by the instruments of the fledging gravitational wave astronomy has opened the way for testing the general-relativistic Kerr black hole metric and, at the same time, for probing the existence of more speculative horizonless ultracompact objects. In this paper we quantify the difference that these two classes of objects may exhibit in the post-merger ringdown signal. By considering rotating systems in general relativity and assuming an eikonal limit and a third-order Hartle-Thorne slow-rotation approximation, we provide the first calculation of the early ringdown frequency and damping time as a function of the body's multipolar structure. Using the example of a gravastar, we show that the main ringdown signal may differ by as much as a few percent with respect to that of a Kerr black hole, a deviation that could be probed by near-future Advanced LIGO/Virgo searches.

  7. Afterglow Studies of H3+(v=0) Recombination using Time Resolved cw.Diode Laser Cavity Ring-Down Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Macko, P.; Bánó, G.; Hlavenka, P.; Plašil, R.; Poterya, V.; Pysanenko, A.; Votava, Ondřej; Johnsen, R.; Glosík, J.

    2004-01-01

    Roč. 233, 1/3 (2004), s. 299-304 ISSN 1387-3806 R&D Projects: GA ČR GA205/02/0610; GA ČR GA202/02/0948 Institutional research plan: CEZ:AV0Z4040901 Keywords : recombination * H-3(+) ions * cavity ring-down Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.235, year: 2004

  8. Sensitivity enhancement of fiber loop cavity ring-down pressure sensor.

    Science.gov (United States)

    Jiang, Yajun; Yang, Dexing; Tang, Daqing; Zhao, Jianlin

    2009-11-10

    We present a theoretical and experimental study on sensitivity enhancement of a fiber-loop cavity ring-down pressure sensor. The cladding of the sensing fiber is etched in hydrofluoric acid solution to enhance its sensitivity. The experimental results demonstrate that the pressure applied on the sensing fiber is linearly proportional to the difference between the reciprocals of the ring-down time with and without pressure, and the relative sensitivity exponentially increases with decreasing the cladding diameter. When the sensing fiber is etched to 41.15 microm, its sensitivity is about 36 times that of nonetched fiber in the range of 0 to 32.5 MPa. The measured relative standard deviation of the ring-down time is about 0.15% and, correspondingly, the least detectable loss is about 0.00069 dB.

  9. The CO_2 absorption spectrum in the 2.3 µm transparency window by high sensitivity CRDS: (I) Rovibrational lines

    International Nuclear Information System (INIS)

    Vasilchenko, S.; Konefal, M.; Mondelain, D.; Kassi, S.; Čermák, P.; Tashkun, S.A.; Perevalov, V.I.; Campargue, A.

    2016-01-01

    The absorption of carbon dioxide is very weak near 2.3 µm which makes this transparency window of particular interest for the study of Venus’ lower atmosphere. As a consequence of the weakness of the transitions located in this region, previous experimental data are very scarce and spectroscopic databases provide calculated line lists which should be tested and validated by experiment. In this work, we use the Cavity Ring Down Spectroscopy (CRDS) technique for a high sensitivity characterization of the CO_2 absorption spectrum in two spectral intervals of the 2.3 µm window: 4248–4257 and 4295–4380 cm"−"1 which were accessed using a Distributed Feed Back (DFB) diode laser and a Vertical External Cavity Surface Emitting Laser (VECSEL) as light sources, respectively. The achieved sensitivity (noise equivalent absorption, α_m_i_n, on the order of 5×10"−"1"0 cm"−"1) allowed detecting numerous new transitions with intensity values down to 5×10"−"3"0 cm/molecule. The rovibrational assignments were performed by comparison with available theoretical line lists in particular those obtained at IAO Tomsk using the global effective operator approach. Hot bands of the main isotopologue and "1"6O"1"2C"1"8O bands were found to be missing in the HITRAN database while they contribute importantly to the absorption in the region. Additional CRDS spectra of a CO_2 sample highly enriched in "1"8O were recorded in order to improve the spectroscopy of this isotopologue. As a result about 700 lines of "1"6O"1"2C"1"8O, "1"6O"1"2C"1"7O, "1"7O"1"2C"1"8O, "1"2C"1"8O_2 and "1"3C"1"8O_2 were newly measured. The status of the different databases (HITRAN, CDSD, variational calculations) in the important 2.3 µm transparency window is discussed. Possible improvements to correct evidenced deficiencies are suggested. - Highlights: • High sensitivity CRDS with a VECSEL in the 2.3 µm transparency window of CO_2. • Natural and "1"8O enriched CO_2 spectra recorded with

  10. Bandwidth-limited control and ringdown suppression in high-Q resonators.

    Science.gov (United States)

    Borneman, Troy W; Cory, David G

    2012-12-01

    We describe how the transient behavior of a tuned and matched resonator circuit and a ringdown suppression pulse may be integrated into an optimal control theory (OCT) pulse-design algorithm to derive control sequences with limited ringdown that perform a desired quantum operation in the presence of resonator distortions of the ideal waveform. Inclusion of ringdown suppression in numerical pulse optimizations significantly reduces spectrometer deadtime when using high quality factor (high-Q) resonators, leading to increased signal-to-noise ratio (SNR) and sensitivity of inductive measurements. To demonstrate the method, we experimentally measure the free-induction decay of an inhomogeneously broadened solid-state free radical spin system at high Q. The measurement is enabled by using a numerically optimized bandwidth-limited OCT pulse, including ringdown suppression, robust to variations in static and microwave field strengths. We also discuss the applications of pulse design in high-Q resonators to universal control of anisotropic-hyperfine coupled electron-nuclear spin systems via electron-only modulation even when the bandwidth of the resonator is significantly smaller than the hyperfine coupling strength. These results demonstrate how limitations imposed by linear response theory may be vastly exceeded when using a sufficiently accurate system model to optimize pulses of high complexity. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. High-accuracy waveforms for binary black hole inspiral, merger, and ringdown

    International Nuclear Information System (INIS)

    Scheel, Mark A.; Boyle, Michael; Chu, Tony; Matthews, Keith D.; Pfeiffer, Harald P.; Kidder, Lawrence E.

    2009-01-01

    The first spectral numerical simulations of 16 orbits, merger, and ringdown of an equal-mass nonspinning binary black hole system are presented. Gravitational waveforms from these simulations have accumulated numerical phase errors through ringdown of f /M=0.951 62±0.000 02, and the final black hole spin is S f /M f 2 =0.686 46±0.000 04.

  12. Lamb dip CRDS of highly saturated transitions of water near 1.4 μm

    Science.gov (United States)

    Kassi, S.; Stoltmann, T.; Casado, M.; Daëron, M.; Campargue, A.

    2018-02-01

    Doppler-free saturated-absorption Lamb dips were measured at sub-Pa pressures on rovibrational lines of H216O near 7180 cm-1, using optical feedback frequency stabilized cavity ring-down spectroscopy. The saturation of the considered lines is so high that at the early stage of the ring down, the cavity loss rate remains unaffected by the absorption. By referencing the laser source to an optical frequency comb, transition frequencies are determined down to 100 Hz precision and kHz accuracy. The developed setup allows resolving highly K-type blended doublets separated by about 10 MHz (to be compared to a HWHM Doppler width on the order of 300 MHz). A comparison with the most recent spectroscopic databases is discussed. The determined K-type splittings are found to be very well predicted by the most recent variational calculations.

  13. Detecting and Eliminating Interfering Organic Compounds in Waters Analyzed for Isotopic Composition by Crds

    Science.gov (United States)

    Richman, B. A.; Hsiao, G. S.; Rella, C.

    2010-12-01

    Optical spectroscopy based CRDS technology for isotopic analysis of δD and δ18O directly from liquid water has greatly increased the number and type of liquid samples analyzed. This increase has also revealed a previously unrecognized sample contamination problem. Recently West[1] and Brand[2] identified samples containing ethanol, methanol, plant extracts and other organic compounds analyzed by CRDS and other spectroscopy based techniques as yielding erroneous results for δD and δ18O (especially δD) due to spectroscopic interference. Not all organic compounds generate interference. Thus, identifying which samples are contaminated by which organic compounds is of key importance for data credibility and correction. To address this problem a new approach in the form of a software suite, ChemCorrect™, has been developed. A chemometrics component uses a spectral library of water isotopologues and interfering organic compounds to best fit the measured spectra. The best fit values provide a quantitative assay of the actual concentrations of the various species and are then evaluated to generate a visual flag indicating samples affected by organic contamination. Laboratory testing of samples spiked with known quantities of interfering organic compounds such as methanol, ethanol, and terpenes was performed. The software correctly flagged and identified type of contamination for all the spiked samples without any false positives. Furthermore the reported values were a linear function of actual concentration with an R^2>0.99 even for samples which contained multiple organic compounds. Further testing was carried out against a range of industrial chemical compounds which can contaminate ground water as well as a variety of plant derived waters and juices which were also analyzed by IRMS. The excellent results obtained give good insight into which organic compounds cause interference and which classes of plants are likely to contain interfering compounds. Finally

  14. Widely-tunable and sensitive optical sensor for multi-species detection in the mid-IR

    KAUST Repository

    Alquaity, Awad

    2017-10-05

    Pulsed cavity ringdown spectroscopy (CRDS) technique was used to develop a novel widely-tunable laser-based sensor for sensitive measurements of ethylene, propene, 1-butene and allene in the mid-IR. The use of an external-cavity quantum cascade laser (EC-QCL) enabled the sensor to cover a wide wavelength range from 10 to 11.1 µm (900 – 1000 cm-1) to detect multiple gases relevant to combustion and environment. The sensor operation was validated in a room-temperature static cell using well-characterized absorption lines of carbon dioxide near 938.69 cm-1 and 974.62 cm-1. Detection limits for ethylene, propene, 1-butene, and allene were measured to be 17, 134, 754 and 378 ppb, respectively, at 296 K and 760 Torr for a single-pass path-length of 70 cm. The excellent sensitivity of the optical sensor enabled it to measure the aforementioned gases at levels smaller than 1% of their recommended exposure limits. To the best of our knowledge, this is one of the first successful applications of the pulsed CRDS technique to measure trace levels of multiple gases in the 10 – 11 µm wavelength region.

  15. Widely-tunable and sensitive optical sensor for multi-species detection in the mid-IR

    KAUST Repository

    Alquaity, Awad; Alsaif, Bidoor; Farooq, Aamir

    2017-01-01

    Pulsed cavity ringdown spectroscopy (CRDS) technique was used to develop a novel widely-tunable laser-based sensor for sensitive measurements of ethylene, propene, 1-butene and allene in the mid-IR. The use of an external-cavity quantum cascade laser (EC-QCL) enabled the sensor to cover a wide wavelength range from 10 to 11.1 µm (900 – 1000 cm-1) to detect multiple gases relevant to combustion and environment. The sensor operation was validated in a room-temperature static cell using well-characterized absorption lines of carbon dioxide near 938.69 cm-1 and 974.62 cm-1. Detection limits for ethylene, propene, 1-butene, and allene were measured to be 17, 134, 754 and 378 ppb, respectively, at 296 K and 760 Torr for a single-pass path-length of 70 cm. The excellent sensitivity of the optical sensor enabled it to measure the aforementioned gases at levels smaller than 1% of their recommended exposure limits. To the best of our knowledge, this is one of the first successful applications of the pulsed CRDS technique to measure trace levels of multiple gases in the 10 – 11 µm wavelength region.

  16. IM-CRDS for the analysis of matrix-bound water isotopes: a streamlined (and updated) tool for ecohydrologists to probe small-scale variability in plants Yasuhara, S. (syasuhara@picarro.com)1,Carter, J.A. (jcarter@picarro.com)1, Dennis, K.J. (kdennis@picarro.com)1 1Picarro Inc., 3105 Patrick Henry Drive, Santa Clara, CA 95054

    Science.gov (United States)

    Yasuhara, S.

    2013-12-01

    The ability to measure the isotopic composition of matrix-bound water is valuable to many facets of earth and environmental sciences. For example, ecohydrologists use stable isotopes of oxygen and hydrogen in plant and soil water, in combination with measurements of atmospheric water vapor, surface water and precipitation, to estimate budgets of evapotranspiration. Likewise, water isotopes of oceanic water, brines and other waters with high total dissolved solids (TDS, e.g., juices) are relevant to studying large-scale oceanic circulation, small-scale mixing, groundwater contamination, the balance of evaporation to precipitation, and the provenance of food. Conventionally matrix-bound water has been extracted using cryogenic distillation, whereby water is distilled from the material in question (e.g., a leaf sample) by heating under vacuum and collecting the resultant water vapor using liquid nitrogen. The water can then be analyzed for its stable isotopic composition by a variety of methods, including isotope ratio mass spectrometry and laser techniques, such as Cavity Ring-Down Spectroscopy (CRDS). Here we present recent improvements in an alternative, and stream-lined, solution for integrated sample extraction and isotopic measurement using a Picarro Induction Module (IM) coupled to commercially-available CRDS analyzer from Picarro. This technique is also valuable for waters with high TDS, which can have detrimental effects on flash vaporization process, typically used for the introduction of water to Picarro CRDS water isotope analyzers. The IM works by inductively heating a sample held within a metal sample holder in a glass vial flushed with dry air. Tested samples include leaves, stems, twigs, calibration water, juices, and salt water. The heating process evolves water vapor which is then swept through the system at approximately 150 standard cubic centimeters per minute. The evolved water vapor passes through an activated charcoal cartridge for removal of

  17. Self- and air-broadened cross sections of ethane (C2H6) determined by frequency-stabilized cavity ring-down spectroscopy near 1.68 µm

    International Nuclear Information System (INIS)

    Reed, Zachary D.; Hodges, Joseph T.

    2015-01-01

    The absorption spectrum of ethane was measured by frequency-stabilized cavity ring-down spectroscopy over the wave number range 5950–5967 cm −1 . Spectra are reported for both pure ethane acquired at pressures near 3 Pa and mixtures of ethane in air at pressures ranging from 666 Pa to 101.3 kPa. Absorption cross sections are reported with a spectrum sampling period of 109 MHz and frequency resolution of 200 kHz. Atmospheric pressure cross sections agree fairly well with existing cross sections determined by FTS in nitrogen, but there are significant variations in cross sections at lower pressures. Source identification of fugitive methane emissions using spectroscopic measurements of the atmospheric ethane-to-methane ratio is also discussed. - Highlights: • We measured spectra of pure and air-broadened ethane in the 1.7 μm region. • Measured cross sections were substantially different than literature values. • Relative uncertainties of measured cross sections were less than 1 %. • These results can be used to quantify ethane/methane ratios for source apportionment

  18. Parameter estimation of compact binaries using the inspiral and ringdown waveforms

    International Nuclear Information System (INIS)

    Luna, Manuel; Sintes, Alicia M

    2006-01-01

    We analyse the problem of parameter estimation for compact binary systems that could be detected by ground-based gravitational wave detectors. So far, this problem has only been dealt with for the inspiral and the ringdown phases separately. In this paper, we combine the information from both signals, and we study the improvement in parameter estimation, at a fixed signal-to-noise ratio, by including the ringdown signal without making any assumption on the merger phase. The study is performed for both initial and advanced LIGO and VIRGO detectors

  19. Ultrasensitive, real-time trace gas detection using a high-power, multimode diode laser and cavity ringdown spectroscopy.

    Science.gov (United States)

    Karpf, Andreas; Qiao, Yuhao; Rao, Gottipaty N

    2016-06-01

    We present a simplified cavity ringdown (CRD) trace gas detection technique that is insensitive to vibration, and capable of extremely sensitive, real-time absorption measurements. A high-power, multimode Fabry-Perot (FP) diode laser with a broad wavelength range (Δλlaser∼0.6  nm) is used to excite a large number of cavity modes, thereby reducing the detector's susceptibility to vibration and making it well suited for field deployment. When detecting molecular species with broad absorption features (Δλabsorption≫Δλlaser), the laser's broad linewidth removes the need for precision wavelength stabilization. The laser's power and broad linewidth allow the use of on-axis cavity alignment, improving the signal-to-noise ratio while maintaining its vibration insensitivity. The use of an FP diode laser has the added advantages of being inexpensive, compact, and insensitive to vibration. The technique was demonstrated using a 1.1 W (λ=400  nm) diode laser to measure low concentrations of nitrogen dioxide (NO2) in zero air. A sensitivity of 38 parts in 1012 (ppt) was achieved using an integration time of 128 ms; for single-shot detection, 530 ppt sensitivity was demonstrated with a measurement time of 60 μs, which opens the door to sensitive measurements with extremely high temporal resolution; to the best of our knowledge, these are the highest speed measurements of NO2 concentration using CRD spectroscopy. The reduced susceptibility to vibration was demonstrated by introducing small vibrations into the apparatus and observing that there was no measurable effect on the sensitivity of detection.

  20. Mode coupling of Schwarzschild perturbations: Ringdown frequencies

    International Nuclear Information System (INIS)

    Pazos, Enrique; Brizuela, David; Martin-Garcia, Jose M.; Tiglio, Manuel

    2010-01-01

    Within linearized perturbation theory, black holes decay to their final stationary state through the well-known spectrum of quasinormal modes. Here we numerically study whether nonlinearities change this picture. For that purpose we study the ringdown frequencies of gauge-invariant second-order gravitational perturbations induced by self-coupling of linearized perturbations of Schwarzschild black holes. We do so through high-accuracy simulations in the time domain of first and second-order Regge-Wheeler-Zerilli type equations, for a variety of initial data sets. We consider first-order even-parity (l=2, m=±2) perturbations and odd-parity (l=2, m=0) ones, and all the multipoles that they generate through self-coupling. For all of them and all the initial data sets considered we find that--in contrast to previous predictions in the literature--the numerical decay frequencies of second-order perturbations are the same ones of linearized theory, and we explain the observed behavior. This would indicate, in particular, that when modeling or searching for ringdown gravitational waves, appropriately including the standard quasinormal modes already takes into account nonlinear effects.

  1. High accuracy laboratory spectroscopy to support active greenhouse gas sensing

    Science.gov (United States)

    Long, D. A.; Bielska, K.; Cygan, A.; Havey, D. K.; Okumura, M.; Miller, C. E.; Lisak, D.; Hodges, J. T.

    2011-12-01

    Recent carbon dioxide (CO2) remote sensing missions have set precision targets as demanding as 0.25% (1 ppm) in order to elucidate carbon sources and sinks [1]. These ambitious measurement targets will require the most precise body of spectroscopic reference data ever assembled. Active sensing missions will be especially susceptible to subtle line shape effects as the narrow bandwidth of these measurements will greatly limit the number of spectral transitions which are employed in retrievals. In order to assist these remote sensing missions we have employed frequency-stabilized cavity ring-down spectroscopy (FS-CRDS) [2], a high-resolution, ultrasensitive laboratory technique, to measure precise line shape parameters for transitions of O2, CO2, and other atmospherically-relevant species within the near-infrared. These measurements have led to new HITRAN-style line lists for both 16O2 [3] and rare isotopologue [4] transitions in the A-band. In addition, we have performed detailed line shape studies of CO2 transitions near 1.6 μm under a variety of broadening conditions [5]. We will address recent measurements in these bands as well as highlight recent instrumental improvements to the FS-CRDS spectrometer. These improvements include the use of the Pound-Drever-Hall locking scheme, a high bandwidth servo which enables measurements to be made at rates greater than 10 kHz [6]. In addition, an optical frequency comb will be utilized as a frequency reference, which should allow for transition frequencies to be measured with uncertainties below 10 kHz (3×10-7 cm-1). [1] C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, et al., J. Geophys. Res.-Atmos. 112, D10314 (2007). [2] J. T. Hodges, H. P. Layer, W. W. Miller, G. E. Scace, Rev. Sci. Instrum. 75, 849-863 (2004). [3] D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, et al., J. Quant. Spectrosc. Radiat. Transfer 111, 2021-2036 (2010). [4] D. A. Long, D. K. Havey, S. S. Yu, M. Okumura, et al., J. Quant. Spectrosc

  2. Development of ball surface acoustic wave trace moisture analyzer using burst waveform undersampling circuit

    Science.gov (United States)

    Tsuji, Toshihiro; Oizumi, Toru; Fukushi, Hideyuki; Takeda, Nobuo; Akao, Shingo; Tsukahara, Yusuke; Yamanaka, Kazushi

    2018-05-01

    The measurement and control of trace moisture, where the water concentration is lower than 1 ppmv [-76.2 °C for the frost point (°CFP)], are essential for improving the yield rate of semiconductor devices and for ensuring their reliability. A ball surface acoustic wave (SAW) sensor with a sol-gel silica coating exhibited useful characteristics for a trace moisture analyzer (TMA) when the temperature drift of the delay time output was precisely compensated using two-frequency measurement (TFM), where the temperature-compensated relative delay time change (RDTC) was obtained by subtracting the RDTC at the fundamental frequency from that at the third harmonic frequency on an identical propagation path. However, the cost of the measurement circuit was a problem. In this study, a burst waveform undersampling (BUS) circuit based on the theory of undersampling measurement was developed as a practical means. The BUS circuit was useful for precise temperature compensation of the RDTC, and the ball SAW TMA was prototyped by calibrating the RDTC using a TMA based on cavity ring-down spectroscopy (CRDS), which is the most reliable method for trace moisture measurement. The ball SAW TMA outputted a similar concentration to that obtained by the CRDS TMA, and its response time at a set concentration in N2 with a flow rate of 1 l/min was about half that of the CRDS TMA, suggesting that moisture of -80 °CFP was measured within only 1 min. The detection limit at a signal-to-noise ratio of 3 was estimated to be 0.05 ppbv, comparable with that of the CRDS TMA. From these results, it was demonstrated that a practical ball SAW TMA can be realized using the developed BUS circuit.

  3. The gravitational-wave recoil from the ringdown phase of coalescing black hole binaries

    International Nuclear Information System (INIS)

    Le Tiec, Alexandre; Blanchet, Luc; Will, Clifford M

    2010-01-01

    The gravitational recoil or 'kick' of a black hole formed from the merger of two orbiting black holes, and caused by the anisotropic emission of gravitational radiation, is an astrophysically important phenomenon. We combine (i) an earlier calculation, using post-Newtonian theory, of the kick velocity accumulated up to the merger of two non-spinning black holes, (ii) a 'close-limit approximation' calculation of the radiation emitted during the ringdown phase, and based on a solution of the Regge-Wheeler and Zerilli equations using initial data accurate to second post-Newtonian order. We prove that ringdown radiation produces a significant 'anti-kick'. Adding the contributions due to inspiral, merger and ringdown phases, our results for the net kick velocity agree with those from numerical relativity to 10-15% over a wide range of mass ratios, with a maximum velocity of 180 km s -1 at a mass ratio of 0.38. (fast track communication)

  4. Molecular Laser Spectroscopy as a Tool for Gas Analysis Applications

    Directory of Open Access Journals (Sweden)

    Javis Anyangwe Nwaboh

    2011-01-01

    Full Text Available We have used the traceable infrared laser spectrometric amount fraction measurement (TILSAM method to perform absolute concentration measurements of molecular species using three laser spectroscopic techniques. We report results performed by tunable diode laser absorption spectroscopy (TDLAS, quantum cascade laser absorption spectroscopy (QCLAS, and cavity ring down spectroscopy (CRDS, all based on the TILSAM methodology. The measured results of the different spectroscopic techniques are in agreement with respective gravimetric values, showing that the TILSAM method is feasible with all different techniques. We emphasize the data quality objectives given by traceability issues and uncertainty analyses.

  5. Mid-Ir Cavity Ring-Down Spectrometer for Biological Trace Nitric Oxide Detection

    Science.gov (United States)

    Kan, Vincent; Ragab, Ahemd; Stsiapura, Vitali; Lehmann, Kevin K.; Gaston, Benjamin M.

    2011-06-01

    S-nitrosothiols have received much attention in biochemistry and medicine as donors of nitrosonium ion (NO^+) and nitric oxide (NO) - physiologically active molecules involved in vasodilation and signal transduction. Determination of S-nitrosothiols content in cells and tissues is of great importance for fundamental research and medical applications. We will report on our ongoing development of a instrument to measure trace levels of nitric oxide gas (NO), released from S-nitrosothiols after exposure to UV light (340 nm) or reaction with L-Cysteine+CuCl mixture. The instrument uses the method of cavity ring-down spectroscopy, probing rotationally resolved lines in the vibrational fundamental transition near 5.2 μm. The laser source is a continuous-wave, room temperature external cavity quantum cascade laser. An acousto-optic modulator is used to abruptly turn off the optical power incident on the cavity when the laser and cavity pass through resonance.

  6. Cavity ring-down technique for measurement of reflectivity of high

    Indian Academy of Sciences (India)

    grade mirrors ( > 99.5 %) based on cavity ring-down (CRD) technique has been success-fully demonstrated in our laboratory using a pulsed Nd:YAG laser. A fast photomultiplier tube with an oscilloscope was used to detect and analyse the CRD ...

  7. Cavity ring-down technique for measurement of reflectivity of high ...

    Indian Academy of Sciences (India)

    Laser & Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400 085,. India. *Corresponding author. E-mail: gsridhar@barc.gov.in. Abstract. A simple, accurate and reliable method for measuring the reflectivity of laser- ... Keywords. Cavity ring-down method; reflectivity measurement; optical resonator.

  8. Black hole ringdown echoes and howls

    Science.gov (United States)

    Nakano, Hiroyuki; Sago, Norichika; Tagoshi, Hideyuki; Tanaka, Takahiro

    2017-07-01

    Recently the possibility of detecting echoes of ringdown gravitational waves from binary black hole mergers was shown. The presence of echoes is expected if the black hole is surrounded by a mirror that reflects gravitational waves near the horizon. Here, we present slightly more sophisticated templates motivated by a waveform which is obtained by solving the linear perturbation equation around a Kerr black hole with a complete reflecting boundary condition in the stationary traveling wave approximation. We estimate that the proposed template can bring about a 10% improvement in the signal-to-noise ratio.

  9. The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm

    Science.gov (United States)

    Lechevallier, Loic; Vasilchenko, Semen; Grilli, Roberto; Mondelain, Didier; Romanini, Daniele; Campargue, Alain

    2018-04-01

    The amplitude, the temperature dependence, and the physical origin of the water vapour absorption continuum are a long-standing issue in molecular spectroscopy with direct impact in atmospheric and planetary sciences. In recent years, we have determined the self-continuum absorption of water vapour at different spectral points of the atmospheric windows at 4.0, 2.1, 1.6, and 1.25 µm, by highly sensitive cavity-enhanced laser techniques. These accurate experimental constraints have been used to adjust the last version (3.2) of the semi-empirical MT_CKD model (Mlawer-Tobin_Clough-Kneizys-Davies), which is widely incorporated in atmospheric radiative-transfer codes. In the present work, the self-continuum cross-sections, CS, are newly determined at 3.3 µm (3007 cm-1) and 2.0 µm (5000 cm-1) by optical-feedback-cavity enhanced absorption spectroscopy (OFCEAS) and cavity ring-down spectroscopy (CRDS), respectively. These new data allow extending the spectral coverage of the 4.0 and 2.1 µm windows, respectively, and testing the recently released 3.2 version of the MT_CKD continuum. By considering high temperature literature data together with our data, the temperature dependence of the self-continuum is also obtained.

  10. Pulse labelling for carbon turnover measurements with a CRDS for wetlands - challenges and solutions

    Science.gov (United States)

    Strozecki, Marcin; Samson, Mateusz; Chojnicki, Bogdan H.; Leśny, Jacek; Moni, Christophe; Urbaniak, Marek; Olejnik, Janusz; Juszczak, Radosław; Silvennoinnen, Hanna

    2016-04-01

    Carbon turnover in peatlands has commonly been studied by estimating carbon allocation and decomposition rates by litterbags, assessing changes in carbon stocks and by measuring the biosphere-atmosphere exchange of carbon gases with various chamber methods or by eddy covariance. In addition, C turnover rates have been measured with pulse labelling methods using 13C and 14C (e.g. Bahn et al. 2009). Pulse labeling (PL) studies in wetlands are, however, sparse (e.g. Gao et al. 2015), presumably as descriptive high water table levels and relatively low productivity render successful tracing difficult. Quite low cost fast-gas-analyzers (Cavity Ring Down Spectrometry, CRDS) make PL experiments more cost-worthy, but their applicability at wetland field and further for measuring elevated 13C - levels is challenging. We carried out a PL as a pre-experiment for a larger labelling campaign of the Wetman-project at Rzecin wetland in Poland. We aimed at defining 1) The optimum labeling for the peatland site, 2) The importance of dissolved 13CO2 both for the loss of the pulse label and for the potential bias to respiratory flux, 3) The reliability of the 13CO2 and 13CH4 measurements when using dynamic closed chambers with a factory calibrated CRDS. We labelled the study area by a transparent chamber combined to Picarro CRDS G2201-i (C input during labelling 4.9 μg 13C). After labelling, we monitored the respiratory 13CO2 flux and the 13CO2 content in the peat water over a 10d- period. In addition, we measured the vegetation13C before labelling and 10 days after. Plants assimilated 2.1 μg C of the added 13C. Half of the recovered 13CO2 (3.6 μg C) originated from respiration. Nearly one third of added 13CO2 immediately dissolved in the water, which at the end of the experiment retained 0.5 μg 13C. Finally, 127 % of the added label was recovered. The high recovery was mainly caused by overestimation in the δ13C. The results of our pre-experiment indicate that 1) Measuring

  11. The CO_2 absorption spectrum in the 2.3 µm transparency window by high sensitivity CRDS: (II) Self-absorption continuum

    International Nuclear Information System (INIS)

    Mondelain, D.; Vasilchenko, S.; Čermák, P.; Kassi, S.; Campargue, A.

    2017-01-01

    The CO_2 absorption continuum near 2.3 µm is determined for a series of sub atmospheric pressures (250–750 Torr) by high sensitivity Cavity Ring Down Spectroscopy. An experimental procedure consisting in injecting successively a gas flow of CO_2 and synthetic air, keeping constant the gas pressure in the CRDS cell, has been developed. This procedure insures a high stability of the spectra baseline by avoiding changes of the optical alignment due to pressure changes. The CO_2 continuum was obtained as the difference between the CO_2 absorption coefficient and a local lines simulation using a Voigt profile truncated at ±25 cm"−"1. Following the results of the preceding analysis of the CO_2 rovibrational lines (Vasilchenko S et al. J Quant Spectrosc Radiat Transfer (10.1016/j.jqsrt.2016.07.002), a CO_2 line list with intensities obtained by variational calculations and empirical line positions was preferred to the HITRAN line list. A quadratic pressure dependence of the absorption continuum is observed, with an average binary absorption coefficient increasing from 2 to 4×10"−"8 cm"−"1 amagat"−"2 between 4320 and 4380 cm"−"1. The obtained continuum is found in good agreement with a previous measurement using much higher densities (20 amagat) and a low resolution grating spectrograph and is consistent with values currently used in the analysis of Venus spectra. - Highlights: • The CO_2 absorption continuum is measured by CRDS in the 2.3 µm window. • The achieved sensitivity and stability allow measurements at sub-atmospheric pressure. • The absorption coefficient is on the order of 3×10"−"8 cm"−"1 amagat"−"2 near 4350 cm"−"1. • A good agreement is obtained with previous results at much higher density (20 amagat).

  12. Spectroscopic detection, characterization and dynamics of free radicals relevant to combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Terry [The Ohio State Univ., Columbus, OH (United States)

    2015-06-04

    Combustion chemistry is enormously complex. The chemical mechanisms involve a multitude of elementary reaction steps and a comparable number of reactive intermediates, many of which are free radicals. Computer simulations based upon these mechanisms are limited by the validity of the mechanisms and the parameters characterizing the properties of the intermediates and their reactivity. Spectroscopy can provide data for sensitive and selective diagnostics to follow their reactions. Spectroscopic analysis also provides detailed parameters characterizing the properties of these intermediates. These parameters serve as experimental gold standards to benchmark predictions of these properties from large-scale, electronic structure calculations. This work has demonstrated the unique capabilities of near-infrared cavity ringdown spectroscopy (NIR CRDS) to identify, characterize and monitor intermediates of key importance in complex chemical reactions. Our studies have focussed on the large family of organic peroxy radicals which are arguably themost important intermediates in combustion chemistry and many other reactions involving the oxidation of organic compounds. Our spectroscopic studies have shown that the NIR Ã - ˜X electronic spectra of the peroxy radicals allows one to differentiate among chemical species in the organic peroxy family and also determine their isomeric and conformic structure in many cases. We have clearly demonstrated this capability on saturated and unsaturated peroxy radicals and β-hydroxy peroxy radicals. In addition we have developed a unique dual wavelength CRDS apparatus specifically for the purpose of measuring absolute absorption cross section and following the reaction of chemical intermediates. The utility of the apparatus has been demonstrated by measuring the cross-section and self-reaction rate constant for ethyl peroxy.

  13. Aerosol Observing System Greenhouse Gas (AOS GhG) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Biraud, S. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Reichl, K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-03-01

    The Greenhouse Gas (GhG) Measurement system is a combination of two systems in series: (1) the Tower Gas Processing (TGP) System, an instrument rack which pulls, pressurizes, and dries air streams from an atmospheric sampling tower through a series of control and monitoring components, and (2) the Picarro model G2301 cavity ringdown spectrometer (CRDS), which measures CO2, CH4, and H2O vapor; the primary measurements of the GhG system.

  14. Local- and regional-scale measurements of CH4, δ13CH4, and C2H6 in the Uintah Basin using a mobile stable isotope analyzer

    Science.gov (United States)

    Rella, C. W.; Hoffnagle, J.; He, Y.; Tajima, S.

    2015-10-01

    In this paper, we present an innovative CH4, δ13CH4, and C2H6 instrument based on cavity ring-down spectroscopy (CRDS). The design and performance of the analyzer is presented in detail. The instrument is capable of precision of less than 1 ‰ on δ13CH4 with 1 in. of averaging and about 0.1 ‰ in an hour. Using this instrument, we present a comprehensive approach to atmospheric methane emissions attribution. Field measurements were performed in the Uintah Basin (Utah, USA) in the winter of 2013, using a mobile lab equipped with the CRDS analyzer, a high-accuracy GPS, a sonic anemometer, and an onboard gas storage and playback system. With a small population and almost no other sources of methane and ethane other than oil and gas extraction activities, the Uintah Basin represents an ideal location to investigate and validate new measurement methods of atmospheric methane and ethane. We present the results of measurements of the individual fugitive emissions from 23 natural gas wells and six oil wells in the region. The δ13CH4 and C2H6 signatures that we observe are consistent with the signatures of the gases found in the wells. Furthermore, regional measurements of the atmospheric CH4, δ13CH4, and C2H6 signatures throughout the basin have been made, using continuous sampling into a 450 m long tube and laboratory reanalysis with the CRDS instrument. These measurements suggest that 85 ± 7 % of the total emissions in the basin are from natural gas production.

  15. On detection of black hole quasinormal ringdowns: Detection efficiency and waveform parameter determination in matched filtering

    International Nuclear Information System (INIS)

    Tsunesada, Yoshiki; Tatsumi, Daisuke; Kanda, Nobuyuki; Nakano, Hiroyuki; Ando, Masaki; Sasaki, Misao; Tagoshi, Hideyuki; Takahashi, Hirotaka

    2005-01-01

    Gravitational radiation from a slightly distorted black hole with ringdown waveform is well understood in general relativity. It provides a probe for direct observation of black holes and determination of their physical parameters, masses and angular momenta (Kerr parameters). For ringdown searches using data of gravitational wave detectors, matched filtering technique is useful. In this paper, we describe studies on problems in matched filtering analysis in realistic gravitational wave searches using observational data. Above all, we focus on template constructions, matches or signal-to-noise ratios (SNRs), detection probabilities for Galactic events, and accuracies in evaluation of waveform parameters or black hole hairs. In template design for matched filtering, search parameter ranges and template separations are determined by requirements from acceptable maximum loss of SNRs, detection efficiencies, and computational costs. In realistic searches using observational data, however, effects of nonstationary noises cause decreases of SNRs, and increases of errors in waveform parameter determinations. These problems will potentially arise in any matched filtering searches for any kind of waveforms. To investigate them, we have performed matched filtering analysis for artificial ringdown signals which are generated with Monte-Carlo technique and injected into the TAMA300 observational data. We employed an efficient method to construct a bank of ringdown filters recently proposed by Nakano et al., and use a template bank generated from a criterion such that losses of SNRs of any signals do not exceed 2%. We found that this criterion is fulfilled in ringdown searches using TAMA300 data, by examining distribution of SNRs of simulated signals. It is also shown that with TAMA300 sensitivity, the detection probability for Galactic ringdown events is about 50% for black holes of masses greater than 20M · with SNR>10. The accuracies in waveform parameter estimations are

  16. Characterizing Interferences in an NOy Thermal Dissociation Inlet

    Science.gov (United States)

    Womack, C.; Veres, P. R.; Brock, C. A.; Neuman, J. A.; Eilerman, S. J.; Zarzana, K. J.; Dube, W. P.; Wild, R. J.; Wooldridge, P. J.; Cohen, R. C.; Brown, S. S.

    2016-12-01

    Nitrogen oxides (NOx = NO and NO2) are emitted into the troposphere by various anthropogenic and natural sources, and contribute to increased levels of ambient ozone. Reactive nitrogen species (NOy), which include nitric acid, peroxy acetyl and organic nitrates, and other species, serve as reservoirs and sinks for NOx, thus influencing O3 production. Their detection is therefore critical to understanding ozone chemistry. However, accurate measurements of NOy have proven to be difficult to obtain, and measurements of total NOy sometimes do not agree with the sum of measurements of its individual components. In recent years, quartz thermal dissociation (TD) inlets have been used to thermally convert all NOy species to NO2, followed by detection by techniques such as laser induced fluorescence (LIF) or cavity ringdown spectroscopy (CRDS). Here we discuss recent work in characterizing the NOy channel of our four-channel TD-CRDS instrument. In particular, we have examined the thermal conversion efficiency of several representative NOy species under a range of experimental conditions. We find that under certain conditions, the conversion efficiency is sensitive to inlet residence time and to the concentration of other trace gases found in ambient sampling, such as ozone. We also report the thermal dissociation curves of N2O5 and ammonium nitrate aerosol, and discuss the interferences observed when ammonia and ozone are co-sampled in the inlet.

  17. Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows

    Science.gov (United States)

    Richard, L.; Vasilchenko, S.; Mondelain, D.; Ventrillard, I.; Romanini, D.; Campargue, A.

    2017-11-01

    In a recent contribution [A. Campargue, S. Kassi, D. Mondelain, S. Vasilchenko, D. Romanini, Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model. J. Geophys. Res. Atmos., 121,13,180-13,203, doi:10.1002/2016JD025531], we reported accurate water vapor absorption continuum measurements by Cavity Ring-down Spectroscopy (CRDS) and Optical-Feedback-Cavity Enhanced Absorption Spectroscopy (OF-CEAS) at selected spectral points of 4 near infrared transparency windows. In the present work, the self-continuum cross-sections, CS, are determined for two new spectral points. The 2491 cm-1 spectral point in the region of maximum transparency of the 4.0 μm window was measured by OF-CEAS in the 23-52 °C temperature range. The 4435 cm-1 spectral point of the 2.1 μm window was measured by CRDS at room temperature. The self-continuum cross-sections were determined from the pressure squared dependence of the continuum absorption. Comparison to the literature shows a reasonable agreement with 1970 s and 1980 s measurements using a grating spectrograph in the 4.0 μm window and a very good consistency with our previous laser measurements in the 2.1 μm window. For both studied spectral points, our values are much smaller than previous room temperature measurements by Fourier Transform Spectroscopy. Significant deviations (up to about a factor 4) are noted compared to the widely used semi empirical MT_CKD model of the absorption continuum. The measured temperature dependence at 2491 cm-1 is consistent with previous high temperature measurements in the 4.0 μm window and follows an exp(D0/kT) law, D0 being the dissociation energy of the water dimer.

  18. Molecular elimination of Br2 in photodissociation of CH2BrC(O)Br at 248 nm using cavity ring-down absorption spectroscopy.

    Science.gov (United States)

    Fan, He; Tsai, Po-Yu; Lin, King-Chuen; Lin, Cheng-Wei; Yan, Chi-Yu; Yang, Shu-Wei; Chang, A H H

    2012-12-07

    The primary elimination channel of bromine molecule in one-photon dissociation of CH(2)BrC(O)Br at 248 nm is investigated using cavity ring-down absorption spectroscopy. By means of spectral simulation, the ratio of nascent vibrational population in v = 0, 1, and 2 levels is evaluated to be 1:(0.5 ± 0.1):(0.2 ± 0.1), corresponding to a Boltzmann vibrational temperature of 581 ± 45 K. The quantum yield of the ground state Br(2) elimination reaction is determined to be 0.24 ± 0.08. With the aid of ab initio potential energy calculations, the obtained Br(2) fragments are anticipated to dissociate on the electronic ground state, yielding vibrationally hot Br(2) products. The temperature-dependence measurements support the proposed pathway via internal conversion. For comparison, the Br(2) yields are obtained analogously from CH(3)CHBrC(O)Br and (CH(3))(2)CBrC(O)Br to be 0.03 and 0.06, respectively. The trend of Br(2) yields among the three compounds is consistent with the branching ratio evaluation by Rice-Ramsperger-Kassel-Marcus method. However, the latter result for each molecule is smaller by an order of magnitude than the yield findings. A non-statistical pathway so-called roaming process might be an alternative to the Br(2) production, and its contribution might account for the underestimate of the branching ratio calculations.

  19. Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER

    Science.gov (United States)

    Rauner, D.; Kurutz, U.; Fantz, U.

    2015-04-01

    As the negative hydrogen ion density nH- is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H- is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H- is produced in the plasma volume, laser photodetachment is applied as the standard method to measure nH-. The additional application of CRDS provides the possibility to directly obtain absolute values of nH-, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H- production and destruction processes. The modelled densities are adapted to the absolute measurements of nH- via CRDS, allowing to identify collisions of H- with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H- in the plasma volume at HOMER. Furthermore, the characteristic peak of nH- observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as ne determines the volume production rate via dissociative electron attachment to vibrationally excited hydrogen molecules.

  20. The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm

    Directory of Open Access Journals (Sweden)

    L. Lechevallier

    2018-04-01

    Full Text Available The amplitude, the temperature dependence, and the physical origin of the water vapour absorption continuum are a long-standing issue in molecular spectroscopy with direct impact in atmospheric and planetary sciences. In recent years, we have determined the self-continuum absorption of water vapour at different spectral points of the atmospheric windows at 4.0, 2.1, 1.6, and 1.25 µm, by highly sensitive cavity-enhanced laser techniques. These accurate experimental constraints have been used to adjust the last version (3.2 of the semi-empirical MT_CKD model (Mlawer-Tobin_Clough-Kneizys-Davies, which is widely incorporated in atmospheric radiative-transfer codes. In the present work, the self-continuum cross-sections, CS, are newly determined at 3.3 µm (3007 cm−1 and 2.0 µm (5000 cm−1 by optical-feedback-cavity enhanced absorption spectroscopy (OFCEAS and cavity ring-down spectroscopy (CRDS, respectively. These new data allow extending the spectral coverage of the 4.0 and 2.1 µm windows, respectively, and testing the recently released 3.2 version of the MT_CKD continuum. By considering high temperature literature data together with our data, the temperature dependence of the self-continuum is also obtained.

  1. Black-hole ringdown search in TAMA300: matched filtering and event selections

    International Nuclear Information System (INIS)

    Tsunesada, Yoshiki; Kanda, Nobuyuki; Nakano, Hiroyuki; Tatsumi, Daisuke

    2005-01-01

    Detecting gravitational ringdown waves provides a probe for direct observation of astrophysical black holes. The masses and angular momenta of black holes can be determined from the waveforms by using the black-hole perturbation theory. In this paper we present data analysis methods to search for black-hole ringdowns of fundamental quasi-normal modes with interferometric gravitational wave detectors, and report an application to the TAMA300 data. Our method is based upon matched filtering by which we calculate cross-correlations between detector outputs and reference waveforms. In a search for gravitational signals, fake reductions and event identifications are of most importance. We developed two methods to reject spurious triggers in filter outputs in the time domain and examined their reduction powers. It is shown that by using the methods presented here the number of fake triggers can be reduced by an order with a false dismissal probability of 5%. We also discuss the possibility of using the higher order quasi-normal modes for event selection

  2. CERNois et contributions sociales françaises CSG et CRDS

    CERN Multimedia

    Staff Association

    2015-01-01

    Les informations données dans cet article sont fournies à titre purement indicatif et n’engagent pas la responsabilité de l’Association du Personnel du CERN. Nous invitons les personnes intéressées à solliciter une consultation juridique professionnelle avant toute démarche légale. Les revenus du patrimoine des CERNois résidant en France sont actuellement soumis à la « contribution sociale généralisée » (CSG) et la « contribution pour le remboursement de la dette sociale » (CRDS). D’après un jugement récent de la Cour de justice de l’Union européenne (CJUE, Arrêt C-623/13) et l’Accord de sécurité sociale de 1970 régissant les relations entre le CERN et l’Etat hôte en mati&egra...

  3. Cavity ring down spectroscopy of CH, CH2, HCO, and H2CO in a premixed flat flame at both atmospheric and sub-atmospheric pressure

    NARCIS (Netherlands)

    Evertsen, R.; Staicu, A.D.; Oijen, van J.A.; Dam, N.J.; Goey, de L.P.H.; Meulen, ter J.J.; Cheauveau, C.; Vovelle, C.

    2003-01-01

    Density distributions of CH, CH2, HCO and H2CO have been measured in a premixed CH4/air flat flame by Cavity Ring Down Spectroscopy (CRDS). At atmospheric pressure problems are encountered due to the narrow spatial distribution of these species. Rotational flame Temperatures have been derived from

  4. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    Directory of Open Access Journals (Sweden)

    Peeyush Sahay

    2009-10-01

    Full Text Available Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS, cavity ringdown spectroscopy (CRDS, integrated cavity output spectroscopy (ICOS, cavity enhanced absorption spectroscopy (CEAS, cavity leak-out spectroscopy (CALOS, photoacoustic spectroscopy (PAS, quartz-enhanced photoacoustic spectroscopy (QEPAS, and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS. Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis.

  5. Impôts Français : CRDS - French version only

    CERN Document Server

    2003-01-01

    Avis de dégrèvements IMPORTANT : Cette note d'information concerne uniquement : - les membres du personnel de nationalité française ou résidents permanents1 , domiciliés en France dans le département de l'Ain et rémunérés par le CERN (titulaires, boursiers, attachés payés et de projet) ; - Les anciens membres du personnel de l'Organisation, bénéficiaires de la Caisse de Pensions du CERN, domiciliés ou ayant été domiciliés en France dans le département de l'Ain. Ces personnes ont récemment reçu, ou sont sur le point de recevoir, un avis de dégrèvement émanant de la Direction des Services Fiscaux de l'Ain (DSFA) et portant sur la Contribution au Remboursement de la Dette Sociale (CRDS). I. Informations général...

  6. Experimental and Numerical Characterization of a Pulsed Supersonic Uniform Flow for Kinetics and Spectroscopy

    Science.gov (United States)

    Suas-David, Nicolas; Thawoos, Shameemah; Broderick, Bernadette M.; Suits, Arthur

    2017-06-01

    The current CPUF (Chirped Pulse Uniform Flow) and the new UF-CRDS (Uniform Flow Cavity Ring-Down Spectroscopy) setups relie mostly on the production of a good quality supersonic uniform flow. A supersonic uniform flow is produced by expanding a gas through a Laval nozzle - similar to the nozzles used in aeronautics - linked to a vacuum chamber. The expansion is characterized by an isentropic core where constant very low kinetic temperature (down to 20K) and constant density are observed. The relatively large diameter of the isentropic core associated with homogeneous thermodynamic conditions makes it a relevant tool for low temperature spectroscopy. On the other hand, the length along the axis of the flow of this core (could be longer than 50cm) allows kinetic studies which is one of the main interest of this setup (CRESU technique. The formation of a uniform flow requires an extreme accuracy in the design of the shape of the nozzle for a set of defined temperature/density. The design is based on a Matlab program which retrieves the shape of the isentropic core according to the method of characteristics prior to calculate the thickness of the boundary layer. Two different approaches are used to test the viability of a new nozzle derived from the program. First, a computational fluid dynamic software (OpenFOAM) models the distribution of the thermodynamic properties of the expansion. Then, fabricated nozzles using 3-D printing are tested based on Pitot measurements and spectroscopic analyses. I will present comparisons of simulation and measured performance for a range of nozzles. We will see how the high level of accuracy of numerical simulations provides a deeper knowledge of the experimental conditions. J. M. Oldham, C. Abeysekera, J. Joalland, L. N. Zack, K. Prozument, I. R. Sims, G. Barrat Park, R. W. Filed and A. G. Suits, J. Chem. Phys. 141, 154202, (2014). I. Sims, J. L. Queffelec, A. Defrance, C. Rebrion-Rowe, D. Travers, P. Bocherel, B. Rowe, I. W. Smith

  7. Design and performance of a Nafion dryer for continuous operation at CO2 and CH4 air monitoring sites

    OpenAIRE

    W. Paplawsky; R. F. Weiss; R. F. Keeling; L. R. Welp; S. Heckman

    2012-01-01

    In preparation for routine deployment in a network of greenhouse gas monitoring stations, we have designed and tested a simple method for drying ambient air to near or below 0.2% (2000 ppm) mole fraction H2O using a Nafion dryer. The inlet system was designed for use with cavity ring-down spectrometer (CRDS) analyzers such as the Picarro model G2301 that measure H2O in addition to their principal analytes, in this case CO2 and CH4. These analyzers report dry-gas mixing ratio...

  8. Application of Allan Deviation to Assessing Uncertainties of Continuous-measurement Instruments, and Optimizing Calibration Schemes

    Science.gov (United States)

    Jacobson, Gloria; Rella, Chris; Farinas, Alejandro

    2014-05-01

    Technological advancement of instrumentation in atmospheric and other geoscience disciplines over the past decade has lead to a shift from discrete sample analysis to continuous, in-situ monitoring. Standard error analysis used for discrete measurements is not sufficient to assess and compare the error contribution of noise and drift from continuous-measurement instruments, and a different statistical analysis approach should be applied. The Allan standard deviation analysis technique developed for atomic clock stability assessment by David W. Allan [1] can be effectively and gainfully applied to continuous measurement instruments. As an example, P. Werle et al has applied these techniques to look at signal averaging for atmospheric monitoring by Tunable Diode-Laser Absorption Spectroscopy (TDLAS) [2]. This presentation will build on, and translate prior foundational publications to provide contextual definitions and guidelines for the practical application of this analysis technique to continuous scientific measurements. The specific example of a Picarro G2401 Cavity Ringdown Spectroscopy (CRDS) analyzer used for continuous, atmospheric monitoring of CO2, CH4 and CO will be used to define the basics features the Allan deviation, assess factors affecting the analysis, and explore the time-series to Allan deviation plot translation for different types of instrument noise (white noise, linear drift, and interpolated data). In addition, the useful application of using an Allan deviation to optimize and predict the performance of different calibration schemes will be presented. Even though this presentation will use the specific example of the Picarro G2401 CRDS Analyzer for atmospheric monitoring, the objective is to present the information such that it can be successfully applied to other instrument sets and disciplines. [1] D.W. Allan, "Statistics of Atomic Frequency Standards," Proc, IEEE, vol. 54, pp 221-230, Feb 1966 [2] P. Werle, R. Miicke, F. Slemr, "The Limits

  9. Simultaneous measurements of work function and H‒ density including caesiation of a converter surface

    Science.gov (United States)

    Cristofaro, S.; Friedl, R.; Fantz, U.

    2017-08-01

    Negative hydrogen ion sources rely on the surface conversion of neutral atomic hydrogen and positive hydrogen ions to H-. The efficiency of this process depends on the actual work function of the converter surface. By introducing caesium into the source the work function decreases, enhancing the negative ion yield. In order to study the impact of the work function on the H- surface production at similar conditions to the ones in ion sources for fusion devices like ITER and DEMO, fundamental investigations are performed in a flexible laboratory experiment. The work function of the converter surface can be absolutely measured by photoelectric effect, while a newly installed cavity ring-down spectroscopy system (CRDS) measures the H- density. The CRDS is firstly tested and characterized by investigations on H- volume production. Caesiation of a stainless steel sample is then performed in vacuum and the plasma effect on the Cs layer is investigated also for long plasma-on times. A minimum work function of (1.9±0.1) eV is reached after some minutes of plasma treatment, resulting in a reduction by a value of 0.8 eV compared to vacuum measurements. The H- density above the surface is (2.1±0.5)×1015 m-3. With further plasma exposure of the caesiated surface, the work function increases up to 3.75 eV, due to the impinging plasma particles which gradually remove the Cs layer. As a result, the H- density decreases by a factor of at least 2.

  10. Fugitive Methane Emission Identification and Source Attribution: Ethane-to-Methane Analysis Using a Portable Cavity Ring-Down Spectroscopy Analyzer

    Science.gov (United States)

    Kim-Hak, D.; Fleck, D.

    2017-12-01

    Natural gas analysis and methane specifically have become increasingly important by virtue of methane's 28-36x greenhouse warming potential compared to CO2 and accounting for 10% of total greenhouse gas emissions in the US alone. Additionally, large uncontrolled leaks, such as the recent one from Aliso Canyon in Southern California, originating from uncapped wells, storage facilities and coal mines have increased the total global contribution of methane missions even further. Determining the specific fingerprint of methane sources by quantifying the ethane to methane (C2:C1) ratios provides us with means to understand processes yielding methane and allows for sources of methane to be mapped and classified through these processes; i.e. biogenic or thermogenic, oil vs. gas vs. coal gas-related. Here we present data obtained using a portable cavity ring-down spectrometry analyzer weighing less than 25 lbs and consuming less than 35W that simultaneously measures methane and ethane in real-time with a raw 1-σ precision of plane gas propagation.

  11. Photodissociation action spectroscopy of ozonized films of undecylenic acid

    Science.gov (United States)

    Gomez, Anthony; Li, Ao; Wlaser, Maggie; Britigan, Nicole; Nizkorodov, Sergey

    2005-03-01

    Photochemical studies of thin films of oxidized undecylenic acid and its salts will be presented. The films are first partially oxidized by ozone, and then irradiated with a wavelength tunable UV source in an inert atmosphere. The escaping gas-phase photochemical products are detected by cavity ring-down spectroscopy as a function of the excitation frequency. The film composition is analyzed by chromatography and mass spectrometry. The data provide critical new insights into the mechanisms of ozonolysis and photolysis of oxidized undecylenic acid, and have serious implications for atmospheric chemistry of organic aerosol particles.

  12. A method for estimating time-frequency characteristics of compact binary mergers to improve searches for inspiral, merger and ring-down phases separately

    International Nuclear Information System (INIS)

    Hanna, Chad; Megevand, Miguel; Palenzuela, Carlos; Ochsner, Evan

    2009-01-01

    Recent advances in the description of compact binary systems have produced gravitational waveforms that include inspiral, merger and ring-down phases. Comparing results from numerical simulations with those of post-Newtonian, and related, expansions has provided motivation for employing post-Newtonian waveforms in near merger epochs when searching for gravitational waves and has encouraged the development of analytic fits to full numerical waveforms. Until searches employ full waveforms as templates, data analysts can still conduct separate inspiral, merger and ring-down searches. Improved knowledge about the end of the inspiral phase, the beginning of the merger and the ring-down frequencies will increase the efficiency of searches over each phase separately without needing the exact waveform. We will show that knowledge of the final spin, of which there are many theoretical models and analytic fits to simulations, may give an insight into the time-frequency properties of the merger. We also present implications on the ability to probe the tidal disruption of neutron stars through gravitational waves.

  13. Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER

    Energy Technology Data Exchange (ETDEWEB)

    Rauner, D.; Kurutz, U.; Fantz, U. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); AG Experimentelle Plasmaphysik, Universität Augsburg, 86135 Augsburg (Germany)

    2015-04-08

    As the negative hydrogen ion density n{sub H{sup −}} is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H{sup −} is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H{sup −} is produced in the plasma volume, laser photodetachment is applied as the standard method to measure n{sub H{sup −}}. The additional application of CRDS provides the possibility to directly obtain absolute values of n{sub H{sup −}}, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H{sup −} production and destruction processes. The modelled densities are adapted to the absolute measurements of n{sub H{sup −}} via CRDS, allowing to identify collisions of H{sup −} with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H{sup −} in the plasma volume at HOMER. Furthermore, the characteristic peak of n{sub H{sup −}} observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as n{sub e} determines

  14. Effects of variation in background mixing ratios of N2, O2, and Ar on the measurement of δ18O-H2O and δ2H-H2O values by cavity ring-down spectroscopy

    Science.gov (United States)

    Johnson, Jennifer E.; Rella, Chris W.

    2017-08-01

    Cavity ring-down spectrometers have generally been designed to operate under conditions in which the background gas has a constant composition. However, there are a number of observational and experimental situations of interest in which the background gas has a variable composition. In this study, we examine the effect of background gas composition on a cavity ring-down spectrometer that measures δ18O-H2O and δ2H-H2O values based on the amplitude of water isotopologue absorption features around 7184 cm-1 (L2120-i, Picarro, Inc.). For background mixtures balanced with N2, the apparent δ18O values deviate from true values by -0.50 ± 0.001 ‰ O2 %-1 and -0.57 ± 0.001 ‰ Ar %-1, and apparent δ2H values deviate from true values by 0.26 ± 0.004 ‰ O2 %-1 and 0.42 ± 0.004 ‰ Ar %-1. The artifacts are the result of broadening, narrowing, and shifting of both the target absorption lines and strong neighboring lines. While the background-induced isotopic artifacts can largely be corrected with simple empirical or semi-mechanistic models, neither type of model is capable of completely correcting the isotopic artifacts to within the inherent instrument precision. The development of strategies for dynamically detecting and accommodating background variation in N2, O2, and/or Ar would facilitate the application of cavity ring-down spectrometers to a new class of observations and experiments.

  15. Sky Localization of Complete Inspiral-Merger-Ringdown Signals for Nonspinning Black Hole Binaries with LISA

    Science.gov (United States)

    McWilliams, Sean T.; Lang, Ryan N.; Baker, John G.; Thorpe, James Ira

    2011-01-01

    We investigate the capability of LISA to measure the sky position of equal-mass, nonspinning black hole binaries, including for the first time the entire inspiral-merger-ringdown signal, the effect of the LISA orbits, and the complete three-channel LISA response. For an ensemble of systems near the peak of LISA's sensitivity band, with total rest mass of 2 x l0(exp 6) Stellar Mass at a redshift of z = 1 with random orientations and sky positions, we find median sky localization errors of approximately approx. 3 arcminutes. This is comparable to the field of view of powerful electromagnetic telescopes, such as the James Webb Space Telescope, that could be used to search for electromagnetic signals associated with merging black holes. We investigate the way in which parameter errors decrease with measurement time, focusing specifically on the additional information provided during the merger-ringdown segment of the signal. We find that this information improves all parameter estimates directly, rather than through diminishing correlations with any subset of well-determined parameters.

  16. Comparisons of continuous atmospheric CH4, CO2 and N2O measurements - results from a travelling instrument campaign at Mace Head

    International Nuclear Information System (INIS)

    Vardag, S.N.; Hammer, S.; Levin, I.; O'Doherty, S.; Spain, T.G.; Wastine, B.; Jordan, A.

    2014-01-01

    A 2-month measurement campaign with a Fourier transform infrared analyser as a travelling comparison instrument (TCI) was performed at the Advanced Global Atmospheric Gases Experiment (AGAGE) and World Meteorological Organization (WMO) Global Atmosphere Watch (GAW) station at Mace Head, Ireland. The aim was to evaluate the compatibility of atmospheric methane (CH 4 ), carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) measurements of the routine station instrumentation, consisting of a gas chromatograph (GC) for CH 4 and N 2 O as well as a cavity ring-down spectroscopy (CRDS) system for CH 4 and CO 2 . The advantage of a TCI approach for quality control is that the comparison covers the entire ambient air measurement system, including the sample intake system and the data evaluation process. For initial quality and performance control, the TCI was run in parallel with the Heidelberg GC before and after the measurement campaign at Mace Head. Median differences between the Heidelberg GC and the TCI were well within the WMO inter-laboratory compatibility target for all three greenhouse gases. At Mace Head, the median difference between the station GC and the TCI were -0.04 nmol mol -1 for CH 4 and -0.37 nmol mol -1 for N 2 O (GC-TCI). For N 2 O, a similar difference (-0.40 nmol mol -1 ) was found when measuring surveillance or working gas cylinders with both instruments. This suggests that the difference observed in ambient air originates from a calibration offset that could partly be due to a difference between the WMON2O X2006a reference scale used for the TCI and the Scripps Institution of Oceanography (SIO-1998) scale used at Mace Head and in the whole AGAGE network. Median differences between the CRDS G1301 and the TCI at Mace Head were 0.12 nmol mol -1 for CH 4 and 0.14 μmol mol -1 for CO 2 (CRDS G1301 - TCI). The difference between both instruments for CO 2 could not be explained, as direct measurements of calibration gases show no such difference. The CH 4

  17. Effects of variation in background mixing ratios of N2, O2, and Ar on the measurement of δ18O–H2O and δ2H–H2O values by cavity ring-down spectroscopy

    Directory of Open Access Journals (Sweden)

    J. E. Johnson

    2017-08-01

    Full Text Available Cavity ring-down spectrometers have generally been designed to operate under conditions in which the background gas has a constant composition. However, there are a number of observational and experimental situations of interest in which the background gas has a variable composition. In this study, we examine the effect of background gas composition on a cavity ring-down spectrometer that measures δ18O–H2O and δ2H–H2O values based on the amplitude of water isotopologue absorption features around 7184 cm−1 (L2120-i, Picarro, Inc.. For background mixtures balanced with N2, the apparent δ18O values deviate from true values by −0.50 ± 0.001 ‰ O2 %−1 and −0.57 ± 0.001 ‰ Ar %−1, and apparent δ2H values deviate from true values by 0.26 ± 0.004 ‰ O2 %−1 and 0.42 ± 0.004 ‰ Ar  %−1. The artifacts are the result of broadening, narrowing, and shifting of both the target absorption lines and strong neighboring lines. While the background-induced isotopic artifacts can largely be corrected with simple empirical or semi-mechanistic models, neither type of model is capable of completely correcting the isotopic artifacts to within the inherent instrument precision. The development of strategies for dynamically detecting and accommodating background variation in N2, O2, and/or Ar would facilitate the application of cavity ring-down spectrometers to a new class of observations and experiments.

  18. Efficient photochemical generation of peroxycarboxylic nitric anhydrides with ultraviolet light-emitting diodes

    Science.gov (United States)

    Rider, N. D.; Taha, Y. M.; Odame-Ankrah, C. A.; Huo, J. A.; Tokarek, T. W.; Cairns, E.; Moussa, S. G.; Liggio, J.; Osthoff, H. D.

    2015-07-01

    Photochemical sources of peroxycarboxylic nitric anhydrides (PANs) are utilized in many atmospheric measurement techniques for calibration or to deliver an internal standard. Conventionally, such sources rely on phosphor-coated low-pressure mercury (Hg) lamps to generate the UV light necessary to photo-dissociate a dialkyl ketone (usually acetone) in the presence of a calibrated amount of nitric oxide (NO) and oxygen (O2). In this manuscript, a photochemical PAN source in which the Hg lamp has been replaced by arrays of ultraviolet light-emitting diodes (UV-LEDs) is described. The output of the UV-LED source was analyzed by gas chromatography (PAN-GC) and thermal dissociation cavity ring-down spectroscopy (TD-CRDS). Using acetone, diethyl ketone (DIEK), diisopropyl ketone (DIPK), or di-n-propyl ketone (DNPK), respectively, the source produces peroxyacetic (PAN), peroxypropionic (PPN), peroxyisobutanoic (PiBN), or peroxy-n-butanoic nitric anhydride (PnBN) from NO in high yield (> 90 %). Box model simulations with a subset of the Master Chemical Mechanism (MCM) were carried out to rationalize product yields and to identify side products. The present work demonstrates that UV-LED arrays are a viable alternative to current Hg lamp setups.

  19. The CO2 absorption spectrum in the 2.3 μm transparency window by high sensitivity CRDS: (II) Self-absorption continuum

    Science.gov (United States)

    Mondelain, D.; Vasilchenko, S.; Čermák, P.; Kassi, S.; Campargue, A.

    2017-01-01

    The CO2 absorption continuum near 2.3 μm is determined for a series of sub atmospheric pressures (250-750 Torr) by high sensitivity Cavity Ring Down Spectroscopy. An experimental procedure consisting in injecting successively a gas flow of CO2 and synthetic air, keeping constant the gas pressure in the CRDS cell, has been developed. This procedure insures a high stability of the spectra baseline by avoiding changes of the optical alignment due to pressure changes. The CO2 continuum was obtained as the difference between the CO2 absorption coefficient and a local lines simulation using a Voigt profile truncated at ±25 cm-1. Following the results of the preceding analysis of the CO2 rovibrational lines (Vasilchenko S et al. J Quant Spectrosc Radiat Transfer 10.1016/j.jqsrt.2016.07.002, a CO2 line list with intensities obtained by variational calculations and empirical line positions was preferred to the HITRAN line list. A quadratic pressure dependence of the absorption continuum is observed, with an average binary absorption coefficient increasing from 2 to 4×10-8 cm-1 amagat-2 between 4320 and 4380 cm-1. The obtained continuum is found in good agreement with a previous measurement using much higher densities (20 amagat) and a low resolution grating spectrograph and is consistent with values currently used in the analysis of Venus spectra.

  20. Resposta do detector de ondas gravitacionais Mario Schenberg ao "ringdown" de buraco negros

    Science.gov (United States)

    Costa, C. A.; Aguiar, O. D.; Magalhães, N. S.

    2003-08-01

    Acredita-se que quando duas estrelas de nêutrons coalescem, elas, eventualmente, formam um buraco negro com massa igual a soma das massas dos objetos originais. Durante a formação do buraco negro, o espaço-tempo em torno do sistema sofre perturbações que se propagam na forma de radiação gravitacional. A forma de onda associada a radiação gravitacional, durante este estágio, aproxima-se a uma senóide exponencialmente amortecida. Este tipo de sinal é conhecido como "ringdown", e seu comportamento e parametrização são muito bem conhecidos. Neste trabalho, simulamos computacionalmente sinais provenientes do "ringdown" de buracos negros, com a finalidade de testar o desempenho do detector de ondas gravitacionais Mario Schenberg em observá-los, quando entrar em funcionamento. Este primeiro teste teórico ajudou-nos a criar estratégias de detecção de sinais imersos no ruído instrumental. Calculamos a relação sinal-ruído como uma função da frequência, bem como sua integral dentro da faixa de sensibilidade do detector. Os resultados obtidos mostraram que o detector Schenberg terá sensibilidade suficiente para detectar este tipo de sinal, proveniente de fontes astrofísicas localizadas dentro de um raio de ~100kpc.

  1. Inspiral, merger, and ring-down of equal-mass black-hole binaries

    International Nuclear Information System (INIS)

    Buonanno, Alessandra; Cook, Gregory B.; Pretorius, Frans

    2007-01-01

    We investigate the dynamics and gravitational-wave (GW) emission in the binary merger of equal-mass black holes as obtained from numerical relativity simulations. The simulations were performed with an evolution code based on generalized harmonic coordinates developed by Pretorius, and used quasiequilibrium initial-data sets constructed by Cook and Pfeiffer. Results from the evolution of three sets of initial data are explored in detail, corresponding to different initial separations of the black holes, and exhibit between 2-8 GW cycles before coalescence. We find that to a good approximation the inspiral phase of the evolution is quasicircular, followed by a 'blurred, quasicircular plunge' lasting for about 1-1.5 GW cycles. After this plunge the GW frequency decouples from the orbital frequency, and we define this time to be the start of the merger phase. Roughly 10-15 M separates the time between the beginning of the merger phase and when we are able to extract quasinormal ring-down modes from gravitational waves emitted by the newly formed black hole. This suggests that the merger lasts for a correspondingly short amount of time, approximately 0.5-0.75 of a full GW cycle. We present first-order comparisons between analytical models of the various stages of the merger and the numerical results--more detailed and accurate comparisons will need to await numerical simulations with higher accuracy, better control of systemic errors (including coordinate artifacts), and initial configurations where the binaries are further separated. During the inspiral, we find that if the orbital phase is well modeled, the leading order Newtonian quadrupole formula is able to match both the amplitude and phase of the numerical GW quite accurately until close to the point of merger. We provide comparisons between the numerical results and analytical predictions based on the adiabatic post-Newtonian (PN) and nonadiabatic resummed-PN models (effective-one-body and Pade models). For all

  2. Determination of breath acetone in 149 type 2 diabetic patients using a ringdown breath-acetone analyzer.

    Science.gov (United States)

    Sun, Meixiu; Chen, Zhuying; Gong, Zhiyong; Zhao, Xiaomeng; Jiang, Chenyu; Yuan, Yuan; Wang, Zhennang; Li, Yingxin; Wang, Chuji

    2015-02-01

    Over 90% of diabetic patients have Type 2 diabetes. Although an elevated mean breath acetone concentration has been found to exist in Type 1 diabetes (T1D), information on breath acetone in Type 2 diabetes (T2D) has yet to be obtained. In this study, we first used gas chromatography-mass spectrometry (GC-MS) to validate a ringdown breath-acetone analyzer based on the cavity-ringdown-spectroscopy technique, through comparing breath acetone concentrations in the range 0.5-2.5 ppm measured using both methods. The linear fitting of R = 0.99 suggests that the acetone concentrations obtained using both methods are consistent with a largest standard deviation of ±0.4 ppm in the lowest concentration of the range. Next, 620 breath samples from 149 T2D patients and 42 healthy subjects were collected and tested using the breath analyzer. Four breath samples were taken from each subject under each of four different conditions: fasting, 2 h post-breakfast, 2 h post-lunch, and 2 h post-dinner. Simultaneous blood glucose levels were also measured using a standard diabetic-management blood-glucose meter. For the 149 T2D subjects, their exhaled breath acetone concentrations ranged from 0.1 to 19.8 ppm; four different ranges of breath acetone concentration, 0.1-19.8, 0.1-7.1, 0.1-6.3, and 0.1-9.5 ppm, were obtained for the subjects under the four different conditions, respectively. For the 42 healthy subjects, their breath acetone concentration ranged from 0.1 to 2.6 ppm; four different ranges of breath acetone concentration, 0.3-2.6, 0.1-2.6, 0.1-1.7, and 0.3-1.6 ppm, were obtained for the four different conditions. The mean breath acetone concentration of the 149 T2D subjects was determined to be 1.5 ± 1.5 ppm, which was 1.5 times that of 1.0 ± 0.6 ppm for the 42 healthy subjects. No correlation was found between the breath acetone concentration and the blood glucose level of the T2D subjects and the healthy volunteers. This study using a relatively large number of

  3. Real time interrogation technique for fiber Bragg grating enhanced fiber loop ringdown sensors array.

    Science.gov (United States)

    Zhang, Yunlong; Li, Ruoming; Shi, Yuechun; Zhang, Jintao; Chen, Xiangfei; Liu, Shengchun

    2015-06-01

    A novel fiber Bragg grating aided fiber loop ringdown (FLRD) sensor array and the wavelength-time multiplexing based interrogation technique for the FLRD sensors array are proposed. The interrogation frequency of the system is formulated and the interrelationships among the parameters of the system are analyzed. To validate the performance of the proposed system, a five elements array is experimentally demonstrated, and the system shows the capability of real time monitoring every FLRD element with interrogation frequency of 125.5 Hz.

  4. Do birds of like feather flock together? The use of a novel 13C+D combustion isotope analyzer to track bird migration

    Science.gov (United States)

    Saad, N.

    2011-12-01

    Information on spring migration routes, geographic linkages among winter, spring, and breeding locations, and potential geographic effects on arrival body condition of a variety of avian species is so far little known. Stable isotope ratios are exquisitely sensitive to the biochemistry of living organisms and the nutrients available to them. Isotope ratios provide detailed knowledge useful in a variety of fields, including birds migration, through a combination of stable-isotope measurements of carbon (13C/12C) and hydrogen (D/H) isotopes of flight feathers and breast feathers of tissues representing different periods of dietary integration and body composition analyses. Associations among specific geographic areas, habitat use, and arrival condition can be elucidated through the measurement of these dual isotopes. We report here on the development of a novel laser spectroscopy based system for the simultaneous analysis of the stable isotope ratios of carbon (13C/12C) and hydrogen (D/H) that is robust, easy-to-use, and is the first stable isotope ratio analysis system to combine the measurement of 13C/12C and D/H in one simple analysis from a bulk organic sample with an application to bird migration. The system comprises a combustion module to convert the organic sample into CO2 and H2O and a Cavity Ring-Down Spectrometer (CRDS) that analyzes the combustion species inside an optical cavity based on the molecular absorption of individual isotopomers. This CRDS uses dual lasers to target the four isotpomers of interest: 12CO2, 13CO2, H2O and HDO. The system delivers a typical precision of 0.1 permil for δ13C and 1.5 permil for δD that parallels that achieved by IRMS, but with an unprecedented simplicity that allows ecologists to leverage the science and elucidate the avian migration patterns.

  5. Greenhouse gas measurements from a UK network of tall towers: technical description and first results

    Science.gov (United States)

    Stanley, Kieran M.; Grant, Aoife; O'Doherty, Simon; Young, Dickon; Manning, Alistair J.; Stavert, Ann R.; Spain, T. Gerard; Salameh, Peter K.; Harth, Christina M.; Simmonds, Peter G.; Sturges, William T.; Oram, David E.; Derwent, Richard G.

    2018-03-01

    A network of three tall tower measurement stations was set up in 2012 across the United Kingdom to expand measurements made at the long-term background northern hemispheric site, Mace Head, Ireland. Reliable and precise in situ greenhouse gas (GHG) analysis systems were developed and deployed at three sites in the UK with automated instrumentation measuring a suite of GHGs. The UK Deriving Emissions linked to Climate Change (UK DECC) network uses tall (165-230 m) open-lattice telecommunications towers, which provide a convenient platform for boundary layer trace gas sampling. In this paper we describe the automated measurement system and first results from the UK DECC network for CO2, CH4, N2O, SF6, CO and H2. CO2 and CH4 are measured at all of the UK DECC sites by cavity ring-down spectroscopy (CRDS) with multiple inlet heights at two of the three tall tower sites to assess for boundary layer stratification. The short-term precisions (1σ on 1 min means) of CRDS measurements at background mole fractions for January 2012 to September 2015 is sampling temperatures. Automated alerts are generated and emailed to site operators when instrumental parameters are not within defined set ranges. Automated instrument shutdowns occur for critical errors such as carrier gas flow rate deviations. Results from the network give good spatial and temporal coverage of atmospheric mixing ratios within the UK since early 2012. Results also show that all measured GHGs are increasing in mole fraction over the selected reporting period and, except for SF6, exhibit a seasonal trend. CO2 and CH4 also show strong diurnal cycles, with night-time maxima and daytime minima in mole fractions.

  6. Measurement of size-dependent single scattering albedo of fresh biomass burning aerosols using the extinction-minus-scattering technique with a combination of cavity ring-down spectroscopy and nephelometry

    Directory of Open Access Journals (Sweden)

    S. Singh

    2016-11-01

    Full Text Available Biomass burning (BB aerosols have a significant effect on regional climate, and represent a significant uncertainty in our understanding of climate change. Using a combination of cavity ring-down spectroscopy and integrating nephelometry, the single scattering albedo (SSA and Ångstrom absorption exponent (AAE were measured for several North American biomass fuels. This was done for several particle diameters for the smoldering and flaming stage of white pine, red oak, and cedar combustion. Measurements were done over a wider wavelength range than any previous direct measurement of BB particles. While the offline sampling system used in this work shows promise, some changes in particle size distribution were observed, and a thorough evaluation of this method is required. The uncertainty of SSA was 6 %, with the truncation angle correction of the nephelometer being the largest contributor to error. While scattering and extinction did show wavelength dependence, SSA did not. SSA values ranged from 0.46 to 0.74, and were not uniformly greater for the smoldering stage than the flaming stage. SSA values changed with particle size, and not systematically so, suggesting the proportion of tar balls to fractal black carbon change with fuel type/state and particle size. SSA differences of 0.15–0.4 or greater can be attributed to fuel type or fuel state for fresh soot. AAE values were quite high (1.59–5.57, despite SSA being lower than is typically observed in wildfires. The SSA and AAE values in this work do not fit well with current schemes that relate these factors to the modified combustion efficiency of a burn. Combustion stage, particle size, fuel type, and fuel condition were found to have the most significant effects on the intrinsic optical properties of fresh soot, though additional factors influence aged soot.

  7. Simultaneous analysis of 17O/16O, 18O/16O and 2H/1H of gypsum hydration water by cavity ring‐down laser spectroscopy

    Science.gov (United States)

    Mather, Ian; Rolfe, James; Evans, Nicholas P.; Herwartz, Daniel; Staubwasser, Michael; Hodell, David A.

    2015-01-01

    Rationale The recent development of cavity ring‐down laser spectroscopy (CRDS) instruments capable of measuring 17O‐excess in water has created new opportunities for studying the hydrologic cycle. Here we apply this new method to studying the triple oxygen (17O/16O, 18O/16O) and hydrogen (2H/1H) isotope ratios of gypsum hydration water (GHW), which can provide information about the conditions under which the mineral formed and subsequent post‐depositional interaction with other fluids. Methods We developed a semi‐automated procedure for extracting GHW by slowly heating the sample to 400°C in vacuo and cryogenically trapping the evolved water. The isotopic composition (δ17O, δ18O and δ2H values) of the GHW is subsequently measured by CRDS. The extraction apparatus allows the dehydration of five samples and one standard simultaneously, thereby increasing the long‐term precision and sample throughput compared with previous methods. The apparatus is also useful for distilling brines prior to isotopic analysis. A direct comparison is made between results of 17O‐excess in GHW obtained by CRDS and fluorination followed by isotope ratio mass spectrometry (IRMS) of O2. Results The long‐term analytical precision of our method of extraction and isotopic analysis of GHW by CRDS is ±0.07‰ for δ17O values, ±0.13‰ for δ18O values and ±0.49‰ for δ2H values (all ±1SD), and ±1.1‰ and ±8 per meg for the deuterium‐excess and 17O‐excess, respectively. Accurate measurement of the 17O‐excess values of GHW, of both synthetic and natural samples, requires the use of a micro‐combustion module (MCM). This accessory removes contaminants (VOCs, H2S, etc.) from the water vapour stream that interfere with the wavelengths used for spectroscopic measurement of water isotopologues. CRDS/MCM and IRMS methods yield similar isotopic results for the analysis of both synthetic and natural gypsum samples within analytical error of the two methods. Conclusions We

  8. Time-domain fiber loop ringdown sensor and sensor network

    Science.gov (United States)

    Kaya, Malik

    Optical fibers have been mostly used in fiber optic communications, imaging optics, sensing technology, etc. Fiber optic sensors have gained increasing attention for scientific and structural health monitoring (SHM) applications. In this study, fiber loop ringdown (FLRD) sensors were fabricated for scientific, SHM, and sensor networking applications. FLRD biosensors were fabricated for both bulk refractive index (RI)- and surface RI-based DNA sensing and one type of bacteria sensing. Furthermore, the effect of glucose oxidase (GOD) immobilization at the sensor head on sensor performance was evaluated for both glucose and synthetic urine solutions with glucose concentration between 0.1% and 10%. Detection sensitivities of the glucose sensors were achieved as low as 0.05%. For chemical sensing, heavy water, ranging from 97% to 10%, and several elemental solutions were monitored by using the FLRD chemical sensors. Bulk index-based FLRD sensing showed that trace elements can be detected in deionized water. For physical sensing, water and cracking sensors were fabricated and embedded into concrete. A partially-etched single-mode fiber (SMF) was embedded into a concrete bar for water monitoring while a bare SMF without any treatment was directly embedded into another concrete bar for monitoring cracks. Furthermore, detection sensitivities of water and crack sensors were investigated as 10 ml water and 0.5 mm surface crack width, respectively. Additionally fiber loop ringdown-fiber Bragg grating temperature sensors were developed in the laboratory; two sensor units for water, crack, and temperature sensing were deployed into a concrete cube in a US Department of Energy test bed (Miami, FL). Multi-sensor applications in a real concrete structure were accomplished by testing the six FLRD sensors. As a final stage, a sensor network was assembled by multiplexing two or three FLRD sensors in series and parallel. Additionally, two FLRD sensors were combined in series and

  9. Microcontroller based resonance tracking unit for time resolved continuous wave cavity-ringdown spectroscopy measurements

    Czech Academy of Sciences Publication Activity Database

    Votava, Ondřej; Mašát, Milan; Parker, A. E.; Jain, Ch.; Fittschen, Ch.

    2012-01-01

    Roč. 83, č. 4 (2012), 043110 ISSN 0034-6748 R&D Projects: GA ČR GA203/09/0422 Institutional support: RVO:61388955 Keywords : CW-DIODE-LASER * DOWN SPECTROSCOPY * KINETICS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.602, year: 2012

  10. Linear and nonlinear surface spectroscopy of supported size selected metal clusters and organic adsorbates

    Energy Technology Data Exchange (ETDEWEB)

    Thaemer, Martin Georg

    2012-03-08

    The spectroscopic investigation of supported size selected metal clusters over a wide wavelength range plays an important role for understanding their outstanding catalytic properties. The challenge which must be overcome to perform such measurements is the difficult detection of the weak spectroscopic signals from these samples. As a consequence, highly sensitive spectroscopic methods are applied, such as surface Cavity Ringdown Spectroscopy and surface Second Harmonic Generation Spectroscopy. The spectroscopic apparatus developed is shown to have a sensitivity which is high enough to detect sub-monolayer coverages of adsorbates on surfaces. In the measured spectra of small supported silver clusters of the sizes Ag{sub 4}2, Ag{sub 2}1, Ag{sub 9}, and Ag atoms a stepwise transition from particles with purely metallic character to particles with molecule-like properties can be observed within this size range.

  11. Is black-hole ringdown a memory of its progenitor?

    Science.gov (United States)

    Kamaretsos, Ioannis; Hannam, Mark; Sathyaprakash, B S

    2012-10-05

    We perform an extensive numerical study of coalescing black-hole binaries to understand the gravitational-wave spectrum of quasinormal modes excited in the merged black hole. Remarkably, we find that the masses and spins of the progenitor are clearly encoded in the mode spectrum of the ringdown signal. Some of the mode amplitudes carry the signature of the binary's mass ratio, while others depend critically on the spins. Simulations of precessing binaries suggest that our results carry over to generic systems. Using Bayesian inference, we demonstrate that it is possible to accurately measure the mass ratio and a proper combination of spins even when the binary is itself invisible to a detector. Using a mapping of the binary masses and spins to the final black-hole spin allows us to further extract the spin components of the progenitor. Our results could have tremendous implications for gravitational astronomy by facilitating novel tests of general relativity using merging black holes.

  12. Efficient photochemical generation of peroxycarboxylic nitric anhydrides with ultraviolet light emitting diodes

    Science.gov (United States)

    Rider, N. D.; Taha, Y. M.; Odame-Ankrah, C. A.; Huo, J. A.; Tokarek, T. W.; Cairns, E.; Moussa, S. G.; Liggio, J.; Osthoff, H. D.

    2015-01-01

    Photochemical sources of peroxycarboxylic nitric anhydrides (PANs) are utilized in many atmospheric measurement techniques for calibration or to deliver an internal standard. Conventionally, such sources rely on phosphor-coated low-pressure mercury (Hg) lamps to generate the UV light necessary to photo-dissociate a dialkyl ketone (usually acetone) in the presence of a calibrated amount of nitric oxide (NO) and oxygen (O2). In this manuscript, a photochemical PAN source in which the Hg lamp has been replaced by arrays of ultraviolet light-emitting diodes (UV-LEDs) is described. The output of the UV-LED source was analyzed by gas chromatography (PAN-GC) and thermal dissociation cavity ring-down spectroscopy (TD-CRDS). Using acetone, diethyl ketone (DIEK), diisopropyl ketone (DIPK), or di-n-propyl ketone (DNPK), respectively, the source produces peroxyacetic (PAN), peroxypropionic (PPN), peroxyisobutanoic (PiBN), or peroxy-n-butanoic nitric anhydride (PnBN) from NO in high yield (> 90%). Box model simulations with a subset of the Master Chemical Mechanism (MCM) were carried out to rationalize products yields and to identify side products. The use of UV-LED arrays offers many advantages over conventional Hg lamp setups, including greater light output over a narrower wavelength range, lower power consumption, and minimal generation of heat.

  13. 248 nm photolysis of CH2Br2 by using cavity ring-down absorption spectroscopy: Br2 molecular elimination at room temperature.

    Science.gov (United States)

    Wei, Pei-Ying; Chang, Yuan-Ping; Lee, Wei-Bin; Hu, Zhengfa; Huang, Hong-Yi; Lin, King-Chuen; Chen, K T; Chang, A H H

    2006-10-07

    Following photodissociation of CH2Br2 at 248 nm, Br2 molecular elimination is detected by using a tunable laser beam, as crossed perpendicular to the photolyzing laser beam in a ring-down cell, probing the Br2 fragment in the B 3Piou+ -X 1Sigmag+ transition. The nascent vibrational population is obtained, yielding a population ratio of Br2(v = 1)Br2(v = 0) to be 0.7 +/- 0.2. The quantum yield for the Br2 elimination reaction is determined to be 0.2 +/- 0.1. Nevertheless, when CH2Br2 is prepared in a supersonic molecular beam under cold temperature, photofragmentation gives no Br2 detectable in a time-of-flight mass spectrometer. With the aid of ab initio potential energy calculations, a plausible pathway is proposed. Upon excitation to the 1B1 or 3B1 state, C-Br bond elongation may change the molecular symmetry of Cs and enhance the resultant 1 1,3A'-X 1A' (or 1 1,3B1-X 1A1 as C2v is used) coupling to facilitate the process of internal conversion, followed by asynchronous concerted photodissociation. Temperature dependence measurements lend support to the proposed pathway.

  14. Technical note: Coupling infrared gas analysis and cavity ring down spectroscopy for autonomous, high-temporal-resolution measurements of DIC and δ13C-DIC

    Science.gov (United States)

    Call, Mitchell; Schulz, Kai G.; Carvalho, Matheus C.; Santos, Isaac R.; Maher, Damien T.

    2017-03-01

    A new approach to autonomously determine concentrations of dissolved inorganic carbon (DIC) and its carbon stable isotope ratio (δ13C-DIC) at high temporal resolution is presented. The simple method requires no customised design. Instead it uses two commercially available instruments currently used in aquatic carbon research. An inorganic carbon analyser utilising non-dispersive infrared detection (NDIR) is coupled to a Cavity Ring-down Spectrometer (CRDS) to determine DIC and δ13C-DIC based on the liberated CO2 from acidified aliquots of water. Using a small sample volume of 2 mL, the precision and accuracy of the new method was comparable to standard isotope ratio mass spectrometry (IRMS) methods. The system achieved a sampling resolution of 16 min, with a DIC precision of ±1.5 to 2 µmol kg-1 and δ13C-DIC precision of ±0.14 ‰ for concentrations spanning 1000 to 3600 µmol kg-1. Accuracy of 0.1 ± 0.06 ‰ for δ13C-DIC based on DIC concentrations ranging from 2000 to 2230 µmol kg-1 was achieved during a laboratory-based algal bloom experiment. The high precision data that can be autonomously obtained by the system should enable complex carbonate system questions to be explored in aquatic sciences using high-temporal-resolution observations.

  15. Decoding Mode-mixing in Black-hole Merger Ringdown

    Science.gov (United States)

    Kelly, Bernard J.; Baker, John G.

    2013-01-01

    Optimal extraction of information from gravitational-wave observations of binary black-hole coalescences requires detailed knowledge of the waveforms. Current approaches for representing waveform information are based on spin-weighted spherical harmonic decomposition. Higher-order harmonic modes carrying a few percent of the total power output near merger can supply information critical to determining intrinsic and extrinsic parameters of the binary. One obstacle to constructing a full multi-mode template of merger waveforms is the apparently complicated behavior of some of these modes; instead of settling down to a simple quasinormal frequency with decaying amplitude, some |m| = modes show periodic bumps characteristic of mode-mixing. We analyze the strongest of these modes the anomalous (3, 2) harmonic mode measured in a set of binary black-hole merger waveform simulations, and show that to leading order, they are due to a mismatch between the spherical harmonic basis used for extraction in 3D numerical relativity simulations, and the spheroidal harmonics adapted to the perturbation theory of Kerr black holes. Other causes of mode-mixing arising from gauge ambiguities and physical properties of the quasinormal ringdown modes are also considered and found to be small for the waveforms studied here.

  16. High-resolution Measurements of Gas-Phase Hydrogen Chloride (HCl) in the Atmosphere by Cavity Ring Down Spectroscopy

    Science.gov (United States)

    Hoffnagle, John; Chen, Hongbing; Lee, Jim; Rella, Chris; Kim-Hak, David; Winkler, Renato; Markovic, Milos; Veres, Patrick

    2017-04-01

    Halogen radical species, such as chlorine and bromine atoms and their oxides, can greatly affect the chemical composition of the troposphere. Hydrogen chloride is the dominant (gas-phase) contributor to the tropospheric chlorine inventory. Real time in situ observations of HCl can provide an important window into the complex photochemical reaction pathways for chlorine in the atmosphere, including heterogeneous reactions on aerosol surfaces. In this work, we report a novel, commercially-available HCl gas-phase analyzer (G2108, Picarro Inc. Santa Clara, CA, USA) based upon Cavity Ring Down Spectroscopy (CRDS) in the near-infrared, and discuss its performance. With a measurement interval of approximately 2 seconds, a precision of better than 40 parts-per-trillion (1 sigma, 30 seconds), and a response time of approximately 1-2 minutes (10 - 90% rise time or 90 - 10% fall time), this analyzer is well-suited for measurements of atmospherically-relevant concentrations of HCl, in both laboratory and field. CRDS provides very stable measurements and low drift, requiring infrequent calibration of the instrument, and can therefore be operated remotely for extended periods of time. In this work we also present results from a laboratory intercomparison of the Picarro G2108 analyzer and an iodide ion time-of-flight Chemical Ionization Mass Spectrometer (CIMS), and the results of the analyzer time response tests.

  17. Black Hole Spectroscopy with Coherent Mode Stacking.

    Science.gov (United States)

    Yang, Huan; Yagi, Kent; Blackman, Jonathan; Lehner, Luis; Paschalidis, Vasileios; Pretorius, Frans; Yunes, Nicolás

    2017-04-21

    The measurement of multiple ringdown modes in gravitational waves from binary black hole mergers will allow for testing the fundamental properties of black holes in general relativity and to constrain modified theories of gravity. To enhance the ability of Advanced LIGO/Virgo to perform such tasks, we propose a coherent mode stacking method to search for a chosen target mode within a collection of multiple merger events. We first rescale each signal so that the target mode in each of them has the same frequency and then sum the waveforms constructively. A crucial element to realize this coherent superposition is to make use of a priori information extracted from the inspiral-merger phase of each event. To illustrate the method, we perform a study with simulated events targeting the ℓ=m=3 ringdown mode of the remnant black holes. We show that this method can significantly boost the signal-to-noise ratio of the collective target mode compared to that of the single loudest event. Using current estimates of merger rates, we show that it is likely that advanced-era detectors can measure this collective ringdown mode with one year of coincident data gathered at design sensitivity.

  18. Sensitive Mid-IR Laser Sensor Development and Mass Spectrometric Measurements in Shock Tube and Flames

    KAUST Repository

    Alquaity, Awad

    2016-11-01

    With global emission regulations becoming stringent, development of new combustion technologies that meet future emission regulations is essential. In this vein, this dissertation presents the application of sensitive diagnostic tools to validate and improve chemical kinetic mechanisms that play a fundamental role in the design of new combustion technologies. First, a novel high sensitivity laser-based sensor with a wide frequency tuning range (900 – 1000 cm-1) was developed utilizing pulsed cavity ringdown spectroscopy (CRDS) technique. The novel laser-based sensor was illustrated by measuring trace amounts of multiple combustion intermediates, namely ethylene, propene, allene, and 1-butene in a static cell at ambient conditions. Subsequently, pulsed CRDS technique was utilized to develop an ultra-fast, high sensitivity diagnostic to monitor trace concentrations of ethylene in shock tube pyrolysis experiments. This diagnostic represented the first ever successful application of CRDS technique to transient species measurements in a shock tube. The high sensitivity and fast time response (10μs) diagnostic may be utilized for measuring other key neutrals and radicals which are crucial in the oxidation chemistry of practical fuels. Secondly, a quadrupole mass spectrometer (QMS) was employed to measure relative cation mole fractions in atmospheric and low-pressure (30 Torr) flames of methane/oxygen diluted in argon. Lean, stoichiometric and rich flames were 4 examined to evaluate the dependence of ion chemistry on flame stoichiometry. Spatial distribution of cations was compared with predictions of an existing ion chemistry model. Based on the extensive measurements carried out in this work, modifications were suggested to improve the ion chemistry model to enhance the fidelity of such mechanisms. In-depth understanding of flame ion chemistry is vital to model the interaction of flames with electric fields and thereby pave the way to enable active combustion control

  19. First Continuous High Frequency in Situ Measurements of CO2 and CH4 in Rwanda Using Cavity Ring-down Spectroscopy

    Science.gov (United States)

    Gasore, J.; DeWitt, L. H.; Prinn, R. G.

    2015-12-01

    Recent IPCC reports emphasize the lack of ground measurements of greenhouse gases on the African continent, despite Africa's significant emissions from agriculture and biomass burning as well as ongoing land use changes. We have established a greenhouse gas monitoring station in northern Rwanda that will be part of the Advanced Global Atmospheric Gases Experiment (AGAGE), a global network of high frequency long-term remote atmospheric measurement stations. Using a Picarro G2401 cavity ring-down analyzer, continuous measurements of CO2, CH4, and CO at a frequency of five seconds are being captured at this equatorial East African site. The measurement site is located near the Virunga mountains, a volcanic range in North-West Rwanda, on the summit of Mt. Mugogo (2507 m above sea level). Mt. Mugogo is located in a rural area 70km away from Kigali, the capital of Rwanda, and about 13km from the nearest town. From HYSPLIT 7-day back-trajectory calculations, we have determined that the station measures air masses originating from East and Central Africa, the Indian Ocean and occasionally from Southern Asia. Depending on the wind direction and local boundary layer height, measurements taken at Mt Mugogo are occasionally influenced by local sources, including emissions from the nearby city and wood fires from small rural settlements around the station. Here we present the first greenhouse gas measurement data from this unique and understudied location in Africa. Using the lagrangian transport and dispersion model FLEXPART, we derive the relationship between the observed mole fractions of CO2 and CH4 and our current knowledge of their sources and sinks, across this large African footprint.

  20. Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005-2010

    OpenAIRE

    Aasi, J.; Abbott, B.; Abbott, R.; Abbott, T.; Abernathy, M.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O.

    2014-01-01

    We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency $50\\le f_{0}/\\mathrm{Hz} \\le 2000$ and decay timescale $0.0001\\lesssim \\tau/\\mathrm{s} \\lesssim 0.1$ characteristic of those produced in mergers of IMBH pairs. No significant ...

  1. Search for Gravitational Wave Ringdowns from Perturbed Intermediate Mass Black Holes in LIGO-Virgo Data from 2005-2010

    Science.gov (United States)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Blackburn, Lindy L.; Camp, J. B.; Gehrels, N.; Graff, P. B.

    2014-01-01

    We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency 50 less than or equal to italic f0/Hz less than or equal to 2000 and decay timescale 0.0001 approximately less than t/s approximately less than 0.1 characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass 50 less than or equal to M/solar mass less than or equal to 450 and component mass ratios of either 1:1 or 4:1. For systems with total mass 100 less than or equal to M/solar mass 150, we report a 90%-confidence upper limit on the rate of binary IMBH mergers with non-spinning and equal mass components of 6:9 x 10(exp 8) Mpc(exp -3)yr(exp -1). We also report a rate upper limit for ringdown waveforms from perturbed IMBHs, radiating 1% of their mass as gravitational waves in the fundamental, l=m=2, oscillation mode, that is nearly three orders of magnitude more stringent than previous results.

  2. The IAGOS-core greenhouse gas package: a measurement system for continuous airborne observations of CO2, CH4, H2O and CO

    Directory of Open Access Journals (Sweden)

    Annette Filges

    2015-09-01

    Full Text Available Within the framework of IAGOS-ERI (In-service Aircraft for a Global Observing System – European Research Infrastructure, a cavity ring-down spectroscopy (CRDS-based measurement system for the autonomous measurement of the greenhouse gases (GHGs CO2 and CH4, as well as CO and water vapour was designed, tested and qualified for deployment on commercial airliners. The design meets requirements regarding physical dimensions (size, weight, performance (long-term stability, low maintenance, robustness, full automation and safety issues (fire-prevention regulations. The system uses components of a commercially available CRDS instrument (G2401-m, Picarro Inc. mounted into a frame suitable for integration in the avionics bay of the Airbus A330 and A340 series. To enable robust and automated operation of the IAGOS-core GHG package over 6-month deployment periods, numerous technical issues had to be addressed. An inlet system was designed to eliminate sampling of larger aerosols, ice particles and water droplets, and to provide additional positive ram-pressure to ensure operation throughout an aircraft altitude operating range up to 12.5 km without an upstream sampling pump. Furthermore, no sample drying is required as the simultaneously measured water vapour mole fraction is used to correct for dilution and spectroscopic effects. This also enables measurements of water vapour throughout the atmosphere. To allow for trace gas measurements to be fully traceable to World Meteorological Organization scales, a two-standard calibration system has been designed and tested, which periodically provides calibration gas to the instrument during flight and on ground for each 6-month deployment period. The first of the IAGOS-core GHG packages is scheduled for integration in 2015. The aim is to have five systems operational within 4 yr, providing regular, long-term GHG observations covering major parts of the globe. This paper presents results from recent test

  3. Optimized spectroscopic scheme for enhanced precision CO measurements with applications to urban source attribution

    Science.gov (United States)

    Nottrott, A.; Hoffnagle, J.; Farinas, A.; Rella, C.

    2014-12-01

    Carbon monoxide (CO) is an urban pollutant generated by internal combustion engines which contributes to the formation of ground level ozone (smog). CO is also an excellent tracer for emissions from mobile combustion sources. In this work we present an optimized spectroscopic sampling scheme that enables enhanced precision CO measurements. The scheme was implemented on the Picarro G2401 Cavity Ring-Down Spectroscopy (CRDS) analyzer which measures CO2, CO, CH4 and H2O at 0.2 Hz. The optimized scheme improved the raw precision of CO measurements by 40% from 5 ppb to 3 ppb. Correlations of measured CO2, CO, CH4 and H2O from an urban tower were partitioned by wind direction and combined with a concentration footprint model for source attribution. The application of a concentration footprint for source attribution has several advantages. The upwind extent of the concentration footprint for a given sensor is much larger than the flux footprint. Measurements of mean concentration at the sensor location can be used to estimate source strength from a concentration footprint, while measurements of the vertical concentration flux are necessary to determine source strength from the flux footprint. Direct measurement of vertical concentration flux requires high frequency temporal sampling and increases the cost and complexity of the measurement system.

  4. Characterization of Turkish honeys regarding of physicochemical properties, and their adulteration analysis

    Directory of Open Access Journals (Sweden)

    Şeyda KIVRAK

    Full Text Available Abstract This work was conducted to evaluate the quality of 54 honey samples from eighteen different origins from Turkey. Physicochemical properties were examined according to AOAC methods, total phenolic and flavonoid contents by a spectrophotometric method and authenticity of honeys by Combustion Module - Cavity Ring-Down Spectroscopy (CM-CRDS. The microscopic analysis of honey sediment (mellissopalynology was carried out to identify and count the pollen to provide qualitative indicators to confirm botanical origin. The moisture, electrical conductivity and free acidity of honeys ranged from 15.56 to 18.39%, 0.143 to 2.006 mS.cm-1, 16.05 meq.kg-1 and 34.10 meq.kg-1, respectively. Diastase activity of sideritis honey was found highest. Honeys showed HMF level below 40 mg.kg-1. The highest proline was determined in thyme honey. The results showed that honeys contained eminent amounts of phenolics and flavonoids. δ13C values of honeys were more negative than -23.5‰. The C4% sugar ratios were lower than 7% value. The lowest glucose-fructose content was observed in eucalyptus, cedar and pine honey samples. The results obtained for physicochemical characteristics, total phenolic and flavonoid contents an authenticity analysis of Turkish honeys indicate a good quality level, adequate processing, good maturity and freshness. The discrimination between honey types was achieved by PCA.

  5. Offline estimation of decay time for an optical cavity with a low pass filter cavity model.

    Science.gov (United States)

    Kallapur, Abhijit G; Boyson, Toby K; Petersen, Ian R; Harb, Charles C

    2012-08-01

    This Letter presents offline estimation results for the decay-time constant for an experimental Fabry-Perot optical cavity for cavity ring-down spectroscopy (CRDS). The cavity dynamics are modeled in terms of a low pass filter (LPF) with unity DC gain. This model is used by an extended Kalman filter (EKF) along with the recorded light intensity at the output of the cavity in order to estimate the decay-time constant. The estimation results using the LPF cavity model are compared to those obtained using the quadrature model for the cavity presented in previous work by Kallapur et al. The estimation process derived using the LPF model comprises two states as opposed to three states in the quadrature model. When considering the EKF, this means propagating two states and a (2×2) covariance matrix using the LPF model, as opposed to propagating three states and a (3×3) covariance matrix using the quadrature model. This gives the former model a computational advantage over the latter and leads to faster execution times for the corresponding EKF. It is shown in this Letter that the LPF model for the cavity with two filter states is computationally more efficient, converges faster, and is hence a more suitable method than the three-state quadrature model presented in previous work for real-time estimation of the decay-time constant for the cavity.

  6. The necessity of microscopy to characterize the optical properties of size-selected, nonspherical aerosol particles.

    Science.gov (United States)

    Veghte, Daniel P; Freedman, Miriam A

    2012-11-06

    It is currently unknown whether mineral dust causes a net warming or cooling effect on the climate system. This uncertainty stems from the varied and evolving shape and composition of mineral dust, which leads to diverse interactions of dust with solar and terrestrial radiation. To investigate these interactions, we have used a cavity ring-down spectrometer to study the optical properties of size-selected calcium carbonate particles, a reactive component of mineral dust. The size selection of nonspherical particles like mineral dust can differ from spherical particles in the polydispersity of the population selected. To calculate the expected extinction cross sections, we use Mie scattering theory for monodisperse spherical particles and for spherical particles with the polydispersity observed in transmission electron microscopy images. Our results for calcium carbonate are compared to the well-studied system of ammonium sulfate. While ammonium sulfate extinction cross sections agree with Mie scattering theory for monodisperse spherical particles, the results for calcium carbonate deviate at large and small particle sizes. We find good agreement for both systems, however, between the calculations performed using the particle images and the cavity ring-down data, indicating that both ammonium sulfate and calcium carbonate can be treated as polydisperse spherical particles. Our results indicate that having an independent measure of polydispersity is essential for understanding the optical properties of nonspherical particles measured with cavity ring-down spectroscopy. Our combined spectroscopy and microscopy techniques demonstrate a novel method by which cavity ring-down spectroscopy can be extended for the study of more complex aerosol particles.

  7. Surface emissions of heat, water and GHGs from a NYC greenroof

    Science.gov (United States)

    McGillis, W. R.; Jacobson, G.; Culligan, P.; Gaffin, S.; Carson, T.; Marasco, D.; Hsueh, D.; Rella, C.

    2012-04-01

    The budgets of heat, water, and GHGs from greenroofs in New York City, needed for adaptation and sustainable policy and infrastructure strategies, requires an accurate measure of their surface emissions. A high speed, Cavity Ring-Down Spectroscopy (CRDS) based analyzer for measuring carbon dioxide (CO2), methane (CH4) and water (H2O) and an ultrasonic wind and temperature anemometer for measuring heat and momentum is used to assess greenroof performance during seasonal, diurnal, and episodic weather conditions. The flux instrument has proven capable of raw 10 Hz precision (one standard deviation) better than 110 parts-per-billion (ppbv) for carbon dioxide, better than 3 ppbv for methane and better than 6 ppmv +0.3% of reading for water vapor. In the water and heat budget, comparison and reconciliation of greenroof evapotranspiration (ET) using micrometeorological techniques, water balance, and heat balance was conducted. The water balance (month timescales), the heat balance (week timescale) show agreement to the micrometeorological surface ET (hour timescale). By using boundary layer flux measurements of ET, the fundamental performance of greenroofs on climate and weather conditions can be explored. These boundary layer measured surface fluxes provide critical information on the physiology of the built environment in New York City. Faced with sewage failures due to water management and exacerbated heating, the accurate assessment of greenroof performance on high spatial and temporal scales in required for the urban environment. Results will be presented and discussed.

  8. Methane flux to the atmosphere from the Deepwater Horizon oil disaster

    Science.gov (United States)

    Yvon-Lewis, Shari A.; Hu, Lei; Kessler, John

    2011-01-01

    The sea-to-air flux of methane from the blowout at the Deepwater Horizon was measured with substantial spatial and temporal resolution over the course of seven days in June 2010. Air and water concentrations were analyzed continuously from a flowing air line and a continuously flowing seawater equilibrator using cavity ring-down spectrometers (CRDS) and a gas chromatograph with a flame ionization detector (GC-FID). The results indicate a low flux of methane to the atmosphere (0.024 μmol m-2 d-1) with atmospheric and seawater equilibrium mixing ratios averaging 1.86 ppm and 2.85 ppm, respectively within the survey area. The oil leak, which was estimated to contain 30.2% methane by weight, was not a significant source of methane to the atmosphere during this study. Most of the methane emitted from the wellhead was dissolved in the deep ocean.

  9. Lineshape test on overlapped transitions (R9F1, R9F2) of the 2v3 band of 12CH4 by frequency-stabilized cavity ring-down spectroscopy

    Science.gov (United States)

    Yang, L.; Lin, H.; Plimmer, M. D.; Feng, X. J.; Zhang, J. T.

    2018-05-01

    The performances of a multi-spectral fit for the spectra of pressure-broadened overlapping lines (R9F1, R9F2) of 12CH4 in binary mixtures with N2 were studied by applying different lineshape models, from the simplest Voigt profile (VP) to the Harmann-Tran profile (HTP). Line-mixing was approximated in the first order in the spectral fits. Data were acquired using a high-resolution cavity ring-down spectrometer of minimum detectable absorption coefficient of 2.8 × 10-12 cm-1. The lines were observed with a signal-to-noise ratio of 19 365 for pressures from 5 to 40 kPa. The study reveals that the multi-spectral fits using the HTP and the speed-dependent Nelkin-Ghatak profile (SDNGP) yield the best among all tested. The two models gave the maximum relative residuals of less than 0.065 %. All things considered, the HTP and the SDNGP appear to be the most reliable models for treating the present case of multi-spectral fitting of unresolved dual-component spectra.

  10. Lowest triplet (n, π*) electronic state of acrolein: Determination of structural parameters by cavity ringdown spectroscopy and quantum-chemical methods

    Science.gov (United States)

    Hlavacek, Nikolaus C.; McAnally, Michael O.; Drucker, Stephen

    2013-02-01

    The cavity ringdown absorption spectrum of acrolein (propenal, CH2=CH—CH=O) was recorded near 412 nm, under bulk-gas conditions at room temperature and in a free-jet expansion. The measured spectral region includes the 0^0_0 band of the T1(n, π*) ← S0 system. We analyzed the 0^0_0 rotational contour by using the STROTA computer program [R. H. Judge et al., J. Chem. Phys. 103, 5343 (1995)], 10.1063/1.470569, which incorporates an asymmetric rotor Hamiltonian for simulating and fitting singlet-triplet spectra. We used the program to fit T1(n, π*) inertial constants to the room-temperature contour. The determined values (cm-1), with 2σ confidence intervals, are A = 1.662 ± 0.003, B = 0.1485 ± 0.0006, C = 0.1363 ± 0.0004. Linewidth analysis of the jet-cooled spectrum yielded a value of 14 ± 2 ps for the lifetime of isolated acrolein molecules in the T1(n, π*), v = 0 state. We discuss the observed lifetime in the context of previous computational work on acrolein photochemistry. The spectroscopically derived inertial constants for the T1(n, π*) state were used to benchmark a variety of computational methods. One focus was on complete active space methods, such as complete active space self-consistent field (CASSCF) and second-order perturbation theory with a CASSCF reference function (CASPT2), which are applicable to excited states. We also examined the equation-of-motion coupled-cluster and time-dependent density function theory excited-state methods, and finally unrestricted ground-state techniques, including unrestricted density functional theory and unrestricted coupled-cluster theory with single and double and perturbative triple excitations. For each of the above methods, we or others [O. S. Bokareva et al., Int. J. Quantum Chem. 108, 2719 (2008)], 10.1002/qua.21803 used a triple zeta-quality basis set to optimize the T1(n, π*) geometry of acrolein. We find that the multiconfigurational methods provide the best agreement with fitted inertial

  11. Comparison of continuous in situ CO2 observations at Jungfraujoch using two different measurement techniques

    Science.gov (United States)

    Schibig, M. F.; Steinbacher, M.; Buchmann, B.; van der Laan-Luijkx, I. T.; van der Laan, S.; Ranjan, S.; Leuenberger, M. C.

    2015-01-01

    Since 2004, atmospheric carbon dioxide (CO2) is being measured at the High Altitude Research Station Jungfraujoch by the division of Climate and Environmental Physics at the University of Bern (KUP) using a nondispersive infrared gas analyzer (NDIR) in combination with a paramagnetic O2 analyzer. In January 2010, CO2 measurements based on cavity ring-down spectroscopy (CRDS) as part of the Swiss National Air Pollution Monitoring Network were added by the Swiss Federal Laboratories for Materials Science and Technology (Empa). To ensure a smooth transition - a prerequisite when merging two data sets, e.g., for trend determinations - the two measurement systems run in parallel for several years. Such a long-term intercomparison also allows the identification of potential offsets between the two data sets and the collection of information about the compatibility of the two systems on different time scales. A good agreement of the seasonality, short-term variations and, to a lesser extent mainly due to the short common period, trend calculations is observed. However, the comparison reveals some issues related to the stability of the calibration gases of the KUP system and their assigned CO2 mole fraction. It is possible to adapt an improved calibration strategy based on standard gas determinations, which leads to better agreement between the two data sets. By excluding periods with technical problems and bad calibration gas cylinders, the average hourly difference (CRDS - NDIR) of the two systems is -0.03 ppm ± 0.25 ppm. Although the difference of the two data sets is in line with the compatibility goal of ±0.1 ppm of the World Meteorological Organization (WMO), the standard deviation is still too high. A significant part of this uncertainty originates from the necessity to switch the KUP system frequently (every 12 min) for 6 min from ambient air to a working gas in order to correct short-term variations of the O2 measurement system. Allowing additional time for

  12. A low-volume cavity ring-down spectrometer for sample-limited applications

    Science.gov (United States)

    Stowasser, C.; Farinas, A. D.; Ware, J.; Wistisen, D. W.; Rella, C.; Wahl, E.; Crosson, E.; Blunier, T.

    2014-08-01

    In atmospheric and environmental sciences, optical spectrometers are used for the measurements of greenhouse gas mole fractions and the isotopic composition of water vapor or greenhouse gases. The large sample cell volumes (tens of milliliters to several liters) in commercially available spectrometers constrain the usefulness of such instruments for applications that are limited in sample size and/or need to track fast variations in the sample stream. In an effort to make spectrometers more suitable for sample-limited applications, we developed a low-volume analyzer capable of measuring mole fractions of methane and carbon monoxide based on a commercial cavity ring-down spectrometer. The instrument has a small sample cell (9.6 ml) and can selectively be operated at a sample cell pressure of 140, 45, or 20 Torr (effective internal volume of 1.8, 0.57, and 0.25 ml). We present the new sample cell design and the flow path configuration, which are optimized for small sample sizes. To quantify the spectrometer's usefulness for sample-limited applications, we determine the renewal rate of sample molecules within the low-volume spectrometer. Furthermore, we show that the performance of the low-volume spectrometer matches the performance of the standard commercial analyzers by investigating linearity, precision, and instrumental drift.

  13. Quantifying methane emission from fugitive sources by combining tracer release and downwind measurements – A sensitivity analysis based on multiple field surveys

    DEFF Research Database (Denmark)

    Mønster, Jacob; Samuelsson, Jerker; Kjeldsen, Peter

    2014-01-01

    Using a dual species methane/acetylene instrument based on cavity ring down spectroscopy (CRDS), the dynamic plume tracer dispersion method for quantifying the emission rate of methane was successfully tested in four measurement campaigns: (1) controlled methane and trace gas release with differe...

  14. Water vapor permeabilities through polymers: diffusivities from experiments and simulations

    International Nuclear Information System (INIS)

    Seethamraju, Sindhu; Ramamurthy, Praveen Chandrashekarapura; Madras, Giridhar

    2014-01-01

    This study experimentally determines water vapor permeabilities, which are subsequently correlated with the diffusivities obtained from simulations. Molecular dynamics (MD) simulations were used for determining the diffusion of water vapor in various polymeric systems such as polyethylene, polypropylene, poly (vinyl alcohol), poly (vinyl acetate), poly (vinyl butyral), poly (vinylidene chloride), poly (vinyl chloride) and poly (methyl methacrylate). Cavity ring down spectroscopy (CRDS) based methodology has been used to determine the water vapor transmission rates. These values were then used to calculate the diffusion coefficients for water vapor through these polymers. A comparative analysis is provided for diffusivities calculated from CRDS and MD based results by correlating the free volumes. (paper)

  15. Comb-assisted cavity ring down spectroscopy of 17O enriched water between 7443 and 7921 cm-1

    Science.gov (United States)

    Mondelain, D.; Mikhailenko, S. N.; Karlovets, E. V.; Béguier, S.; Kassi, S.; Campargue, A.

    2017-12-01

    The room temperature absorption spectrum of water vapor highly enriched in 17O has been recorded by Cavity Ring Down Spectroscopy (CRDS) between 7443 and 7921 cm-1. Three series of recordings were performed with pressure values around 0.1, 1 and 10 Torr. The frequency calibration of the present spectra benefited of the combination of the CRDS spectrometer to a self-referenced frequency comb. The resulting CRD spectrometer combines excellent frequency accuracy over a broad spectral region with a high sensitivity (Noise Equivalent Absorption, αmin∼ 10-11-10-10 cm-1). The investigated spectral region corresponds to the high energy range of the first hexade. The assignments were performed using known experimental energy levels as well as calculated line lists based on the results of Partridge and Schwenke. Overall about 4150 lines were measured and assigned to 4670 transitions of six water isotopologues (H216O, H217O, H218O, HD16O, HD17O and HD18O). Their intensities span six orders of magnitude from 10-28 to 10-22 cm/molecule. Most of the new results concern the H217O and HD17O isotopologues for which about 1600 and 400 transitions were assigned leading to the determination of 329 and 207 new energy levels, respectively. For comparison only about 300 and four transitions of H217O and HD17O were previously known in the region, respectively. By comparison to highly accurate H216O line positions available in the literature, the average accuracy on our line centers is checked to be on the order of 3 MHz (10-4 cm-1) or better for not weak well isolated lines. This small uncertainty represents a significant improvement of the line center determination of many H216O lines included in the experimental list provided as Supplementary Material.

  16. Quantification of atmospheric formaldehyde by infrared absorption spectroscopy

    Science.gov (United States)

    Hoffnagle, John; Fleck, Derek; Rella, Chris; Kim-Hak, David

    2017-04-01

    Formaldehyde is a toxic, carcinogenic compound that can contaminate ambient air as a result of combustion or outgassing of commercial products such as adhesives used to fabricate plywood and to affix indoor carpeting. Like many small molecules, formaldehyde has an infrared absorption spectrum exhibiting bands of ro-vibrational transitions that are well resolved at low pressure and therefore well suited for optical analysis of formaldehyde concentration. We describe progress in applying cavity ring-down spectroscopy of the 2v5 band (the first overtone of the asymmetric C-H stretch, origin at 1770 nm) to the quantitative analysis of formaldehyde concentration in ambient air. Preliminary results suggest that a sensitivity of 1-2 ppb in a measurement interval of a few seconds, and 0.1-0.2 ppb in a few minutes, should be achievable with a compact, robust, and field-deployable instrument. Finally, we note that recent satellites monitoring snapshots of formaldehyde columns give insights into global formaldehyde production, migration and lifetime. The ability to monitor formaldehyde with a small and portable analyzer has the potential to aid in validation of these snapshots and to provide complementary data to show vertical dispersions with high spatial accuracy.

  17. Performance assessment of a cavity ring-down laser spectrometer: achieving better precision and accuracy in the measurement of δ18O and δ2H in liquid water samples

    International Nuclear Information System (INIS)

    Prado-Pérez, A J; Rodríguez-Arévalo, J; Díaz-Teijeiro, M F

    2014-01-01

    The development of new isotopic laser-based analyzers currently represents a clear alternative to conventional isotope ratio mass spectrometers. However, this analytical technique also suffers some disadvantages such as the memory effect, problems related to the overall stability of the equipment and other issues associated with the injection system, essentially regarding the syringe's longevity. This paper aims to minimize these disadvantages in order to increase the overall performance, in terms of precision and accuracy, of these kinds of analyzers. The main results of the experiments carried out in this paper have shown that: (i) the minimum number of discarded injections needed to eliminate the memory effect can be determined just considering the expected isotopic signature difference between two consecutive samples; (ii) both accuracy and precision of the isotopic measurements increase with increasing injection volume up to 2.1–2.2 µL; (iii) it is possible to extend the syringe lifetime by almost a factor of 6 by using n-methyl 2-pyrrolidone as a lubricant. Besides, it has been concluded that, by using the appropriate procedure, the main disadvantages associated with CRDS laser spectroscopy analyzers can be minimized, achieving measurement accuracy and precision of the order of ±0.05 ‰ for δ 18 O and ±0.3 ‰ for δ 2 H. (paper)

  18. Abiotic production of iodine molecules in irradiated ice

    Science.gov (United States)

    Choi, Wonyong; Kim, Kitae; Yabushita, Akihiro

    2015-04-01

    Reactive halogen species play an important role in Earth's environmental systems. Iodine compounds are related to ozone depletion event (ODE) during Antarctic spring, formation of CCN (cloud condensation nuclei), and controlling the atmospheric oxidizing capacity. However, the processes and mechanisms for abiotic formation of iodine compounds in polar region are still unclear. Although the chemical reactions taking place in ice are greatly different from those in aquatic environment, reaction processes of halogens in frozen condition have rarely studied compared to those in water. In this study, we investigated iodide oxidation to form triiodide (I3-) in ice phase under UV irradiation ( λ > 300 nm) and dark condition. The production of I3- through iodide oxidation, which is negligible in aqueous solution, was significantly accelerated in ice phase even in the absence of UV irradiation. The following release of gaseous iodine molecule (I2) to the atmosphere was also monitored by cavity ring-down spectroscopy (CRDS). We speculate that the markedly enhanced iodide oxidation in polycrystalline ice is due to the freeze concentration of iodides, protons, and dissolved oxygen in the ice crystal grain boundaries. The experiments conducted under ambient solar radiation of the Antarctic region (King George Island, 62°13'S 58°47'W, sea level) also confirmed that the generation of I3- via iodide oxidation process is enhanced when iodide is trapped in ice. The observed intrinsic oxidative transformation of iodide to generate I3-(aq) and I2(g) in frozen environment suggests a previously unknown pathway for the substantial release of reactive iodine species to the atmosphere.

  19. Cavity-enhanced surface-plasmon resonance sensing: Modeling and performance

    Czech Academy of Sciences Publication Activity Database

    Giorgini, A.; Avino, S.; Malara, P.; Zullo, R.; Gaglio, G.; Homola, Jiří; De Natale, P.

    2014-01-01

    Roč. 25, č. 1 (2014), 015205 ISSN 0957-0233 Institutional support: RVO:67985882 Keywords : optical resonators * optical sensors * cavity ring-down spectroscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.433, year: 2014

  20. Infrared Spectroscopy with a Cavity Ring-Down Spectrometer

    Science.gov (United States)

    2014-08-01

    this is a negligible shift as far as the performance of the spectrometers are concerned, knowledge of the shift would allow for compensation if...Safety and Health NIST National Institute of Standards and Technology ODS Optical Devices and Sensors Team OSHA Occupational Safety and Health

  1. Isotope Investigations at an Alpine Karst Aquifer by Means of On-Site Measurements with High Time Resolution and Near Realtime Data Availability

    Energy Technology Data Exchange (ETDEWEB)

    Leis, A.; Plieschnegger, M.; Harum, T.; Stadler, H. [Joanneum Research, Institute for Water, Energy and Resources, Graz (Austria); Schmitt, R. [Meteorologie Consult GmbH, Koenigstein (Germany); Van Pelt, A. [Picarro Inc., Sunnyvale, California (United States); Zerobin, W. [Vienna Waterworks, Vienna (Austria)

    2013-07-15

    For a lot of hydrological isotope investigations it would be helpful to conduct on-site measurements with a very high time resolution. Recent developments of a highly sensitive gas analyser on the basis of so called 'Cavity Ring Down Spectroscopy' (CRDS) has lead to a new class of on-site capable measuring devices, the wavelength scanned (WS)-CRDS. In the framework of a new project it succeeded for the first time in measuring the stable environmental isotopes of the water on-site and on-line at one of the most important karst springs in Austria. It was necessary, to adapt the WS-CRDS system for on-site application. Particularly the sampling device had to be adopted to get samples from the flow of the spring to the WS-CDRS system in real time. The system was installed at the spring during snowmelt with measuring intervals of fewer than 10 minutes. This measuring device was combined with a near real time data transmission system, based on LEO satellites. This allowed a dissemination of the data via the internet and, for registered users, also a download possibility of the data. (author)

  2. A Portable Real-Time Ringdown Breath Acetone Analyzer: Toward Potential Diabetic Screening and Management.

    Science.gov (United States)

    Jiang, Chenyu; Sun, Meixiu; Wang, Zhennan; Chen, Zhuying; Zhao, Xiaomeng; Yuan, Yuan; Li, Yingxin; Wang, Chuji

    2016-07-30

    Breath analysis has been considered a suitable tool to evaluate diseases of the respiratory system and those that involve metabolic changes, such as diabetes. Breath acetone has long been known as a biomarker for diabetes. However, the results from published data by far have been inconclusive regarding whether breath acetone is a reliable index of diabetic screening. Large variations exist among the results of different studies because there has been no "best-practice method" for breath-acetone measurements as a result of technical problems of sampling and analysis. In this mini-review, we update the current status of our development of a laser-based breath acetone analyzer toward real-time, one-line diabetic screening and a point-of-care instrument for diabetic management. An integrated standalone breath acetone analyzer based on the cavity ringdown spectroscopy technique has been developed. The instrument was validated by using the certificated gas chromatography-mass spectrometry. The linear fittings suggest that the obtained acetone concentrations via both methods are consistent. Breath samples from each individual subject under various conditions in total, 1257 breath samples were taken from 22 Type 1 diabetic (T1D) patients, 312 Type 2 diabetic (T2D) patients, which is one of the largest numbers of T2D subjects ever used in a single study, and 52 non-diabetic healthy subjects. Simultaneous blood glucose (BG) levels were also tested using a standard diabetic management BG meter. The mean breath acetone concentrations were determined to be 4.9 ± 16 ppm (22 T1D), and 1.5 ± 1.3 ppm (312 T2D), which are about 4.5 and 1.4 times of the one in the 42 non-diabetic healthy subjects, 1.1 ± 0.5 ppm, respectively. A preliminary quantitative correlation (R = 0.56, p acetone concentration and the mean individual BG levels does exist in 20 T1D subjects with no ketoacidosis. No direct correlation is observed in T1D subjects, T2D subjects, and healthy subjects. The results

  3. Spectral analysis software improves confidence in plant and soil water stable isotope analyses performed by isotope ratio infrared spectroscopy (IRIS).

    Science.gov (United States)

    West, A G; Goldsmith, G R; Matimati, I; Dawson, T E

    2011-08-30

    Previous studies have demonstrated the potential for large errors to occur when analyzing waters containing organic contaminants using isotope ratio infrared spectroscopy (IRIS). In an attempt to address this problem, IRIS manufacturers now provide post-processing spectral analysis software capable of identifying samples with the types of spectral interference that compromises their stable isotope analysis. Here we report two independent tests of this post-processing spectral analysis software on two IRIS systems, OA-ICOS (Los Gatos Research Inc.) and WS-CRDS (Picarro Inc.). Following a similar methodology to a previous study, we cryogenically extracted plant leaf water and soil water and measured the δ(2)H and δ(18)O values of identical samples by isotope ratio mass spectrometry (IRMS) and IRIS. As an additional test, we analyzed plant stem waters and tap waters by IRMS and IRIS in an independent laboratory. For all tests we assumed that the IRMS value represented the "true" value against which we could compare the stable isotope results from the IRIS methods. Samples showing significant deviations from the IRMS value (>2σ) were considered to be contaminated and representative of spectral interference in the IRIS measurement. Over the two studies, 83% of plant species were considered contaminated on OA-ICOS and 58% on WS-CRDS. Post-analysis, spectra were analyzed using the manufacturer's spectral analysis software, in order to see if the software correctly identified contaminated samples. In our tests the software performed well, identifying all the samples with major errors. However, some false negatives indicate that user evaluation and testing of the software are necessary. Repeat sampling of plants showed considerable variation in the discrepancies between IRIS and IRMS. As such, we recommend that spectral analysis of IRIS data must be incorporated into standard post-processing routines. Furthermore, we suggest that the results from spectral analysis be

  4. Sulfated polysaccharide, curdlan sulfate, efficiently prevents entry/fusion and restricts antibody-dependent enhancement of dengue virus infection in vitro: a possible candidate for clinical application.

    Directory of Open Access Journals (Sweden)

    Koji Ichiyama

    Full Text Available Curdlan sulfate (CRDS, a sulfated 1→3-β-D glucan, previously shown to be a potent HIV entry inhibitor, is characterized in this study as a potent inhibitor of the Dengue virus (DENV. CRDS was identified by in silico blind docking studies to exhibit binding potential to the envelope (E protein of the DENV. CRDS was shown to inhibit the DENV replication very efficiently in different cells in vitro. Minimal effective concentration of CRDS was as low as 0.1 µg/mL in LLC-MK2 cells, and toxicity was observed only at concentrations over 10 mg/mL. CRDS can also inhibit DENV-1, 3, and 4 efficiently. CRDS did not inhibit the replication of DENV subgenomic replicon. Time of addition experiments demonstrated that the compound not only inhibited viral infection at the host cell binding step, but also at an early post-attachment step of entry (membrane fusion. The direct binding of CRDS to DENV was suggested by an evident reduction in the viral titers after interaction of the virus with CRDS following an ultrafiltration device separation, as well as after virus adsorption to an alkyl CRDS-coated membrane filter. The electron microscopic features also showed that CRDS interacted directly with the viral envelope, and caused changes to the viral surface. CRDS also potently inhibited DENV infection in DC-SIGN expressing cells as well as the antibody-dependent enhancement of DENV-2 infection. Based on these data, a probable binding model of CRDS to DENV E protein was constructed by a flexible receptor and ligand docking study. The binding site of CRDS was predicted to be at the interface between domains II and III of E protein dimer, which is unique to this compound, and is apparently different from the β-OG binding site. Since CRDS has already been tested in humans without serious side effects, its clinical application can be considered.

  5. Metabolic Evidence of Diminished Lipid Oxidation in Women With Polycystic Ovary Syndrome

    OpenAIRE

    Whigham, Leah D.; Butz, Daniel E.; Dashti, Hesam; Tonelli, Marco; Johnson, LuAnn K.; Cook, Mark E.; Porter, Warren P.; Eghbalnia, Hamid R.; Markley, John L.; Lindheim, Steven R.; Schoeller, Dale A.; Abbott, David H.; Assadi-Porter, Fariba M.

    2014-01-01

    Polycystic ovary syndrome (PCOS), a common female endocrinopathy, is a complex metabolic syndrome of enhanced weight gain. The goal of this pilot study was to evaluate metabolic differences between normal (n=10) and PCOS (n=10) women via breath carbon isotope ratio, urinary nitrogen and nuclear magnetic resonance (NMR)-determined serum metabolites. Breath carbon stable isotopes measured by cavity ring down spectroscopy (CRDS) indicated diminished (p

  6. Intercomparison of NO3 radical detection instruments in the atmosphere simulation chamber SAPHIR

    Directory of Open Access Journals (Sweden)

    H.-P. Dorn

    2013-05-01

    Full Text Available The detection of atmospheric NO3 radicals is still challenging owing to its low mixing ratios (≈ 1 to 300 pptv in the troposphere. While long-path differential optical absorption spectroscopy (DOAS has been a well-established NO3 detection approach for over 25 yr, newly sensitive techniques have been developed in the past decade. This publication outlines the results of the first comprehensive intercomparison of seven instruments developed for the spectroscopic detection of tropospheric NO3. Four instruments were based on cavity ring-down spectroscopy (CRDS, two utilised open-path cavity-enhanced absorption spectroscopy (CEAS, and one applied "classical" long-path DOAS. The intercomparison campaign "NO3Comp" was held at the atmosphere simulation chamber SAPHIR in Jülich (Germany in June 2007. Twelve experiments were performed in the well-mixed chamber for variable concentrations of NO3, N2O5, NO2, hydrocarbons, and water vapour, in the absence and in the presence of inorganic or organic aerosol. The overall precision of the cavity instruments varied between 0.5 and 5 pptv for integration times of 1 s to 5 min; that of the DOAS instrument was 9 pptv for an acquisition time of 1 min. The NO3 data of all instruments correlated excellently with the NOAA-CRDS instrument, which was selected as the common reference because of its superb sensitivity, high time resolution, and most comprehensive data coverage. The median of the coefficient of determination (r2 over all experiments of the campaign (60 correlations is r2 = 0.981 (quartile 1 (Q1: 0.949; quartile 3 (Q3: 0.994; min/max: 0.540/0.999. The linear regression analysis of the campaign data set yielded very small intercepts (median: 1.1 pptv; Q1/Q3: −1.1/2.6 pptv; min/max: −14.1/28.0 pptv, and the slopes of the regression lines were close to unity (median: 1.01; Q1/Q3: 0.92/1.10; min/max: 0.72/1.36. The deviation of individual regression slopes from unity was always within the combined

  7. The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques

    Science.gov (United States)

    Strawa, A. W.; Owano, T.; Castaneda, R.; Baer, D. S.; Paldus, B. A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This abstract describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5/Mm). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  8. Cone rod dystrophies

    Science.gov (United States)

    Hamel, Christian P

    2007-01-01

    Cone rod dystrophies (CRDs) (prevalence 1/40,000) are inherited retinal dystrophies that belong to the group of pigmentary retinopathies. CRDs are characterized by retinal pigment deposits visible on fundus examination, predominantly localized to the macular region. In contrast to typical retinitis pigmentosa (RP), also called the rod cone dystrophies (RCDs) resulting from the primary loss in rod photoreceptors and later followed by the secondary loss in cone photoreceptors, CRDs reflect the opposite sequence of events. CRD is characterized by primary cone involvement, or, sometimes, by concomitant loss of both cones and rods that explains the predominant symptoms of CRDs: decreased visual acuity, color vision defects, photoaversion and decreased sensitivity in the central visual field, later followed by progressive loss in peripheral vision and night blindness. The clinical course of CRDs is generally more severe and rapid than that of RCDs, leading to earlier legal blindness and disability. At end stage, however, CRDs do not differ from RCDs. CRDs are most frequently non syndromic, but they may also be part of several syndromes, such as Bardet Biedl syndrome and Spinocerebellar Ataxia Type 7 (SCA7). Non syndromic CRDs are genetically heterogeneous (ten cloned genes and three loci have been identified so far). The four major causative genes involved in the pathogenesis of CRDs are ABCA4 (which causes Stargardt disease and also 30 to 60% of autosomal recessive CRDs), CRX and GUCY2D (which are responsible for many reported cases of autosomal dominant CRDs), and RPGR (which causes about 2/3 of X-linked RP and also an undetermined percentage of X-linked CRDs). It is likely that highly deleterious mutations in genes that otherwise cause RP or macular dystrophy may also lead to CRDs. The diagnosis of CRDs is based on clinical history, fundus examination and electroretinogram. Molecular diagnosis can be made for some genes, genetic counseling is always advised. Currently

  9. Cone rod dystrophies

    Directory of Open Access Journals (Sweden)

    Hamel Christian P

    2007-02-01

    Full Text Available Abstract Cone rod dystrophies (CRDs (prevalence 1/40,000 are inherited retinal dystrophies that belong to the group of pigmentary retinopathies. CRDs are characterized by retinal pigment deposits visible on fundus examination, predominantly localized to the macular region. In contrast to typical retinitis pigmentosa (RP, also called the rod cone dystrophies (RCDs resulting from the primary loss in rod photoreceptors and later followed by the secondary loss in cone photoreceptors, CRDs reflect the opposite sequence of events. CRD is characterized by primary cone involvement, or, sometimes, by concomitant loss of both cones and rods that explains the predominant symptoms of CRDs: decreased visual acuity, color vision defects, photoaversion and decreased sensitivity in the central visual field, later followed by progressive loss in peripheral vision and night blindness. The clinical course of CRDs is generally more severe and rapid than that of RCDs, leading to earlier legal blindness and disability. At end stage, however, CRDs do not differ from RCDs. CRDs are most frequently non syndromic, but they may also be part of several syndromes, such as Bardet Biedl syndrome and Spinocerebellar Ataxia Type 7 (SCA7. Non syndromic CRDs are genetically heterogeneous (ten cloned genes and three loci have been identified so far. The four major causative genes involved in the pathogenesis of CRDs are ABCA4 (which causes Stargardt disease and also 30 to 60% of autosomal recessive CRDs, CRX and GUCY2D (which are responsible for many reported cases of autosomal dominant CRDs, and RPGR (which causes about 2/3 of X-linked RP and also an undetermined percentage of X-linked CRDs. It is likely that highly deleterious mutations in genes that otherwise cause RP or macular dystrophy may also lead to CRDs. The diagnosis of CRDs is based on clinical history, fundus examination and electroretinogram. Molecular diagnosis can be made for some genes, genetic counseling is

  10. High resolution and high precision absorption spectroscopy using high finesse cavities: application to the study of molecules with atmospheric interest; Cavites de haute finesse pour la spectroscopie d'absorption haute sensibilite et haute precision: application a l'etude de molecules d'interet atmospherique

    Energy Technology Data Exchange (ETDEWEB)

    Motto-Ros, V

    2005-12-15

    High finesse cavities are used to measure very weak absorption features. Two different methodologies are investigated and applied to the study of molecules with atmospheric interest. First, Continuous Wave - Cavity Ring Down Spectroscopy (CW-CRDS) is used to study the atmospheric spectra of water vapour in the near infrared range. These measurements are performed for temperature and pressure of atmospheric relevance for DIAL applications (Differential Absorption Lidar). This study, financed by the European Space Agency (ESA), goes with the WALES mission (Water Vapour Lidar Experiment in Space). The experimental setup was conceived in order to control pressure, temperature and relative humidity conditions. A particular attention is done to characterize and describe the spectrometer. Then, measurements of red Oxygen B band are performed to demonstrate the huge performance of Optical Feedback Cavity Enhanced Absorption Spectroscopy (OF-CEAS). The desired optical feedback is obtained by light injection into the high finesse cavity through a glass plate placed inside the cavity and closed to the Brewster angle. We show a measurement dynamical range of 5 orders of magnitude (10{sup -5} to 10{sup -10} /cm) and a sensitivity of 10{sup -10} /cm/{radical} Hz. Also, sampling absorption spectra by the super linear cavity frequency comb allows very precise frequency measurements. This is demonstrated by the determination of Oxygen pressure shifts with an absolute accuracy of around 5 x 10{sup -5} cm{sup -1}/atm. To our knowledge, we provide the highest accuracy ever reported for this parameter. (author)

  11. Laboratory Spectroscopy of Large Carbon Molecules and Ions in Support of Space Missions. A New Generation of Laboratory & Space Studies

    Science.gov (United States)

    Salama, Farid; Tan, Xiaofeng; Cami, Jan; Biennier, Ludovic; Remy, Jerome

    2006-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are an important and ubiquitous component of carbon-bearing materials in space. A long-standing and major challenge for laboratory astrophysics has been to measure the spectra of large carbon molecules in laboratory environments that mimic (in a realistic way) the physical conditions that are associated with the interstellar emission and absorption regions [1]. This objective has been identified as one of the critical Laboratory Astrophysics objectives to optimize the data return from space missions [2]. An extensive laboratory program has been developed to assess the properties of PAHs in such environments and to describe how they influence the radiation and energy balance in space. We present and discuss the gas-phase electronic absorption spectra of neutral and ionized PAHs measured in the UV-Visible-NIR range in astrophysically relevant environments and discuss the implications for astrophysics [1]. The harsh physical conditions of the interstellar medium characterized by a low temperature, an absence of collisions and strong VUV radiation fields - have been simulated in the laboratory by associating a pulsed cavity ringdown spectrometer (CRDS) with a supersonic slit jet seeded with PAHs and an ionizing, penning-type, electronic discharge. We have measured for the {\\it first time} the spectra of a series of neutral [3,4] and ionized [5,6] interstellar PAHs analogs in the laboratory. An effort has also been attempted to quantify the mechanisms of ion and carbon nanoparticles production in the free jet expansion and to model our simulation of the diffuse interstellar medium in the laboratory [7]. These experiments provide {\\it unique} information on the spectra of free, large carbon-containing molecules and ions in the gas phase. We are now, for the first time, in the position to directly compare laboratory spectral data on free, cold, PAH ions and carbon nano-sized carbon particles with astronomical observations in the

  12. High accuracy Primary Reference gas Mixtures for high-impact greenhouse gases

    Science.gov (United States)

    Nieuwenkamp, Gerard; Zalewska, Ewelina; Pearce-Hill, Ruth; Brewer, Paul; Resner, Kate; Mace, Tatiana; Tarhan, Tanil; Zellweger, Christophe; Mohn, Joachim

    2017-04-01

    mixtures with varying δ13C values (from -5‰ to -40‰) analyzed with both cavity ringdown spectroscopy (CRDS) and isotope-ratio mass spectrometry (IRMS) will be presented. Round robins were organized to assess the agreement of the new reference gas mixtures developed by different project partners and to compare the new reference gases with the reference standards currently used by the atmospheric monitoring community (NOAA and AGAGE). These results will also be presented.

  13. CH3CO + O2 + M (M = He, N2) Reaction Rate Coefficient Measurements and Implications for the OH Radical Product Yield.

    Science.gov (United States)

    Papadimitriou, Vassileios C; Karafas, Emmanuel S; Gierczak, Tomasz; Burkholder, James B

    2015-07-16

    The gas-phase CH3CO + O2 reaction is known to proceed via a chemical activation mechanism leading to the formation of OH and CH3C(O)OO radicals via bimolecular and termolecular reactive channels, respectively. In this work, rate coefficients, k, for the CH3CO + O2 reaction were measured over a range of temperature (241-373 K) and pressure (0.009-600 Torr) with He and N2 as the bath gas and used to characterize the bi- and ter-molecular reaction channels. Three independent experimental methods (pulsed laser photolysis-laser-induced fluorescence (PLP-LIF), pulsed laser photolysis-cavity ring-down spectroscopy (PLP-CRDS), and a very low-pressure reactor (VLPR)) were used to characterize k(T,M). PLP-LIF was the primary method used to measure k(T,M) in the high-pressure regime under pseudo-first-order conditions. CH3CO was produced by PLP, and LIF was used to monitor the OH radical bimolecular channel reaction product. CRDS, a complementary high-pressure method, measured k(295 K,M) over the pressure range 25-600 Torr (He) by monitoring the temporal CH3CO radical absorption following its production via PLP in the presence of excess O2. The VLPR technique was used in a relative rate mode to measure k(296 K,M) in the low-pressure regime (9-32 mTorr) with CH3CO + Cl2 used as the reference reaction. A kinetic mechanism analysis of the combined kinetic data set yielded a zero pressure limit rate coefficient, kint(T), of (6.4 ± 4) × 10(-14) exp((820 ± 150)/T) cm(3) molecule(-1) s(-1) (with kint(296 K) measured to be (9.94 ± 1.3) × 10(-13) cm(3) molecule(-1) s(-1)), k0(T) = (7.39 ± 0.3) × 10(-30) (T/300)(-2.2±0.3) cm(6) molecule(-2) s(-1), and k∞(T) = (4.88 ± 0.05) × 10(-12) (T/300)(-0.85±0.07) cm(3) molecule(-1) s(-1) with Fc = 0.8 and M = N2. A He/N2 collision efficiency ratio of 0.60 ± 0.05 was determined. The phenomenological kinetic results were used to define the pressure and temperature dependence of the OH radical yield in the CH3CO + O2 reaction. The

  14. The IAGOS GHG package: a measurement system for continuous airborne observations of CO2, CH4, H2O and CO

    Science.gov (United States)

    Gerbig, C.; Filges, A.; Franke, H.; Klaus, C.; Chen, H.

    2012-12-01

    A cavity ring-down spectroscopy (CRDS) based measurement system for greenhouse gases was designed, tested, and qualified for deployment on commercial airliners within the IAGOS-ERI (In-service Aircraft for a Global Observing System - European Research Infrastructure) project. The design meets requirements regarding physical dimensions (size, weight), performance (long term stability, low maintenance, robustness, full automation) and safety issues (fire prevention regulations). The system uses components of a commercially available CRDS instrument (G2401-m, Picarro Inc.) integrated in a frame suitable for integration in the avionics bay of the Airbus A-340. The first of the IAGOS GHG packages is scheduled for integration in early 2013. The aim is to have seven systems operational within four years, providing for long-term GHG observations with near-global coverage. To enable robust and automated operation of the IAGOS GHG package over six-month deployment periods, numerous technical issues had to be addressed. An inlet system, designed as virtual impactor to eliminate sampling of larger aerosols, ice particles, and water droplets, and provides additional positive ram-pressure. In combination with a lowered sample flow of 0.1 slpm, this ensures a fully controlled sample pressure in the cavity of 140 torr throughout the aircraft altitude operating range up to 12.5 km without the need of an upstream sampling pump. Furthermore, no sample drying is required, as the simultaneously measured water vapor mole fraction is used to correct for dilution and spectroscopic effects. This also enables the collection of science-quality water vapor measurements throughout the atmosphere. To allow for trace gas measurements to be fully traceable to WMO scales, a two-standard calibration system has been designed and tested that periodically provides calibration gas to the instrument during flight and on ground. A targeted six-month deployment cycle followed by maintenance of the package

  15. Rate Constant of the Reaction between CH3O2 Radicals and OH Radicals Revisited.

    Science.gov (United States)

    Assaf, Emmanuel; Song, Bo; Tomas, Alexandre; Schoemaecker, Coralie; Fittschen, Christa

    2016-11-17

    The reaction between CH 3 O 2 and OH radicals has been studied in a laser photolysis cell using the reaction of F atoms with CH 4 and H 2 O for the simultaneous generation of both radicals, with F atoms generated through 248 nm photolysis of XeF 2 . An experimental setup combining cw-Cavity Ring Down Spectroscopy (cw-CRDS) and high repetition rate laser-induced fluorescence (LIF) to a laser photolysis cell has been used. The absolute concentration of CH 3 O 2 was measured by cw-CRDS, while the relative concentration of OH(v = 0) radicals was determined by LIF. To remove dubiety from the quantification of CH 3 O 2 by cw-CRDS in the near-infrared, its absorption cross section has been determined at 7489.16 cm -1 using two different methods. A rate constant of k 1 = (1.60 ± 0.4) × 10 -10 cm 3 s -1 has been determined at 295 K, nearly a factor of 2 lower than an earlier determination from our group ((2.8 ± 1.4) × 10 -10 cm 3 s -1 ) using CH 3 I photolysis as a precursor. Quenching of electronically excited I atoms (from CH 3 I photolysis) in collision with OH(v = 0) is suspected to be responsible for a bias in the earlier, fast rate constant.

  16. Sensitive Multi-Species Emissions Monitoring: Infrared Laser-Based Detection of Trace-Level Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Steill, Jeffrey D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Huang, Haifeng [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hoops, Alexandra A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Patterson, Brian D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Birtola, Salvatore R. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Jaska, Mark [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Strecker, Kevin E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Chandler, David W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bisson, Soott [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    This report summarizes our development of spectroscopic chemical analysis techniques and spectral modeling for trace-gas measurements of highly-regulated low-concentration species present in flue gas emissions from utility coal boilers such as HCl under conditions of high humidity. Detailed spectral modeling of the spectroscopy of HCl and other important combustion and atmospheric species such as H 2 O, CO 2 , N 2 O, NO 2 , SO 2 , and CH 4 demonstrates that IR-laser spectroscopy is a sensitive multi-component analysis strategy. Experimental measurements from techniques based on IR laser spectroscopy are presented that demonstrate sub-ppm sensitivity levels to these species. Photoacoustic infrared spectroscopy is used to detect and quantify HCl at ppm levels with extremely high signal-to-noise even under conditions of high relative humidity. Additionally, cavity ring-down IR spectroscopy is used to achieve an extremely high sensitivity to combustion trace gases in this spectral region; ppm level CH 4 is one demonstrated example. The importance of spectral resolution in the sensitivity of a trace-gas measurement is examined by spectral modeling in the mid- and near-IR, and efforts to improve measurement resolution through novel instrument development are described. While previous project reports focused on benefits and complexities of the dual-etalon cavity ring-down infrared spectrometer, here details on steps taken to implement this unique and potentially revolutionary instrument are described. This report also illustrates and critiques the general strategy of IR- laser photodetection of trace gases leading to the conclusion that mid-IR laser spectroscopy techniques provide a promising basis for further instrument development and implementation that will enable cost-effective sensitive detection of multiple key contaminant species simultaneously.

  17. High resolution and high precision absorption spectroscopy using high finesse cavities: application to the study of molecules with atmospheric interest; Cavites de haute finesse pour la spectroscopie d'absorption haute sensibilite et haute precision: application a l'etude de molecules d'interet atmospherique

    Energy Technology Data Exchange (ETDEWEB)

    Motto-Ros, V.

    2005-12-15

    High finesse cavities are used to measure very weak absorption features. Two different methodologies are investigated and applied to the study of molecules with atmospheric interest. First, Continuous Wave - Cavity Ring Down Spectroscopy (CW-CRDS) is used to study the atmospheric spectra of water vapour in the near infrared range. These measurements are performed for temperature and pressure of atmospheric relevance for DIAL applications (Differential Absorption Lidar). This study, financed by the European Space Agency (ESA), goes with the WALES mission (Water Vapour Lidar Experiment in Space). The experimental setup was conceived in order to control pressure, temperature and relative humidity conditions. A particular attention is done to characterize and describe the spectrometer. Then, measurements of red Oxygen B band are performed to demonstrate the huge performance of Optical Feedback Cavity Enhanced Absorption Spectroscopy (OF-CEAS). The desired optical feedback is obtained by light injection into the high finesse cavity through a glass plate placed inside the cavity and closed to the Brewster angle. We show a measurement dynamical range of 5 orders of magnitude (10{sup -5} to 10{sup -10} /cm) and a sensitivity of 10{sup -10} /cm/{radical} Hz. Also, sampling absorption spectra by the super linear cavity frequency comb allows very precise frequency measurements. This is demonstrated by the determination of Oxygen pressure shifts with an absolute accuracy of around 5 x 10{sup -5} cm{sup -1}/atm. To our knowledge, we provide the highest accuracy ever reported for this parameter. (author)

  18. Circadian Rhythm Disturbances in Patients with Alzheimer's Disease: A Review

    Directory of Open Access Journals (Sweden)

    Dawit A. Weldemichael

    2010-01-01

    Full Text Available Circadian Rhythm Disturbances (CRDs affect as many as a quarter of Alzheimer's disease (AD patients during some stage of their illness. Alterations in the suprachiasmatic nucleus and melatonin secretion are the major factors linked with the cause of CRDs. As a result, the normal physiology of sleep, the biological clock, and core body temperature are affected. This paper systematically discusses some of the causative factors, typical symptoms, and treatment options for CRDs in patients with AD. This paper also emphasizes the implementation of behavioral and environmental therapies before embarking on medications to treat CRDs. Pharmacotherapeutic options are summarized to provide symptomatic benefits for the patient and relieve stress on their families and professional care providers. As of today, there are few studies relative to CRDs in AD. Large randomized trials are warranted to evaluate the effects of treatments such as bright light therapy and engaging activities in the reduction of CRDs in AD patients.

  19. Evanescent-wave and ambient chiral sensing by signal-reversing cavity ringdown polarimetry.

    Science.gov (United States)

    Sofikitis, Dimitris; Bougas, Lykourgos; Katsoprinakis, Georgios E; Spiliotis, Alexandros K; Loppinet, Benoit; Rakitzis, T Peter

    2014-10-02

    Detecting and quantifying chirality is important in fields ranging from analytical and biological chemistry to pharmacology and fundamental physics: it can aid drug design and synthesis, contribute to protein structure determination, and help detect parity violation of the weak force. Recent developments employ microwaves, femtosecond pulses, superchiral light or photoionization to determine chirality, yet the most widely used methods remain the traditional methods of measuring circular dichroism and optical rotation. However, these signals are typically very weak against larger time-dependent backgrounds. Cavity-enhanced optical methods can be used to amplify weak signals by passing them repeatedly through an optical cavity, and two-mirror cavities achieving up to 10(5) cavity passes have enabled absorption and birefringence measurements with record sensitivities. But chiral signals cancel when passing back and forth through a cavity, while the ubiquitous spurious linear birefringence background is enhanced. Even when intracavity optics overcome these problems, absolute chirality measurements remain difficult and sometimes impossible. Here we use a pulsed-laser bowtie cavity ringdown polarimeter with counter-propagating beams to enhance chiral signals by a factor equal to the number of cavity passes (typically >10(3)); to suppress the effects of linear birefringence by means of a large induced intracavity Faraday rotation; and to effect rapid signal reversals by reversing the Faraday rotation and subtracting signals from the counter-propagating beams. These features allow absolute chiral signal measurements in environments where background subtraction is not feasible: we determine optical rotation from α-pinene vapour in open air, and from maltodextrin and fructose solutions in the evanescent wave produced by total internal reflection at a prism surface. The limits of the present polarimeter, when using a continuous-wave laser locked to a stable, high

  20. The absorption spectrum of water vapor in the 2.2 μm transparency window: High sensitivity measurements and spectroscopic database

    International Nuclear Information System (INIS)

    Campargue, A.; Mikhailenko, S.N.; Vasilchenko, S.; Reynaud, C.; Béguier, S.; Čermák, P.; Mondelain, D.; Kassi, S.; Romanini, D.

    2017-01-01

    The weak absorption spectrum of water vapor in the important 2.2 μm transparency window is investigated with very high sensitivity. Overall, about 400 absorption lines were measured by Cavity Ring Down Spectroscopy (CRDS) and Optical-Feedback-Cavity Enhanced Laser Spectroscopy (OF-CEAS) in five spectral intervals: 4248.2–4257.3, 4298.4–4302.6, 4336.8.5-4367.5, 4422.4-4441.2 and 4514.6-4533.7 cm"−"1. The achieved sensitivity of the recordings (noise equivalent absorption, α_m_i_n, on the order of 2×10"−"1"0 cm"−"1) allowed detecting transitions with intensity values down to 1×10"−"2"8 cm/molecule, more than one order of magnitude better than previous studies by Fourier Transform spectroscopy. The rovibrational assignment was performed on the basis of variational calculations and of previously determined empirical energy values. Most of the newly assigned lines correspond to transitions of the ν_1, ν_3 and 3ν_2 bands of H_2"1"7O in natural isotopic abundance. Fourteen energy levels of H_2"1"7O, H_2"1"8O and HD"1"8O are newly determined. An accurate and complete spectroscopic database is constructed for natural water in the 4190–4550 cm"−"1 region (2.39–2.20 µm). The list includes about 4500 transitions with intensity greater than 1×10"−"2"9 cm/molecule, for the six most abundant isotopologues in natural isotopic abundance. Line positions were obtained by difference of empirical energy values determined from literature data and complemented with the present CRDS results. The list is made mostly complete by including weak transitions not yet detected, with positions calculated from empirical levels and variational intensities. The variational intensities computed by a collaboration between the University College London and the Institute of Applied Physics in Nizhny Novgorod are found to improve significantly previous results by Schwenke and Partridge. Examples of comparison of the constructed line list to CRDS spectra and to simulations

  1. Carbon isotope systematics of Turrialba volcano, Costa Rica, using a portable cavity ring-down spectrometer

    Science.gov (United States)

    Malowany, K. S.; Stix, J.; de Moor, J. M.; Chu, K.; Lacrampe-Couloume, G.; Sherwood Lollar, B.

    2017-07-01

    Over the past two decades, activity at Turrialba volcano, Costa Rica, has shifted from hydrothermal to increasingly magmatic in character, with enhanced degassing and eruption potential. We have conducted a survey of the δ13C signatures of gases at Turrialba using a portable field-based CRDS with comparison to standard IRMS techniques. Our δ13C results of the volcanic plume, high-temperature vents, and soil gases reveal isotopic heterogeneity in the CO2 gas composition at Turrialba prior to its recent phase of eruptive activity. The isotopic value of the regional fault system, Falla Ariete (-3.4 ± 0.1‰), is in distinct contrast with the Central crater gases (-3.9 ± 0.1‰) and the 2012 high-temperature vent (-4.4 ± 0.2‰), an indication that spatial variability in δ13C may be linked to hydrothermal transport of volcanic gases, heterogeneities in the source composition, or magmatic degassing. Isotopic values of CO2 samples collected in the plume vary from δ13C of -5.2 to -10.0‰, indicative of mixing between atmospheric CO2 (-9.2 ± 0.1‰), and a volcanic source. We compare the Keeling method to a traditional mixing model (hyperbolic mixing curve) to estimate the volcanic source composition at Turrialba from the plume measurements. The predicted source compositions from the Keeling and hyperbolic methods (-3.0 ± 0.5‰ and -3.9 ± 0.4‰, respectively) illustrate two potential interpretations of the volcanic source at Turrialba. As of the 29 October 2014, Turrialba has entered a new eruptive period, and continued monitoring of the summit gases for δ13C should be conducted to better understand the dominant processes controlling δ13C fractionation at Turrialba.

  2. Methane Flux to the Atmosphere from the Deepwater Horizon Oil Leak

    Science.gov (United States)

    Yvon-Lewis, S. A.; Hu, L.; Kessler, J. D.; Garcia Tigreros, F.; Chan, E. W.; Du, M.

    2010-12-01

    The unfortunate blowout at the BP Deepwater Horizon (DWH) oil rig on April 20, which killed 11 people, was releasing oil and methane at an average rate of 58,000 barrels per day into the deep ocean, until it was recently capped resulting in a total of 4.9 million barrels released (National Incident Command Report, 2010). The methane component of the emission was estimated at 40-60%. As part of a NSF funded RAPID award, the sea-to-air flux of methane from the blowout at the Deepwater Horizon was measured on board the R/V Cape Hatteras from June 11-20 with substantial spatial and temporal resolution over the course of seven days in June 2010. Air and water concentrations were analyzed continuously from a flowing air line and a continuously flowing seawater equilibrator using cavity ring-down spectrometers (CRDS) and a gas chromatograph with a flame ionization detector (GC-FID). The results indicate a low flux of methane to the atmosphere (0.024 μmol m^{-2} d^{-1}) with atmospheric and seawater equilibrium mixing ratios averaging 1.86 ppm and 2.85 ppm, respectively within the survey area. Most of the methane emitted from the wellhead was not emitted to the atmosphere. It dissolved into the water column at depth.

  3. Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde

    Science.gov (United States)

    Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Zarzana, K. J.; Rudich, Y.; Brown, S. S.

    2016-01-01

    Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and it strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99930 ± 0.00003 (1- reflectivity = 700 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.43 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity-enhanced absorption spectroscopy and cavity ring-down spectroscopy agree within 2 % (slope for linear fit = 1.02 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity-enhanced absorption spectroscopy and calculated based on flow dilution are also well correlated, with r2 = 0.9998. During constant mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1 min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically based trace gas detection that may complement higher precision techniques based on non-absolute detection methods. In addition to

  4. Binary and ternary recombination of D3+ ions at 80-130 K: Application of laser absorption spectroscopy

    Science.gov (United States)

    Dohnal, Petr; Hejduk, Michal; Rubovič, Peter; Varju, Jozef; Roučka, Štěpán; Plašil, Radek; Glosík, Juraj

    2012-11-01

    Recombination of D_3^+ ions with electrons at low temperatures (80-130 K) was studied using spectroscopic determination of D_3^+ ions density in afterglow plasmas. The use of cavity ring-down absorption spectroscopy enabled an in situ determination of the abundances of the ions in plasma and the translational and the rotational temperatures of the recombining ions. Two near infrared transitions at (5792.70 ± 0.01) cm-1 and at (5793.90 ± 0.01) cm-1 were used to probe the number densities of the lowest ortho state and of one higher lying rotational state of the vibrational ground state of D_3^+ ion. The results show that D_3^+ recombination with electrons consists of the binary and the third-body (helium) assisted process. The obtained binary recombination rate coefficients are in agreement with a recent theoretical prediction for electron-ion plasma in thermodynamic equilibrium with αbin(80 K) = (9.2 ± 2.0) × 10-8 cm3 s-1. The measured helium assisted ternary rate coefficients KHe are in agreement with our previously measured flowing afterglow data giving a value of KHe(80 K) = (1.2 ± 0.3) × 10-25 cm6 s-1.

  5. Binary and ternary recombination of D3+ ions at 80-130 K: application of laser absorption spectroscopy.

    Science.gov (United States)

    Dohnal, Petr; Hejduk, Michal; Rubovič, Peter; Varju, Jozef; Roučka, Štěpán; Plašil, Radek; Glosík, Juraj

    2012-11-21

    Recombination of D(3)(+) ions with electrons at low temperatures (80-130 K) was studied using spectroscopic determination of D(3)(+) ions density in afterglow plasmas. The use of cavity ring-down absorption spectroscopy enabled an in situ determination of the abundances of the ions in plasma and the translational and the rotational temperatures of the recombining ions. Two near infrared transitions at (5792.70 ± 0.01) cm(-1) and at (5793.90 ± 0.01) cm(-1) were used to probe the number densities of the lowest ortho state and of one higher lying rotational state of the vibrational ground state of D(3)(+) ion. The results show that D(3)(+) recombination with electrons consists of the binary and the third-body (helium) assisted process. The obtained binary recombination rate coefficients are in agreement with a recent theoretical prediction for electron-ion plasma in thermodynamic equilibrium with α(bin)(80 K) = (9.2 ± 2.0) × 10(-8) cm(3) s(-1). The measured helium assisted ternary rate coefficients K(He) are in agreement with our previously measured flowing afterglow data giving a value of K(He)(80 K) = (1.2 ± 0.3) × 10(-25) cm(6) s(-1).

  6. Optical diagnostics of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    Laux, C O; Spence, T G; Kruger, C H; Zare, R N

    2003-01-01

    Atmospheric pressure air plasmas are often thought to be in local thermodynamic equilibrium owing to fast interspecies collisional exchange at high pressure. This assumption cannot be relied upon, particularly with respect to optical diagnostics. Velocity gradients in flowing plasmas and/or elevated electron temperatures created by electrical discharges can result in large departures from chemical and thermal equilibrium. This paper reviews diagnostic techniques based on optical emission spectroscopy and cavity ring-down spectroscopy that we have found useful for making temperature and concentration measurements in atmospheric pressure plasmas under conditions ranging from thermal and chemical equilibrium to thermochemical nonequilibrium

  7. An empirical spectroscopic database for acetylene in the regions of 5850-6341 cm-1 and 7000-9415 cm-1

    Science.gov (United States)

    Lyulin, O. M.; Campargue, A.

    2017-12-01

    Six studies have been recently devoted to a systematic analysis of the high-resolution near infrared absorption spectrum of acetylene recorded by Cavity Ring Down spectroscopy (CRDS) in Grenoble and by Fourier-transform spectroscopy (FTS) in Brussels and Hefei. On the basis of these works, in the present contribution, we construct an empirical database for acetylene in the 5850-9415 cm-1 region excluding the 6341-7000 cm-1 interval corresponding to the very strong ν1+ν3 manifold. Our database gathers and extends information included in our CRDS and FTS studies. In particular, the intensities of about 1700 lines measured by CRDS in the 7244-7920 cm-1 region are reported for the first time together with those of several bands of 12C13CH2 present in natural isotopic abundance in the acetylene sample. The Herman-Wallis coefficients of most of the bands are derived from a fit of the measured intensity values. A recommended line list is provided with positions calculated using empirical spectroscopic parameters of the lower and upper energy vibrational levels and intensities calculated using the derived Herman-Wallis coefficients. This approach allows completing the experimental list by adding missing lines and improving poorly determined positions and intensities. As a result the constructed line list includes a total of 11113 transitions belonging to 150 bands of 12C2H2 and 29 bands of 12C13CH2. For comparison the HITRAN database in the same region includes 869 transitions of 14 bands, all belonging to 12C2H2. Our weakest lines have an intensity on the order of 10-29 cm/molecule, about three orders of magnitude smaller than the HITRAN intensity cut off. Line profile parameters are added to the line list which is provided in HITRAN format. The comparison of the acetylene database to the HITRAN2012 line list or to results obtained using the global effective operator approach is discussed in terms of completeness and accuracy.

  8. An Empirical Spectroscopic Database for Acetylene in the Regions of 5850-9415 CM^{-1}

    Science.gov (United States)

    Campargue, Alain; Lyulin, Oleg

    2017-06-01

    Six studies have been recently devoted to a systematic analysis of the high-resolution near infrared absorption spectrum of acetylene recorded by Cavity Ring Down spectroscopy (CRDS) in Grenoble and by Fourier-transform spectroscopy (FTS) in Brussels and Hefei. On the basis of these works, in the present contribution, we construct an empirical database for acetylene in the 5850 - 9415 \\wn region excluding the 6341-7000 \\wn interval corresponding to the very strong νb{1}+ νb{3} manifold. The database gathers and extends information included in our CRDS and FTS studies. In particular, the intensities of about 1700 lines measured by CRDS in the 7244-7920 \\wn are reported for the first time together with those of several bands of ^{12}C^{13}CH_{2} present in natural isotopic abundance in the acetylene sample. The Herman-Wallis coefficients of most of the bands are derived from a fit of the measured intensity values. A recommended line list is provided with positions calculated using empirical spectroscopic parameters of the lower and upper energy vibrational levels and intensities calculated using the derived Herman-Wallis coefficients. This approach allows completing the experimental list by adding missing lines and improving poorly determined positions and intensities. As a result the constructed line list includes a total of 10973 lines belonging to 146 bands of ^{12}C_{2}H_{2} and 29 bands of ^{12}C^{13}CH_{2}. For comparison the HITRAN2012 database in the same region includes 869 lines of 14 bands, all belonging to ^{12}C_{2}H_{2}. Our weakest lines have an intensity on the order of 10^{-29} cm/molecule,about three orders of magnitude smaller than the HITRAN intensity cut off. Line profile parameters are added to the line list which is provided in HITRAN format. The comparison to the HITRAN2012 line list or to results obtained using the global effective operator approach is discussed in terms of completeness and accuracy.

  9. Comparison of N2O5 mixing ratios during NO3Comp 2007 in SAPHIR

    Directory of Open Access Journals (Sweden)

    A. W. Rollins

    2012-11-01

    Full Text Available N2O5 detection in the atmosphere has been accomplished using techniques which have been developed during the last decade. Most techniques use a heated inlet to thermally decompose N2O5 to NO3, which can be detected by either cavity based absorption at 662 nm or by laser-induced fluorescence. In summer 2007, a large set of instruments, which were capable of measuring NO3 mixing ratios, were simultaneously deployed in the atmosphere simulation chamber SAPHIR in Jülich, Germany. Some of these instruments measured N2O5 mixing ratios either simultaneously or alternatively. Experiments focused on the investigation of potential interferences from, e.g., water vapour or aerosol and on the investigation of the oxidation of biogenic volatile organic compounds by NO3. The comparison of N2O5 mixing ratios shows an excellent agreement between measurements of instruments applying different techniques (3 cavity ring-down (CRDS instruments, 2 laser-induced fluorescence (LIF instruments. Datasets are highly correlated as indicated by the square of the linear correlation coefficients, R2, which values were larger than 0.96 for the entire datasets. N2O5 mixing ratios well agree within the combined accuracy of measurements. Slopes of the linear regression range between 0.87 and 1.26 and intercepts are negligible. The most critical aspect of N2O5 measurements by cavity ring-down instruments is the determination of the inlet and filter transmission efficiency. Measurements here show that the N2O5 inlet transmission efficiency can decrease in the presence of high aerosol loads, and that frequent filter/inlet changing is necessary to quantitatively sample N2O5 in some environments. The analysis of data also demonstrates that a general correction for degrading filter transmission is not applicable for all conditions encountered during this campaign. Besides the effect of a gradual degradation of the inlet transmission efficiency aerosol exposure, no other interference

  10. The Second "Ring of Towers": Over-sampling the Mid Continent Intensive region CO2 mixing ratio?

    Science.gov (United States)

    Richardson, S.; Miles, N.; Davis, K.; Crosson, E.; Denning, S.; Zupanksi, D.; Uliasz, M.

    2007-12-01

    well-calibrated CO2 mixing ratio measurements deployed at Ameriflux towers are within the midcontinental region: Ozark, MO (30 m AGL) and Mead, NE (3-6 m AGL) (www.amerifluxco2.psu.edu). The instruments chosen for the Ring 2 deployment are Picarro Inc., Cavity Ring-Down Spectroscopy (CRDS) instruments. One advantage of the CRDS instruments is the reduced need for calibration compared to the systems used in PSU's Ameriflux CO2 network which are calibrated every four hours using four calibration tanks. Although the long-term stability is not exactly known, tests have shown accuracy to within 0.2 ppm on a monthly time scale without additional calibration. Preliminary results show spatial differences in daytime CO2 across the ring that are as large as 40 ppm, and highly variable in time. We will present observations and preliminary interpretation of these data.

  11. Optical fibre cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser

    Science.gov (United States)

    Zhou, Kaiming; Webb, David; Mou, Chengbo; Farries, Mark; Hayes, Neil; Bennion, Ian

    2009-10-01

    μA microchannel was inscribed in the fibre of a ring cavity which was constructed from two 0.1%:99.9% couplers and a 10m fibre loop. Cavity ring down spectroscopy (CRDS) was used to measure the refractive index (RI) of gels infused into the microchannel with high resolution. The ring down time discloses a nonlinear increase with respect to the RI of the gel and sensitivity up to 300μs/RI unit (RIU) and resolution of 5×10-4 were obtained.

  12. Preliminary detection of explosive standard components with Laser Raman Technique

    International Nuclear Information System (INIS)

    Botti, S.; Ciardi, R.

    2008-01-01

    Presently, our section is leader of the ISOTREX project (Integrated System for On-line TRace EXplosives detection in solid, liquid and vapour state), funded in the frame of the PASR 2006 action (Preparatory Action on the enhancement of the European industrial potential in the field of Security Research Preparatory Action) of the 6. EC framework. ISOTREX project will exploit the capabilities of different laser techniques as LIBS (Laser Induced Breakdown Spectroscopy), LPA (Laser Photo Acustic) and CRDS (Cavity Ring Down Spectroscopy) to monitor explosive traces. In this frame, we extended our investigation also to the laser induced Raman effect spectroscopy, in order to investigate its capabilities and possible future integration. We analysed explosive samples in bulk solid phase, diluted liquid phase and as evaporated films over suitable substrate. In the following, we present the main results obtained, outlining preliminary conclusions [it

  13. Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method

    Energy Technology Data Exchange (ETDEWEB)

    Mønster, Jacob [Department of Environmental Engineering, Technical University of Denmark, Miljøvej – Building 113, DK-2800 Lyngby (Denmark); Samuelsson, Jerker, E-mail: jerker.samuelsson@fluxsense.se [Chalmers University of Technology/FluxSense AB, SE-41296 Göteborg (Sweden); Kjeldsen, Peter [Department of Environmental Engineering, Technical University of Denmark, Miljøvej – Building 113, DK-2800 Lyngby (Denmark); Scheutz, Charlotte, E-mail: chas@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljøvej – Building 113, DK-2800 Lyngby (Denmark)

    2015-01-15

    Highlights: • Quantification of whole landfill site methane emission at 15 landfills. • Multiple on-site source identification and quantification. • Quantified methane emission from shredder waste and composting. • Large difference between measured and reported methane emissions. - Abstract: Whole-site methane emissions from 15 Danish landfills were assessed using a mobile tracer dispersion method with either Fourier transform infrared spectroscopy (FTIR), using nitrous oxide as a tracer gas, or cavity ring-down spectrometry (CRDS), using acetylene as a tracer gas. The landfills were chosen to represent the different stages of the lifetime of a landfill, including open, active, and closed covered landfills, as well as those with and without gas extraction for utilisation or flaring. Measurements also included landfills with biocover for oxidizing any fugitive methane. Methane emission rates ranged from 2.6 to 60.8 kg h{sup −1}, corresponding to 0.7–13.2 g m{sup −2} d{sup −1}, with the largest emission rates per area coming from landfills with malfunctioning gas extraction systems installed, and the smallest emission rates from landfills closed decades ago and landfills with an engineered biocover installed. Landfills with gas collection and recovery systems had a recovery efficiency of 41–81%. Landfills where shredder waste was deposited showed significant methane emissions, with the largest emission from newly deposited shredder waste. The average methane emission from the landfills was 154 tons y{sup −1}. This average was obtained from a few measurement campaigns conducted at each of the 15 landfills and extrapolating to annual emissions requires more measurements. Assuming that these landfills are representative of the average Danish landfill, the total emission from Danish landfills were calculated at 20,600 tons y{sup −1}, which is significantly lower than the 33,300 tons y{sup −1} estimated for the national greenhouse gas inventory for

  14. Imprint of the merger and ring-down on the gravitational wave background from black hole binaries coalescence

    Science.gov (United States)

    Marassi, S.; Schneider, R.; Corvino, G.; Ferrari, V.; Portegies Zwart, S.

    2011-12-01

    We compute the gravitational wave background (GWB) generated by a cosmological population of black hole-black hole (BH-BH) binaries using hybrid waveforms recently produced by numerical simulations of (BH-BH) coalescence, which include the inspiral, merger, and ring-down contributions. A large sample of binary systems is simulated using the population synthesis code SeBa, and we extract fundamental statistical information on (BH-BH) physical parameters (primary and secondary BH masses, orbital separations and eccentricities, formation, and merger time scales). We then derive the binary birth and merger rates using the theoretical cosmic star formation history obtained from a numerical study which reproduces the available observational data at redshifts zrate of 0.85Mpc-3Myr-1. Third generation detectors, such as the Einstein Telescope (ET), could reveal the GWB from the inspiral phase predicted by any of the considered models. In addition, ET could sample the merger phase of the evolution at least for models which predict local merger rates between [0.053-0.85]Mpc-3Myr-1, which are more than a factor 2 lower than the upper limit inferred from the analysis of the LIGO S5 run [J. Abadie , Phys. Rev. DPRVDAQ1550-7998 83, 122005 (2011)10.1103/PhysRevD.83.122005]. The frequency dependence and amplitude of the GWB generated during the coalescence is very sensitive to the adopted core mass threshold for BH formation. This opens up the possibility to better understand the final stages of the evolution of massive stellar binaries using observational constraints on the associated gravitational wave emission.

  15. Low temperature plasma technology methods and applications

    CERN Document Server

    Chu, Paul K

    2013-01-01

    Written by a team of pioneering scientists from around the world, Low Temperature Plasma Technology: Methods and Applications brings together recent technological advances and research in the rapidly growing field of low temperature plasmas. The book provides a comprehensive overview of related phenomena such as plasma bullets, plasma penetration into biofilms, discharge-mode transition of atmospheric pressure plasmas, and self-organization of microdischarges. It describes relevant technology and diagnostics, including nanosecond pulsed discharge, cavity ringdown spectroscopy, and laser-induce

  16. Cavity Ring-Down Measurement of Aerosol Optical Properties During the Asian Dust Above Monterey Experiment and DOE Aerosol Intensive Operating Period

    Science.gov (United States)

    Ricci, K.; Strawa, A. W.; Provencal, R.; Castaneda, R.; Bucholtz, A.; Schmid, B.

    2004-01-01

    Large uncertainties in the effects of aerosols on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This paper describes preliminary results from Cadenza, a new continuous wave cavity ring-down (CW-CRD) instrument designed to address these uncertainties. Cadenza measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. In the past year Cadenza was deployed in the Asian Dust Above Monterey (ADAM) and DOE Aerosol Intensive Operating Period (IOP) field projects. During these flights Cadenza produced measurements of aerosol extinction in the range from 0.2 to 300/Mm with an estimated precision of 0.1/Mm for 1550 nm light and 0.2/Mm for 675 nm light. Cadenza data from the ADAM and Aerosol IOP missions compared favorably with data from the other instruments aboard the CIRPAS Twin Otter aircraft and participating in those projects. We present comparisons between the Cadenza measurements and those from a TSI nephelometer, Particle Soot Absorption Photometer (PSAP), and the AATS 14 sun-photometer. Measurements of the optical properties of smoke and dust plumes sampled during these campaigns are presented and estimates of heating rates due to these plumes are made.

  17. Sensitive Mid-IR Laser Sensor Development and Mass Spectrometric Measurements in Shock Tube and Flames

    KAUST Repository

    Alquaity, Awad

    2016-01-01

    CRDS technique was utilized to develop an ultra-fast, high sensitivity diagnostic to monitor trace concentrations of ethylene in shock tube pyrolysis experiments. This diagnostic represented the first ever successful application of CRDS technique

  18. Diesel vehicle and urban burning contributions to black carbon concentrations and size distributions in Tijuana, Mexico, during the Cal-Mex 2010 campaign

    Science.gov (United States)

    Takahama, S.; Russell, L. M.; Shores, C. A.; Marr, L. C.; Zheng, J.; Levy, M.; Zhang, R.; Castillo, E.; Rodriguez-Ventura, J. G.; Quintana, P. J. E.; Subramanian, R.; Zavala, M.; Molina, L. T.

    2014-05-01

    Black carbon (BC) was characterized by three complementary techniques - incandescence (single particle soot photometer, SP2, at Parque Morelos), light absorption (cavity ringdown spectrometer with integrating nephelometer, CRDS-Neph, at Parque Morelos and Aethalometers at seven locations), and volatility (volatility tandem differential mobility analyzer, V-TDMA) during the Cal-Mex 2010 campaign. SP2, CRDS-Neph, and Aethalometer measurements characterized the BC mass, and SP2 and V-TDMA measurements also quantified BC-containing particle number, from which mass-mean BC diameters were calculated. On average, the mass concentrations measured in Tijuana (1.8 ± 2.6 μg m-3 at Parque Morelos and 2.6 μg m-3 in other regions of Tijuana) were higher than in San Diego or the international border crossing (0.5 ± 0.6 μg m-3). The observed BC mass concentrations were attributable to nighttime urban burning activities and diesel vehicles, both from the local (Baja California) and transported (Southern California) diesel vehicle fleets. Comparisons of the SP2 and co-located Aethalometers indicated that the two methods measured similar variations in BC mass concentrations (correlation coefficients greater than 0.85), and the mass concentrations were similar for the BC particles identified from nighttime urban burning sources. When the BC source changed to diesel vehicle emissions, the SP2 mass concentrations were lower than the Aethalometer mass concentrations by about 50%, likely indicating a change in the mass absorption efficiency and quantification by the Aethalometers. At Parque Morelos there were up to three different-sized modes of BC mass in particles: one mode below 100 nm, one near 100 nm, and another between 200 and 300 nm. The mode between 200 and 300 nm was associated with urban burning activities that influenced the site during evening hours. When backtrajectories indicated that airmasses came from the south to the Parque Morelos site, BC mass in particles was

  19. Auger electron spectroscopy, ionization loss spectroscopy, appearance potential spectroscopy

    International Nuclear Information System (INIS)

    Riwan, R.

    1973-01-01

    The spectroscopy of surfaces using an incident electron beam is studied. The fundamental mechanisms are discussed together with the parameters involved in Auger emission: excitation of the atom, de-excitation by electron emission, and the migration of electrons towards the surface and their ejection. Some examples of applications are given (surface structures, metallurgy, chemical information). Two new techniques for analyzing surfaces are studied: ionization spectroscopy, and appearance potential spectroscopy [fr

  20. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  1. Electron spectroscopy

    International Nuclear Information System (INIS)

    Hegde, M.S.

    1979-01-01

    An introduction to the various techniques in electron spectroscopy is presented. These techniques include: (1) UV Photoelectron spectroscopy, (2) X-ray Photoelectron spectroscopy, (3) Auger electron spectroscopy, (4) Electron energy loss spectroscopy, (5) Penning ionization spectroscopy and (6) Ion neutralization spectroscopy. The radiations used in each technique, the basis of the technique and the special information obtained in structure determination in atoms and molecules by each technique are summarised. (A.K.)

  2. No influence of CO2 on stable isotope analyses of soil waters with off-axis integrated cavity output spectroscopy (OA-ICOS).

    Science.gov (United States)

    Sprenger, Matthias; Tetzlaff, Doerthe; Soulsby, Chris

    2017-03-15

    It was recently shown that the presence of CO 2 affects the stable isotope (δ 2 H and δ 18 O values) analysis of water vapor via Wavelength-Scanned Cavity Ring-Down Spectroscopy. Here, we test how much CO 2 is emitted from soil samples and if the CO 2 in the headspace influences the isotope analysis with the direct equilibration method by Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS). The headspace above different amounts of sparkling water was sampled, and its stable isotopic composition (δ 2 H and δ 18 O values) and CO 2 concentration were measured by direct equilibration and by gas chromatography, respectively. In addition, the headspace above soil samples was analyzed in the same way. Furthermore, the gravimetric water content and the loss on ignition were measured for the soil samples. The experiment with the sparkling water showed that CO 2 does not influence the stable isotope analysis by OA-ICOS. CO 2 was emitted from the soil samples and correlated with the isotopic fractionation signal, but no causal relationship between the two was determined. Instead, the fractionation signal in pore water isotopes can be explained by soil evaporation and the CO 2 can be related to soil moisture and organic matter which both enhance microbial activity. We found, despite the high CO 2 emissions from soil samples, no need for a post-correction of the pore water stable isotope analysis results, since there is no relation between CO 2 concentrations and the stable isotope results of vapor samples obtained with OA-ICOS. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd.

  3. Fugitive methane emissions from natural, urban, agricultural, and energy-production landscapes of eastern Australia

    Science.gov (United States)

    Kelly, Bryce F. J.; Iverach, Charlotte P.; Lowry, Dave; Fisher, Rebecca E.; France, James L.; Nisbet, Euan G.

    2015-04-01

    Modern cavity ringdown spectroscopy systems (CRDS) enable the continuous measurement of methane concentration. This allows for improved quantification of greenhouse gas emissions associated with various natural and human landscapes. We present a subset of over 4000 km of continuous methane surveying along the east coast of Australia, made using a Picarro G2301 CRDS, deployed in a utility vehicle with an air inlet above the roof at 2.2 mAGL. Measurements were made every 5 seconds to a precision of cut coal mines, unconventional gas developments (coal seam gas; CSG), and leaks detected in cities and country towns. In areas of dryland crops the median methane concentration was 1.78 ppm, while in the irrigation districts located on vertisol soils the concentration was as low as 1.76 ppm, which may indicate that these soils are a sink for methane. In the Hunter Valley, New South Wales, open-cut coal mining district we mapped a continuous 50 km interval where the concentration of methane exceeded 1.80 ppm. The median concentration in this interval was 2.02 ppm. Peak readings were beyond the range of the reliable measurement (in excess of 3.00 ppm). This extended plume is an amalgamation of plumes from 17 major pits 1 to 10 km in length. Adjacent to CSG developments in the Surat Basin, southeast Queensland, only small anomalies were detected near the well-heads. Throughout the vast majority of the gas fields the concentration of methane was below 1.80 ppm. The largest source of fugitive methane associated with CSG was off-gassing methane from the co-produced water holding ponds. At one location the down wind plume had a cross section of approximately 1 km where the concentration of methane was above 1.80 ppm. The median concentration within this section was 1.82 ppm, with a peak reading of 2.11 ppm. The ambient air methane concentration was always higher in urban environments compared to the surrounding countryside. Along one major road in Sydney we mapped an interval

  4. A measurement system for continuous observations of CO2, CH4, H2O and CO onboard passenger aircraft

    Science.gov (United States)

    Gerbig, Christoph; Filges, Annette; Franke, Harald; Klaus, Christoph; Chen, Huilin

    2013-04-01

    Improved quantification and understanding of surface-atmosphere exchange fluxes of greenhouse gases (GHGs) caused by natural as well as anthropogenic processes is of paramount importance in a world of a changing climate and ever increasing emissions. Top-down estimation of GHG fluxes is traditionally done by inverse transport modeling, using GHG observations from a global network of stations. Uncertainties in modeled vertical transport rates (moist convection, turbulent mixing, stratosphere-troposphere exchange) however greatly affect the quality of flux estimates. More recently, remote sensing of vertical column mole fractions of GHGs have become available for inverse modeling, reducing the impact of vertical transport uncertainties to first order. However, those need validation against in-situ observations. A strategy for regular, global in-situ atmospheric profiling of GHGs, covering at least the troposphere, is thus needed to provide validation of remote sensing and of forward transport modeling of GHGs, to serve as input for inverse modeling, and to reduce the impact of transport uncertainties. IAGOS-ERI (In-service Aircraft for a Global Observing System - European Research Infrastructure) exploits the synergy between globally operating civil aviation and the need for long-term monitoring of atmospheric composition. Within the framework of IAGOS-ERI a cavity ring-down spectroscopy (CRDS) based measurement system for greenhouse gases was designed, tested, and qualified for deployment on commercial airliners. The design meets requirements regarding physical dimensions (size, weight), performance (long-term stability, low maintenance, robustness, full automation) and safety issues (fire prevention regulations, airworthiness). The system uses components of a commercially available CRDS instrument (G2401-m, Picarro Inc.) mounted into a frame suitable for integration in the avionics bay of the Airbus A-340. The first of the IAGOS GHG packages is scheduled for

  5. Techniques for the measurement of trace moisture in high-purity electronic specialty gases

    International Nuclear Information System (INIS)

    Funke, Hans H.; Grissom, Brad L.; McGrew, Clark E.; Raynor, Mark W.

    2003-01-01

    The control of water vapor (moisture) contamination in process gases is critical to the successful manufacture of semiconductor devices. As specified moisture levels have become more stringent, there is a growing demand for more sensitive analytical methods. Instrumental methods currently being used or in development for measuring trace moisture at ppbv levels include Fourier transform infrared spectroscopy, tunable diode laser absorption spectroscopy, cavity ringdown spectroscopy, intracavity laser spectroscopy, electron impact ionization mass spectrometry, and atmospheric pressure ionization mass spectrometry. In addition, sensor-based technologies such as oscillating quartz crystal microbalances, and chilled mirror-, capacitor-, and electrolytic-based hygrometers operate in this regime. These approaches are presented and reviewed. As the success of each trace moisture method is dependent on the degree to which the different process gases interfere with the measurement process, important process gas applications of the techniques are highlighted. Advantages and disadvantages as well as future developments and trends are also presented

  6. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  7. A complete parameterisation of the relative humidity and wavelength dependence of the refractive index of hygroscopic inorganic aerosol particles

    Directory of Open Access Journals (Sweden)

    M. I. Cotterell

    2017-08-01

    Full Text Available Calculations of aerosol radiative forcing require knowledge of wavelength-dependent aerosol optical properties, such as single-scattering albedo. These aerosol optical properties can be calculated using Mie theory from knowledge of the key microphysical properties of particle size and refractive index, assuming that atmospheric particles are well-approximated to be spherical and homogeneous. We provide refractive index determinations for aqueous aerosol particles containing the key atmospherically relevant inorganic solutes of NaCl, NaNO3, (NH42SO4, NH4HSO4 and Na2SO4, reporting the refractive index variation with both wavelength (400–650 nm and relative humidity (from 100 % to the efflorescence value of the salt. The accurate and precise retrieval of refractive index is performed using single-particle cavity ring-down spectroscopy. This approach involves probing a single aerosol particle confined in a Bessel laser beam optical trap through a combination of extinction measurements using cavity ring-down spectroscopy and elastic light-scattering measurements. Further, we assess the accuracy of these refractive index measurements, comparing our data with previously reported data sets from different measurement techniques but at a single wavelength. Finally, we provide a Cauchy dispersion model that parameterises refractive index measurements in terms of both wavelength and relative humidity. Our parameterisations should provide useful information to researchers requiring an accurate and comprehensive treatment of the wavelength and relative humidity dependence of refractive index for the inorganic component of atmospheric aerosol.

  8. The Optical Properties of Limonene Secondary Organic Aerosols: The Role of NO3, OH, and O3 in the Oxidation Processes

    Science.gov (United States)

    Peng, Chao; Wang, Weigang; Li, Kun; Li, Junling; Zhou, Li; Wang, Lingshu; Ge, Maofa

    2018-03-01

    Limonene, a typical proxy of monoterpenes emitted from biogenic sources, plays an important role in secondary organic aerosol (SOA) formation. However, the optical properties of SOA generated from limonene under various oxidation pathways remain poorly understood. In this study, we investigate the refractive index (RI) of limonene SOA produced from four oxidation conditions with cavity ring-down spectrometer (CRDS) and photoacoustic extinctiometer operated at 532 and 375 nm. Our results show that there is a significant difference in RI values of SOA produced from NO3 oxidation compared to other oxidation pathways. The mean values of RI of SOA produced from NO3 oxidation, NOx oxidation, OH oxidation with NOx-free, and O3 oxidation experiments are 1.578, 1.469, 1.495, and 1.494 at 532 nm; and 1.591, 1.527, 1.513, and 1.537 at 375 nm, respectively, while no detectable absorption is found in all oxidation conditions. We attribute the high RI values of SOA by NO3 oxidation to two factors: a large proportion of organic nitrates and high-molecular-weight dimers/oligomers in the SOA. Our study results indicate that the nighttime chemistry may significantly influence the optical properties of limonene oxidation products. The RI values of limonene SOA generated under various oxidation conditions at different wavelengths retrieved in our laboratory experiments could help improve the model predictions for evaluating the effect of biogenic SOA on the global radiative forcing as well as climate change.

  9. Terahertz spectroscopy

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    2009-01-01

    In this presentation I will review methods for spectroscopy in the THz range, with special emphasis on the practical implementation of the technique known ad THz time-domain spectroscopy (THz-TDS). THz-TDS has revived the old field of far-infrared spectroscopy, and enabled a wealth of new...... activities that promise commercial potential for spectroscopic applications in the THz range. This will be illustrated with examples of spectroscopy of liquids inside their bottles as well as sensitive, quantitative spectroscopy in waveguides....

  10. Assessment of CO2 discharge in a spring using time-variant stable carbon isotope data as a natural analogue study of CO2 leakage

    Science.gov (United States)

    Yu, Soonyoung; Chae, Gitak; Jo, Minki; Kim, Jeong-Chan; Yun, Seong-Taek

    2015-04-01

    CO2-rich springs have been studied as a natural analogue of CO2 leakage through shallow subsurface environment, as they provide information on the behaviors of CO2 during the leakage from geologic CO2 storage sites. For this study, we monitored the δ13C values as well as temperature, pH, EC, DO, and alkalinity for a CO2-rich spring for 48 hours. The water samples (N=47) were collected every hour in stopper bottles without headspace to avoid the interaction with air and the CO2 degassing. The δ13C values of total dissolved inorganic carbon (TDIC) in the water samples were analyzed using a cavity ring-down spectroscopy (CRDS) system (Picarro). The values of δ13CTDIC, temperature, pH, EC, DO, and alkalinity were in the range of -9.43 ~ -8.91 o 12.3 ~ 13.2oC, 4.86 ~ 5.02, 186 ~ 189 μS/cm, 1.8 ~ 3.4 mg/L, and 0.74 ~ 0.95 meq/L, respectively. The concentrations of TDIC calculated using pH and alkalinity values were between 22.5 and 34.8 mmol/L. The δ13CTDIC data imply that dissolved carbon in the spring was derived from a deep-seated source (i.e., magmatic) that was slightly intermixed with soil CO2. Careful examination of the time-series variation of measured parameters shows the following characteristics: 1) the δ13CTDIC values are negatively correlated with pH (r = -0.59) and positively correlated with TDIC (r = 0.58), and 2) delay times of the change of pH and alkalinity following the change of δ13CTDIC values are 0 and -3 hours, respectively; the pH change occurs simultaneously with the change of δ13CTDIC, while the alkalinity change happens before 3 hours. Our results indicate that the studied CO2-rich spring is influenced by the intermittent supply of deep-seated CO2. [Acknowledgment] This work was financially supported by the fundamental research project of KIGAM and partially by the "Geo-Advanced Innovative Action (GAIA) Project (2014000530003)" from Korea Ministry of Environment (MOE).

  11. Si-Traceable Scale for Measurements of Radiocarbon Concentration

    Science.gov (United States)

    Hodges, Joseph T.; Fleisher, Adam J.; Liu, Qingnan; Long, David A.

    2017-06-01

    Radiocarbon (^{14}C) dating of organic materials is based on measuring the ^{14}C/^{12}C atomic fraction relative to the nascent value that existed when the material was formed by photosynthetic conversion of carbon dioxide present in the atmosphere. This field of measurement has numerous applications including source apportionment of anthropogenic and biogenic fuels and combustion emissions, carbon cycle dynamics, archaeology, and forensics. Accelerator mass spectrometry (AMS) is the most widely used method for radiocarbon detection because it can measure extremely small amounts of radiocarbon (background of nominally 1.2 parts-per-trillion) with high relative precision (0.4 %). AMS measurements of radiocarbon are typically calibrated by reference to standard oxalic-acid (C_2H_2O_4) samples of known radiocativity that are derived from plant matter. Specifically, the internationally accepted absolute dating reference for so-called "modern-equivalent" radiocarbon is 95 % of the specific radioactivity in AD 1950 of the National Bureau of Standards (NBS) oxalic acid standard reference material and normalized to δ^{13}C_{VPDB} = 19 per mil. With this definition, a "modern-equivalent" corresponds to 1.176(70) parts-per-trillion of ^{14}C relative to total carbon content. As an alternative radiocarbon scale, we propose an SI-traceable method to determine ^{14}C absolute concentration which is based on linear Beer-Lambert-law absorption measurements of selected ^{14}C^{16}O_2 ν_3-band line areas. This approach is attractive because line intensities of chosen radiocarbon dioxide transitions can be determined by ab initio calculations with relative uncertainties below 0.5 %. This assumption is justified by the excellent agreement between theoretical values of line intensities and measurements for stable isotopologues of CO_2. In the case of cavity ring-down spectroscopy (CRDS) measurements of ^{14}C^{16}O_2 peak areas, we show that absolute, SI-traceable concentrations of

  12. Light scattering and extinction measurements combined with laser-induced incandescence for the real-time determination of soot mass absorption cross section.

    Science.gov (United States)

    Wei, Yiyi; Ma, Lulu; Cao, Tingting; Zhang, Qing; Wu, Jun; Buseck, Peter R; Thompson, J E

    2013-10-01

    An aerosol albedometer was combined with laser-induced incandescence (LII) to achieve simultaneous measurements of aerosol scattering, extinction coefficient, and soot mass concentration. Frequency doubling of a Nd:YAG laser line resulted in a colinear beam of both λ = 532 and 1064 nm. The green beam was used to perform cavity ring-down spectroscopy (CRDS), with simultaneous measurements of scattering coefficient made through use of a reciprocal sphere nephelometer. The 1064 nm beam was selected and directed into a second integrating sphere and used for LII of light-absorbing kerosene lamp soot. Thermal denuder experiments showed the LII signals were not affected by the particle mixing state when laser peak power was 1.5-2.5 MW. The combined measurements of optical properties and soot mass concentration allowed determination of mass absorption cross section (M.A.C., m(2)/g) with 1 min time resolution when soot concentrations were in the low microgram per cubic meter range. Fresh kerosene nanosphere soot (ns-soot) exhibited a mean M.A.C and standard deviation of 9.3 ± 2.7 m(2)/g while limited measurements on dry ambient aerosol yielded an average of 8.2 ± 5.9 m(2)/g when soot was >0.25 μg/m(3). The method also detected increases in M.A.C. values associated with enhanced light absorption when polydisperse, laboratory-generated ns-soot particles were embedded within or coated with ammonium nitrate, ammonium sulfate, and glycerol. Glycerol coatings produced the largest fractional increase in M.A.C. (1.41-fold increase), while solid coatings of ammonium sulfate and ammonium nitrate produced increases of 1.10 and 1.06, respectively. Fresh, ns-soot did not exhibit increased M.A.C. at high relative humidity (RH); however, lab-generated soot coated with ammonium nitrate and held at 85% RH exhibited M.A.C. values nearly double the low-humidity case. The hybrid instrument for simultaneously tracking soot mass concentration and aerosol optical properties in real time is a

  13. Accurate Laser Measurements of the Water Vapor Self-Continuum Absorption in Four Near Infrared Atmospheric Windows. a Test of the MT_CKD Model.

    Science.gov (United States)

    Campargue, Alain; Kassi, Samir; Mondelain, Didier; Romanini, Daniele; Lechevallier, Loïc; Vasilchenko, Semyon

    2017-06-01

    The semi empirical MT_CKD model of the absorption continuum of water vapor is widely used in atmospheric radiative transfer codes of the atmosphere of Earth and exoplanets but lacks of experimental validation in the atmospheric windows. Recent laboratory measurements by Fourier transform Spectroscopy have led to self-continuum cross-sections much larger than the MT_CKD values in the near infrared transparency windows. In the present work, we report on accurate water vapor absorption continuum measurements by Cavity Ring Down Spectroscopy (CRDS) and Optical-Feedback-Cavity Enhanced Laser Spectroscopy (OF-CEAS) at selected spectral points of the transparency windows centered around 4.0, 2.1 and 1.25 μm. The temperature dependence of the absorption continuum at 4.38 μm and 3.32 μm is measured in the 23-39 °C range. The self-continuum water vapor absorption is derived either from the baseline variation of spectra recorded for a series of pressure values over a small spectral interval or from baseline monitoring at fixed laser frequency, during pressure ramps. In order to avoid possible bias approaching the water saturation pressure, the maximum pressure value was limited to about 16 Torr, corresponding to a 75% humidity rate. After subtraction of the local water monomer lines contribution, self-continuum cross-sections, C_{S}, were determined with a few % accuracy from the pressure squared dependence of the spectra base line level. Together with our previous CRDS and OF-CEAS measurements in the 2.1 and 1.6 μm windows, the derived water vapor self-continuum provides a unique set of water vapor self-continuum cross-sections for a test of the MT_CKD model in four transparency windows. Although showing some important deviations of the absolute values (up to a factor of 4 at the center of the 2.1 μm window), our accurate measurements validate the overall frequency dependence of the MT_CKD2.8 model.

  14. Gamma Spectroscopy

    NARCIS (Netherlands)

    Niemantsverdriet, J.W.; Butz, Tilman; Ertl, G.; Knözinger, H.; Schüth, F.

    2008-01-01

    No abstract. The sections in this article are 1 Introduction 2 Mössbauer Spectroscopy 3 Time-Differential Perturbed Angular Correlations (TDPAC) 4 Conclusions and Outlook Keywords: Mössbauer spectroscopy; gamma spectroscopy; perturbed angular correlation; TDPAC

  15. Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source

    Science.gov (United States)

    Chandler, David W; Strecker, Kevin E

    2014-04-01

    In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

  16. Measurement of Aerosol Optical Properties by Integrating Cavity Ring-Down Spectroscopy and Nephelometry

    Science.gov (United States)

    2013-01-01

    Getachew Tedela North Carolina A&T State University 1601 East Market Street Greensboro, NC 27411 -3209 REPORT DOCUMENTATION PAGE b. ABSTRACT UU c. THIS...2.1013 3.273 )( P TSTPgasKgasK  (18) Where, the standard temperature and pressure ( STP ) are 273.2 k and 1013.2 mb

  17. Clinical results from low-level laser therapy in patients with autosomal dominant cone-rod dystrophy

    Science.gov (United States)

    Koev, K.; Avramov, L.; Borissova, E.

    2018-03-01

    The objective of this study is to examine long-term effects of low-level laser therapy (LLLT) in patients with autosomal dominant cone-rod dystrophy (CRDs). A He-Ne Laser with continuous emission at 633 nm (01 mW/cm2) was used on five patients with autosomal dominant pedigree of Romani origin with non-syndromic CRDs. The laser radiation was applied transpupillary to the macula six times for three minutes every other day. The experiment was conducted for a period of three years. The clinical evaluation included best corrected visual acuity determination, funduscopy, Humphrey perimetry, Farnsworth Hue-28 color testing, fluorescein angiography, and full-field electroretinogram (ERG). All affected individuals presented reduced visual acuity (0.01 – 0.4) and photophobia. The funduscopic examination and fluorescein angiography revealed advanced changes including bone spicule-like pigment deposits in the midperiphery and the macular area, along with retinal atrophy, narrowing of the vessels, and waxy optic discs. The visual fields demonstrated central scotoma. The electrophysiologic examination of the patients detected an abnormal cone-rod ERG (20 – 30 μV) with photopic amplitudes more markedly reduced than the scotopic. Flicker responses were missing and Farnsworth Hue-28 test found protanopia. There was a statistically significant increase in the visual acuity (p<0.001, end of study versus baseline) for CRDs patients for the period of three years after the treatment with LLLT. Following the LLLT, the central absolute scotoma in CRDs was reduced, as was the prevalence of metamorphopsia in CRDs. This study shows that LLLT may prove be a novel long-lasting therapeutic option for both forms of CRDs. It is a highly effective treatment resulting in a long-term improvement of the visual acuity.

  18. Sub-Doppler spectroscopy

    International Nuclear Information System (INIS)

    Hansch, T.W.

    1983-01-01

    This chapter examines Doppler-free saturation spectroscopy, tunable cw sources, and Doppler-free two-photon spectroscopy. Discusses saturation spectroscopy; continuous wave saturation spectroscopy in the ultraviolet; and two-photon spectroscopy of atomic hydrogen 1S-2S. Focuses on Doppler-free laser spectroscopy of gaseous samples. Explains that in saturation spectroscopy, a monochromatic laser beam ''labels'' a group of atoms within a narrow range of axial velocities through excitation or optical pumping, and a Doppler-free spectrum of these selected atoms is observed with a second, counterpropagating beam. Notes that in two-photon spectroscopy it is possible to record Doppler-free spectra without any need for velocity selection by excitation with two counterpropagating laser beams whose first order Doppler shifts cancel

  19. EASY: a simple tool for simultaneously removing background, deadtime and acoustic ringing in quantitative NMR spectroscopy--part I: basic principle and applications.

    Science.gov (United States)

    Jaeger, Christian; Hemmann, Felix

    2014-01-01

    Elimination of Artifacts in NMR SpectroscopY (EASY) is a simple but very effective tool to remove simultaneously any real NMR probe background signal, any spectral distortions due to deadtime ringdown effects and -specifically- severe acoustic ringing artifacts in NMR spectra of low-gamma nuclei. EASY enables and maintains quantitative NMR (qNMR) as only a single pulse (preferably 90°) is used for data acquisition. After the acquisition of the first scan (it contains the wanted NMR signal and the background/deadtime/ringing artifacts) the same experiment is repeated immediately afterwards before the T1 waiting delay. This second scan contains only the background/deadtime/ringing parts. Hence, the simple difference of both yields clean NMR line shapes free of artefacts. In this Part I various examples for complete (1)H, (11)B, (13)C, (19)F probe background removal due to construction parts of the NMR probes are presented. Furthermore, (25)Mg EASY of Mg(OH)2 is presented and this example shows how extremely strong acoustic ringing can be suppressed (more than a factor of 200) such that phase and baseline correction for spectra acquired with a single pulse is no longer a problem. EASY is also a step towards deadtime-free data acquisition as these effects are also canceled completely. EASY can be combined with any other NMR experiment, including 2D NMR, if baseline distortions are a big problem. © 2013 Published by Elsevier Inc.

  20. Molecular spectroscopy

    International Nuclear Information System (INIS)

    Kokh, Eh.; Zonntag, B.

    1981-01-01

    The latest investigation results on molecular spectroscopy with application of synchrotron radiation in the region of vacuum ultraviolet are generalized. Some results on investigation of excited, superexcited and ionized molecule states with the use of adsorption spectroscopy, photoelectron spectroscopy, by fluorescent and mass-spectrometric methods are considered [ru

  1. Vibrational spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Rajai Atalla

    2010-01-01

    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  2. Frequency metrology of the acetylene lines near 789 nm from lamb-dip measurements

    Science.gov (United States)

    Tao, Lei-Gang; Hua, Tian-Peng; Sun, Yu R.; Wang, Jin; Liu, An-Wen; Hu, Shui-Ming

    2018-05-01

    Lamb-dips of the ro-vibrational lines of 12C2H2 near 789 nm were recorded using cavity ring-down saturation spectroscopy. Calibrated by an optical frequency comb, frequencies of 45 acetylene lines were determined with an accuracy of 1.1 ×10-7 cm-1 (δν / ν = 8 ×10-12), which is over two orders of magnitude more accurate than previous Doppler-limited studies. An averaged shift of about 0.01 cm-1 were found by comparing the upper energies obtained in this work to those recently presented by Chubb et al. from a MARVEL analysis.

  3. Optical extinction of size-controlled aerosols generated from squid chromatophore pigments

    Directory of Open Access Journals (Sweden)

    Sean R. Dinneen

    2017-10-01

    Full Text Available Nanophotonic granules populate the interior of cephalopod chromatophores, contributing to their visible color by selectively absorbing and scattering light. Inspired by the performance of these granules, we fabricated nanostructured aerosols by nebulizing a pigment solution extracted from native squid chromatophores. We determined their optical extinction using cavity ring-down spectroscopy and show how extinction cross section is dependent on both particle concentration and size. This work not only advances the fundamental knowledge of the optical properties of chromatophore pigments but also serves as a proof-of-concept method that can be adapted to develop coatings derived from these pigmentary aerosols.

  4. Atom spectroscopy

    International Nuclear Information System (INIS)

    Kodling, K.

    1981-01-01

    Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru

  5. Locally Grown, Natural Ingredients? The Isotope Ratio Can Reveal a Lot!

    Science.gov (United States)

    Rossier, Joël S; Maury, Valérie; Pfammatter, Elmar

    2016-01-01

    This communication gives an overview of selected isotope analyses applied to food authenticity assessment. Different isotope ratio detection technologies such as isotope ratio mass spectrometry (IRMS) and cavity ring down spectroscopy (CRDS) are briefly described. It will be explained how δ(18)O of water contained in fruits and vegetables can be used to assess their country of production. It will be explained why asparagus grown in Valais, in the centre of the Alps carries much less heavy water than asparagus grown closer to the sea coast. On the other hand, the use of δ(13)C can reveal whether a product is natural or adulterated. Applications including honey or sparkling wine adulteration detection will be briefly presented.

  6. Analytical applications of spectroscopy

    International Nuclear Information System (INIS)

    Creaser, C.S.

    1988-01-01

    This book provides an up to date overview of recent developments in analytical spectroscopy, with a particular emphasis on the common themes of chromatography - spectroscopy combinations, Fourier transform methods, and data handling techniques, which have played an increasingly important part in the development of all spectroscopic techniques. The book contains papers originally presented at a conference entitled 'Spectroscopy Across The Spectrum' held jointly with the first 'International Near Infrared Spectroscopy Conference' at the University of East Anglia, Norwich, UK, in July 1987, which have been edited and rearranged with some additional material. Each section includes reviews of key areas of current research as well as short reports of new developments. The fields covered are: Near Infrared Spectroscopy; Infrared Spectroscopy; Mass Spectroscopy; NMR Spectroscopy; Atomic and UV/Visible Spectroscopy; Chemometrics and Data Analysis. (author)

  7. Methane emission estimates using chamber and tracer release experiments for a municipal waste water treatment plant

    Science.gov (United States)

    Yver Kwok, C. E.; Müller, D.; Caldow, C.; Lebègue, B.; Mønster, J. G.; Rella, C. W.; Scheutz, C.; Schmidt, M.; Ramonet, M.; Warneke, T.; Broquet, G.; Ciais, P.

    2015-07-01

    This study presents two methods for estimating methane emissions from a waste water treatment plant (WWTP) along with results from a measurement campaign at a WWTP in Valence, France. These methods, chamber measurements and tracer release, rely on Fourier transform infrared spectroscopy and cavity ring-down spectroscopy instruments. We show that the tracer release method is suitable for quantifying facility- and some process-scale emissions, while the chamber measurements provide insight into individual process emissions. Uncertainties for the two methods are described and discussed. Applying the methods to CH4 emissions of the WWTP, we confirm that the open basins are not a major source of CH4 on the WWTP (about 10 % of the total emissions), but that the pretreatment and sludge treatment are the main emitters. Overall, the waste water treatment plant is representative of an average French WWTP.

  8. Formation and Evolution of Interstellar Dust - Bridging Astronomy and Laboratory Astrophysics.

    Science.gov (United States)

    Contreras, Cesar; Ricketts, C. L.; Salama, F.

    2010-05-01

    The study of the formation and the destruction processes of cosmic dust are essential to understand and to quantify the budget of extraterrestrial organic molecules. PAHs are important chemical building blocks of interstellar (IS) dust. They are detected in Interplanetary dust particles (IDPs) and in meteoritic samples. Additionally, observational, laboratory, and theoretical studies have shown that PAHs, in their neutral and ionized forms, are an important, ubiquitous component of the interstellar medium. Carbonaceous materials extracts from mixtures of hydrocarbons (C2H2, C2H4, and benzene) contain a high variety of polycyclic aromatic hydrocarbons (PAHs). (From Jager et al. Carbon 45 (2007) 2981-2994). Studies of large molecular and nano-sized interstellar dust analogs formed from PAH precursors have been performed in our laboratory under conditions that simulate interstellar and circumstellar environments. The species (molecules, molecular fragments, ions, nanoparticles, etc...) formed in the pulsed discharge nozzle (PDN) plasma source are detected and characterized with a high-sensitivity cavity ringdown spectrometer (CRDS) coupled to a Reflectron time-of-flight mass spectrometer (ReTOF-MS), thus providing both spectroscopic and ion mass information in-situ. We will present new experimental results that indicate that nanoparticles are generated in the plasma. From these unique measurements, we derive information on the nature, the size and the structure of interstellar dust particles, the growth and the destruction processes of IS dust and the resulting budget of extraterrestrial organic molecules. Acknowledgments: This research is supported by NASA APRA (Laboratory Astrophysics Program). C. S. C. & C. L. R. acknowledge the support of the NASA Postdoctoral Program.

  9. Method to make accurate concentration and isotopic measurements for small gas samples

    Science.gov (United States)

    Palmer, M. R.; Wahl, E.; Cunningham, K. L.

    2013-12-01

    Carbon isotopic ratio measurements of CO2 and CH4 provide valuable insight into carbon cycle processes. However, many of these studies, like soil gas, soil flux, and water head space experiments, provide very small gas sample volumes, too small for direct measurement by current constant-flow Cavity Ring-Down (CRDS) isotopic analyzers. Previously, we addressed this issue by developing a sample introduction module which enabled the isotopic ratio measurement of 40ml samples or smaller. However, the system, called the Small Sample Isotope Module (SSIM), does dilute the sample during the delivery with inert carrier gas which causes a ~5% reduction in concentration. The isotopic ratio measurements are not affected by this small dilution, but researchers are naturally interested accurate concentration measurements. We present the accuracy and precision of a new method of using this delivery module which we call 'double injection.' Two portions of the 40ml of the sample (20ml each) are introduced to the analyzer, the first injection of which flushes out the diluting gas and the second injection is measured. The accuracy of this new method is demonstrated by comparing the concentration and isotopic ratio measurements for a gas sampled directly and that same gas measured through the SSIM. The data show that the CO2 concentration measurements were the same within instrument precision. The isotopic ratio precision (1σ) of repeated measurements was 0.16 permil for CO2 and 1.15 permil for CH4 at ambient concentrations. This new method provides a significant enhancement in the information provided by small samples.

  10. Admittance spectroscopy or deep level transient spectroscopy: A contrasting juxtaposition

    Science.gov (United States)

    Bollmann, Joachim; Venter, Andre

    2018-04-01

    A comprehensive understanding of defects in semiconductors remains of primary importance. In this paper the effectiveness of two of the most commonly used semiconductor defect spectroscopy techniques, viz. deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) are reviewed. The analysis of defects present in commercially available SiC diodes shows that admittance spectroscopy allows the identification of deep traps with reduced measurement effort compared to deep Level Transient Spectroscopy (DLTS). Besides the N-donor, well-studied intrinsic defects were detected in these diodes. Determination of their activation energy and defect density, using the two techniques, confirm that the sensitivity of AS is comparable to that of DLTS while, due to its well defined peak shape, the spectroscopic resolution is superior. Additionally, admittance spectroscopy can analyze faster emission processes which make the study of shallow defects more practical and even that of shallow dopant levels, possible. A comparative summary for the relevant spectroscopic features of the two capacitance methods are presented.

  11. Basic molecular spectroscopy

    CERN Document Server

    Gorry, PA

    1985-01-01

    BASIC Molecular Spectroscopy discusses the utilization of the Beginner's All-purpose Symbolic Instruction Code (BASIC) programming language in molecular spectroscopy. The book is comprised of five chapters that provide an introduction to molecular spectroscopy through programs written in BASIC. The coverage of the text includes rotational spectra, vibrational spectra, and Raman and electronic spectra. The book will be of great use to students who are currently taking a course in molecular spectroscopy.

  12. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang

    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femto-second lasers) and parametric oscillators, coherent matter waves, Doppler-free Fourier spectroscopy with optical frequency combs, interference spectroscopy, quantum optics, the interferometric detection of gravitational waves and still more applications in chemical analysis, medical diagnostics, and engineering.

  13. Minicollagen-15, a novel minicollagen isolated from Hydra, forms tubule structures in nematocysts.

    Science.gov (United States)

    Adamczyk, Patrizia; Meier, Sebastian; Gross, Thomas; Hobmayer, Bert; Grzesiek, Stephan; Bächinger, Hans Peter; Holstein, Thomas W; Ozbek, Suat

    2008-02-29

    Minicollagens constitute a family of unusually short collagen molecules isolated from cnidarians. They are restricted to the nematocyst, a cylindrical explosive organelle serving in defense and capture of prey. The nematocyst capsule contains a long tubule inside of its matrix, which is expelled and everted during an ultrafast discharge process. Here, we report the cloning and characterization of a novel minicollagen in Hydra, designated minicollagen-15 (NCol-15). NCol-15, like NCol-3 and NCol-4, shows deviations from the canonical cysteine pattern in its terminal cysteine-rich domains (CRDs). Minicollagens share common domain architectures with a central collagen sequence flanked by polyproline stretches and short N- and C-terminal CRDs. The CRDs are involved in the formation of a highly resistant cysteine network, which constitutes the basic structure of the nematocyst capsule. Unlike NCol-1, which is part of the capsule wall, NCol-15 is localized to tubules, arguing for a functional differentiation of minicollagens within the nematocyst architecture. NMR analysis of the altered C-terminal CRD of NCol-15 showed a novel disulfide-linked structure within the cysteine-containing region exhibiting similar folding kinetics and stability as the canonical CRDs. Our data provide evidence for evolutionary diversification among minicollagens, which probably facilitated alterations in the morphology of the nematocyst wall and tubule.

  14. Photoelectron spectroscopy an introduction to ultraviolet photoelectron spectroscopy in the gas phase

    CERN Document Server

    Eland, J H D

    2013-01-01

    Photoelectron Spectroscopy: An Introduction to Ultraviolet Photoelectronspectroscopy in the Gas Phase, Second Edition Photoelectron Spectroscopy: An Introduction to Ultraviolet PhotoelectronSpectroscopy in the Gas Phase, Second Edition aims to give practical approach on the subject of photoelectron spectroscopy, as well as provide knowledge on the interpretation of the photoelectron spectrum. The book covers topics such as the principles and literature of photoelectron microscopy; the main features and analysis of photoelectron spectra; ionization techniques; and energies from the photoelectron spectra. Also covered in the book are topics suc as photoelectron band structure and the applications of photoelectron spectroscopy in chemistry. The text is recommended for students and practitioners of chemistry who would like to be familiarized with the concepts of photoelectron spectroscopy and its importance in the field.

  15. Spectroscopy for Dummies

    DEFF Research Database (Denmark)

    Lindvold, Lars René

    This presentation will give short introduction to the most pertinent topics of optical spectroscopy. The following topics will be discussed: • The origin of spectra in UV, VIS and IR spectral range • Spectroscopic methods like absorption, luminescence and Raman • Wavelength dispersive optical...... components • Materials for use optical spectroscopy • Spectrometer geometries • Detectors for use in spectrometer • Practical examples of optical spectroscopy The objective of this presentation is to give the audience a good feel for the range of possibilities that optical spectroscopy can provide....

  16. Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Gonser, U.

    1975-01-01

    This book is addressed to persons interested in learning about what has been done and what can be done with Moessbauer spectroscopy. In an introductory chapter the basic principle is explained and the general parameters governing Moessbauer spectroscopy are tabulated. For the following chapters various disciplines are chosen and the wide applicability of this measuring technique is demonstrated. The second chapter discusses a few representative examples of chemical interesting information being reflected by isomer shifts and quadrupole splittings, particularly with respect to bonding and structural properties. The third chapter deals with some applications of Moessbauer spectroscopy for characterizing magnetic compounds and its use for magnetic structure investigations, particularly by making use of polarized radiation. The fourth chapter describes the use of the Moessbauer spectroscopy for studying iron in biological molecules. As an example of recent applications to mineralogy and geology the results of the studies of lunar samples are reviewed in the fifth chapter. Finally, in the last chapter, work is described on the use of Moessbauer spectroscopy in physical metallurgy, particularly quantitative analyses which have enabled metallurgists to solve many old problems. (orig./FW) [de

  17. Progress in atomic spectroscopy

    International Nuclear Information System (INIS)

    Beyer, H.J.; Kleinpoppen, H.

    1984-01-01

    This book presents reviews by leading experts in the field covering areas of research at the forefront of atomic spectroscopy. Topics considered include the k ordering of atomic structure, multiconfiguration Hartree-Fock calculations for complex atoms, new methods in high-resolution laser spectroscopy, resonance ionization spectroscopy (inert atom detection), trapped ion spectroscopy, high-magnetic-field atomic physics, the effects of magnetic and electric fields on highly excited atoms, x rays from superheavy collision systems, recoil ion spectroscopy with heavy ions, investigations of superheavy quasi-atoms via spectroscopy of electron rays and positrons, impact ionization by fast projectiles, and amplitudes and state parameters from ion- and atom-atom excitation processes

  18. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  19. Synchrotron radiation spectroscopy including X-ray absorption spectroscopy and industrial applications

    International Nuclear Information System (INIS)

    Oshima, Masaharu

    2016-01-01

    Recent trends of synchrotron radiation spectroscopy, especially X-ray absorption spectroscopy for industrial applications are introduced based on our latest results for energy efficient devices such as magnetic RAM, LSI and organic FET, power generation devices such as fuel cells, and energy storage devices such as Li ion batteries. Furthermore, future prospects of spectroscopy with higher energy resolution, higher spatial resolution, higher temporal resolution and operando spectroscopy taking advantage of much brighter synchrotron radiation beam at low emittance SR rings are discussed from the view point of practical applications. (author)

  20. New Hadronic Spectroscopy

    International Nuclear Information System (INIS)

    Faccini, R.

    2010-01-01

    In the past few years the field of hadron spectroscopy has seen renewed interest due to the publication, initially mostly from B-Factories, of evidences of states that do not match regular spectroscopy, but are rather candidates for bound states with additional quarks or gluons (four quarks for tetraquarks and molecules and two quarks and gluons for hybrids). A huge effort in understanding the nature of this new states and in building a new spectroscopy is ongoing. This paper reviews the experimental and theoretical state of the art on heavy quarkonium exotic spectroscopy, with particular attention on the steps towards a global picture.

  1. Reaction-diffusion modeling of hydrogen in beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Wensing, Mirko; Matveev, Dmitry; Linsmeier, Christian [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik (Germany)

    2016-07-01

    Beryllium will be used as first-wall material for the future fusion reactor ITER as well as in the breeding blanket of DEMO. In both cases it is important to understand the mechanisms of hydrogen retention in beryllium. In earlier experiments with beryllium low-energy binding states of hydrogen were observed by thermal desorption spectroscopy (TDS) which are not yet well understood. Two candidates for these states are considered: beryllium-hydride phases within the bulk and surface effects. The retention of deuterium in beryllium is studied by a reaction rate approach using a coupled reaction diffusion system (CRDS)-model relying on ab initio data from density functional theory calculations (DFT). In this contribution we try to assess the influence of surface recombination.

  2. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  3. High temporal resolution ecosystem CH4, CO2 and H2O flux data measured with a novel chamber technique

    Science.gov (United States)

    Steenberg Larsen, Klaus; Riis Christiansen, Jesper

    2016-04-01

    Soil-atmosphere exchange of greenhouse gases (GHGs) is commonly measured with closed static chambers (Pihlatie et al., 2013) with off-site gas chromatographic (GC) analysis for CH4 and N2O. Static chambers are widely used to observe in detail the effect of experimental manipulations, like climate change experiments, on GHG exchange (e.g. Carter et al., 2012). However, the low sensitivity of GC systems necessitates long measurement times and manual sampling, which increases the disturbance of the exchange of GHGs and leads to potential underestimation of fluxes (Christiansen et al., 2011; Creelman et al., 2013). The recent emergence of field proof infrared lasers using cavity ring-down spectroscopy (CRDS) have increased frequency and precision of concentration measurements and enabled better estimates of GHG fluxes (Christiansen et al., 2015) due to shorter chamber enclosure times. This minimizes the negative impact of the chamber enclosure on the soil-atmosphere gas exchange rate. Secondly, an integral aspect of understanding GHG exchange in terrestrial ecosystem is to achieve high temporal coverage. This is needed to capture the often dynamic behavior where fluxes can change rapidly over the course of days or even a few hours in response to e.g. rain events. Consequently, low temporal coverage in measurements of GHG exchange have in many past investigations led to highly uncertain annual budgets which severely limits our understanding of the ecosystem processes interacting with the climate system through GHG exchange. Real-time field measurements at high temporal resolution are needed to obtain a much more detailed understanding of the processes governing ecosystem CH4 exchange as well as for better predicting the effects of climate and environmental changes. We combined a state-of-the-art field applicable CH4 sensor (Los Gatos UGGA) with a newly developed ecosystem-level automatic chamber controlled by a LI-COR 8100/8150 system. The chamber is capable of

  4. Spectroscopy in catalysis : an introduction

    NARCIS (Netherlands)

    Niemantsverdriet, J.W.

    2000-01-01

    Spectroscopy in Catalysis describes the most important modern analytical techniques used to investigate catalytic surfaces. These include electron spectroscopy (XPS, UPS, AES, EELS), ion spectroscopy (SIMS, SNMS, RBS, LEIS), vibrational spectroscopy (infrared, Raman, EELS), temperature-programmed

  5. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  6. Dye lasers in atomic spectroscopy

    International Nuclear Information System (INIS)

    Lange, W.; Luther, J.; Steudel, A.

    1974-01-01

    The properties of dye lasers which are relevant to atomic spectroscopy are discussed. Several experiments made possible by tunable dye lasers are discussed. Applications of high spectral density dye lasers are covered in areas such as absorption spectroscopy, fluorescence spectroscopy, photoionization and photodetachment, and two- and multi-photon processes. Applications which take advantage of the narrow bandwidth of tunable dye lasers are discussed, including saturation spectroscopy, fluorescence line narrowing, classic absorption and fluorescence spectroscopy, nonoptical detection of optical resonances, heterodyne spectroscopy, and nonlinear coherent resonant phenomena. (26 figures, 180 references) (U.S.)

  7. Emission of CO2 by the transport sector and the impact on the atmospheric concentration in Sao Paulo, Brazil.

    Science.gov (United States)

    Andrade, M. D. F.; Kitazato, C.; Perez-Martinez, P.; Nogueira, T.

    2014-12-01

    The Metropolitan Area of São Paulo (MASP) is impacted by the emission of 7 million vehicles, being 85% light-duty vehicles (LDV), 3% heavy-duty diesel vehicles (HDV)s, and 12% motorcycles. About 55% of LDVs burn a mixture of 78% gasoline and 22% ethanol (gasohol), 4% use hydrous ethanol (95% ethanol and 5% water), 38% are flex-fuel vehicles that are capable of burning both gasohol and hydrous ethanol and 3% use diesel (diesel + 5% bio-diesel). The owners of the flex-fuel vehicles decide to use ethanol or gasohol depending on the market price of the fuel. Many environmental programs were implemented to reduce the emissions by the LDV and HDV traffic; the contribution from the industrial sector has been decreasing as the industries have moved away from MASP, due to the high taxes applied to the productive sector. Due to the large contribution of the transport sector to CO2, its contribution is important in a regional scale. The total emission is estimated in 15327 million tons per year of CO2eq (60% by LDV, 38% HDV and 2% motorcycles). Measurements of CO2 performed with a Picarro monitor based on WS-CRDS (wavelength-scanned cavity ringdown spectroscopy) for the years 2012-2013 were performed. The sampling site was on the University of Sao Paulo campus (22o34´S, 46o44´W), situated in the west area of the city, surrounded by important traffic roads. The average data showed two peaks, one in the morning and the other in the afternoon, both associated with the traffic. Correlation analysis was performed between the concentrations and the number of vehicles, as a proxy for the temporal variation of the CO2 emission. The highest concentration was 430 ppm at 8:00am, associated to the morning peak hour of vehicles and the stable condition of the atmosphere. The average concentration was 406 ±12 ppm, considering all measured data. According to official inventories from the Environmental Agency (CETESB), the emission of CO2 has increased 39% from 1990 to 2008, associated

  8. Symposium on atomic spectroscopy

    International Nuclear Information System (INIS)

    1979-01-01

    Topics covered by the conference include: fast beam spectroscopy; astrophysical and other spectra; highly ionized spectroscopy; complex spectra; rydberg levels; fine structure, hyperfine structure and isotope shift; lineshapes; lifetimes, oscillator strengths and Einstein coefficients; and spectroscopy with lasers. Abstracts of the conference papers are presented

  9. Introductory Raman spectroscopy

    CERN Document Server

    Ferraro, John R

    2012-01-01

    Praise for Introductory Raman Spectroscopy Highlights basic theory, which is treated in an introductory fashion Presents state-of-the-art instrumentation Discusses new applications of Raman spectroscopy in industry and research.

  10. Symposium on atomic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Topics covered by the conference include: fast beam spectroscopy; astrophysical and other spectra; highly ionized spectroscopy; complex spectra; rydberg levels; fine structure, hyperfine structure and isotope shift; lineshapes; lifetimes, oscillator strengths and Einstein coefficients; and spectroscopy with lasers. Abstracts of the conference papers are presented. (GHT)

  11. Mid-infrared upconversion spectroscopy

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Dam, Jeppe Seidelin; Andersen, H. V.

    2016-01-01

    Mid-infrared (MIR) spectroscopy is emerging as an attractive alternative to near-infrared or visible spectroscopy. MIR spectroscopy offers a unique possibility to probe the fundamental absorption bands of a large number of gases as well as the vibrational spectra of complex molecules. In this paper...

  12. Advances in DUV spectroscopy

    DEFF Research Database (Denmark)

    Buchhave, Preben; Tidemand-Lichtenberg, Peter; Mogensen, Claus Tilsted

    The would-be advantages of deep UV (DUV) spectroscopy are well known, but the potential applications have so far not been fully realized due to technological limitations and, perhaps, lack of bright ideas. However, new components and new knowledge about DUV spectra and spectroscopic methods...... combined with increasing needs for solutions to practical problems in environmental protection, medicine and pollution monitoring promise a new era in DUV spectroscopy. Here we shall review the basis for DUV spectroscopy, both DUV fluorescence and DUV Raman spectroscopy, and describe recent advances...

  13. Quantifying methane emission from fugitive sources by combining tracer release and downwind measurements - a sensitivity analysis based on multiple field surveys.

    Science.gov (United States)

    Mønster, Jacob G; Samuelsson, Jerker; Kjeldsen, Peter; Rella, Chris W; Scheutz, Charlotte

    2014-08-01

    Using a dual species methane/acetylene instrument based on cavity ring down spectroscopy (CRDS), the dynamic plume tracer dispersion method for quantifying the emission rate of methane was successfully tested in four measurement campaigns: (1) controlled methane and trace gas release with different trace gas configurations, (2) landfill with unknown emission source locations, (3) landfill with closely located emission sources, and (4) comparing with an Fourier transform infrared spectroscopy (FTIR) instrument using multiple trace gasses for source separation. The new real-time, high precision instrument can measure methane plumes more than 1.2 km away from small sources (about 5 kg h(-1)) in urban areas with a measurement frequency allowing plume crossing at normal driving speed. The method can be used for quantification of total methane emissions from diffuse area sources down to 1 kg per hour and can be used to quantify individual sources with the right choice of wind direction and road distance. The placement of the trace gas is important for obtaining correct quantification and uncertainty of up to 36% can be incurred when the trace gas is not co-located with the methane source. Measurements made at greater distances are less sensitive to errors in trace gas placement and model calculations showed an uncertainty of less than 5% in both urban and open-country for placing the trace gas 100 m from the source, when measurements were done more than 3 km away. Using the ratio of the integrated plume concentrations of tracer gas and methane gives the most reliable results for measurements at various distances to the source, compared to the ratio of the highest concentration in the plume, the direct concentration ratio and using a Gaussian plume model. Under suitable weather and road conditions, the CRDS system can quantify the emission from different sources located close to each other using only one kind of trace gas due to the high time resolution, while the FTIR

  14. Optical Spectroscopy

    DEFF Research Database (Denmark)

    Thyrhaug, Erling

    The work presented in this thesis is broadly concerned with how complexation reactions and molecular motion can be characterized with the standard techniques in optical spectroscopy. The thesis aims to show a relatively broad range of methods for probing physico-chemical properties in fluorophore...... information about chemical equilibria, kinetics and molecular motion by monitoring changes in optical properties of the system. The five presented research projects are largely unrelated to each other both in aim and in what property is probed, however they are all connected in that they are fluorophore...... reactions by optical spectroscopy. In project 1 simple steady-state absorption and fluorescence spectroscopy is used to determine the stoichiometries and equilibrium constants in the inclusion complex formation between cyclodextrins and derivatives of the water-insoluble oligo(phenylene vinylene) in aqueous...

  15. Acoustic force spectroscopy

    NARCIS (Netherlands)

    Sitters, G.; Kamsma, D.; Thalhammer, G.; Ritsch-Marte, M.; Peterman, E.J.G.; Wuite, G.J.L.

    2015-01-01

    Force spectroscopy has become an indispensable tool to unravel the structural and mechanochemical properties of biomolecules. Here we extend the force spectroscopy toolbox with an acoustic manipulation device that can exert forces from subpiconewtons to hundreds of piconewtons on thousands of

  16. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Science.gov (United States)

    Leahy-Hoppa, Megan R.; Miragliotta, Joseph; Osiander, Robert; Burnett, Jennifer; Dikmelik, Yamac; McEnnis, Caroline; Spicer, James B.

    2010-01-01

    Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS), coherent Raman spectroscopy, and terahertz (THz) spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications. PMID:22399883

  17. Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

    Directory of Open Access Journals (Sweden)

    Megan R. Leahy-Hoppa

    2010-04-01

    Full Text Available Ultrafast pulsed lasers find application in a range of spectroscopy and sensing techniques including laser induced breakdown spectroscopy (LIBS, coherent Raman spectroscopy, and terahertz (THz spectroscopy. Whether based on absorption or emission processes, the characteristics of these techniques are heavily influenced by the use of ultrafast pulses in the signal generation process. Depending on the energy of the pulses used, the essential laser interaction process can primarily involve lattice vibrations, molecular rotations, or a combination of excited states produced by laser heating. While some of these techniques are currently confined to sensing at close ranges, others can be implemented for remote spectroscopic sensing owing principally to the laser pulse duration. We present a review of ultrafast laser-based spectroscopy techniques and discuss the use of these techniques to current and potential chemical and environmental sensing applications.

  18. UV-Visible Spectra of PAHs and Derivatives Seeded in Supersonic Jet. Astrophysical Implications

    Science.gov (United States)

    Salma, Bejaoui; Salama, Farid

    2018-06-01

    Laboratory absorption spectra of Polycyclic Aromatic Hydrocarbons (PAHs) and PAH derivatives measured under astrophysical relevant conditions are crucial to test the PAHs-DIBs hypothesis as well as the PAH model for the IR emission bands. Our dedicated experimental setup on the COsmic SImulation Chamber (COSmIC) provides an excellent platform to study neutral and ionized PAHs under the low temperature and pressure conditions that are representative of interstellar environments [1]. In this work, we study the effect of the substitution of CH bond(s) by a nitrogen atom(s) on the electronic spectra of phenanthrene. The electronic transitions associated with the lower excited states of neutral phenanthrene (C14H10) and phenanthridine (C13H9N) are measured in gas phase in the 315-345 nm region. Molecules are seeded in a supersonic expansion of argon gas and the absorption spectra are measured using the Cavity Ring Down Spectroscopy (CRDS) technique. Additional measurements of the absorption spectra of phenanthrene, phenantridine and 1,10-phenanthroline (C12H8N2) isolated in 10 K argon matrices are also performed. The comparison between the CRDS spectra with the absorption of the matrix-isolated molecules highlight the matrix-induced perturbations in band position, profiles and broadening and illustrates the need of gas phase measurements for more accurate comparisons with astronomical spectra.[1] Salama, F., Galazutdinov, G., Krelowski, et al. ApJ 728, 154[FS1] (2011).[2] A. Tielens, ApJ 526 Pt 1265–273 (2008),Acknowledgements: This research is supported by the APRA Program of NASA SMD

  19. Accurate deuterium spectroscopy for fundamental studies

    Science.gov (United States)

    Wcisło, P.; Thibault, F.; Zaborowski, M.; Wójtewicz, S.; Cygan, A.; Kowzan, G.; Masłowski, P.; Komasa, J.; Puchalski, M.; Pachucki, K.; Ciuryło, R.; Lisak, D.

    2018-07-01

    We present an accurate measurement of the weak quadrupole S(2) 2-0 line in self-perturbed D2 and theoretical ab initio calculations of both collisional line-shape effects and energy of this rovibrational transition. The spectra were collected at the 247-984 Torr pressure range with a frequency-stabilized cavity ring-down spectrometer linked to an optical frequency comb (OFC) referenced to a primary time standard. Our line-shape modeling employed quantum calculations of molecular scattering (the pressure broadening and shift and their speed dependencies were calculated, while the complex frequency of optical velocity-changing collisions was fitted to experimental spectra). The velocity-changing collisions are handled with the hard-sphere collisional kernel. The experimental and theoretical pressure broadening and shift are consistent within 5% and 27%, respectively (the discrepancy for shift is 8% when referred not to the speed averaged value, which is close to zero, but to the range of variability of the speed-dependent shift). We use our high pressure measurement to determine the energy, ν0, of the S(2) 2-0 transition. The ab initio line-shape calculations allowed us to mitigate the expected collisional systematics reaching the 410 kHz accuracy of ν0. We report theoretical determination of ν0 taking into account relativistic and QED corrections up to α5. Our estimation of the accuracy of the theoretical ν0 is 1.3 MHz. We observe 3.4σ discrepancy between experimental and theoretical ν0.

  20. Near-infrared spectroscopy for cocrystal screening. A comparative study with Raman spectroscopy.

    Science.gov (United States)

    Allesø, Morten; Velaga, Sitaram; Alhalaweh, Amjad; Cornett, Claus; Rasmussen, Morten A; van den Berg, Frans; de Diego, Heidi Lopez; Rantanen, Jukka

    2008-10-15

    Near-infrared (NIR) spectroscopy is a well-established technique for solid-state analysis, providing fast, noninvasive measurements. The use of NIR spectroscopy for polymorph screening and the associated advantages have recently been demonstrated. The objective of this work was to evaluate the analytical potential of NIR spectroscopy for cocrystal screening using Raman spectroscopy as a comparative method. Indomethacin was used as the parent molecule, while saccharin and l-aspartic acid were chosen as guest molecules. Molar ratios of 1:1 for each system were subjected to two types of preparative methods. In the case of saccharin, liquid-assisted cogrinding as well as cocrystallization from solution resulted in a stable 1:1 cocrystalline phase termed IND-SAC cocrystal. For l-aspartic acid, the solution-based method resulted in a polymorphic transition of indomethacin into the metastable alpha form retained in a physical mixture with the guest molecule, while liquid-assisted cogrinding did not induce any changes in the crystal lattice. The good chemical peak selectivity of Raman spectroscopy allowed a straightforward interpretation of sample data by analyzing peak positions and comparing to those of pure references. In addition, Raman spectroscopy provided additional information on the crystal structure of the IND-SAC cocrystal. The broad spectral line shapes of NIR spectra make visual interpretation of the spectra difficult, and consequently, multivariate modeling by principal component analysis (PCA) was applied. Successful use of NIR/PCA was possible only through the inclusion of a set of reference mixtures of parent and guest molecules representing possible solid-state outcomes from the cocrystal screening. The practical hurdle related to the need for reference mixtures seems to restrict the applicability of NIR spectroscopy in cocrystal screening.

  1. Fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2016-01-01

    Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses the foundati......Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses...

  2. Homogeneity spoil spectroscopy

    International Nuclear Information System (INIS)

    Hennig, J.; Boesch, C.; Martin, E.; Grutter, R.

    1987-01-01

    One of the problems of in vivo MR spectroscopy of P-31 is spectra localization. Surface coil spectroscopy, which is the method of choice for clinical applications, suffers from the high-intensity signal from subcutaneous muscle tissue, which masks the spectrum of interest from deeper structures. In order to suppress this signal while maintaining the simplicity of surface coil spectroscopy, the authors introduced a small sheet of ferromagnetically dotted plastic between the surface coil and the body. This sheet destroys locally the field homogeneity and therefore all signal from structures around the coil. The very high reproducibility of the simple experimental procedure allows long-term studies important for monitoring tumor therapy

  3. In vivo spectroscopy

    International Nuclear Information System (INIS)

    Williams, S.R.; Cady, E.B.

    1987-01-01

    The technique which the authors describe in this chapter provides alternative information to imaging, although based upon the same physical principles. The experiments are carried out differently and have instrumental requirements which are not met by a standard imaging system. Furthermore, although the clinical efficacy of NMR imaging has been proven, clinical spectroscopy is very much in its infancy. With the exception of some specific /sup 31/P applications not is not even clear how spectroscopic investigations will be performed. This is particularly true with regard to localization techniques for investigating other than superficial organs and and in the use of /sup 1/H spectroscopy. They attempt to show what information spectroscopy can provide in principle and point out some of the problems associated with such investigations. NMR has come to the notice of the clinical community mainly through its use as an imaging technique, and many may consider spectroscopy as a secondary discipline. NMR spectroscopy, however, has a longer history than imaging and has been a standard technique in chemistry laboratories for more than two decades. It is a technique without peer for structural analysis of molecules and no new chemical compound is discovered or synthesized without an NMR spectrum being taken. The influence of molecular structure on resonant frequency has been termed the chemical shift

  4. Quantitative fluorescence spectroscopy in turbid media using fluorescence differential path length spectroscopy

    NARCIS (Netherlands)

    Amelink, Arjen; Kruijt, Bastiaan; Robinson, Dominic J.; Sterenborg, Henricus J. C. M.

    2008-01-01

    We have developed a new technique, fluorescence differential path length spectroscopy (FDPS), that enables the quantitative investigation of fluorophores in turbid media. FDPS measurements are made with the same probe geometry as differential path length spectroscopy (DPS) measurements. Phantom

  5. Moessbauer spectroscopy. Tutorial book

    International Nuclear Information System (INIS)

    Yoshida, Yutaka; Langouche, Guido

    2013-01-01

    First textbook on Moessbauer Spectroscopy covering the complete field. Offers a concise introduction to all aspects of Moessbauer spectroscopy by the leading experts in the field. Tutorials on Moessbauer Spectroscopy. Since the discovery of the Moessbauer Effect many excellent books have been published for researchers and for doctoral and master level students. However, there appears to be no textbook available for final year bachelor students, nor for people working in industry who have received only basic courses in classical mechanics, electromagnetism, quantum mechanics, chemistry and materials science. The challenge of this book is to give an introduction to Moessbauer Spectroscopy for this level. The ultimate goal of this book is to give this audience not only a scientific introduction to the technique, but also to demonstrate in an attractive way the power of Moessbauer Spectroscopy in many fields of science, in order to create interest among the readers in joining the community of Moessbauer spectroscopists. This is particularly important at times where in many Moessbauer laboratories succession is at stake.

  6. Laser spectroscopy used in nuclear physics; La spectroscopie laser appliquee a la physique nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Le Blanc, F

    2001-04-05

    The study of nuclear shapes is a basic topic since it constitutes an excellent ground for testing and validating nuclear models. Measurements of the electron quadrupolar moment, of the nuclear charge radius and of the magnetic dipolar moment shed light on the nuclear deformation. Laser spectroscopy is a specific tool for such measurements, it is based on the interaction of the nucleus with the surrounding electron cloud (hyperfine structure), it is then an external approach of the shape of the nucleus whereas the classical nuclear spectroscopy ({alpha}, {beta} or {gamma}) gives information on the deformation from the inside of the nucleus. The author describes 2 techniques of laser spectroscopy: the colinear spectroscopy directly applied to a beam issued from an isotope separator and the resonant ionization spectroscopy linked with atom desorption that allows the study of particular nuclei. In order to illustrate both methods some effective measurements are presented: - the colinear spectroscopy has allowed the achievement of the complete description of the isomeric state (T = 31 years) of hafnium-178; - The experiment Complis has revealed an unexpected even-odd zigzag effect on very neutron-deficient platinum isotopes; and - the comparison of 2 isotopes of gold and platinum with their isomers has shown that the inversion of 2 levels of neutron, that was found out by nuclear spectroscopy, is in fact a consequence of a change in the nuclear shape. (A.C.)

  7. Saturated CO{sub 2} absorption near 1.6 μm for kilohertz-accuracy transition frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Burkart, Johannes, E-mail: johannes.burkart@ujf-grenoble.fr; Romanini, Daniele; Campargue, Alain; Kassi, Samir, E-mail: samir.kassi@ujf-grenoble.fr [Univ. Grenoble Alpes, LIPhy, F-38000 Grenoble (France); CNRS, LIPhy, F-38000 Grenoble (France); Sala, Tommaso; Marangoni, Marco [Physics Department of Politecnico di Milano and IFN-CNR, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2015-05-21

    Doppler-free saturated-absorption Lamb dips were measured on weak rovibrational lines of {sup 12}C{sup 16}O{sub 2} between 6189 and 6215 cm{sup −1} at sub-Pa pressures using optical feedback frequency stabilized cavity ring-down spectroscopy. By referencing the laser source to an optical frequency comb, transition frequencies for ten lines of the 30013←00001 band P-branch and two lines of the 31113←01101 hot band R-branch were determined with an accuracy of a few parts in 10{sup 11}. Involving rotational quantum numbers up to 42, the data were used for improving the upper level spectroscopic constants. These results provide a highly accurate reference frequency grid over the spectral interval from 1599 to 1616 nm.

  8. Optogalvanic spectroscopy

    International Nuclear Information System (INIS)

    Pianarosa, P.; Demers, Y.; Gagne, J.M.

    1983-01-01

    Laser induced optogalvanic spectroscopy in a hollow cathode-produced plasma has been used to resolve the isotopic structure of some absorption lines in uranium. We have shown that the optogalvanic signal associated with any isotope can be related to the concentration of that isotope in a multi-isotopic sample. From the results we have obtained, optogalvanic spectroscopy of sputtered samples appears to be an interesting approach to the isotopic analysis of both natural and enriched uranium and could easily be applied to the analysis of other fissile elements, such as the plutonium isotopes

  9. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 2. Surface-Enhanced Raman Spectroscopy - Recent Advancement of Raman Spectroscopy. Ujjal Kumar Sur. General Article Volume 15 Issue 2 February 2010 pp 154-164 ...

  10. Spectroscopy stepping stones

    International Nuclear Information System (INIS)

    Hammer, M.R.; Sturman, B.T.

    2003-01-01

    Determining the elemental composition of samples has long been a basic task of analytical science. Some very powerful and convenient approaches are based on the wavelength-specific absorption or emission of light by gas-phase atoms. Techniques briefly described as examples of analytical atomic spectrometry include atomic emission and absorption spectroscopy, inductively coupled plasma emission and mass spectroscopy and laser induced breakdown spectrometry

  11. Coherent atomic spectroscopy

    International Nuclear Information System (INIS)

    Garton, W.R.S.

    1988-01-01

    The Argonne Spectroscopy Laboratory, initiated and advanced over several decades by F.S. Tomkins and M. Fred, has been a major international facility. A range of collaborative work in atomic spectroscopy is selected to illustrate advances in experimental physics which have been made possible by combination of the talents of Tomkins and Fred with the unique facilities of the Argonne Laboratory. (orig.)

  12. Autobalanced Ramsey Spectroscopy

    Science.gov (United States)

    Sanner, Christian; Huntemann, Nils; Lange, Richard; Tamm, Christian; Peik, Ekkehard

    2018-01-01

    We devise a perturbation-immune version of Ramsey's method of separated oscillatory fields. Spectroscopy of an atomic clock transition without compromising the clock's accuracy is accomplished by actively balancing the spectroscopic responses from phase-congruent Ramsey probe cycles of unequal durations. Our simple and universal approach eliminates a wide variety of interrogation-induced line shifts often encountered in high precision spectroscopy, among them, in particular, light shifts, phase chirps, and transient Zeeman shifts. We experimentally demonstrate autobalanced Ramsey spectroscopy on the light shift prone Yb+ 171 electric octupole optical clock transition and show that interrogation defects are not turned into clock errors. This opens up frequency accuracy perspectives below the 10-18 level for the Yb+ system and for other types of optical clocks.

  13. NRC comprehensive records disposition schedule

    International Nuclear Information System (INIS)

    1982-07-01

    Effective January 1, 1982, NRC will institute records retention and disposal practices in accordance with the approved Comprehensive Records Disposition Schedule (CRDS). CRDS is comprised of NRC Schedules (NRCS) 1 to 4 which apply to the agency's program or substantive records and General Records Schedules (GRS) 1 to 22 which apply to housekeeping or facilitative records. The schedules are assembled functionally/organizationally to facilitate their use. Preceding the records descriptions and disposition instructions for both NRCS and GRS, there are brief statements on the organizational units which accumulate the records in each functional area, and other information regarding the schedules' applicability

  14. Fusion spectroscopy

    International Nuclear Information System (INIS)

    Peacock, N.J.

    1995-09-01

    This article traces developments in the spectroscopy of high temperature laboratory plasma used in controlled fusion research from the early 1960's until the present. These three and a half decades have witnessed many orders of magnitude increase in accessible plasma parameters such as density and temperature as well as particle and energy confinement timescales. Driven by the need to interpret the radiation in terms of the local plasma parameters, the thrust of fusion spectroscopy has been to develop our understanding of (i) the atomic structure of highly ionised atoms, usually of impurities in the hydrogen isotope fuel; (ii) the atomic collision rates and their incorporation into ionization structure and emissivity models that take into account plasma phenomena like plasma-wall interactions, particle transport and radiation patterns; (iii) the diagnostic applications of spectroscopy aided by increasingly sophisticated characterisation of the electron fluid. These topics are discussed in relation to toroidal magnetically confined plasmas, particularly the Tokamak which appears to be the most promising approach to controlled fusion to date. (author)

  15. In-Situ Measurements of Aerosol Optical Properties using New Cavity Ring-Down and Photoacoustics Instruments and Comparison with more Traditional Techniques

    Science.gov (United States)

    Strawa, A. W.; Arnott, P.; Covert, D.; Elleman, R.; Ferrare, R.; Hallar, A. G.; Jonsson, H.; Kirchstetter, T. W.; Luu, A. P.; Ogren, J.

    2004-01-01

    Carbonaceous species (BC and OC) are responsible for most of the absorption associated with aerosol particles. The amount of radiant energy an aerosol absorbs has profound effects on climate and air quality. It is ironic that aerosol absorption coefficient is one of the most difficult aerosol properties to measure. A new cavity ring-down (CRD) instrument, called Cadenza (NASA-ARC), measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. Absorption coefficient is obtained from the difference of measured extinction and scattering within the instrument. Aerosol absorption coefficient is also measured by a photoacoustic (PA) instrument (DRI) that was operated on an aircraft for the first time during the DOE Aerosol Intensive Operating Period (IOP). This paper will report on measurements made with this new instrument and other in-situ instruments during two field recent field studies. The first field study was an airborne cam;oaign, the DOE Aerosol Intensive Operating Period flown in May, 2003 over northern Oklahoma. One of the main purposes of the IOP was to assess our ability to measure extinction and absorption coefficient in situ. This paper compares measurements of these aerosol optical properties made by the CRD, PA, nephelometer, and Particle Soot Absorption Photometer (PSAP) aboard the CIRPAS Twin-Otter. During the IOP, several significant aerosol layers were sampled aloft. These layers are identified in the remote (AATS-14) as well as in situ measurements. Extinction profiles measured by Cadenza are compared to those derived from the Ames Airborne Tracking Sunphotometer (AATS-14, NASA-ARC). The regional radiative impact of these layers is assessed by using the measured aerosol optical properties in a radiative transfer model. The second study was conducted in the Caldecott Tunnel, a heavily-used tunnel located north of San Francisco, Ca. The aerosol sampled in this study was

  16. Positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Sundar, C.S.; Viswanathan, B.

    1996-01-01

    An overview of positron annihilation spectroscopy, the experimental techniques and its application to studies on defects and electronic structure of materials is presented. The scope of this paper is to present the requisite introductory material, that will enable a better appreciation of the subsequent specialized articles on the applications of positron annihilation spectroscopy to investigate various problems in materials science. (author). 31 refs., 3 figs

  17. Antihydrogen Experiment Gravity Interferometry Spectroscopy

    CERN Multimedia

    Trezzi, D; Dassa, L; Rienacker, B; Khalidova, O; Ferrari, G; Krasnicky, D; Perini, D; Cerchiari, G; Belov, A; Boscolo, I; Sacerdoti, M G; Ferragut, R O; Nedelec, P; Hinterberger, A; Al-qaradawi, I; Malbrunot, C L S; Brusa, R S; Prelz, F; Manuzio, G; Riccardi, C; Fontana, A; Genova, P; Haider, S; Haug, F; Turbabin, A; Castelli, F; Testera, G; Lagomarsino, V E; Doser, M; Penasa, L; Gninenko, S; Cataneo, F; Zenoni, A; Cabaret, L; Comparat, D P; Zmeskal, J; Scampoli, P; Nesteruk, K P; Dudarev, A; Kellerbauer, A G; Mariazzi, S; Carraro, C; Zavatarelli, S M

    The AEGIS experiment (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) has the aim of carrying out the first measurement of the gravitational interaction of antimatter to a precision of 1%, by applying techniques from atomic physics, laser spectroscopy and interferometry to a beam of antihydrogen atoms. A further goal of the experiment is to carry out spectroscopy of the antihydrogen atoms in flight.

  18. Measurements of greenhouse gases at Beromünster tall-tower station in Switzerland

    Science.gov (United States)

    Ayalneh Berhanu, Tesfaye; Satar, Ece; Schanda, Rudiger; Nyfeler, Peter; Moret, Hanspeter; Brunner, Dominik; Oney, Brian; Leuenberger, Markus

    2016-06-01

    In order to constrain the regional flux of greenhouse gases, an automated measurement system was built on an old radio tower at Beromünster, Switzerland. The measurement system has been running since November 2012 as part of the Swiss greenhouse gases monitoring network (CarboCount-CH), which is composed of four measurement sites across the country. The Beromünster tall tower has five sampling lines with inlets at 12.5, 44.6, 71.5, 131.6, and 212.5 m above ground level, and it is equipped with a Picarro cavity ring-down spectrometer (CRDS) analyzer (G-2401), which continuously measures CO, CO2, CH4, and H2O. Sensors for detection of wind speed and direction, air temperature, barometric pressure, and humidity have also been installed at each height level. We have observed a non-negligible temperature effect in the calibration measurements, which was found to be dependent on the type of cylinder (steel or aluminum) as well as trace gas species (strongest for CO). From a target gas of known mixing ratio that has been measured once a day, we have calculated a long-term reproducibility of 2.79 ppb, 0.05 ppm, and 0.29 ppb for CO, CO2, and CH4, respectively, over 19 months of measurements. The values obtained for CO2 and CH4 are compliant with the WMO recommendations, while the value calculated for CO is higher than the recommendation. Since the installation of an air-conditioning system recently at the measurement cabin, we have acquired better temperature stability of the measurement system, but no significant improvement was observed in the measurement precision inferred from the target gas measurements. Therefore, it seems that the observed higher variation in CO measurements is associated with the instrumental noise, compatible with the precision provided by the manufacturer.

  19. Multidimensional high harmonic spectroscopy

    International Nuclear Information System (INIS)

    Bruner, Barry D; Soifer, Hadas; Shafir, Dror; Dudovich, Nirit; Serbinenko, Valeria; Smirnova, Olga

    2015-01-01

    High harmonic generation (HHG) has opened up a new frontier in ultrafast science where attosecond time resolution and Angstrom spatial resolution are accessible in a single measurement. However, reconstructing the dynamics under study is limited by the multiple degrees of freedom involved in strong field interactions. In this paper we describe a new class of measurement schemes for resolving attosecond dynamics, integrating perturbative nonlinear optics with strong-field physics. These approaches serve as a basis for multidimensional high harmonic spectroscopy. Specifically, we show that multidimensional high harmonic spectroscopy can measure tunnel ionization dynamics with high precision, and resolves the interference between multiple ionization channels. In addition, we show how multidimensional HHG can function as a type of lock-in amplifier measurement. Similar to multi-dimensional approaches in nonlinear optical spectroscopy that have resolved correlated femtosecond dynamics, multi-dimensional high harmonic spectroscopy reveals the underlying complex dynamics behind attosecond scale phenomena. (paper)

  20. Laser Spectroscopy and Frequency Combs

    International Nuclear Information System (INIS)

    Hänsch, Theodor W; Picqué, Nathalie

    2013-01-01

    The spectrum of a frequency comb, commonly generated by a mode-locked femtosecond laser consists of several hundred thousand precisely evenly spaced spectral lines. Such laser frequency combs have revolutionized the art measuring the frequency of light, and they provide the long-missing clockwork for optical atomic clocks. The invention of the frequency comb technique has been motivated by precision laser spectroscopy of the simple hydrogen atom. The availability of commercial instruments is facilitating the evolution of new applications far beyond the original purpose. Laser combs are becoming powerful instruments for broadband molecular spectroscopy by dramatically improving the resolution and recording speed of Fourier spectrometers and by creating new opportunities for highly multiplexed nonlinear spectroscopy, such as two-photon spectroscopy or coherent Raman spectroscopy. Other emerging applications of frequency combs range from fundamental research in astronomy, chemistry, or attosecond science to telecommunications and satellite navigation

  1. EDITORIAL: Nano Meets Spectroscopy Nano Meets Spectroscopy

    Science.gov (United States)

    Birch, David J. S.

    2012-08-01

    The multidisciplinary two-day Nano Meets Spectroscopy (NMS) event was held at the National Physical Laboratory (NPL), Teddington, UK, in September 2011. The event was planned from the outset to be at the interface of several areas—in particular, spectroscopy and nanoscience, and to bring together topics and people with different approaches to achieving common goals in biomolecular science. Hence the meeting cut across traditional boundaries and brought together researchers using diverse techniques, particularly fluorescence and Raman spectroscopy. Despite engaging common problems, these techniques are frequently seen as mutually exclusive with the two communities rarely interacting at conferences. The meeting was widely seen to have lived up to its billing in good measure. It attracted the maximum capacity of ~120 participants, including 22 distinguished speakers (9 from outside the UK), over 50 posters and a vibrant corporate exhibition comprising 10 leading instrument companies and IOP Publishing. The organizers were Professor David Birch (Chair), Dr Karen Faulds and Professor Duncan Graham of the University of Strathclyde, Professor Cait MacPhee of the University of Edinburgh and Dr Alex Knight of NPL. The event was sponsored by the European Science Foundation, the Institute of Physics, the Royal Society of Chemistry, NPL and the Scottish Universities Physics Alliance. The full programme and abstracts are available at http://sensor.phys.strath.ac.uk/nms/program.php. The programme was quite ambitious in terms of the breadth and depth of scope. The interdisciplinary and synergistic concept of 'X meets Y' played well, cross-fertilization between different fields often being a source of inspiration and progress. Fluorescence and Raman spectroscopy provided the core, but the meeting had little repetition and also attracted contributions on more specialist techniques such as CARS, super-resolution, single molecule and chiral methods. In terms of application the

  2. Photoelectron photoion molecular beam spectroscopy

    International Nuclear Information System (INIS)

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed

  3. Time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  4. Dual THz comb spectroscopy

    Science.gov (United States)

    Yasui, Takeshi

    2017-08-01

    Optical frequency combs are innovative tools for broadband spectroscopy because a series of comb modes can serve as frequency markers that are traceable to a microwave frequency standard. However, a mode distribution that is too discrete limits the spectral sampling interval to the mode frequency spacing even though individual mode linewidth is sufficiently narrow. Here, using a combination of a spectral interleaving and dual-comb spectroscopy in the terahertz (THz) region, we achieved a spectral sampling interval equal to the mode linewidth rather than the mode spacing. The spectrally interleaved THz comb was realized by sweeping the laser repetition frequency and interleaving additional frequency marks. In low-pressure gas spectroscopy, we achieved an improved spectral sampling density of 2.5 MHz and enhanced spectral accuracy of 8.39 × 10-7 in the THz region. The proposed method is a powerful tool for simultaneously achieving high resolution, high accuracy, and broad spectral coverage in THz spectroscopy.

  5. Molecular studies by electron spectroscopy

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1977-01-01

    Experience gained in experimental nuclear physics has played a large role in the development of electron spectroscopy as a powerful tool for studying chemical systems. The use of ESCA (Electron Spectroscopy for Chemical Analysis) for the mapping of molecular properties connected with inner as well as outer electron shells is reviewed, mainly from a phenomological point of view. Molecular Auger electron spectroscopy is described as a means of gaining information on details in molecular structure, simultaneously being extensively applied for surface studies. Future highly promising research areas for molecular electron spectroscopy are suggested to be (e,2e) processes as well as continued exploitation of synchrotron radiation from high energy nuclear devices. (Auth.)

  6. Infrared diode laser spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Cihelka, Jaroslav; Matulková, Irena

    2010-01-01

    Roč. 18, č. 4 (2010), s. 408-420 ISSN 1230-3402 R&D Projects: GA AV ČR IAA400400705 Institutional research plan: CEZ:AV0Z40400503 Keywords : FTIR spectroscopy * absorption spectroscopy * laser diodes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.027, year: 2010

  7. Investigation of the boundary layer during the transition from volume to surface dominated H- production at the BATMAN test facility

    Science.gov (United States)

    Wimmer, C.; Schiesko, L.; Fantz, U.

    2016-02-01

    BATMAN (Bavarian Test Machine for Negative ions) is a test facility equipped with a 1/8 scale H- source for the ITER heating neutral beam injection. Several diagnostics in the boundary layer close to the plasma grid (first grid of the accelerator system) followed the transition from volume to surface dominated H- production starting with a Cs-free, cleaned source and subsequent evaporation of caesium, while the source has been operated at ITER relevant pressure of 0.3 Pa: Langmuir probes are used to determine the plasma potential, optical emission spectroscopy is used to follow the caesiation process, and cavity ring-down spectroscopy allows for the measurement of the H- density. The influence on the plasma during the transition from an electron-ion plasma towards an ion-ion plasma, in which negative hydrogen ions become the dominant negatively charged particle species, is seen in a strong increase of the H- density combined with a reduction of the plasma potential. A clear correlation of the extracted current densities (jH-, je) exists with the Cs emission.

  8. Investigation of the boundary layer during the transition from volume to surface dominated H⁻ production at the BATMAN test facility.

    Science.gov (United States)

    Wimmer, C; Schiesko, L; Fantz, U

    2016-02-01

    BATMAN (Bavarian Test Machine for Negative ions) is a test facility equipped with a 18 scale H(-) source for the ITER heating neutral beam injection. Several diagnostics in the boundary layer close to the plasma grid (first grid of the accelerator system) followed the transition from volume to surface dominated H(-) production starting with a Cs-free, cleaned source and subsequent evaporation of caesium, while the source has been operated at ITER relevant pressure of 0.3 Pa: Langmuir probes are used to determine the plasma potential, optical emission spectroscopy is used to follow the caesiation process, and cavity ring-down spectroscopy allows for the measurement of the H(-) density. The influence on the plasma during the transition from an electron-ion plasma towards an ion-ion plasma, in which negative hydrogen ions become the dominant negatively charged particle species, is seen in a strong increase of the H(-) density combined with a reduction of the plasma potential. A clear correlation of the extracted current densities (j(H(-)), j(e)) exists with the Cs emission.

  9. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Price, W.C.

    1974-01-01

    A survey is given of the development of x-ray and ultraviolet photoelectron spectroscopy. Applications of photoelectron spectroscopy to studies of atomic electronic configurations are discussed, including photoelectron spectra of hydrides isoelectronic with the inert gases; photoelectron spectra of the halogen derivatives of methane; photoelectron spectra of multiple bonded diatomic molecules; spectra and structure of some multiple bonded polyatomic molecules; spectra and structure of triatomic molecules; and methods of orbital assignment of bands in photoelectron spectra. Physical aspects are considered, including intensities; selection rules; dependence of cross section on photoelectron energy; autoionization; angular distribution of photoelectrons; electron-molecule interactions; and transient species. (26 figures, 54 references) (U.S.)

  10. Spectroscopy Division: progress report for 1990

    International Nuclear Information System (INIS)

    Sharma, A.; Marathe, S.M.

    1991-01-01

    This report summarises the work done by members of the Spectroscopy Division both within BARC as well as in scientific institutions elsewhere during the calendar year 1990. Main areas of research activity include atomic spectroscopy for hyperfine structure and isotope shift determination, theoretical and experimental studies of diatomic molecules, infrared and Raman spectroscopy of polyatomic molecules, design and fabrication of beam line optics for INDUS-I synchrotron radiation source, beam foil spectroscopy and laser spectroscopy of various atomic and molecular systems. Major experimental facilities that have been utilised include a fourier transform spectrometer, an excimer laser pumped dye-laser and a continous wave argon-ion laser. The report also includes the spectroscopic analytical service rendered for various DAE units and describes briefly some new analytical facilities like laser enhanced ionization in flames and resonance ionization mass spectroscopy using pulsed lasers which are being set up. The above activites were reported by members of the Spectroscopy Division via invited lectures, papers presented in various national and international conferences and publication in scientific journals. Details of these are given at the end of the report. (author). figs., tabs

  11. Baryon spectroscopy at KAON

    Energy Technology Data Exchange (ETDEWEB)

    Comyn, Martin

    1992-07-01

    The unique opportunities for the study of baryon spectroscopy at the TRIUMF KAON Factory are outlined. Related issues in other areas of hadron spectroscopy are discussed. The complex of accelerators that comprise the TRIUMF KAON Factory, and the properties of the separated beams that will be available to experimenters, are described. Initial design considerations for detectors to be used in the study of hadron spectroscopy are presented, along with a proposed detector configuration. The progress towards realization of the TRIUMF KAON Factory is examined, and the timetable for the determination of the initial experimental programme and facilities is explained. 23 refs., 4 figs., 5 tabs.

  12. X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Attekum, P.M.T.M. van.

    1979-01-01

    The methods and results of X-ray photoelectron spectroscopy in the study of plasmons, alloys and gold compounds are discussed. After a comprehensive introduction, seven papers by the author, previously published elsewhere, are reprinted and these cover a wide range of the uses of X-ray photoelectron spectroscopy. (W.D.L.)

  13. Energy analyzer for Auger electron spectroscopy and low-energy backscattering ion spectroscopy

    International Nuclear Information System (INIS)

    Volkov, S.S.; Gorelik, V.A.; Gutenko, V.T.; Protopopov, O.D.; Trubitsin, A.A.; Shuvalova, Z.A.; Yakushev, G.A.

    1988-01-01

    Energy analyzer for electron Auger spectroscopy and low-energy backscattering ion spectroscopy is described. Analyzer presents one-cascade variant of cylindrical mirror with second-order focusing. Energy relative resolution is continuously adjusted within 0.2-1.2% limits. Signal/noise relation by Cu Auger-line at 1 muA current of exciting beam changes upper limit of range 150-450

  14. Issues in light meson spectroscopy: The case for meson spectroscopy at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Godfrey, S. [Carleton Univ., Ottawa (Canada)

    1994-04-01

    The author reviews some outstanding issues in meson spectroscopy. The most important qualitative issue is whether hadrons with explicit gluonic degrees of freedom exist. To answer this question requires a much better understanding of conventional q{bar q} mesons. The author therefore begins by examining the status of conventional meson spectroscopy and how the situation can be improved. The expected properties of gluonic excitations are discussed with particular emphasis on hybrids to give guidance to experimental searches. Multiquark systems are commented upon as they are likely to be important in the mass region under study and will have to be understood better. In the final section the author discusses the opportunities that CEBAF can offer for the study of meson spectroscopy.

  15. VMEbus interface for spectroscopy ADCs

    International Nuclear Information System (INIS)

    Jaeaeskelaeinen, M.

    1987-01-01

    A high performance VMEbus interface for spectroscopy ADCs and other similar devices used in nuclear spectroscopy coincidence experiments has been developed. This new module can be used to interface existing spectroscopy ADCs with fast parallel data transfer into the industry standard multiprocessor VMEbus. The unit provides a fast direct readout of the ADC data into the VMEbus memory. The interface also has built-in capabilities that enable it to be used in coincidence experiments for slow data timing and ADC pattern recognition. (orig.)

  16. Near-infrared spectroscopy for cocrystal screening

    DEFF Research Database (Denmark)

    Allesø, Morten; Velaga, Sitaram; Alhalaweh, Amjad

    2008-01-01

    Near-infrared (NIR) spectroscopy is a well-established technique for solid-state analysis, providing fast, noninvasive measurements. The use of NIR spectroscopy for polymorph screening and the associated advantages have recently been demonstrated. The objective of this work was to evaluate...... the analytical potential of NIR spectroscopy for cocrystal screening using Raman spectroscopy as a comparative method. Indomethacin was used as the parent molecule, while saccharin and l-aspartic acid were chosen as guest molecules. Molar ratios of 1:1 for each system were subjected to two types of preparative...... retained in a physical mixture with the guest molecule, while liquid-assisted cogrinding did not induce any changes in the crystal lattice. The good chemical peak selectivity of Raman spectroscopy allowed a straightforward interpretation of sample data by analyzing peak positions and comparing to those...

  17. Biomolecular EPR spectroscopy

    CERN Document Server

    Hagen, Wilfred Raymond

    2008-01-01

    Comprehensive, Up-to-Date Coverage of Spectroscopy Theory and its Applications to Biological SystemsAlthough a multitude of books have been published about spectroscopy, most of them only occasionally refer to biological systems and the specific problems of biomolecular EPR (bioEPR). Biomolecular EPR Spectroscopy provides a practical introduction to bioEPR and demonstrates how this remarkable tool allows researchers to delve into the structural, functional, and analytical analysis of paramagnetic molecules found in the biochemistry of all species on the planet. A Must-Have Reference in an Intrinsically Multidisciplinary FieldThis authoritative reference seamlessly covers all important bioEPR applications, including low-spin and high-spin metalloproteins, spin traps and spin lables, interaction between active sites, and redox systems. It is loaded with practical tricks as well as do's and don'ts that are based on the author's 30 years of experience in the field. The book also comes with an unprecedented set of...

  18. Comparison of photoacoustic spectroscopy, conventional absorption spectroscopy, and potentiometry as probes of lanthanide speciation

    International Nuclear Information System (INIS)

    Torres, R.A.; Palmer, C.E.A.; Baisden, P.A.; Russo, R.E.; Silva, R.J.

    1990-01-01

    The authors measured the stability constants of praseodymium acetate and oxydiacetate complexes by laser-induced photoacoustic spectroscopy, conventional UV-visible absorption spectroscopy, and pH titration. For the spectroscopic studies, changes in the free Pr absorption peaks at 468 and 481 nm were monitored at varying ligand concentrations. The total Pr concentration was 1 x 10 -4 M in solutions used for the photoacoustic studies and 0.02 M for conventional spectroscopy. For the pH titrations, we used solutions whose Pr concentrations varied from 5 x 10 -3 to 5 x 10 -2 M, with total ligand-to-metal ratios ranging from 1 to 10. A comparison of the results obtained by the three techniques demonstrates that photoacoustic spectroscopy can give the same information about metal-ligand speciation as more conventional methods. It is particularly suited to those situations where the other techniques are insensitive because of limited metal concentrations

  19. International symposium on NMR spectroscopy

    International Nuclear Information System (INIS)

    The publication consists of 32 papers and presentations from the field of NMR spectroscopy applications submitted to the International Symposium on NMR Spectroscopy held at Smolenice between 29 Sep and 3 Oct, 1980. (B.S.)

  20. Photolysis of butenedial at 193, 248, 280, 308, 351, 400, and 450 nm

    Science.gov (United States)

    Tang, Yongxin; Zhu, Lei

    2005-06-01

    We have studied the photolysis of butenedial at 193, 248, 280, 308, 351, 400, and 450 nm by using laser photolysis combined with cavity ring-down spectroscopy. The HCO radical is a photodissociation product at 193 and 248 nm. The corresponding HCO quantum yields are 0.55 ± 0.07 and 0.12 ± 0.01, independent of butenedial pressure and nitrogen buffer gas pressure. Absorption cross-sections of butenedial are (6.88 ± 0.39) × 10 -18 and (3.62 ± 0.69) × 10 -19 cm 2 at 193 and 248 nm. The end-products from the photolysis of butenedial at 193, 248, 308, and 351 nm were measured by FTIR. Acrolein and 3H-furan-2-one were observed and their yields have been estimated.

  1. General survey of recent development of photoemission spectroscopy

    International Nuclear Information System (INIS)

    Edamoto, Kazuyuki

    1994-01-01

    On the present state of the recent development of photoemission spectroscopy, by limiting the topics to the development of the spectroscopy proper and the development contributing to the progress of surface science, general explanation is made. As to the development that enabled to heighten spectrum resolution, surface core-level shift and the precise measurement of the Fermi surface of surface level are described, showing the example. Also a number of the developments which enabled the utilization of the light source, of which the wavelength is variable, and which was brought about by synchrotron radiation beam, were mentioned. Besides, spin polarized photoelectron spectroscopy, the development of photoelectron microscope and others are outlined. Photoemission spectroscopy is very useful for analyzing the electron condition of solid surfaces. There are two factors in heightening core level spectrum resolution, namely, heightening the resolution of an electron energy analyzer proper and the utilization of synchrotron radiation as a light source. High resolution core-level spectra, angle-resolved photoemission spectroscopy, and as the light source of which the wavelength is variable, resonance photoemission spectroscopy, constant initial state spectroscopy and soft X-ray photoemission spectroscopy, and as the recently developed spectroscopy, spin polarized photoemission spectroscopy, Auger photoelectron coincidence spectroscopy and photoelectron microscope are explained. (K.I.)

  2. Diffusion measurements by Raman spectroscopy

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Shapiro, Alexander; Berg, Rolf W.

    Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt......Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt...

  3. Critical Metadata for Spectroscopy Field Campaigns

    Directory of Open Access Journals (Sweden)

    Barbara A. Rasaiah

    2014-04-01

    Full Text Available A field spectroscopy metadata standard is defined as those data elements that explicitly document the spectroscopy dataset and field protocols, sampling strategies, instrument properties and environmental and logistical variables. Standards for field spectroscopy metadata affect the quality, completeness, reliability, and usability of datasets created in situ. Currently there is no standardized methodology for documentation of in situ spectroscopy data or metadata. This paper presents results of an international experiment comprising a web-based survey and expert panel evaluation that investigated critical metadata in field spectroscopy. The survey participants were a diverse group of scientists experienced in gathering spectroscopy data across a wide range of disciplines. Overall, respondents were in agreement about a core metadataset for generic campaign metadata, allowing for a prioritization of critical metadata elements to be proposed including those relating to viewing geometry, location, general target and sampling properties, illumination, instrument properties, reference standards, calibration, hyperspectral signal properties, atmospheric conditions, and general project details. Consensus was greatest among individual expert groups in specific application domains. The results allow the identification of a core set of metadata fields that enforce long term data storage and serve as a foundation for a metadata standard. This paper is part one in a series about the core elements of a robust and flexible field spectroscopy metadata standard.

  4. Metabolic Evidence of Diminished Lipid Oxidation in Women With Polycystic Ovary Syndrome

    Science.gov (United States)

    Whigham, Leah D.; Butz, Daniel E.; Dashti, Hesam; Tonelli, Marco; Johnson, LuAnn K.; Cook, Mark E.; Porter, Warren P.; Eghbalnia, Hamid R.; Markley, John L.; Lindheim, Steven R.; Schoeller, Dale A.; Abbott, David H.; Assadi-Porter, Fariba M.

    2014-01-01

    Polycystic ovary syndrome (PCOS), a common female endocrinopathy, is a complex metabolic syndrome of enhanced weight gain. The goal of this pilot study was to evaluate metabolic differences between normal (n=10) and PCOS (n=10) women via breath carbon isotope ratio, urinary nitrogen and nuclear magnetic resonance (NMR)-determined serum metabolites. Breath carbon stable isotopes measured by cavity ring down spectroscopy (CRDS) indicated diminished (pglucose tolerance test showed that a transient elevation in blood glucose levels decreased circulating levels of lipid, glucose and amino acid metabolic intermediates (acetone, 2-oxocaporate, 2-aminobutyrate, pyruvate, formate, and sarcosine) in PCOS women, whereas the 2 h glucose challenge led to increases in the same intermediates in normal women. These pilot data suggest that PCOS-related inflexibility in fasting-related switching between lipid and carbohydrate/protein utilization for carbon metabolism may contribute to enhanced weight gain. PMID:24765590

  5. Ultrabroadband spectroscopy for security applications

    DEFF Research Database (Denmark)

    Engelbrecht, Sunniva; Berge, Luc; Skupin, Stefan

    2015-01-01

    Ultrabroadband spectroscopy is a promising novel approach to overcome two major hurdles which have so far limited the application of THz spectroscopy for security applications: the increased bandwidth enables to record several characteristic spectroscopic features and the technique allows...

  6. Role of Raman spectroscopy and surface enhanced Raman spectroscopy in colorectal cancer

    Science.gov (United States)

    Jenkins, Cerys A; Lewis, Paul D; Dunstan, Peter R; Harris, Dean A

    2016-01-01

    Colorectal cancer (CRC) is the fourth most common cancer in the United Kingdom and is the second largest cause of cancer related death in the United Kingdom after lung cancer. Currently in the United Kingdom there is not a diagnostic test that has sufficient differentiation between patients with cancer and those without cancer so the current referral system relies on symptomatic presentation in a primary care setting. Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) are forms of vibrational spectroscopy that offer a non-destructive method to gain molecular information about biological samples. The techniques offer a wide range of applications from in vivo or in vitro diagnostics using endoscopic probes, to the use of micro-spectrometers for analysis of biofluids. The techniques have the potential to detect molecular changes prior to any morphological changes occurring in the tissue and therefore could offer many possibilities to aid the detection of CRC. The purpose of this review is to look at the current state of diagnostic technology in the United Kingdom. The development of Raman spectroscopy and SERS in clinical applications relation for CRC will then be discussed. Finally, future areas of research of Raman/SERS as a clinical tool for the diagnosis of CRC are also discussed. PMID:27190582

  7. spectroscopy

    African Journals Online (AJOL)

    Aghomotsegin

    2015-10-14

    Oct 14, 2015 ... characterized by using phenotypic, API and Fourier transform infrared (FTIR) spectroscopy methods. One hundred and fifty-seven (157) strains were isolated from 13 cheese samples, and identification test was performed for 83 strains. At the end of the study, a total of 22 Lactococcus sp., 36 Enterecoccus ...

  8. Broadband Rotational Spectroscopy

    Science.gov (United States)

    Pate, Brooks

    2014-06-01

    The past decade has seen several major technology advances in electronics operating at microwave frequencies making it possible to develop a new generation of spectrometers for molecular rotational spectroscopy. High-speed digital electronics, both arbitrary waveform generators and digitizers, continue on a Moore's Law-like development cycle that started around 1993 with device bandwidth doubling about every 36 months. These enabling technologies were the key to designing chirped-pulse Fourier transform microwave (CP-FTMW) spectrometers which offer significant sensitivity enhancements for broadband spectrum acquisition in molecular rotational spectroscopy. A special feature of the chirped-pulse spectrometer design is that it is easily implemented at low frequency (below 8 GHz) where Balle-Flygare type spectrometers with Fabry-Perot cavity designs become technologically challenging due to the mirror size requirements. The capabilities of CP-FTMW spectrometers for studies of molecular structure will be illustrated by the collaborative research effort we have been a part of to determine the structures of water clusters - a project which has identified clusters up to the pentadecamer. A second technology trend that impacts molecular rotational spectroscopy is the development of high power, solid state sources in the mm-wave/THz regions. Results from the field of mm-wave chirped-pulse Fourier transform spectroscopy will be described with an emphasis on new problems in chemical dynamics and analytical chemistry that these methods can tackle. The third (and potentially most important) technological trend is the reduction of microwave components to chip level using monolithic microwave integrated circuits (MMIC) - a technology driven by an enormous mass market in communications. Some recent advances in rotational spectrometer designs that incorporate low-cost components will be highlighted. The challenge to the high-resolution spectroscopy community - as posed by Frank De

  9. Electron-probe microanalysis: x-ray spectroscopy

    International Nuclear Information System (INIS)

    1987-01-01

    The main principles on X-ray, energy and wave length dispersive spectroscopy are reviewed. In order to allow the choice of the best operating conditions, the importance of the regulation and control systems is underlined. Emission theory, X-rays nature and its interaction with matter and electrons in the matter is shown. The structure, operating procedures and necessary electronics (single channel - analysis chain) automatic-control system for the threshold-energies discrimination and the energy distribution visualization) associated to the wavelength dispersive spectroscopy are described. The focusing control, resolution, influence of chemical bonds and multilayer-structure monochromators relaled to wavelength dispersive spectroscopy are studied. Concerning the energy-dispersive spectroscopy, the detector, preamplifier, amplifier, analog-digital converter, as well as the utilization and control of the spectrometer are described. Problems and instrumental progress on energy-dispersive spectroscopy related to the electronic-noise control, charge collection and light-elements detection are discussed [fr

  10. Two-colour dip spectroscopy of jet-cooled molecules

    Science.gov (United States)

    Ito, Mitsuo

    In optical-optical double resonance spectroscopy, the resonance transition from an intermediate state to a final state can be detected by a dip of the signal (fluorescence or ion) associated with the intermediate state. This method probing the signal of the intermediate state may be called `two-colour dip spectroscopy'. Various kinds of two-colour dip spectroscopy such as two-colour fluorescence/ion dip spectroscopy, two-colour ionization dip spectroscopy employing stimulated emission, population labelling spectroscopy and mass-selected ion dip spectroscopy with dissociation were briefly described, paying special attention to their characteristics in excitation, detection and application. They were extensively and successfully applied to jet-cooled large molecules and provided us with new useful information on the energy and dynamics of excited molecules.

  11. Fast antihydrogen beam spectroscopy

    International Nuclear Information System (INIS)

    Neumann, R.

    1989-01-01

    The motivation for production and precision spectroscopy of antihydrogen atoms is outlined. An experimental configuration is considered, concerning laser-microwave spectroscopy of a fast hydrogen beam with characteristics similar to those of an antihydrogen beam emanating from an antiproton-positron overlap region in an antiproton storage ring. In particular, a possible experiment for the measurement of the ground state hyperfine structure splitting is described. (orig.)

  12. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    Energy Technology Data Exchange (ETDEWEB)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin [eds.

    2012-07-01

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  13. Advanced techniques for actinide spectroscopy (ATAS 2012). Abstract book

    International Nuclear Information System (INIS)

    Foerstendorf, Harald; Mueller, Katharina; Steudtner, Robin

    2012-01-01

    The abstract book of the International workshop on advanced techniques for actinide spectroscopy (ATAS 2012) include contributions concerning the following issues: environmental applications, NMR spectroscopy, vibrational spectroscopy, X-ray spectroscopy and theory, technical application: separation processes, emission spectroscopy.

  14. Ultrafast surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Keller, Emily L; Brandt, Nathaniel C; Cassabaum, Alyssa A; Frontiera, Renee R

    2015-08-07

    Ultrafast surface-enhanced Raman spectroscopy (SERS) with pico- and femtosecond time resolution has the ability to elucidate the mechanisms by which plasmons mediate chemical reactions. Here we review three important technological advances in these new methodologies, and discuss their prospects for applications in areas including plasmon-induced chemistry and sensing at very low limits of detection. Surface enhancement, arising from plasmonic materials, has been successfully incorporated with stimulated Raman techniques such as femtosecond stimulated Raman spectroscopy (FSRS) and coherent anti-Stokes Raman spectroscopy (CARS). These techniques are capable of time-resolved measurement on the femtosecond and picosecond time scale and can be used to follow the dynamics of molecules reacting near plasmonic surfaces. We discuss the potential application of ultrafast SERS techniques to probe plasmon-mediated processes, such as H2 dissociation and solar steam production. Additionally, we discuss the possibilities for high sensitivity SERS sensing using these stimulated Raman spectroscopies.

  15. Handbook of Molecular Force Spectroscopy

    CERN Document Server

    Noy, Aleksandr

    2008-01-01

    "...Noy's Handbook of Molecular Force Spectroscopy is both a timely and useful summary of fundamental aspects of molecular force spectroscopy, and I believe it would make a worthwhile addition to any good scientific library. New research groups that are entering this field would be well advisedto study this handbook in detail before venturing into the exciting and challenging world of molecular force spectroscopy." Matthew F. Paige, University of Saskatchewan, Journal of the American Chemical Society Modern materials science and biophysics are increasingly focused on studying and controlling intermolecular interactions on the single-molecule level. Molecular force spectroscopy was developed in the past decade as the result of several unprecedented advances in the capabilities of modern scientific instrumentation, and defines a number of techniques that use mechanical force measurements to study interactions between single molecules and molecular assemblies in chemical and biological systems. Examples of these...

  16. Recommendations concerning magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    1986-01-01

    In medicine the technique of nuclear magnetic resonance (NMR) is applied in the form of in vivo nuclear magnetic resonance spectroscopy (MRS). In vivo MRS can be carried out non-invasively. The committee of the Dutch Health Council briefly discusses the qualities and potentialities of the nuclei that will probably be used in future clinical spectroscopy: 31 P, 13 C, 1 H (and possibly 19 F and 23 Na). The committee discusses several possibilities of combining imaging and spectroscopy. The imaging of nuclei other than protons is also possible with MRS. Potential applications are considered in oncology, cardiology, neurology and hepatology. (Auth.)

  17. Photoemission spectroscopy using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobayashi, K.L.I.

    1980-01-01

    It is an epoch making event for photoemission spectroscopy that the light sources of continuous wavelength from vacuum ultra-violet to X-ray region have become available by the advent of synchrotron radiation. Specifically the progress after stable intense light has become obtainable from storage rings is very significant. One of the features of these synchrotron radiation is its extreme polarization of radiating pattern. Though the elementary processes of photoemission out of solids are the basic themes, phenomenalistic 3-stage model is usually applied to the analysis of experiments. In this model, the process of photoemission is considered by dividing into three stages, namely the generation of photoelectrons due to optical transition between electron status -- the transportation of photoelectrons to solid surfaces -- breaking away from the surfaces. The spectrometers, the energy analyzers of photoelectrons, and sample-preparing room used for photoemission spectroscopy are described. Next, energy distribution curves are explained. At the end, photoelectron yield spectroscopy, CFS (constant final energy spectroscopy) and CIS (constant initial energy spectroscopy), Auger yield and interatomic Auger yield, the determination of surface structure by normal emission CIS, and surface EXAFS (extended X-ray absorption fine structure) are described. As seen above, the application specifically to surface physics is promising in the future. (Wakatsuki, Y.)

  18. Mass spectroscopy of recoiled ions, secondary ion mass spectroscopy, and Auger electron spectroscopy investigation of Y2O3-stabilized ZrO2(100) and (110)

    International Nuclear Information System (INIS)

    Herman, G.S.; Henderson, M.A.; Starkweather, K.A.; McDaniel, E.P.

    1999-01-01

    We have studied the (100) and (110) surfaces of yttria-stabilized cubic ZrO 2 using Auger electron spectroscopy, low energy electron diffraction (LEED), direct recoil spectroscopy, mass spectroscopy of recoiled ions (MSRI), and secondary ion mass spectroscopy (SIMS). The concentration of yttrium at the surface was weakly influenced by the surface structure under the experimental conditions investigated. Both MSRI and SIMS indicated a more enhanced yttrium signal than zirconium signal at the surface compared to the respective bulk concentrations. The surfaces were not very well ordered as indicated by LEED. The yttria-stabilized cubic ZrO 2 single crystal surfaces may not be a suitable model material for pure phase ZrO 2 surfaces due to significant yttria concentrations at the surface. copyright 1999 American Vacuum Society

  19. Theory and spectroscopy

    Science.gov (United States)

    Stanton, John F.

    2015-05-01

    The interaction between quantum-mechanical theory and spectroscopy is one of the most fertile interfaces in all of science, and has a richly storied history. Of course it was spectroscopy that provided essentially all of the evidence that not all was well (or, perhaps more correctly put, complete) with the world of 19th century classical physics. From the discoveries of the dark lines in the solar spectrum by Fraunhöfer in 1814 to the curiously simple geometric formula discovered seventy years later that described the hydrogen atom spectrum, spectroscopy and spectroscopists have consistently identified the areas of atomic and molecular science that are most in need of hard thinking by theoreticians. The rest of the story, of course, is well-known: spectroscopic results were used to understand and motivate the theory of radioactivity and ultimately the quantum theory, first in its immature form that was roughly contemporaneous with the first World War, and then the Heisenberg-Schrödinger-Dirac version that has withstood the test of time. Since the basic principles of quantum mechanics ware first understood, the subject has been successfully used to understand the patterns found in spectra, and how these relate to molecular structure, symmetry, energy levels, and dynamics. But further understanding required to attain these intellectual achievements has often come only as a result of vital and productive interactions between theoreticians and spectroscopists (of course, many people have strengths in both areas). And indeed, a field that might be termed "theoretical spectroscopy" was cultivated and is now an important part of modern molecular science.

  20. Proceedings of the Third Symposium Optical Spectroscopy SOS-84

    International Nuclear Information System (INIS)

    Fassler, D.; Feller, K.H.; Wilhelmi, B.

    1985-01-01

    The main topics of the symposium were: 1) new developments and applications of laser spectroscopy including time resolved UV/VIS spectroscopy, time resolved fluorescence spectroscopy, and laser Raman spectroscopy, 2) dynamics and photokinetics of molecular systems, and 3) spectroscopy and photoprocesses in organized biological systems

  1. Solid-State Spectroscopy An Introduction

    CERN Document Server

    Kuzmany, Hans

    2009-01-01

    Spectroscopic methods have opened up a new horizon in our knowledge of solid-state materials. Numerous techniques using electromagnetic radiation or charged and neutral particles have been invented and worked out to a high level in order to provide more detailed information on the solids. The text presented here is an updated description of such methods as they were originally presented in the first edition. It covers linear response of solids to electromagnetic radiation in a frequency range extending from megahertz or gigahertz as used in spin resonance spectroscopy, to infrared spectroscopy and various forms of spectroscopy in the visible and near visible spectral range. It extends to spectroscopy in the UV and x-ray spectral range and eventually several spectroscopic methods are addressed in the frequency range of g radiation. Likewise linear response to irradiation with particles such as electrons, positrons, muons, neutrons, and atoms is discussed. Instrumental and technical background is provided as we...

  2. Call for papers for special issue of Journal of Molecular Spectroscopy focusing on "Frequency-comb spectroscopy"

    Science.gov (United States)

    Foltynowicz, Aleksandra; Picqué, Nathalie; Ye, Jun

    2018-05-01

    Frequency combs are becoming enabling tools for many applications in science and technology, beyond the original purpose of frequency metrology of simple atoms. The precisely evenly spaced narrow lines of a laser frequency comb inspire intriguing approaches to molecular spectroscopy, designed and implemented by a growing community of scientists. Frequency-comb spectroscopy advances the frontiers of molecular physics across the entire electro-magnetic spectrum. Used as frequency rulers, frequency combs enable absolute frequency measurements and precise line shape studies of molecular transitions, for e.g. tests of fundamental physics and improved determination of fundamental constants. As light sources interrogating the molecular samples, they dramatically improve the resolution, precision, sensitivity and acquisition time of broad spectral-bandwidth spectroscopy and open up new opportunities and applications at the leading edge of molecular spectroscopy and sensing.

  3. Coherent cavity-enhanced dual-comb spectroscopy

    OpenAIRE

    Fleisher, Adam J.; Long, David A.; Reed, Zachary D.; Hodges, Joseph T.; Plusquellic, David F.

    2016-01-01

    Dual-comb spectroscopy allows for the rapid, multiplexed acquisition of high-resolution spectra without the need for moving parts or low-resolution dispersive optics. This method of broadband spectroscopy is most often accomplished via tight phase locking of two mode-locked lasers or via sophisticated signal processing algorithms, and therefore, long integration times of phase coherent signals are difficult to achieve. Here we demonstrate an alternative approach to dual-comb spectroscopy usin...

  4. Vibrational spectroscopy in the electron microscope.

    Science.gov (United States)

    Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A

    2014-10-09

    Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.

  5. Raman Spectroscopy and its Application in Nanostructures

    CERN Document Server

    Zhang, Shu-Lin

    2012-01-01

    Raman Spectroscopy and its Application in Nanostructures is an original and timely contribution to a very active area of physics and materials science research. This book presents the theoretical and experimental phenomena of Raman spectroscopy, with specialized discussions on the physical fundamentals, new developments and main features in low-dimensional systems of Raman spectroscopy. In recent years physicists, materials scientists and chemists have devoted increasing attention to low-dimensional systems and as Raman spectroscopy can be used to study and analyse such materials as carbon nan

  6. Nanometrology using localized surface plasmon resonance spectroscopy

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Lindstedt, Daniel N.; Laurberg, Asger V.

    2013-01-01

    in a transmission spectrum and it is very sensitive to the constituent materials as well as both lateral and vertical dimensions of the structures. This makes LSPR spectroscopy interesting for a number of applications including nanometrology. Like scatterometry, LSPR spectroscopy requires test structures...... and computer simulations to establish the correlation between spectra and physical dimensions. Instead of measuring on individual structures like CD-SEM and AFM, LSPR spectroscopy measures on an array of test structures with an arbitrary array size. This makes LSPR spectroscopy particularly interesting...... for dense device layers where the vacant space for test structures is limited.In this work, LSPR spectroscopy is used to evaluate a fabrication process including imprinting, etching and metallisation of gammadion test structures distributed on a 4” wafer....

  7. Applications of core level spectroscopy to adsorbates

    International Nuclear Information System (INIS)

    Nilsson, Anders

    2002-01-01

    In the following review different applications of core-level spectroscopy to atomic and molecular adsorbates will be shown. Core-holes are created through core-level ionization and X-ray absorption processes and the core-hole decays by radiant and non-radiant processes. This forms the basis for X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, Auger electron spectroscopy and X-ray emission spectroscopy. We will demonstrate how we can use the different methods to obtain information about the chemical state, local geometric structure, nature of chemical bonding and dynamics in electron transfer processes. The adsorption of N 2 and CO on Ni(100) will be used as prototype systems for chemisorption while N 2 on graphite and Ar on Pt for physisorption

  8. Ultrafast infrared vibrational spectroscopy

    CERN Document Server

    Fayer, Michael D

    2013-01-01

    The past ten years or so have seen the introduction of multidimensional methods into infrared and optical spectroscopy. The technology of multidimensional spectroscopy is developing rapidly and its applications are spreading to biology and materials science. Edited by a recognized leader in the field and with contributions from top researchers, including experimentalists and theoreticians, this book presents the latest research methods and results and will serve as an excellent resource for other researchers.

  9. Spectroscopy, Understanding the Atom Series.

    Science.gov (United States)

    Hellman, Hal

    This booklet is one of the "Understanding the Atom" Series. The science of spectroscopy is presented by a number of topics dealing with (1) the uses of spectroscopy, (2) its origin and background, (3) the basic optical systems of spectroscopes, spectrometers, and spectrophotometers, (4) the characteristics of wave motion, (5) the…

  10. Boiling water reactor radiation shielded Control Rod Drive Housing Supports

    Energy Technology Data Exchange (ETDEWEB)

    Baversten, B.; Linden, M.J. [ABB Combustion Engineering Nuclear Operations, Windsor, CT (United States)

    1995-03-01

    The Control Rod Drive (CRD) mechanisms are located in the area below the reactor vessel in a Boiling Water Reactor (BWR). Specifically, these CRDs are located between the bottom of the reactor vessel and above an interlocking structure of steel bars and rods, herein identified as CRD Housing Supports. The CRD Housing Supports are designed to limit the travel of a Control Rod and Control Rod Drive in the event that the CRD vessel attachement went to fail, allowing the CRD to be ejected from the vessel. By limiting the travel of the ejected CRD, the supports prevent a nuclear overpower excursion that could occur as a result of the ejected CRD. The Housing Support structure must be disassembled in order to remove CRDs for replacement or maintenance. The disassembly task can require a significant amount of outage time and personnel radiation exposure dependent on the number and location of the CRDs to be changed out. This paper presents a way to minimize personal radiation exposure through the re-design of the Housing Support structure. The following paragraphs also delineate a method of avoiding the awkward, manual, handling of the structure under the reactor vessel during a CRD change out.

  11. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Bosch, A.

    1982-01-01

    In this work examples of the various aspects of photoelectron spectroscopy are given. The investigation was started with the development of an angle-resolved spectrometer so that the first chapters deal with angle-resolved ultra-violet photoelectron spectroscopy. To indicate the possibilities and pitfalls of the technique, in chapter II the theory is briefly reviewed. In chapter III the instrument is described. The system is based on the cylindrical mirror deflection analyzer, which is modified and improved for angle-resolved photoelectron spectroscopy. In combination with a position sensitive detector, a spectrometer is developed with which simultaneously several angle-resolved spectra can be recorded. In chapter IV, the results are reported of angle-integrated UPS experiments on dilute alloys. Using the improved energy resolution of the instrument the author was able to study the impurity states more accurately and shows that the photoemission technique has become an important tool in the study of impurities and the interactions involved. XPS and Auger results obtained from dilute alloys are presented in chapter V. It is shown that these systems are especially suited for the study of correlation effects and can provide interesting problems related to the satellite structure and the interaction of the impurity with the host. In chapter VI, the valence bands of ternary alloys are studied with UPS and compared to recent band structure calculation. The core level shifts are analyzed in a simple, thermodynamic scheme. (Auth.)

  12. Fluorescence fluctuation spectroscopy (FFS), part A

    CERN Document Server

    Tetin, Sergey

    2013-01-01

    This new volume of Methods in Enzymology continues the legacy of this premier serial by containing quality chapters authored by leaders in the field. This volume covers Fluorescence Fluctuation SpectroscopyContains chapters on such topics as Time-integrated fluorescence cumulant analysis, Pulsed Interleaved Excitation, and raster image correlation spectroscopy and number and brightness analysis.Continues the legacy of this premier serial with quality chapters authored by leaders in the fieldCovers fluorescence fluctuation spectroscopyContains chapte

  13. Photoelectron spectroscopy and Auger electron spectroscopy of solids and surfaces

    International Nuclear Information System (INIS)

    Kowalczyk, S.P.

    1976-01-01

    The use of photoelectron spectroscopy, primarily x-ray photoelectron spectroscopy, to obtain information on the electronic structure of a wide variety of solids (especially the bulk electronic structure of solids) is covered. Both valence band and core-level spectra, as well as a few cases of photon excited Auger electron spectroscopy, are employed in the investigations to derive information on N(E). The effect of several modulations inherent in the measured I(E)'s, such as final state band structure, cross section, and relaxation, is discussed. Examples of many-electron interactions in PES are given. Some experimental aspects of PES and AES studies are given with emphasis on sample preparation techniques. Multiple splitting of core levels is examined using the Mn levels in MnF 2 as a detailed case study. Core level splittings in transition metals, rare earth metals, transition metal halides and several alloys are also reported. The application of PES to the study of the chemical bond in some crystalline semiconductors and insulators, A/sup N/B/sup 8-N/ and A/sup N/B/sup 10-N/ compounds is treated, and a spectroscopic scale of ionicity for these compounds is developed from the measured ''s-band'' splitting in the valence band density of states

  14. Greenhouse Gas Dynamics in a Salt-Wedge Estuary Revealed by High Resolution Cavity Ring-Down Spectroscopy Observations.

    Science.gov (United States)

    Tait, Douglas R; Maher, Damien T; Wong, WeiWen; Santos, Isaac R; Sadat-Noori, Mahmood; Holloway, Ceylena; Cook, Perran L M

    2017-12-05

    Estuaries are an important source of greenhouse gases to the atmosphere, but uncertainties remain in the flux rates and production pathways of greenhouse gases in these dynamic systems. This study performs simultaneous high resolution measurements of the three major greenhouse gases (carbon dioxide, methane, and nitrous oxide) as well as carbon stable isotope ratios of carbon dioxide and methane, above and below the pycnocline along a salt wedge estuary (Yarra River estuary, Australia). We identified distinct zones of elevated greenhouse gas concentrations. At the tip of salt wedge, average CO 2 and N 2 O concentrations were approximately five and three times higher than in the saline mouth of the estuary. In anaerobic bottom waters, the natural tracer radon ( 222 Rn) revealed that porewater exchange was the likely source of the highest methane concentrations (up to 1302 nM). Isotopic analysis of CH 4 showed a dominance of acetoclastic production in fresh surface waters and hydrogenotrophic production occurring in the saline bottom waters. The atmospheric flux of methane (in CO 2 equivalent units) was a major (35-53%) contributor of atmospheric radiative forcing from the estuary, while N 2 O contributed <2%. We hypothesize that the release of bottom water gases when stratification episodically breaks down will release large pulses of greenhouse gases to the atmosphere.

  15. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matries; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  16. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matrices; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  17. Combination of laser-induced breakdown spectroscopy and Raman spectroscopy for multivariate classification of bacteria

    Czech Academy of Sciences Publication Activity Database

    Procházka, D.; Mazura, M.; Samek, Ota; Rebrošová, K.; Pořízka, P.; Klus, J.; Procházková, P.; Novotný, J.; Novotný, K.; Kaiser, J.

    2018-01-01

    Roč. 139 (2018), s. 6-12 ISSN 0584-8547 R&D Projects: GA ČR(CZ) GA15-20645S; GA ČR(CZ) GA16-12477S; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : laser-induced breakdown spectroscopy * Raman spectroscopy * chemometrics * bacteria Impact factor: 3.241, year: 2016

  18. Laser spectroscopy

    International Nuclear Information System (INIS)

    Letokhov, V.S.

    1981-01-01

    This article describes recent progress in the application of laser atomic spectroscopy to study parameters of nuclei available in very small quantities; radioactive nuclei, rare isotopes, nuclear isomers, etc, for which study by conventional spectroscopic methods is difficult. (author)

  19. Spectroscopy Division progress report (July 1992-June 1993)

    International Nuclear Information System (INIS)

    Singh, Mahavir

    1994-01-01

    The research and development activities of the Spectroscopy Division during the year July 1992-June 1993 are reported in the form of individual summaries. These are arranged under the headings: (1) analytical spectroscopy, (2) infrared and Raman spectroscopy, (3) atomic spectra, (4) electronic spectra, (5) laser spectroscopy, (6) synchrotron beam foil and plasma spectroscopy, (7) optics, (8) electronics and instrumentation, and (9) design, fabrication and workshop etc. The list of publications and papers presented at the various conferences, symposia, workshops etc. by the staff members of the Division during the report period is also given. (author)

  20. A simple decay-spectroscopy station at CRIS-ISOLDE

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, K.M., E-mail: kara.marie.lynch@cern.ch [KU Leuven, Instituut voor Kern, en Stralingsfysica, BE-3001 Leuven (Belgium); EP Department, CERN, CH-1211 Geneva 23 (Switzerland); Cocolios, T.E. [KU Leuven, Instituut voor Kern, en Stralingsfysica, BE-3001 Leuven (Belgium); School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Althubiti, N. [School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Farooq-Smith, G.J. [KU Leuven, Instituut voor Kern, en Stralingsfysica, BE-3001 Leuven (Belgium); School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Gins, W. [KU Leuven, Instituut voor Kern, en Stralingsfysica, BE-3001 Leuven (Belgium); Smith, A.J. [School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2017-02-01

    A new decay-spectroscopy station (DSS2.0) has been designed by the CRIS collaboration for use at the radioactive ion beam facility, ISOLDE. With the design optimised for both charged-particle and γ-ray detection, the DDS2.0 allows high-efficiency decay spectroscopy to be performed. The DSS2.0 complements the existing decay-spectroscopy system at the CRIS experiment, and together provide the ability to perform laser-assisted nuclear decay spectroscopy on both ground state and long-lived isomeric species. This paper describes the new decay-spectroscopy station and presents the characterisation studies that have recently been performed.

  1. Bioimpedance Spectroscopy

    DEFF Research Database (Denmark)

    Klösgen, Beate; Rümenapp, Christine; Gleich, Bernhard

    2011-01-01

    causes relaxation processes with characteristic contributions to the frequency-dependent complex dielectric constant. These dipolar relaxations were initially described by Debye (Polare Molekeln 1929). They are the basis of impedance spectroscopy (K’Owino and Sadik Electroanalysis 17(23):2101–2113, 2005...

  2. Binary and ternary recombination of para-H3(+) and ortho-H3(+) with electrons: state selective study at 77-200 K.

    Science.gov (United States)

    Dohnal, Petr; Hejduk, Michal; Varju, Jozef; Rubovič, Peter; Roučka, Štěpán; Kotrík, Tomáš; Plašil, Radek; Glosík, Juraj; Johnsen, Rainer

    2012-06-28

    Measurements in H(3)(+) afterglow plasmas with spectroscopically determined relative abundances of H(3)(+) ions in the para-nuclear and ortho-nuclear spin states provide clear evidence that at low temperatures (77-200 K) para-H(3)(+) ions recombine significantly faster with electrons than ions in the ortho state, in agreement with a recent theoretical prediction. The cavity ring-down absorption spectroscopy used here provides an in situ determination of the para/ortho abundance ratio and yields additional information on the translational and rotational temperatures of the recombining ions. The results show that H(3)(+) recombination with electrons occurs by both binary recombination and third-body (helium) assisted recombination, and that both the two-body and three-body rate coefficients depend on the nuclear spin states. Electron-stabilized (collisional-radiative) recombination appears to make only a small contribution.

  3. Binary and ternary recombination of para-H3+ and ortho-H3+ with electrons: State selective study at 77-200 K

    Science.gov (United States)

    Dohnal, Petr; Hejduk, Michal; Varju, Jozef; Rubovič, Peter; Roučka, Štěpán; Kotrík, Tomáš; Plašil, Radek; Glosík, Juraj; Johnsen, Rainer

    2012-06-01

    Measurements in H_3^+ afterglow plasmas with spectroscopically determined relative abundances of H_3^+ ions in the para-nuclear and ortho-nuclear spin states provide clear evidence that at low temperatures (77-200 K) para-H_3^+ ions recombine significantly faster with electrons than ions in the ortho state, in agreement with a recent theoretical prediction. The cavity ring-down absorption spectroscopy used here provides an in situ determination of the para/ortho abundance ratio and yields additional information on the translational and rotational temperatures of the recombining ions. The results show that H_3^+ recombination with electrons occurs by both binary recombination and third-body (helium) assisted recombination, and that both the two-body and three-body rate coefficients depend on the nuclear spin states. Electron-stabilized (collisional-radiative) recombination appears to make only a small contribution.

  4. THz spectroscopy of liquids – applications and future challenges

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Cooke, David; Møller, Uffe

    2009-01-01

    transmission spectroscopy of pressed pellets for the investigation of powder materials and wafer-like samples for spectroscopy of bulk and nanostructured semiconductor materials. Reflection-type spectroscopy is applied using plane interfaces for the study of liquids [1,2,3]. However, quantitative spectroscopy...

  5. Terahertz Spectroscopy and Imaging

    CERN Document Server

    Zeitler, Axel; Kuwata-Gonokami, Makoto

    2013-01-01

    "This book presents the current state of knowledge in the field of terahertz spectroscopy, providing a comprehensive source of information for beginners and experienced researchers alike whose interests lie in this area. The book aims to explain the fundamental physics that underpins terahertz  technology and to describe its key applications. Highlights of scientific research in the field of terahertz science are also outlined in some chapters, providing an overview as well as giving an insight into future directions for research.  Over the past decade terahertz spectroscopy has developed into one of the most rapidly growing areas of its kind, gaining an important impact across a wide range of scientific disciplines. Due to substantial advances in femtosecond laser technology, terahertz time-domain spectroscopy (THz-TDS) has established itself as the dominant spectroscopic technique for experimental scientists interested in measurements at this frequency range. In solids and liquids THz radiation is in reso...

  6. UV-VIS absorption spectroscopy: Lambert-Beer reloaded

    Science.gov (United States)

    Mäntele, Werner; Deniz, Erhan

    2017-02-01

    UV-VIS absorption spectroscopy is used in almost every spectroscopy laboratory for routine analysis or research. All spectroscopists rely on the Lambert-Beer Law but many of them are less aware of its limitations. This tutorial discusses typical problems in routine spectroscopy that come along with technical limitations or careless selection of experimental parameters. Simple rules are provided to avoid these problems.

  7. Change of mechanisms of control bars, an activity of high performance in the twelve recharge of the Unit 1

    International Nuclear Information System (INIS)

    Serrano R, H.

    2007-01-01

    One of the activities that are carried out during the fuel loading stage in the reactors of the Laguna Verde Power station (CNLV), it is the change of the control bar mechanisms (CRDs); the importance of giving maintenance to these mechanisms of control bars is that they should be reliable during the reactor operation. The insert of the control bars at one time of less than 7 seconds, it is the time required to carry out a sure reactor shutdown either of automatic way or manual by the operator action this insert of the control bars is through the CRDs that work them completely to insert negative reactivity to the reactor core. In this insert of the bars the neutrons are absorbed that maintain the reaction of self-sustained fission. The neutron absorber material in the control bars is a mixture of boron-gadolinium. It is also through the extraction of control bars like the fission reaction is controlled by means of the neutron density in the core. Extracting the control bars in form controlled by the operator is known as positive reactivity. This activity, that of the change of CRDs can only be carried out in the reload stage, that is to say, when the reactor is out one. The complexity of carrying out the change of those CRDs by its complexity as for radiological support that it demands, has taken to that the involved personnel acquires an experience and ability that it has allowed it to have a high performance. The importance of having this experience and ability, in the following generations, is fundamental for the CNLV, since that it requires to account with personal properly prepared, taking into account that the Safety is our maximum priority. The use of ALARA tools like devices with extension to maintain the distance of the source are key to optimize the personnel's dose; it is also key the support tools of the last technologies like the tele dosimetry, the television closed circuit (CCTV), the bubble suits for the extraction of the CRDs by the inferior part

  8. Change of mechanisms of control bars, an activity of high performance in the twelve recharge of the Unit 1; Cambio de mecanismos de barras de control, una actividad de alto desempeno en la doceava recarga de la Unidad 1

    Energy Technology Data Exchange (ETDEWEB)

    Serrano R, H. [Gerencia de Centrales Nucleares, Km. 62.5, Car. 180 Cardel-Nautla, Alto Lucero, Veracruz (Mexico)]. e-mail: hsr98581@cfe.gob.mx

    2007-07-01

    One of the activities that are carried out during the fuel loading stage in the reactors of the Laguna Verde Power station (CNLV), it is the change of the control bar mechanisms (CRDs); the importance of giving maintenance to these mechanisms of control bars is that they should be reliable during the reactor operation. The insert of the control bars at one time of less than 7 seconds, it is the time required to carry out a sure reactor shutdown either of automatic way or manual by the operator action this insert of the control bars is through the CRDs that work them completely to insert negative reactivity to the reactor core. In this insert of the bars the neutrons are absorbed that maintain the reaction of self-sustained fission. The neutron absorber material in the control bars is a mixture of boron-gadolinium. It is also through the extraction of control bars like the fission reaction is controlled by means of the neutron density in the core. Extracting the control bars in form controlled by the operator is known as positive reactivity. This activity, that of the change of CRDs can only be carried out in the reload stage, that is to say, when the reactor is out one. The complexity of carrying out the change of those CRDs by its complexity as for radiological support that it demands, has taken to that the involved personnel acquires an experience and ability that it has allowed it to have a high performance. The importance of having this experience and ability, in the following generations, is fundamental for the CNLV, since that it requires to account with personal properly prepared, taking into account that the Safety is our maximum priority. The use of ALARA tools like devices with extension to maintain the distance of the source are key to optimize the personnel's dose; it is also key the support tools of the last technologies like the tele dosimetry, the television closed circuit (CCTV), the bubble suits for the extraction of the CRDs by the inferior

  9. Raman Spectroscopy for Homeland Security Applications

    Directory of Open Access Journals (Sweden)

    Gregory Mogilevsky

    2012-01-01

    Full Text Available Raman spectroscopy is an analytical technique with vast applications in the homeland security and defense arenas. The Raman effect is defined by the inelastic interaction of the incident laser with the analyte molecule’s vibrational modes, which can be exploited to detect and identify chemicals in various environments and for the detection of hazards in the field, at checkpoints, or in a forensic laboratory with no contact with the substance. A major source of error that overwhelms the Raman signal is fluorescence caused by the background and the sample matrix. Novel methods are being developed to enhance the Raman signal’s sensitivity and to reduce the effects of fluorescence by altering how the hazard material interacts with its environment and the incident laser. Basic Raman techniques applicable to homeland security applications include conventional (off-resonance Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS, resonance Raman spectroscopy, and spatially or temporally offset Raman spectroscopy (SORS and TORS. Additional emerging Raman techniques, including remote Raman detection, Raman imaging, and Heterodyne imaging, are being developed to further enhance the Raman signal, mitigate fluorescence effects, and monitor hazards at a distance for use in homeland security and defense applications.

  10. Determining the Authenticity of Gemstones Using Raman Spectroscopy

    Science.gov (United States)

    Aponick, Aaron; Marchozzi, Emedio; Johnston, Cynthia R.; Wigal, Carl T.

    1998-04-01

    The benefits of laser spectroscopy in the undergraduate curriculum have been the focus of several recent articles in this journal. Raman spectroscopy has been of particular interest since the similarities of Raman to conventional infrared spectroscopy make the interpretation of spectral data well within undergraduate comprehension. In addition, the accessibility to this technology is now within the reach of most undergraduate institutions. This paper reports the development of an experiment using Raman spectroscopy which determines the authenticity of both diamonds and pearls. The resulting spectra provide an introduction to vibrational spectroscopy and can be used in a variety of laboratory courses ranging from introductory chemistry to instrumental analysis.

  11. Raman spectroscopy

    Science.gov (United States)

    Raman spectroscopy has gained increased use and importance in recent years for accurate and precise detection of physical and chemical properties of food materials, due to the greater specificity and sensitivity of Raman techniques over other analytical techniques. This book chapter presents Raman s...

  12. First results of cavity ring down signals from exhaled air

    Science.gov (United States)

    Revalde, G.; Grundšteins, K.; Alnis, J.; Skudra, A.

    2017-12-01

    In this paper we report first results from the developed cavity ring-down spectrometer for application in human breath analysis for the diagnostics of diabetes and later for early detection of lung cancer. Our cavity ring-down spectrometer works in UV region with pulsed Nd:YAG laser at 266 nm wavelength. First experiments allow us to determine acetone and benzene at the level bellow ppm. In our experiment, first results from breath samples from volunteers after doing different activities were collected and examined. Influence of the smoking on the breath signals also was examined.

  13. Atomic spectroscopy sympsoium, Gaithersburg, Maryland, September 23--26, 1975

    International Nuclear Information System (INIS)

    1975-01-01

    Abstracts of one hundred papers given at the conference are presented along with the conference program and an author index. Session topics include: highly ionized atoms; laser spectroscopy and hyperfine structure; complex spectra; laser spectroscopy, radiation theory; theory of highly ionized atoms and analysis of plasmas; plasma spectroscopy, line strengths; spectral analysis, instrumentation, reference wavelengths; beam foil spectroscopy, line strengths, energy levels; absorption spectroscopy, autoionization, and related theory; and spectral analysis, instrumentation, and VUV physics

  14. Emerging technology: applications of Raman spectroscopy for prostate cancer.

    Science.gov (United States)

    Kast, Rachel E; Tucker, Stephanie C; Killian, Kevin; Trexler, Micaela; Honn, Kenneth V; Auner, Gregory W

    2014-09-01

    There is a need in prostate cancer diagnostics and research for a label-free imaging methodology that is nondestructive, rapid, objective, and uninfluenced by water. Raman spectroscopy provides a molecular signature, which can be scaled from micron-level regions of interest in cells to macroscopic areas of tissue. It can be used for applications ranging from in vivo or in vitro diagnostics to basic science laboratory testing. This work describes the fundamentals of Raman spectroscopy and complementary techniques including surface enhanced Raman scattering, resonance Raman spectroscopy, coherent anti-Stokes Raman spectroscopy, confocal Raman spectroscopy, stimulated Raman scattering, and spatially offset Raman spectroscopy. Clinical applications of Raman spectroscopy to prostate cancer will be discussed, including screening, biopsy, margin assessment, and monitoring of treatment efficacy. Laboratory applications including cell identification, culture monitoring, therapeutics development, and live imaging of cellular processes are discussed. Potential future avenues of research are described, with emphasis on multiplexing Raman spectroscopy with other modalities.

  15. Microresonator soliton dual-comb spectroscopy

    Science.gov (United States)

    Suh, Myoung-Gyun; Yang, Qi-Fan; Yang, Ki Youl; Yi, Xu; Vahala, Kerry J.

    2016-11-01

    Measurement of optical and vibrational spectra with high resolution provides a way to identify chemical species in cluttered environments and is of general importance in many fields. Dual-comb spectroscopy has emerged as a powerful approach for acquiring nearly instantaneous Raman and optical spectra with unprecedented resolution. Spectra are generated directly in the electrical domain, without the need for bulky mechanical spectrometers. We demonstrate a miniature soliton-based dual-comb system that can potentially transfer the approach to a chip platform. These devices achieve high-coherence pulsed mode locking. They also feature broad, reproducible spectral envelopes, an essential feature for dual-comb spectroscopy. Our work shows the potential for integrated spectroscopy with high signal-to-noise ratios and fast acquisition rates.

  16. Chemical sensors based on quantum cascade lasers

    Science.gov (United States)

    Tittel, Frank K.; Kosterev, Anatoliy A.; Rochat, Michel; Beck, Mattias; Faist, Jerome

    2002-09-01

    There is an increasing need in many chemical sensing applications ranging from industrial process control to environmental science and medical diagnostics for fast, sensitive, and selective gas detection based on laser spectroscopy. The recent availability of novel pulsed and cw quantum cascade distributed feedback (QC-DFB) lasers as mid-infrared spectroscopic sources address this need. A number of spectroscopic techniques have been demonstrated. For example, the authors have employed QC-DFB lasers for the monitoring and quantification of several trace gases and isotopic species in ambient air at ppmv and ppbv levels by means of direct absorption, wavelength modulation, cavity enhanced and cavity ringdown spectroscopy. In this work, pulsed thermoelectrically cooled QC-DFB lasers operating at ~15.6 μm were characterized for spectroscopic gas sensing applications. A new method for wavelength scanning based on the repetition rate modulation was developed. A non-wavelength-selective pyroelectric detector was incorporated in the gas sensor giving an advantage of room-temperature operation and low cost. Absorption lines of CO2 and H2O were observed in ambient air providing information about the concentration of these species.

  17. Layman friendly spectroscopy

    Science.gov (United States)

    Sentic, Stipo; Sessions, Sharon

    Affordable consumer grade spectroscopes (e.g. SCiO, Qualcomm Tricorder XPRIZE) are becoming more available to the general public. We introduce the concepts of spectroscopy to the public and K12 students and motivate them to delve deeper into spectroscopy in a dramatic participatory presentation and play. We use diffraction gratings, lasers, and light sources of different spectral properties to provide a direct experience of spectroscopy techniques. Finally, we invite the audience to build their own spectroscope--utilizing the APS SpectraSnapp cell phone application--and study light sources surrounding them in everyday life. We recontextualize the stigma that science is hard (e.g. ``Math, Science Popular Until Students Realize They're Hard,'' The Wall Street Journal) by presenting the material in such a way that it demonstrates the scientific method, and aiming to make failure an impersonal scientific tool--rather than a measure of one's ability, which is often a reason for shying away from science. We will present lessons we have learned in doing our outreach to audiences of different ages. This work is funded by the APS Outreach Grant ``Captain, we have matter matters!'' We thank New Mexico Tech Physics Department and Physics Club for help and technical equipment.

  18. Spectroscopy and optical diagnostics for gases

    CERN Document Server

    Hanson, Ronald K; Goldenstein, Christopher S

    2016-01-01

    This text provides an introduction to the science that governs the interaction of light and matter (in the gas phase). It provides readers with the basic knowledge to exploit the light-matter interaction to develop quantitative tools for gas analysis (i.e. optical diagnostics) and understand and interpret the results of spectroscopic measurements. The authors pair the basics of gas‐phase spectroscopy with coverage of key optical diagnostic techniques utilized by practicing engineers and scientists to measure fundamental flow‐field properties. The text is organized to cover three sub‐topics of gas‐phase spectroscopy: (1) spectral line positions, (2) spectral line strengths, and (3) spectral lineshapes by way of absorption, emission, and scattering interactions. The latter part of the book describes optical measurement techniques and equipment. Key subspecialties include laser induced fluorescence, tunable laser absorption spectroscopy, and wavelength modulation spectroscopy. It is ideal for students an...

  19. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  20. FTIR spectroscopy applications in forensic science

    International Nuclear Information System (INIS)

    Roux, C.; Maynard, P.; Dawson, M.

    1999-01-01

    Infrared spectroscopy, and especially Fourier transform infrared spectroscopy, is a well-established technique in analytical chemistry and finds widespread application in qualitative and quantitative analyses. Infrared spectra depend on the nature of the functional groups present in the analyte, and are generally complex with numerous maxima and minima. These features are useful for comparison purposes and, in most cases, the infrared spectrum of an organic compound is considered as a unique functional print of this compound (i e the infrared spectrum constitutes the chemical signature or fingerprint of an organic compound). Many inorganic substances may also be uniquely identified using infrared spectroscopy. Until recently, infrared spectroscopy was of only limited utility in forensic science, despite its high selectivity. This is because infrared spectroscopy suffered from a lack of sensitivity in its early forms. However, with the advance of modern technology this is no longer the case. The widespread use of microscope attachments, along with numerous new sampling accessories, has overcome most of the previous limitations. For example, with an infrared microscope, it is possible to focus the infrared beam, and therefore select relevant areas of the sample as small as 10 x 10 μm and achieve a measurement in situ. Such a configuration enables the rapid generation of high-resolution spectra from samples of 10 ng. Typical forensic applications include the analysis of single textile fibres, minute paint chips or smears, drugs, laser printer and photocopy toners, polymers and miscellaneous unknown substances. Here we will broadly review the most common applications of infrared spectroscopy in forensic science

  1. Two-dimensional vibrational-electronic spectroscopy

    Science.gov (United States)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  2. Two-dimensional vibrational-electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira, E-mail: mkhalil@uw.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a

  3. Nuclear γ-ray spectroscopy of cool free atoms

    International Nuclear Information System (INIS)

    Rivlin, Lev A

    1999-01-01

    Consideration is given to the capabilities of gamma-ray spectroscopy of the nuclei of free neutral atoms cooled employing modern laser light-pressure techniques. This spectroscopy is comparable with the Mossbauer spectroscopy in respect of the expected resolving power. (laser applications and other topics in quantum electronics)

  4. Chlorococcalean microalgae Ankistrodesmus convolutes biodiesel characterization with Fourier transform-infrared spectroscopy and gas chromatography mass spectroscopy techniques

    Directory of Open Access Journals (Sweden)

    Swati SONAWANE

    2015-12-01

    Full Text Available The Chlorococcalean microalgae Ankistrodesmus convolutes was found in fresh water Godawari reservoir, Ahmednagar district of Maharashtra State, India. Microalgae are modern biomass for the production of liquid biofuel due to its high solar cultivation efficiency. The collection, harvesting and drying processes were play vital role in converting algal biomass into energy liquid fuel. The oil extraction was the important step for the biodiesel synthesis. The fatty acid methyl ester (FAME synthesis was carried through base catalyzed transesterification method. The product was analyzed by using the hyphened techniques like Fourier Transform-Infrared spectroscopy (FT-IR and Gas Chromatography Mass Spectroscopy (GCMS. FT-IR Spectroscopy was results the ester as functional group of obtained product while the Gas Chromatography Mass Spectroscopy was results the six type of fatty acid methyl ester with different concentration. Ankistrodesmus convolutes biodiesel consist of 46.5% saturated and 49.14% unsaturated FAME.

  5. Applications of Raman spectroscopy in life science

    Science.gov (United States)

    Martin, Airton A.; T. Soto, Cláudio A.; Ali, Syed M.; Neto, Lázaro P. M.; Canevari, Renata A.; Pereira, Liliane; Fávero, Priscila P.

    2015-06-01

    Raman spectroscopy has been applied to the analysis of biological samples for the last 12 years providing detection of changes occurring at the molecular level during the pathological transformation of the tissue. The potential use of this technology in cancer diagnosis has shown encouraging results for the in vivo, real-time and minimally invasive diagnosis. Confocal Raman technics has also been successfully applied in the analysis of skin aging process providing new insights in this field. In this paper it is presented the latest biomedical applications of Raman spectroscopy in our laboratory. It is shown that Raman spectroscopy (RS) has been used for biochemical and molecular characterization of thyroid tissue by micro-Raman spectroscopy and gene expression analysis. This study aimed to improve the discrimination between different thyroid pathologies by Raman analysis. A total of 35 thyroid tissues samples including normal tissue (n=10), goiter (n=10), papillary (n=10) and follicular carcinomas (n=5) were analyzed. The confocal Raman spectroscopy allowed a maximum discrimination of 91.1% between normal and tumor tissues, 84.8% between benign and malignant pathologies and 84.6% among carcinomas analyzed. It will be also report the application of in vivo confocal Raman spectroscopy as an important sensor for detecting advanced glycation products (AGEs) on human skin.

  6. Laser-induced breakdown spectroscopy analysis of asbestos

    International Nuclear Information System (INIS)

    Caneve, L.; Colao, F.; Fabbri, F.; Fantoni, R.; Spizzichino, V.; Striber, J.

    2005-01-01

    Laser-induced breakdown spectroscopy was applied to test the possibility of detecting and identifying asbestos in different samples in view of the perspective at field operation without sample preparation which is peculiar to this technique. Several like-resin materials were first investigated by laser-induced breakdown spectroscopy, in order to find an asbestos container assuring safe laboratory operation during the material characterization aimed to identify indicators suitable for a quick identification on field. Successively, spectra of asbestos samples of both in serpentine and amphibole forms were measured and the variability in elemental composition was calculated from the emission spectra. Ratios of intensities of characteristic elements were tested as indicators for asbestos recognition. Laser-induced breakdown spectroscopy results were compared with those obtained by analyzing the same asbestos samples with a scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, a good correlation was found for Mg/Si and Fe/Si, thus showing the capability of laser-induced breakdown spectroscopy as a diagnostic tool for this category of materials. In particular, it was demonstrated that the method based on two indicators derived from laser-induced breakdown spectroscopy intensity ratios allows to discriminate between asbestos and cements in single shot measurements suitable to field operation

  7. Biochemical applications of FT-IR spectroscopy

    NARCIS (Netherlands)

    Pistorius, A.M.A.

    1996-01-01

    This thesis describes the use of (FT-)IR spectroscopy in general biochemical research. In chapter 3, IR spectroscopy is used in the quantitation of residual detergent after reconstitution of an integral membrane protein in a pre-defined lipid matrix. This chapter discusses the choice of the

  8. Adaptive real-time dual-comb spectroscopy

    Science.gov (United States)

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W.

    2014-01-01

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences. PMID:24572636

  9. Adaptive real-time dual-comb spectroscopy

    Science.gov (United States)

    Ideguchi, Takuro; Poisson, Antonin; Guelachvili, Guy; Picqué, Nathalie; Hänsch, Theodor W.

    2014-02-01

    The spectrum of a laser frequency comb consists of several hundred thousand equally spaced lines over a broad spectral bandwidth. Such frequency combs have revolutionized optical frequency metrology and they now hold much promise for significant advances in a growing number of applications including molecular spectroscopy. Despite an intriguing potential for the measurement of molecular spectra spanning tens of nanometres within tens of microseconds at Doppler-limited resolution, the development of dual-comb spectroscopy is hindered by the demanding stability requirements of the laser combs. Here we overcome this difficulty and experimentally demonstrate a concept of real-time dual-comb spectroscopy, which compensates for laser instabilities by electronic signal processing. It only uses free-running mode-locked lasers without any phase-lock electronics. We record spectra spanning the full bandwidth of near-infrared fibre lasers with Doppler-limited line profiles highly suitable for measurements of concentrations or line intensities. Our new technique of adaptive dual-comb spectroscopy offers a powerful transdisciplinary instrument for analytical sciences.

  10. EXAFS-spectroscopy on synchrotron radiation beam

    CERN Document Server

    Aksenov, V L; Kuzmin, A Y; Purans, Y

    2001-01-01

    In the review the basis theoretical principles of EXAFS spectroscopy are given, as one of principal directions of an absorption spectroscopy permitting with a high accuracy to gain parameters of the short-range order in multicomponent amorphous and quasi-crystal mediums. The methods of the analysis of EXAFS spectra with allowance of effects of multiply scattering are featured. The exposition of the experimental set-ups, which realize the method of EXAFS spectroscopy on beams of SR, requirement of the monochromatization of radiation beams are given. For investigation of phase transition and external effects the energy-dispersive EXAFS spectrometer is creating at the National center of SR Kurchatov Institute which can measure the EXAFS spectrum with a time resolution 3-5 ms. The experimental results on investigation (by the EXAFS spectroscopy method) of oxides of tungsten and molybdenum are given, which have unique property: the variable valence of an ion of metal is depending on external action. The most inter...

  11. Combination of laser-induced breakdown spectroscopy and Raman spectroscopy for multivariate classification of bacteria

    Science.gov (United States)

    Prochazka, D.; Mazura, M.; Samek, O.; Rebrošová, K.; Pořízka, P.; Klus, J.; Prochazková, P.; Novotný, J.; Novotný, K.; Kaiser, J.

    2018-01-01

    In this work, we investigate the impact of data provided by complementary laser-based spectroscopic methods on multivariate classification accuracy. Discrimination and classification of five Staphylococcus bacterial strains and one strain of Escherichia coli is presented. The technique that we used for measurements is a combination of Raman spectroscopy and Laser-Induced Breakdown Spectroscopy (LIBS). Obtained spectroscopic data were then processed using Multivariate Data Analysis algorithms. Principal Components Analysis (PCA) was selected as the most suitable technique for visualization of bacterial strains data. To classify the bacterial strains, we used Neural Networks, namely a supervised version of Kohonen's self-organizing maps (SOM). We were processing results in three different ways - separately from LIBS measurements, from Raman measurements, and we also merged data from both mentioned methods. The three types of results were then compared. By applying the PCA to Raman spectroscopy data, we observed that two bacterial strains were fully distinguished from the rest of the data set. In the case of LIBS data, three bacterial strains were fully discriminated. Using a combination of data from both methods, we achieved the complete discrimination of all bacterial strains. All the data were classified with a high success rate using SOM algorithm. The most accurate classification was obtained using a combination of data from both techniques. The classification accuracy varied, depending on specific samples and techniques. As for LIBS, the classification accuracy ranged from 45% to 100%, as for Raman Spectroscopy from 50% to 100% and in case of merged data, all samples were classified correctly. Based on the results of the experiments presented in this work, we can assume that the combination of Raman spectroscopy and LIBS significantly enhances discrimination and classification accuracy of bacterial species and strains. The reason is the complementarity in

  12. Intermultiplet transitions using neutron spectroscopy

    International Nuclear Information System (INIS)

    Osborn, R.; Lovesey, S.W.; Taylor, A.D.; Balcar, E.

    1989-12-01

    Neutron inelastic scattering is used here to attempt to obtain optical spectra for lanthanide metals and compounds. Intermultiplet spectroscopy provides information about transitions from different electronic configurations and hybridisation of the 4f shell. This report discusses the relatively limited contribution that neutron scattering has played in intermultiplet spectroscopy, and covers spin-orbit transitions and coulomb transitions Racah algebra is developed in calculating the scattering cross sections. (author)

  13. Spectroscopy Division progress report (January 1991 to June 1992)

    International Nuclear Information System (INIS)

    Ahmad, S.A.; Kartha, V.B.

    1993-01-01

    The research and development activities of the Spectroscopy Division during the calendar year 1990-1992 are reported in the form of individual summaries. These are arranged under the headings: (1) analytical spectroscopy, (2) infrared and Raman spectroscopy, (3) atomic spectra, (4) molecular and electronic spectra, (5) laser spectroscopy (6) synchrotron, beam foil and plasma spectroscopy, (7) optics, (8) design, fabrication and workshop etc. The list of publications and papers presented at the various conferences, symposia etc. by the staff members of the Division during the report period is given at the end. (author). figs

  14. Charmonium spectroscopy, 1987

    International Nuclear Information System (INIS)

    Cahn, R.N.

    1987-01-01

    The state of charmonium spectroscopy is reviewed. All analyses proceed from a spin-dependent, non-relativistic Schroedinger equation. Many of the possible branching ratios for charm like states are investigated. 17 refs

  15. Classical ultraviolet photoelectron spectroscopy of polymers

    International Nuclear Information System (INIS)

    Salaneck, W.R.

    2009-01-01

    Although X-ray photoelectron spectroscopy of polymers was well established by Clark and coworkers in the 1970s, ultraviolet photoelectron spectroscopy of polymer films, was developed later. Previous to the 1970s, the first attempts to use ultraviolet light on polymer films took the form of appearance potential (valence band edge) measurements. Only some years later could the full valence band region of thin polymer films, including insulating polymers, semiconducting polymers and electrically conducting polymers. The development of what might be termed 'classical ultraviolet photoelectron spectroscopy' of polymer films may be loosely based upon a variety of issues, including adapting thin polymer film technology to ultra high vacuum studies, the widespread use of helium resonance lamps for studies of solid surfaces, the combined advent of practical and sufficient theoretical-computational methods. The advent of, and the use of, easily available synchrotron radiation for multi-photon spectroscopies, nominally in the area of the near UV, is not included in the term 'classical'. At the same time, electrically conducting polymers were discovered, leading to applications of the corresponding semiconducting polymers, which added technologically driven emphasis to this development of ultraviolet photoelectron spectroscopy for polymer materials. This paper traces a limited number of highlights in the evolution of ultraviolet photoelectron spectroscopy of polymers, from the 1970s through to 2008. Also, since this issue is dedicated to Prof. Kazuhiko Seki, who has been a friend and competitor for over two decades, the author relies on some of Prof. Seki's earlier research, unpublished, on who-did-what-first. Prof. Seki's own contributions to the field, however, are discussed in other articles in this issue.

  16. Modern luminescence spectroscopy of minerals and materials

    CERN Document Server

    Gaft, Michael; Panczer, Gerard

    2005-01-01

    Luminescence Spectroscopy of Minerals and Materials presents an overview of the general concepts in luminescence spectroscopy as well as experimental methods and their interpretation. Special emphasis is laid on the fluorescence lifetime and the determination of time-resolved spectra. This method enables the exposure of new luminescence in minerals previously hidden by more intensive centers. Specialists in the fields of solid state physics, chemistry and spectroscopy will find a wealth of new information in this unique book.

  17. Handbook of Applied Solid State Spectroscopy

    CERN Document Server

    Vij, D. R

    2006-01-01

    Solid-State spectroscopy is a burgeoning field with applications in many branches of science, including physics, chemistry, biosciences, surface science, and materials science. Handbook of Applied Solid-State Spectroscopy brings together in one volume information about various spectroscopic techniques that is currently scattered in the literature of these disciplines. This concise yet comprehensive volume covers theory and applications of a broad range of spectroscopies, including NMR, NQR, EPR/ESR, ENDOR, scanning tunneling, acoustic resonance, FTIR, auger electron emission, x-ray photoelectron emission, luminescence, and optical polarization, and more. Emphasis is placed on fundamentals and current methods and procedures, together with the latest applications and developments in the field.

  18. Near edge x-ray spectroscopy theory

    International Nuclear Information System (INIS)

    1994-01-01

    We propose to develop a quantitative theory of x-ray spectroscopies in the near edge region, within about 100 eV of threshold. These spectroscopies include XAFS (X-ray absorption fine structure), photoelectron diffraction (PD), and diffraction anomalous fine structure (DAFS), all of which are important tools for structural studies using synchrotron radiation x-ray sources. Of primary importance in these studies are many-body effects, such as the photoelectron self-energy, and inelastic losses. A better understanding of these quantities is needed to obtain theories without adjustable parameters. We propose both analytical and numerical calculations, the latter based on our x-ray spectroscopy codes FEFF

  19. Atomic spectroscopy and radiative processes

    CERN Document Server

    Landi Degl'Innocenti, Egidio

    2014-01-01

    This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications. Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.

  20. The hallmarks of breast cancer by Raman spectroscopy

    Science.gov (United States)

    Abramczyk, H.; Surmacki, J.; Brożek-Płuska, B.; Morawiec, Z.; Tazbir, M.

    2009-04-01

    This paper presents new biological results on ex vivo breast tissue based on Raman spectroscopy and demonstrates its power as diagnostic tool with the key advantage in breast cancer research. The results presented here demonstrate the ability of Raman spectroscopy to accurately characterize cancer tissue and distinguish between normal, malignant and benign types. The goal of the paper is to develop the diagnostic ability of Raman spectroscopy in order to find an optical marker of cancer in the breast tissue. Applications of Raman spectroscopy in breast cancer research are in the early stages of development in the world. To the best of our knowledge, this paper is one of the most statistically reliable reports (1100 spectra, 99 patients) on Raman spectroscopy-based diagnosis of breast cancers among the world women population.

  1. Optical Spectroscopy and Imaging of Correlated Spin Orbit Phases

    Science.gov (United States)

    2016-06-14

    Unlimited UU UU UU UU 14-06-2016 15-Mar-2013 14-Mar-2016 Final Report: Optical Spectroscopy and Imaging of Correlated Spin-Orbit Phases The views...Box 12211 Research Triangle Park, NC 27709-2211 Ultrafast optical spectroscopy , nonlinear optical spectroscopy , iridates, cuprates REPORT...California Blvd. Pasadena, CA 91125 -0001 ABSTRACT Number of Papers published in peer-reviewed journals: Final Report: Optical Spectroscopy and

  2. ESR spectroscopy and electron distribution

    International Nuclear Information System (INIS)

    Davies, A.G.

    1997-01-01

    EPR spectroscopy can map out the electron distribution in a molecule, in much the same way as proton NMR spectroscopy can map out the proton distribution, and it provides some of the most direct evidence for the principal concepts underlying the electronic theory of organic structure and mechanism. This is illustrated for phenomena of conjugation, hyper-conjugation, substituent effects in annulenes, Hueckel theory, ring strain, the Mills-Nixon effect, and ion pairing. (author)

  3. Perspectives of shaped pulses for EPR spectroscopy

    Science.gov (United States)

    Spindler, Philipp E.; Schöps, Philipp; Kallies, Wolfgang; Glaser, Steffen J.; Prisner, Thomas F.

    2017-07-01

    This article describes current uses of shaped pulses, generated by an arbitrary waveform generator, in the field of EPR spectroscopy. We show applications of sech/tanh and WURST pulses to dipolar spectroscopy, including new pulse schemes and procedures, and discuss the more general concept of optimum-control-based pulses for applications in EPR spectroscopy. The article also describes a procedure to correct for experimental imperfections, mostly introduced by the microwave resonator, and discusses further potential applications and limitations of such pulses.

  4. XXII Conference on spectroscopy. Summaries of reports

    International Nuclear Information System (INIS)

    2001-01-01

    XXII Conference on spectroscopy took place 8-12 October 2001 in Zvenigorod, Moscow region. The recent advantages in the field of atomic and molecular spectroscopy were discussed. The current methods for elemental spectra analysis were considered. They are based on both traditional atomic emission, adsorption and Raman spectroscopic techniques and on introduction of the mass spectroscopy with the high-temperature plasma atomizer. The particular attention was given the application of spectroscopic methods for plasma diagnostics and air pollution control [ru

  5. Application of resonance ionisation spectroscopy in atomic physics

    International Nuclear Information System (INIS)

    Kluge, H.J.

    1997-01-01

    Resonance ionization spectroscopy (RIS) and resonance ionization mass spectroscopy (RIMS) techniques have proved to be a powerful tool in atomic spectroscopy and trace analysis. Detailed atomic spectroscopy can be performed on samples containing less than 10 12 atoms. This sensitivity is especially important for investigating atomic properties of transuranium elements. RIMS is especially suitable for ultra trace determination of long lived radioactive isotopes. The extremely low detection limits allow analysis of samples in the sub-femtogram regime. High elemental and isotopic selectivity can be obtained. To produce isobarically pure ion beams, a RIS based laser ion source can be used

  6. NMR spectroscopy

    International Nuclear Information System (INIS)

    Gruenert, J.

    1989-01-01

    The book reviews the applications of NMR-spectroscopy in medicine and biology. The first chapter of about 40 pages summarizes the history of development and explains the chemical and physical fundamentals of this new and non-invasive method in an easily comprehensible manner. The other chapters summarize diagnostic results obtained with this method in organs and tissues, so that the reader will find a systematic overview of the available findings obtained in the various organ systems. It must be noted, however, that ongoing research work and new insight quite naturally will necessitate corrections to be done, as is the case here with some biochemical interpretations which would need adjustment to latest research results. NMR-spectroscopy is able to measure very fine energy differences on the molecular level, and thus offers insight into metabolic processes, with the advantage that there is no need of applying ionizing radiation in order to qualitatively or quantitatively analyse the metabolic processes in the various organ systems. (orig./DG) With 40 figs., 4 tabs [de

  7. Imaging spectroscopy for characterisation of grass swards

    NARCIS (Netherlands)

    Schut, A.G.T.

    2003-01-01

    Keywords: Imaging spectroscopy, imaging spectrometry, remote sensing, reflection, reflectance, grass sward, white clover, recognition, characterisation, ground cover, growth monitoring, stress detection, heterogeneity quantification

    The potential of imaging spectroscopy as a tool for

  8. Cytosine Radical Cations: A Gas-Phase Study Combining IRMPD Spectroscopy, UVPD Spectroscopy, Ion-Molecule Reactions, and Theoretical Calculations

    Czech Academy of Sciences Publication Activity Database

    Lesslie, M.; Lawler, J. T.; Dang, A.; Korn, J. A.; Bím, Daniel; Steinmetz, V.; Maitre, P.; Tureček, F.; Ryzhov, V.

    2017-01-01

    Roč. 18, č. 10 (2017), s. 1293-1301 ISSN 1439-4235 Institutional support: RVO:61388963 Keywords : ion-molecule reactions * IRMPD spectroscopy * nucleobases * radical ions * UVPD spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.075, year: 2016

  9. 3D Spectroscopy in Astronomy

    Science.gov (United States)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  10. NASA Ames’ COSmIC Laboratory Astrophysics Facility: Recent Results and Progress

    Science.gov (United States)

    Salama, Farid; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2018-06-01

    The COSmIC facility was developed at NASA Ames to study interstellar, circumstellar and planetary analogs in the laboratory [1, 2]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of molecules, ions and nanoparticles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of instruments that allow generating; processing and monitoring simulated space conditions in the laboratory. It is composed of a Pulsed Discharge Nozzle expansion that generates a plasma in a free supersonic jet expansion coupled to high-sensitivity, complementary in situ diagnostic tools, used for the detection and characterization of the species present in the expansion: a Cavity Ring Down Spectroscopy (CRDS) and fluorescence spectroscopy systems for photonic detection, and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [3, 4].Recent advances achieved in laboratory astrophysics using COSmIC will be presented, in particular in the domain of the diffuse interstellar bands (DIBs) [5, 6] and the monitoring, in the laboratory, of the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as circumstellar outflows [7] and planetary atmospheres [8, 9, 10]. Plans for future laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics (NIR-MIR CRDS, Laser Induced Fluorescence spectra of cosmic molecule analogs and the laser induced incandescence spectra of cosmic grain analogs) will also be addressed as well as the implications for astronomy.References: [1] Salama F., Proceed. IAU S251, Kwok & Sandford eds. CUP, 4, 357 (2008).[2] Salama F., et al., Proceed. IAU S332, Y. Aikawa, M. Cunningham, T. Millar, eds., CUP (2018)[3] Biennier L., et al., J. Chem. Phys., 118, 7863 (2003)[4] Ricketts C. et al. IJMS, 300, 26 (2011)[5] Salama F., et al., ApJ., 728, 154 (2011)[6] EDIBLES

  11. A high resolution portable spectroscopy system

    International Nuclear Information System (INIS)

    Kulkarni, C.P.; Vaidya, P.P.; Paulson, M.; Bhatnagar, P.V.; Pande, S.S.; Padmini, S.

    2003-01-01

    Full text: This paper describes the system details of a High Resolution Portable Spectroscopy System (HRPSS) developed at Electronics Division, BARC. The system can be used for laboratory class, high-resolution nuclear spectroscopy applications. The HRPSS consists of a specially designed compact NIM bin, with built-in power supplies, accommodating a low power, high resolution MCA, and on-board embedded computer for spectrum building and communication. A NIM based spectroscopy amplifier and a HV module for detector bias are integrated (plug-in) in the bin. The system communicates with a host PC via a serial link. Along-with a laptop PC, and a portable HP-Ge detector, the HRPSS offers a laboratory class performance for portable applications

  12. Vibrational Spectroscopy and Astrobiology

    Science.gov (United States)

    Chaban, Galina M.; Kwak, D. (Technical Monitor)

    2001-01-01

    Role of vibrational spectroscopy in solving problems related to astrobiology will be discussed. Vibrational (infrared) spectroscopy is a very sensitive tool for identifying molecules. Theoretical approach used in this work is based on direct computation of anharmonic vibrational frequencies and intensities from electronic structure codes. One of the applications of this computational technique is possible identification of biological building blocks (amino acids, small peptides, DNA bases) in the interstellar medium (ISM). Identifying small biological molecules in the ISM is very important from the point of view of origin of life. Hybrid (quantum mechanics/molecular mechanics) theoretical techniques will be discussed that may allow to obtain accurate vibrational spectra of biomolecular building blocks and to create a database of spectroscopic signatures that can assist observations of these molecules in space. Another application of the direct computational spectroscopy technique is to help to design and analyze experimental observations of ice surfaces of one of the Jupiter's moons, Europa, that possibly contains hydrated salts. The presence of hydrated salts on the surface can be an indication of a subsurface ocean and the possible existence of life forms inhabiting such an ocean.

  13. PHOTOACOUSTIC SPECTROSCOPY USING A SYNCHROTRON LIGHT SOURCE

    International Nuclear Information System (INIS)

    JACKSON, R.S.; MICHAELIAN, K.H.; HOMES, C.C.

    2001-01-01

    We have investigated the use of a synchrotron as a source for infrared photoacoustic spectroscopy. A synchrotron has an intrinsically high radiance, which is beneficial when photoacoustic spectroscopy is applied to small samples, especially at long wavelengths

  14. Molecular ions, Rydberg spectroscopy and dynamics

    International Nuclear Information System (INIS)

    Jungen, Ch.

    2015-01-01

    Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering

  15. Molecular ions, Rydberg spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jungen, Ch. [Laboratoire Aimé Cotton, Université de Paris-Sud, 91405 Orsay (France)

    2015-01-22

    Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering.

  16. Time-resolved ESR spectroscopy

    International Nuclear Information System (INIS)

    Beckert, D.

    1986-06-01

    The time-resolved ESR spectroscopy is one of the modern methods in radiospectroscopy and plays an important role in solving various problems in chemistry and biology. Proceeding from the basic ideas of time-resolved ESR spectroscopy the experimental equipment is described generally including the equipment developed at the Central Institute of Isotope and Radiation Research. The experimental methods applied to the investigation of effects of chemically induced magnetic polarization of electrons and to kinetic studies of free radicals in polymer systems are presented. The theory of radical pair mechanism is discussed and theoretical expressions are summarized in a computer code to compute the theoretical polarization for each pair of the radicals

  17. Erratum: Quantum corrections and black hole spectroscopy

    Science.gov (United States)

    Jiang, Qing-Quan; Han, Yan; Cai, Xu

    2012-06-01

    In my paper [Qing-Quan Jiang, Yan Han, Xu Cai, Quantum corrections and black hole spectroscopy, JHEP 08 (2010) 049], there was an error in deriving the black hole spectroscopy. In this erratum, we attempt to rectify them.

  18. Point defects in gallium arsenide characterized by positron annihilation spectroscopy and deep level transient spectroscopy

    International Nuclear Information System (INIS)

    Mih, R.; Gronsky, R.; Sterne, P.A.

    1995-01-01

    Positron annihilation lifetime spectroscopy (PALS) is a unique technique for detection of vacancy related defects in both as-grown and irradiated materials. The authors present a systematic study of vacancy defects in stoichiometrically controlled p-type Gallium Arsenide grown by the Hot-Wall Czochralski method. Microstructural information based on PALS, was correlated to crystallographic data and electrical measurements. Vacancies were detected and compared to electrical levels detected by deep level transient spectroscopy and stoichiometry based on crystallographic data

  19. Study of electron beam effects on surfaces using x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS)

    International Nuclear Information System (INIS)

    Gettings, M.; Coad, J.P.

    1976-02-01

    Discrepancies in the surface analyses of oxidised or heavily contaminated materials have been observed between X-ray Photoelectron Spectroscopy (XPS) and techniques using electron beams (primarily Auger Electron Spectroscopy (AES)). These discrepancies can be ascribed to the influence of the primary electron beam and to illustrate the various types of electron effects different materials were analysed using XPS and Secondary Ion Mass Spectroscopy (SIMS) before and after large area electron bombardment. The materials used included chrome and stainless steels, nickel, platinum, glass and brass. (author)

  20. Toward practical terahertz time-domain spectroscopy

    Science.gov (United States)

    Brigada, David J.

    Terahertz time-domain spectroscopy is a promising technology for the identification of explosive and pharmaceutical substances in adverse conditions. It interacts strongly with intermolecular vibrational and rotational modes. Terahertz also passes through many common dielectric covering materials, allowing for the identification of substances in envelopes, wrapped in opaque plastic, or otherwise hidden. However, there are several challenges preventing the adoption of terahertz spectroscopy outside the laboratory. This dissertation examines the problems preventing widespread adoption of terahertz technology and attempts to resolve them. In order to use terahertz spectroscopy to identify substances, a spectrum measured of the target sample must be compared to the spectra of various known standard samples. This dissertation examines various methods that can be employed throughout the entire process of acquiring and transforming terahertz waveforms to improve the accuracy of these comparisons. The concepts developed in this dissertation directly apply to terahertz spectroscopy, but also carry implications for other spectroscopy methods, from Raman to mass spectrometry. For example, these techniques could help to lower the rate of false positives at airport security checkpoints. This dissertation also examines the implementation of several of these methods as a way to realize a fully self-contained, handheld, battery-operated terahertz spectrometer. This device also employs techniques to allow minimally-trained operators use terahertz to detect different substances of interest. It functions as a proof-of-concept of the true benefits of the improvements that have been developed in this dissertation.

  1. Vibrational spectroscopy: a clinical tool for cancer diagnostics.

    Science.gov (United States)

    Kendall, Catherine; Isabelle, Martin; Bazant-Hegemark, Florian; Hutchings, Joanne; Orr, Linda; Babrah, Jaspreet; Baker, Rebecca; Stone, Nicholas

    2009-06-01

    Vibrational spectroscopy techniques have demonstrated potential to provide non-destructive, rapid, clinically relevant diagnostic information. Early detection is the most important factor in the prevention of cancer. Raman and infrared spectroscopy enable the biochemical signatures from biological tissues to be extracted and analysed. In conjunction with advanced chemometrics such measurements can contribute to the diagnostic assessment of biological material. This paper also illustrates the complementary advantage of using Raman and FTIR spectroscopy technologies together. Clinical requirements are increasingly met by technological developments which show promise to become a clinical reality. This review summarises recent advances in vibrational spectroscopy and their impact on the diagnosis of cancer.

  2. Density measurements of H- and D- for fusion applications (final scientific report contract FU-CT-2000-50001)

    Energy Technology Data Exchange (ETDEWEB)

    Boilson, D

    2003-03-01

    The main topic of this contract is the implementation of the Cavity Ring-down Spectroscopy (CRS) technique proposed for quantitative measurement of negative H{sup -} and D{sup -} densities in the Kamaboko III ion source on the MANTIS test bed in the DRFC, CEA Cadarache. MANTIS is used for the development of high density negative ion current beams for use in NBI systems in proposed nuclear fusion reactors. The source used at the MANTIS test stand is a scale version of the source designed for the ITER neutral beam injection system called the Kamaboko III ion source. This report outlines the performance of the KAMABOKO source when operated in caseiated mode. The effect of plasma grid temperature, Cs seeding, Cs consumption, and long pulse, 1000 s, beam extraction are discussed, and the limitations observed with the MANTIS system are identified and further objectives outlined. (author)

  3. Bertram Brockhouse, the Triple-axis Spectrometer, and Neutron Spectroscopy

    Science.gov (United States)

    Neutron Spectroscopy Resources with Additional Information Bertram Brockhouse Courtesy of McMaster was awarded the 1994 Nobel Prize in Physics for his development of neutron spectroscopy. Bert Physicist, Dies, The New York Times, October 16, 2003 1994: Development of Neutron Spectroscopy, Brookhaven

  4. X-ray and photoelectron spectroscopy of light rare earths

    International Nuclear Information System (INIS)

    Fuggle, J.C.

    1983-01-01

    Core level photoelectron spectroscopy, X-ray absorption spectroscopy, bremsstrahlung isochromat spectroscopy and valence band studies are discussed. Particular emphasis is placed on cerium. Correlation effects, multiplet structure, screening effects and the dynamics of the processes involved are illustrated with selected examples. (Auth.)

  5. Linear and Nonlinear Molecular Spectroscopy with Laser Frequency Combs

    Science.gov (United States)

    Picque, Nathalie

    2013-06-01

    The regular pulse train of a mode-locked femtosecond laser can give rise to a comb spectrum of millions of laser modes with a spacing precisely equal to the pulse repetition frequency. Laser frequency combs were conceived a decade ago as tools for the precision spectroscopy of atomic hydrogen. They are now becoming enabling tools for an increasing number of applications, including molecular spectroscopy. Recent experiments of multi-heterodyne frequency comb Fourier transform spectroscopy (also called dual-comb spectroscopy) have demonstrated that the precisely spaced spectral lines of a laser frequency comb can be harnessed for new techniques of linear absorption spectroscopy. The first proof-of-principle experiments have demonstrated a very exciting potential of dual-comb spectroscopy without moving parts for ultra-rapid and ultra-sensitive recording of complex broad spectral bandwidth molecular spectra. Compared to conventional Michelson-based Fourier transform spectroscopy, recording times could be shortened from seconds to microseconds, with intriguing prospects for spectroscopy of short lived transient species. The resolution improves proportionally to the measurement time. Therefore longer recordings allow high resolution spectroscopy of molecules with extreme precision, since the absolute frequency of each laser comb line can be known with the accuracy of an atomic clock. Moreover, since laser frequency combs involve intense ultrashort laser pulses, nonlinear interactions can be harnessed. Broad spectral bandwidth ultra-rapid nonlinear molecular spectroscopy and imaging with two laser frequency combs is demonstrated with coherent Raman effects and two-photon excitation. Real-time multiplex accessing of hyperspectral images may dramatically expand the range of applications of nonlinear microscopy. B. Bernhardt et al., Nature Photonics 4, 55-57 (2010); A. Schliesser et al. Nature Photonics 6, 440-449 (2012); T. Ideguchi et al. arXiv:1201.4177 (2012) T

  6. Self-compensation in ZnO thin films: An insight from X-ray photoelectron spectroscopy, Raman spectroscopy and time-of-flight secondary ion mass spectroscopy analyses

    International Nuclear Information System (INIS)

    Saw, K.G.; Ibrahim, K.; Lim, Y.T.; Chai, M.K.

    2007-01-01

    As-grown ZnO typically exhibits n-type conductivity and the difficulty of synthesizing p-type ZnO for the realization of ZnO-based optoelectronic devices is mainly due to the compensation effect of a large background n-type carrier concentration. The cause of this self-compensation effect has not been conclusively identified although oxygen vacancies, zinc interstitials and hydrogen have been suggested. In this work, typical n-type ZnO thin films were prepared by sputtering and investigated using X-ray photoelectron spectroscopy, Raman spectroscopy and time-of-flight secondary ion mass spectroscopy to gain an insight on the possible cause of the self-compensation effect. The analyses found that the native defect that most likely behaved as the donor was zinc interstitial but some contribution of n-type conductivity could also come from the electronegative carbonates or hydrogen carbonates incorporated in the ZnO thin films

  7. Scanning, non-contact, hybrid broadband diffuse optical spectroscopy and diffuse correlation spectroscopy system.

    Science.gov (United States)

    Johansson, Johannes D; Mireles, Miguel; Morales-Dalmau, Jordi; Farzam, Parisa; Martínez-Lozano, Mar; Casanovas, Oriol; Durduran, Turgut

    2016-02-01

    A scanning system for small animal imaging using non-contact, hybrid broadband diffuse optical spectroscopy (ncDOS) and diffuse correlation spectroscopy (ncDCS) is presented. The ncDOS uses a two-dimensional spectrophotometer retrieving broadband (610-900 nm) spectral information from up to fifty-seven source-detector distances between 2 and 5 mm. The ncDCS data is simultaneously acquired from four source-detector pairs. The sample is scanned in two dimensions while tracking variations in height. The system has been validated with liquid phantoms, demonstrated in vivo on a human fingertip during an arm cuff occlusion and on a group of mice with xenoimplanted renal cell carcinoma.

  8. Mössbauer Spectroscopy Tutorial Book

    CERN Document Server

    Langouche, Guido

    2013-01-01

    Tutorials on Mössbauer Spectroscopy Since the discovery of the Mössbauer Effect many excellent books have been published for researchers and for doctoral and master level students.  However, there appears to be no textbook available for final year bachelor students, nor for people working in industry who have received only basic courses in classical mechanics, electromagnetism, quantum mechanics, chemistry and materials science.  The challenge of this book is to give an introduction to Mössbauer Spectroscopy for this level.  The ultimate goal of this book is to give this audience not only a scientific introduction to the technique, but also to demonstrate in an attractive way the power of Mössbauer Spectroscopy in many fields of science, in order to create interest among the readers in joining the community of Mössbauer spectroscopists.  This is particularly important at times where in many Mössbauer laboratories succession is at stake.

  9. Uranium(VI) speciation by spectroscopy

    International Nuclear Information System (INIS)

    Meinrath, G.

    1997-01-01

    The application of UV-Vis and time-resolved laser-induced fluorescence (TRLF) spectroscopies to direct of uranium(VI) in environmental samples offers various prospects that have, however, serious limitations. While UV-Vis spectroscopy is probably not sensitive enough to detect uranium(VI) species in the majority of environmental samples, TRLFS is principially able to speciate uranium(VI) at very low concentration levels in the nanomol range. Speciation by TRLFS can be based on three parameters: excitation spectrum, emission spectrum and lifetime of the fluorescence emission process. Due to quenching effects, the lifetime may not be expected to be as characteristics as, e.g., the emission spectrum. Quenching of U(VI) fluorescence by reaction with organic substances, inorganic ions and formation of carbonate radicals is one important limiting factor in the application of U(VI) fluorescence spectroscopy. Fundamental photophysical criteria are illustrated using UV-Vis and fluorescence spectra of U(VI) hydrolysis and carbonato species as examples. (author)

  10. Hard X-ray photoemission spectroscopy

    International Nuclear Information System (INIS)

    Kobayashi, Keisuke

    2009-01-01

    Except in the very early stage of the development of X-ray photoemission spectroscopy (XPS) by Kai Siegbahn and his coworkers, the excitation sources for XPS studies have predominantly been the Al Kα and Mg Kα emission lines. The advent of synchrotron radiation sources opened up the possibility of tuning the excitation photon energy with much higher throughputs for photoemission spectroscopy, however the excitation energy range was limited to the vacuum ultra violet and soft X-ray regions. Over the past 5-6 years, bulk-sensitive hard X-ray photoemission spectroscopy using high-brilliance high-flux X-rays from third generation synchrotron radiation facilities has been developed. This article reviews the history of HXPES covering the period from Kai Siegbahn and his coworkers' pioneering works to the present, and describes the fundamental aspects, instrumentation, applications to solid state physics, applied physics, materials science, and industrial applications of HXPES. Finally, several challenging new developments which have been conducted at SPring-8 by collaborations among several groups are introduced.

  11. X-ray spectroscopy an introduction

    CERN Document Server

    Agarwal, Bipin K

    1979-01-01

    Rontgen's discovery of X-rays in 1895 launched a subject which became central to the development of modern physics. The verification of many of the predic­ tions of quantum theory by X-ray spectroscopy in the early part of the twen­ tieth century stimulated great interest in thi's area, which has subsequently influenced fields as diverse as chemical physics, nuclear physics, and the study of the electronic properties of solids, and led to the development of techniques such as Auger, Raman, and X-ray photoelectron spectroscopy. The improvement of the theoretical understanding of the physics underlying X-ray spectroscopy has been accompanied by advances in experimental techniques, and the subject provides an instructive example of how progress on both these fronts can be mutually beneficial. This book strikes a balance between his­ torical description, which illustrates this symbiosis, and the discussion of new developments. The application of X-ray spectroscopic methods to the in­ vestigation of chemical b...

  12. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 2. Single-Molecule Spectroscopy: Every Molecule is Different! Kankan Bhattacharyya. General Article Volume 20 Issue 2 February 2015 pp 151-164. Fulltext. Click here to view fulltext PDF. Permanent link:

  13. Astronomical Spectroscopy -24 ...

    Indian Academy of Sciences (India)

    growth of spectroscopy and its application to the study of .... Cesium was discovered ten years earlier, in 1859; it is the ... Kirchhoff and Bunsen's discovery; he was spared the pain of seeing ... We will have to go back about twenty years.

  14. Laboratory Studies of the Formation of Interstellar Dust from Molecular Precursors

    Science.gov (United States)

    Contreras, Cesar S.; Salama, Farid

    2009-06-01

    The study of the formation and the destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. Interstellar dust presents a continuous size distribution from large molecules, radicals and ions to nanometer-sized particles to micron-sized grains. The lower end of the carbonaceous dust size distribution is thought to be responsible for the ubiquitous spectral features that are seen in emission in the IR (UIBs) and in absorption in the visible (DIBs). The higher end of the dust-size distribution is thought to be responsible for the continuum emission plateau that is seen in the IR and for the strong absorption seen in the interstellar UV extinction curve. All these spectral signatures are characteristic of cosmic organic materials that are ubiquitous and present in various forms from gas-phase molecules to solid-state grains and all are expected to exhibit FIR spectral signatures. Space observations from the UV (HST) to the IR (ISO, Spitzer) help place size constraints on the molecular component of carbonaceous IS dust and its contribution to the IS features in the UV and in the IR. Studies of large molecular and nano-sized IS dust analogs formed from PAH precursors have been performed in our laboratory under conditions that simulate interstellar and circumstellar environments. The species (molecules, molecular fragments, ions, nanoparticles, etc...) formed in the pulsed discharge nozzle (PDN) plasma source are detected and characterized with a high-sensitivity cavity ringdown spectrometer (CRDS) coupled to a Reflectron time-of-flight mass spectrometer (ReTOF-MS). We will present new experimental results that indicate that nanoparticles are generated in the plasma. From these unique measurements, we derive information on the nature, the size and the structure of interstellar dust particles, the growth and the destruction processes of IS dust and the resulting budget of extraterrestrial organic

  15. Baryonic spectroscopy and its immediate future

    International Nuclear Information System (INIS)

    Dalitz, R.H.

    1975-01-01

    The quark model is reviewed briefly for baryons and the various versions of SU(6) symmetry which were proposed and used in connection with baryon spectroscopy are reviewed. A series of basic questions are reviewed which experimental work in this field should aim to settle, as a minimal program. One also heralds the beginning of a new baryon spectroscopy associated with psi physics

  16. Application of X-ray spectroscopy in nondestructive photon activation analysis

    International Nuclear Information System (INIS)

    Weise, H.-P.; Segebade, Chr.

    1977-01-01

    The use of X-ray spectroscopy for the qualitative and quantitative analysis of samples activated by 30 MeV bremsstrahlung from an electron linear accelerator. Detection limits are calculated from the measured X-ray spectra and compared with those for γ-ray spectroscopy. In general, the detection limits for γ-ray and X-ray spectroscopy are comparable. Higher sensitivities for X-ray spectroscopy are observed when only low intensity γ-rays are emitted by the activation products. X-ray spectroscopy should be applied in three cases: (a) low γ-ray emission probability, (b) extremely complicated γ-ray spectrum, (c) overlapping of γ-ray lines from different elements. γ-ray spectroscopy should be preferred for the analysis of light elements for two reasons: very strong absorption of low energy X-rays (low Z) within the sample, low X-ray emission probability for the activation products of light elements. Therefore no attempt was made to use X-ray spectroscopy for the analysis of elements below Ti. Some practical applications of X-ray spectroscopy in nondestructive multielement analysis are quoted. (T.G.)

  17. Clinical Proton MR Spectroscopy in Central Nervous System Disorders

    Science.gov (United States)

    Alger, Jeffry R.; Barker, Peter B.; Bartha, Robert; Bizzi, Alberto; Boesch, Chris; Bolan, Patrick J.; Brindle, Kevin M.; Cudalbu, Cristina; Dinçer, Alp; Dydak, Ulrike; Emir, Uzay E.; Frahm, Jens; González, Ramón Gilberto; Gruber, Stephan; Gruetter, Rolf; Gupta, Rakesh K.; Heerschap, Arend; Henning, Anke; Hetherington, Hoby P.; Howe, Franklyn A.; Hüppi, Petra S.; Hurd, Ralph E.; Kantarci, Kejal; Klomp, Dennis W. J.; Kreis, Roland; Kruiskamp, Marijn J.; Leach, Martin O.; Lin, Alexander P.; Luijten, Peter R.; Marjańska, Małgorzata; Maudsley, Andrew A.; Meyerhoff, Dieter J.; Mountford, Carolyn E.; Nelson, Sarah J.; Pamir, M. Necmettin; Pan, Jullie W.; Peet, Andrew C.; Poptani, Harish; Posse, Stefan; Pouwels, Petra J. W.; Ratai, Eva-Maria; Ross, Brian D.; Scheenen, Tom W. J.; Schuster, Christian; Smith, Ian C. P.; Soher, Brian J.; Tkáč, Ivan; Vigneron, Daniel B.; Kauppinen, Risto A.

    2014-01-01

    A large body of published work shows that proton (hydrogen 1 [1H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of 1H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of 1H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which 1H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units. © RSNA, 2014 Online supplemental material is available for this article. PMID:24568703

  18. Portable in situ NaI(Tl) γ spectroscopy system

    International Nuclear Information System (INIS)

    Wang Bairong; Dong Binjiang; Zeng Liping; Shen Tingyun

    2000-01-01

    The author describes a portable in situ NaI(Tl) γ spectroscopy system, which consists of a NaI (Tl) scintillation detector, an integrative spectroscopy card, a notebook computer and spectroscopy software. The spectrometer addresses applications in environmental or nuclear accident in situ γ spectroscopy measurements, and gives valid quantitative results of radionuclide concentrations per unit volume (Bq/kg) or unit area (Bq/cm 2 ) in the soil and absorbed dose rate in air at 1 m above ground (Gy/h)

  19. Raman spectroscopy of saliva as a perspective method for periodontitis diagnostics Raman spectroscopy of saliva

    Science.gov (United States)

    Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Minaeva, S.

    2012-01-01

    In view of its potential for biological tissues analyses at a molecular level, Raman spectroscopy in optical range has been the object of biomedical research for the last years. The main aim of this work is the development of Raman spectroscopy for organic content identifying and determination of biomarkers of saliva at a molecular level for periodontitis diagnostics. Four spectral regions were determined: 1155 and 1525 cm-1, 1033 and 1611 cm-1, which can be used as biomarkers of this widespread disease.

  20. Solid-state NMR spectroscopy on complex biomolecules

    NARCIS (Netherlands)

    Renault, M.A.M.; Cukkemane, A.A.; Baldus, M.

    2010-01-01

    Biomolecular applications of NMR spectroscopy are often merely associated with soluble molecules or magnetic resonance imaging. However, since the late 1970s, solid-state NMR (ssNMR) spectroscopy has demonstrated its ability to provide atomic-level insight into complex biomolecular systems ranging

  1. Near-infrared spectroscopy during peripheral vascular surgery

    DEFF Research Database (Denmark)

    Eiberg, J P; Schroeder, T V; Vogt, K C

    1997-01-01

    Near-infrared spectroscopy was performed perioperatively on the dorsum of the foot in 14 patients who underwent infrainguinal bypass surgery using a prosthesis or the greater saphenous vein. Dual-wavelength continuous light spectroscopy was used to assess changes in tissue saturation before, duri...

  2. Study of clusters using negative ion photodetachment spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuexing [Univ. of California, Berkeley, CA (United States)

    1995-12-01

    The weak van der Waals interaction between an open-shell halogen atom and a closed-shell atom or molecule has been investigated using zero electron kinetic energy (ZEKE) spectroscopy. This technique is also applied to study the low-lying electronic states in GaAs and GaAs-. In addition, the spectroscopy and electron detachment dynamics of several small carbon cluster anions are studied using resonant multiphoton detachment spectroscopy.

  3. Study of clusters using negative ion photodetachment spectroscopy

    International Nuclear Information System (INIS)

    Zhao, Yuexing.

    1995-12-01

    The weak van der Waals interaction between an open-shell halogen atom and a closed-shell atom or molecule has been investigated using zero electron kinetic energy (ZEKE) spectroscopy. This technique is also applied to study the low-lying electronic states in GaAs and GaAs - . In addition, the spectroscopy and electron detachment dynamics of several small carbon cluster anions are studied using resonant multiphoton detachment spectroscopy

  4. Oasis-an innovative system for alpha spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Seymour, R; Richards, W; Knight, K; El-Sayad, G [Oxford Instruments Inc., P.O. Box 2560, Oak Ridge, TN 37831-2560 (United States)

    1995-10-01

    Until recently, instrumental alpha spectroscopy has behind the technical developments of instrumentation and software that are available for low background o c/ counting, liquid scintillation, and gamma spectroscopy instruments. We report in this paper, the development of Oasis, a new family of alpha spectroscopy systems from oxford instruments Inc., Nuclear measurements Group. The Oasis instruments incorporate many hardware and software innovations providing an automated and integrated production environment for alpha spectroscopy. These instruments are needed because of the large number of samples to be measured and the required throughput of production laboratories processing these samples. Oasis is also useful for facilities because of their sophisticated vacuum control, management, and analysis features. One of the most important innovations is the electronic vacuum system and cartesian diver. Many additional features contribute to improving accuracy, lowering cost per sample, improving sample throughput, and ensuring accountability of laboratory results. 5 figs.

  5. Oasis-an innovative system for alpha spectroscopy

    International Nuclear Information System (INIS)

    Seymour, R.; Richards, W.; Knight, K.; El-Sayad, G.

    1995-01-01

    Until recently, instrumental alpha spectroscopy has behind the technical developments of instrumentation and software that are available for low background o c/ counting, liquid scintillation, and gamma spectroscopy instruments. We report in this paper, the development of Oasis, a new family of alpha spectroscopy systems from oxford instruments Inc., Nuclear measurements Group. The Oasis instruments incorporate many hardware and software innovations providing an automated and integrated production environment for alpha spectroscopy. These instruments are needed because of the large number of samples to be measured and the required throughput of production laboratories processing these samples. Oasis is also useful for facilities because of their sophisticated vacuum control, management, and analysis features. One of the most important innovations is the electronic vacuum system and cartesian diver. Many additional features contribute to improving accuracy, lowering cost per sample, improving sample throughput, and ensuring accountability of laboratory results. 5 figs

  6. Dark spectroscopy at lepton colliders

    Science.gov (United States)

    Hochberg, Yonit; Kuflik, Eric; Murayama, Hitoshi

    2018-03-01

    Rich and complex dark sectors are abundant in particle physics theories. Here, we propose performing spectroscopy of the mass structure of dark sectors via mono-photon searches at lepton colliders. The energy of the mono-photon tracks the invariant mass of the invisible system it recoils against, which enables studying the resonance structure of the dark sector. We demonstrate this idea with several well-motivated models of dark sectors. Such spectroscopy measurements could potentially be performed at Belle II, BES-III and future low-energy lepton colliders.

  7. Migraine and magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Younis, Samaira; Hougaard, Anders; Vestergaard, Mark B.

    2017-01-01

    Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation in the meth......Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation...

  8. A Simple LIBS (Laser-Induced Breakdown Spectroscopy) Laboratory Experiment to Introduce Undergraduates to Calibration Functions and Atomic Spectroscopy

    Science.gov (United States)

    Chinni, Rosemarie C.

    2012-01-01

    This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…

  9. Prospects for in vivo Raman spectroscopy

    International Nuclear Information System (INIS)

    Hanlon, E.B.; Manoharan, R.; Koo, T.-W.; Shafer, K.E.; Motz, J.T.; Fitzmaurice, M.; Kramer, J.R.; Itzkan, I.; Dasari, R.R.; Feld, M.S.

    2000-01-01

    Raman spectroscopy is a potentially important clinical tool for real-time diagnosis of disease and in situ evaluation of living tissue. The purpose of this article is to review the biological and physical basis of Raman spectroscopy of tissue, to assess the current status of the field and to explore future directions. The principles of Raman spectroscopy and the molecular level information it provides are explained. An overview of the evolution of Raman spectroscopic techniques in biology and medicine, from early investigations using visible laser excitation to present-day technology based on near-infrared laser excitation and charge-coupled device array detection, is presented. State-of-the-art Raman spectrometer systems for research laboratory and clinical settings are described. Modern methods of multivariate spectral analysis for extracting diagnostic, chemical and morphological information are reviewed. Several in-depth applications are presented to illustrate the methods of collecting, processing and analysing data, as well as the range of medical applications under study. Finally, the issues to be addressed in implementing Raman spectroscopy in various clinical applications, as well as some long-term directions for future study, are discussed. (author)

  10. Infrared and Raman spectroscopy: principles and spectral interpretation

    National Research Council Canada - National Science Library

    Larkin, Peter

    2011-01-01

    "Infrared and Raman Spectroscopy: Principles and Spectral Interpretation explains the background, core principles and tests the readers understanding of the important techniques of Infrared and Raman Spectroscopy...

  11. Atomic Auger spectroscopy: Historical perspective and recent highlights

    International Nuclear Information System (INIS)

    Mehlhorn, W.

    2000-01-01

    The non-radiating decay of an inner-shell ionized atom by the emission of an electron was discovered by Pierre Auger in cloud-chamber experiments in the years 1923 to 1926. The first spectroscopic investigation of Auger electrons was performed by Robinson and Cassie in 1926, marking the birth date of Auger spectroscopy. The following seven decades of Auger spectroscopy will be divided into three periods. In the first period (1926-1960) Auger spectroscopy was mainly connected with β-ray spectroscopy where inner-shell ionization of atoms in the solid state was caused either by γ-conversion or by electron capture. The second period (beginning in 1960) is characterized by the external excitation of gas-phase or free metallic atoms, opening Auger spectroscopy to electron energies in the range of few eV to few keV. The third period (beginning in 1977/78) is characterized by the use of synchrotron radiation with its outstanding properties of tunability, polarization and narrow-band high intensity for the excitation and ionization of inner-shell electrons. Finally, two recent highlights of Auger spectroscopy, the interference between photo- and Auger electron with equal energies and an 'almost' complete experiment for Auger decay, will be presented

  12. Fluorescence fluctuation spectroscopy (FFS)

    CERN Document Server

    Tetin, Sergey

    2012-01-01

    This new volume of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers fluorescence fluctuation spectroscopy and includes chapters on such topics as Förster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells. Continues the legacy of this premier serial with quality chapters authored by leaders in the field Covers fluorescence fluctuation spectroscopy Contains chapters on such topics as Förster resonance energy transfer (fret) with fluctuation algorithms, protein corona on nanoparticles by FCS, and FFS approaches to the study of receptors in live cells.

  13. Femtosecond laser spectroscopy

    CERN Document Server

    Hannaford, Peter

    2005-01-01

    As concepts and methodologies have evolved over the past two decades, the realm of ultrafast science has become vast and exciting and has impacted many areas of chemistry, biology and physics, and other fields such as materials science, electrical engineering, and optical communication. The field has recently exploded with the announcement of a series of remarkable new developments and advances. This volume surveys this recent growth in eleven chapters written by leading international researchers in the field. It includes sections on femtosecond optical frequency combs, soft x-ray femtosecond laser sources, and attosecond laser sources. In addition, the contributors address real-time spectroscopy of molecular vibrations with sub-5-fs pulses and multidimensional femtosecond coherent spectroscopies for studying molecular and electron dynamics. Novel methods for measuring and characterizing ultrashort laser pulses and ultrashort pulses of light are also described. The topics covered are revolutionizing the field...

  14. Magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Meyerhoff, D.J.; Weiner, M.W.

    1989-01-01

    A major function of the liver is regulation of carbohydrate, lipid, and nitrogen metabolism. Food is absorbed by the intestines and transported to the liver by the portal circulation. Substrates are metabolized and stored in the liver to maintain optimal blood concentrations of glucose and lipids. Ammonia generated in the gastrointestinal tract is converted to urea in the liver by the urea cycle. Various forms of liver disease are associated with disorders of carbohydrate, fat, and nitrogen metabolism. Therefore the ability to characterize liver metabolism noninvasively is of potential diagnostic value. Magnetic resonance spectroscopy (MRS) provides information about tissue metabolism by measuring concentrations of metabolites. However, to determine the anatomic location from which spectroscopic signals are derived, MRS could be performed in conjunction with MRI. This paper summarizes the current experience with spectroscopy ion animal models of human disease and reviews the clinical experience with hepatic MRS to date

  15. Battery impedance spectroscopy using bidirectional grid connected ...

    Indian Academy of Sciences (India)

    Shimul Kumar Dam

    Keywords. Impedance spectroscopy; grid connection; battery converter; state of charge; health monitoring. 1. Introduction .... the load should be within the safe range of operation specified by the ... A split capacitor damping scheme is adopted here as shown in ...... spectroscopy testing on the Advanced Technology Devel-.

  16. Gamma-ray spectroscopy on irradiated fuel rods

    International Nuclear Information System (INIS)

    Terremoto, Luis Antonio Albiac

    2009-01-01

    The recording of gamma-ray spectra along an irradiated fuel rod allows the fission products to be qualitatively and quantitatively examined. Among all nondestructive examinations performed on irradiated fuel rods by gamma-ray spectroscopy, the most comprehensive one is the average burnup measurement, which is quantitative. Moreover, burnup measurements by means of gamma-ray spectroscopy are less time-consuming and waste-generating than burnup measurements by radiochemical, destructive methods. This work presents the theoretical foundations and experimental techniques necessary to measure, using nondestructive gamma-ray spectroscopy, the average burnup of irradiated fuel rods in a laboratory equipped with hot cells. (author)

  17. Theory of attosecond absorption spectroscopy in krypton

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Lindroth, Eva; Madsen, Lars Bojer

    2012-01-01

    A theory for time-domain attosecond pump–attosecond probe photoabsorption spectroscopy is formulated and related to the atomic response. The theory is illustrated through a study of attosecond absorption spectroscopy in krypton. The atomic parameters entering the formulation such as energies...... of the hole in this manner. In a second example, a hole is created in an inner shell by the first pulse, and the second probe pulse couples an even more tightly bound state to that hole. The hole decays in this example by Auger electron emission, and the absorption spectroscopy follows the decay of the hole...

  18. Nuclear spectroscopy using the neutron capture reaction

    International Nuclear Information System (INIS)

    Egidy, T.

    1982-01-01

    Experimental methods using neutron spectroscopy as a means to study the nucleus structure are described. Since reactions of neutron capture (n, γ) are non-selective, they permit to study the nature of excitation (monoparticle and collective) of nuclear levels, the nature of vibrational excitations, to check the connection between shell model and liquid drop model etc. In many cases (n, γ) reactions are the only way to check the forecast of nuclear models. Advantages of (n, γ) spectroscopy, possessing a high precision of measurement and high sensitivity, are underlined. Using neutron spectroscopy on facilities with a high density of neutron flux the structures of energy levels of a large group of nuclei are studied. In different laboratories complete schemes of energy levels of nuclei are obtained, a great number of new levels are found, the evergy level densities are determined, multipolarities of γ-transitions, spins, level parities are considered. StrUctures of rotational bands of heavy deformed nuclei are studied. The study of the structure of high-spin states is possible only using the methods of (n, γ) spectroscopy Investigation results of the nuclei 24 Na, 114 Cd, 154 Eu, 155 Cd, 155 Sm, 233 Th are considered as examples. The most interesting aspects of the investigations using neutron spectroscopy are discUssed

  19. Developments in inverse photoemission spectroscopy

    International Nuclear Information System (INIS)

    Sheils, W.; Leckey, R.C.G.; Riley, J.D.

    1996-01-01

    In the 1950's and 1960's, Photoemission Spectroscopy (PES) established itself as the major technique for the study of the occupied electronic energy levels of solids. During this period the field divided into two branches: X-ray Photoemission Spectroscopy (XPS) for photon energies greater than ∼l000eV, and Ultra-violet Photoemission Spectroscopy (UPS) for photon energies below ∼100eV. By the 1970's XPS and UPS had become mature techniques. Like XPS, BIS (at x-ray energies) does not have the momentum-resolving ability of UPS that has contributed much to the understanding of the occupied band structures of solids. BIS moved into a new energy regime in 1977 when Dose employed a Geiger-Mueller tube to obtain density of unoccupied states data from a tantalum sample at a photon energy of ∼9.7eV. At similar energies, the technique has since become known as Inverse Photoemission Spectroscopy (IPS), in acknowledgment of its complementary relationship to UPS and to distinguish it from the higher energy BIS. Drawing on decades of UPS expertise, IPS has quickly moved into areas of interest where UPS has been applied; metals, semiconductors, layer compounds, adsorbates, ferromagnets, and superconductors. At La Trobe University an IPS facility has been constructed. This presentation reports on developments in the experimental and analytical techniques of IPS that have been made there. The results of a study of the unoccupied bulk and surface bands of GaAs are presented

  20. EPR Spectroscopy in Environmental Lichen-Indication

    Science.gov (United States)

    Bondarenko, P. V.; Nguyet, Le Thi Bich; Zhuravleva, S. E.; Trukhan, E. M.

    2017-09-01

    The paramagnetic properties of lichens were investigated using EPR spectroscopy and Xanthoria parietina (L.) Th. Fr. as a case study. It was found that the concentration of paramagnetic centers in lichen thalli increased as the air-pollution level increased. Possible formation mechanisms of the paramagnetic centers in lichens were discussed. The efficiency of using EPR spectroscopy to study lichens as environmental quality indicators was demonstrated.