WorldWideScience

Sample records for ring resonator metamaterial

  1. Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs

    KAUST Repository

    Yue, Weisheng

    2016-01-11

    We present our design, fabrication and characterization of resonance-controllable metamaterials operating at mid-infrared wavelengths. The metamaterials are composed of pairs of back-to-back or face-to-face U-shape split-ring resonators (SRRs). Transmission spectra of the metamaterials are measured using Fourier-transform infrared spectroscopy. The results show that the transmission resonance is dependent on the distance between the two SRRs in each SRR pair. The dips in the transmission spectrum shift to shorter wavelengths with increasing distance between the two SRRs for both the back-to-back and face-to-face SRR pairs. The position of the resonance dips in the spectrum can hence be controlled by the relative position of the SRRs. This mechanism of resonance control offers a promising way of developing metamaterials with tunability for optical filters and bio/chemical sensing devices in integrated nano-optics.

  2. Resonance control of mid-infrared metamaterials using arrays of split-ring resonator pairs

    KAUST Repository

    Yue, Weisheng; Wang, Zhihong; Whittaker, John; Schedin, Fredrik; Wu, Zhipeng; Han, Jiaguang

    2016-01-01

    We present our design, fabrication and characterization of resonance-controllable metamaterials operating at mid-infrared wavelengths. The metamaterials are composed of pairs of back-to-back or face-to-face U-shape split-ring resonators (SRRs). Transmission spectra of the metamaterials are measured using Fourier-transform infrared spectroscopy. The results show that the transmission resonance is dependent on the distance between the two SRRs in each SRR pair. The dips in the transmission spectrum shift to shorter wavelengths with increasing distance between the two SRRs for both the back-to-back and face-to-face SRR pairs. The position of the resonance dips in the spectrum can hence be controlled by the relative position of the SRRs. This mechanism of resonance control offers a promising way of developing metamaterials with tunability for optical filters and bio/chemical sensing devices in integrated nano-optics.

  3. Guided mode resonance in planar metamaterials consisting of two ring resonators with different sizes

    International Nuclear Information System (INIS)

    Yu Zhen; Che Hang; Liu Jianjun; Jing Xufeng; Li Xiangjun; Hong Zhi

    2017-01-01

    We proposed and experimentally investigated a two-ring-resonator composed planar hybrid metamaterial (MM), in which the spectra of guided mode resonance (GMR) and Fano resonance or EIT-like response induced by coherent interaction between MM resonance and GMR can be easily controlled by the size of the two rings in the terahertz regime. Furthermore, a four-ring-resonator composed MM for polarization-insensitive GMRs was demonstrated, where GMRs of both TE and TM modes are physically attributed to the diffraction coupling by two ±45° tilting gratings. Such kind of device has great potential in ultra-sensitive label-free sensors, filters, or slow light based devices. (paper)

  4. A metamaterial terahertz modulator based on complementary planar double-split-ring resonator

    Science.gov (United States)

    Wang, Chang-hui; Kuang, Deng-feng; Chang, Sheng-jiang; Lin, Lie

    2013-07-01

    A metamaterial based on complementary planar double-split-ring resonator (DSRR) structure is presented and demonstrated, which can optically tune the transmission of the terahertz (THz) wave. Unlike the traditional DSRR metamaterials, the DSRR discussed in this paper consists of two split rings connected by two bridges. Numerical simulations with the finite-difference time-domain (FDTD) method reveal that the transmission spectra of the original and the complementary metamaterials are both in good agreement with Babinet's principle. Then by increasing the carrier density of the intrinsic GaAs substrate, the magnetic response of the complementary special DSRR metamaterial can be weakened or even turned off. This metamaterial structure is promised to be a narrow-band THz modulator with response time of several nanoseconds.

  5. Magnetic response of split-ring resonator metamaterials: From ...

    Indian Academy of Sciences (India)

    finally becomes comparable to the size of the unit cell of the metamaterial. In the intermediate stages ... metamaterials has been explained using an LC-circuit paradigm [4]. SRR, or its vari- ..... becomes truly problematic here. The second gap ...

  6. Single and multi-band electromagnetic induced transparency-like metamaterials with coupled split ring resonators

    Science.gov (United States)

    Bagci, Fulya; Akaoglu, Baris

    2017-08-01

    We present a metamaterial configuration exhibiting single and multi-band electromagnetic induced transparency (EIT)-like properties. The unit cell of the single band EIT-like metamaterial consists of a multi-split ring resonator surrounded by a split ring resonator. The multi-split ring resonator acts as a quasi-dark or dark resonator, depending on the polarization of the incident wave, and the split ring resonator serves as the bright resonator. Combination of these two resonators results in a single band EIT-like transmission inside the stop band. EIT-like transmission phenomenon is also clearly observed in the measured transmission spectrum at almost the same frequencies for vertical and horizontal polarized waves, and the numerical results are verified for normal incidence. Moreover, multi-band transmission windows are created within a wide band by combining the two slightly different single band EIT-like metamaterial unit cells that exhibit two different coupling strengths inside a supercell configuration. Group indices as high as 123 for single band and 488 for tri-band transmission, accompanying with high transmission rates (over 80%), are achieved, rendering the metamaterial very suitable for multi-band slow light applications. It is shown that the group delay of the propagating wave can be increased and dynamically controlled by changing the polarization angle. Multi-band EIT-like transmission is also verified experimentally, and a good agreement with simulations is obtained. The proposed novel methodology for obtaining multi-band EIT, which takes advantage of a supercell configuration by hosting slightly different configured unit cells, can be utilized for easily formation and manipulation of multi-band transmission windows inside a stop band.

  7. Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials

    Science.gov (United States)

    Han, Song; Cong, Longqing; Lin, Hai; Xiao, Boxun; Yang, Helin; Singh, Ranjan

    2016-01-01

    Metamaterials have recently enabled coupling induced transparency due to interference effects in coupled subwavelength resonators. In this work, we present a three dimensional (3-D) metamaterial design with six-fold rotational symmetry that shows electromagnetically induced transparency with a strong polarization dependence to the incident electromagnetic wave due to the ultra-sharp resonance line width as a result of interaction between the constituent meta-atoms. However, when the six-fold rotationally symmetric unit cell design was re-arranged into a fourfold rotational symmetry, we observed the excitation of a polarization insensitive dual-band transparency. Thus, the 3-D split-ring resonators allow new schemes to observe single and multi-band classical analogues of electromagnetically induced transparencies that has huge potential applications in slowing down light, sensing modalities, and filtering functionalities either in the passive mode or the active mode where such effects could be tuned by integrating materials with dynamic properties. PMID:26857034

  8. Achieving a multi-band metamaterial perfect absorber via a hexagonal ring dielectric resonator

    Science.gov (United States)

    Li, Li-Yang; Wang, Jun; Du, Hong-Liang; Wang, Jia-Fu; Qu, Shao-Bo

    2015-06-01

    A multi-band absorber composed of high-permittivity hexagonal ring dielectric resonators and a metallic ground plate is designed in the microwave band. Near-unity absorptions around 9.785 GHz, 11.525 GHz, and 12.37 GHz are observed for this metamaterial absorber. The dielectric hexagonal ring resonator is made of microwave ceramics with high permittivity and low loss. The mechanism for the near-unity absorption is investigated via the dielectric resonator theory. It is found that the absorption results from electric and magnetic resonances where enhanced electromagnetic fields are excited inside the dielectric resonator. In addition, the resonance modes of the hexagonal resonator are similar to those of standard rectangle resonators and can be used for analyzing hexagonal absorbers. Our work provides a new research method as well as a solid foundation for designing and analyzing dielectric metamaterial absorbers with complex shapes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61331005, 11204378, 11274389, 11304393, and 61302023), the Aviation Science Foundation of China (Grant Nos. 20132796018 and 20123196015), the Natural Science Foundation for Post-Doctoral Scientists of China (Grant Nos. 2013M532131 and 2013M532221), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2013JM6005), and the Special Funds for Authors of Annual Excellent Doctoral Degree Dissertations of China (Grant No. 201242).

  9. Fabrication of Nanopillar-Based Split Ring Resonators for Displacement Current Mediated Resonances in Terahertz Metamaterials.

    Science.gov (United States)

    Liu, Chao; Schauff, Joseph; Lee, Seokhyeong; Cho, Jeong-Hyun

    2017-03-23

    Terahertz (THz) split ring resonator (SRR) metamaterials (MMs) has been studied for gas, chemical, and biomolecular sensing applications because the SRR is not affected by environmental characteristics such as the temperature and pressure surrounding the resonator. Electromagnetic radiation in THz frequencies is biocompatible, which is a critical condition especially for the application of the biomolecular sensing. However, the quality factor (Q-factor) and frequency responses of traditional thin-film based split ring resonator (SRR) MMs are very low, which limits their sensitivities and selectivity as sensors. In this work, novel nanopillar-based SRR MMs, utilizing displacement current, are designed to enhance the Q-factor up to 450, which is around 45 times higher than that of traditional thin-film-based MMs. In addition to the enhanced Q-factor, the nanopillar-based MMs induce a larger frequency shifts (17 times compared to the shift obtained by the traditional thin-film based MMs). Because of the significantly enhanced Q-factors and frequency shifts as well as the property of biocompatible radiation, the THz nanopillar-based SRR are ideal MMs for the development of biomolecular sensors with high sensitivity and selectivity without inducing damage or distortion to biomaterials. A novel fabrication process has been demonstrated to build the nanopillar-based SRRs for displacement current mediated THz MMs. A two-step gold (Au) electroplating process and an atomic layer deposition (ALD) process are used to create sub-10 nm scale gaps between Au nanopillars. Since the ALD process is a conformal coating process, a uniform aluminum oxide (Al2O3) layer with nanometer-scale thickness can be achieved. By sequentially electroplating another Au thin film to fill the spaces between Al2O3 and Au, a close-packed Au-Al2O3-Au structure with nano-scale Al2O3 gaps can be fabricated. The size of the nano-gaps can be well defined by precisely controlling the deposition cycles of the

  10. Determination of permittivity of pulses and cereals using metamaterial split ring resonator

    Science.gov (United States)

    Chakyar, Sreedevi P.; Sikha Simon, K.; Murali, Aathira; Shanto T., A.; Andrews, Jolly; Joseph V., P.

    2017-06-01

    Relative permittivity of wide variety of pulses and cereals are precisely determined with the help of metamaterial Split Ring Resonator (SRR) operating at microwave frequencies using a simple extraction procedure. The unknown permittivity of food samples in powder form are evaluated from a calibration curve drawn between the dielectric constant of some standard samples and LC resonant frequency of SRR test probe with the sample placed over it. The experimental setup consists of SRR test probe arranged between transmitting and receiving probes connected to a vector network analyzer. Unknown relative permittivity of the sample is obtained by placing it on the SRR surface and is evaluated from the calibration curve which is found to be in good agreement with the expected standard values. The possible applications of this sensitive and easy technique are analyzed in the field of food preservation, quality checking, adulteration etc.

  11. Biharmonic split ring resonator metamaterial: Artificially dispersive effective density in thin periodically perforated plates

    KAUST Repository

    Farhat, Mohamed

    2014-08-01

    We present in this paper a theoretical and numerical analysis of bending waves localized on the boundary of a platonic crystal whose building blocks are Split Ring Resonators (SRR). We first derive the homogenized parameters of the structured plate using a three-scale asymptotic expansion in the linearized biharmonic equation. In the limit when the wavelength of the bending wave is much larger than the typical heterogeneity size of the platonic crystal, we show that it behaves as an artificial plate with an anisotropic effective Young modulus and a dispersive effective mass density. We then analyze dispersion diagrams associated with bending waves propagating within an infinite array of SRR, for which eigen-solutions are sought in the form of Floquet-Bloch waves. We finally demonstrate that this structure displays the hallmarks of All-Angle Negative Refraction (AANR) and it leads to superlensing and ultrarefraction effects, interpreted thanks to our homogenization model as a consequence of negative and vanishing effective density, respectively. © EPLA, 2014.

  12. Biharmonic split ring resonator metamaterial: Artificially dispersive effective density in thin periodically perforated plates

    KAUST Repository

    Farhat, Mohamed; Enoch, Stefan; Guenneau, Sé bastien

    2014-01-01

    We present in this paper a theoretical and numerical analysis of bending waves localized on the boundary of a platonic crystal whose building blocks are Split Ring Resonators (SRR). We first derive the homogenized parameters of the structured plate using a three-scale asymptotic expansion in the linearized biharmonic equation. In the limit when the wavelength of the bending wave is much larger than the typical heterogeneity size of the platonic crystal, we show that it behaves as an artificial plate with an anisotropic effective Young modulus and a dispersive effective mass density. We then analyze dispersion diagrams associated with bending waves propagating within an infinite array of SRR, for which eigen-solutions are sought in the form of Floquet-Bloch waves. We finally demonstrate that this structure displays the hallmarks of All-Angle Negative Refraction (AANR) and it leads to superlensing and ultrarefraction effects, interpreted thanks to our homogenization model as a consequence of negative and vanishing effective density, respectively. © EPLA, 2014.

  13. Homogenization of resonant chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....

  14. Trampoline metamaterial: Local resonance enhancement by springboards

    Science.gov (United States)

    Bilal, Osama R.; Hussein, Mahmoud I.

    2013-09-01

    We investigate the dispersion characteristics of locally resonant elastic metamaterials formed by the erection of pillars on the solid regions in a plate patterned by a periodic array of holes. We show that these solid regions effectively act as springboards leading to an enhanced resonance behavior by the pillars when compared to the nominal case of pillars with no holes. This local resonance amplification phenomenon, which we define as the trampoline effect, is shown to cause subwavelength bandgaps to increase in size by up to a factor of 4. This outcome facilitates the utilization of subwavelength metamaterial properties over exceedingly broad frequency ranges.

  15. Homogenization of resonant chiral metamaterials

    OpenAIRE

    Andryieuski, Andrei; Menzel, Christoph; Rockstuhl, Carsten; Malureanu, Radu; Lederer, Falk; Lavrinenko, Andrei

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as e.g. propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size a critical density exists above which increasing coupling between neighboring meta-atoms prevails a reasonable homogenization. On the contrary, a dilution in excess will induce features reminiscent to pho...

  16. Fano resonances from gradient-index metamaterials.

    Science.gov (United States)

    Xu, Yadong; Li, Sucheng; Hou, Bo; Chen, Huanyang

    2016-01-27

    Fano resonances - resonant scattering features with a characteristic asymmetric profile - have generated much interest, due to their extensive and valuable applications in chemical or biological sensors, new types of optical switches, lasers and nonlinear optics. They have been observed in a wide variety of resonant optical systems, including photonic crystals, metamaterials, metallic gratings and nanostructures. In this work, a waveguide structure is designed by employing gradient-index metamaterials, supporting strong Fano resonances with extremely sharp spectra. As the changes in the transmission spectrum originate from the interaction of guided modes from different channels, instead of resonance structures or metamolecules, the Fano resonances can be observed for both transverse electric and transverse magnetic polarizations. These findings are verified by fine agreement with analytical calculations and experimental results at microwave, as well as simulated results at near infrared frequencies.

  17. Resonance transparency with low-loss in toroidal planar metamaterial

    Science.gov (United States)

    Xiang, Tianyu; Lei, Tao; Hu, Sen; Chen, Jiao; Huang, Xiaojun; Yang, Helin

    2018-03-01

    A compact planar construction composed of asymmetric split ring resonators was designed with a low-loss, high Q-factor resonance transparency at microwave frequency. The singularity property of the proposed metamaterial owing to the enhanced toroidal dipole T is demonstrated via numerical and experimental methods. The transmission peak can reach up to 0.91 and the loss is perfectly repressed, which can be testified by radiated power, H-field distributions, and the imaginary parts of effective permittivity and permeability. The designed planar metamaterial may have numerous potential applications at microwave, terahertz, and optical frequency, e.g., for ultrasensitive sensing, slow-light devices, lasing spacers, even invisible information transfer.

  18. Acoustic metamaterials: From local resonances to broad horizons

    Science.gov (United States)

    Ma, Guancong; Sheng, Ping

    2016-01-01

    Within a time span of 15 years, acoustic metamaterials have emerged from academic curiosity to become an active field driven by scientific discoveries and diverse application potentials. This review traces the development of acoustic metamaterials from the initial findings of mass density and bulk modulus frequency dispersions in locally resonant structures to the diverse functionalities afforded by the perspective of negative constitutive parameter values, and their implications for acoustic wave behaviors. We survey the more recent developments, which include compact phase manipulation structures, superabsorption, and actively controllable metamaterials as well as the new directions on acoustic wave transport in moving fluid, elastic, and mechanical metamaterials, graphene-inspired metamaterials, and structures whose characteristics are best delineated by non-Hermitian Hamiltonians. Many of the novel acoustic metamaterial structures have transcended the original definition of metamaterials as arising from the collective manifestations of constituent resonating units, but they continue to extend wave manipulation functionalities beyond those found in nature. PMID:26933692

  19. Acoustic metamaterials: From local resonances to broad horizons.

    Science.gov (United States)

    Ma, Guancong; Sheng, Ping

    2016-02-01

    Within a time span of 15 years, acoustic metamaterials have emerged from academic curiosity to become an active field driven by scientific discoveries and diverse application potentials. This review traces the development of acoustic metamaterials from the initial findings of mass density and bulk modulus frequency dispersions in locally resonant structures to the diverse functionalities afforded by the perspective of negative constitutive parameter values, and their implications for acoustic wave behaviors. We survey the more recent developments, which include compact phase manipulation structures, superabsorption, and actively controllable metamaterials as well as the new directions on acoustic wave transport in moving fluid, elastic, and mechanical metamaterials, graphene-inspired metamaterials, and structures whose characteristics are best delineated by non-Hermitian Hamiltonians. Many of the novel acoustic metamaterial structures have transcended the original definition of metamaterials as arising from the collective manifestations of constituent resonating units, but they continue to extend wave manipulation functionalities beyond those found in nature.

  20. Origin of strain-induced resonances in flexible terahertz metamaterials

    International Nuclear Information System (INIS)

    Sun Xiu-Yun; Li Xiao-Ning; Xu Hua; Liang Xian-Ting; Zheng Li-Ren; Zhang Xian-Peng; Lu Yue-Hui; Song Wei-Jie; Lee, Young-Pak; Rhee, Joo-Yull

    2016-01-01

    Two types of flexible terahertz metamaterials were fabricated on polyethylene naphthalate (PEN) substrates. The unit cell of one type consists of two identical split-ring resonators (SRRs) that are arranged face-to-face (i.e., FlexMetaF); the unit cell of the other type has nothing different but is arranged back-to-back (i.e., FlexMetaB). FlexMetaF and FlexMetaB illustrate the similar transmission dips under zero strain because the excitation of fundamental inductive–capacitive (LC) resonance is mainly dependent on the geometric structure of individual SRR. However, if a gradually variant strain is applied to bend FlexMetaF and FlexMetaB, the new resonant peaks appear: in the case of FlexMetaF, the peaks are located at the lower frequencies; in the case of FlexMetaB, the peaks appear at the frequencies adjacent to the LC resonance. The origin and evolution of strain-induced resonances are studied. The origin is ascribed to the detuning effect and the different responses to strain from FlexMetaF and FlexMetaB are associated with the coupling effect. These findings may improve the understanding on flexible terahertz metamaterials and benefit their applications in flexible or curved devices. (paper)

  1. Optical programmable metamaterials

    Science.gov (United States)

    Gong, Cheng; Zhang, Nan; Dai, Zijie; Liu, Weiwei

    2018-02-01

    We suggest and demonstrate the concept of optical programmable metamaterials which can configure the device's electromagnetic parameters by the programmable optical stimuli. In such metamaterials, the optical stimuli produced by a FPGA controlled light emitting diode array can switch or combine the resonance modes which are coupled in. As an example, an optical programmable metamaterial terahertz absorber is proposed. Each cell of the absorber integrates four meta-rings (asymmetric 1/4 rings) with photo-resistors connecting the critical gaps. The principle and design of the metamaterials are illustrated and the simulation results demonstrate the functionalities for programming the metamaterial absorber to change its bandwidth and resonance frequency.

  2. Substrate effects on terahertz metamaterial resonances for various metal thicknesses

    International Nuclear Information System (INIS)

    Park, S. J.; Ahn, Y. H.

    2014-01-01

    We demonstrate dielectric substrate effects on the resonance shift of terahertz metamaterials with various metal thicknesses by using finite-difference time-domain simulations. We found a small red shift in the metamaterial resonance with increasing metal thickness for the free-standing case. Conversely, when the metamaterial pattern was supported by a substrate with a high dielectric constant, the resonant frequency exhibited a large blue shift because the relative contribution of the substrate's refractive index to the resonant frequency decreased drastically as we increased the metal thickness. We determined the substrate's refractive index, 1.26, at which the metamaterial resonance was independent of the metal thickness. We extracted the effective refractive index as a function of the substrate's refractive index explicitly, which was noticeably different for different film thicknesses.

  3. Electromagnetically induced transparency in planar metamaterials based on guided mode resonance

    Science.gov (United States)

    Sun, Yaru; Chen, Hang; Li, Xiangjun; Hong, Zhi

    2017-06-01

    We present and numerically demonstrate a novel, electromagnetically induced transparency (EIT) in planar metamaterials (MMs) based on guided mode resonance (GMR). The unit cell of the MM consists of two metallic ring resonators. The GMR with high quality factor (Q) is achieved by changing the distance between the two rings of the MM. Narrow EIT-like spectral response is realized by coupling between a high Q GMR and a low Q dipolar resonance of the MM. Our work could provide another efficient way towards the realization of EIT with large group index using very simple structures.

  4. Properties of Sub-wavelength Resonances in Metamaterial Cylinders

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Clausen, N.C.J.; Pedersen, R.R.

    2008-01-01

    The analytical solution for the canonical configuration with electric line source illumination of concentric metamaterial cylinders is employed to study the properties of the observed sub-wavelength resonances. The near- and far-field distributions, the frequency and geometry bandwidths, and the ......, and the line source impedance are investigated for varying electromagnetic and geometrical parameters. The results of this study are of importance for metamaterial-based miniaturization of antennas....

  5. Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials

    International Nuclear Information System (INIS)

    Roy Chowdhury, Dibakar; Xu, Ningning; Zhang, Weili; Singh, Ranjan

    2015-01-01

    Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials

  6. Dual band metamaterial perfect absorber based on Mie resonances

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhou, Ji, E-mail: zhouji@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bi, Ke [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Zhao, Qian [State Key Lab of Tribology, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084 (China)

    2016-08-08

    We numerically and experimentally demonstrated a polarization insensitive dual-band metamaterial perfect absorber working in wide incident angles based on the two magnetic Mie resonances of a single dielectric “atom” with simple structure. Two absorption bands with simulated absorptivity of 99% and 96%, experimental absorptivity of 97% and 94% at 8.45 and 11.97 GHz were achieved due to the simultaneous magnetic and electric resonances in dielectric “atom” and copper plate. Mie resonances of dielectric “atom” provide a simple way to design metamaterial perfect absorbers with high symmetry.

  7. The wave attenuation mechanism of the periodic local resonant metamaterial

    Science.gov (United States)

    Chang, I.-Ling; Liang, Zhen-Xian; Kao, Hao-Wei; Chang, Shih-Hsiang; Yang, Chih-Ying

    2018-01-01

    This research discusses the wave propagation behavior and attenuation mechanism of the elastic metamaterial with locally resonant sub-structure. The dispersion relation of the single resonance system, i.e., periodic spring mass system with sub-structure, could be derived based on lattice dynamics and the band gap could be easily identified. The dynamically equivalent properties, i.e., mass and elastic property, of the single resonance system are derived and found to be frequency dependent. Negative effective properties are found in the vicinity of the local resonance. It is examined whether the band gap always coincides with the frequency range of negative effective properties. The wave attenuation mechanism and the characteristic dynamic behavior of the elastic metamaterial are also studied from the energy point of view. From the analysis, it is clarified that the coupled Bragg-resonance band gap is much wider than the narrow-banded local resonance and the corresponding effective material properties at band gap could be either positive or negative. However, the band gap is totally overlapping with the frequency range of negative effective properties for the metamaterial with band gap purely caused by local resonance. The presented analysis can be extended to other forms of elastic metamaterials involving periodic resonator structures.

  8. Broadband absorption through extended resonance modes in random metamaterials

    International Nuclear Information System (INIS)

    Hao, J.; Niemiec, R.; Lheurette, É.; Lippens, D.; Burgnies, L.

    2016-01-01

    The properties of disordered metamaterial absorbers are analyzed on the basis of numerical simulations and experimental characterizations. A broadening of the absorption spectrum is clearly evidenced. This effect is the consequence of both the coupling between nearby resonators leading to the occurrence of extended magnetic resonance modes and the interconnection of elementary particles yielding the definition of resonating clusters. The angular robustness of the absorbing structure under oblique incidence is also demonstrated for a wide domain of angles.

  9. Resonance capture and Saturn's rings

    International Nuclear Information System (INIS)

    Patterson, C.W.

    1986-05-01

    We have assigned the resonances apparently responsible for the stabilization of the Saturn's shepherd satellites and for the substructure seen in the F-ring and the ringlets in the C-ring. We show that Saturn's narrow ringlets have a substructure determined by three-body resonances with Saturn's ringmoons and the sun. We believe such resonances have important implications to satellite formation. 17 refs., 1 fig., 1 tab

  10. Pure Electric and Pure Magnetic Resonances in Near-Infrared Metal Double-Triangle Metamaterial Arrays

    International Nuclear Information System (INIS)

    Cao Zhi-Shen; Pan Jian; Chen Zhuo; Zhan Peng; Min Nai-Ben; Wang Zhen-Lin

    2011-01-01

    We experimentally and numerically investigate the optical properties of metamaterial arrays composed of double partially-overlapped metallic nanotriangles fabricated by an angle-resolved nanosphere lithography. We demonstrate that each double-triangle can be viewed as an artificial magnetic element analogous to the conventional metal split-ring-resonator. It is shown that under normal-incidence conditions, individual double-triangle can exhibit a strong local magnetic resonance, but the collective response of the metamaterial arrays is purely electric because magnetic resonances of the two double-triangles in a unit cell having opposite openings are out of phase. For oblique incidences the metamaterial arrays are shown to support a pure magnetic response at the same frequency band. Therefore, switchable electric and magnetic resonances are achieved in double-triangle arrays. Moreover, both the electric and magnetic resonances are shown to allow for a tunability over a large spectral range down to near-infrared. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Towards optimal design of locally resonant acoustic metamaterials

    NARCIS (Netherlands)

    Krushynska, A.O.; Kouznetsova, V.; Geers, M.G.D.

    2014-01-01

    The paper presents an in-depth analysis of solid locally resonant acoustic metamaterials (LRAMs) consisting of rubber-coated inclusions. Dispersion properties of two-dimensional LRAMs are studied by means of finite-element modal analysis. For an incompressible rubber, only one practically important

  12. Ellipsoidal all-dielectric Fano resonant core-shell metamaterials

    Science.gov (United States)

    Reena, Reena; Kalra, Yogita; Kumar, Ajeet

    2018-06-01

    In this paper, ellipsoidal core (Si) and shell (SiO2) metamaterial has been proposed for highly directional properties. At the wavelength of magnetic resonance, Fano dip occurs in the backward scattering cross section and forward scattering enhancement takes place at the same wavelength so that there is an increment in the directivity. Effect on the directivity by changing the length of ellipsoidal nanoparticle along semi-axes has been analyzed. Two Fano resonances have been observed by decreasing the length of the nanoparticle along the semi-axis having electric polarization, where first and second Fano resonances are attributed to the dipole and quadrupole moments, respectively. These Fano resonant wavelengths in ellipsoidal nanoparticle exhibit higher directivity than the Kerker's type scattering or forward scattering shown by symmetrical structures like sphere. So, this core-shell metamaterial can act as an efficient directional nanoantenna.

  13. A Microring Resonator Based Negative Permeability Metamaterial Sensor

    Directory of Open Access Journals (Sweden)

    Yao-Zhong Lan

    2011-08-01

    Full Text Available Metamaterials are artificial multifunctional materials that acquire their material properties from their structure, rather than inheriting them directly from the materials they are composed of, and they may provide novel tools to significantly enhance the sensitivity and resolution of sensors. In this paper, we derive the dispersion relation of a cylindrical dielectric waveguide loaded on a negative permeability metamaterial (NPM layer, and compute the resonant frequencies and electric field distribution of the corresponding Whispering-Gallery-Modes (WGMs. The theoretical resonant frequency and electric field distribution results are in good agreement with the full wave simulation results. We show that the NPM sensor based on a microring resonator possesses higher sensitivity than the traditional microring sensor since with the evanescent wave amplification and the increase of NPM layer thickness, the sensitivity will be greatly increased. This may open a door for designing sensors with specified sensitivity.

  14. Membrane metamaterial resonators with a sharp resonance: A comprehensive study towards practical terahertz filters and sensors

    Directory of Open Access Journals (Sweden)

    Yongyao Chen

    2012-06-01

    Full Text Available We investigate the resonant properties of high quality-factor membrane-based metamaterial resonators functioning in the terahertz regime. A number of factors, including the resonator geometry, dielectric loss, and most importantly the membrane thickness are found to extensively influence the resonance strength and quality factor of the sharp resonance. Further studies on the membrane thickness-dependent-sensitivity for sensing applications reveal that high quality-factor membrane metamaterials with a moderate thickness ranging from 10 to 50 μm are the most promising option towards developing realistic integrated terahertz filters and sensors.

  15. Spatiotemporal electromagnetic soliton and spatial ring formation in nonlinear metamaterials

    International Nuclear Information System (INIS)

    Zhang Jinggui; Wen Shuangchun; Xiang Yuanjiang; Wang Youwen; Luo Hailu

    2010-01-01

    We present a systematic investigation of ultrashort electromagnetic pulse propagation in metamaterials (MMs) with simultaneous cubic electric and magnetic nonlinearity. We predict that spatiotemporal electromagnetic solitons may exist in the positive-index region of a MM with focusing nonlinearity and anomalous group velocity dispersion (GVD), as well as in the negative-index region of the MM with defocusing nonlinearity and normal GVD. The experimental circumstances for generating and manipulating spatiotemporal electromagnetic solitons can be created by elaborating appropriate MMs. In addition, we find that, in the negative-index region of a MM, a spatial ring may be formed as the electromagnetic pulse propagates for focusing nonlinearity and anomalous GVD; while the phenomenon of temporal splitting of the electromagnetic pulse may appear for the same case except for the defocusing nonlinearity. Finally, we demonstrate that the nonlinear magnetization makes the sign of effective electric nonlinear effect switchable due to the combined action of electric and magnetic nonlinearity, exerting a significant influence on the propagation of electromagnetic pulses.

  16. Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Galynsky, Vladimir M.; Zhukovsky, Sergei

    2012-01-01

    The electronic Lorentz theory is employed to explain the optical properties of planar split-ring metamaterials. Starting from the dynamics of individual free carriers, the electromagnetic response of an individual split-ring meta-atom is determined, and the effective permittivity tensor...... of the metamaterial is calculated for normal incidence of light. Whenever the split ring lacks in-plane mirror symmetry, the corresponding permittivity tensor has a crystallographic structure of an elliptically dichroic medium, and the metamaterial exhibits optical properties of planar chiral structures. Its...... transmission spectra are different for right-handed versus left-handed circular polarization of the incident wave, so the structure changes its transmittance when the direction of incidence is reversed. The magnitude of this change is shown to be related to the geometric parameters of the split ring...

  17. Acoustic superlens using Helmholtz-resonator-based metamaterials

    International Nuclear Information System (INIS)

    Yang, Xishan; Yin, Jing; Yu, Gaokun; Peng, Linhui; Wang, Ning

    2015-01-01

    Acoustic superlens provides a way to overcome the diffraction limit with respect to the wavelength of the bulk wave in air. However, the operating frequency range of subwavelength imaging is quite narrow. Here, an acoustic superlens is designed using Helmholtz-resonator-based metamaterials to broaden the bandwidth of super-resolution. An experiment is carried out to verify subwavelength imaging of double slits, the imaging of which can be well resolved in the frequency range from 570 to 650 Hz. Different from previous works based on the Fabry-Pérot resonance, the corresponding mechanism of subwavelength imaging is the Fano resonance, and the strong coupling between the neighbouring Helmholtz resonators separated at the subwavelength interval leads to the enhanced sound transmission over a relatively wide frequency range

  18. Structuring Light to Manipulate Multipolar Resonances for Metamaterial Applications

    Science.gov (United States)

    Das, Tanya

    Multipolar electromagnetic phenomena in sub-wavelength resonators are at the heart of metamaterial science and technology. Typically, researchers engineer multipolar light-matter interactions by modifying the size, shape, and composition of the resonators. Here, we instead engineer multipolar interactions by modifying properties of the incident radiation. In this dissertation, we propose a new framework for determining the scattering response of resonators based on properties of the local excitation field. First, we derive an analytical theory to determine the scattering response of spherical nanoparticles under any type of illumination. Using this theory, we demonstrate the ability to drastically manipulate the scattering properties of a spherical nanoparticle by varying the illumination and demonstrate excitation of a longitudinal quadrupole mode that cannot be accessed with conventional illumination. Next, we investigate the response of dielectric dimer structures illuminated by cylindrical vector beams. Using finite-difference time-domain simulations, we demonstrate significant modification of the scattering spectra of dimer antennas and reveal how the illumination condition gives rise to these spectra through manipulation of electric and magnetic mode hybridization. Finally, we present a simple and efficient numerical simulation based on local field principles for extracting the multipolar response of any resonator under illumination by structured light. This dissertation enhances the understanding of fundamental light-matter interactions in metamaterials and lays the foundation for researchers to identify, quantify, and manipulate multipolar light-matter interactions through optical beam engineering.

  19. Metamaterials

    CERN Document Server

    Cui, Tie Jun

    2009-01-01

    Includes an introduction to optical transformation theory, revealing invisible cloaks, EM concentrators, beam splitters, and new-type antennas. This title offers a presentation of general theory on artificial metamaterials composed of periodic structures, and coverage of a rapid design method for inhomogeneous metamaterials.

  20. Equal-potential interpretation of electrically induced resonances in metamaterials

    DEFF Research Database (Denmark)

    Peng, Liang; Mortensen, N. Asger

    2011-01-01

    We propose a general description of electrically induced resonances (EIR) in metamaterials (MMs) comprising subwavelength unit cells. Based on classical electrodynamics, we found that EIR is governed by an equal-potential effect. Our theory accounts for the EIR phenomena and can give a renewed...... definition of the effective electric field and hence effective permittivity for MMs made of either dielectrics or metals as well as combinations thereof. The EIR, inherent to the periodic structures, may be the unifying origin of recently observed anomalous electromagnetic phenomena, e.g. the enhanced...

  1. Broadband locally resonant metamaterials with graded hierarchical architecture

    Science.gov (United States)

    Liu, Chenchen; Reina, Celia

    2018-03-01

    We investigate the effect of hierarchical designs on the bandgap structure of periodic lattice systems with inner resonators. A detailed parameter study reveals various interesting features of structures with two levels of hierarchy as compared with one level systems with identical static mass. In particular: (i) their overall bandwidth is approximately equal, yet bounded above by the bandwidth of the single-resonator system; (ii) the number of bandgaps increases with the level of hierarchy; and (iii) the spectrum of bandgap frequencies is also enlarged. Taking advantage of these features, we propose graded hierarchical structures with ultra-broadband properties. These designs are validated over analogous continuum models via finite element simulations, demonstrating their capability to overcome the bandwidth narrowness that is typical of resonant metamaterials.

  2. Electromagnetic resonance in the asymmetric terahertz metamaterials with triangle microstructure

    Science.gov (United States)

    Xing, Yuanyuan; Zhang, Xiaoyu; Zhang, Qiang; Gu, Yanping; Qian, Yunan; Lin, Xingyue; Tang, Yunhai; Cheng, Xinli; Qin, Changfa; Shen, Jiaoyan; Zang, Taocheng; Ma, Chunlan

    2018-05-01

    We investigate terahertz transmission properties and electromagnetic resonance modes in the asymmetric triangle structures with the change of asymmetric distance and the direction of electric field. When the THz electric field is perpendicular to the split gap of triangle, the electric field can better excite the THz absorption in the triangle structures. Importantly, electromagnetically induced transparency (EIT) characteristics are observed in the triangle structures due to the destructive interference of the different excited modes. The distributions of electric field and surface current density simulated by finite difference time domain indicate that the bright mode is excited by the side of triangle structures and dark mode is excited by the gap-side of triangle. The present study is helpful to understand the electromagnetic resonance in the asymmetric triangular metamaterials.

  3. Is it possible to homogenize resonant chiral metamaterials ?

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, Christoph; Rockstuhl, Carsten

    2010-01-01

    Homogenization of metamaterials is very important as it makes possible description in terms of effective parameters. In this contribution we consider the homogenization of chiral metamaterials. We show that for some metamaterials there is an optimal meta-atom size which depends on the coupling...

  4. Microwave energy harvesting based on metamaterial absorbers with multi-layered square split rings for wireless communications

    Science.gov (United States)

    Karaaslan, Muharrem; Bağmancı, Mehmet; Ünal, Emin; Akgol, Oguzhan; Sabah, Cumali

    2017-06-01

    We propose the design of a multiband absorber based on multi-layered square split ring (MSSR) structure. The multi-layered metamaterial structure is designed to be used in the frequency bands such as WIMAX, WLAN and satellite communication region. The absorption levels of the proposed structure are higher than 90% for all resonance frequencies. In addition, the incident angle and polarization dependence of the multi-layered metamaterial absorber and harvester is also investigated and it is observed that the structure has polarization angle independent frequency response with good absorption characteristics in the entire working frequency band. The energy harvesting ratios of the structure is investigated especially for the resonance frequencies at which the maximum absorption occurs. The energy harvesting potential of the proposed MSSRs is as good as those of the structures given in the literature. Therefore, the suggested design having good absorption, polarization and angle independent characteristics with a wide bandwidth is a potential candidate for future energy harvesting applications in commonly used wireless communication bands, namely WIMAX, WLAN and satellite communication bands.

  5. A multiband THz bandpass filter based on multiple-resonance excitation of a composite metamaterial

    International Nuclear Information System (INIS)

    Chen, Xu; Fan, Wen-Hui

    2015-01-01

    We present a systematic numerical study on a metal-dielectric-metal (MDM) sandwich structure for multiple resonance transmission in terahertz (THz) region. The designed structure consists of periodic square close ring array on both side of a flexible dielectric substrate, exhibits a multiband transmission, with low average insertion loss, steep skirts and high out-of-band rejection. In addition, due to its rotationally symmetric structure, this filter is polarization-insensitive for normal incidence of the electromagnetic waves, keeping highly transmission at a wide range of incident angles for transverse electric waves and transverse magnetic waves. The metamaterial structure can be utilized as a desirable multiband filter with many practical applications, especially for THz communication, spectroscopic detection and phase imaging. (paper)

  6. Image acceleration in parallel magnetic resonance imaging by means of metamaterial magnetoinductive lenses

    Directory of Open Access Journals (Sweden)

    Manuel J. Freire

    2012-06-01

    Full Text Available Parallel Magnetic Resonance imaging (pMRI is an image acceleration technique which takes advantage of localized sensitivities of multiple receivers. In this letter, we show that metamaterial lenses based on capacitively-loaded rings can provide higher localization of coil sensitivities compared to conventional loop designs. Several lens designs are systematically analyzed in order to find the structure providing higher signal-to-noise-ratio. The magnetoinductive (MI lens has been found to be the optimum structure and an experiment is developed to show it. The ability of the MI lens for pMRI is investigated by means of the parameter known in the MRI community as g-Factor.

  7. Design of a five-band terahertz perfect metamaterial absorber using two resonators

    Science.gov (United States)

    Meng, Tianhua; Hu, Dan; Zhu, Qiaofen

    2018-05-01

    We present a polarization-insensitive five-band terahertz perfect metamaterial absorber composed of two metallic circular rings and a metallic ground film separated by a dielectric layer. The calculated results show that the absorber has five distinctive absorption bands whose peaks are greater than 99% on average. The physical origin of the absorber originates from the combination of dipolar, hexapolar, and surface plasmon resonance of the patterned metallic structure, which is different from the work mechanism of previously reported absorbers. In addition, the influence of the structural parameters on the absorption spectra is analyzed to further confirm the origin of the five-band absorption peaks. The proposed absorber has potential applications in terahertz imaging, refractive index sensing, and material detecting.

  8. Tunable band gaps in acoustic metamaterials with periodic arrays of resonant shunted piezos

    International Nuclear Information System (INIS)

    Chen Sheng-Bing; Wen Ji-Hong; Wang Gang; Wen Xi-Sen

    2013-01-01

    Periodic arrays of resonant shunted piezoelectric patches are employed to control the wave propagation in a two-dimensional (2D) acoustic metamaterial. The performance is characterized by the finite element method. More importantly, we propose an approach to solving the conventional issue of the nonlinear eigenvalue problem, and give a convenient solution to the dispersion properties of 2D metamaterials with periodic arrays of resonant shunts in this article. Based on this modeling method, the dispersion relations of a 2D metamaterial with periodic arrays of resonant shunted piezos are calculated. The results show that the internal resonances of the shunting system split the dispersion curves, thereby forming a locally resonant band gap. However, unlike the conventional locally resonant gap, the vibrations in this locally resonant gap are unable to be completely localized in oscillators consisting of shunting inductors and piezo-patches

  9. Design of a dual linear polarization antenna using split ring resonators at X-band

    Science.gov (United States)

    Ahmed, Sadiq; Chandra, Madhukar

    2017-11-01

    Dual linear polarization microstrip antenna configurations are very suitable for high-performance satellites, wireless communication and radar applications. This paper presents a new method to improve the co-cross polarization discrimination (XPD) for dual linear polarized microstrip antennas at 10 GHz. For this, three various configurations of a dual linear polarization antenna utilizing metamaterial unit cells are shown. In the first layout, the microstrip patch antenna is loaded with two pairs of spiral ring resonators, in the second model, a split ring resonator is placed between two microstrip feed lines, and in the third design, a complementary split ring resonators are etched in the ground plane. This work has two primary goals: the first is related to the addition of metamaterial unit cells to the antenna structure which permits compensation for an asymmetric current distribution flow on the microstrip antenna and thus yields a symmetrical current distribution on it. This compensation leads to an important enhancement in the XPD in comparison to a conventional dual linear polarized microstrip patch antenna. The simulation reveals an improvement of 7.9, 8.8, and 4 dB in the E and H planes for the three designs, respectively, in the XPD as compared to the conventional dual linear polarized patch antenna. The second objective of this paper is to present the characteristics and performances of the designs of the spiral ring resonator (S-RR), split ring resonator (SRR), and complementary split ring resonator (CSRR) metamaterial unit cells. The simulations are evaluated using the commercial full-wave simulator, Ansoft High-Frequency Structure Simulator (HFSS).

  10. Tunable THz wave absorption by graphene-assisted plasmonic metasurfaces based on metallic split ring resonators

    International Nuclear Information System (INIS)

    Ahmadivand, Arash; Sinha, Raju; Karabiyik, Mustafa; Vabbina, Phani Kiran; Gerislioglu, Burak; Kaya, Serkan; Pala, Nezih

    2017-01-01

    Graphene plasmonics has been introduced as a novel platform to design various nano- and microstructures to function in a wide range of spectrum from optical to THz frequencies. Herein, we propose a tunable plasmonic metamaterial in the THz regime by using metallic (silver) concentric microscale split ring resonator arrays on a multilayer metasurface composed of silica and silicon layers. We obtained an absorption percentage of 47.9% including two strong Fano resonant dips in THz regime for the purely plasmonic metamaterial without graphene layer. Considering the data of an atomic graphene sheet (with the thickness of ~0.35 nm) in both analytical and experimental regimes obtained by prior works, we employed a graphene layer under concentric split ring resonator arrays and above the multilayer metasurface to enhance the absorption ratio in THz bandwidth. Our numerical and analytical results proved that the presence of a thin graphene layer enhances the absorption coefficient of MM to 64.35%, at the highest peak in absorption profile that corresponds to the Fano dip position. We also have shown that changing the intrinsic characteristics of graphene sheet leads to shifts in the position of Fano dips and variations in the absorption efficiency. The maximum percentage of absorption (~67%) was obtained for graphene-based MM with graphene layer with dissipative loss factor of 1477 Ω. Employing the antisymmetric feature of the split ring resonators, the proposed graphene-based metamaterial with strong polarization dependency is highly sensitive to the polarization angle of the incident THz beam.

  11. Terahertz sensing of highly absorptive water-methanol mixtures with multiple resonances in metamaterials.

    Science.gov (United States)

    Chen, Min; Singh, Leena; Xu, Ningning; Singh, Ranjan; Zhang, Weili; Xie, Lijuan

    2017-06-26

    Terahertz sensing of highly absorptive aqueous solutions remains challenging due to strong absorption of water in the terahertz regime. Here, we experimentally demonstrate a cost-effective metamaterial-based sensor integrated with terahertz time-domain spectroscopy for highly absorptive water-methanol mixture sensing. This metamaterial has simple asymmetric wire structures that support multiple resonances including a fundamental Fano resonance and higher order dipolar resonance in the terahertz regime. Both the resonance modes have strong intensity in the transmission spectra which we exploit for detection of the highly absorptive water-methanol mixtures. The experimentally characterized sensitivities of the Fano and dipole resonances for the water-methanol mixtures are found to be 160 and 305 GHz/RIU, respectively. This method provides a robust route for metamaterial-assisted terahertz sensing of highly absorptive chemical and biochemical materials with multiple resonances and high accuracy.

  12. Magnetorheological elastomer vibration isolation of tunable three-dimensional locally resonant acoustic metamaterial

    Science.gov (United States)

    Xu, Zhenlong; Tong, Jie; Wu, Fugen

    2018-03-01

    Magnetorheological elastomers (MREs) are used as cladding in three-dimensional locally resonant acoustic metamaterial (LRAM) cores. The metamaterial units are combined into a vibration isolator. Two types of LRAMs, namely, cubic and spherical kernels, are constructed. The finite element method is used to analyze the elastic band structures, transmittances, and vibration modes of the incident elastic waves. Results show that the central position and width of the LRAM elastic bandgap can be controlled by the application of an external magnetic field; furthermore, they can be adjusted by changing the MRE cladding thickness. These methods contribute to the design of metamaterial MRE vibration isolators.

  13. Resonant photon tunneling via surface plasmon polaritons through one-dimensional metal-dielectric metamaterials

    OpenAIRE

    Tomita, Satoshi; Yokoyama, Takashi; Yanagi, Hisao; Wood, Ben; Pendry, John B.; Fujii, Minoru; Hayashi, Shinji

    2008-01-01

    We report resonant photon tunneling (RPT) through onedimensional metamaterials consisting of alternating layers of metal and dielectric. RPT via a surface plasmon polariton state permits evanescent light waves with large wavenumbers to be conveyed through the metamaterial. This is the mechanism for sub-wavelength imaging recently demonstrated with a super-lens. Furthermore, we find that the RPT peak is shifted from the reflectance dip with increasing the number of Al layers, indicating that t...

  14. Design of Fano Resonators for Novel Metamaterial Applications

    KAUST Repository

    Amin, Muhammad

    2014-05-01

    The term “metamaterials” refers to engineered structures that interact with electromagnetic fields in an unusual but controllable way that cannot be observed with natural materials. Metamaterial design at optical frequencies oftentimes makes of controllable plasmonic interactions. Light can excite collective oscillations of conduction band electrons on a metallic nanostructure. These oscillations result in localized surface plasmon modes which can provide high confinement of fields at metal-dielectric interfaces at nanoscale. Additionally scattering and absorption characteristics of plasmon modes can be controlled by geometrical features of the metallic nanostructures. This ease of controllability has lead to the development of new concepts in light manipulation and enhancement of light-material interactions. Fano resonance and plasmonic induced transparency (PIT) are among the most promising of those. The interference between different plasmon modes induced on nanostructures generates PIT/Fano resonance at optical frequencies. The unusual dispersion characteristics observed within the PIT window can be used for designing optical metamaterials to be used in various applications including bio-chemical sensing, slow light, modulation, perfect absorption, and all-optical switching. This thesis focuses on design of novel plasmonic devices to be used in these applications. The fundamental idea behind these designs is the generation of higher-order plasmon modes, which leads to PIT/Fano resonance-like output characteristics. These are then exploited together with dynamic tunability supported by graphene and field enhancement provided by nonlinear materials to prototype novel plasmonic devices. More specifically, this thesis proposes the following plasmonic device designs. I.\\tNano-disk Fano resonator: Open disk-like plasmonic nanostructures are preferred for bio-chemical sensing because of their higher capacity to be in contact with greater volumes of analyte. High

  15. Mode coupling in terahertz metamaterials using sub-radiative and super-radiative resonators

    International Nuclear Information System (INIS)

    Qiao, Shen; Zhang, Yaxin; Zhao, Yuncheng; Xu, Gaiqi; Sun, Han; Yang, Ziqiang; Liang, Shixiong

    2015-01-01

    We theoretically and experimentally explored the electromagnetically induced transparency (EIT) mode-coupling in terahertz (THz) metamaterial resonators, in which a dipole resonator with a super-radiative mode is coupled to an inductance-capacitance resonator with a sub-radiative mode. The interference between these two resonators depends on the relative spacing between them, resulting in a tunable transparency window in the absorption spectrum. Mode coupling was experimentally demonstrated for three spacing dependent EIT metamaterials. Transmittance of the transparency windows could be either enhanced or suppressed, producing different spectral linewidths. These spacing dependent mode-coupling metamaterials provide alternative ways to create THz devices, such as filters, absorbers, modulators, sensors, and slow-light devices

  16. Ring-Resonator/Sol-Gel Interferometric Immunosensor

    Science.gov (United States)

    Bearman, Gregory; Cohen, David

    2007-01-01

    A proposed biosensing system would be based on a combination of (1) a sensing volume containing antibodies immobilized in a sol-gel matrix and (2) an optical interferometer having a ring resonator configuration. The antibodies would be specific to an antigen species that one seeks to detect. In the ring resonator of the proposed system, light would make multiple passes through the sensing volume, affording greater interaction length and, hence, greater antibody- detection sensitivity.

  17. Terahertz metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hou-tong [Los Alamos National Laboratory; Taylor, Antoineete J [Los Alamos National Laboratory; Azad, Abul K [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory

    2009-01-01

    In this paper we present our recent developments in terahertz (THz) metamaterials and devices. Planar THz metamaterials and their complementary structures fabricated on suitable substrates have shown electric resonant response, which causes the band-pass or band-stop property in THz transmission and reflection. The operational frequency can be further tuned up to 20% upon photoexcitation of an integrated semiconductor region in the splitring resonators as the metamaterial elements. On the other hand, the use of semiconductors as metamaterial substrates enables dynamical control of metamaterial resonances through photoexcitation, and reducing the substrate carrier lifetime further enables an ultrafast switching recovery. The metamaterial resonances can also be actively controlled by application of a voltage bias when they are fabricated on semiconductor substrates with appropriate doping concentration and thickness. Using this electrically driven approach, THz modulation depth up to 80% and modulation speed of 2 MHz at room temperature have been demonstrated, which suggests practical THz applications.

  18. Circuit model optimization of a nano split ring resonator dimer antenna operating in infrared spectral range

    International Nuclear Information System (INIS)

    Gneiding, N.; Zhuromskyy, O.; Peschel, U.; Shamonina, E.

    2014-01-01

    Metamaterials are comprised of metallic structures with a strong response to incident electromagnetic radiation, like, for example, split ring resonators. The interaction of resonator ensembles with electromagnetic waves can be simulated with finite difference or finite elements algorithms, however, above a certain ensemble size simulations become inadmissibly time or memory consuming. Alternatively a circuit description of metamaterials, a well developed modelling tool at radio and microwave frequencies, allows to significantly increase the simulated ensemble size. This approach can be extended to the IR spectral range with an appropriate set of circuit element parameters accounting for physical effects such as electron inertia and finite conductivity. The model is verified by comparing the coupling coefficients with the ones obtained from the full wave numerical simulations, and used to optimize the nano-antenna design with improved radiation characteristics.

  19. Applicability of point-dipoles approximation to all-dielectric metamaterials

    DEFF Research Database (Denmark)

    Kuznetsova, S. M.; Andryieuski, Andrei; Lavrinenko, Andrei

    2015-01-01

    All-dielectric metamaterials consisting of high-dielectric inclusions in a low-dielectric matrix are considered as a low-loss alternative to resonant metal-based metamaterials. In this paper we investigate the applicability of the point electric and magnetic dipoles approximation to dielectric meta......-atoms on the example of a dielectric ring metamaterial. Despite the large electrical size of high-dielectric meta-atoms, the dipole approximation allows for accurate prediction of the metamaterials properties for the rings with diameters up to approximate to 0.8 of the lattice constant. The results provide important...... guidelines for design and optimization of all-dielectric metamaterials....

  20. Analysis of underwater decoupling properties of a locally resonant acoustic metamaterial coating

    International Nuclear Information System (INIS)

    Huang Ling-Zhi; Xiao Yong; Wen Ji-Hong; Yang Hai-Bin; Wen Xi-Sen

    2016-01-01

    This paper presents a semi-analytical solution for the vibration and sound radiation of a semi-infinite plate covered by a decoupling layer consisting of locally resonant acoustic metamaterial. Formulations are derived based on a combination use of effective medium theory and the theory of elasticity for the decoupling material. Theoretical results show good agreements between the method developed in this paper and the conventional finite element method (FEM), but the method of this paper is more efficient than FEM. Numerical results also show that system with acoustic metamaterial decoupling layer exhibits significant noise reduction performance at the local resonance frequency of the acoustic metamaterial, and such performance can be ascribed to the vibration suppression of the base plate. It is demonstrated that the effective density of acoustic metamaterial decoupling layer has a great influence on the mechanical impedance of the system. Furthermore, the resonance frequency of locally resonant structure can be effectively predicted by a simple model, and it can be significantly affected by the material properties of the locally resonant structure. (paper)

  1. On the mechanism of bandgap formation in locally resonant finite elastic metamaterials

    Science.gov (United States)

    Sugino, Christopher; Leadenham, Stephen; Ruzzene, Massimo; Erturk, Alper

    2016-10-01

    Elastic/acoustic metamaterials made from locally resonant arrays can exhibit bandgaps at wavelengths much longer than the lattice size for various applications spanning from low-frequency vibration/sound attenuation to wave guiding and filtering in mechanical and electromechanical devices. For an effective use of such locally resonant metamaterial concepts in finite structures, it is required to bridge the gap between the lattice dispersion characteristics and modal behavior of the host structure with its resonators. To this end, we develop a novel argument for bandgap formation in finite-length elastic metamaterial beams, relying on the modal analysis and the assumption of infinitely many resonators. We show that the dual problem to wave propagation through an infinite periodic beam is the modal analysis of a finite beam with an infinite number of resonators. A simple formula that depends only on the resonator natural frequency and total mass ratio is derived for placing the bandgap in a desired frequency range, yielding an analytical insight and a rule of thumb for design purposes. A method for understanding the importance of a resonator location and mass is discussed in the context of a Riemann sum approximation of an integral, and a method for determining the optimal number of resonators for a given set of boundary conditions and target frequency is introduced. The simulations of the theoretical framework are validated by experiments for bending vibrations of a locally resonant cantilever beam.

  2. All-dielectric metamaterial frequency selective surface based on spatial arrangement ceramic resonators

    Science.gov (United States)

    Li, Liyang; Wang, Jun; Feng, Mingde; Ma, Hua; Wang, Jiafu; Du, Hongliang; Qu, Shaobo

    In this paper, we demonstrate a method of designing all-dielectric metamaterial frequency selective surface (FSS) with ceramic resonators in spatial arrangement. Compared with the traditional way, spatial arrangement provides a flexible way to handle the permutation and combination of different ceramic resonators. With this method, the resonance response can be adjusted easily to achieve pass/stop band effects. As an example, a stop band spatial arrangement all-dielectric metamaterial FSS is designed. Its working band is in 11.65-12.23GHz. By adjusting permittivity and geometrical parameters of ceramic resonators, we can easily modulate the resonances, band pass or band stop characteristic, as well as the working band.

  3. Magneto-optical response in bimetallic metamaterials

    Science.gov (United States)

    Atmatzakis, Evangelos; Papasimakis, Nikitas; Fedotov, Vassili; Vienne, Guillaume; Zheludev, Nikolay I.

    2018-01-01

    We demonstrate resonant Faraday polarization rotation in plasmonic arrays of bimetallic nano-ring resonators consisting of Au and Ni sections. This metamaterial design allows the optimization of the trade-off between the enhancement of magneto-optical effects and plasmonic dissipation. Nickel sections corresponding to as little as 6% of the total surface of the metamaterial result in magneto-optically induced polarization rotation equal to that of a continuous nickel film. Such bimetallic metamaterials can be used in compact magnetic sensors, active plasmonic components, and integrated photonic circuits.

  4. Resonant photon tunneling via surface plasmon polaritons through one-dimensional metal-dielectric metamaterials.

    Science.gov (United States)

    Tomita, Satoshi; Yokoyama, Takashi; Yanagi, Hisao; Wood, Ben; Pendry, John B; Fujii, Minoru; Hayashi, Shinji

    2008-06-23

    We report resonant photon tunneling (RPT) through one-dimensional metamaterials consisting of alternating layers of metal and dielectric. RPT via a surface plasmon polariton state permits evanescent light waves with large wavenumbers to be conveyed through the metamaterial. This is the mechanism for sub-wavelength imaging recently demonstrated with a super-lens. Furthermore, we find that the RPT peak is shifted from the reflectance dip with increasing the number of Al layers, indicating that the shift is caused by the losses in the RPT.

  5. Chemical Sensors Based on Optical Ring Resonators

    Science.gov (United States)

    Homer, Margie; Manfreda, Allison; Mansour, Kamjou; Lin, Ying; Ksendzov, Alexander

    2005-01-01

    Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong

  6. Scattering analysis of asymmetric metamaterial resonators by the Riemann-Hilbert approach

    DEFF Research Database (Denmark)

    Kaminski, Piotr Marek; Ziolkowski, Richard W.; Arslanagic, Samel

    2016-01-01

    This work presents an analytical treatment of an asymmetric metamaterial-based resonator excited by an electric line source, and explores its beam shaping capabilities. The resonator consists of two concentric cylindrical material layers covered with an infinitely thin conducting shell with an ap......This work presents an analytical treatment of an asymmetric metamaterial-based resonator excited by an electric line source, and explores its beam shaping capabilities. The resonator consists of two concentric cylindrical material layers covered with an infinitely thin conducting shell...... with an aperture. Exact analytical solution of the problem is derived; it is based on the n-series approach which is casted into the equivalent Riemann-Hilbert problem. The examined configuration leads to large enhancements of the radiated field and to steerable Huygens-like directivity patterns. Particularly...

  7. Common pass decentered annular ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, D. A.; Waite, T. R.

    1985-04-30

    An optical resonator having an annular cylindrical gain region for use in a chemical laser or the like in which two ring-shaped mirrors having substantially conical reflecting surfaces are spaced apart along a common axis of revolution of the respective conical surfaces. A central conical mirror reflects incident light directed along said axis radially outwardly to the reflecting surface of a first one of the ring-shaped mirrors. The radial light rays are reflected by the first ring mirror to the second ring mirror within an annular cylindrical volume concentric with said common axis and forming a gain region. Light rays impinging on the second ring mirror are reflected to diametrically opposite points on the same conical mirror surfaces and back to the first ring mirror through the same annular cylindrical volume. The return rays are then reflected by the conical mirror surface of the first ring mirror back to the central conical mirror. The mirror surfaces are angled such that the return rays are reflected back along the common axis by the central mirror in a concentric annular cylindrical volume. A scraper mirror having a central opening centered on said axis and an offset opening reflects all but the rays passing through the two openings in an output beam. The rays passing through the second opening are reflected back through the first opening to provide feedback.

  8. Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial

    Science.gov (United States)

    Reinhold, J.; Shcherbakov, M. R.; Chipouline, A.; Panov, V. I.; Helgert, C.; Paul, T.; Rockstuhl, C.; Lederer, F.; Kley, E.-B.; Tünnermann, A.; Fedyanin, A. A.; Pertsch, T.

    2012-09-01

    We investigate experimentally and theoretically the third harmonic generated by a double-layer fishnet metamaterial. To unambiguously disclose most notably the influence of the magnetic resonance, the generated third harmonic was measured as a function of the angle of incidence. It is shown experimentally and numerically that when the magnetic resonance is excited by a pump beam, the angular dependence of the third harmonic signal has a local maximum at an incidence angle of θ≃20∘. This maximum is shown to be a fingerprint of the antisymmetric distribution of currents in the gold layers. An analytical model based on the nonlinear dynamics of the electrons inside the gold shows excellent agreement with experimental and numerical results. This clearly indicates the difference in the third harmonic angular pattern at electric and magnetic resonances of the metamaterial.

  9. Wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance attachment

    Science.gov (United States)

    Wang, Ting; Sheng, Meiping; Ding, Xiaodong; Yan, Xiaowei

    2018-03-01

    This paper presents analysis on wave propagation and power flow in an acoustic metamaterial plate with lateral local resonance. The metamaterial is designed to have lateral local resonance systems attached to a homogeneous plate. Relevant theoretical analysis, numerical modelling and application prospect are presented. Results show that the metamaterial has two complete band gaps for flexural wave absorption and vibration attenuation. Damping can smooth and lower the metamaterial’s frequency responses in high frequency ranges at the expense of the band gap effect, and as an important factor to calculate the power flow is thoroughly investigated. Moreover, the effective mass density becomes negative and unbounded at specific frequencies. Simultaneously, power flow within band gaps are dramatically blocked from the power flow contour and power flow maps. Results from finite element modelling and power flow analysis reveal the working mechanism of the flexural wave attenuation and power flow blocked within the band gaps, where part of the flexural vibration is absorbed by the vertical resonator and the rest is transformed through four-link-mechanisms to the lateral resonators that oscillate and generate inertial forces indirectly to counterbalance the shear forces induced by the vibrational plate. The power flow is stored in the vertical and lateral local resonance, as well as in the connected plate.

  10. A self-adaptive metamaterial beam with digitally controlled resonators for subwavelength broadband flexural wave attenuation

    Science.gov (United States)

    Li, Xiaopeng; Chen, Yangyang; Hu, Gengkai; Huang, Guoliang

    2018-04-01

    Designing lightweight materials and/or structures for broadband low-frequency noise/vibration mitigation is an issue of fundamental importance both practically and theoretically. In this paper, by leveraging the concept of frequency-dependent effective stiffness control, we numerically and experimentally demonstrate, for the first time, a self-adaptive metamaterial beam with digital circuit controlled mechanical resonators for strong and broadband flexural wave attenuation at subwavelength scales. The digital controllers that are capable of feedback control of piezoelectric shunts are integrated into mechanical resonators in the metamaterial, and the transfer function is semi-analytically determined to realize an effective bending stiffness in a quadratic function of the wave frequency for adaptive band gaps. The digital as well as analog control circuits as the backbone of the system are experimentally realized with the guarantee stability of the whole electromechanical system in whole frequency regions, which is the most challenging problem so far. Our experimental results are in good agreement with numerical predictions and demonstrate the strong wave attenuation in almost a three times larger frequency region over the bandwidth of a passive metamaterial. The proposed metamaterial could be applied in a range of applications in the design of elastic wave control devices.

  11. Metamaterial-based transmit and receive system for whole-body magnetic resonance imaging at ultra-high magnetic fields.

    Science.gov (United States)

    Herrmann, Tim; Liebig, Thorsten; Mallow, Johannes; Bruns, Christian; Stadler, Jörg; Mylius, Judith; Brosch, Michael; Svedja, Jan Taro; Chen, Zhichao; Rennings, Andreas; Scheich, Henning; Plaumann, Markus; Hauser, Marcus J B; Bernarding, Johannes; Erni, Daniel

    2018-01-01

    Magnetic resonance imaging (MRI) at ultra-high fields (UHF), such as 7 T, provides an enhanced signal-to-noise ratio and has led to unprecedented high-resolution anatomic images and brain activation maps. Although a variety of radio frequency (RF) coil architectures have been developed for imaging at UHF conditions, they usually are specialized for small volumes of interests (VoI). So far, whole-body coil resonators are not available for commercial UHF human whole-body MRI systems. The goal of the present study was the development and validation of a transmit and receive system for large VoIs that operates at a 7 T human whole-body MRI system. A Metamaterial Ring Antenna System (MRAS) consisting of several ring antennas was developed, since it allows for the imaging of extended VoIs. Furthermore, the MRAS not only requires lower intensities of the irradiated RF energy, but also provides a more confined and focused injection of excitation energy on selected body parts. The MRAS consisted of several antennas with 50 cm inner diameter, 10 cm width and 0.5 cm depth. The position of the rings was freely adjustable. Conformal resonant right-/left-handed metamaterial was used for each ring antenna with two quadrature feeding ports for RF power. The system was successfully implemented and demonstrated with both a silicone oil and a water-NaCl-isopropanol phantom as well as in vivo by acquiring whole-body images of a crab-eating macaque. The potential for future neuroimaging applications was demonstrated by the acquired high-resolution anatomic images of the macaque's head. Phantom and in vivo measurements of crab-eating macaques provided high-resolution images with large VoIs up to 40 cm in xy-direction and 45 cm in z-direction. The results of this work demonstrate the feasibility of the MRAS system for UHF MRI as proof of principle. The MRAS shows a substantial potential for MR imaging of larger volumes at 7 T UHF. This new technique may provide new diagnostic potential

  12. Studies on the resonant properties in the asymmetric dipole-array terahertz metamaterials

    Science.gov (United States)

    Chen, Wei; Zhou, Qingli; Li, Chenyu; Shi, Lan; Liu, Changxiang; Zhang, Cunlin

    2018-01-01

    Artificial metamaterials with appropriate design can exhibit unique electromagnetic phenomena which do not exist in natural materials. Some studies have shown that the method of breaking the geometric symmetry is capable to modify the electromagnetic response, such as the metamaterial induced transparency in the Fano resonators. In this work, by using the finite-difference time-domain method, we firstly simulate the process that terahertz wave interacts with double-bar structures, in which one bar length is fixed at 36 μm and the other bar length is set to be 12, 24, 36, 48, and 56 μm, respectively. The incident terahertz polarization is along the bar direction. Simulated results show when the variable bar length is less than 36 μm, there is only one obvious resonant dip in transmission spectrum. Meanwhile, with the decreased bar length, this dip frequency presents a slight blueshift. Additionally, by tuning the spacing vertical to bar direction between these two bars, it still exhibits one dip. This result indicates the short bar less than 36 μm does not play important role and the coupling between vertical bars is weak. However, when the variable bar length is larger than 36 μm there are two obvious Fano-shaped resonant dips. With the increased bar length, the low-frequency dip shows a remarkable redshift, while the high-frequency one is almost unchanged. By further tuning the bar spacing vertical to the bar direction, two dips always exist. This phenomenon implies that the coupling between horizontal bars is dominated in this process. Moreover, the metamaterial induced transparency window is found between two resonant dips. The appearance of the resonances is attributed to the excitation of trapped mode. Our obtained results indicate that such metamaterials with very simple configuration could also provide the potential application in the field of terahertz slow-light devices, amplitude and phase modulators.

  13. Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission

    International Nuclear Information System (INIS)

    Li, Zhaofeng; Mutlu, Mehmet; Ozbay, Ekmel

    2013-01-01

    We summarize the progress in the development and application of chiral metamaterials. After a brief review of the salient features of chiral metamaterials, such as giant optical activity, circular dichroism, and negative refractive index, the common method for the retrieval of effective parameters for chiral metamaterials is surveyed. Then, we introduce some typical chiral structures, e.g., chiral metamaterial consisting of split ring resonators, complementary chiral metamaterial, and composite chiral metamaterial, on the basis of the studies of the authors’ group. The coupling effect during the construction of bulk chiral metamaterials is mentioned and discussed. We introduce the application of bianisotropic chiral structures in the field of asymmetric transmission. Finally, we mention a few directions for future research on chiral metamaterials. (review article)

  14. Complementary Split Ring Resonator Based Triple Band Microstrip Antenna for WLAN/WiMAX Applications

    Directory of Open Access Journals (Sweden)

    W. Ali

    2017-04-01

    Full Text Available A new simple design of a triple-band microstrip antenna using metamaterial concept is presented in this paper. Multi-unit cell was the key of the multi resonance response that was obtained by etching two circular and one rectangular split ring resonator (SRR unit cells in the ground plane of a conventional patch operating at 3.56 GHz .The circular unit cells are resonating at 5.6 GHz for the upper band of Wi-MAX, while the rectangular cell is designed to produce a resonance at 2.45 GHz for the lower band of WLAN. WiMAX's/WLAN's operating bands are covered by the triple resonances which are achieved by the proposed antenna with quite enhanced performance. A detailed parametric study of the placement for the metamaterial unit cells is introduced and the most suitable positions are chosen to be the place of the unit cells for enhanced performance. A good consistency between simulation and measurement confirms the ability of the proposed antenna to achieve an improved gain at the three different frequencies.

  15. A numerical investigation of sub-wavelength resonances in polygonal metamaterial cylinders

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Breinbjerg, Olav

    2009-01-01

    The sub-wavelength resonances, known to exist in metamaterial radiators and scatterers of circular cylindrical shape, are investigated with the aim of determining if these resonances also exist for polygonal cylinders and, if so, how they are affected by the shape of the polygon. To this end, a set...... of polygonal cylinders excited by a nearby electric line current is analyzed numerically and it is shown, through detailed analysis of the near-field distribution and radiation resistance, that these polygonal cylinders do indeed support sub-wavelength resonances similar to those of the circular cylinders...

  16. Observation of Fano resonance and classical analog of electromagnetically induced transparency in toroidal metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Han, Song; Yang, Helin [College of Physical Science and Technology, Central China Normal University, Wuhan (China); Cong, Lonqing; Singh, Ranjan [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore); Gao, Fei [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore (Singapore)

    2016-05-15

    Toroidal multipoles have recently been explored in various scientific communities, ranging from atomic and molecular physics, electrodynamics, and solid-state physics to biology. Here we experimentally and numerically demonstrate a three-dimensional toroidal metamaterial where two different toroidal dipoles along orthogonal directions have been observed. The chosen toroidal metamaterial also simultaneously supports Fano resonance and the classical analog of electromagnetically induced transparency (EIT) phenomena in the transmission spectra that originate from the electric-toroidal dipole and electric-magnetic dipole destructive interference. The intriguing properties of the toroidal resonances may open up avenues for applications in toroidal moments generator, sensing and slow-light devices. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Polarization Insensitivity in Double-Split Ring and Triple-Split Ring Terahertz Resonators

    International Nuclear Information System (INIS)

    Wu Qian-Nan; Lan Feng; Tang Xiao-Pin; Yang Zi-Qiang

    2015-01-01

    A modified double-split ring resonator and a modified triple-split ring resonator, which offer polarization-insensitive performance, are investigated, designed and fabricated. By displacing the two gaps of the conventional double-split ring resonator away from the center, the second resonant frequency for the 0° polarized wave and the resonant frequency for the 90° polarized wave become increasingly close to each other until they are finally identical. Theoretical and experimental results show that the modified double-split ring resonator and the modified triple-split ring resonator are insensitive to different polarized waves and show strong resonant frequency dips near 433 and 444 GHz, respectively. The results of this work suggest new opportunities for the investigation and design of polarization-dependent terahertz devices based on split ring resonators. (paper)

  18. Miniaturization of metamaterial electrical resonators at the terahertz spectrum

    Science.gov (United States)

    Karamanos, Theodosios D.; Kantartzis, Nikolaos V.

    2014-05-01

    An efficient methodology for the modification of electrical resonators in order to be readily applicable at the terahertz regime is developed in this paper. To this aim, the proposed miniaturization technique starts from the conventional resonator which, without any change, exhibits the lowest possible electrical resonance for minimum dimensions. Subsequently, a set of interdigital capacitors is embedded in the original structure to increase capaci- tance, while their impact on the main resonance is investigated through computational simulations. Furthermore, to augment the inductance of the initial resonator, and, hence reduce the resonance frequency, the concept of spiral inductor elements is introduced. Again, results for the featured configuration with the additional elements are numerically obtained and all effects due to their presence are carefully examined. Finally, the new alterations are combined together and their in influence on the resonance position and quality is thoroughly studied.

  19. Sensor based on Fano resonances of plane metamaterial with narrow slits

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Wan-Xia, E-mail: kate@mail.ahnu.edu.cn [State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education) and Physics Department, Fudan University, Shanghai 200433 (China); The College of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241000 (China); Guo, Juan-Juan; Wang, Mao-Sheng; Zhao, Guo-Ren [The College of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui 241000 (China)

    2017-03-11

    The optical properties of a composite metamaterial composed of narrow slits and nano hole pairs have been investigated experimentally and numerically. The strength of the transmission peak originating from the interference between the coupled surface plasmon polaritons (SPP) of the narrow slit and the SPP modes of the hole array is modulated by the degree of symmetry breaking. Some SPP modes can be inhibited by controlling the spacer layer thickness. Our metamaterial has potential applications in sensing and weak signal detection. - Highlights: • The plasmonic nanostructure composed of narrow slits and nano hole pairs were designed. • The optical properties were investigated experimentally and numerically. • The Fano resonances were found on the compound nanostructure. • The results have potential applications in sensing and weak signal detection.

  20. VUV optical ring resonator for Duke storage ring free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H.; Litvinenko, V.N.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)] [and others

    1995-12-31

    The conceptual design of the multifaceted-mirror ring resonator for Duke storage ring VUV FEL is presented. The expected performance of the OK-4 FEL with ring resonator is described. We discuss in this paper our plans to study reflectivity of VUV mirrors and their resistivity to soft X-ray spontaneous radiation from OK-4 undulator.

  1. Resonant modal group theory of membrane-type acoustical metamaterials for low-frequency sound attenuation

    Science.gov (United States)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng

    2015-09-01

    In order to overcome the influence of the structural resonance on the continuous structures and obtain a lightweight thin-layer structure which can effectively isolate the low-frequency noises, an elastic membrane structure was proposed. In the low-frequency range below 500 Hz, the sound transmission loss (STL) of this membrane type structure is greatly higher than that of the current sound insulation material EVA (ethylene-vinyl acetate copo) of vehicle, so it is possible to replace the EVA by the membrane-type metamaterial structure in practice engineering. Based on the band structure, modal shapes, as well as the sound transmission simulation, the sound insulation mechanism of the designed membrane-type acoustic metamaterials was analyzed from a new perspective, which had been validated experimentally. It is suggested that in the frequency range above 200 Hz for this membrane-mass type structure, the sound insulation effect was principally not due to the low-level locally resonant mode of the mass block, but the continuous vertical resonant modes of the localized membrane. So based on such a physical property, a resonant modal group theory is initially proposed in this paper. In addition, the sound insulation mechanism of the membrane-type structure and thin plate structure were combined by the membrane/plate resonant theory.

  2. Sub-wavelength resonances in polygonal metamaterial cylinders

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Breinbjerg, Olav

    2008-01-01

    It has been shown that the sub-wavelength resonances of circular MTM cylinders also occur for polygonal MTM cylinders. This is the case for lossless and non-dispersive cylinders as well as lossy and dispersive cylinders. The sub-wavelength resonances are thus not limited to structures of canonical...

  3. Sub-wavelength metamaterial cylinders with multiple dipole resonances

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Breinbjerg, Olav

    2009-01-01

    It has been shown that the sub-wavelength resonances of the individual MTM cylinders also occur for electrically small configurations combining 2 or 4 cylinders. For the 2-and 4-cylinder configurations the overall size is 1/20 and 1/12.5 of the smallest wavelength, respectively. These MTM...... configuration thus offer the possibility for multi-resonant electrically small configurations....

  4. An Archetype Semi-Ring Fabry-Perot (SRFP) Resonator

    Science.gov (United States)

    Taghavi-Larigani, Shervin; VanZyl, Jakob

    2009-01-01

    We introduce and demonstrate the generation of a novel resonator, termed Semi-Ring Fabry-Perot (SRFP), that exhibits unique features, such as, its use of one plane mirror, allowing the SRFP to be easily fabricated as a symmetrical device. In addition to its unique features, it exhibits advantages of ring and Fabry-Perot resonators: 1) compared to a ring resonator that only allows a transmitted intensity, the Semi-Ring Fabry-Perot (SRFP) supports standing waves, allowing both a reflected and transmitted intensity; 2) the reflected light spectrum of the SRFP resonator is much narrower than similar Fabry-Perot, implying higher finesse.

  5. Geometrical tuning of nanoscale split-ring resonators

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Kristensen, Anders; Xiao, Sanshui

    2010-01-01

    We investigate the capacitance tuning of nanoscale split-ring resonators. An LC-model predicts a simple dependence of resonance frequency on slit aspect ratio. Experimental and numerical data follow the predictions of the LC-model....

  6. Enhancement and tunability of Fano resonance in symmetric multilayer metamaterials at optical regime

    International Nuclear Information System (INIS)

    Cao, Tun; Zhang, Lei; Xiao, Zai-peng; Huang, Hui

    2013-01-01

    Fano resonance (FR) is routinely observed in three-dimensional symmetric metamaterials (MMs) consisting of elliptical nanoholes array (ENA) embedding through metal–dielectric–metal (MDM) multilayers. It is shown theoretically that a square periodic ENA perforating through MDM layers produces an FR response in the near infrared regime. This FR response is attributed to the interplay between the bright modes and dark modes, where the bright modes originate from the electric resonance (localized surface plasmon resonance) caused by the ENA and the dark modes are due to the magnetic resonance (inductive–capacitive resonance) induced by the MDM multilayers. Notably, one can achieve a narrower FR when the elliptical nanoholes occupy the sites of a rectangular lattice, owing to the interaction of the magnetic resonances with the enhanced electric resonances. Moreover, a higher varying degree of the lattice constant along the horizontal direction allows for an FR with a higher value of the quality factor and the tuning of the amplitude and the resonant frequency of the transparency window. Such an FR created by the interference among the magnetic and electric dipolar resonances opens up an alternative way of forming a sharp FR in the symmetric multilayer MMs, and could be exploited for sensing. (paper)

  7. Bright cavity solitons in metamaterials with internal resonances

    Czech Academy of Sciences Publication Activity Database

    Yulin, A.V.; Kuzmiak, Vladimír; Eyderman, Sergey

    2015-01-01

    Roč. 91, č. 6 (2015), s. 063820 ISSN 1050-2947 R&D Projects: GA MŠk(CZ) LD14028 Grant - others: COST (XE) MP1204 Institutional support: RVO:67985882 Keywords : Plasmons * Dissipative solitons * Resonators Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.808, year: 2014

  8. Design of Fano Resonators for Novel Metamaterial Applications

    KAUST Repository

    Amin, Muhammad

    2014-01-01

    I.\tNano-disk Fano resonator: Open disk-like plasmonic nanostructures are preferred for bio-chemical sensing because of their higher capacity to be in contact with greater volumes of analyte. High effective refractive index required by sensing

  9. Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum.

    Science.gov (United States)

    Sridhar, A; Kouznetsova, V G; Geers, M G D

    This contribution presents a novel homogenization technique for modeling heterogeneous materials with micro-inertia effects such as locally resonant acoustic metamaterials. Linear elastodynamics is used to model the micro and macro scale problems and an extended first order Computational Homogenization framework is used to establish the coupling. Craig Bampton Mode Synthesis is then applied to solve and eliminate the microscale problem, resulting in a compact closed form description of the microdynamics that accurately captures the Local Resonance phenomena. The resulting equations represent an enriched continuum in which additional kinematic degrees of freedom emerge to account for Local Resonance effects which would otherwise be absent in a classical continuum. Such an approach retains the accuracy and robustness offered by a standard Computational Homogenization implementation, whereby the problem and the computational time are reduced to the on-line solution of one scale only.

  10. Transmitted spectral modulation of double-ring resonator using liquid crystals in terahertz range

    Science.gov (United States)

    Sun, Huijuan; Zhou, Qingli; Wang, Xiumin; Li, Chenyu; Wu, Ani; Zhang, Cunlin

    2013-12-01

    Metamaterials with subwavelength structural features show unique electromagnetic responses that are unattainable with natural materials. Recent research on these artificial materials has been pushed forward to the terahertz region because of potential applications in biological fingerprinting, security imaging, remote sensing, and high frequency magnetic and electric resonant devices. Active control of their properties could further facilitate and open up new applications in terms of modulation and switching. Liquid crystals, which have been the subject of research for more than a century, have the unique properties for the development of many other optical components such as light valves, tunable filters and tunable lenses. In this paper, we investigated the transmitted spectral modulation in terahertz range by using liquid crystals (5CB and TEB300) covering on the fabricated double-ring resonators to realize the shift of the resonance frequency. Our obtained results indicate the low frequency resonance shows the obvious blue-shift, while the location of high frequency resonance is nearly unchanged. We believe this phenomenon is related to not only the refractive index of the covering liquid crystals but also the resonant mechanism of both resonances.

  11. Artificial magnetic metamaterial design by using spiral resonators

    OpenAIRE

    Baena, J.D.; Marqués Sillero, Ricardo; Medina Mena, Francisco; Martel Villagrán, Jesús

    2004-01-01

    A metallic planar particle, that will be called spiral resonator (SR), is introduced as a useful artificial atom for artificial magnetic media design and fabrication. A simple theoretical model which provides the most relevant properties and parameters of the SR is presented. The model is validated by both electromagnetic simulation and experiments. The applications of SR's include artificial negative magnetic permeability media (NMPM) and left-handed-media (LHM) design. The main advantages o...

  12. Ring resonator systems to perform optical communication enhancement using soliton

    CERN Document Server

    Amiri, Iraj Sadegh

    2014-01-01

    The title explain new technique of secured and high capacity optical communication signals generation by using the micro and nano ring resonators. The pulses are known as soliton pulses which are more secured due to having the properties of chaotic and dark soliton signals with ultra short bandwidth. They have high capacity due to the fact that ring resonators are able to generate pulses in the form of solitons in multiples and train form. These pulses generated by ring resonators are suitable in optical communication due to use the compact and integrated rings system, easy to control, flexibi

  13. Active terahertz metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hou-tong [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory; Taylor, Antoinette J [Los Alamos National Laboratory

    2009-01-01

    In this paper we present an overview of research in our group in terahertz (THz) metamaterials and their applications. We have developed a series of planar metamaterials operating at THz frequencies, all of which exhibit a strong resonant response. By incorporating natural materials, e.g. semiconductors, as the substrates or as critical regions of metamaterial elements, we are able to effectively control the metamaterial resonance by the application of external stimuli, e.g., photoexcitation and electrical bias. Such actively controllable metamaterials provide novel functionalities for solid-state device applications with unprecedented performance, such as THz spectroscopy, imaging, and many others.

  14. Analytical model for double split ring resonators with arbitrary ring width

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Jensen, Thomas; Krozer, Viktor

    2008-01-01

    For the first time, the analytical model for a double split ring resonator with unequal width rings is developed. The proposed models for the resonators with equal and unequal widths are based on an impedance matrix representation and provide the prediction of performance in a wide frequency range...

  15. A semi-analytical approach towards plane wave analysis of local resonance metamaterials using a multiscale enriched continuum description

    NARCIS (Netherlands)

    Sridhar, A.; Kouznetsova, V.; Geers, M.G.D.

    2017-01-01

    This work presents a novel multiscale semi-analytical technique for the acoustic plane wave analysis of (negative) dynamic mass density type local resonance metamaterials with complex micro-structural geometry. A two step solution strategy is adopted, in which the unit cell problem at the

  16. Design of a broadband hexagonal-shaped zeroth-order resonance antenna with metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Dong Sik; Kim, Kang Wook; Choi, Hyun Chul [Kyungpook National University, Daegu (Korea, Republic of)

    2014-11-15

    A broadband hexagonal-shaped metamaterials (MTMs)-based zeroth-order resonant (ZOR) antenna was designed and fabricated. The hexagonal shape of a top patch on a mushroom structure makes not only direct-current paths between the two ends of the patch but also round-current paths along the outside of the patch, thereby widening the resonance frequency of the mushroom MTM antenna. According to the shape of the hexagon patch, the presented antenna achieved impedance bandwidth of 58.6% corresponding to ultra-wideband technology. The proposed ZOR antenna was modeled by utilizing a composite right- and left-handed (CRLH) transmission line and provided 4 to 9.3 dBi of the antenna gain with reduced size as compared to conventional microstrip antennas at Ku- to K-band frequencies.

  17. Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers

    Science.gov (United States)

    Lee, Hee-Jo; Lee, Jung-Hyun; Choi, Suji; Jang, Ik-Soon; Choi, Jong-Soon; Jung, Hyo-Il

    2013-07-01

    In this paper, an asymmetric split-ring resonator, metamaterial element, is presented as a biosensing transducer for detection of highly sensitive and label-free stress biomarkers. In particular, the two biomarkers, cortisol and α-amylase, are used for evaluating the sensitivity of the proposed biosensor. In case of cortisol detection, the competitive reaction between cortisol-bovine serum albumin and free cortisol is employed, while alpha-amylase is directly detected by its antigen-antibody reaction. From the experimental results, we find that the limit of detection and sensitivity of the proposed sensing device are about 1 ng/ml and 1.155 MHz/ng ml-1, respectively.

  18. Realizing high-performance metamaterial absorber based on the localized surface plasmon resonance in the terahertz regime

    Science.gov (United States)

    Yunfeng, Lin; Xiaoqi, Hu; Lin, Hu

    2018-04-01

    A composite structure design metamaterial absorber is designed and simulated. The proposed composite structure consists of a double-hole sub-structure and a double-metallic particle sub-structure. The damping constant of bulk gold layer is optimized to eliminate the adverse effects of the grain boundary and the surface scattering of thin films on the absorption property. Two absorption peaks (A1 = 58%, A2 = 23%) are achieved based on the localized surface plasmon (LSP) modes resonance. Moreover, the plasmonic hybridization phenomenon between LSP modes is found, which leads to the absorption enhancement between two absorption peaks. The proposed metamaterial absorber holds the property of wide-angle incidence.

  19. Zak phase and band inversion in dimerized one-dimensional locally resonant metamaterials

    Science.gov (United States)

    Zhu, Weiwei; Ding, Ya-qiong; Ren, Jie; Sun, Yong; Li, Yunhui; Jiang, Haitao; Chen, Hong

    2018-05-01

    The Zak phase, which refers to Berry's phase picked up by a particle moving across the Brillouin zone, characterizes the topological properties of Bloch bands in a one-dimensional periodic system. Here the Zak phase in dimerized one-dimensional locally resonant metamaterials is investigated. It is found that there are some singular points in the bulk band across which the Bloch states contribute π to the Zak phase, whereas in the rest of the band the contribution is nearly zero. These singular points associated with zero reflection are caused by two different mechanisms: the dimerization-independent antiresonance of each branch and the dimerization-dependent destructive interference in multiple backscattering. The structure undergoes a topological phase-transition point in the band structure where the band inverts, and the Zak phase, which is determined by the numbers of singular points in the bulk band, changes following a shift in dimerization parameter. Finally, the interface state between two dimerized metamaterial structures with different topological properties in the first band gap is demonstrated experimentally. The quasi-one-dimensional configuration of the system allows one to explore topology-inspired new methods and applications on the subwavelength scale.

  20. Highly dispersive transparency in coupled metamaterials

    International Nuclear Information System (INIS)

    Thuy, V T T; Park, J W; Lee, Y P; Tung, N T; Lam, V D; Rhee, J Y

    2010-01-01

    We investigate the coupling between bright and quasi-dark eigenmodes in a planar metamaterial supporting highly dispersive transparency. The specific design of such a metamaterial consists of a cut wire (CW) and a single-gap split-ring resonator (SRR). Through the numerical simulation and the equivalent-circuit analysis, we demonstrate that the response of the SRR, which is weakly excited by external electric field, plays the role of a quasi-dark eigenmode in the presence of a strongly radiative CW. Furthermore, by extending and relating our study to the trapped mode resonances and the coupling between dark and bright modes, a more comprehensive perspective for the metamaterial realization of highly dispersive transmission and slow-light applications is provided

  1. Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication.

    Science.gov (United States)

    Chandrahalim, Hengky; Chen, Qiushu; Said, Ali A; Dugan, Mark; Fan, Xudong

    2015-05-21

    We designed, fabricated, and characterized a monolithically integrated optofluidic ring resonator laser that is mechanically, thermally, and chemically robust. The entire device, including the ring resonator channel and sample delivery microfluidics, was created in a block of fused-silica glass using a 3-dimensional femtosecond laser writing process. The gain medium, composed of Rhodamine 6G (R6G) dissolved in quinoline, was flowed through the ring resonator. Lasing was achieved at a pump threshold of approximately 15 μJ mm(-2). Detailed analysis shows that the Q-factor of the optofluidic ring resonator is 3.3 × 10(4), which is limited by both solvent absorption and scattering loss. In particular, a Q-factor resulting from the scattering loss can be as high as 4.2 × 10(4), suggesting the feasibility of using a femtosecond laser to create high quality optical cavities.

  2. Dynamic nonlinear thermal optical effects in coupled ring resonators

    Directory of Open Access Journals (Sweden)

    Chenguang Huang

    2012-09-01

    Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.

  3. Linear signal processing using silicon micro-ring resonators

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Ding, Yunhong; Ou, Haiyan

    2012-01-01

    We review our recent achievements on the use of silicon micro-ring resonators for linear optical signal processing applications, including modulation format conversion, phase-to-intensity modulation conversion and waveform shaping.......We review our recent achievements on the use of silicon micro-ring resonators for linear optical signal processing applications, including modulation format conversion, phase-to-intensity modulation conversion and waveform shaping....

  4. Ultra-narrow band perfect absorbers based on Fano resonance in MIM metamaterials

    Science.gov (United States)

    Zhang, Ming; Fang, Jiawen; Zhang, Fei; Chen, Junyan; Yu, Honglin

    2017-12-01

    Metallic nanostructures have attracted numerous attentions in the past decades due to their attractive plasmonic properties. Resonant plasmonic perfect absorbers have promising applications in a wide range of technologies including photothermal therapy, thermophotovoltaics, heat-assisted magnetic recording and biosensing. However, it remains to be a great challenge to achieve ultra-narrow band in near-infrared band with plasmonic materials due to the large optical losses in metals. In this letter, we introduced Fano resonance in MIM metamaterials composed of an asymmetry double elliptic cylinders (ADEC), which can achieve ultra-narrow band perfect absorbers. In theoretical calculations, we observed an ultranarrow band resonant absorption peak with the full width at half maximum (FWHM) of 8 nm and absorption amplitude exceeding 99% at 930 nm. Moreover, we demonstrate that the absorption increases with the increase of asymmetry and the absorption resonant wavelength can be tuned by changing the size and arrangement of the unit cell. The asymmetry metallic nanostructure also exhibit a higher refractive sensitivity as large as 503 nm/RIU with high figure of merit of 63, which is promising for high sensitive sensors. Results of this work are desirable for various potential applications in micro-technological structures such as biological sensors, narrowband emission, photodetectors and solar thermophotovoltaic (STPV) cells.

  5. An Aligned-Gap and Centered-Gap Rectangular Multiple Split Ring Resonator for Dielectric Sensing Applications

    Directory of Open Access Journals (Sweden)

    Izyani Mat Rusni

    2014-07-01

    Full Text Available This paper presents the design and development of a planar Aligned-Gap and Centered-Gap Rectangular Multiple Split Ring Resonator (SRR for microwave sensors that operates at a resonance frequency around 5 GHz. The sensor consists of a microstrip transmission line loaded with two elements of rectangular SRR on both sides. The proposed metamaterial sensors were designed and fabricated on Rogers RT5880 substrate having dielectric constant of 2.2 and thickness of 0.787 mm. The final dimension of the proposed sensor was measured at 35 × 14 mm2. Measured results show good agreement with simulated ones as well as exhibiting high Q-factor for use in sensing application. A remarkably shift of resonance frequency is observed upon introduction of several sample with different dielectric value.

  6. Miniaturized dual-band antenna array with double-negative (DNG) metamaterial for wireless applications

    Science.gov (United States)

    Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Rahim, Sharul Kamal Abdul; Vandenbosch, Guy A. E.; Narbudowicz, Adam

    2017-01-01

    A miniaturized dual-band antenna array using a negative index metamaterial is presented for WiMAX, LTE, and WLAN applications. This left-handed metamaterial plane is located behind the antenna array, and its unit cell is a combination of split-ring resonator, square electric ring resonator, and rectangular electrical coupled resonator. This enables the achievement of a metamaterial structure exhibiting both negative permittivity and permeability, which results in antenna size miniaturization, efficiency, and gain enhancement. Moreover, the proposed metamaterial antenna has realized dual-band operating frequencies compared to a single frequency for normal antenna. The measured reflection coefficient (S11) shows a 50.25% bandwidth in the lower band (from 2.119 to 3.058 GHz) and 4.27% in the upper band (from 5.058 to 5.276 GHz). Radiation efficiency obtained in the lower and upper band are >95 and 80%, respectively.

  7. Fano resonance and persistent current of a quantum ring

    International Nuclear Information System (INIS)

    Xiong Yongjian; Liang Xianting

    2004-01-01

    We investigate electron transport and persistent current of a quantum ring weakly attached to current leads. Assuming there is direct coupling (weakly or strongly) between two leads, electrons can transmit by the inter-lead coupling or tunneling through the quantum ring. The interference between the two paths yields asymmetric Fano line shape for conductance. In presence of interior magnetic flux, there is persistent current along the ring with narrow resonance peaks. The positions of the conductance resonances and the persistent current peaks correspond to the quasibound levels of the closed ring. This feature is helpful to determine the energy spectrum of the quantum ring. Our results show that the proposed setup provides a tunable Fano system

  8. Resonant depolarization in electron storage rings equipped with ''siberia snakes''

    International Nuclear Information System (INIS)

    Buon, J.

    1984-11-01

    Resonant depolarization induced by field errors and quantum emissions in an electron ring equipped with two ''siberian snakes'' is investigated with a first order perturbation calculation. It is shown that this depolarization is not reduced by the snakes when the operating energy is set out of the depolarization resonances [fr

  9. Terahertz transmission resonances in complementary multilayered metamaterial with deep subwavelength interlayer spacing

    Science.gov (United States)

    Choi, Muhan; Kang, Byungsoo; Yi, Yoonsik; Lee, Seung Hoon; Kim, Inbo; Han, Jae-Hyung; Yi, Minwoo; Ahn, Jaewook; Choi, Choon-Gi

    2016-05-01

    We introduce a flexible multilayered THz metamaterial designed by using the Babinet's principle with the functionality of narrow band-pass filter. The metamaterial gives us systematic way to design frequency selective surfaces working on intended frequencies and bandwidths. It shows highly enhanced transmission of 80% for the normal incident THz waves due to the strong coupling of the two layers of metamaterial complementary to each other.

  10. Terahertz broadband polarization converter based on metamaterials

    Science.gov (United States)

    Li, Yonghua; Zhao, Guozhong

    2018-01-01

    Based on the metamaterial composed of symmetrical split resonant ring, a broadband reflective terahertz polarization converter is proposed. The numerical simulation shows that it can rotate the polarization direction of linear polarized wave 90° in the range of 0.7-1.8THz and the polarization conversion ratio is over 90%. The reflection coefficient of the two electric field components in the diagonal direction is the same and the phase difference is 180° ,which leads to the cross-polarization rotation.In order to further study the physical mechanism of high polarization conversion, we analyze the surface current distribution of the resonant ring. The polarization converter has potential applications in terahertz wave plate and metamaterial antenna design.

  11. Prediction of multiple resonance characteristics by an extended resistor-inductor-capacitor circuit model for plasmonic metamaterials absorbers in infrared.

    Science.gov (United States)

    Xu, Xiaolun; Li, Yongqian; Wang, Binbin; Zhou, Zili

    2015-10-01

    The resonance characteristics of plasmonic metamaterials absorbers (PMAs) are strongly dependent on geometric parameters. A resistor-inductor-capacitor (RLC) circuit model has been extended to predict the resonance wavelengths and the bandwidths of multiple magnetic polaritons modes in PMAs. For a typical metallic-dielectric-metallic structure absorber working in the infrared region, the developed model describes the correlation between the resonance characteristics and the dimensional sizes. In particular, the RLC model is suitable for not only the fundamental resonance mode, but also for the second- and third-order resonance modes. The prediction of the resonance characteristics agrees fairly well with those calculated by the finite-difference time-domain simulation and the experimental results. The developed RLC model enables the facilitation of designing multi-band PMAs for infrared radiation detectors and thermal emitters.

  12. Coherence resonance and stochastic resonance in directionally coupled rings

    Science.gov (United States)

    Werner, Johannes Peter; Benner, Hartmut; Florio, Brendan James; Stemler, Thomas

    2011-11-01

    In coupled systems, symmetry plays an important role for the collective dynamics. We investigate the dynamical response to noise with and without weak periodic modulation for two classes of ring systems. Each ring system consists of unidirectionally coupled bistable elements but in one class, the number of elements is even while in the other class the number is odd. Consequently, the rings without forcing show at a certain coupling strength, either ordering (similar to anti-ferromagnetic chains) or auto-oscillations. Analysing the bifurcations and fixed points of the two ring classes enables us to explain the dynamical response measured to noise and weak modulation. Moreover, by analysing a simplified model, we demonstrate that the response is universal for systems having a directional component in their stochastic dynamics in phase space around the origin.

  13. Study of photon–magnon coupling in a YIG-film split-ring resonant system

    Energy Technology Data Exchange (ETDEWEB)

    Bhoi, B.; Aiyar, R. [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); CRNTS, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Cliff, T.; Maksymov, I. S.; Kostylev, M., E-mail: mikhail.kostylev@uwa.edu.au [School of Physics M013, University of Western Australia, Crawley 6009 (Australia); Venkataramani, N. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai 400076 (India); Prasad, S. [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Stamps, R. L. [School of Physics M013, University of Western Australia, Crawley 6009 (Australia); SUPA, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2014-12-28

    By using the stripline Microwave Vector–Network Analyser Ferromagnetic Resonance and Time Domain spectroscopy techniques, we study a strong coupling regime of magnons to microwave photons in the planar geometry of a lithographically formed split-ring resonator (SRR) loaded by a single-crystal epitaxial yttrium–iron–garnet (YIG) film. Strong anti-crossing of the photon modes of SRR and of the magnon modes of the YIG film is observed in the applied-magnetic-field resolved measurements. The coupling strength extracted from the experimental data reaches 9% at 3 GHz. Theoretically, we propose an equivalent circuit model of the SRR loaded by a magnetic film. This model follows from the results of our numerical simulations of the microwave field structure of the SRR and of the magnetisation dynamics in the YIG film driven by the microwave currents in the SRR. The results obtained with the equivalent-circuit model are in good agreement with the experiment. This model provides a simple physical explanation of the process of mode anti-crossing. Our findings are important for future applications in microwave quantum photonic devices as well as in nonlinear and magnetically tuneable metamaterials exploiting the strong coupling of magnons to microwave photons.

  14. Integrated polymer micro-ring resonators for optical sensing applications

    OpenAIRE

    Girault , Pauline; Lorrain , Nathalie; Poffo , Luiz; Guendouz , Mohammed; Lemaitre , Jonathan; Carré , Christiane; Gadonna , Michel; Bosc , Dominique; Vignaud , Guillaume

    2015-01-01

    International audience; Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as cor...

  15. Ultrasonic Resonance Spectroscopy of Composite Rings for Flywheel Rotors

    Science.gov (United States)

    Harmon, Laura M.; Baaklini, George Y.

    2001-01-01

    Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for utilization in the International Space Station. These composite material systems were investigated with a recently developed ultrasonic resonance spectroscopy technique. The system employs a swept frequency approach and performs a fast Fourier transform on the frequency spectrum of the response signal. In addition. the system allows for equalization of the frequency spectrum, providing all frequencies with equal amounts of energy to excite higher order resonant harmonics. Interpretation of the second fast Fourier transform, along with equalization of the frequency spectrum, offers greater assurance in acquiring and analyzing the fundamental frequency, or spectrum resonance spacing. The range of frequencies swept in a pitch-catch mode was varied up to 8 MHz, depending on the material and geometry of the component. Single and multilayered material samples, with and without known defects, were evaluated to determine how the constituents of a composite material system affect the resonant frequency. Amplitude and frequency changes in the spectrum and spectrum resonance spacing domains were examined from ultrasonic responses of a flat composite coupon, thin composite rings, and thick composite rings. Also, the ultrasonic spectroscopy responses from areas with an intentional delamination and a foreign material insert, similar to defects that may occur during manufacturing malfunctions, were compared with those from defect-free areas in thin composite rings. A thick composite ring with varying thickness was tested to investigate the full-thickness resonant frequency and any possible bulk interfacial bond issues. Finally, the effect on the frequency response of naturally occurring single and clustered voids in a composite ring was established.

  16. Analytical Model of Planar Double Split Ring Resonator

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Jensen, Thomas; Krozer, Viktor

    2007-01-01

    This paper focuses on accurate modelling of microstrip double split ring resonators. The impedance matrix representation for coupled lines is applied for the first time to model the SRR, resulting in excellent model accuracy over a wide frequency range. Phase compensation is implemented to take i...

  17. Measurement of Resonance driving terms in the ATF Damping Ring

    CERN Document Server

    Tomás, R; Kuroda, S; Naito, T; Okugi, T; Urakawa, J; Zimmermann, F

    2008-01-01

    The measurement of resonance driving terms in the Damping Ring of the Accelerator Test Facility in KEK could help finding possible machine imperfections and even to optimize single particle stability through the minimization of non-linearities. The first experimental attempts of this enterprise are reported in this note.

  18. Doped Chiral Polymer Metamaterials (DCPM)

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this research is to develop lightweight, flexible, compact metamaterials with tunable resonance frequencies for effective optical and communication tools...

  19. Erbium-doped fiber ring resonator for resonant fiber optical gyro applications

    Science.gov (United States)

    Li, Chunming; Zhao, Rui; Tang, Jun; Xia, Meijing; Guo, Huiting; Xie, Chengfeng; Wang, Lei; Liu, Jun

    2018-04-01

    This paper reports a fiber ring resonator with erbium-doped fiber (EDF) for resonant fiber optical gyro (RFOG). To analyze compensation mechanism of the EDF on resonator, a mathematical model of the erbium-doped fiber ring resonator (EDFRR) is established based on Jones matrix to be followed by the design and fabrication of a tunable EDFRR. The performances of the fabricated EDFRR were measured and the experimental Q-factor of 2 . 47 × 108 and resonant depth of 109% were acquired separately. Compared with the resonator without the EDF, the resonant depth and Q-factor of the proposed device are increased by 2.5 times and 14 times, respectively. A potential optimum shot noise limited resolution of 0 . 042∘ / h can be obtained for the RFOG, which is promising for low-cost and high precise detection.

  20. Integrated polymer micro-ring resonators for optical sensing applications

    Science.gov (United States)

    Girault, Pauline; Lorrain, Nathalie; Poffo, Luiz; Guendouz, Mohammed; Lemaitre, Jonathan; Carré, Christiane; Gadonna, Michel; Bosc, Dominique; Vignaud, Guillaume

    2015-03-01

    Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as core layer and PMATRIFE polymer as lower cladding layer. The refractive index of the polymers and of the waveguide structure as a function of the wavelength is presented. Using these results, a theoretical study of the coupling between ring and straight waveguides has been undertaken in order to define the MR design. Sub-micronic gaps of 0.5 μm to 1 μm between the ring and the straight waveguides have been successfully achieved with UV (i-lines) photolithography. Different superstrates such as air, water, and aqueous solutions with glucose at different concentrations have been studied. First results show a good normalized transmission contrast of 0.98, a resonator quality factor around 1.5 × 104 corresponding to a coupling ratio of 14.7%, and ring propagation losses around 5 dB/cm. Preliminary sensing experiments have been performed for different concentrations of glucose; a sensitivity of 115 ± 8 nm/RIU at 1550 nm has been obtained with this couple of polymers.

  1. Miniaturised self-resonant split-ring resonator antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2009-01-01

    at the resonance is governed by the arc length of the monopole. Numerical and experimental results are presented for an antenna configuration of 1/23.4 wavelength in diameter (ka~0.134). The antenna is tuned to 50 ohms without any matching network, and its efficiency is measured to be 17.5%....

  2. Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    Science.gov (United States)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of

  3. Observation of electromagnetically induced transparency and absorption in Yttrium Iron Garnet loaded split ring resonator

    Science.gov (United States)

    Tay, Z. J.; Soh, W. T.; Ong, C. K.

    2018-04-01

    In this paper, we propose a new method of controlling microwave transmission from Electromagnetically Induced Absorption (EIA) to Electromagnetically Induced Transparency (EIT). EIA describes the state where the system strongly absorbs microwaves, whereas EIT describes the state in which the system is transparent to microwaves. Control is achieved via coupling of the 3 GHz photon mode of a metamaterial Split Ring Resonator (SRR) to the spin wave magnon modes of a Yttrium Iron Garnet (YIG) bulk. The system is described by a 2-body interaction matrix with an additional fitting parameter τ which takes into account the fact that the microstrip feed line could excite the SRR as well as the YIG. The parameter τ reveals the effect of geometry and shielding on the coupling behaviour and gives rise to unique physics. In low τ (τ ⩽ 2) configurations, only EIT is reported. However, in high τ (τ ≈ 10) configurations, EIA is reported. Furthermore, we report that the system can be easily changed from a low τ to high τ configuration by shielding the SRR from the microstrip with a thin metal piece. Varying the τ parameter through shielding is thus proposed as a new method of controlling the microwave transmission at the coupling region.

  4. Magnetic resonance imaging of lumbar vertebral apophyseal ring fractures

    International Nuclear Information System (INIS)

    Peh, W.C.G.

    1998-01-01

    Posterior lumbar vertebral apophyseal ring fractures are described in three adolescents presenting with severe low back pain, spinal tenderness and lower limb neurological deficit. Magnetic resonance imaging showed severe L4/5 posterior disc protrusion in all three patients. The actual fracture fragment was visualized with difficulty on MRI alone. The diagnosis of apophyseal ring fracture was made by either radiography or CT. Computed tomography delineated the size, shape and site of the fracture fragment. Surgical confirmation was obtained in all cases. Posterior lumbar vertebral apophyseal ring fractures may be difficult to visualize on MR imaging. Careful review of radiographs, supplemented by targeted CT, is necessary for the correct diagnosis and management of this entity. Copyright (1998) Blackwell Science Pty Ltd

  5. Magnetic resonance imaging of lumbar vertebral apophyseal ring fractures

    Energy Technology Data Exchange (ETDEWEB)

    Peh, W.C.G. [University of Hong Kong (Hong Kong). Department of Diagnostics Radiology and Organ Imaging; Yip, D.K.H.; Leong, J.C.Y. [University of Hong Kong (Hong Kong). Department of Orthopaedic Surgery; Griffith, J.F. [Chinese University of Hong Kong (Hong Kong)

    1998-02-01

    Posterior lumbar vertebral apophyseal ring fractures are described in three adolescents presenting with severe low back pain, spinal tenderness and lower limb neurological deficit. Magnetic resonance imaging showed severe L4/5 posterior disc protrusion in all three patients. The actual fracture fragment was visualized with difficulty on MRI alone. The diagnosis of apophyseal ring fracture was made by either radiography or CT. Computed tomography delineated the size, shape and site of the fracture fragment. Surgical confirmation was obtained in all cases. Posterior lumbar vertebral apophyseal ring fractures may be difficult to visualize on MR imaging. Careful review of radiographs, supplemented by targeted CT, is necessary for the correct diagnosis and management of this entity. Copyright (1998) Blackwell Science Pty Ltd 12 refs., 3 figs.

  6. High-Power Ka-Band Window and Resonant Ring

    International Nuclear Information System (INIS)

    Jay L. Hirshfield

    2006-01-01

    A stand-alone 200 MW rf test station is needed for carrying out development of accelerator structures and components for a future high-gradient multi-TeV collider, such as CLIC. A high-power rf window is needed to isolate the test station from a structure element under test. This project aimed to develop such a window for use at a frequency in the range 30-35 GHz, and to also develop a high-power resonant ring for testing the window. During Phase I, successful conceptual designs were completed for the window and the resonant ring, and cold tests of each were carried out that confirmed the designs

  7. Optical bio-chemical sensors on SNOW ring resonators

    Science.gov (United States)

    Khorasaninejad, Mohammadreza; Clarke, Nigel; Anantram, M. P.; Singh Saini, Simarjeet

    2011-08-01

    In this paper, we propose and analyze novel ring resonator based bio-chemical sensors on silicon nanowire optical waveguide (SNOW) and show that the sensitivity of the sensors can be increased by an order of magnitude as compared to silicon-on-insulator based ring resonators while maintaining high index contrast and compact devices. The core of the waveguide is hollow and allows for introduction of biomaterial in the center of the mode, thereby increasing the sensitivity of detection. A sensitivity of 243 nm/refractive index unit (RIU) is achieved for a change in bulk refractive index. For surface attachment, the sensor is able to detect monolayer attachments as small as 1 Å on the surface of the silicon nanowires.

  8. Theory and design of nonlinear metamaterials

    Science.gov (United States)

    Rose, Alec Daniel

    and oscillators. By applying this set of tools and knowledge to microwave metamaterials, I experimentally confirm several novel nonlinear phenomena. Most notably, I construct a backward wave nonlinear medium from varactor-loaded split ring resonators loaded in a rectangular waveguide, capable of generating second-harmonic opposite to conventional nonlinear materials with a conversion efficiency as high as 1.5%. In addition, I confirm nonlinear magnetoelectric coupling in two dual gap varactor-loaded split ring resonator metamaterials through measurement of the amplitude and phase of the second-harmonic generated in the forward and backward directions from a thin slab. I then use the presence of simultaneous nonlinearities in such metamaterials to observe nonlinear interference, manifest as unidirectional difference frequency generation with contrasts of 6 and 12 dB in the forward and backward directions, respectively. Finally, I apply these principles and intuition to several plasmonic platforms with the goal of achieving similar enhancements and configurations at optical frequencies. Using the example of fluorescence enhancement in optical patch antennas, I develop a semi-classical numerical model for the calculation of field-induced enhancements to both excitation and spontaneous emission rates of an embedded fluorophore, showing qualitative agreement with experimental results, with enhancement factors of more than 30,000. Throughout these series of works, I emphasize the indispensability of effective design and retrieval tools in understanding and optimizing both metamaterials and plasmonic systems. Ultimately, when weighed against the disadvantages in fabrication and optical losses, the results presented here provide a context for the application of nonlinear metamaterials within three distinct areas where a competitive advantage over conventional materials might be obtained: fundamental science demonstrations, linear and nonlinear anisotropy engineering, and

  9. Electromagnetically Induced Transparency in Symmetric Planar Metamaterial at THz Wavelengths

    Directory of Open Access Journals (Sweden)

    Abdelwaheb Ourir

    2015-03-01

    Full Text Available We report the experimental observation and the evidence of the analogue of electromagnetically-induced transparency (EIT in a symmetric planar metamaterial. This effect has been obtained in the THz range thanks to a destructive Fano-interference between the two first modes of an array of multi-gap split ring resonators deposited on a silicon substrate. This structure is a planar thin film material with four-fold symmetry. Thanks to this property, a polarization-independent transmission has been achieved. The proposed metamaterial is well adapted to variety of slow-light applications in the infrared and optical range.

  10. Babinet principle applied to the design of metasurfaces and metamaterials.

    Science.gov (United States)

    Falcone, F; Lopetegi, T; Laso, M A G; Baena, J D; Bonache, J; Beruete, M; Marqués, R; Martín, F; Sorolla, M

    2004-11-05

    The electromagnetic theory of diffraction and the Babinet principle are applied to the design of artificial metasurfaces and metamaterials. A new particle, the complementary split rings resonator, is proposed for the design of metasurfaces with high frequency selectivity and planar metamaterials with a negative dielectric permittivity. Applications in the fields of frequency selective surfaces and polarizers, as well as in microwave antennas and filter design, can be envisaged. The tunability of all these devices by an applied dc voltage is also achievable if these particles are etched on the appropriate substrate.

  11. Giant magnetic modulation of a planar, hybrid metamolecule resonance

    International Nuclear Information System (INIS)

    Gregory, Simon A; Stenning, Gavin B G; Bowden, Graham J; De Groot, Peter A J; Zheludev, Nikolay I

    2014-01-01

    Coupling magnetic elements to metamaterial structures creates hybrid metamolecules with new opportunities. Here we report on the magnetic control of a metamolecule resonance, by utilizing the interaction between a single split ring resonator (SRR) and a magnetic thin film of permalloy. To suppress eddy current shielding, the permalloy films are patterned into arrays of 30–500 μm diameter discs. Strong hybridized resonances were observed at the anticrossing between the split ring resonance and the ferromagnetic resonance (FMR) of the permalloy. In particular, it is possible to achieve 40 dB modulation of the electric (symmetric) mode of the SRR on sweeping the applied magnetic field through the SRR/FMR anticrossing. The results open the way to the design of planar metamaterials, with potential applications in nonlinear metamaterials, tunable metamaterials and spintronics. (papers)

  12. Plasmon-Induced Transparency Based on Triple Arc-Ring Resonators

    Directory of Open Access Journals (Sweden)

    Guang-Xi Dong

    2018-06-01

    Full Text Available This paper presents a plasmon-induced transparency (PIT using an easy-fabricating metamaterial composed of three pieces of metallic arc-rings on top of a dielectric substrate. The transmission of the transparent peak of 1.32 THz reaches approximately 93%. The utilization of the coupled Lorentzian oscillator model and the distribution of electromagnetic fields together explain the cause of the transparent peak. The simulation results further demonstrate that the bandwidth of the transmission peak can be narrowed by changing the sizes of the arc-rings. Moreover, an on/off effect based on the transparent peak is discussed by introducing photosensitive silicon into the air gaps of the suggested metamaterial structure.

  13. Lineshape Engineering in an All-Pass Ring Resonator with Backreflection Coupled to a Symmetrical Fabry-Perot Resonator

    KAUST Repository

    Melnikov, Vasily

    2012-11-10

    We derive transfer functions for an all-pass ring resonator with internal backreflection coupled to a symmetrical Fabry-Perot resonator and demonstrate electromagnetically induced transparency-like and Fano-like lineshapes tunable by backreflection in the ring resonator.

  14. Lineshape Engineering in an All-Pass Ring Resonator with Backreflection Coupled to a Symmetrical Fabry-Perot Resonator

    KAUST Repository

    Melnikov, Vasily; Roqan, Iman S.

    2012-01-01

    We derive transfer functions for an all-pass ring resonator with internal backreflection coupled to a symmetrical Fabry-Perot resonator and demonstrate electromagnetically induced transparency-like and Fano-like lineshapes tunable by backreflection in the ring resonator.

  15. Experimental Verification of Isotropic Radiation from a Coherent Dipole Source via Electric-Field-Driven LC Resonator Metamaterials

    Science.gov (United States)

    Tichit, Paul-Henri; Burokur, Shah Nawaz; Qiu, Cheng-Wei; de Lustrac, André

    2013-09-01

    It has long been conjectured that isotropic radiation by a simple coherent source is impossible due to changes in polarization. Though hypothetical, the isotropic source is usually taken as the reference for determining a radiator’s gain and directivity. Here, we demonstrate both theoretically and experimentally that an isotropic radiator can be made of a simple and finite source surrounded by electric-field-driven LC resonator metamaterials designed by space manipulation. As a proof-of-concept demonstration, we show the first isotropic source with omnidirectional radiation from a dipole source (applicable to all distributed sources), which can open up several possibilities in axion electrodynamics, optical illusion, novel transformation-optic devices, wireless communication, and antenna engineering. Owing to the electric- field-driven LC resonator realization scheme, this principle can be readily applied to higher frequency regimes where magnetism is usually not present.

  16. Resonant Excitation of a Truncated Metamaterial Cylindrical Shell by a Thin Wire Monopole

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Erentok, Aycan; Breinbjerg, Olav

    2009-01-01

    A truncated metamaterial cylindrical shell excited by a thin wire monopole is investigated using the integral equation technique as well as the finite element method. Simulations reveal a strong field singularity at the edge of the truncated cylindrical shell, which critically affects the matching...

  17. Perforated membrane-type acoustic metamaterials

    International Nuclear Information System (INIS)

    Langfeldt, F.; Kemsies, H.; Gleine, W.; Estorff, O. von

    2017-01-01

    This letter introduces a modified design of membrane-type acoustic metamaterials (MAMs) with a ring mass and a perforation so that an airflow through the membrane is enabled. Simplified analytical investigations of the perforated MAM (PMAM) indicate that the perforation introduces a second anti-resonance, where the effective surface mass density of the PMAM is much higher than the static value. The theoretical results are validated using impedance tube measurements, indicating good agreement between the theoretical predictions and the measured data. The anti-resonances yield high low-frequency sound transmission loss values with peak values over 25 dB higher than the corresponding mass-law. - Highlights: • A new membrane-type acoustic metamaterial exhibiting negative density is presented. • The metamaterial design contains a ring mass with a perforation through the membrane. • The sound transmission loss exhibits narrow-band peaks much higher than the mass-law. • The emergence of the peaks is explained using a simple theoretical model. • Impedance tube measurements are used to validate the theoretical predictions.

  18. Perforated membrane-type acoustic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Langfeldt, F., E-mail: Felix.Langfeldt@haw-hamburg.de [Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Sciences, Berliner Tor 9, D-20099 Hamburg (Germany); Kemsies, H., E-mail: Hannes.Kemsies@haw-hamburg.de [Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Sciences, Berliner Tor 9, D-20099 Hamburg (Germany); Gleine, W., E-mail: Wolfgang.Gleine@haw-hamburg.de [Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Sciences, Berliner Tor 9, D-20099 Hamburg (Germany); Estorff, O. von, E-mail: estorff@tu-harburg.de [Institute of Modelling and Computation, Hamburg University of Technology, Denickestr. 17, D-21073 Hamburg (Germany)

    2017-04-25

    This letter introduces a modified design of membrane-type acoustic metamaterials (MAMs) with a ring mass and a perforation so that an airflow through the membrane is enabled. Simplified analytical investigations of the perforated MAM (PMAM) indicate that the perforation introduces a second anti-resonance, where the effective surface mass density of the PMAM is much higher than the static value. The theoretical results are validated using impedance tube measurements, indicating good agreement between the theoretical predictions and the measured data. The anti-resonances yield high low-frequency sound transmission loss values with peak values over 25 dB higher than the corresponding mass-law. - Highlights: • A new membrane-type acoustic metamaterial exhibiting negative density is presented. • The metamaterial design contains a ring mass with a perforation through the membrane. • The sound transmission loss exhibits narrow-band peaks much higher than the mass-law. • The emergence of the peaks is explained using a simple theoretical model. • Impedance tube measurements are used to validate the theoretical predictions.

  19. Multiband Negative Permittivity Metamaterials and Absorbers

    Directory of Open Access Journals (Sweden)

    Yiran Tian

    2013-01-01

    Full Text Available Design and characteristics of multiband negative permittivity metamaterial and its absorber configuration are presented in this paper. The proposed multiband metamaterial is composed of a novel multibranch resonator which can possess four electric resonance frequencies. It is shown that, by controlling the length of the main branches of such resonator, the resonant frequencies and corresponding absorbing bands of metamaterial absorber can be shifted in a large frequency band.

  20. Metamaterial Combining Electric- and Magnetic-Dipole-Based Configurations for Unique Dual-Band Signal Enhancement in Ultrahigh-Field Magnetic Resonance Imaging.

    Science.gov (United States)

    Schmidt, Rita; Webb, Andrew

    2017-10-11

    Magnetic resonance imaging and spectroscopy (MRI and MRS) are both widely used techniques in medical diagnostics and research. One of the major thrusts in recent years has been the introduction of ultrahigh-field magnets in order to boost the sensitivity. Several MRI studies have examined further potential improvements in sensitivity using metamaterials, focusing on single frequency applications. However, metamaterials have yet to reach a level that is practical for routine MRI use. In this work, we explore a new metamaterial implementation for MRI, a dual-nuclei resonant structure, which can be used for both proton and heteronuclear magnetic resonance. Our approach combines two configurations, one based on a set of electric dipoles for the low frequency band, and the second based on a set of magnetic dipoles for the high frequency band. We focus on the implementation of a dual-nuclei metamaterial for phosphorus and proton imaging and spectroscopy at an ultrahigh-field strength of 7 T. In vivo scans using this flexible and compact structure show that it locally enhances both the phosphorus and proton transmit and receive sensitivities.

  1. Modelling of Resonantly Forced Density Waves in Dense Planetary Rings

    Science.gov (United States)

    Lehmann, M.; Schmidt, J.; Salo, H.

    2014-04-01

    Density wave theory, originally proposed to explain the spiral structure of galactic disks, has been applied to explain parts of the complex sub-structure in Saturn's rings, such as the wavetrains excited at the inner Lindblad resonances (ILR) of various satellites. The linear theory for the excitation and damping of density waves in Saturn's rings is fairly well developed (e.g. Goldreich & Tremaine [1979]; Shu [1984]). However, it fails to describe certain aspects of the observed waves. The non-applicability of the linear theory is already indicated by the "cusplike" shape of many of the observed wave profiles. This is a typical nonlinear feature which is also present in overstability wavetrains (Schmidt & Salo [2003]; Latter & Ogilvie [2010]). In particular, it turns out that the detailed damping mechanism, as well as the role of different nonlinear effects on the propagation of density waves remain intransparent. First attemps are being made to investigate the excitation and propagation of nonlinear density waves within a hydrodynamical formalism, which is also the natural formalism for describing linear density waves. A simple weakly nonlinear model, derived from a multiple-scale expansion of the hydrodynamic equations, is presented. This model describes the damping of "free" spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients, where the effects of the hydrodynamic nonlinearities are included. The model predicts that density waves are linearly unstable in a ring region where the conditions for viscous overstability are met, which translates to a steep dependence of the shear viscosity with respect to the disk's surface density. The possibility that this dependence could lead to a growth of density waves with increasing distance from the resonance, was already mentioned in Goldreich & Tremaine [1978]. Sufficiently far away from the ILR, the surface density perturbation caused by the wave, is predicted to

  2. Half-integer resonance crossing in high-intensity rings

    Directory of Open Access Journals (Sweden)

    A. V. Fedotov

    2002-02-01

    Full Text Available A detailed study of the influence of space charge on the crossing of second-order resonances is presented and associated with the space-charge limit of high-intensity rings. Two-dimensional simulation studies are compared with envelope models, which agree in the finding of an increased intensity limit due to the coherent frequency shift. This result is also found for realistic bunched beams with multiturn injection painting. Characteristic features such as the influence of tune splitting, structure resonances, and the role of envelope instabilities are discussed in detail. The theoretical limits are found to be in good agreement with the performance of high-intensity proton machines.

  3. Coupling thermal atomic vapor to an integrated ring resonator

    International Nuclear Information System (INIS)

    Ritter, R; Kübler, H; Pfau, T; Löw, R; Gruhler, N; Pernice, W H P

    2016-01-01

    Strongly interacting atom–cavity systems within a network with many nodes constitute a possible realization for a quantum internet which allows for quantum communication and computation on the same platform. To implement such large-scale quantum networks, nanophotonic resonators are promising candidates because they can be scalably fabricated and interconnected with waveguides and optical fibers. By integrating arrays of ring resonators into a vapor cell we show that thermal rubidium atoms above room temperature can be coupled to photonic cavities as building blocks for chip-scale hybrid circuits. Although strong coupling is not yet achieved in this first realization, our approach provides a key step towards miniaturization and scalability of atom–cavity systems. (paper)

  4. Split ring resonator for the Argonne superconducting heavy ion booster

    International Nuclear Information System (INIS)

    Shepard, K.W.; Scheibelhut, C.H.; Benaroya, R.; Bollinger, L.M.

    1977-01-01

    A split-ring resonator for use in the ANL superconducting heavy-ion linac was constructed and is being tested. The electromagnetic characteristics of the 98-MHz device are the same as the unit described earlier, but the housing is formed of a new material consisting of niobium sheet explosively bonded to copper. The niobium provides the superconducting path and the copper conducts heat to a small area cooled by liquid helium. This arrangement greatly simplified the cryogenic system. Fabrication of the housing was relatively simple, with the result that costs have been reduced substantially. The mechanical stability of the resonator and the performance of the demountable superconducting joints are significantly better than for the earlier unit

  5. Split ring resonator for the Argonne superconducting heavy ion booster

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Scheibelhut, C.H.; Benaroya, R.; Bollinger, L.M.

    1977-01-01

    A split-ring resonator for use in the ANL superconducting heavy-ion linac was constructed and is being tested. The electromagnetic characteristics of the 98-MHz device are the same as the unit described earlier, but the housing is formed of a new material consisting of niobium sheet explosively bonded to copper. The niobium provides the superconducting path and the copper conducts heat to a small area cooled by liquid helium. This arrangement greatly simplified the cryogenic system. Fabrication of the housing was relatively simple, with the result that costs have been reduced substantially. The mechanical stability of the resonator and the performance of the demountable superconducting joints are significantly better than for the earlier unit.

  6. Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Ozel, T.; Mutlugun, E.

    2014-01-01

    We theoretically demonstrate that nanocomposites made of colloidal semiconductor quantum dot monolayers placed between metal nanoparticle monolayers can function as multilayer hyperbolic metamaterials. Depending on the thickness of the spacer between the quantum dot and nanoparticle layers......, the effective permittivity tensor of the nanocomposite is shown to become indefinite, resulting in increased photonic density of states and strong enhancement of quantum dot luminescence. This explains the results of recent experiments [T. Ozel et al., ACS Nano 5, 1328 (2011)] and confirms that hyperbolic...

  7. Ring Current He Ion Control by Bounce Resonant ULF Waves

    Science.gov (United States)

    Kim, Hyomin; Gerrard, Andrew J.; Lanzerotti, Louis J.; Soto-Chavez, Rualdo; Cohen, Ross J.; Manweiler, Jerry W.

    2017-12-01

    Ring current energy He ion (˜65 keV to ˜520 keV) differential flux data from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft show considerable variability during quiet solar wind and geomagnetic time periods. Such variability is apparent from orbit to orbit (˜9 h) of the spacecraft and is observed to be ˜50-100% of the nominal flux. Using data from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument, also aboard the Van Allen Probes spacecraft, we identify that a dominant source of this variability is from ULF waveforms with periods of tens of seconds. These periods correspond to the bounce resonant timescales of the ring current He ions being measured by RBSPICE. A statistical survey using the particle and field data for one full spacecraft precession period (approximately 2 years) shows that the wave and He ion flux variations are generally anticorrelated, suggesting the bounce resonant pitch angle scattering process as a major component in the scattering of He ions.

  8. E-Textile Embroidered Metamaterial Transmission Line for Signal Propagation Control

    Directory of Open Access Journals (Sweden)

    Bahareh Moradi

    2018-06-01

    Full Text Available In this paper, the utilization of common fabrics for the manufacturing of e-textile metamaterial transmission lines is investigated. In order to filter and control the signal propagation in the ultra-high frequency (UHF range along the e-textile, a conventional metamaterial transmission line was compared with embroidered metamaterial particles. The proposed design was based on a transmission line loaded with one or several split-ring resonators (SRR on a felt substrate. To explore the relations between physical parameters and filter performance characteristics, theoretical models based on transmission matrices’ description of the filter constituent components were proposed. Excellent agreement between theoretical prediction, electromagnetic simulations, and measurement were found. Experimental results showed stop-band levels higher than −30 dB for compact embroidered metamaterial e-textiles. The validated results confirmed embroidery as a useful technique to obtain customized electromagnetic properties, such as filtering, on wearable applications.

  9. E-Textile Embroidered Metamaterial Transmission Line for Signal Propagation Control.

    Science.gov (United States)

    Moradi, Bahareh; Fernández-García, Raul; Gil, Ignacio

    2018-06-05

    In this paper, the utilization of common fabrics for the manufacturing of e-textile metamaterial transmission lines is investigated. In order to filter and control the signal propagation in the ultra-high frequency (UHF) range along the e-textile, a conventional metamaterial transmission line was compared with embroidered metamaterial particles. The proposed design was based on a transmission line loaded with one or several split-ring resonators (SRR) on a felt substrate. To explore the relations between physical parameters and filter performance characteristics, theoretical models based on transmission matrices' description of the filter constituent components were proposed. Excellent agreement between theoretical prediction, electromagnetic simulations, and measurement were found. Experimental results showed stop-band levels higher than -30 dB for compact embroidered metamaterial e-textiles. The validated results confirmed embroidery as a useful technique to obtain customized electromagnetic properties, such as filtering, on wearable applications.

  10. Low-loss negative index metamaterials for X, Ku, and K microwave bands

    Directory of Open Access Journals (Sweden)

    David A. Lee

    2015-04-01

    Full Text Available Low-loss, negative-index of refraction metamaterials were designed and tested for X, Ku, and K microwave frequency bands. An S-shaped, split-ring resonator was used as a unit cell to design homogeneous slabs of negative-index metamaterials. Then, the slabs of metamaterials were cut unto prisms to measure experimentally the negative index of refraction of a plane electromagnetic wave. Theoretical simulations using High-Frequency Structural Simulator, a finite element equation solver, were in good agreement with experimental measurements. The negative index of refraction was retrieved from the angle- and frequency-dependence of the transmitted intensity of the microwave beam through the metamaterial prism and compared well to simulations; in addition, near-field electromagnetic intensity mapping was conducted with an infrared camera, and there was also a good match with the simulations for expected frequency ranges for the negative index of refraction.

  11. An electrically driven terahertz metamaterial diffractive modulator with more than 20 dB of dynamic range

    International Nuclear Information System (INIS)

    Karl, N.; Reichel, K.; Mendis, R.; Mittleman, D. M.; Chen, H.-T.; Taylor, A. J.; Brener, I.; Benz, A.; Reno, J. L.

    2014-01-01

    We design and experimentally demonstrate a switchable diffraction grating for terahertz modulation based on planar active metamaterials, where a Schottky gate structure is implemented to tune the metamaterial resonances in real-time via the application of an external voltage bias. The diffraction grating is formed by grouping the active split-ring resonators into an array of independent columns with alternate columns biased. We observe off-axis diffraction over a wide frequency band in contrast to the narrow-band resonances, which permits operation of the device as a relatively high-speed, wide-bandwidth, high-contrast modulator, with more than 20 dB of dynamic range

  12. Integrated refractive index optical ring resonator detector for capillary electrophoresis.

    Science.gov (United States)

    Zhu, Hongying; White, Ian M; Suter, Jonathan D; Zourob, Mohammed; Fan, Xudong

    2007-02-01

    We developed a novel miniaturized and multiplexed, on-capillary, refractive index (RI) detector using liquid core optical ring resonators (LCORRs) for future development of capillary electrophoresis (CE) devices. The LCORR employs a glass capillary with a diameter of approximately 100 mum and a wall thickness of a few micrometers. The circular cross section of the capillary forms a ring resonator along which the light circulates in the form of the whispering gallery modes (WGMs). The WGM has an evanescent field extending into the capillary core and responds to the RI change due to the analyte conducted in the capillary, thus permitting label-free measurement. The resonating nature of the WGM enables repetitive light-analyte interaction, significantly enhancing the LCORR sensitivity. This LCORR architecture achieves dual use of the capillary as a sensor head and a CE fluidic channel, allowing for integrated, multiplexed, and noninvasive on-capillary detection at any location along the capillary. In this work, we used electro-osmotic flow and glycerol as a model system to demonstrate the fluid transport capability of the LCORRs. In addition, we performed flow speed measurement on the LCORR to demonstrate its flow analysis capability. Finally, using the LCORR's label-free sensing mechanism, we accurately deduced the analyte concentration in real time at a given point on the capillary. A sensitivity of 20 nm/RIU (refractive index units) was observed, leading to an RI detection limit of 10-6 RIU. The LCORR marries photonic technology with microfluidics and enables rapid on-capillary sample analysis and flow profile monitoring. The investigation in this regard will open a door to novel high-throughput CE devices and lab-on-a-chip sensors in the future.

  13. Artificial magnetism and left-handed media from dielectric rings and rods

    International Nuclear Information System (INIS)

    Jelinek, L; Marques, R

    2010-01-01

    It is shown that artificial magnetism with relatively large frequency bandwidth can be obtained from periodic arrangements of dielectric rings. Combined with dielectric rods, dielectric rings can provide 3D isotropic left-handed metamaterials which are an advantageous alternative to metallic split ring resonators (SRRs) and/or metallic wires when undetectability by low frequency external magnetic fields is desired. Furthermore it is shown that, unlike conventional SRRs, dielectric rings can also be combined with natural plasma-like media to obtain a left-handed metamaterial.

  14. Artificial magnetism and left-handed media from dielectric rings and rods

    Energy Technology Data Exchange (ETDEWEB)

    Jelinek, L [Department of Electromagnetic Field, Czech Technical University in Prague, 166 27-Prague (Czech Republic); Marques, R, E-mail: l_jelinek@us.e [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla, 41012-Sevilla (Spain)

    2010-01-20

    It is shown that artificial magnetism with relatively large frequency bandwidth can be obtained from periodic arrangements of dielectric rings. Combined with dielectric rods, dielectric rings can provide 3D isotropic left-handed metamaterials which are an advantageous alternative to metallic split ring resonators (SRRs) and/or metallic wires when undetectability by low frequency external magnetic fields is desired. Furthermore it is shown that, unlike conventional SRRs, dielectric rings can also be combined with natural plasma-like media to obtain a left-handed metamaterial.

  15. 200 MW S-band traveling wave resonant ring development at IHEP

    Science.gov (United States)

    Zhou, Zu-Sheng; Chi, Yun-Long; Git, Meng-Ping; Pei, Guo-Xi

    2010-03-01

    The resonant-ring is a traveling wave circuit, which is used to produce high peak power with comparatively smaller stored energy. The application to be considered is its use as a high power simulator mainly for testing the klystron ceramic output window, as well as for high power microwave transmission devices. This paper describes the principle of a resonant ring and introduces the structure and property of the newly constructed traveling wave resonant ring at IHEP. Our goal is to produce a 200 MW class resonant ring at 2.856 GHz with a pulse length of 2 μs and repetition rate of 25 Hz. The installation, commissioning and testing of the ring have been completed and a peak power of 200 MW at 3 μs has been achieved. The conditioning results show that all the parameters of the resonant ring reach the design goals.

  16. Voltage adjusting characteristics in terahertz transmission through Fabry-Pérot-based metamaterials

    Directory of Open Access Journals (Sweden)

    Jun Luo

    2015-10-01

    Full Text Available Metallic electric split-ring resonators (SRRs with featured size in micrometer scale, which are connected by thin metal wires, are patterned to form a periodically distributed planar array. The arrayed metallic SRRs are fabricated on an n-doped gallium arsenide (n-GaAs layer grown directly over a semi-insulating gallium arsenide (SI-GaAs wafer. The patterned metal microstructures and n-GaAs layer construct a Schottky diode, which can support an external voltage applied to modify the device properties. The developed architectures present typical functional metamaterial characters, and thus is proposed to reveal voltage adjusting characteristics in the transmission of terahertz waves at normal incidence. We also demonstrate the terahertz transmission characteristics of the voltage controlled Fabry-Pérot-based metamaterial device, which is composed of arrayed metallic SRRs. To date, many metamaterials developed in earlier works have been used to regulate the transmission amplitude or phase at specific frequencies in terahertz wavelength range, which are mainly dominated by the inductance-capacitance (LC resonance mechanism. However, in our work, the external voltage controlled metamaterial device is developed, and the extraordinary transmission regulation characteristics based on both the Fabry-Pérot (FP resonance and relatively weak surface plasmon polariton (SPP resonance in 0.025-1.5 THz range, are presented. Our research therefore shows a potential application of the dual-mode-resonance-based metamaterial for improving terahertz transmission regulation.

  17. Storage ring lattice calibration using resonant spin depolarization

    Directory of Open Access Journals (Sweden)

    K. P. Wootton

    2013-07-01

    Full Text Available This paper presents measurements of the GeV-scale electron beam energy for the storage rings at the synchrotron light source facilities Australian Synchrotron (AS and SPEAR3 at SLAC. Resonant spin depolarization was employed in the beam energy measurement, since it is presently the highest precision technique and an uncertainty of order 10^{-6} was achieved at SPEAR3 and AS. Using the resonant depolarization technique, the beam energy was measured at various rf frequencies to measure the linear momentum compaction factor. This measured linear momentum compaction factor was used to evaluate models of the beam trajectory through combined-function bending magnets. The main bending magnets of both lattices are rectangular, horizontally defocusing gradient bending magnets. Four modeling approaches are compared for the beam trajectory through the bending magnet: a circular trajectory, linear and nonlinear hyperbolic cosine trajectories, and numerical evaluation of the trajectory through the measured magnetic field map. Within the uncertainty of the measurement the momentum compaction factor is shown to agree with the numerical model of the trajectory within the bending magnet, and disagree with the hyperbolic cosine approximation.

  18. Resonant beam behavior studies in the Proton Storage Ring

    Directory of Open Access Journals (Sweden)

    S. Cousineau

    2003-07-01

    Full Text Available We present studies of space-charge-induced beam profile broadening at high intensities in the Proton Storage Ring (PSR at Los Alamos National Laboratory. We investigate the profile broadening through detailed particle-in-cell simulations of several experiments and obtain results in good agreement with the measurements. We interpret these results within the framework of coherent resonance theory. With increasing intensity, our simulations show strong evidence for the presence of a quadrupole-mode resonance of the beam envelope with the lattice in the vertical plane. Specifically, we observe incoherent tunes crossing integer values, and large amplitude, nearly periodic envelope oscillations. At the highest operating intensities, we observe a continuing relaxation of the beam through space charge forces leading to emittance growth. The increase of emittance commences when the beam parameters encounter an envelope stop band. Once the stop band is reached, the emittance growth balances the intensity increase to maintain the beam near the stop band edge. Additionally, we investigate the potential benefit of a stop band correction to the high intensity PSR beam.

  19. Simulation of a resonant-type ring magnet power supply with multiple resonant cells and energy storage chokes

    International Nuclear Information System (INIS)

    Kim, J.M.S.; Blackmore, E.W.; Reiniger, K.W.

    1992-01-01

    For the TRIUMF KAON Factory Booster Ring, a resonant-type magnet power supply has been proposed for the dipole magnet excitation. The Booster Ring magnet power supply system based on resonant circuits, coupled with distributed energy make-up networks, is a complex system, sensitive to many system parameters. When multiple resonant cells, each with its own energy make-up network, are connected in a ring, it is very difficult to derive closed-form solutions to determine the operating conditions of the power supply system. A meaningful way to understand and analyze such a complex system is to use a simulation tool. This paper presents the analysis of operating conditions of the resonant-type ring magnet power supply with multiple resonant cells, using the circuit simulation tool, SPICE. The focus of the study is on the effect of circuit parameter variations in energy storage chokes

  20. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Feng-Chia; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin [Industrial Technology Research Institute-South, Tainan 709, Taiwan (China); Hsu, Jin-Chen, E-mail: fengchiahsu@itri.org.t, E-mail: hsujc@yuntech.edu.t [Department of Mechanical Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan (China)

    2011-09-21

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  1. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    International Nuclear Information System (INIS)

    Hsu, Feng-Chia; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin; Hsu, Jin-Chen

    2011-01-01

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  2. A polarization independent electromagnetically induced transparency-like metamaterial with large group delay and delay-bandwidth product

    Science.gov (United States)

    Bagci, Fulya; Akaoglu, Baris

    2018-05-01

    In this study, a classical analogue of electromagnetically induced transparency (EIT) that is completely independent of the polarization direction of the incident waves is numerically and experimentally demonstrated. The unit cell of the employed planar symmetric metamaterial structure consists of one square ring resonator and four split ring resonators (SRRs). Two different designs are implemented in order to achieve a narrow-band and wide-band EIT-like response. In the unit cell design, a square ring resonator is shown to serve as a bright resonator, whereas the SRRs behave as a quasi-dark resonator, for the narrow-band (0.55 GHz full-width at half-maximum bandwidth around 5 GHz) and wide-band (1.35 GHz full-width at half-maximum bandwidth around 5.7 GHz) EIT-like metamaterials. The observed EIT-like transmission phenomenon is theoretically explained by a coupled-oscillator model. Within the transmission window, steep changes of the phase result in high group delays and the delay-bandwidth products reach 0.45 for the wide-band EIT-like metamaterial. Furthermore, it has been demonstrated that the bandwidth and group delay of the EIT-like band can be controlled by changing the incidence angle of electromagnetic waves. These features enable the proposed metamaterials to achieve potential applications in filtering, switching, data storing, and sensing.

  3. Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingnan [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Photonic crystals and metamaterials, both composed of artificial structures, are two interesting areas in electromagnetism and optics. New phenomena in photonic crystals and metamaterials are being discovered, including some not found in natural materials. This thesis presents my research work in the two areas. Photonic crystals are periodically arranged artificial structures, mostly made from dielectric materials, with period on the same order of the wavelength of the working electromagnetic wave. The wave propagation in photonic crystals is determined by the Bragg scattering of the periodic structure. Photonic band-gaps can be present for a properly designed photonic crystal. Electromagnetic waves with frequency within the range of the band-gap are suppressed from propagating in the photonic crystal. With surface defects, a photonic crystal could support surface modes that are localized on the surface of the crystal, with mode frequencies within the band-gap. With line defects, a photonic crystal could allow the propagation of electromagnetic waves along the channels. The study of surface modes and waveguiding properties of a 2D photonic crystal will be presented in Chapter 1. Metamaterials are generally composed of artificial structures with sizes one order smaller than the wavelength and can be approximated as effective media. Effective macroscopic parameters such as electric permittivity ϵ, magnetic permeability μ are used to characterize the wave propagation in metamaterials. The fundamental structures of the metamaterials affect strongly their macroscopic properties. By designing the fundamental structures of the metamaterials, the effective parameters can be tuned and different electromagnetic properties can be achieved. One important aspect of metamaterial research is to get artificial magnetism. Metallic split-ring resonators (SRRs) and variants are widely used to build magnetic metamaterials with effective μ < 1 or even μ < 0. Varactor based

  4. Spin motion at and near orbital resonance in storage rings with Siberian snakes I. At orbital resonance

    International Nuclear Information System (INIS)

    Barber, D.P.; Vogt, M.

    2006-12-01

    Here, and in a sequel, we invoke the invariant spin field to provide an in-depth study of spin motion at and near low order orbital resonances in a simple model for the effects of vertical betatron motion in a storage ring with Siberian Snakes. This leads to a clear understanding, within the model, of the behaviour of the beam polarization at and near so-called snake resonances in proton storage rings. (orig.)

  5. Hybrid plasmonic waveguide-assisted Metal–Insulator–Metal ring resonator for refractive index sensing

    Science.gov (United States)

    Butt, M. A.; Khonina, S. N.; Kazanskiy, N. L.

    2018-05-01

    A highly sensitive refractive index sensor based on an integrated hybrid plasmonic waveguide (HPWG) and a Metal-Insulator-Metal (M-I-M) micro-ring resonator is presented. In our design, there are two slot-waveguide-based micro-rings that encircle a gold disc. The outer slot WG is formed by the combination of Silicon-Air-Gold ring and the inner slot-waveguide is formed by Gold ring-Air-Gold disc. The slot-waveguide rings provide an interaction length sufficient to accumulate a detectable wavelength shift. The transmission spectrum and electric field distribution of this sensor structure are simulated using Finite Element Method (FEM). The sensitivity of this micro-ring resonator is achieved at 800 nm/RIU which is about six times higher than that of the conventional Si ring with the same geometry. Our proposed sensor design has a potential to find further applications in biomedical science and nano-photonic circuits.

  6. Frequency-domain analysis of resonant-type ring magnet power supplies

    International Nuclear Information System (INIS)

    Kim, J.M.S.; Reiniger, K.W.

    1993-01-01

    For fast-cycling synchrotrons, resonant-type ring magnet power supplies are commonly used to provide a dc-biased ac excitation for the ring magnets. Up to the present, this power supply system has been analyzed using simplified analytical approximation, namely assuming the resonant frequency of the ring magnet network is fixed and equal to the accelerator frequency. This paper presents a frequency-domain analysis technique for a more accurate analysis of resonant-type ring magnet power supplies. This approach identifies that, with the variation of the resonant frequency, the operating conditions of the power supply changes quite dramatically because of the high Q value of the resonant network. The analytical results are verified, using both experimental results and simulation results

  7. Transmission and reflection properties of terahertz fractal metamaterials

    DEFF Research Database (Denmark)

    Malureanu, Radu; Lavrinenko, Andrei; Cooke, David

    2010-01-01

    We use THz time-domain spectroscopy to investigate transmission and reflection properties of metallic fractal metamaterial structures. We observe loss of free-space energy at certain resonance frequencies, indicating excitation of surface modes of the metamaterial.......We use THz time-domain spectroscopy to investigate transmission and reflection properties of metallic fractal metamaterial structures. We observe loss of free-space energy at certain resonance frequencies, indicating excitation of surface modes of the metamaterial....

  8. Bianisotropic metamaterial

    Science.gov (United States)

    El-Kady, Ihab F.; Reinke, Charles M.

    2017-07-18

    The topology of the elements of a metamaterial can be engineered from its desired electromagnetic constitutive tensor using an inverse group theory method. Therefore, given a desired electromagnetic response and a generic metamaterial elemental design, group theory is applied to predict the various ways that the element can be arranged in three dimensions to produce the desired functionality. An optimizer can then be applied to an electromagnetic modeling tool to fine tune the values of the electromagnetic properties of the resulting metamaterial topology.

  9. Double resonant excitation of the second harmonic of terahertz raditation in dielectricgraphene layered metamaterials

    DEFF Research Database (Denmark)

    Rapoport, Yu; Grimalsky, V.; Lavrinenko, Andrei

    2017-01-01

    to the interfaces, and generation of the p-type second harmonic wave occurs. The original concept is proposed to employ the double resonance arrangement for the effective generation of the second harmonic. The double resonant case can be realized when a high-permittivity dielectric is at the input of the structure...

  10. Control of Resonances and Optical Properties of Plasmonic-Patch Metamaterials

    Science.gov (United States)

    2012-08-01

    nanostructures made of plasmonic materials like gold and silver can resonantly interact with radiation over a range of wavelengths from micro...specific metal nanostructures, such as nanorods, hemispheres, nanocrescent arrays, nanorings , dimers, nanoprisms, nanocrystals, nanoparticles in a periodic...known that nanostructures made of plasmonic materials like gold and silver can resonantly interact with radiation over a range of wavelengths from micro

  11. Metamaterial membranes

    International Nuclear Information System (INIS)

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2017-01-01

    We introduce a new class of metamaterial device to achieve separation of compounds by using coordinate transformations and metamaterial theory. By rationally designing the spatial anisotropy for mass diffusion, we simultaneously concentrate different compounds in different spatial locations, leading to separation of mixtures across a metamaterial membrane. The separation of mixtures into their constituent compounds is critically important in biophysics, biomedical, and chemical applications. We present a practical case where a mixture of oxygen and nitrogen diffusing through a polymeric planar matrix is separated. This work opens doors to new paradigms in membrane separations via coordinate transformations and metamaterials by introducing novel properties and unconventional mass diffusion phenomena. (paper)

  12. Modelling and simulation of a thermally induced optical transparency in a dual micro-ring resonator.

    Science.gov (United States)

    Lydiate, Joseph

    2017-07-01

    This paper introduces the simulation and modelling of a novel dual micro-ring resonator. The geometric configuration of the resonators, and the implementation of a simulated broadband excitation source, results in the realization of optical transparencies in the combined through port output spectrum. The 130 nm silicon on insulator rib fabrication process is adopted for the simulation of the dual-ring configuration. Two titanium nitride heaters are positioned over the coupling regions of the resonators, which can be operated independently, to control the spectral position of the optical transparency. A third heater, centrally located above the dual resonator rings, can be used to red shift the entire spectrum to a required reference resonant wavelength. The free spectral range with no heater currents applied is 4.29 nm. For a simulated heater current of 7 mA (55.7 mW heater power) applied to one of the through coupling heaters, the optical transparency exhibits a red shift of 1.79 nm from the reference resonant wavelength. The ring-to-ring separation of approximately 900 nm means that it can be assumed that there is a zero ring-to-ring coupling field in this model. This novel arrangement has potential applications as a gas mass airflow sensor or a gas species identification sensor.

  13. Sound absorption of a new oblique-section acoustic metamaterial with nested resonator

    Science.gov (United States)

    Gao, Nansha; Hou, Hong; Zhang, Yanni; Wu, Jiu Hui

    2018-02-01

    This study designs and investigates high-efficiency sound absorption of new oblique-section nested resonators. Impedance tube experiment results show that different combinations of oblique-section nest resonators have tunable low-frequency bandwidth characteristics. The sound absorption mechanism is due to air friction losses in the slotted region and the sample structure resonance. The acousto-electric analogy model demonstrates that the sound absorption peak and bandwidth can be modulated over an even wider frequency range by changing the geometric size and combinations of structures. The proposed structure can be easily fabricated and used in low-frequency sound absorption applications.

  14. Manipulating the strength and broadband of the resonators in the terahertz metamaterials

    Science.gov (United States)

    Liu, Changxiang; Zhou, Qingli; Li, Chenyu; Zhang, Cunlin

    2018-01-01

    We investigate two dipoles which are attached or separated with the orthogonal arrangement in the terahertz frequency. These results show that the metasurface could achieve the resonance coupling and polarization conversion effect. There are two resonance dips in the transmission spectra, when these two dipoles are attached to form the L-shaped structure. With the spacing between vertical and horizontal dipoles separated, the broadband of the resonator becomes narrower and resonance dips merge into one deeper dip due to the superposition of the interaction of two dipoles. The loss of the energy is not only coupled to the free space but also converted to the cross-polarization. The broadband and the strength of the crosspolarization are modulated by changing the distance between the vertical and horizontal dipoles. Tuning the spacing, we control the co- and cross polarization of the broadband and the strength at the same time. This modulation provides the functionally potential applications in the terahertz modulators and filters.

  15. Integrated optics ring-resonator chemical sensor for detection of air contamination

    Science.gov (United States)

    Manfreda, A. M.; Homer, M. L.; Ksendzov, A.

    2004-01-01

    We report a silicon nitride-based ring resonator chemical sensor with sensing polymer coating. Its sensitivity to isopropanol in air is at least 50 ppm - well under the permissible exposure level of 400 ppm.

  16. Intregrated optics ring-resonator chemical sensor for detection of air contamination

    Science.gov (United States)

    Ksendzov, Alexander; Homer, Margie L.; Manfreda, Allison M.

    2004-01-01

    We report a silicon nitride-based ring resonator chemical sensor with sensing polymer coating. Its sensitivity to isopropanol in air is at least 50 ppm - well under the permissible exposure level of 400 ppm.

  17. Integrated optics ring-resonator chemical sensor with polymer transduction layer

    Science.gov (United States)

    Ksendzov, A.; Homer, M. L.; Manfreda, A. M.

    2004-01-01

    An integrated optics chemical sensor based on a ring resonator with an ethyl cellulose polymer coating has been demonstrated. The measured sensitivity to isopropanol in air is 50 ppm-the level immediately useful for health-related air quality monitoring. The resonator was fabricated using SiO2 and SixNy materials. The signal readout is based on tracking the wavelength of a resonance peak. The resonator layout optimisation for sensing applications is discussed.

  18. Sensing performance analysis on Fano resonance of metallic double-baffle contained MDM waveguide coupled ring resonator

    Science.gov (United States)

    Chen, Ying; Luo, Pei; Liu, Xiaofei; Di, Yuanjian; Han, Shuaitao; Cui, Xingning; He, Lei

    2018-05-01

    Based on the transmission property and the photon localization characteristic of the surface plasmonic sub-wavelength structure, a metallic double-baffle contained metal-dielectric-metal (MDM) waveguide coupled ring resonator is proposed. Like the electromagnetically induced transparency (EIT), the Fano resonance can be achieved by the interference between the metallic double-baffle resonator and the ring resonator. Based on the coupled mode theory, the transmission property is analyzed. Through the numerical simulation by the finite element method (FEM), the quantitative analysis on the influences of the radius R of the ring and the coupling distance g between the metallic double-baffle resonator and the ring resonator for the figure of merit (FOM) is performed. And after the structure parameter optimization, the sensing performance of the waveguide structure is discussed. The simulation results show that the FOM value of the optimized structure can attain to 5.74 ×104 and the sensitivity of resonance wavelength with refractive index drift is about 825 nm/RIU. The range of the detected refractive index is suitable for all gases. The waveguide structure can provide effective theoretical references for the design of integrated plasmonic devices.

  19. Magnetic forces and localized resonances in electron transfer through quantum rings.

    Science.gov (United States)

    Poniedziałek, M R; Szafran, B

    2010-11-24

    We study the current flow through semiconductor quantum rings. In high magnetic fields the current is usually injected into the arm of the ring preferred by classical magnetic forces. However, for narrow magnetic field intervals that appear periodically on the magnetic field scale the current is injected into the other arm of the ring. We indicate that the appearance of the anomalous-non-classical-current circulation results from Fano interference involving localized resonant states. The identification of the Fano interference is based on the comparison of the solution of the scattering problem with the results of the stabilization method. The latter employs the bound-state type calculations and allows us to extract both the energy of metastable states localized within the ring and the width of resonances by analysis of the energy spectrum of a finite size system as a function of its length. The Fano resonances involving states of anomalous current circulation become extremely narrow on both the magnetic field and energy scales. This is consistent with the orientation of the Lorentz force that tends to keep the electron within the ring and thus increases the lifetime of the electron localization within the ring. Absence of periodic Fano resonances in electron transfer probability through a quantum ring containing an elastic scatterer is also explained.

  20. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    International Nuclear Information System (INIS)

    Prabhu Gaunkar, N.; Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C.; Bulu, I.; Ganesan, K.; Song, Y. Q.

    2015-01-01

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors

  1. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu Gaunkar, N., E-mail: neelampg@iastate.edu; Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C. [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Bulu, I.; Ganesan, K.; Song, Y. Q. [Schlumberger-Doll Research, Cambridge, Massachusetts 02139 (United States)

    2015-05-07

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors.

  2. Ultrasmall Dual-Band Metamaterial Antennas Based on Asymmetrical Hybrid Resonators

    Directory of Open Access Journals (Sweden)

    Ji-Xu Zhu

    2016-01-01

    Full Text Available A new type of hybrid resonant circuit model is investigated theoretically and experimentally. The resonant model consists of a right hand (RH patch part and a composite right and left handed (CRLH part (RH + CRLH, which determines a compact size and also a convenient frequency modulation characteristic for the proposed antennas. For experimental demonstration, two antennas are fabricated. The former dual-band antenna operating at f-1=3.5 GHz (Wimax and f+1=5.25 GHz (WLAN occupies an area of 0.21λ0×0.08λ0, and two dipolar radiation patterns are obtained with comparable gains of about 6.1 and 6.2 dB, respectively. The latter antenna advances in many aspects such as an ultrasmall size of only 0.16λ0×0.08λ0, versatile radiation patterns with a monopolar pattern at f0=2.4 GHz (Bluetooth, and a dipole one at f+1=3.5 GHz (Wimax and also comparable antenna gains. Circuit parameters are extracted and researched. Excellent performances of the antennas based on hybrid resonators predict promising applications in multifunction wireless communication systems.

  3. Symmetric metamaterials based on flower-shaped structure

    International Nuclear Information System (INIS)

    Tuong, P.V.; Park, J.W.; Rhee, J.Y.; Kim, K.W.; Cheong, H.; Jang, W.H.; Lee, Y.P.

    2013-01-01

    We proposed new models of metamaterials (MMs) based on a flower-shaped structure (FSS), whose “meta-atoms” consist of two flower-shaped metallic parts separated by a dielectric layer. Like the non-symmetric MMs based on cut-wire-pairs or electric ring resonators, the symmetrical FSS demonstrates the negative permeability at GHz frequencies. Employing the results, we designed a symmetric negative-refractive-index MM [a symmetric combined structure (SCS)], which is composed of FSSs and cross continuous wires. The MM properties of the FSS and the SCS are presented numerically and experimentally. - Highlights: • A new designed of sub-wavelength metamaterial, flower-shaped structure was proposed. • Flower-shaped meta-atom illustrated effective negative permeability. • Based on the meta-atom, negative refractive index was conventionally gained. • Negative refractive index was demonstrated with symmetric properties for electromagnetic wave. • Dimensional parameters were studied under normal electromagnetic wave

  4. An automated phase correction algorithm for retrieving permittivity and permeability of electromagnetic metamaterials

    Directory of Open Access Journals (Sweden)

    Z. X. Cao

    2014-06-01

    Full Text Available To retrieve complex-valued effective permittivity and permeability of electromagnetic metamaterials (EMMs based on resonant effect from scattering parameters using a complex logarithmic function is not inevitable. When complex values are expressed in terms of magnitude and phase, an infinite number of permissible phase angles is permissible due to the multi-valued property of complex logarithmic functions. Special attention needs to be paid to ensure continuity of the effective permittivity and permeability of lossy metamaterials as frequency sweeps. In this paper, an automated phase correction (APC algorithm is proposed to properly trace and compensate phase angles of the complex logarithmic function which may experience abrupt phase jumps near the resonant frequency region of the concerned EMMs, and hence the continuity of the effective optical properties of lossy metamaterials is ensured. The algorithm is then verified to extract effective optical properties from the simulated scattering parameters of the four different types of metamaterial media: a cut-wire cell array, a split ring resonator (SRR cell array, an electric-LC (E-LC resonator cell array, and a combined SRR and wire cell array respectively. The results demonstrate that the proposed algorithm is highly accurate and effective.

  5. Enhanced photoluminescence from ring resonators in hydrogenated amorphous silicon thin films at telecommunications wavelengths.

    Science.gov (United States)

    Patton, Ryan J; Wood, Michael G; Reano, Ronald M

    2017-11-01

    We report enhanced photoluminescence in the telecommunications wavelength range in ring resonators patterned in hydrogenated amorphous silicon thin films deposited via low-temperature plasma enhanced chemical vapor deposition. The thin films exhibit broadband photoluminescence that is enhanced by up to 5 dB by the resonant modes of the ring resonators due to the Purcell effect. Ellipsometry measurements of the thin films show a refractive index comparable to crystalline silicon and an extinction coefficient on the order of 0.001 from 1300 nm to 1600 nm wavelengths. The results are promising for chip-scale integrated optical light sources.

  6. Tunable wavelength demultiplexer using modified graphene plasmonic split ring resonators for terahertz communication

    Science.gov (United States)

    Joshi, Neetu; Pathak, Nagendra P.

    2018-02-01

    This paper presents graphene modified ring resonator based wavelength demultiplexer (WDM) for THz device applications that is, a surface plasmon polaritons (SPPs) demultiplexer consisting of two nanostrip waveguides at input as well as output coupled to each other by a split ring resonator (SRR), which is modified in shape as compared to a simple ring-shaped resonator. A systematic analysis of the transmission spectra for the graphene based SRR poses clear insight on the demultiplexing phenomenon of the proposed nanodevice. The results show resonance peaks in the transmission spectrum, having a linear relationship with the chemical potential of graphene. The influence of structural parameters have also been analyzed. The tuning capability of graphene based tunable WDM, lays its foundation in the applications of optical switches, modulators, etc.

  7. Piezoelectric Lead Zirconate Titanate (PZT) Ring Shaped Contour-Mode MEMS Resonators

    Science.gov (United States)

    Kasambe, P. V.; Asgaonkar, V. V.; Bangera, A. D.; Lokre, A. S.; Rathod, S. S.; Bhoir, D. V.

    2018-02-01

    Flexibility in setting fundamental frequency of resonator independent of its motional resistance is one of the desired criteria in micro-electromechanical (MEMS) resonator design. It is observed that ring-shaped piezoelectric contour-mode MEMS resonators satisfy this design criterion than in case of rectangular plate MEMS resonators. Also ring-shaped contour-mode piezoelectric MEMS resonator has an advantage that its fundamental frequency is defined by in-plane dimensions, but they show variation of fundamental frequency with different Platinum (Pt) thickness referred as change in ratio of fNEW /fO . This paper presents the effects of variation in geometrical parameters and change in piezoelectric material on the resonant frequencies of Platinum piezoelectric-Aluminium ring-shaped contour-mode MEMS resonators and its electrical parameters. The proposed structure with Lead Zirconate Titanate (PZT) as the piezoelectric material was observed to be a piezoelectric material with minimal change in fundamental resonant frequency due to Platinum thickness variation. This structure was also found to exhibit extremely low motional resistance of 0.03 Ω as compared to the 31-35 Ω range obtained when using AlN as the piezoelectric material. CoventorWare 10 is used for the design, simulation and corresponding analysis of resonators which is Finite Element Method (FEM) analysis and design tool for MEMS devices.

  8. Numerical analysis of Swiss roll metamaterials

    International Nuclear Information System (INIS)

    Demetriadou, A; Pendry, J B

    2009-01-01

    A Swiss roll metamaterial is a resonant magnetic medium, with a negative magnetic permeability for a range of frequencies, due to its self-inductance and self-capacitance components. In this paper, we discuss the band structure, S-parameters and effective electromagnetic parameters of Swiss roll metamaterials, with both analytical and numerical results, which show an exceptional convergence.

  9. Highly-dispersive electromagnetic induced transparency in planar symmetric metamaterials.

    Science.gov (United States)

    Lu, Xiqun; Shi, Jinhui; Liu, Ran; Guan, Chunying

    2012-07-30

    We propose, design and experimentally demonstrate highly-dispersive electromagnetically induced transparency (EIT) in planar symmetric metamaterials actively switched and controlled by angles of incidence. Full-wave simulation and measurement results show EIT phenomena, trapped-mode excitations and the associated local field enhancement of two symmetric metamaterials consisting of symmetrically split rings (SSR) and a fishscale (FS) metamaterial pattern, respectively, strongly depend on angles of incidence. The FS metamaterial shows much broader spectral splitting than the SSR metamaterial due to the surface current distribution variation.

  10. Photonic metamaterials

    International Nuclear Information System (INIS)

    Litchinitser, N M; Shalaev, V M

    2008-01-01

    The invention of metamaterials prompts reconsideration of a number of fundamental physical phenomena and enables a variety of unique properties and functionalities. These include negative refractive index, magnetism at optical frequencies, sub-wavelength resolution, ''backward'' phase matching conditions for nonlinear optical processes, and even rendering objects invisible – cloaking. In this brief review, recent progress in basic theory, design, fabrication, characterization, and potential applications of optical metamaterials is discussed

  11. Ultra-small v-shaped gold split ring resonators for biosensing using fundamental magnetic resonance in the visible spectrum

    Science.gov (United States)

    Mauluidy Soehartono, Alana; Mueller, Aaron David; Tobing, Landobasa Yosef Mario; Chan, Kok Ken; Zhang, Dao Hua; Yong, Ken-Tye

    2017-10-01

    Strong light localization within metal nanostructures occurs by collective oscillations of plasmons in the form of electric and magnetic resonances. This so-called localized surface plasmon resonance (LSPR) has gained much interest in the development of low-cost sensing platforms in the visible spectrum. However, demonstrations of LSPR-based sensing are mostly limited to electric resonances due to the technological limitations for achieving magnetic resonances in the visible spectrum. In this work, we report the first demonstration of LSPR sensing based on fundamental magnetic resonance in the visible spectrum using ultrasmall gold v-shaped split ring resonators. Specifically, we show the ability for detecting adsorption of bovine serum albumin and cytochrome c biomolecules at monolayer levels, and the selective binding of protein A/G to immunoglobulin G.

  12. Design of a New ENG Metamaterial for S-Band Microwave Applications

    Directory of Open Access Journals (Sweden)

    ISLAM Sikder Sunbeam

    2014-10-01

    Full Text Available In this paper we propose a new metamaterial unit cell structure on FR-4 substrate material that shows resonance in the microwave S-Band frequency range and also shows negative permittivity at that frequency. The material shows better performances with two resonances and Double Negative characteristics if Rogers RT 6010 substrate material is used. In this design two separate split ring resonators is used. We have used the CST Microwave Studio simulation software to get the reflection and transmission parameters for this unit cell.

  13. Gap solitons in a chain of split-ring resonator dimers

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Wei-na, E-mail: cuiweinaa@163.com [Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094 (China); Li, Hong-xia, E-mail: hxli@njust.edu.cn [Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094 (China); Sun, Min [Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094 (China); Bu, Ling-bing [Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044 (China)

    2017-06-21

    Dynamics of a chain of split-ring resonator dimers with Kerr nonlinear interaction are investigated. A dimer is built as a pair of coupled split-ring resonators with different size. It is shown that the gap solitons with frequency lying in the gap exist due to the interaction of the discreteness and nonlinearity. Such localized structures are studied in the phase plane and analytical and numerical expressions are also obtained. - Highlights: • The coupling of the two modes is studied in the chain of split-ring resonator dimers with Kerr nonlinear interaction. • The evolution of the localized structures is studied in the phase plane. • This system supports gap solitons with the frequencies lying in the gap.

  14. Geometric and potential dynamics interpretation of the optic ring resonator bistability

    Science.gov (United States)

    Chiangga, S.; Chittha, T.; Frank, T. D.

    2015-07-01

    The optical bistability is a fundamental nonlinear feature of the ring resonator. A geometric and potential dynamics interpretation of the bistability is given. Accordingly, the bistability of the nonlinear system is shown to be a consequence of geometric laws of vector calculus describing the resonator ring. In contrast, the so-called transcendental relations that have been obtained in the literature in order to describe the optical wave are interpreted in terms of potential dynamical systems. The proposed novel interpretation provides new insights into the nature of the ring resonator optical bistability. The fundamental work by Rukhlenko, Premaratne and Agrawal (2010) as well as a more recent study by Chiangga, Pitakwongsaporn, Frank and Yupapin (2013) are considered.

  15. Active terahertz metamaterials based on the phase transition of VO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H., E-mail: heungsoo.kim@nrl.navy.mil [Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States); Charipar, N. [Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States); Breckenfeld, E. [National Research Council Fellow at the Naval Research Laboratory, Washington, DC 20375 (United States); Rosenberg, A. [NOVA Research, Inc., Alexandria, VA 22308 (United States); Piqué, A. [Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2015-12-01

    Vanadium dioxide (VO{sub 2}) thin films were prepared on single crystal sapphire substrates by pulsed laser deposition. VO{sub 2} films exhibited a significant resistivity drop (> 10{sup 4} Ω-cm) and large optical transmittance change (> 60%) in the near-infrared region across their semiconductor-to-metal transition. Hybrid metamaterial devices designed for the THz frequency regime were fabricated by combining double split-ring resonators (SRRs) with phase changing VO{sub 2} films. By changing the conductivity of VO{sub 2} via temperature, the behavior of the SRR gap was adjusted from capacitive to resistive in order to modulate the THz beam transmission at their resonance frequencies. A modulation efficiency greater than 50% was achieved at the magnetic resonance frequencies (0.3 THz and 0.7 THz) in these hybrid SRR–VO{sub 2} metamaterial devices. - Highlights: • Pulsed laser deposition of phase changing VO{sub 2} thin films • Hybrid metamaterial devices composed of split-ring resonators and phase changing VO{sub 2} • Tunable THz transmission with a modulation efficiency over 50%.

  16. Ultra-Broad Band Radar Cross Section Reduction of Waveguide Slot Antenna with Metamaterials

    Directory of Open Access Journals (Sweden)

    Qiang Fu

    2016-06-01

    Full Text Available To reduce the radar cross section of a waveguide slot antenna, a three-layer metamaterial is presented based on orthogonal double split-ring resonators. The absorption characteristics of three-layer metamaterial are demonstrated by simulation. Moreover, the metamaterials have been loaded on common waveguide slot antenna according to the surface current distribution. The ultra-broad band radar cross section reduction of the antenna with metamaterials had been theoretically and experimentally investigated by radiating and scattering performances. Experimental and simulated results showed that the proposed antenna with metamaterials performed broadband radar cross section reduction from 3.9 GHz to 18 GHz and the gain had been improved due to the coupling effect between slot and the period structure. The maximal radar cross section reduction achieved 17.81 dB at 8.68 GHz for x-polarized incidence and 21.79 dB at 6.25 GHz for y-polarized waves.

  17. Anomalous acoustic dispersion in architected microlattice metamaterials

    Science.gov (United States)

    KröDel, Sebastian; Palermo, Antonio; Daraio, Chiara

    The ability to control dispersion in acoustic metamaterials is crucial to realize acoustic filtering and rectification devices as well as perfect imaging using negative refractive index materials. Architected microlattice metamaterials immersed in fluid constitute a versatile platform for achieving such control. We investigate architected microlattice materials able to exploit locally resonant modes of their fundamental building blocks that couple with propagating acoustic waves. Using analytical, numerical and experimental methods we find that such lattice materials show a hybrid dispersion behavior governed by Biot's theory for long wavelengths and multiple scattering theory when wave frequency is close to the resonances of the building block. We identify the relevant geometric parameters to alter and control the group and phase velocities in this class of acoustic metamaterials. Furthermore, we fabricate small-scale acoustic metamaterial samples using high precision SLA additive manufacturing and test the resulting materials experimentally using a customized ultrasonic setup. This work paves the way for new acoustic devices based on microlattice metamaterials.

  18. Shield Optimization and Formulation of Regression Equations for Split-Ring Resonator

    Directory of Open Access Journals (Sweden)

    Tahir Ejaz

    2016-01-01

    Full Text Available Microwave resonators are widely used for numerous applications including communication, biomedical and chemical applications, material testing, and food grading. Split-ring resonators in both planar and nonplanar forms are a simple structure which has been in use for several decades. This type of resonator is characterized with low cost, ease of fabrication, moderate quality factor, low external noise interference, high stability, and so forth. Due to these attractive features and ease in handling, nonplanar form of structure has been utilized for material characterization in 1–5 GHz range. Resonant frequency and quality factor are two important parameters for determination of material properties utilizing perturbation theory. Shield made of conducting material is utilized to enclose split-ring resonator which enhances quality factor. This work presents a novel technique to develop shield around a predesigned nonplanar split-ring resonator to yield optimized quality factor. Based on this technique and statistical analysis regression equations have also been formulated for resonant frequency and quality factor which is a major outcome of this work. These equations quantify dependence of output parameters on various factors of shield made of different materials. Such analysis is instrumental in development of devices/designs where improved/optimum result is required.

  19. Photonic ring resonance is a versatile platform for performing multiplex immunoassays in real time.

    Science.gov (United States)

    Mudumba, Sasi; de Alba, Sophia; Romero, Randy; Cherwien, Carli; Wu, Alice; Wang, Jue; Gleeson, Martin A; Iqbal, Muzammil; Burlingame, Rufus W

    2017-09-01

    Photonic ring resonance is a property of light where in certain circumstances specific wavelengths are trapped in a ring resonator. Sensors based on silicon photonic ring resonators function by detecting the interaction between light circulating inside the sensor and matter deposited on the sensor surface. Binding of biological material results in a localized change in refractive index on the sensor surface, which affects the circulating optical field extending beyond the sensor boundary. That is, the resonant wavelength will change when the refractive index of the medium around the ring resonator changes. Ring resonators can be fabricated onto small silicon chips, allowing development of a miniature multiplex array of ring based biosensors. This paper describes the properties of such a system when responding to the refractive index changed in a simple and precise way by changing the ionic strength of the surrounding media, and in a more useful way by the binding of macromolecules to the surface above the resonators. Specifically, a capture immunoassay is described that measures the change of resonant wavelength as a patient serum sample with anti-SS-A autoantibodies is flowed over a chip spotted with SS-A antigen and amplified with anti-IgG. The technology has been miniaturized and etched into a 4×6mm silicon chip that can measure 32 different reactions in quadruplicate simultaneously. The variability between 128 rings on a chip as measured by 2M salt assays averaged 0.6% CV. The output of the assays is the average shift per cluster of 4 rings, and the assays averaged 0.5% CV between clusters. The variability between chips averaged 1.8%. Running the same array on multiple instruments showed that after some improvements to the wavelength referencing system, the upper boundary of variation was 3% between 13 different instruments. The immunoassay displayed about 2% higher variability than the salt assays. There are several outstanding features of this system. The

  20. Ring Resonator for Detection of Melting Brine Under Shallow Subsurface of Mars

    Science.gov (United States)

    Ponchak, George E.; Jordan, Jennifer L.; Scardelletti, Maximilian C.

    2016-01-01

    Laboratory experimental evidence using Raman spectroscopy has shown that liquid brine may form below the shallow subsurface of Mars. A simpler experimental method to verify the presence of liquid brine or liquid water below Mars surface is needed. In this paper, a ring resonator is used to detect the phase change between frozen water and liquid water below a sandy soil that simulates the Mars surface. Experimental data shows that the ring resonator can detect the melting of thin layers of frozen brine or water up to 15 mm below the surface.

  1. Design of Metamaterials for control of electromagnetic waves

    Science.gov (United States)

    Koschny, Thomas

    2014-03-01

    Metamaterials are artificial effective media supporting propagating waves that derive their properties form the average response of deliberately designed and arranged, usually resonant scatterers with structural length-scales much smaller than the wavelength inside the material. Electromagnetic metamaterials are the most important implementation of metamaterials, which are made from deeply sub-wavelength electric, magnetic and chiral resonators and can be designed to work from radio frequencies all the way to visible light. Metamaterials have been major new development in physics and materials science over the last decade and are still attracting more interest as they enable us to create materials with unique properties like negative refraction, flat and super lenses, impedance matching eliminating reflection, perfect absorbers, deeply sub-wavelength sized wave guides and cavities, tunability, enhanced non-linearity and gain, chirality and huge optical activity, control of Casimir forces, and spontaneous emission, etc. In this talk, I will discuss the design, numerical simulation, and mathematical modeling of metamaterials. I will survey the current state of the art and discuss challenges, possible solutions and perspectives. In particular, the problem of dissipative loss and their possible compensation by incorporating spatially distributed gain in metamaterials. If the gain sub-system is strongly coupled to the sub-wavelength resonators of the metamaterial loss compensation and undamping of the resonant response of the metamaterials can occur. I will explore new, alternative dielectric low loss resonators for metamaterials as well as the potential of new conducting materials such as Graphene to replace metals as the conducting material in resonant metamaterials. Two dimensional metamaterials or metasurfaces, implementations of effective electromagnetic current sheets in which both electric and magnetic sheet conductivities are controlled by the average response

  2. Compact Dual-Band Bandpass Filter Using Stubs Loaded Ring Resonator

    Science.gov (United States)

    Xu, Jin

    2016-01-01

    This paper presents a novel second-order dual-band bandpass filter (BPF) by using proposed stubs loaded ring resonator. The resonant behavior of proposed stubs loaded ring resonator is analyzed by even-/odd-mode method, which shows its multiple-mode resonant characteristic. Parameters sweep is done so as to give the design guidelines. As an example, a second-order dual-band BPF operating at 1.8/5.2 GHz for GSM and WLAN applications is designed, fabricated and measured. The fabricated filter has a very compact size of 0.05λg×0.15λg. Measured results also show that the proposed dual-band BPF has a better than 20 dB rejection upper stopband from 5.47 GHz to 12.56 GHz. Good agreement is shown between the simulated and measured results.

  3. Analysis of slotted cylindrical ring resonators | Letsididi | Botswana ...

    African Journals Online (AJOL)

    In this paper the Transmission Line Modeling method is used to determine the effects of using a high dielectric constant material on the size and coupling constant of the resonator. Modeling and simulations are done using Microstripes, a commercial TLM field solver from Flomerics. The paper shows that by placing a high ...

  4. Observation of magnetic resonances in electron clouds in a positron storage ring

    International Nuclear Information System (INIS)

    Pivi, M.T.F.; Ng, J.S.T.; Cooper, F.; Kharakh, D.; King, F.; Kirby, R.E.; Kuekan, B.; Spencer, C.M.; Raubenheimer, T.O.; Wang, L.F.

    2010-01-01

    The first experimental observation of magnetic resonances in electron clouds is reported. The resonance was observed as a modulation in cloud intensity for uncoated as well as TiN-coated aluminum surfaces in the positron storage ring of the PEP-II collider at SLAC. Electron clouds frequently arise in accelerators of positively charged particles, and severely impact the machines' performance. The TiN coating was found to be an effective remedy, reducing the cloud intensity by three orders of magnitude.

  5. Broadband plasmon induced transparency in terahertz metamaterials

    KAUST Repository

    Zhu, Zhihua; Yang, Xu; Gu, Jianqiang; Jiang, Jun; Yue, Weisheng; Tian, Zhen; Tonouchi, Masayoshi; Han, Jiaguang; Zhang, Weili

    2013-01-01

    Plasmon induced transparency (PIT) could be realized in metamaterials via interference between different resonance modes. Within the sharp transparency window, the high dispersion of the medium may lead to remarkable slow light phenomena

  6. Metamaterial-Enhanced Nonlinear Terahertz Spectroscopy

    Directory of Open Access Journals (Sweden)

    Zhang X.

    2013-03-01

    Full Text Available We demonstrate large nonlinear terahertz responses in the gaps of metamaterial split ring resonators in several materials and use nonlinear THz transmission and THz-pump/THz-probe spectroscopy to study the nonlinear responses and dynamics. We use the field enhancement in the SRR gaps to initiate high-field phenomena at lower incident fields. In vanadium dioxide, we drive the insulator-to-metal phase transition with high-field THz radiation. The film conductivity increases by over two orders of magnitude and the phase transition occurs on a several picosecond timescale. In gallium arsenide, we observe high-field transport phenomena, including mobility saturation and impact ionization. The carrier density increases by up to ten orders of magnitude at high fields. At the highest fields, we demonstrate THz-induced damage in both vanadium dioxide and gallium arsenide.

  7. All-optical photonic band control in a quantum metamaterial

    Energy Technology Data Exchange (ETDEWEB)

    Felbacq, D.; Rousseau, E. [University of Montpellier, Laboratory Charles Coulomb UMR CNRS-UM 5221, Montpellier (France)

    2017-09-15

    Metamaterials made of periodic collections of dielectric nanorods are considered theoretically. When quantum resonators are embedded within the nanorods, one obtains a quantum metamaterial, whose electromagnetic properties depend upon the state of the quantum resonators. The theoretical model predicts that when the resonators are pumped and reach the inversion regime, the quantum metamaterial exhibits an all-optical switchable conduction band. The phenomenon can be described by considering the pole stucture of the scattering matrix of the metamaterial. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. What is a good conductor for metamaterials or plasmonics

    Directory of Open Access Journals (Sweden)

    Soukoulis Costas M.

    2015-04-01

    Full Text Available We review conducting materials like metals, conducting oxides and graphene for nanophotonic applications. We emphasize that metamaterials and plasmonic systems benefit from different conducting materials. Resonant metamaterials need conductors with small resistivity, since dissipative loss in resonant metamaterials is proportional to the real part of the resistivity of the conducting medium it contains. For plasmonic systems, one must determine the propagation length at a desired level of confinement to estimate the dissipative loss.

  9. Single-chip ring resonator-based 1 x 8 optical beam forming network in CMOS-compatible waveguide technology

    NARCIS (Netherlands)

    Zhuang, L.; Roeloffzen, C.G.H.; Heideman, Rene; Borreman, A.; Meijerink, Arjan; van Etten, Wim

    2007-01-01

    Optical ring resonators (ORRs) are good candidates to provide continuously tunable delay in optical beam forming networks (OBFNs) for phased array antenna systems. Delay and splitting/combining elements can be integrated on a single optical chip to form an OBFN. A state-of-the-art ring resonator-

  10. The effect of Ti and ITO adhesion layers on gold split-ring resonators

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Mortensen, Asger; Kristensen, Anders

    2010-01-01

    Ultrathin adhesion layers serve a well-documented fabrication purpose while its influence on the optical properties of gold nanostructures is often neglected. Gold split-ring resonators are fabricated with two commonly used adhesion layers: titanium and indium tin oxide. When compared to all-gold...

  11. Silicon photonic micro-ring resonators to sense strain and ultrasound

    NARCIS (Netherlands)

    Westerveld, W.J.

    2014-01-01

    We demonstrated that photonic micro-ring resonators can be used in micro-machined ultrasound microphones. This might cause a breakthrough in array transducers for ultrasonography; first because optical multiplexing allows array interrogation via one optical fiber and second because the

  12. Linear all-optical signal processing using silicon micro-ring resonators

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Xu, Jing

    2016-01-01

    Silicon micro-ring resonators (MRRs) are compact and versatile devices whose periodic frequency response can be exploited for a wide range of applications. In this paper, we review our recent work on linear all-optical signal processing applications using silicon MRRs as passive filters. We focus...

  13. Transmission Property of Directly Modulated Signals Enhanced by a Micro-ring Resonator

    DEFF Research Database (Denmark)

    An, Yi; Lorences Riesgo, Abel; Seoane, Jorge

    2012-01-01

    A silicon micro-ring resonator is used to enhance the modulation speed of a 10-Gbit/s directly modulated laser to 40 Gbit/s. The generated signal is transmitted error free over 4.5 km SSMF. Dispersion tolerance is also studied....

  14. Folded Fabry-Perot quasi-optical ring resonator diplexer Theory and experiment

    Science.gov (United States)

    Pickett, H. M.; Chiou, A. E. T.

    1983-01-01

    Performance of folded Fabry-Perot quasi-optical ring resonator diplexers with different geometries of reflecting surfaces is investigated both theoretically and experimentally. Design of optimum surface geometry for minimum diffraction, together with the figure of merit indicating improvement in performance, are given.

  15. Design of a ring resonator-based optical beam forming network for phased array receive antennas

    NARCIS (Netherlands)

    van 't Klooster, J.W.J.R.; Roeloffzen, C.G.H.; Meijerink, Arjan; Zhuang, L.; Marpaung, D.A.I.; van Etten, Wim; Heideman, Rene; Leinse, Arne; Schippers, H.; Verpoorte, J.; Wintels, M.

    2008-01-01

    A novel squint-free ring resonator-based optical beam forming network (OBFN) for phased array antennas (PAA) is proposed. It is intended to provide broadband connectivity to airborne platforms via geostationary satellites. In this paper, we present the design of the OBFN and its control system. Our

  16. Fabrication of terahertz metamaterials using electrohydrodynamic jet printing for sensitive detection of yeast

    International Nuclear Information System (INIS)

    Tenggara, Ayodya Pradhipta; Byun, Doyoung; Park, S J; Ahn, Y H; Yudistira, Hadi Teguh

    2017-01-01

    We demonstrated the fabrication of terahertz metamaterial sensor for the accurate and on-site detection of yeast using electrohydrodynamic jet printing, which is inexpensive, simple, and environmentally friendly. The very small sized pattern up to 5 µ m-width of electrical split ring resonator unit structures could be printed on a large area on both a rigid substrate and flexible substrate, i.e. silicon wafer and polyimide film using the drop on demand technique to eject liquid ink containing silver nanoparticles. Experimental characterization and simulation were performed to study their performances in detecting yeast of different weights. It was shown that the metamaterial sensor fabricated on a flexible polyimide film had higher sensitivity by more than six times than the metamaterial sensor fabricated on a silicon wafer, due to the low refractive index of the PI substrate and due to the extremely thin substrate thickness which lowers the effective index further. The resonance frequency shift saturated when the yeast weights were 145 µ g and 215 µ g for metamaterial structures with gap size 6.5 µ m fabricated on the silicon substrate and on the polyimide substrate, respectively. (paper)

  17. A Miniaturized Antenna with Negative Index Metamaterial Based on Modified SRR and CLS Unit Cell for UWB Microwave Imaging Applications

    Directory of Open Access Journals (Sweden)

    Md. Moinul Islam

    2015-01-01

    Full Text Available A miniaturized antenna employing a negative index metamaterial with modified split-ring resonator (SRR and capacitance-loaded strip (CLS unit cells is presented for Ultra wideband (UWB microwave imaging applications. Four left-handed (LH metamaterial (MTM unit cells are located along one axis of the antenna as the radiating element. Each left-handed metamaterial unit cell combines a modified split-ring resonator (SRR with a capacitance-loaded strip (CLS to obtain a design architecture that simultaneously exhibits both negative permittivity and negative permeability, which ensures a stable negative refractive index to improve the antenna performance for microwave imaging. The antenna structure, with dimension of 16 × 21 × 1.6 mm3, is printed on a low dielectric FR4 material with a slotted ground plane and a microstrip feed. The measured reflection coefficient demonstrates that this antenna attains 114.5% bandwidth covering the frequency band of 3.4–12.5 GHz for a voltage standing wave ratio of less than 2 with a maximum gain of 5.16 dBi at 10.15 GHz. There is a stable harmony between the simulated and measured results that indicate improved nearly omni-directional radiation characteristics within the operational frequency band. The stable surface current distribution, negative refractive index characteristic, considerable gain and radiation properties make this proposed negative index metamaterial antenna optimal for UWB microwave imaging applications.

  18. Exploring on the Sensitivity Changes of the LC Resonance Magnetic Sensors Affected by Superposed Ringing Signals.

    Science.gov (United States)

    Lin, Tingting; Zhou, Kun; Yu, Sijia; Wang, Pengfei; Wan, Ling; Zhao, Jing

    2018-04-25

    LC resonance magnetic sensors are widely used in low-field nuclear magnetic resonance (LF-NMR) and surface nuclear magnetic resonance (SNMR) due to their high sensitivity, low cost and simple design. In magnetically shielded rooms, LC resonance magnetic sensors can exhibit sensitivities at the fT/√Hz level in the kHz range. However, since the equivalent magnetic field noise of this type of sensor is greatly affected by the environment, weak signals are often submerged in practical applications, resulting in relatively low signal-to-noise ratios (SNRs). To determine why noise increases in unshielded environments, we analysed the noise levels of an LC resonance magnetic sensor ( L ≠ 0) and a Hall sensor ( L ≈ 0) in different environments. The experiments and simulations indicated that the superposed ringing of the LC resonance magnetic sensors led to the observed increase in white noise level caused by environmental interference. Nevertheless, ringing is an inherent characteristic of LC resonance magnetic sensors. It cannot be eliminated when environmental interference exists. In response to this problem, we proposed a method that uses matching resistors with various values to adjust the quality factor Q of the LC resonance magnetic sensor in different measurement environments to obtain the best sensitivity. The LF-NMR experiment in the laboratory showed that the SNR is improved significantly when the LC resonance magnetic sensor with the best sensitivity is selected for signal acquisition in the light of the test environment. (When the matching resistance is 10 kΩ, the SNR is 3.46 times that of 510 Ω). This study improves LC resonance magnetic sensors for nuclear magnetic resonance (NMR) detection in a variety of environments.

  19. Water based fluidic radio frequency metamaterials

    Science.gov (United States)

    Cai, Xiaobing; Zhao, Shaolin; Hu, Mingjun; Xiao, Junfeng; Zhang, Naibo; Yang, Jun

    2017-11-01

    Electromagnetic metamaterials offer great flexibility for wave manipulation and enable exceptional functionality design, ranging from negative refraction, anomalous reflection, super-resolution imaging, transformation optics to cloaking, etc. However, demonstration of metamaterials with unprecedented functionalities is still challenging and costly due to the structural complexity or special material properties. Here, we demonstrate for the first time the versatile fluidic radio frequency metamaterials with negative refraction using a water-embedded and metal-coated 3D architecture. Effective medium analysis confirms that metallic frames create an evanescent environment while simultaneously water cylinders produce negative permeability under Mie resonance. The water-metal coupled 3D architectures and the accessory devices for measurement are fabricated by 3D printing with post electroless deposition. Our study also reveals the great potential of fluidic metamaterials and versatility of the 3D printing process in rapid prototyping of customized metamaterials.

  20. Origami-Based Reconfigurable Metamaterials for Tunable Chirality.

    Science.gov (United States)

    Wang, Zuojia; Jing, Liqiao; Yao, Kan; Yang, Yihao; Zheng, Bin; Soukoulis, Costas M; Chen, Hongsheng; Liu, Yongmin

    2017-07-01

    Origami is the art of folding two-dimensional (2D) materials, such as a flat sheet of paper, into complex and elaborate three-dimensional (3D) objects. This study reports origami-based metamaterials whose electromagnetic responses are dynamically controllable via switching the folding state of Miura-ori split-ring resonators. The deformation of the Miura-ori unit along the third dimension induces net electric and magnetic dipoles of split-ring resonators parallel or anti-parallel to each other, leading to the strong chiral responses. Circular dichroism as high as 0.6 is experimentally observed while the chirality switching is realized by controlling the deformation direction and kinematics. In addition, the relative density of the origami metamaterials can be dramatically reduced to only 2% of that of the unfolded structure. These results open a new avenue toward lightweight, reconfigurable, and deployable metadevices with simultaneously customized electromagnetic and mechanical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Stochastic charging of dust grains in planetary rings: Diffusion rates and their effects on Lorentz resonances

    Science.gov (United States)

    Schaffer, L.; Burns, J. A.

    1995-01-01

    Dust grains in planetary rings acquire stochastically fluctuating electric charges as they orbit through any corotating magnetospheric plasma. Here we investigate the nature of this stochastic charging and calculate its effect on the Lorentz resonance (LR). First we model grain charging as a Markov process, where the transition probabilities are identified as the ensemble-averaged charging fluxes due to plasma pickup and photoemission. We determine the distribution function P(t;N), giving the probability that a grain has N excess charges at time t. The autocorrelation function tau(sub q) for the strochastic charge process can be approximated by a Fokker-Planck treatment of the evolution equations for P(t; N). We calculate the mean square response to the stochastic fluctuations in the Lorentz force. We find that transport in phase space is very small compared to the resonant increase in amplitudes due to the mean charge, over the timescale that the oscillator is resonantly pumped up. Therefore the stochastic charge variations cannot break the resonant interaction; locally, the Lorentz resonance is a robust mechanism for the shaping of etheral dust ring systems. Slightly stronger bounds on plasma parameters are required when we consider the longer transit times between Lorentz resonances.

  2. Equilibrium beam distribution in an electron storage ring near linear synchrobetatron coupling resonances

    Directory of Open Access Journals (Sweden)

    Boaz Nash

    2006-03-01

    Full Text Available Linear dynamics in a storage ring can be described by the one-turn map matrix. In the case of a resonance where two of the eigenvalues of this matrix are degenerate, a coupling perturbation causes a mixing of the uncoupled eigenvectors. A perturbation formalism is developed to find eigenvalues and eigenvectors of the one-turn map near such a linear resonance. Damping and diffusion due to synchrotron radiation can be obtained by integrating their effects over one turn, and the coupled eigenvectors can be used to find the coupled damping and diffusion coefficients. Expressions for the coupled equilibrium emittances and beam distribution moments are then derived. In addition to the conventional instabilities at the sum, integer, and half-integer resonances, it is found that the coupling can cause an instability through antidamping near a sum resonance even when the symplectic dynamics are stable. As one application of this formalism, the case of linear synchrobetatron coupling is analyzed where the coupling is caused by dispersion in the rf cavity, or by a crab cavity. Explicit closed-form expressions for the sum/difference resonances are given along with the integer/half-integer resonances. The integer and half-integer resonances caused by coupling require particular care. We find an example of this with the case of a crab cavity for the integer resonance of the synchrotron tune. Whether or not there is an instability is determined by the value of the horizontal betatron tune, a unique feature of these coupling-caused integer or half-integer resonances. Finally, the coupled damping and diffusion coefficients along with the equilibrium invariants and projected emittances are plotted as a function of the betatron and synchrotron tunes for an example storage ring based on PEP-II.

  3. A programmable nonlinear acoustic metamaterial

    Directory of Open Access Journals (Sweden)

    Tianzhi Yang

    2017-09-01

    Full Text Available Acoustic metamaterials with specifically designed lattices can manipulate acoustic/elastic waves in unprecedented ways. Whereas there are many studies that focus on passive linear lattice, with non-reconfigurable structures. In this letter, we present the design, theory and experimental demonstration of an active nonlinear acoustic metamaterial, the dynamic properties of which can be modified instantaneously with reversibility. By incorporating active and nonlinear elements in a single unit cell, a real-time tunability and switchability of the band gap is achieved. In addition, we demonstrate a dynamic “editing” capability for shaping transmission spectra, which can be used to create the desired band gap and resonance. This feature is impossible to achieve in passive metamaterials. These advantages demonstrate the versatility of the proposed device, paving the way toward smart acoustic devices, such as logic elements, diode and transistor.

  4. Optical Analysis of Grazing Incidence Ring Resonators for Free-Electron Lasers

    Science.gov (United States)

    Gabardi, David Richard

    1990-08-01

    The design of resonators for free-electron lasers (FELs) which are to operate in the soft x-ray/vacuum ultraviolet (XUV) region of the spectrum is complicated by the fact that, in this wavelength regime, normal incidence mirrors, which would otherwise be used for the construction of the resonators, generally have insufficient reflectivities for this purpose. However, the use of grazing incidence mirrors in XUV resonators offers the possibility of (1) providing sufficient reflectivity, (2) a lessening of the mirrors' thermal loads due to the projection of the laser beam onto an oblique surface, and (3) the preservation of the FEL's tunability. In this work, the behavior of resonators employing grazing incidence mirrors in ring type configurations is explored. In particular, two designs, each utilizing four off-axis conic mirrors and a number of flats, are examined. In order to specify the location, orientation, and surface parameters for the mirrors in these resonators, a design algorithm has been developed based upon the properties of Gaussian beam propagation. Two computer simulation methods are used to perform a vacuum stability analysis of the two resonator designs. The first method uses paraxial ray trace techniques with the resonators' thin lens analogues while the second uses the diffraction-based computer simulation code GLAD (General Laser Analysis and Design). The effects of mirror tilts and deviations in the mirror surface parameters are investigated for a number of resonators designed to propagate laser beams of various Rayleigh ranges. It will be shown that resonator stability decreases as the laser wavelength for which the resonator was designed is made smaller. In addition, resonator stability will also be seen to decrease as the amount of magnification the laser beam receives as it travels around the resonator is increased.

  5. Spectral signature barcodes based on S-shaped Split Ring Resonators (S-SRRs

    Directory of Open Access Journals (Sweden)

    Herrojo Cristian

    2016-01-01

    Full Text Available In this paper, it is shown that S-shaped split ring resonators (S-SRRs are useful particles for the implementation of spectral signature (i.e., a class of radiofrequency barcodes based on coplanar waveguide (CPW transmission lines loaded with such resonant elements. By virtue of its S shape, these resonators are electrically small. Hence S-SRRs are of interest for the miniaturization of the barcodes, since multiple resonators, each tuned at a different frequency, are used for encoding purposes. In particular, a 10-bit barcode occupying 1 GHz spectral bandwidth centered at 2.5 GHz, with dimensions of 9 cm2, is presented in this paper.

  6. Multiband Split-Ring Resonator Based Planar Inverted-F Antenna for 5G Applications

    Directory of Open Access Journals (Sweden)

    Muhammad Kamran Ishfaq

    2017-01-01

    Full Text Available 5G, the fifth generation of wireless communications, is focusing on multiple frequency bands, such as 6 GHz, 10 GHz, 15 GHz, 28 GHz, and 38 GHz, to achieve high data rates up to 10 Gbps or more. The industry demands multiband antennas to cover these distant frequency bands, which is a task much more challenging. In this paper, we have designed a novel multiband split-ring resonator (SRR based planar inverted-F antenna (PIFA for 5G applications. It is composed of a PIFA, an inverted-L parasitic element, a rectangular shaped parasitic element, and a split-ring resonator (SRR etched on the top plate of the PIFA. The basic PIFA structure resonates at 6 GHz. An addition of a rectangular shaped parasitic element produces a resonance at 15 GHz. The introduction of a split-ring resonator produces a band notch at 8 GHz, and a resonance at 10 GHz, while the insertion of an inverted-L shaped parasitic element further enhances the impedance bandwidth in the 10 GHz band. The frequency bands covered, each with more than 1 GHz impedance bandwidth, are 6 GHz (5–7 GHz, 10 GHz (9–10.8 GHz, and 15 GHz (14-15 GHz, expected for inclusion in next-generation wireless communications, that is, 5G. The design is simulated using Ansys Electromagnetic Suite 17 simulation software package. The simulated and the measured results are compared and analyzed which are generally in good agreement.

  7. Continuous-wave singly resonant optical parametric oscillator placed inside a ring laser

    DEFF Research Database (Denmark)

    Abitan, Haim; Buchhave, Preben

    2003-01-01

    A cw singly resonant optical parametric oscillator (SRO) was built and placed inside the cavity of a ring laser. The system consists of a diode-end-pumped Nd:YVO4 ring laser with intracavity periodically poled lithium niobate as the nonlinear gain medium of the SRO. When the laser was operated...... in a unidirectional mode, we obtained more than 520 mW of signal power in one beam. When the laser was operated in a bidirectional mode, we obtained 600 mW of signal power (300 mW in two separate beams). The power and the spectral features of the laser in the unidirectional and bidirectional modes were measured while...... the laser was coupled with the SRO. The results show that it is preferable to couple a SRO with a unidirectional ring laser....

  8. Tunable optical analog to electromagnetically induced transparency in graphene-ring resonators system.

    Science.gov (United States)

    Wang, Yonghua; Xue, Chenyang; Zhang, Zengxing; Zheng, Hua; Zhang, Wendong; Yan, Shubin

    2016-12-12

    The analogue of electromagnetically induced transparency in optical ways has shown great potential in optical delay and quantum-information technology due to its flexible design and easy implementation. The chief drawback for these devices is the bad tunability. Here we demonstrate a tunable optical transparency system formed by graphene-silicon microrings which could control the transparent window by electro-optical means. The device consists of cascaded coupled ring resonators and a graphene/graphene capacitor which integrated on one of the rings. By tuning the Fermi level of the graphene sheets, we can modulate the round-trip ring loss so that the transparency window can be dynamically tuned. The results provide a new method for the manipulation and transmission of light in highly integrated optical circuits and quantum information storage devices.

  9. Self-generation of dissipative solitons in magnonic quasicrystal active ring resonator

    International Nuclear Information System (INIS)

    Grishin, S. V.; Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Nikitov, S. A.

    2014-01-01

    Self-generation of dissipative solitons in the magnonic quasicrystal (MQC) active ring resonator is studied theoretically and experimentally. The developed magnonic crystal has quasiperiodic Fibonacci type structure. Frequency selectivity of the MQC together with the parametric three-wave decay of magnetostatic surface spin wave (MSSW) leads to the dissipative soliton self-generation. The transfer matrix method is used to describe MQC transmission responses. Besides, the model of MQC active ring resonator is suggested. The model includes three coupled differential equations describing the parametric decay of MSSW and two differential equations of linear oscillators describing the frequency selectivity of MQC. Numerical simulation results of dissipative soliton self-generation are in a fair agreement with experimental data

  10. Design and implementation of optical switches based on nonlinear plasmonic ring resonators: Circular, square and octagon

    Science.gov (United States)

    Ghadrdan, Majid; Mansouri-Birjandi, Mohammad Ali

    2018-05-01

    In this paper, all-optical plasmonic switches (AOPS) based on various configurations of circular, square and octagon nonlinear plasmonic ring resonators (NPRR) were proposed and numerically investigated. Each of these configurations consisted of two metal-insulator-metal (MIM) waveguides coupled to each other by a ring resonator (RR). Nonlinear Kerr effect was used to show switching performance of the proposed NPRR. The result showed that the octagon switch structure had lower threshold power and higher transmission ratio than square and circular switch structures. The octagon switch structure had a low threshold power equal to 7.77 MW/cm2 and the high transmission ratio of approximately 0.6. Therefore, the octagon switch structure was an appropriate candidate to be applied in optical integration circuits as an AOPS.

  11. New design of a triplexer using ring resonator integrated with directional coupler based on photonic crystals

    Science.gov (United States)

    Wu, Yaw-Dong; Shih, Tien-Tsorng; Lee, Jian-Jang

    2009-11-01

    In this paper, we proposed the design of directional coupler integrated with ring resonator based on two-dimensional photonic crystals (2D PCs) to develop a triplexer filter. It can be widely used as the fiber access network element for multiplexer-demultiplexer wavelength selective in fiber-to-the-home (FTTH) communication systems. The directional coupler is chosen to separate the wavelengths of 1490nm and 1310nm. The ring resonator separates the wavelength of 1550nm. The transmission efficiency is larger than 90%. Besides, the total size of propose triplexer is only 19μm×12μm. We present simulation results using the finite-difference time-domain (FDTD) method for the proposed structure.

  12. Plasmonic Refractive Index Sensor with High Figure of Merit Based on Concentric-Rings Resonator

    Science.gov (United States)

    Zhang, Zhaojian; Yang, Junbo; He, Xin; Zhang, Jingjing; Huang, Jie; Chen, Dingbo; Han, Yunxin

    2018-01-01

    A plasmonic refractive index (RI) sensor based on metal-insulator-metal (MIM) waveguide coupled with concentric double rings resonator (CDRR) is proposed and investigated numerically. Utilizing the novel supermodes of the CDRR, the FWHM of the resonant wavelength can be modulated, and a sensitivity of 1060 nm/RIU with high figure of merit (FOM) 203.8 is realized in the near-infrared region. The unordinary modes, as well as the influence of structure parameters on the sensing performance, are also discussed. Such plasmonic sensor with simple framework and high optical resolution could be applied to on-chip sensing systems and integrated optical circuits. Besides, the special cases of bio-sensing and triple rings are also discussed. PMID:29300331

  13. Fault diagnosis for wind turbine planetary ring gear via a meshing resonance based filtering algorithm.

    Science.gov (United States)

    Wang, Tianyang; Chu, Fulei; Han, Qinkai

    2017-03-01

    Identifying the differences between the spectra or envelope spectra of a faulty signal and a healthy baseline signal is an efficient planetary gearbox local fault detection strategy. However, causes other than local faults can also generate the characteristic frequency of a ring gear fault; this may further affect the detection of a local fault. To address this issue, a new filtering algorithm based on the meshing resonance phenomenon is proposed. In detail, the raw signal is first decomposed into different frequency bands and levels. Then, a new meshing index and an MRgram are constructed to determine which bands belong to the meshing resonance frequency band. Furthermore, an optimal filter band is selected from this MRgram. Finally, the ring gear fault can be detected according to the envelope spectrum of the band-pass filtering result. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Self-generation of dissipative solitons in magnonic quasicrystal active ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Grishin, S. V., E-mail: grishfam@sgu.ru; Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Science, Moscow 125009 (Russian Federation)

    2014-02-07

    Self-generation of dissipative solitons in the magnonic quasicrystal (MQC) active ring resonator is studied theoretically and experimentally. The developed magnonic crystal has quasiperiodic Fibonacci type structure. Frequency selectivity of the MQC together with the parametric three-wave decay of magnetostatic surface spin wave (MSSW) leads to the dissipative soliton self-generation. The transfer matrix method is used to describe MQC transmission responses. Besides, the model of MQC active ring resonator is suggested. The model includes three coupled differential equations describing the parametric decay of MSSW and two differential equations of linear oscillators describing the frequency selectivity of MQC. Numerical simulation results of dissipative soliton self-generation are in a fair agreement with experimental data.

  15. "Slow" light in metamaterials

    OpenAIRE

    Papasimakis, Nikitas; Fedotov, Vassili A.; Zheludev, Nikolay I.; Prosvirnin, Sergey L.

    2007-01-01

    We demonstrate that propagation of microwave pulses can be significantly affected by the presence of a planar fish-scale metamaterial, which is at least 30 times thinner than the wavelength. In the resonant band of the fish-scale structure, a spectrally narrow pulse (18 ns) can be significantly delayed (by 5.6 ns) as if propagating through an 84 cm thick dielectric (epsilon=3.77), while a short pulse (220 ps) will split in two roughly equal pulses propagating with subluminal and superluminal ...

  16. Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators.

    Science.gov (United States)

    Guo, Yinghui; Yan, Lianshan; Pan, Wei; Luo, Bin; Wen, Kunhua; Guo, Zhen; Luo, Xiangang

    2012-10-22

    We investigate a plasmonic waveguide system based on side-coupled complementary split-ring resonators (CSRR), which exhibits electromagnetically induced transparency (EIT)-like transmission. LC resonance model is utilized to explain the electromagnetic responses of CSRR, which is verified by simulation results of finite difference time domain method. The electromagnetic responses of CSRR can be flexible handled by changing the asymmetry degree of the structure and the width of the metallic baffles. Cascaded CSRRs also have been studied to obtain EIT-like transmission at visible and near-infrared region, simultaneously.

  17. Transmission line model for coupled rectangular double split‐ring resonators

    DEFF Research Database (Denmark)

    Yan, Lei; Tang, Meng; Krozer, Viktor

    2011-01-01

    In this work, a model based on a coupled transmission line formulation is developed for microstrip rectangular double split‐ring resonators (DSRRs). This model allows using the physical dimensions of the DSRRs as an input avoiding commonly used extraction of equivalent parameters. The model inclu...... simulations of the DSRR structures. © 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53:1311–1315, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.25988...

  18. Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition.

    Science.gov (United States)

    Riemensberger, Johann; Hartinger, Klaus; Herr, Tobias; Brasch, Victor; Holzwarth, Ronald; Kippenberg, Tobias J

    2012-12-03

    We demonstrate dispersion engineering of integrated silicon nitride based ring resonators through conformal coating with hafnium dioxide deposited on top of the structures via atomic layer deposition. Both, magnitude and bandwidth of anomalous dispersion can be significantly increased. The results are confirmed by high resolution frequency-comb-assisted-diode-laser spectroscopy and are in very good agreement with the simulated modification of the mode spectrum.

  19. Double-Slot Hybrid Plasmonic Ring Resonator Used for Optical Sensors and Modulators

    Directory of Open Access Journals (Sweden)

    Xu Sun

    2015-11-01

    Full Text Available An ultra-high sensitivity double-slot hybrid plasmonic (DSHP ring resonator, used for optical sensors and modulators, is developed. Due to high index contrast, as well as plasmonic enhancement, a considerable part of the optical energy is concentrated in the narrow slots between Si and plasmonic materials (silver is used in this paper, which leads to high sensitivity to the infiltrating materials. By partial opening of the outer plasmonic circular sheet of the DSHP ring, a conventional side-coupled silicon on insulator (SOI bus waveguide can be used. Experimental results demonstrate ultra-high sensitivity (687.5 nm/RIU of the developed DSHP ring resonator, which is about five-times higher than for the conventional Si ring with the same geometry. Further discussions show that a very low detection limit (5.37 × 10−6 RIU can be achieved after loaded Q factor modifications. In addition, the plasmonic metal structures offer also the way to process optical and electronic signals along the same hybrid plasmonic circuits with small capacitance (~0.275 fF and large electric field, which leads to possible applications in compact high-efficiency electro-optic modulators, where no extra electrodes for electronic signals are required.

  20. Tests of a grazing-incidence ring resonator free-electron laser

    International Nuclear Information System (INIS)

    Dowell, D.H.; Laucks, M.L.; Lowrey, A.R.; Adamski, J.L.; Pistoresi, D.J.; Shoffstall, D.R.; Bentz, M.P.; Burns, R.H.; Guha, J.; Sun, K.; Tomita, W.

    1991-01-01

    This paper reports on the Boeing free-electron laser (FEL) optical cavity that has been changed from a simple concentric cavity using two spherical mirrors to a larger grazing-incidence ring resonator. The new resonator consists of two mirror telescopes located at each end of the wiggler with a round-trip path length of approximately 133 m. Each telescope is a grazing-incidence hyperboloid followed by a normal-incidence paraboloid. Initial tests showed that poorly positioned ring focus and unreliable pointing alignment resulted in reduced and structured FEL output. (First lasing operation occurred on March 23 and 24, 1990.) Later efforts concentrated on improving the resonator alignment techniques and lowering the single-pass losses. FEL performance and reliability have significantly improved due to better ring alignment. The alignment procedure and recent lasing results are described. The effect the electron beam has on lasing is also discussed. Measurements are presented showing how FEL temporal output and wavelength are sensitive to electron beam energy variations

  1. A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    Science.gov (United States)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.

  2. Ultra-Thin Multi-Band Polarization-Insensitive Microwave Metamaterial Absorber Based on Multiple-Order Responses Using a Single Resonator Structure

    Directory of Open Access Journals (Sweden)

    Yong Zhi Cheng

    2017-10-01

    Full Text Available We design an ultra-thin multi-band polarization-insensitive metamaterial absorber (MMA using a single circular sector resonator (CSR structure in the microwave region. Simulated results show that the proposed MMA has three distinctive absorption peaks at 3.35 GHz, 8.65 GHz, and 12.44 GHz, with absorbance of 98.8%, 99.7%, and 98.3%, respectively, which agree well with an experiment. Simulated surface current distributions of the unit-cell structure reveal that the triple-band absorption mainly originates from multiple-harmonic magnetic resonance. The proposed triple-band MMA can remain at a high absorption level for all polarization of both transverse-electric (TE and transverse-magnetic (TM modes under normal incidence. Moreover, by further optimizing the geometric parameters of the CSRs, four-band and five-band MMAs can also be obtained. Thus, our design will have potential application in detection, sensing, and stealth technology.

  3. Asymmetric planar terahertz metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ramjan [Los Alamos National Laboratory; Al - Naib, Ibraheem A. I. [PHILIPPS UNIV; Koch, Martin [PHILIPPS UNIV; Zhang, Weili [OKLAHOMA STATE UNIV

    2010-01-01

    Using terahertz time-domain spectroscopy, we report an experimental observation of three distinct resonances in split ring resonators (SRRs) for both vertical and horizontal electric field polarizations at normal incidence. Breaking the symmetry in SRRs by gradually displacing the capacitive gap from the centre towards the comer of the ring allows for an 85% modulation of the fundamental inductive-capacitive (LC) resonance. Increasing asymmetry leads to the evolution of an otherwise inaccessible high quality factor electric quadrupole resonance that can be exploited for bio-sensing applications in the terahertz region.

  4. Reduced thermal sensitivity of hybrid air-core photonic band-gap fiber ring resonator

    Science.gov (United States)

    Feng, Li-shuang; Wang, Kai; Jiao, Hong-chen; Wang, Jun-jie; Liu, Dan-ni; Yang, Zhao-hua

    2018-01-01

    A novel hybrid air-core photonic band-gap fiber (PBF) ring resonator with twin 90° polarization-axis rotated splices is proposed and demonstrated. Frist, we measure the temperature dependent birefringence coefficient of air-core PBF and Panda fiber. Experimental results show that the relative temperature dependent birefringence coefficient of air-core PBF is 1.42×10-8/°C, which is typically 16 times less than that of Panda fiber. Then, we extract the geometry profile of air-core PBF from scanning electron microscope (SEM) images. Numerical modal is built to distinguish the fast axis and slow axis in the fiber. By precisely setting the length difference in air-core PBF and Panda fiber between two 90° polarization-axis rotated splicing points, the hybrid air-core PBF ring resonator is constructed, and the finesse of the resonator is 8.4. Environmental birefringence variation induced by temperature change can be well compensated, and experimental results show an 18-fold reduction in thermal sensitivity, compared with resonator with twin 0° polarization-axis rotated splices.

  5. Hazardous materials sensing: An electrical metamaterial approach

    Energy Technology Data Exchange (ETDEWEB)

    Rawat, Vaishali; Kitture, Rohini [Department of Applied Physics, Defence Institute of Advanced Technology (DIAT), Girinagar, Pune 411025 (India); Kumari, Dimple [Department of Applied Chemistry, Defence Institute of Advanced Technology (DIAT), Girinagar, Pune 411025 (India); Rajesh, Harsh [Society for Applied Microwave Electronics Engineering and Research (SAMEER), IIT-Bombay Campus, Powai, Mumbai (India); Banerjee, Shaibal [Department of Applied Chemistry, Defence Institute of Advanced Technology (DIAT), Girinagar, Pune 411025 (India); Kale, S.N., E-mail: sangeetakale2004@gmail.com [Department of Applied Physics, Defence Institute of Advanced Technology (DIAT), Girinagar, Pune 411025 (India)

    2016-10-01

    Metamaterials are recently emerging materials exhibiting amazing properties such as extremely miniaturized antennas, waveguides, optical couplers, multiplexers and filters. Such structures also respond to the variation in their ambient conditions when exposed to toxic and hazardous materials, which are especially hazardous to human health. Through this manuscript, we document our studies on three different high energy materials; namely 2- bromo-2nitropropane-1,3-diol (BNP), bis (1,3-diazido prop-2-yl) malonate (AM) and bis (1,3-diazido prop-2-yl) glutarate (AG). A Complementary Split Ring Resonator has been fabricated at resonant frequency of 4.48 GHz using copper on FR4 substrate. The energetic materials were exposed to the sensor and results were monitored using Vector Network Analyzer. The volume of liquids was varied from 0.5 µL to 3 µL. Prominent and explicit shifts in the transmission resonant frequency and amplitude was seen as a signature of each energetic material. The signatures were not only sensitive to the specific toxic group in the material but also to the volume of the liquid subjected to this sensor. The results are correlated with the simulation results, basic chemistry of the materials and permittivity measurements. The ultra-fast reversibility and repeatability, with good sensitivity and specificity of these devices project their applications in sensitive locations, particularly to combat for human security and health issues.

  6. Novel microwave photonic fractional hilbert transformer using a ring resonator-based optical all-pass filter

    NARCIS (Netherlands)

    Zhuang, L.; Khan, M.R.H.; Beeker, Willem; Beeker, W.P.; Leinse, Arne; Heideman, Rene; Roeloffzen, C.G.H.

    2012-01-01

    We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonatorbased optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance

  7. Non-exponential decoherence of radio-frequency resonance rotation of spin in storage rings

    Science.gov (United States)

    Saleev, A.; Nikolaev, N. N.; Rathmann, F.; Hinder, F.; Pretz, J.; Rosenthal, M.

    2017-08-01

    Precision experiments, such as the search for electric dipole moments of charged particles using radio-frequency spin rotators in storage rings, demand for maintaining the exact spin resonance condition for several thousand seconds. Synchrotron oscillations in the stored beam modulate the spin tune of off-central particles, moving it off the perfect resonance condition set for central particles on the reference orbit. Here, we report an analytic description of how synchrotron oscillations lead to non-exponential decoherence of the radio-frequency resonance driven up-down spin rotations. This non-exponential decoherence is shown to be accompanied by a nontrivial walk of the spin phase. We also comment on sensitivity of the decoherence rate to the harmonics of the radio-frequency spin rotator and a possibility to check predictions of decoherence-free magic energies.

  8. Analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator

    International Nuclear Information System (INIS)

    Li, Xianping; Wei, Zhongchao; Liu, Yuebo; Zhong, Nianfa; Tan, Xiaopei; Shi, Songsong; Liu, Hongzhan; Liang, Ruisheng

    2016-01-01

    We have demonstrated the analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator. A reasonable analysis of the transmission feature based on the temporal coupled-mode theory is given and shows good agreement with the Finit-Difference Time-Domain simulation. The transparency window can be easily tuned by changing the geometrical parameters and the insulator filled in the resonator. The transmission of the resonator system is close to 80% and the full width at half maximum is less than 46 nm. The sensitivity of the structure is about 812 nm/RIU. These characteristics make the new system with potential to apply for optical storage, ultrafast plasmonic switch and slow-light devices.

  9. Narrow band wavelength selective filter using grating assisted single ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Prabhathan, P., E-mail: PPrabhathan@ntu.edu.sg; Murukeshan, V. M. [Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-09-15

    This paper illustrates a filter configuration which uses a single ring resonator of larger radius connected to a grating resonator at its drop port to achieve single wavelength selectivity and switching property with spectral features suitable for on-chip wavelength selection applications. The proposed configuration is expected to find applications in silicon photonics devices such as, on-chip external cavity lasers and multi analytic label-free biosensors. The grating resonator has been designed for a high Q-factor, high transmittivity, and minimum loss so that the wavelength selectivity of the device is improved. The proof-of-concept device has been demonstrated on a Silicon-on-Insulator (SOI) platform through electron beam lithography and Reactive Ion Etching (RIE) process. The transmission spectrum shows narrow band single wavelength selection and switching property with a high Free Spectral Range (FSR) ∼60 nm and side band rejection ratio >15 dB.

  10. Analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xianping; Wei, Zhongchao, E-mail: wzc@scnu.edu.cn; Liu, Yuebo; Zhong, Nianfa; Tan, Xiaopei; Shi, Songsong; Liu, Hongzhan; Liang, Ruisheng

    2016-01-08

    We have demonstrated the analogy of electromagnetically induced transparency in plasmonic nanodisk with a square ring resonator. A reasonable analysis of the transmission feature based on the temporal coupled-mode theory is given and shows good agreement with the Finit-Difference Time-Domain simulation. The transparency window can be easily tuned by changing the geometrical parameters and the insulator filled in the resonator. The transmission of the resonator system is close to 80% and the full width at half maximum is less than 46 nm. The sensitivity of the structure is about 812 nm/RIU. These characteristics make the new system with potential to apply for optical storage, ultrafast plasmonic switch and slow-light devices.

  11. A single-layer wide-angle negative-index metamaterial at visible frequencies.

    Science.gov (United States)

    Burgos, Stanley P; de Waele, Rene; Polman, Albert; Atwater, Harry A

    2010-05-01

    Metamaterials are materials with artificial electromagnetic properties defined by their sub-wavelength structure rather than their chemical composition. Negative-index materials (NIMs) are a special class of metamaterials characterized by an effective negative index that gives rise to such unusual wave behaviour as backwards phase propagation and negative refraction. These extraordinary properties lead to many interesting functions such as sub-diffraction imaging and invisibility cloaking. So far, NIMs have been realized through layering of resonant structures, such as split-ring resonators, and have been demonstrated at microwave to infrared frequencies over a narrow range of angles-of-incidence and polarization. However, resonant-element NIM designs suffer from the limitations of not being scalable to operate at visible frequencies because of intrinsic fabrication limitations, require multiple functional layers to achieve strong scattering and have refractive indices that are highly dependent on angle of incidence and polarization. Here we report a metamaterial composed of a single layer of coupled plasmonic coaxial waveguides that exhibits an effective refractive index of -2 in the blue spectral region with a figure-of-merit larger than 8. The resulting NIM refractive index is insensitive to both polarization and angle-of-incidence over a +/-50 degree angular range, yielding a wide-angle NIM at visible frequencies.

  12. Design and characterization of a novel toroidal split-ring resonator

    International Nuclear Information System (INIS)

    Bobowski, J. S.; Nakahara, Hiroko

    2016-01-01

    The design and characterization of a novel toroidal split-ring resonator (SRR) are described in detail. In conventional cylindrical SRRs, there is a large magnetic flux within the bore of the resonator. However, there also exists a non-negligible magnetic flux in the free space surrounding the resonator. The energy losses associated with this radiated power diminish the resonator’s quality factor. In the toroidal SRR, on the other hand, the magnetic field lines are strongly confined within the bore of the resonator resulting in high intrinsic quality factors and stable resonance frequencies without requiring additional electromagnetic shielding. This paper describes the design and construction of a toroidal SRR as well as an experimental investigation of its cw response in the frequency-domain and its time-domain response to a rf pulse. Additionally, the dependence of the toroidal SRR’s resonant frequency and quality factor on the strength of inductive coupling to external circuits is investigated both theoretically and experimentally

  13. Broadband plasmon induced transparency in terahertz metamaterials

    KAUST Repository

    Zhu, Zhihua

    2013-04-25

    Plasmon induced transparency (PIT) could be realized in metamaterials via interference between different resonance modes. Within the sharp transparency window, the high dispersion of the medium may lead to remarkable slow light phenomena and an enhanced nonlinear effect. However, the transparency mode is normally localized in a narrow frequency band, which thus restricts many of its applications. Here we present the simulation, implementation, and measurement of a broadband PIT metamaterial functioning in the terahertz regime. By integrating four U-shape resonators around a central bar resonator, a broad transparency window across a frequency range greater than 0.40 THz is obtained, with a central resonance frequency located at 1.01 THz. Such PIT metamaterials are promising candidates for designing slow light devices, highly sensitive sensors, and nonlinear elements operating over a broad frequency range. © 2013 IOP Publishing Ltd.

  14. Broadband plasmon induced transparency in terahertz metamaterials

    International Nuclear Information System (INIS)

    Zhu Zhihua; Yang Xu; Gu Jianqiang; Jiang Jun; Tian Zhen; Han Jiaguang; Zhang Weili; Yue Weisheng; Tonouchi, Masayoshi

    2013-01-01

    Plasmon induced transparency (PIT) could be realized in metamaterials via interference between different resonance modes. Within the sharp transparency window, the high dispersion of the medium may lead to remarkable slow light phenomena and an enhanced nonlinear effect. However, the transparency mode is normally localized in a narrow frequency band, which thus restricts many of its applications. Here we present the simulation, implementation, and measurement of a broadband PIT metamaterial functioning in the terahertz regime. By integrating four U-shape resonators around a central bar resonator, a broad transparency window across a frequency range greater than 0.40 THz is obtained, with a central resonance frequency located at 1.01 THz. Such PIT metamaterials are promising candidates for designing slow light devices, highly sensitive sensors, and nonlinear elements operating over a broad frequency range. (paper)

  15. Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai-ming; Liu, Shao-bin, E-mail: lsb@nuaa.edu.cn; Liu, Si-yuan; Ding, Guo-wen; Yang, Hua; Yu, Zhi-yang; Zhang, Hai-feng [Key Laboratory of Radar Imaging and Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 (China); Wang, Shen-yun [Research Center of Applied Electromagnetic, Nanjing University of Information Science and Technology, Nanjing, 210044 (China)

    2015-02-23

    In this paper, a low-loss and high transmission analogy of electromagnetically induced transparency based on electric toroidal dipolar response is numerically and experimentally demonstrated. It is obtained by the excitation of the low-loss electric toroidal dipolar response, which confines the magnetic field inside a dielectric substrate with toroidal geometry. The metamaterial electromagnetically induced transparency (EIT) structure is composed of the cut wire and asymmetric split-ring resonators. The transmission level is as high as 0.88, and the radiation loss is greatly suppressed, which can be proved by the surface currents distributions, the magnetic field distributions, and the imaginary parts of the effective permeability and permittivity. It offers an effective way to produce low-loss and high transmission metamaterial EIT.

  16. Numerical investigation of a tunable band-pass plasmonic filter with a hollow-core ring resonator

    Science.gov (United States)

    Setayesh, Amir; Mirnaziry, S. Reza; Sadegh Abrishamian, Mohammad

    2011-03-01

    In this study, a compact nanoscale plasmonic filter which consists of two metal-insulator-metal (MIM) waveguides coupled to each other by a rectangular ring resonator is presented and investigated numerically. The propagating modes of surface plasmon polaritons (SPPs) are studied in this structure. By replacing a portion of the ring core with air, while the outer dimensions of the structure are kept constant, we illustrate the possibility of the redshift of resonant wavelengths in order to tune the resonance modes. This feature is useful for integrated circuits in which we have limitations on the outer dimensions of the filter structure and it is not possible to enlarge the dimension of the ring resonator to reach longer resonant wavelengths. The corresponding results are illustrated by the 2D finite-difference time-domain (FDTD) method. The proposed structure has potential applications in plasmonic integrated circuits and can be simply fabricated.

  17. Numerical investigation of a tunable band-pass plasmonic filter with a hollow-core ring resonator

    International Nuclear Information System (INIS)

    Setayesh, Amir; Mirnaziry, S Reza; Abrishamian, Mohammad Sadegh

    2011-01-01

    In this study, a compact nanoscale plasmonic filter which consists of two metal–insulator–metal (MIM) waveguides coupled to each other by a rectangular ring resonator is presented and investigated numerically. The propagating modes of surface plasmon polaritons (SPPs) are studied in this structure. By replacing a portion of the ring core with air, while the outer dimensions of the structure are kept constant, we illustrate the possibility of the redshift of resonant wavelengths in order to tune the resonance modes. This feature is useful for integrated circuits in which we have limitations on the outer dimensions of the filter structure and it is not possible to enlarge the dimension of the ring resonator to reach longer resonant wavelengths. The corresponding results are illustrated by the 2D finite-difference time-domain (FDTD) method. The proposed structure has potential applications in plasmonic integrated circuits and can be simply fabricated

  18. Nanoparticles doped film sensing based on terahertz metamaterials

    Science.gov (United States)

    Liu, Weimin; Fan, Fei; Chang, Shengjiang; Hou, Jiaqing; Chen, Meng; Wang, Xianghui; Bai, Jinjun

    2017-12-01

    A nanoparticles concentration sensor based on doped film and terahertz (THz) metamaterial has been proposed. By coating the nanoparticles doped polyvinyl alcohol (PVA) film on the surface of THz metamaterial, the effects of nanoparticle concentration on the metamaterial resonances are investigated through experiments and numerical simulations. Results show that resonant frequency of the metamaterial linearly decreases with the increment of doping concentration. Furthermore, numerical simulations illustrate that the redshift of resonance results from the changes of refractive index of the doped film. The concentration sensitivity of this sensor is 3.12 GHz/0.1%, and the refractive index sensitivity reaches 53.33 GHz/RIU. This work provides a non-contact, nondestructive and sensitive method for the detection of nanoparticles concentration and brings out a new application on THz film metamaterial sensing.

  19. Plasma diagnostics using laser-excited coupled and transmission ring resonators

    International Nuclear Information System (INIS)

    Haas, R.A.

    1976-01-01

    In this paper a simple two-level laser model is used to investigate the frequency response of coupled-cavity laser interferometers. It is found that under certain circumstances, often satisfied by molecular gas lasers, the frequency response exhibits a resonant behavior. This behavior severely complicates the interpretation of coupled-cavity laser interferometer measurements of rapidly varying plasmas. To circumvent this limitation a new type of laser interferometer plasma diagnostic with significantly improved time response was developed. In this interferometer the plasma is located in one arm of a transmission ring resonator cavity that is excited by an externally positioned laser. Thus, the laser is decoupled from the interferometer cavity and the time response of the interferometer is then limited by the Q of the ring resonator cavity. This improved time response is acquired without loss of spatial resolution, but requires a more sensitive signal detector since the laser is no longer used as a detector as it is in conventional coupled-cavity laser interferometers. Thus, the new technique incorporates the speed of the Mach--Zender interferometer and the sensitivity of the coupled-cavity laser interferometer. The basic operating principles of this type of interferometer have been verified using a CO 2 laser

  20. Dynamic metamaterial aperture for microwave imaging

    International Nuclear Information System (INIS)

    Sleasman, Timothy; Imani, Mohammadreza F.; Gollub, Jonah N.; Smith, David R.

    2015-01-01

    We present a dynamic metamaterial aperture for use in computational imaging schemes at microwave frequencies. The aperture consists of an array of complementary, resonant metamaterial elements patterned into the upper conductor of a microstrip line. Each metamaterial element contains two diodes connected to an external control circuit such that the resonance of the metamaterial element can be damped by application of a bias voltage. Through applying different voltages to the control circuit, select subsets of the elements can be switched on to create unique radiation patterns that illuminate the scene. Spatial information of an imaging domain can thus be encoded onto this set of radiation patterns, or measurements, which can be processed to reconstruct the targets in the scene using compressive sensing algorithms. We discuss the design and operation of a metamaterial imaging system and demonstrate reconstructed images with a 10:1 compression ratio. Dynamic metamaterial apertures can potentially be of benefit in microwave or millimeter wave systems such as those used in security screening and through-wall imaging. In addition, feature-specific or adaptive imaging can be facilitated through the use of the dynamic aperture

  1. Dynamic metamaterial aperture for microwave imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sleasman, Timothy; Imani, Mohammadreza F.; Gollub, Jonah N.; Smith, David R. [Center for Metamaterials and Integrated Plasmonics, Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, 27708 (United States)

    2015-11-16

    We present a dynamic metamaterial aperture for use in computational imaging schemes at microwave frequencies. The aperture consists of an array of complementary, resonant metamaterial elements patterned into the upper conductor of a microstrip line. Each metamaterial element contains two diodes connected to an external control circuit such that the resonance of the metamaterial element can be damped by application of a bias voltage. Through applying different voltages to the control circuit, select subsets of the elements can be switched on to create unique radiation patterns that illuminate the scene. Spatial information of an imaging domain can thus be encoded onto this set of radiation patterns, or measurements, which can be processed to reconstruct the targets in the scene using compressive sensing algorithms. We discuss the design and operation of a metamaterial imaging system and demonstrate reconstructed images with a 10:1 compression ratio. Dynamic metamaterial apertures can potentially be of benefit in microwave or millimeter wave systems such as those used in security screening and through-wall imaging. In addition, feature-specific or adaptive imaging can be facilitated through the use of the dynamic aperture.

  2. A compact 5.5 GHz band-rejected UWB antenna using complementary split ring resonators.

    Science.gov (United States)

    Islam, M M; Faruque, M R I; Islam, M T

    2014-01-01

    A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm(2), and VSWR WLAN band.

  3. Measurement of resonance modes causative of beam position monitor signal noise in vacuum chamber of storage ring

    International Nuclear Information System (INIS)

    Joo, Youngdo; Hwang, Ilmoon; Park, Sungju; Kim, Changbum

    2011-01-01

    It is known that the position reading obtained from the beam position monitor (BPM) mounted at the storage ring can be corrupted by the resonance mode. We carried out a three dimensional finite-difference time-domain (FDTD) simulation of vacuum chambers of the storage ring of the Pohang Light Source (PLS) without simplified modeling to measure the frequencies of resonance modes excited in the vacuum chamber. The frequencies of resonance modes obtained by the eigenmode simulation are well matched with the peak frequencies of RF transmission scattering matrix (S 21 ) graph of sector vacuum chamber measured using a network analyzer. It is found that a transverse electric (TE) resonance mode exists in the operation frequency band of BPM and the vertically oriented electric field of TE resonance mode is linked to the BPM position reading noise. Based on this study, we can easily design a vacuum chamber free from the BPM position reading noise caused by the TE resonance mode.

  4. Perspective: Acoustic metamaterials in transition

    KAUST Repository

    Wu, Ying

    2017-12-15

    Acoustic metamaterials derive their novel characteristics from the interaction between acoustic waves with designed structures. Since its inception seventeen years ago, the field has been driven by fundamental geometric and physical principles that guide the structure design rules as well as provide the basis for wave functionalities. Recent examples include resonance-based acoustic metasurfaces that offer flexible control of acoustic wave propagation such as focusing and re-direction; parity-time (PT)-symmetric acoustics that utilizes the general concept of pairing loss and gain to achieve perfect absorption at a single frequency; and topological phononics that can provide one-way edge state propagation. However, such novel functionalities are not without constraints. Metasurface elements rely on resonances to enhance their coupling to the incident wave; hence, its functionality is limited to a narrow frequency band. Topological phononics is the result of the special lattice symmetry that must be fixed at the fabrication stage. Overcoming such constraints naturally forms the basis for further developments. We identify two emergent directions: Integration of acoustic metamaterial elements for achieving broadband characteristics as well as acoustic wave manipulation tasks more complex than the single demonstrative functionality; and active acoustic metamaterials that can adapt to environment as well as to go beyond the constraints on the passive acoustic metamaterials. Examples of a successful recent integration of multi-resonators in achieving broadband sound absorption can be found in optimal sound-absorbing structures, which utilize causality constraint as a design tool in realizing the target-set absorption spectrum with a minimal sample thickness. Active acoustic metamaterials have also demonstrated the capability to tune bandgaps as well as to alter property of resonances in real time through stiffening of the spring constants, in addition to the PT symmetric

  5. Silicon rich nitride ring resonators for rare - earth doped telecommunications-band amplifiers pumped at the O-band.

    Science.gov (United States)

    Xing, P; Chen, G F R; Zhao, X; Ng, D K T; Tan, M C; Tan, D T H

    2017-08-22

    Ring resonators on silicon rich nitride for potential use as rare-earth doped amplifiers pumped at 1310 nm with amplification at telecommunications-band are designed and characterized. The ring resonators are fabricated on 300 nm and 400 nm silicon rich nitride films and characterized at both 1310 nm and 1550 nm. We demonstrate ring resonators exhibiting similar quality factors exceeding 10,000 simultaneously at 1310 nm and 1550 nm. A Dysprosium-Erbium material system exhibiting photoluminescence at 1510 nm when pumped at 1310 nm is experimentally demonstrated. When used together with Dy-Er co-doped particles, these resonators with similar quality factors at 1310 nm and 1550 nm may be used for O-band pumped amplifiers for the telecommunications-band.

  6. Damping spurious harmonic resonances in the APS storage ring beam chamber

    International Nuclear Information System (INIS)

    Kang, Y.

    1999-01-01

    The APS storage ring beam chamber has been storing the beam up to 100 mA successfully. However, in some beam chambers, spurious signals corrupted the BPM outputs. The cause of the unwanted signals was investigated, and it was found that transverse electric (TE) longitudinal harmonic resonances of the beam chamber were responsible. The beam chambers have small height in the area between the ovid beam chamber and the antechamber. The structure behaves like a ridge waveguide so that the cut-off frequency of the waveguide mode becomes lower. The pass-band then includes the frequency around 350 MHz that is important to the beam position monitors (BPMs). The spurious harmonic resonances are damped with two types of dampers to restore the useful signals of the BPMs; coaxial loop dampers and lossy ceramic slab loading are used

  7. Chaotic parametric soliton-like pulses in ferromagnetic-film active ring resonators

    International Nuclear Information System (INIS)

    Grishin, S. V.; Golova, T. M.; Morozova, M. A.; Romanenko, D. V.; Seleznev, E. P.; Sysoev, I. V.; Sharaevskii, Yu. P.

    2015-01-01

    The generation of quasi-periodic sequences of parametric soliton-like pulses in an active ring resonator with a ferromagnetic film via the three-wave parametric instability of a magnetostatic surface wave is studied theoretically and experimentally. These dissipative structures form in time due to the competition between the cubic nonlinearity caused by parametric coupling between spin waves and the time dispersion caused by the resonant cavity that is present in a self-oscillatory system. The development of dynamic chaos due to the parametric instability of a magnetostatic surface wave results in irregular behavior of a phase. However, this behavior does not break a quasi-periodic pulse sequence when the gain changes over a wide range. The generated soliton-like pulses have a chaotic nature, which is supported by the maximum Lyapunov exponent estimated from experimental time series

  8. Data mining with unsupervised clustering using photonic micro-ring resonators

    Science.gov (United States)

    McAulay, Alastair D.

    2013-09-01

    Data is commonly moved through optical fiber in modern data centers and may be stored optically. We propose an optical method of data mining for future data centers to enhance performance. For example, in clustering, a form of unsupervised learning, we propose that parameters corresponding to information in a database are converted from analog values to frequencies, as in the brain's neurons, where similar data will have close frequencies. We describe the Wilson-Cowan model for oscillating neurons. In optics we implement the frequencies with micro ring resonators. Due to the influence of weak coupling, a group of resonators will form clusters of similar frequencies that will indicate the desired parameters having close relations. Fewer clusters are formed as clustering proceeds, which allows the creation of a tree showing topics of importance and their relationships in the database. The tree can be used for instance to target advertising and for planning.

  9. Multi-band circular polarizer based on a twisted triple split-ring resonator

    International Nuclear Information System (INIS)

    Wu Song; Huang Xiao-Jun; Yang He-Lin; Xiao Bo-Xun; Jin Yan

    2014-01-01

    A multi-band circular polarizer using a twisted triple split-ring resonator (TSRR) is presented and studied numerically and experimentally. At four distinct resonant frequencies, the incident linearly polarized wave can be transformed into left/right-handed circularly polarized waves. Numerical simulation results show that a y-polarized wave can be converted into a right-handed circularly polarized wave at 5.738 GHz and 9.218 GHz, while a left-handed circularly polarized wave is produced at 7.292 GHz and 10.118 GHz. The experimental results are in agreement with the numerical results. The surface current distributions are investigated to illustrate the polarization transformation mechanism. Furthermore, the influences of the structure parameters of the circular polarizer on transmission spectra are discussed as well. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Metamaterial-based half Maxwell fish-eye lens for broadband directive emissions

    Science.gov (United States)

    Dhouibi, Abdallah; Nawaz Burokur, Shah; de Lustrac, André; Priou, Alain

    2013-01-01

    The broadband directive emission from a metamaterial surface is numerically and experimentally reported. The metasurface, composed of non-resonant complementary closed ring structures, is designed to obey the refractive index of a half Maxwell fish-eye lens. A planar microstrip Vivaldi antenna is used as transverse magnetic polarized wave launcher for the lens. A prototype of the lens associated with its feed structure has been fabricated using standard lithography techniques. To experimentally demonstrate the broadband focusing properties and directive emissions, both the far-field radiation patterns and the near-field distributions have been measured. Measurements agree quantitatively and qualitatively with theoretical simulations.

  11. Study of lead free ferroelectrics using overlay technique on thick film microstrip ring resonator

    Directory of Open Access Journals (Sweden)

    Shridhar N. Mathad

    2016-03-01

    Full Text Available The lead free ferroelectrics, strontium barium niobates, were synthesized via the low cost solid state reaction method and their fritless thick films were fabricated by screen printing technique on alumina substrate. The X band response (complex permittivity at very high frequencies of Ag thick film microstrip ring resonator perturbed with strontium barium niobates (SrxBa1-xNb2O6 in form of bulk and thick film was measured. A new approach for determination of complex permittivity (ε′ and ε′′ in the frequency range 8–12 GHz, using perturbation of Ag thick film microstrip ring resonator (MSRR, was applied for both bulk and thick film of strontium barium niobates (SrxBa1-xNb2O6. The microwave conductivity of the bulk and thick film lie in the range from 1.779 S/cm to 2.874 S/cm and 1.364 S/cm to 2.296 S/cm, respectively. The penetration depth of microwave in strontium barium niobates is also reported.

  12. Design and Analysis of an all-fiber MZI Interleaver Based on Fiber Ring Resonator

    Directory of Open Access Journals (Sweden)

    Pu Huilan

    2015-01-01

    Full Text Available An all-fiber Mach-Zehnder interferometer (MZI interleaver using one planar 3×3 fiber coupler, one 2×2 fiber coupler and one 8-shaped fiber ring resonator is developed by the new configuration. Based on its structure, the output spectrum expression is established and described by using the principle of fiber transmission and the matrix transfer function. The results of numerical simulation indicate that when the length difference of interference arms and the coupling coefficients of the couplers are some certain values, it obtains a uniform flat-top passband and similar to rectangular output spectrum. Compared with the traditional MZI interleaver, the isolation in stopband and the rolloff in transition band are strengthen, the 25dB stopband bandwidth and 0.5dB passband bandwidth are simultaneously remarkably improved. Compared with the asymmetrical ring resonator MZI interleaver, the influence of transmission loss on extinction ratio can be effectively reduced. The device has a certain ability to resist the deviation, which reduces the difficulties in fabricating it. The experiment results agree with the theoretical analysis well. The interleaver designed by the proposed approach has favorable performance, which has the potential application value in optical fiber communication system.

  13. An improved ultra-wideband bandpass filter design using split ring resonator with coupled microstrip line

    Science.gov (United States)

    Umeshkumar, Dubey Suhmita; Kumar, Manish

    2018-04-01

    This paper incorporates an improved design of Ultra Wideband Bandpass filter by using split ring resonators (SRR) along with the coupled microstrip lines. The use of split ring resonators and shunt step impedance open circuit stub enhances the stability due to transmission zeroes at the ends. The designing of filter and simulation of parameters is carried out using Ansoft's HFSS 13.0 software on RT/Duroid 6002 as a substrate with dielectric constant of 2.94. The design utilizes a frequency band from 22GHz to 29GHz. This band is reserved for Automotive Radar system and sensors as per FCC specifications. The proposed design demonstrates insertion loss less than 0.6dB and return loss better than 12dB at mid frequency i.e. 24.4GHz. The reflection coefficient shows high stability of about 12.47dB at mid frequency. The fractional bandwidth of the proposed filter is about 28.7% and size of filter design is small due to thickness of 0.127mm.

  14. Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter.

    Science.gov (United States)

    Zhuang, Leimeng; Khan, Muhammad Rezaul; Beeker, Willem; Leinse, Arne; Heideman, René; Roeloffzen, Chris

    2012-11-19

    We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonator-based optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance analysis in both frequency and time domain validates that the proposed implementation provides a good approximation to an ideal fractional Hilbert transformer. This is also experimentally verified by an electrical S21 response characterization performed on a waveguide realization of a ring resonator. The waveguide-based structure allows the proposed Hilbert transformer to be integrated together with other building blocks on a photonic integrated circuit to create various system-level functionalities for on-chip microwave photonic signal processors. As an example, a circuit consisting of a splitter and a ring resonator has been realized which can perform on-chip phase control of microwave signals generated by means of optical heterodyning, and simultaneous generation of in-phase and quadrature microwave signals for a wide frequency range. For these functionalities, this simple and on-chip solution is considered to be practical, particularly when operating together with a dual-frequency laser. To our best knowledge, this is the first-time on-chip demonstration where ring resonators are employed to perform phase control functionalities for optical generation of microwave signals by means of optical heterodyning.

  15. Magnetic nanoparticles for tunable microwave metamaterials

    KAUST Repository

    Noginova, Natalia; Williams, Quincy Leon; Dallas, Panagiotis; Giannelis, Emmanuel P.

    2012-01-01

    Commonly, metamaterials are electrically engineered systems with optimized spatial arrangement of subwavelength sized metal and dielectric components. We explore alternative methods based on use of magnetic inclusions, such as magnetic nanoparticles, which can allow permeability of a composite to be tuned from negative to positive at the range of magnetic resonance. To better understand effects of particle size and magnetization dynamics, we performed electron magnetic resonance study on several varieties of magnetic nanoparticles and determined potential of nanoparticle use as building blocks for tunable microwave metamaterials. © (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  16. Magnetic nanoparticles for tunable microwave metamaterials

    KAUST Repository

    Noginova, Natalia

    2012-09-24

    Commonly, metamaterials are electrically engineered systems with optimized spatial arrangement of subwavelength sized metal and dielectric components. We explore alternative methods based on use of magnetic inclusions, such as magnetic nanoparticles, which can allow permeability of a composite to be tuned from negative to positive at the range of magnetic resonance. To better understand effects of particle size and magnetization dynamics, we performed electron magnetic resonance study on several varieties of magnetic nanoparticles and determined potential of nanoparticle use as building blocks for tunable microwave metamaterials. © (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  17. Metamaterial antennas: the most successful metamaterial technology?

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2015-01-01

    The Thomson Reuters Web of Science™ lists more than 1500 journal articles related to metamaterial antennas from 2001 to 2015; this paper overviews some major objectives of such antennas.......The Thomson Reuters Web of Science™ lists more than 1500 journal articles related to metamaterial antennas from 2001 to 2015; this paper overviews some major objectives of such antennas....

  18. Waves in metamaterials

    CERN Document Server

    Solymar, Laszlo

    2014-01-01

    Metamaterials is a young subject born in the 21st century. It is concerned with artificial materials which can have electrical and magnetic properties difficult or impossible to find in nature. The building blocks in most cases are resonant elements much smaller than the wavelength of the electromagnetic wave. The book offers a comprehensive treatment of all aspects of research in this field at a level that should appeal to final year undergraduates in physics or in electrical and electronic engineering. The mathematics is kept at a minimum; the aim is to explain the physics in simple terms and enumerate the major advances. It can be profitably read by graduate and post-graduate students in order to find out what has been done in the field outside their speciality, and by experts who may gain new insight about the inter-relationship of the physical phenomena involved.

  19. Metamaterials beyond electromagnetism

    International Nuclear Information System (INIS)

    Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin

    2013-01-01

    Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment—all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, ‘space-coiling’ metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials (‘meta-liquids’), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks. (review article)

  20. Metamaterials beyond electromagnetism

    Science.gov (United States)

    Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin

    2013-12-01

    Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment—all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, ‘space-coiling’ metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials (‘meta-liquids’), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks.

  1. Wideband metamaterial array with polarization-independent and wide incident angle for harvesting ambient electromagnetic energy and wireless power transfer

    Science.gov (United States)

    Zhong, Hui-Teng; Yang, Xue-Xia; Song, Xing-Tang; Guo, Zhen-Yue; Yu, Fan

    2017-11-01

    In this work, we introduced the design, demonstration, and discussion of a wideband metamaterial array with polarization-independent and wide-angle for harvesting ambient electromagnetic (EM) energy and wireless power transfer. The array consists of unit cells with one square ring and four metal bars. In comparison to the published metamaterial arrays for harvesting EM energy or wireless transfer, this design had the wide operation bandwidth with the HPBW (Half Power Band Width) of 110% (6.2 GHz-21.4 GHz), which overcomes the narrow-band operation induced by the resonance characteristic of the metamaterial. On the normal incidence, the simulated maximum harvesting efficiency was 96% and the HPBW was 110% for the random polarization wave. As the incident angle increases to 45°, the maximum efficiency remained higher than 88% and the HPBW remained higher than 83% for the random polarization wave. Furthermore, the experimental verification of the designed metamaterial array was conducted, and the measured results were in reasonable agreement with the simulated ones.

  2. Gold split-ring resonators (SRRs) as substrates for surface-enhanced raman scattering

    KAUST Repository

    Yue, Weisheng

    2013-10-24

    We used gold split ring resonators (SRRs) as substrates for surface-enhanced Raman scattering (SERS). The arrays of SRRs were fabricated by electron-beam lithography in combination with plasma etching. In the detection of rhodamine 6G (R6G) molecules, SERS enhancement factors of the order of 105 was achieved. This SERS enhancement increased as the size of the split gap decrease as a consequence of the matching between the resonance wavelength of the SRRs and the excitation wavelength of SERS. As the size of the split gap decreased, the localized surface plasmon resonance shifted to near the excitation wavelength and, thus, resulted in the increase in the electric field on the nanostructures. We used finite integration method (FIT) to simulate numerically the electromagnetic properties of the SRRs. The results of the simulation agreed well with our experimental observations. We anticipate this work will provide an approach to manipulate the SERS enhancement by modulating the size of split gap with SRRs without affecting the area and structural arrangement. © 2013 American Chemical Society.

  3. Gold split-ring resonators (SRRs) as substrates for surface-enhanced raman scattering

    KAUST Repository

    Yue, Weisheng; Yang, Yang; Wang, Zhihong; Chen, Longqing; Wang, Xianbin

    2013-01-01

    We used gold split ring resonators (SRRs) as substrates for surface-enhanced Raman scattering (SERS). The arrays of SRRs were fabricated by electron-beam lithography in combination with plasma etching. In the detection of rhodamine 6G (R6G) molecules, SERS enhancement factors of the order of 105 was achieved. This SERS enhancement increased as the size of the split gap decrease as a consequence of the matching between the resonance wavelength of the SRRs and the excitation wavelength of SERS. As the size of the split gap decreased, the localized surface plasmon resonance shifted to near the excitation wavelength and, thus, resulted in the increase in the electric field on the nanostructures. We used finite integration method (FIT) to simulate numerically the electromagnetic properties of the SRRs. The results of the simulation agreed well with our experimental observations. We anticipate this work will provide an approach to manipulate the SERS enhancement by modulating the size of split gap with SRRs without affecting the area and structural arrangement. © 2013 American Chemical Society.

  4. Acoustic metamaterials with synergetic coupling

    Science.gov (United States)

    Ma, Fuyin; Huang, Meng; Wu, Jiu Hui

    2017-12-01

    In this paper, we propose a general design concept for acoustic metamaterials that introduces a ubiquitous synergetic behavior into the design procedure, in which the structure of the design is driven by its functional requirements. Since the physical properties of the widely used, resonant-type metamaterials are mainly determined by the eigenmodes of the structure, we first introduce the design concept through the modal displacement distributions on two typical plate-type structures. Next, by employing broadband sound attenuations that involve both the insulation and absorption as the typical targets, two synergetic coupling behaviors are systematically revealed among the dense resonant modes and multi-cell. Furthermore, through plate-type multiple-cell structures assembled from nine oscillators, the design is shown to realize strong broadband attenuations with either the average sound transmission loss (STL) below 2000 Hz higher than 40 dB or the absorption approximately 0.99 in the range of 400-700 Hz wherein the average absorption below 800 Hz remains higher than 0.8. Finally, two multi-cell plate-type samples are fabricated and then used experimentally to measure the STLs in support of the proposed synergetic coupling design method. Both the computational and experimental results demonstrate that the proposed synergetic design concept could effectively initiate a design for metamaterials that offer a new degree of freedom for broadband sound attenuations.

  5. Concerning the generation of geomagnetic giant pulsations by drift-bounce resonance ring current instabilities

    Directory of Open Access Journals (Sweden)

    K.-H. Glassmeier

    Full Text Available Giant pulsations are nearly monochromatic ULF-pulsations of the Earth's magnetic field with periods of about 100 s and amplitudes of up to 40 nT. For one such event ground-magnetic observations as well as simultaneous GEOS-2 magnetic and electric field data and proton flux measurements made in the geostationary orbit have been analysed. The observations of the electromagnetic field indicate the excitation of an odd-mode type fundamental field line oscillation. A clear correlation between variations of the proton flux in the energy range 30-90 keV with the giant pulsation event observed at the ground is found. Furthermore, the proton phase space density exhibits a bump-on-the-tail signature at about 60 keV. Assuming a drift-bounce resonance instability as a possible generation mechanism, the azimuthal wave number of the pulsation wave field may be determined using a generalized resonance condition. The value determined in this way, 
    m
    = - 21 ± 4, is in accord with the value m = - 27 ± 6 determined from ground-magnetic measurements. A more detailed examination of the observed ring current plasma distribution function f shows that odd-mode type eigenoscillations are expected for the case ∂f / ∂W > 0, much as observed. This result is different from previous theoretical studies as we not only consider local gradients of the distribution function in real space, but also in velocity space. It is therefore concluded that the observed giant pulsation is the result of a drift-bounce resonance instability of the ring current plasma coupling to an odd-mode fundamental standing wave. The generation of the bump-on-the-tail distribution causing ∂f / ∂W > 0 can be explained due to velocity dispersion of protons injected into the ring current. Both this velocity dispersion and the necessary substorm activity causing the injection of protons into the nightside magnetosphere are observed

  6. Concerning the generation of geomagnetic giant pulsations by drift-bounce resonance ring current instabilities

    Directory of Open Access Journals (Sweden)

    K.-H. Glassmeier

    1999-03-01

    Full Text Available Giant pulsations are nearly monochromatic ULF-pulsations of the Earth's magnetic field with periods of about 100 s and amplitudes of up to 40 nT. For one such event ground-magnetic observations as well as simultaneous GEOS-2 magnetic and electric field data and proton flux measurements made in the geostationary orbit have been analysed. The observations of the electromagnetic field indicate the excitation of an odd-mode type fundamental field line oscillation. A clear correlation between variations of the proton flux in the energy range 30-90 keV with the giant pulsation event observed at the ground is found. Furthermore, the proton phase space density exhibits a bump-on-the-tail signature at about 60 keV. Assuming a drift-bounce resonance instability as a possible generation mechanism, the azimuthal wave number of the pulsation wave field may be determined using a generalized resonance condition. The value determined in this way,  m = - 21 ± 4, is in accord with the value m = - 27 ± 6 determined from ground-magnetic measurements. A more detailed examination of the observed ring current plasma distribution function f shows that odd-mode type eigenoscillations are expected for the case ∂f / ∂W > 0, much as observed. This result is different from previous theoretical studies as we not only consider local gradients of the distribution function in real space, but also in velocity space. It is therefore concluded that the observed giant pulsation is the result of a drift-bounce resonance instability of the ring current plasma coupling to an odd-mode fundamental standing wave. The generation of the bump-on-the-tail distribution causing ∂f / ∂W > 0 can be explained due to velocity dispersion of protons injected into the ring current. Both this velocity dispersion and the necessary substorm activity causing the injection of protons into the nightside magnetosphere are observed.Key words. Magnetospheric physics (energetic particles , trapped

  7. Permanent magnetic ferrite based power-tunable metamaterials

    Science.gov (United States)

    Zhang, Guanqiao; Lan, Chuwen; Gao, Rui; Zhou, Ji

    2017-08-01

    Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated in this research. Scattering parameter measurements confirm a shift in resonant frequency in correlation to changes in incident electromagnetic power within microwave frequency band. The tunable phenomenon represented by a blue-shift in transmission spectra in the metamaterials array can be attributed to a decrease in saturation magnetization resulting from FMR-induced temperature elevation upon resonant conditions. This power-dependent behavior offers a simple and practical route towards dynamically fine-tunable ferrite metamaterials.

  8. Application of quantum-dot multi-wavelength lasers and silicon photonic ring resonators to data-center optical interconnects

    Science.gov (United States)

    Beckett, Douglas J. S.; Hickey, Ryan; Logan, Dylan F.; Knights, Andrew P.; Chen, Rong; Cao, Bin; Wheeldon, Jeffery F.

    2018-02-01

    Quantum dot comb sources integrated with silicon photonic ring-resonator filters and modulators enable the realization of optical sub-components and modules for both inter- and intra-data-center applications. Low-noise, multi-wavelength, single-chip, laser sources, PAM4 modulation and direct detection allow a practical, scalable, architecture for applications beyond 400 Gb/s. Multi-wavelength, single-chip light sources are essential for reducing power dissipation, space and cost, while silicon photonic ring resonators offer high-performance with space and power efficiency.

  9. Microwave Metamaterial-Based Sensor for Dielectric Characterization of Liquids.

    Science.gov (United States)

    Soffiatti, André; Max, Yuri; G Silva, Sandro; M de Mendonça, Laércio

    2018-05-11

    This article proposed to build a system founded on metamaterial sensor antennas, which can be used to evaluate impurities in aqueous substances according to the quality of transmission between the sensor antennas. In order to do this, a dedicated setup with tests in several frequencies was deployed so as to monitor the behavior of transmission variation between sensors. These sensors are microstrip antennas with a ground plane of resonant cleaved metallic rings; the substrate functions as a metamaterial for the irradiating element. In this study, an analysis was made of transmission between the sensors, looking for variation in angles of incidence of signal and of distance between the antennas. The sensor was tested at various operating frequencies, as such 1.8 GHz, 2.4 GHz, 3.4 GHz and 4.1 GHz, resulting in different values of sensitivity. The prototypes were constructed and tested so as to analyze the dielectric effects of the impurities on NaCl and C₂H₄O₂ substances. The research aims to use these control systems of impurities in industrial premises.

  10. Neural Model for Left-Handed CPW Bandpass Filter Loaded Split Ring Resonator

    Science.gov (United States)

    Liu, Haiwen; Wang, Shuxin; Tan, Mingtao; Zhang, Qijun

    2010-02-01

    Compact left-handed coplanar waveguide (CPW) bandpass filter loaded split ring resonator (SRR) is presented in this paper. The proposed filter exhibits a quasi-elliptic function response and its circuit size occupies only 12 × 11.8 mm2 (≈0.21 λg × 0.20 λg). Also, a simple circuit model is given and the parametric study of this filter is discussed. Then, with the aid of NeuroModeler software, a five-layer feed-forward perceptron neural networks model is built up to optimize the proposed filter design fast and accurately. Finally, this newly left-handed CPW bandpass filter was fabricated and measured. A good agreement between simulations and measurement verifies the proposed left-handed filter and the validity of design methodology.

  11. Compact and Wide Stopband Lowpass Filter Using Open Complementary Split Ring Resonator and Defected Ground Structure

    Directory of Open Access Journals (Sweden)

    S. S. Karthikeyan

    2015-09-01

    Full Text Available A compact (0.16 λg x 0.08 λg and wide stop¬band lowpass filter design using open complementary split ring resonator (OCSRR and defected ground structure (DGS is presented in this paper. Low pass filter is con-structed using two cascaded stages of OCSRR. Since the rejection bandwidth of the OCSRR is narrow, tapered dumbbell shaped DGS section is placed under the OCSRR to enhance the bandwidth. The cutoff frequency (fc of the proposed lowpass filter is 1.09 GHz. The rejection band¬width of the filter covers the entire ultra wideband spec¬trum. Hence the spurious passband suppression is achieved up to 10 fc. The designed filter has been fabri¬cated and validated by experimental results

  12. Photonic crystal ring resonator based optical filters for photonic integrated circuits

    International Nuclear Information System (INIS)

    Robinson, S.

    2014-01-01

    In this paper, a two Dimensional (2D) Photonic Crystal Ring Resonator (PCRR) based optical Filters namely Add Drop Filter, Bandpass Filter, and Bandstop Filter are designed for Photonic Integrated Circuits (PICs). The normalized output response of the filters is obtained using 2D Finite Difference Time Domain (FDTD) method and the band diagram of periodic and non-periodic structure is attained by Plane Wave Expansion (PWE) method. The size of the device is minimized from a scale of few tens of millimeters to the order of micrometers. The overall size of the filters is around 11.4 μm × 11.4 μm which is highly suitable of photonic integrated circuits

  13. Linearity optimizations of analog ring resonator modulators through bias voltage adjustments

    Science.gov (United States)

    Hosseinzadeh, Arash; Middlebrook, Christopher T.

    2018-03-01

    The linearity of ring resonator modulator (RRM) in microwave photonic links is studied in terms of instantaneous bandwidth, fabrication tolerances, and operational bandwidth. A proposed bias voltage adjustment method is shown to maximize spur-free dynamic range (SFDR) at instantaneous bandwidths required by microwave photonic link (MPL) applications while also mitigating RRM fabrication tolerances effects. The proposed bias voltage adjustment method shows RRM SFDR improvement of ∼5.8 dB versus common Mach-Zehnder modulators at 500 MHz instantaneous bandwidth. Analyzing operational bandwidth effects on SFDR shows RRMs can be promising electro-optic modulators for MPL applications which require high operational frequencies while in a limited bandwidth such as radio-over-fiber 60 GHz wireless network access.

  14. Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits

    International Nuclear Information System (INIS)

    Canciamilla, A; Torregiani, M; Ferrari, C; Morichetti, F; Melloni, A; De La Rue, R M; Samarelli, A; Sorel, M

    2010-01-01

    Coupled-ring resonator-based slow light structures are reported and discussed. By combining the advantages of high index contrast silicon-on-insulator technology with an efficient thermo-optical activation, they provide an on-chip solution with a bandwidth of up to 100 GHz and a slowdown factor of up to 16, as well as a continuous reconfiguration scheme and a fine tunability. The performance of these devices is investigated in detail for both static and dynamic operation, in order to evaluate their potential in optical signal processing applications at high bit rate. The main impairments imposed by fabrication imperfections are also discussed in relation to the slowdown factor. In particular, the analysis of the impact of backscatter, disorder and two-photon absorption on the device transfer function reveals the ultimate limits of these structures and provides valuable design rules for their optimization

  15. UWB Bandpass Filter with Ultra-wide Stopband based on Ring Resonator

    Science.gov (United States)

    Kazemi, Maryam; Lotfi, Saeedeh; Siahkamari, Hesam; Mohammadpanah, Mahmood

    2018-04-01

    An ultra-wideband (UWB) bandpass filter with ultra-wide stopband based on a rectangular ring resonator is presented. The filter is designed for the operational frequency band from 4.10 GHz to 10.80 GHz with an ultra-wide stopband from 11.23 GHz to 40 GHz. The even and odd equivalent circuits are used to achieve a suitable analysis of the proposed filter performance. To verify the design and analysis, the proposed bandpass filter is simulated using full-wave EM simulator Advanced Design System and fabricated on a 20mil thick Rogers_RO4003 substrate with relative permittivity of 3.38 and a loss tangent of 0.0021. The proposed filter behavior is investigated and simulation results are in good agreement with measurement results.

  16. A Compact 5.5 GHz Band-Rejected UWB Antenna Using Complementary Split Ring Resonators

    Directory of Open Access Journals (Sweden)

    M. M. Islam

    2014-01-01

    Full Text Available A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm2, and VSWR < 2, observing band elimination of 5.5 GHz WLAN band.

  17. How to remove the spurious resonances from ring polymer molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Mariana; Manolopoulos, David E. [Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom); Ceriotti, Michele [Laboratory of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)

    2014-06-21

    Two of the most successful methods that are presently available for simulating the quantum dynamics of condensed phase systems are centroid molecular dynamics (CMD) and ring polymer molecular dynamics (RPMD). Despite their conceptual differences, practical implementations of these methods differ in just two respects: the choice of the Parrinello-Rahman mass matrix and whether or not a thermostat is applied to the internal modes of the ring polymer during the dynamics. Here, we explore a method which is halfway between the two approximations: we keep the path integral bead masses equal to the physical particle masses but attach a Langevin thermostat to the internal modes of the ring polymer during the dynamics. We justify this by showing analytically that the inclusion of an internal mode thermostat does not affect any of the established features of RPMD: thermostatted RPMD is equally valid with respect to everything that has actually been proven about the method as RPMD itself. In particular, because of the choice of bead masses, the resulting method is still optimum in the short-time limit, and the transition state approximation to its reaction rate theory remains closely related to the semiclassical instanton approximation in the deep quantum tunneling regime. In effect, there is a continuous family of methods with these properties, parameterised by the strength of the Langevin friction. Here, we explore numerically how the approximation to quantum dynamics depends on this friction, with a particular emphasis on vibrational spectroscopy. We find that a broad range of frictions approaching optimal damping give similar results, and that these results are immune to both the resonance problem of RPMD and the curvature problem of CMD.

  18. How to remove the spurious resonances from ring polymer molecular dynamics

    International Nuclear Information System (INIS)

    Rossi, Mariana; Manolopoulos, David E.; Ceriotti, Michele

    2014-01-01

    Two of the most successful methods that are presently available for simulating the quantum dynamics of condensed phase systems are centroid molecular dynamics (CMD) and ring polymer molecular dynamics (RPMD). Despite their conceptual differences, practical implementations of these methods differ in just two respects: the choice of the Parrinello-Rahman mass matrix and whether or not a thermostat is applied to the internal modes of the ring polymer during the dynamics. Here, we explore a method which is halfway between the two approximations: we keep the path integral bead masses equal to the physical particle masses but attach a Langevin thermostat to the internal modes of the ring polymer during the dynamics. We justify this by showing analytically that the inclusion of an internal mode thermostat does not affect any of the established features of RPMD: thermostatted RPMD is equally valid with respect to everything that has actually been proven about the method as RPMD itself. In particular, because of the choice of bead masses, the resulting method is still optimum in the short-time limit, and the transition state approximation to its reaction rate theory remains closely related to the semiclassical instanton approximation in the deep quantum tunneling regime. In effect, there is a continuous family of methods with these properties, parameterised by the strength of the Langevin friction. Here, we explore numerically how the approximation to quantum dynamics depends on this friction, with a particular emphasis on vibrational spectroscopy. We find that a broad range of frictions approaching optimal damping give similar results, and that these results are immune to both the resonance problem of RPMD and the curvature problem of CMD

  19. Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull's-eye-shaped metamaterial.

    Science.gov (United States)

    Kim, Jaeyoun; Soref, Richard; Buchwald, Walter R

    2010-08-16

    We investigate the electromagnetic response of the concentric multi-ring, or the bull's eye, structure as an extension of the dual-ring metamaterial which exhibits electromagnetically-induced transparency (EIT)-like transmission characteristics. Our results show that adding inner rings produces additional EIT-like peaks, and widens the metamaterial's spectral range of operation. Analyses of the dispersion characteristics and induced current distribution further confirmed the peak's EIT-like nature. Impacts of structural and dielectric parameters are also investigated.

  20. Optically controlled redshift switching effects in hybrid fishscale metamaterials

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2018-05-01

    Full Text Available We numerically demonstrate optically controlled THz response in a hybrid fishscale metamaterial with embedded photoconductive silicon at oblique incidence of TE wave. The oblique incidence allows excitation of Fano-type trapped mode resonance in a 2-fold rotational symmetric metamaterial. The hybrid fishscale metamaterial exhibits an optically controlled redshift switching effect in the THz range. The switching effect is dominated by the conductivity of the silicon instead of mechanically adjusting angles of incidence. The tuning frequency range is up to 0.3THz with a large modulation depth and high transmission in the “ON” state. The fishscale metamaterial-based switching has been experimentally verified by its microwave counterpart integrated by variable resistors. Our work provides an alternative route to realize tunable Fano-type response in metamaterials and is of importance to active manipulation, sensing and switching of THz waves in practical applications.

  1. Optically controlled redshift switching effects in hybrid fishscale metamaterials

    Science.gov (United States)

    Wang, Yu; Zhu, Jinwei; Zhang, Hao; Zhang, Wenxing; Dong, Guohua; Ye, Peng; Lv, Tingting; Zhu, Zheng; Li, Yuxiang; Guan, Chunying; Shi, Jinhui

    2018-05-01

    We numerically demonstrate optically controlled THz response in a hybrid fishscale metamaterial with embedded photoconductive silicon at oblique incidence of TE wave. The oblique incidence allows excitation of Fano-type trapped mode resonance in a 2-fold rotational symmetric metamaterial. The hybrid fishscale metamaterial exhibits an optically controlled redshift switching effect in the THz range. The switching effect is dominated by the conductivity of the silicon instead of mechanically adjusting angles of incidence. The tuning frequency range is up to 0.3THz with a large modulation depth and high transmission in the "ON" state. The fishscale metamaterial-based switching has been experimentally verified by its microwave counterpart integrated by variable resistors. Our work provides an alternative route to realize tunable Fano-type response in metamaterials and is of importance to active manipulation, sensing and switching of THz waves in practical applications.

  2. RF-to-RF Characterization of a Phased Array Receive Antenna Steering System Using a Novel Ring Resonator-Based Integrated Photonic Beamformer

    NARCIS (Netherlands)

    Zhuang, L.; Burla, M.; Roeloffzen, C.G.H.; Meijerink, Arjan; Marpaung, D.A.I.; Khan, M.R.H.; van Etten, Wim; Leinse, Arne; Hoekman, M.; Heideman, Rene

    2009-01-01

    A novel ring resonator-based photonic beamformer has been developed for continuous and squint-free control of the reception angle of broadband phased array antenna systems. The core of the system is a ring resonator based optical beamforming network (OBFN) used for delay synchronization and coherent

  3. A Microwave Ring-Resonator Sensor for Non-Invasive Assessment of Meat Aging

    Science.gov (United States)

    Jilani, Muhammad Taha; Wen, Wong Peng; Cheong, Lee Yen; ur Rehman, Muhammad Zaka

    2016-01-01

    The assessment of moisture loss from meat during the aging period is a critical issue for the meat industry. In this article, a non-invasive microwave ring-resonator sensor is presented to evaluate the moisture content, or more precisely water holding capacity (WHC) of broiler meat over a four-week period. The developed sensor has shown significant changes in its resonance frequency and return loss due to reduction in WHC in the studied duration. The obtained results are also confirmed by physical measurements. Further, these results are evaluated using the Fricke model, which provides a good fit for electric circuit components in biological tissue. Significant changes were observed in membrane integrity, where the corresponding capacitance decreases 30% in the early aging (0D-7D) period. Similarly, the losses associated with intracellular and extracellular fluids exhibit changed up to 42% and 53%, respectively. Ultimately, empirical polynomial models are developed to predict the electrical component values for a better understanding of aging effects. The measured and calculated values are found to be in good agreement. PMID:26805828

  4. Generation of THz frequency using PANDA ring resonator for THz imaging

    Directory of Open Access Journals (Sweden)

    Ong CT

    2012-02-01

    Full Text Available MA Jalil1, Afroozeh Abdolkarim2, T Saktioto2, CT Ong3, Preecha P Yupapin41Ibnu Sina Institute of Fundamental Science Studies, Nanotechnology Research Alliance, Universiti Teknologi Malaysia (UTM,81310, Johor Bahru, Malaysia; 2Institute of Advanced Photonics Science, Nanotechnology Research Alliance, Universiti Teknologi Malaysia (UTM, 81310, Johor Bahru, Malaysia; 3Department of Mathematics, Universiti Teknologi Malaysia 81310 Skudai, Johor Bahru, Malaysia; 4Nanoscale Science and Engineering Research Alliance (N'SERA, Advanced Research Center for Photonics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, ThailandAbstract: In this study, we have generated terahertz (THz frequency by a novel design of microring resonators for medical applications. The dense wavelength-division multiplexing can be generated and obtained by using a Gaussian pulse propagating within a modified PANDA ring resonator and an add/drop filter system. Our results show that the THz frequency region can be obtained between 40–50 THz. This area of frequency provides a reliable frequency band for THz pulsed imaging.Keywords: THz imaging, THz technology, MRRs, PANDA, add/drop filter

  5. A small-angle camera for resonant scattering experiments at the storage ring DORIS

    International Nuclear Information System (INIS)

    Stuhrmann, H.B.; Gabriel, A.

    1983-01-01

    Resonant small-angle scattering is measured routinely in the wavelength range of 0.6 to 3.25 A with the instrument X15 at the storage ring DORIS. The monochromatic beam with a vertical offset of 1.22 m is achieved by a double monochromator system with a constant exit slit. The small-angle instrument allows for sample-detector distances between 0.37 and 7.33 m. A multiwire proportional counter with a sensitive area of 200 X 200 mm detects the scattered intensity with a spatial resolution of 2 X 2 mm. Its sensitivity can be adapted to the requirements of the experiment by activating a drift chamber of 8 cm depth at the back end of the detector. The performance of the instrument as a function of the wavelength is described. The energy resolution is about 1 eV at the L 3 absorption edge of caesium, as shown by the resonant scattering of ferritin in 30% CsCl solution. (Auth.)

  6. A Microwave Ring-Resonator Sensor for Non-Invasive Assessment of Meat Aging

    Directory of Open Access Journals (Sweden)

    Muhammad Taha Jilnai

    2016-01-01

    Full Text Available The assessment of moisture loss from meat during the aging period is a critical issue for the meat industry. In this article, a non-invasive microwave ring-resonator sensor is presented to evaluate the moisture content, or more precisely water holding capacity (WHC of broiler meat over a four-week period. The developed sensor has shown significant changes in its resonance frequency and return loss due to reduction in WHC in the studied duration. The obtained results are also confirmed by physical measurements. Further, these results are evaluated using the Fricke model, which provides a good fit for electric circuit components in biological tissue. Significant changes were observed in membrane integrity, where the corresponding capacitance decreases 30% in the early aging (0D-7D period. Similarly, the losses associated with intracellular and extracellular fluids exhibit changed up to 42% and 53%, respectively. Ultimately, empirical polynomial models are developed to predict the electrical component values for a better understanding of aging effects. The measured and calculated values are found to be in good agreement.

  7. Polycrystalline silicon ring resonator photodiodes in a bulk complementary metal-oxide-semiconductor process.

    Science.gov (United States)

    Mehta, Karan K; Orcutt, Jason S; Shainline, Jeffrey M; Tehar-Zahav, Ofer; Sternberg, Zvi; Meade, Roy; Popović, Miloš A; Ram, Rajeev J

    2014-02-15

    We present measurements on resonant photodetectors utilizing sub-bandgap absorption in polycrystalline silicon ring resonators, in which light is localized in the intrinsic region of a p+/p/i/n/n+ diode. The devices, operating both at λ=1280 and λ=1550  nm and fabricated in a complementary metal-oxide-semiconductor (CMOS) dynamic random-access memory emulation process, exhibit detection quantum efficiencies around 20% and few-gigahertz response bandwidths. We observe this performance at low reverse biases in the range of a few volts and in devices with dark currents below 50 pA at 10 V. These results demonstrate that such photodetector behavior, previously reported by Preston et al. [Opt. Lett. 36, 52 (2011)], is achievable in bulk CMOS processes, with significant improvements with respect to the previous work in quantum efficiency, dark current, linearity, bandwidth, and operating bias due to additional midlevel doping implants and different material deposition. The present work thus offers a robust realization of a fully CMOS-fabricated all-silicon photodetector functional across a wide wavelength range.

  8. Qubit entanglement between ring-resonator photon-pair sources on a silicon chip

    Science.gov (United States)

    Silverstone, J. W.; Santagati, R.; Bonneau, D.; Strain, M. J.; Sorel, M.; O'Brien, J. L.; Thompson, M. G.

    2015-01-01

    Entanglement—one of the most delicate phenomena in nature—is an essential resource for quantum information applications. Scalable photonic quantum devices must generate and control qubit entanglement on-chip, where quantum information is naturally encoded in photon path. Here we report a silicon photonic chip that uses resonant-enhanced photon-pair sources, spectral demultiplexers and reconfigurable optics to generate a path-entangled two-qubit state and analyse its entanglement. We show that ring-resonator-based spontaneous four-wave mixing photon-pair sources can be made highly indistinguishable and that their spectral correlations are small. We use on-chip frequency demultiplexers and reconfigurable optics to perform both quantum state tomography and the strict Bell-CHSH test, both of which confirm a high level of on-chip entanglement. This work demonstrates the integration of high-performance components that will be essential for building quantum devices and systems to harness photonic entanglement on the large scale. PMID:26245267

  9. Time-domain electric field enhancement on micrometer scale in coupled split ring resonator upon terahertz radiation

    DEFF Research Database (Denmark)

    Lange, Simon Lehnskov; Iwaszczuk, Krzysztof; Hoffmann, Matthias

    2016-01-01

    We present here a novel design for a coupled split ring resonator antenna optimized for time-domain electric field enhancement in the 0.1 to 1 terahertz (THz) range. The antenna is designed to be sensitive to the incident field polarization and seeks to avoid metal damage due to electron bombardm...

  10. Pulse advancement and delay in an integrated optical two-port ring-resonator circuit: direct experimental observations

    NARCIS (Netherlands)

    Uranus, H.P.; Zhuang, L.; Roeloffzen, C.G.H.; Hoekstra, Hugo

    We report experimental observations of the negative-group-velocity (v_g) phenomenon in an integrated-optical two-port ring-resonator circuit. We demonstrate that when the v_g is negative, the (main) peak of output pulse appears earlier than the peak of a reference pulse, while for a positive v_g,

  11. Ring resonator-based single-chip 1x8 optical beam forming network in LPCVD waveguide technology

    NARCIS (Netherlands)

    Zhuang, L.; Roeloffzen, C.G.H.; Heideman, Rene; Borreman, A.; Meijerink, Arjan; van Etten, Wim; Koonen, A.M.J.; Leijtens, X.J.M.; van den Boom, H.P.A.; Verdurmen, E.J.M.; Molina Vázquez, J.

    2006-01-01

    Optical ring resonators (ORRs) are good candidates to provide continuously tunable delay in beam forming networks (BFNs) for phased array antenna systems. Delay and splitting/combining elements can be integrated on a single optical chip to form an OBFN. A state-of-the-art 1×8 OBFN chip has been

  12. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas - part 2: experimental prototype

    NARCIS (Netherlands)

    Zhuang, L.; Roeloffzen, C.G.H.; Meijerink, Arjan; Burla, M.; Marpaung, D.A.I.; Leinse, Arne; Hoekman, M.; Heideman, Rene; van Etten, Wim

    2010-01-01

    An experimental prototype is presented that illustrates the implementation aspects and feasibility of the novel ring resonator-based optical beamformer concept that has been developed and analyzed in Part I of this paper . This concept can be used for seamless control of the reception angle in

  13. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas - part 1: design and performance analysis

    NARCIS (Netherlands)

    Meijerink, Arjan; Roeloffzen, C.G.H.; Meijerink, Roland; Zhuang, L.; Marpaung, D.A.I.; Bentum, Marinus Jan; Burla, M.; Verpoorte, Jaco; Jorna, Pieter; Huizinga, Adriaan; van Etten, Wim

    2010-01-01

    A novel optical beamformer concept is introduced that can be used for seamless control of the reception angle in broadband wireless receivers employing a large phased array antenna (PAA). The core of this beamformer is an optical beamforming network (OBFN), using ring resonator-based broadband

  14. A microsphere suspension model of metamaterial fluids

    Directory of Open Access Journals (Sweden)

    Qian Duan

    2017-05-01

    Full Text Available Drawing an analogy to the liquid phase of natural materials, we theoretically propose a microsphere suspension model to realize a metamaterial fluid with artificial electromagnetic indexes. By immersing high-ε, micrometer-sized dielectric spheres in a low-ε insulating oil, the structured fluid exhibits liquid-like properties from dispersing phase as well as the isotropic negative electromagnetic parameters caused by Mie resonances from dispersed microspheres. The work presented here will benefit the development of structured fluids toward metamaterials.

  15. Equivalent circuit analysis of terahertz metamaterial filters

    KAUST Repository

    Zhang, Xueqian

    2011-01-01

    An equivalent circuit model for the analysis and design of terahertz (THz) metamaterial filters is presented. The proposed model, derived based on LMC equivalent circuits, takes into account the detailed geometrical parameters and the presence of a dielectric substrate with the existing analytic expressions for self-inductance, mutual inductance, and capacitance. The model is in good agreement with the experimental measurements and full-wave simulations. Exploiting the circuit model has made it possible to predict accurately the resonance frequency of the proposed structures and thus, quick and accurate process of designing THz device from artificial metamaterials is offered. ©2011 Chinese Optics Letters.

  16. Identifying the perfect absorption of metamaterial absorbers

    Science.gov (United States)

    Duan, G.; Schalch, J.; Zhao, X.; Zhang, J.; Averitt, R. D.; Zhang, X.

    2018-01-01

    We present a detailed analysis of the conditions that result in unity absorption in metamaterial absorbers to guide the design and optimization of this important class of functional electromagnetic composites. Multilayer absorbers consisting of a metamaterial layer, dielectric spacer, and ground plane are specifically considered. Using interference theory, the dielectric spacer thickness and resonant frequency for unity absorption can be numerically determined from the functional dependence of the relative phase shift of the total reflection. Further, using transmission line theory in combination with interference theory we obtain analytical expressions for the unity absorption resonance frequency and corresponding spacer layer thickness in terms of the bare resonant frequency of the metamaterial layer and metallic and dielectric losses within the absorber structure. These simple expressions reveal a redshift of the unity absorption frequency with increasing loss that, in turn, necessitates an increase in the thickness of the dielectric spacer. The results of our analysis are experimentally confirmed by performing reflection-based terahertz time-domain spectroscopy on fabricated absorber structures covering a range of dielectric spacer thicknesses with careful control of the loss accomplished through water absorption in a semiporous polyimide dielectric spacer. Our findings can be widely applied to guide the design and optimization of the metamaterial absorbers and sensors.

  17. Advances in active and nonlinear metamaterials

    Science.gov (United States)

    Boardman, A. D.; Mitchell-Thomas, R. C.; Rapoport, Y. G.

    2012-09-01

    Metamaterial research is an extremely important global activity that promises to change our lives in many different ways. These include making objects invisible and the dramatic impact of metamaterials upon the energy and medical sectors of society. Behind all of the applications, however, lies the business of creating metamaterials that are not going to be crippled by the kind of loss that is naturally heralded by use of resonant responses in their construction. Under the general heading of active and tunable metamaterials, an elegant route to the inclusion of nonlinearity and waveguide complexity coupled to soliton behavior suggested by forms of transformation dynamics is presented. In addition, various discussions will be framed within a magnetooptical environment that deploys externally applied magnetic field orientations. Light can then be directed to achieve energy control and be deployed for a variety of outcomes. Quite apart from the fact that the manufacture of metamaterials is attracting such a lot of global attention, the ability to control light, for example, in these materials is also immensely interesting and will lead to a new dawn of integrated circuits and computers. Recognizing the role of nonlinearity raises the possibility that dramatic manufacturing and applications are on the horizon.

  18. Vibrant times for mechanical metamaterials

    DEFF Research Database (Denmark)

    Christensen, Johan; Kadic, Muamer; Kraft, Oliver

    2015-01-01

    Metamaterials are man-made designer matter that obtains its unusual effective properties by structure rather than chemistry. Building upon the success of electromagnetic and acoustic metamaterials, researchers working on mechanical metamaterials strive at obtaining extraordinary or extreme...... mass density, negative modulus, pentamode, anisotropic mass density, Origami, nonlinear, bistable, and reprogrammable mechanical metamaterials....

  19. Measurement of resonance modes causative of beam position monitor signal noise in vacuum chamber of storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Youngdo; Hwang, Ilmoon; Park, Sungju [Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kim, Changbum, E-mail: chbkim@postech.ac.k [Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2011-05-11

    It is known that the position reading obtained from the beam position monitor (BPM) mounted at the storage ring can be corrupted by the resonance mode. We carried out a three dimensional finite-difference time-domain (FDTD) simulation of vacuum chambers of the storage ring of the Pohang Light Source (PLS) without simplified modeling to measure the frequencies of resonance modes excited in the vacuum chamber. The frequencies of resonance modes obtained by the eigenmode simulation are well matched with the peak frequencies of RF transmission scattering matrix (S{sub 21}) graph of sector vacuum chamber measured using a network analyzer. It is found that a transverse electric (TE) resonance mode exists in the operation frequency band of BPM and the vertically oriented electric field of TE resonance mode is linked to the BPM position reading noise. Based on this study, we can easily design a vacuum chamber free from the BPM position reading noise caused by the TE resonance mode.

  20. The properties of electromagnetic responses and optical modulation in terahertz metamaterials

    Science.gov (United States)

    Chen, Wei; Shi, Yulei; Wang, Wei; Zhou, Qingli; Zhang, Cunlin

    2016-11-01

    Metamaterials with subwavelength structural features show unique electromagnetic responses that are unattainable with natural materials. Recently, the research on these artificial materials has been pushed forward to the terahertz (THz) region because of potential applications in biological fingerprinting, security imaging, and high frequency magnetic and electric resonant devices. Furthermore, active control of their properties could further facilitate and open up new applications in terms of modulation and switching. In our work, we will first present our studies of dipole arrays at terahertz frequencies. Then in experimental and theoretical studies of terahertz subwavelength L-shaped structure, we proposed an unusual-mode current resonance responsible for low-frequency characteristic dip in transmission spectra. Comparing spectral properties of our designed simplified structures with that of split-ring resonators, we attribute this unusual mode to the resonance coupling and splitting under the broken symmetry of the structure. Finally, we use optical pump-terahertz probe method to investigate the spectral and dynamic behaviour of optical modulation in the split-ring resonators. We have observed the blue-shift and band broadening in the spectral changes of transmission under optical excitation at different delay times. The calculated surface currents using finite difference time domain simulation are presented to characterize these resonances, and the blue-shift can be explained by the changed refractive index and conductivity in the photoexcited semiconductor substrate.

  1. Investigation of graphene-integrated tunable metamaterials in THz regime

    Science.gov (United States)

    Demir, S. Mahircan; Yüksek, Yahya; Sabah, Cumali

    2018-05-01

    A metallic fishnet metamaterial structure in sub-THz region is presented. The proposed structure is based on hexagonal resonators. Simulations have been performed by a 3D full-wave electromagnetic simulator and a negative refractive index has been observed at the frequency range between 0.55 and 0.70 THz with the help of the graphene layer. In order to observe the effect of the graphene layer, the metamaterial structure has been simulated and examined before and after graphene integration. Significant modification in the propagation properties has been observed after the graphene integration. Change in S-parameters with the size variation of hexagonal resonators and alteration in graphene thickness are also presented as a parametric study to show the tunability of the structure. Suitability of the metamaterial for sensor applications has been investigated. The proposed metamaterial structure is promising to be effectively used for tunability and sensor applications.

  2. Passive THz metamaterials

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Malureanu, Radu; Zalkovskij, Maksim

    2012-01-01

    In this work we present our activities in the fabrication and characterization of passive THz metamaterials. We use two fabrication processes to develop metamaterials either as free-standing metallic membranes or patterned metallic multi-layers on the substrates to achieve different functionalities...

  3. Granular metamaterials for vibration mitigation

    Science.gov (United States)

    Gantzounis, G.; Serra-Garcia, M.; Homma, K.; Mendoza, J. M.; Daraio, C.

    2013-09-01

    Acoustic metamaterials that allow low-frequency band gaps are interesting for many practical engineering applications, where vibration control and sound insulation are necessary. In most prior studies, the mechanical response of these structures has been described using linear continuum approximations. In this work, we experimentally and theoretically address the formation of low-frequency band gaps in locally resonant granular crystals, where the dynamics of the system is governed by discrete equations. We investigate the quasi-linear behavior of such structures. The analysis shows that a stopband can be introduced at about one octave lower frequency than in materials without local resonances. Broadband and multi-frequency stopband characteristics can also be achieved by strategically tailoring the non-uniform local resonance parameters.

  4. Chip-integrated optical power limiter based on an all-passive micro-ring resonator

    Science.gov (United States)

    Yan, Siqi; Dong, Jianji; Zheng, Aoling; Zhang, Xinliang

    2014-10-01

    Recent progress in silicon nanophotonics has dramatically advanced the possible realization of large-scale on-chip optical interconnects integration. Adopting photons as information carriers can break the performance bottleneck of electronic integrated circuit such as serious thermal losses and poor process rates. However, in integrated photonics circuits, few reported work can impose an upper limit of optical power therefore prevent the optical device from harm caused by high power. In this study, we experimentally demonstrate a feasible integrated scheme based on a single all-passive micro-ring resonator to realize the optical power limitation which has a similar function of current limiting circuit in electronics. Besides, we analyze the performance of optical power limiter at various signal bit rates. The results show that the proposed device can limit the signal power effectively at a bit rate up to 20 Gbit/s without deteriorating the signal. Meanwhile, this ultra-compact silicon device can be completely compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may pave the way of very large scale integrated photonic circuits for all-optical information processors and artificial intelligence systems.

  5. A Novel Symmetrical Split Ring Resonator Based on Microstrip for Microwave Sensors

    Directory of Open Access Journals (Sweden)

    Alahnomi Rammah A.

    2016-02-01

    Full Text Available In this paper, novel symmetrical split ring resonator (SSRR is proposed as a suitable component for performance enhancement of microwave sensors. SSRR has been employed for enhancing the insertion loss of the microwave sensors. Using the same device area, we can achieve a high Q-factor of 141.54 from the periphery enhancement using Quasi-linear coupling SSRR, whereas loose coupling SSRR can achieve a Q-factor of 33.98 only. Using Quasi-linear coupling SSRR, the Q-factor is enhanced 4.16 times the loose coupling SSRR using the same device area. After the optimization was made, the SSRR sensor with loose coupling scheme has achieved a very high Qfactor value around 407.34 while quasi-linear scheme has achieved high Q-factor value of 278.78 at the same operating frequency with smaller insertion loss. Spurious passbands at 1st, 2nd, 3rd, and 4th harmonics have been completely suppressed well above -20 dB rejection level without visible changes in the passband filter characteristics. The most significant of using SSRR is to be used for various industrial applications such as food industry, quality control, bio-sensing medicine and pharmacy. The simulation result that Quasi-linear coupling SSRR is a viable candidate for the performance enhancement of microwave sensors has been verified.

  6. Terahertz metamaterials and systems based on rolled-up 3D elements: designs, technological approaches, and properties

    Science.gov (United States)

    Prinz, Victor Ya.; Naumova, Elena V.; Golod, Sergey V.; Seleznev, Vladimir A.; Bocharov, Andrey A.; Kubarev, Vitaliy V.

    2017-01-01

    Electromagnetic metamaterials opened the way to extraordinary manipulation of radiation. Terahertz (THz) and optical metamaterials are usually fabricated by traditional planar-patterning approaches, while the majority of practical applications require metamaterials with 3D resonators. Making arrays of precise 3D micro- and nanoresonators is still a challenging problem. Here we present a versatile set of approaches to fabrication of metamaterials with 3D resonators rolled-up from strained films, demonstrate novel THz metamaterials/systems, and show giant polarization rotation by several chiral metamaterials/systems. The polarization spectra of chiral metamaterials on semiconductor substrates exhibit ultrasharp quasiperiodic peaks. Application of 3D printing allowed assembling more complex systems, including the bianisotropic system with optimal microhelices, which showed an extreme polarization azimuth rotation of 85° with drop by 150° at a frequency shift of 0.4%. We refer the quasiperiodic peaks in the polarization spectra of metamaterial systems to the interplay of different resonances, including peculiar chiral waveguide resonance. Formed metamaterials cannot be made by any other presently available technology. All steps of presented fabrication approaches are parallel, IC-compatible and allow mass fabrication with scaling of rolled-up resonators up to visible frequencies. We anticipate that the rolled-up meta-atoms will be ideal building blocks for future generations of commercial metamaterials, devices and systems on their basis. PMID:28256587

  7. Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system

    International Nuclear Information System (INIS)

    Zhan, Shiping; Li, Hongjian; He, Zhihui; Li, Boxun; Yang, Hui; Cao, Guangtao

    2014-01-01

    We report a theoretical and numerical investigation of the plasmon-induced transparency (PIT) effect in a dual-ring resonator-coupled metal–dielectric–metal waveguide system. A transfer matrix method (TMM) is introduced to analyse the transmission and dispersion properties in the transparency window. A tunable PIT is realized in a constant separation design. The phase dispersion and slow-light effect are discussed in both the resonance and non-resonance conditions. Finally, a propagation constant based on the TMM is derived for the periodic system. It is found that the group index in the transparency window of the proposed structure can be easily tuned by the period p, which provides a new understanding, and a group index ∼51 is achieved. The quality factor of resonators can also be effective in adjusting the dispersion relation. These observations could be helpful to fundamental research and applications for integrated plasmonic devices. (paper)

  8. Wireless energy transfer between anisotropic metamaterials shells

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José, E-mail: jsdehesa@upv.es

    2014-06-15

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted.

  9. Wireless energy transfer between anisotropic metamaterials shells

    International Nuclear Information System (INIS)

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José

    2014-01-01

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted

  10. Fabrication of hexagonal star-shaped and ring-shaped patterns arrays by Mie resonance sphere-lens-lithography

    Science.gov (United States)

    Liu, Xianchao; Wang, Jun; Li, Ling; Gou, Jun; Zheng, Jie; Huang, Zehua; Pan, Rui

    2018-05-01

    Mie resonance sphere-lens-lithography has proved to be a good candidate for fabrication of large-area tunable surface nanopattern arrays. Different patterns on photoresist surface are obtained theoretically by adjusting optical coupling among neighboring spheres with different gap sizes. The effect of light reflection from the substrate on the pattern produced on the photoresist with a thin thickness is also discussed. Sub-micron hexagonal star-shaped and ring-shaped patterns arrays are achieved with close-packed spheres arrays and spheres arrays with big gaps, respectively. Changing of star-shaped vertices is induced by different polarization of illumination. Experimental results agree well with the simulation. By using smaller resonance spheres, sub-400 nm star-shaped and ring-shaped patterns can be realized. These tunable patterns are different from results of previous reports and have enriched pattern morphology fabricated by sphere-lens-lithography, which can find application in biosensor and optic devices.

  11. Design of a compact polarizing beam splitter based on a photonic crystal ring resonator with a triangular lattice.

    Science.gov (United States)

    Yu, Tianbao; Huang, Jiehui; Liu, Nianhua; Yang, Jianyi; Liao, Qinghua; Jiang, Xiaoqing

    2010-04-10

    We propose and simulate a new kind of compact polarizing beam splitter (PBS) based on a photonic crystal ring resonator (PCRR) with complete photonic bandgaps. The two polarized states are separated far enough by resonant and nonresonant coupling between the waveguide modes and the microring modes. Some defect holes are utilized to control the beam propagation. The simulated results obtained by the finite-difference time-domain method show that high transmission (over 95%) is obtained and the polarization separation is realized with a length as short as 3.1 microm. The design of the proposed PBS can be flexible, thanks to the advantages of PCRRs.

  12. Planar Microstrip Ring Resonators for Microwave-Based Gas Sensing: Design Aspects and Initial Transducers for Humidity and Ammonia Sensing.

    Science.gov (United States)

    Bogner, Andreas; Steiner, Carsten; Walter, Stefanie; Kita, Jaroslaw; Hagen, Gunter; Moos, Ralf

    2017-10-24

    A planar microstrip ring resonator structure on alumina was developed using the commercial FEM software COMSOL. Design parameters were evaluated, eventually leading to an optimized design of a miniaturized microwave gas sensor. The sensor was covered with a zeolite film. The device was successfully operated at around 8.5 GHz at room temperature as a humidity sensor. In the next step, an additional planar heater will be included on the reverse side of the resonator structure to allow for testing of gas-sensitive materials under sensor conditions.

  13. Design of all-optical memory cell using EIT and lasing without inversion phenomena in optical micro ring resonators

    Science.gov (United States)

    Pasyar, N.; Yadipour, R.; Baghban, H.

    2017-07-01

    The proposed design of the optical memory unit cell contains dual micro ring resonators in which the effect of lasing without inversion (LWI) in three-level nano particles doped over the optical resonators or integrators as the gain segment is used for loss compensation. Also, an on/off phase shifter based on electromagnetically induced transparency (EIT) in three-level quantum dots (QDs) has been used for data reading at requested time. Device minimizing for integrated purposes and high speed data storage are the main advantages of the optical integrator based memory.

  14. Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses

    Science.gov (United States)

    Wang, Guo-Dong; Liu, Ming-Hai; Hu, Xi-Wei; Kong, Ling-Hua; Cheng, Li-Li; Chen, Zhao-Quan

    2014-01-01

    The influence of the gap on the absorption performance of the conventional split ring resonator (SRR) absorber is investigated at microwave frequencies. Our simulated results reveal that the geometry of the square SRR can be equivalent to a Jerusalem cross (JC) resonator and its corresponding metamaterial absorber (MA) is changed to a JC absorber. The JC MA exhibits an experimental absorption peak of 99.1% at 8.72 GHz, which shows an excellent agreement with our simulated results. By simply assembling several JCs with slightly different geometric parameters next to each other into a unit cell, a perfect multi-band absorption can be effectively obtained. The experimental results show that the MA has four distinct and strong absorption peaks at 8.32 GHz, 9.8 GHz, 11.52 GHz and 13.24 GHz. Finally, the multi-reflection interference theory is introduced to interpret the absorption mechanism.

  15. Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron-ion recombination in storage rings

    OpenAIRE

    Schippers, Stefan

    2008-01-01

    Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion-beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, ...

  16. Optical magnetism in planar metamaterial heterostructures.

    Science.gov (United States)

    Papadakis, Georgia T; Fleischman, Dagny; Davoyan, Artur; Yeh, Pochi; Atwater, Harry A

    2018-01-18

    Harnessing artificial optical magnetism has previously required complex two- and three-dimensional structures, such as nanoparticle arrays and split-ring metamaterials. By contrast, planar structures, and in particular dielectric/metal multilayer metamaterials, have been generally considered non-magnetic. Although the hyperbolic and plasmonic properties of these systems have been extensively investigated, their assumed non-magnetic response limits their performance to transverse magnetic (TM) polarization. We propose and experimentally validate a mechanism for artificial magnetism in planar multilayer metamaterials. We also demonstrate that the magnetic properties of high-index dielectric/metal hyperbolic metamaterials can be anisotropic, leading to magnetic hyperbolic dispersion in certain frequency regimes. We show that such systems can support transverse electric polarized interface-bound waves, analogous to their TM counterparts, surface plasmon polaritons. Our results open a route for tailoring optical artificial magnetism in lithography-free layered systems and enable us to generalize the plasmonic and hyperbolic properties to encompass both linear polarizations.

  17. Optical metamaterials with quasicrystalline symmetry: symmetry-induced optical isotropy

    International Nuclear Information System (INIS)

    Kruk, S.S.; Decker, M.; Helgert, Ch.; Neshev, D.N.; Kivshar, Y.S.; Staude, I.; Powell, D.A.; Pertsch, Th.; Menzel, Ch.; Helgert, Ch.; Etrich, Ch.; Rockstuhl, C.; Menzel, Ch.

    2013-01-01

    Taking advantage of symmetry considerations, we have analyzed the potential of various metamaterials to affect the polarization state of light upon oblique illumination. We have shown that depending on the angle of illumination, metamaterials are able to support specific polarization states. The presented methodology that using ellipticity and circular dichroism, provides an unambiguous language for discussing the impact of the inherent symmetry of the metamaterial lattices on their far-field response. Our findings allow the quantification analysis of the impact of inter-element coupling and lattice symmetry on the optical properties of metamaterials, and to separate this contribution from the response associated with a single meta-atom. In addition, we have studied the concept of optical quasicrystalline metamaterials, revealing that the absence of translational symmetry (periodicity) of quasicrystalline metamaterials causes an isotropic optical response, while the long-range positional order preserves the resonance properties. Our findings constitute an important step towards the design of optically isotropic metamaterials and metasurfaces. (authors)

  18. Customized shaping of vibration modes by acoustic metamaterial synthesis

    Science.gov (United States)

    Xu, Jiawen; Li, Shilong; Tang, J.

    2018-04-01

    Acoustic metamaterials have attractive potential in elastic wave guiding and attenuation over specific frequency ranges. The vast majority of related investigations are on transient waves. In this research we focus on stationary wave manipulation, i.e., shaping of vibration modes. Periodically arranged piezoelectric transducers shunted with inductive circuits are integrated to a beam structure to form a finite-length metamaterial beam. We demonstrate for the first time that, under a given operating frequency of interest, we can facilitate a metamaterial design such that this frequency becomes a natural frequency of the integrated system. Moreover, the vibration mode corresponding to this natural frequency can be customized and shaped to realize tailored/localized response distribution. This is fundamentally different from previous practices of utilizing geometry modification and/or feedback control to achieve mode tailoring. The metamaterial design is built upon the combinatorial effects of the bandgap feature and the effective resonant cavity feature, both attributed to the dynamic characteristics of the metamaterial beam. Analytical investigations based on unit-cell dynamics and modal analysis of the metamaterial beam are presented to reveal the underlying mechanism. Case illustrations are validated by finite element analyses. Owing to the online tunability of circuitry integrated, the proposed mode shaping technique can be online adjusted to fit specific requirements. The customized shaping of vibration modes by acoustic metamaterial synthesis has potential applications in vibration suppression, sensing enhancement and energy harvesting.

  19. Peripartum changes of the pelvic ring: usefulness of magnetic resonance imaging

    International Nuclear Information System (INIS)

    Hermann, K.G.A.; Muehler, M.R.; Lembcke, A.; Hamm, B.; Halle, H.; Reisshauer, A.; Schink, T.; Vsianska, L.; Bollow, M.

    2007-01-01

    Purpose: Postpartum pelvic pain beyond the normal level poses a problem to obstetricians. Beyond normal physiologic loosening of the pubic symphysis and sacroiliac joints (SIJs) during pregnancy, symphyseal separation and rupture must be excluded. The aim of this prospective study was to determine whether magnetic resonance imaging (MRI) allows for reliable differentiation of normal postpartum findings and pathologic lesions. Material and Methods: The study included a total of 77 women (mean age 30), among them 21 healthy subjects (group A), 21 asymptomatic postpartum women (group B), and 35 patients with postpartum pelvic pain (group C). The analyzed parameters comprised symphyseal and iliosacral tenderness, subjective pain assessed on a visual analog scale, and data pertaining to obstetric history. All 77 women underwent 1.5T MRI of the pelvic ring using oblique angulated coronal T 1-weighted and STIR sequences for imaging of the symphysis and SIJs in one slice package. Analysis of the MR images comprised signal intensities of pelvic bone marrow, width of the symphyseal cleft, and the symphyseal capsule. Results: Subjects in group A in general had a normal bone marrow signal. The STIR sequence showed increased signal intensity of the pubic bone near the symphysis in 16 women (76%) of group B and 31 patients of group C (86%) (not significant). An increased periarticular bone marrow signal of the SIJs on the STIR images was seen in 13 women (62%) of group B and 23 patients (63%) of group C. The mean width of the symphyseal cleft differed significantly among the three groups (3.4 mm vs. 5.4 mm vs. 6.7 mm). A width > 10 mm was observed in only 4 cases (11%). Moreover, associated findings such as interpubic hematoma (n = 23) or tears of the symphyseal capsule (n = 7) were detected in patients of group C. (orig.)

  20. Metamaterials and wave control

    CERN Document Server

    Lheurette, Eric

    2013-01-01

    Since the concept was first proposed at the end of the 20th Century, metamaterials have been the subject of much research and discussion throughout the wave community. More than 10 years later, the number of related published articles is increasing significantly. Onthe one hand, this success can be attributed to dreams of new physical objects which are the consequences of the singular properties of metamaterials. Among them, we can consider the examples of perfect lensing and invisibility cloaking. On other hand,metamaterials also provide new tools for the design of well-known wave functions s

  1. Beam-beam effects in high energy e+e- storage rings: resonant amplification of vertical dimensions for flat beams

    International Nuclear Information System (INIS)

    Bambade, P.

    1984-06-01

    In this thesis, we present a phenomenological study of the beam-beam effect in e + e - storage rings. We are in particular interested in the blow-up of the vertical dimension observed in this kind of accelerator. A detailed analysis of the electromagnetic field generated by the very flat bunches stored, and seen by the counter-rotating particles shows that two-dimensional non-linear resonances, which couple vertical and horizontal betatron oscillations, play a very important role. Moreover, the ''weak beam-strong beam'' approximation holds rather well in the case of very flat bunches. Perturbative analysis enables us to predict the effects from the strongest coupling resonance: 20sub(x)-20sub(y) = integer. We find that mainly the tails of the vertical distribution are affected, and we give a criterion concerning the optimal distance to this resonance in the case of a storage ring such as LEP. Finally, the results and in particular the validity of the single resonance approximation are checked through a numerical simulation [fr

  2. A Printed Xi-Shaped Left-Handed Metamaterial on Low-Cost Flexible Photo Paper.

    Science.gov (United States)

    Ashraf, Farhad Bin; Alam, Touhidul; Islam, Mohammad Tariqul

    2017-07-05

    A Xi-shaped meta structure, has been introduced in this paper. A modified split-ring resonator (MSRR) and a capacitive loaded strip (CLS) were used to achieve the left-handed property of the metamaterial. The structure was printed using silver metallic nanoparticle ink, using a very low-cost photo paper as a substrate material. Resonators were inkjet-printed using silver nanoparticle metallic ink on paper to make this metamaterial flexible. It is also free from any kind of chemical waste, which makes it eco-friendly. A double negative region from 8.72 GHz to 10.91 GHz (bandwidth of 2.19 GHz) in the X-band microwave spectra was been found. Figure of merit was also obtained to measure any loss in the double negative region. The simulated result was verified by the performance of the fabricated prototype. The total dimensions of the proposed structure were 0.29 λ × 0.29 λ × 0.007 λ . It is a promising unit cell because of its simplicity, cost-effectiveness, and easy fabrication process.

  3. Enhanced optical nonlinearities in the near-infrared using III-nitride heterostructures coupled to metamaterials

    International Nuclear Information System (INIS)

    Wolf, Omri; Ma, Xuedan; Brener, Igal; Allerman, Andrew A.; Wendt, Joel R.; Shaner, Eric A.; Song, Alex Y.

    2015-01-01

    We use planar metamaterial resonators to enhance by more than two orders of magnitude the near infrared second harmonic generation obtained from intersubband transitions in III-Nitride heterostructures. The improvement arises from two factors: employing an asymmetric double quantum well design and aligning the resonators' cross-polarized resonances with the intersubband transition energies. The resulting nonlinear metamaterial operates at wavelengths where single photon detection is available, and represents a different class of sources for quantum photonics related phenomena

  4. Blackbody metamaterial lasers

    KAUST Repository

    Liu, Changxu

    2015-01-01

    We investigate both theoretically and experimentally a new type of laser, which exploits a broadband light "condensation" process sustained by the stimulated amplification of an optical blackbody metamaterial. © 2014 Optical Society of America.

  5. Design and experimentally measure a high performance metamaterial filter

    Science.gov (United States)

    Xu, Ya-wen; Xu, Jing-cheng

    2018-03-01

    Metamaterial filter is a kind of expecting optoelectronic device. In this paper, a metal/dielectric/metal (M/D/M) structure metamaterial filter is simulated and measured. Simulated results indicate that the perfect impedance matching condition between the metamaterial filter and the free space leads to the transmission band. Measured results show that the proposed metamaterial filter achieves high performance transmission on TM and TE polarization directions. Moreover, the high transmission rate is also can be obtained when the incident angle reaches to 45°. Further measured results show that the transmission band can be expanded through optimizing structural parameters. The central frequency of the transmission band is also can be adjusted through optimizing structural parameters. The physical mechanism behind the central frequency shifted is solved through establishing an equivalent resonant circuit model.

  6. Stretchable Complementary Split Ring Resonator (CSRR-Based Radio Frequency (RF Sensor for Strain Direction and Level Detection

    Directory of Open Access Journals (Sweden)

    Seunghyun Eom

    2016-10-01

    Full Text Available In this paper, we proposed a stretchable radio frequency (RF sensor to detect strain direction and level. The stretchable sensor is composed of two complementary split ring resonators (CSRR with microfluidic channels. In order to achieve stretchability, liquid metal (eutectic gallium-indium, EGaIn and Ecoflex substrate are used. Microfluidic channels are built by Ecoflex elastomer and microfluidic channel frames. A three-dimensional (3D printer is used for fabrication of microfluidic channel frames. Two CSRR resonators are designed to resonate 2.03 GHz and 3.68 GHz. When the proposed sensor is stretched from 0 to 8 mm along the +x direction, the resonant frequency is shifted from 3.68 GHz to 3.13 GHz. When the proposed sensor is stretched from 0 to 8 mm along the −x direction, the resonant frequency is shifted from 2.03 GHz to 1.78 GHz. Therefore, we can detect stretched length and direction from independent variation of two resonant frequencies.

  7. An omnidirectional electromagnetic absorber made of metamaterials

    International Nuclear Information System (INIS)

    Cheng Qiang; Cui Tiejun; Jiang Weixiang; Cai Bengeng

    2010-01-01

    In a recent theoretical work by Narimanov and Kildishev (2009 Appl. Phys. Lett. 95 041106) an optical omnidirectional light absorber based on metamaterials was proposed, in which theoretical analysis and numerical simulations showed that all optical waves hitting the absorber are trapped and absorbed. Here we report the first experimental demonstration of an omnidirectional electromagnetic absorber in the microwave frequency. The proposed device is composed of non-resonant and resonant metamaterial structures, which can trap and absorb electromagnetic waves coming from all directions spirally inwards without any reflections due to the local control of electromagnetic fields. It is shown that the absorption rate can reach 99 per cent in the microwave frequency. The all-directional full absorption property makes the device behave like an 'electromagnetic black body', and the wave trapping and absorbing properties simulate, to some extent, an 'electromagnetic black hole.' We expect that such a device could be used as a thermal emitting source and to harvest electromagnetic waves.

  8. Engineering photonic density of states using metamaterials

    DEFF Research Database (Denmark)

    Jacob, Z.; Kim, J.Y.; Naik, G.V.

    2010-01-01

    The photonic density of states (PDOS), like its electronic counterpart, is one of the key physical quantities governing a variety of phenomena and hence PDOS manipulation is the route to new photonic devices. The PDOS is conventionally altered by exploiting the resonance within a device such as a......The photonic density of states (PDOS), like its electronic counterpart, is one of the key physical quantities governing a variety of phenomena and hence PDOS manipulation is the route to new photonic devices. The PDOS is conventionally altered by exploiting the resonance within a device...... such as a microcavity or a bandgap structure like a photonic crystal. Here we show that nanostructured metamaterials with hyperbolic dispersion can dramatically enhance the photonic density of states paving the way for metamaterial-based PDOS engineering....

  9. Metamaterials critique and alternatives

    CERN Document Server

    Munk, Ben A

    2009-01-01

    A Convincing and Controversial Alternative Explanation of Metamaterials with a Negative Index of Refraction In a book that will generate both support and controversy, one of the world's foremost authorities on periodic structures addresses several of the current fashions in antenna design-most specifically, the popular subject of double negative metamaterials. Professor Munk provides a comprehensive theoretical electromagnetic investigation of the issues and concludes that many of the phenomena claimed by researchers may be impossible. While denying the existence of negative refractio

  10. Low-cost metamaterial-on-paper chemical sensor.

    Science.gov (United States)

    Sadeqi, Aydin; Nejad, Hojatollah Rezaei; Sonkusale, Sameer

    2017-07-10

    We present a disposable low cost paper-based metamaterial for sensing liquids based on their dielectric properties. The sensor is based on resonance shift due to the change in the effective capacitance of each resonator in the metamaterial array. Key novelty in the design is the implementation of metamaterial on low cost and ubiquitous paper substrate. This metamaterial-on-paper sensor is fabricated in a totally cleanroom-free process using wax printing and screen printing. Wax patterning of paper enables creation of microfluidic channels such that liquid analytes can be delivered to each metamaterial unit cell for sensing. Screen printing is used to implement disc shaped resonator unit cells. We demonstrate sensing of liquids: Oil, methanol, glycerol and water each showing an average resonance frequency shift of 1.12 (9.6%), 4.12 (35.4%), 8.76 (75.3%) and 11.63 GHz (100%) around the center frequency of around 94 GHz respectively. Being label-free, this approach can be expanded to sense other liquids based on their dielectric constants.

  11. Acoustic Metamaterials in Aeronautics

    Directory of Open Access Journals (Sweden)

    Giorgio Palma

    2018-06-01

    Full Text Available Metamaterials, man-made composites that are scaled smaller than the wavelength, have demonstrated a huge potential for application in acoustics, allowing the production of sub-wavelength acoustic absorbers, acoustic invisibility, perfect acoustic mirrors and acoustic lenses for hyper focusing, and acoustic illusions and enabling new degrees of freedom in the control of the acoustic field. The zero, or even negative, refractive sound index of metamaterials offers possibilities for the control of acoustic patterns and sound at sub-wavelength scales. Despite the tremendous growth in research on acoustic metamaterials during the last decade, the potential of metamaterial-based technologies in aeronautics has still not been fully explored, and its utilization is still in its infancy. Thus, the principal concepts mentioned above could very well provide a means to develop devices that allow the mitigation of the impact of civil aviation noise on the community. This paper gives a review of the most relevant works on acoustic metamaterials, analyzing them for their potential applicability in aeronautics, and, in this process, identifying possible implementation areas and interesting metabehaviors. It also identifies some technical challenges and possible future directions for research with the goal of unveiling the potential of metamaterials technology in aeronautics.

  12. MEMS for Tunable Photonic Metamaterial Applications

    Science.gov (United States)

    Stark, Thomas

    Photonic metamaterials are materials whose optical properties are derived from artificially-structured sub-wavelength unit cells, rather than from the bulk properties of the constituent materials. Examples of metamaterials include plasmonic materials, negative index materials, and electromagnetic cloaks. While advances in simulation tools and nanofabrication methods have allowed this field to grow over the past several decades, many challenges still exist. This thesis addresses two of these challenges: fabrication of photonic metamaterials with tunable responses and high-throughput nanofabrication methods for these materials. The design, fabrication, and optical characterization of a microelectromechanical systems (MEMS) tunable plasmonic spectrometer are presented. An array of holes in a gold film, with plasmon resonance in the mid-infrared, is suspended above a gold reflector, forming a Fabry-Perot interferometer of tunable length. The spectra exhibit the convolution of extraordinary optical transmission through the holes and Fabry-Perot resonances. Using MEMS, the interferometer length is modulated from 1.7 mum to 21.67 mum , thereby tuning the free spectral range from about 2900 wavenumbers to 230.7 wavenumbers and shifting the reflection minima and maxima across the infrared. Due to its broad spectral tunability in the fingerprint region of the mid-infrared, this device shows promise as a tunable biological sensing device. To address the issue of high-throughput, high-resolution fabrication of optical metamaterials, atomic calligraphy, a MEMS-based dynamic stencil lithography technique for resist-free fabrication of photonic metamaterials on unconventional substrates, has been developed. The MEMS consists of a moveable stencil, which can be actuated with nanometer precision using electrostatic comb drive actuators. A fabrication method and flip chip method have been developed, enabling evaporation of metals through the device handle for fabrication on an

  13. Extreme chirality in Swiss roll metamaterials

    International Nuclear Information System (INIS)

    Demetriadou, A; Pendry, J B

    2009-01-01

    The chiral Swiss roll metamaterial is a resonant, magnetic medium that exhibits a negative refractive band for one-wave polarization. Its unique structure facilitates huge chiral effects: a plane polarized wave propagating through this system can change its polarization by 90 deg. in less than a wavelength. Such chirality is at least 100 times greater than previous structures have achieved. In this paper, we discuss this extreme chiral behaviour with both numerical and analytical results.

  14. Design, Analysis, and Characterization of Metamaterial Quasi-Optical Components for Millimeter-Wave Automotive Radar

    Science.gov (United States)

    Nguyen, Vinh Ngoc

    Since their introduction by Mercedes Benz in the late 1990s, W-band radars operating at 76-77 GHz have found their way into more and more passenger cars. These automotive radars are typically used in adaptive cruise control, pre-collision sensing, and other driver assistance systems. While these systems are usually only about the size of two stacked cigarette packs, system size, and weight remains a concern for many automotive manufacturers. In this dissertation, I discuss how artificially structured metamaterials can be used to improve lens-based automotive radar systems. Metamaterials allow the fabrication of smaller and lighter systems, while still meeting the frequency, high gain, and cost requirements of this application. In particular, I focus on the development of planar artificial dielectric lenses suitable for use in place of the injection-molded lenses now used in many automotive radar systems. I begin by using analytic and numerical ray-tracing to compare the performance of planar metamaterial GRIN lenses to equivalent aspheric refractive lenses. I do this to determine whether metamaterials are best employed in GRIN or refractive automotive radar lenses. Through this study I find that planar GRIN lenses with the large refractive index ranges enabled by metamaterials have approximately optically equivalent performance to equivalent refractive lenses for fields of view approaching +/-20°. I also find that the uniaxial nature of most planar metamaterials does not negatively impact planar GRIN lens performance. I then turn my attention to implementing these planar GRIN lenses at W-band automotive radar frequencies. I begin by designing uniform sheets of W-band electrically-coupled LC resonator-based metamaterials. These metamaterial samples were fabricated by the Jokerst research group on glass and liquid crystal polymer (LCP) substrates and tested at Toyota Research Institute- North America (TRI-NA). When characterized at W-band frequencies, these

  15. An effective medium description of 'Swiss Rolls', a magnetic metamaterial

    International Nuclear Information System (INIS)

    Wiltshire, M C K; Pendry, J B; Williams, W; Hajnal, J V

    2007-01-01

    The 'Swiss Roll' metamaterial medium is well suited to operation in the radio frequency (RF) range, because it has a low resonant frequency and a strong magnetic response. Two prisms of this material, one hexagonal and one square, have been constructed and characterized both at the metamaterial's resonant frequency of 21.5 MHz and above it, where the effective permeability is strongly negative. A series of spatial resonances is observed in the field patterns on the surfaces of the prisms. Using an effective medium description, we have carried out both analytical and numerical modelling of the electromagnetic behaviour of the metamaterial, and find, within certain obvious limitations, extremely good agreement between the measured and modelled results

  16. Performance of terahertz metamaterials as high-sensitivity sensor

    Science.gov (United States)

    He, Yanan; Zhang, Bo; Shen, Jingling

    2017-09-01

    A high-sensitivity sensor based on the resonant transmission characteristics of terahertz (THz) metamaterials was investigated, with the proposal and fabrication of rectangular bar arrays of THz metamaterials exhibiting a period of 180 μm on a 25 μm thick flexible polyimide. Varying the size of the metamaterial structure revealed that the length of the rectangular unit modulated the resonant frequency, which was verified by both experiment and simulation. The sensing characteristics upon varying the surrounding media in the sample were tested by simulation and experiment. Changing the surrounding medium from that of air to that of alcohol or oil produced resonant frequency redshifts of 80 GHz or 150 GHz, respectively, which indicates that the sensor possessed a high sensitivity of 667 GHz per unit of refractive index. Finally, the influence of the sample substrate thickness on the sensor sensitivity was investigated by simulation. It may be a reference for future sensor design.

  17. Clinical application of proton magnetic resonance spectroscopy in differential diagnosis of intracranial lesions with ring-like enhancement

    International Nuclear Information System (INIS)

    Lai Ying; Cheng Kailiang; Zhang Mengchao; Liu Yunxia; Wang Wei

    2009-01-01

    Objective: To study the value of clinical application of 1 H proton magnetic resonance spectroscopy ( 1 H MRS) in the differential diagnosis of intracranial lesions with ring-like enhancement. Methods: 28 cases were diagnosed of intracranial lesions with ring-like enhancement by clinical examination and pathologic test. A total of 28 ratios cases included 6 cases high grade glioma, 10 cases of metastatic carcinoma (n=10) and 12 cases of brain abscess, after examined with 1HMRS, the ratios of various metabolites in focal center, enhancement ring,perifocal edema region and normal control group were detected and compared. Results: The ratios of NAA/Cho, Cho/Cr and NAA/Cr in focal center had no significantly differences between high grade glioma and metastatic carcinoma (P>0.05). The peak of NAA was significantly different between high grade glioma and metastatic carcinoma (P 0.05). The peak of AA was characteristic of brain abscess. The ratio of Cho/Cr 0 in brain abscess was significantly lower than those in high grade glioma and metastatic carcinoma (P 0 denoted the Cho content of contralateral normal brain region). These results accorded with the result of pathological examination. Conclusion: 1 HMRS can improve the diagnostic accuracy of intracranial lesions with ring-like enhancement. (authors)

  18. Resonant pickups for non-destructive single-particle detection in heavy-ion storage rings and first experimental results

    International Nuclear Information System (INIS)

    Sanjari, Mohammad Shahab

    2013-01-01

    Nuclear astrophysics studies on highly charged radionuclides benefit from accelerator facilities with storage rings, where exotic nuclides produced with small yields can be efficiently investigated. Currently there are two accelerator facilities capable of storing highly charged heavy ions, GSI in Darmstadt and IMP in Lanzhou. Non-destructive detection methods are often used for in-flight measurements based on frequency analysis. The sensitivity of such detection systems are of primary importance specially when number of stored ions is small. Furthermore, since the exotic nuclides of interest are as a rule short-lived, the detectors must be fast. One common form of such detectors are parallel plate SCHOTTKY monitors, on which particles induce a mirror charge at each passage. This method has been successfully used at ESR experimental storage ring of GSI since 1991. In this work we describe a new resonant SCHOTTKY pickup operating as a high sensitive cavity current monitor which was mounted and commissioned in the ESR early 2010. It was successfully used in several storage ring experiments. A very similar pickup was mounted in CSRe at IMP Lanzhou in 2011. First in-ring tests have been performed and new experimental results are pending. The spectral analysis of acquired signals by the new detector has enabled a broad range of new physics experiments. The theory of operation and first experimental results and future perspectives are presented in this thesis.

  19. Resonant pickups for non-destructive single-particle detection in heavy-ion storage rings and first experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Sanjari, Mohammad Shahab

    2013-04-26

    Nuclear astrophysics studies on highly charged radionuclides benefit from accelerator facilities with storage rings, where exotic nuclides produced with small yields can be efficiently investigated. Currently there are two accelerator facilities capable of storing highly charged heavy ions, GSI in Darmstadt and IMP in Lanzhou. Non-destructive detection methods are often used for in-flight measurements based on frequency analysis. The sensitivity of such detection systems are of primary importance specially when number of stored ions is small. Furthermore, since the exotic nuclides of interest are as a rule short-lived, the detectors must be fast. One common form of such detectors are parallel plate SCHOTTKY monitors, on which particles induce a mirror charge at each passage. This method has been successfully used at ESR experimental storage ring of GSI since 1991. In this work we describe a new resonant SCHOTTKY pickup operating as a high sensitive cavity current monitor which was mounted and commissioned in the ESR early 2010. It was successfully used in several storage ring experiments. A very similar pickup was mounted in CSRe at IMP Lanzhou in 2011. First in-ring tests have been performed and new experimental results are pending. The spectral analysis of acquired signals by the new detector has enabled a broad range of new physics experiments. The theory of operation and first experimental results and future perspectives are presented in this thesis.

  20. Various vibration modes in a silicon ring resonator driven by p–n diode actuators formed in the lateral direction

    Science.gov (United States)

    Tsushima, Takafumi; Asahi, Yoichi; Tanigawa, Hiroshi; Furutsuka, Takashi; Suzuki, Kenichiro

    2018-06-01

    In this paper, we describe p–n diode actuators that are formed in the lateral direction on resonators. Because previously reported p–n diode actuators, which were driven by a force parallel to the electrostatic force induced in a p–n diode, were fabricated in the perpendicular direction to the surface, the fabrication process to satisfy the requirement of realizing a p–n junction set in the middle of the plate thickness has been difficult. The resonators in this work are driven by p–n diodes formed in the lateral direction, making the process easy. We have fabricated a silicon ring resonator that has in-plane vibration using p–n–p and n–p–n diode actuators formed in the lateral direction. First, we consider a space charge model that can sufficiently accurately describe the force induced in p–n diode actuators and compare it with the capacitance model used in most computer simulations. Then, we show that multiplying the vibration amplitude calculated by computer simulation by the modification coefficient of 4/3 provides the vibration amplitude in the p–n diode actuators. Good agreement of the theory with experimental results of the in-plane vibration measured for silicon ring resonators is obtained. The computer simulation is very useful for evaluating various vibration modes in resonators driven by the p–n diode actuators. The small amplitude of the p–n diode actuator measured in this work is expected to increase greatly with increased doping of the actuator.

  1. Two-dimensional metamaterial optics

    International Nuclear Information System (INIS)

    Smolyaninov, I I

    2010-01-01

    While three-dimensional photonic metamaterials are difficult to fabricate, many new concepts and ideas in the metamaterial optics can be realized in two spatial dimensions using planar optics of surface plasmon polaritons. In this paper we review recent progress in this direction. Two-dimensional photonic crystals, hyperbolic metamaterials, and plasmonic focusing devices are demonstrated and used in novel microscopy and waveguiding schemes

  2. Design, Construction, and Analysis of an Ultra-Low Expansion Quartz Resonant Cavity Passive Ring Resonator Laser Gyroscope.

    Science.gov (United States)

    1982-03-01

    Gyroscopes .... ....... 2 1.2 Sagnac’s Interferometer ....... ........ . . 4 1.3 Harress ’ Ring Interferometer ....... ...... 5 1.4 Michelson & Gale...graduate student, Harress , performed an experi- ment in which he attempted to measure the dispersion properties of glass. Figure 1.3 shows Harress ...8217 experiment. The results from his experiment did not agree-with data obtained from other methods, and Harress did not live long enough to find the discrepancy

  3. Experimental and Numerical Investigation of Termination Impedance Effects in Wireless Power Transfer via Metamaterial

    Directory of Open Access Journals (Sweden)

    Giovanni Puccetti

    2015-03-01

    Full Text Available This paper presents an investigation of the transmitted power in a wireless power transfer system that employs a metamaterial. Metamaterials are a good means to transfer power wirelessly, as they are composed of multiple inductively-coupled resonators. The system can be designed and matched simply through magneto-inductive wave theory, particularly when the receiver inductor is located at the end of the metamaterial line. However, the power distribution changes significantly in terms of transmitted power, efficiency and frequency if the receiver inductor slides along the line. In this paper, the power distribution and transfer efficiency are analysed, studying the effects of a termination impedance in the last cell of the metamaterial and improving the system performance for the resonant frequency and for any position of the receiver inductor. Furthermore, a numerical characterisation is presented in order to support experimental tests and to predict the performance of a metamaterial composed of spiral inductor cells with very good accuracy.

  4. Permanent magnetic ferrite based power-tunable metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guanqiao; Lan, Chuwen [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Gao, Rui [High Temperature Thermochemistry Laboratory, Department of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0C5 (Canada); Zhou, Ji, E-mail: zhouji@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-08-15

    Highlights: • Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated. • It is observed that resonant frequency of the array shifts upon altering the output power. • This kind of power-tunable behavior is due to the temperature rise as a result of FMR-induced heat buildup. • This work offers a practical idea to tune ferrite metamaterials besides magneto-tunability and thermal-tunability. - Abstract: Power-tunable metamaterials based on barium permanent magnetic ferrite have been proposed and fabricated in this research. Scattering parameter measurements confirm a shift in resonant frequency in correlation to changes in incident electromagnetic power within microwave frequency band. The tunable phenomenon represented by a blue-shift in transmission spectra in the metamaterials array can be attributed to a decrease in saturation magnetization resulting from FMR-induced temperature elevation upon resonant conditions. This power-dependent behavior offers a simple and practical route towards dynamically fine-tunable ferrite metamaterials.

  5. Engineered SOI slot waveguide ring resonator V-shape resonance combs for refraction index sensing up to 1300nm/RIU (Conference Presentation)

    Science.gov (United States)

    Zhang, Weiwei; Serna, Samuel; Le Roux, Xavier; Vivien, Laurent; Cassan, Eric

    2016-05-01

    Bio-detection based on CMOS technology boosts the miniaturization of detection systems and the success on highly efficient, robust, accurate, and low coast Lab-on-Chip detection schemes. Such on chip detection technologies have covered healthy related harmful gases, bio-chemical analytes, genetic micro RNA, etc. Their monitoring accuracy is mainly qualified in terms of sensitivity and limit of the detection (LOD) of the detection system. In this context, recently developed silicon on insulator (SOI) optical devices have displayed highly performant detection abilities that LOD could go beyond 10-8RIU and sensitivity could exceeds 103nm/RIU. The SOI integrated optical sensing devices include strip/slotted waveguide consisting in structures like Mach-Zehnder interferometers (MZI), ring resonators (RR), nano cavities, etc. Typically, hollow core RR and nano-cavities could exhibit higher sensitivity due to their optical mode confinement properties with a partial localization of the electric field in low index sensing regions than devices based on evanescent field tails outside of the optical cores. Furthermore, they also provide larger sensing areas for surface functionalization to reach higher sensitivities and lower LODs. The state of art of hollow core devices, either based on Bragg gratings formed from a slot waveguide cavity or photonic crystal slot cavities, show sensitivities (S) up to 400nm/RIU and Figure of Merit (FOM) around 3,000 in water environment, FOM being defined as the inverse of LOD and precisely as FOM=SQ/λ, with λ the resonance wavelength and Q the quality factor of the considered resonator. Such high achieved FOMs in nano cavities are mainly due to their large Q factors around 15,000. While for mostly used RR, which do not require particular design strategies, relatively low Q factors around 1800 in water are met and moderate sensitivities about 300nm/RIU are found. In this work, we present here a novel slot ring resonator design to make

  6. Reducing the losses of optical metamaterials

    International Nuclear Information System (INIS)

    Fang, Anan

    2010-01-01

    The field of metamaterials is driven by fascinating and far-reaching theoretical visions, such as perfect lenses, invisibility cloaking, and enhanced optical nonlinearities. However, losses have become the major obstacle towards real world applications in the optical regime. Reducing the losses of optical metamaterials becomes necessary and extremely important. In this thesis, two approaches are taken to reduce the losses. One is to construct an indefinite medium. Indefinite media are materials where not all the principal components of the permittivity and permeability tensors have the same sign. They do not need the resonances to achieve negative permittivity, (var e psilon). So, the losses can be comparatively small. To obtain indefinite media, three-dimensional (3D) optical metallic nanowire media with different structures are designed. They are numerically demonstrated that they are homogeneous effective indefinite anisotropic media by showing that their dispersion relations are hyperbolic. Negative group refraction and pseudo focusing are observed. Another approach is to incorporate gain into metamaterial nanostructures. The nonlinearity of gain is included by a generic four-level atomic model. A computational scheme is presented, which allows for a self-consistent treatment of a dispersive metallic photonic metamaterial coupled to a gain material incorporated into the nanostructure using the finite-difference time-domain (FDTD) method. The loss compensations with gain are done for various structures, from 2D simplified models to 3D realistic structures. Results show the losses of optical metamaterials can be effectively compensated by gain. The effective gain coefficient of the combined system can be much larger than the bulk gain counterpart, due to the strong local-field enhancement.

  7. Reducing the losses of optical metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Anan [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    The field of metamaterials is driven by fascinating and far-reaching theoretical visions, such as perfect lenses, invisibility cloaking, and enhanced optical nonlinearities. However, losses have become the major obstacle towards real world applications in the optical regime. Reducing the losses of optical metamaterials becomes necessary and extremely important. In this thesis, two approaches are taken to reduce the losses. One is to construct an indefinite medium. Indefinite media are materials where not all the principal components of the permittivity and permeability tensors have the same sign. They do not need the resonances to achieve negative permittivity, ε. So, the losses can be comparatively small. To obtain indefinite media, three-dimensional (3D) optical metallic nanowire media with different structures are designed. They are numerically demonstrated that they are homogeneous effective indefinite anisotropic media by showing that their dispersion relations are hyperbolic. Negative group refraction and pseudo focusing are observed. Another approach is to incorporate gain into metamaterial nanostructures. The nonlinearity of gain is included by a generic four-level atomic model. A computational scheme is presented, which allows for a self-consistent treatment of a dispersive metallic photonic metamaterial coupled to a gain material incorporated into the nanostructure using the finite-difference time-domain (FDTD) method. The loss compensations with gain are done for various structures, from 2D simplified models to 3D realistic structures. Results show the losses of optical metamaterials can be effectively compensated by gain. The effective gain coefficient of the combined system can be much larger than the bulk gain counterpart, due to the strong local-field enhancement.

  8. Dielectric optical antenna thermal emitters and metamaterials

    Science.gov (United States)

    Schuller, Jonathan Aaron

    Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this thesis, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial. We further show that these particles can serve as "broadcasting" antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas.

  9. Dielectric Optical Antenna Emitters and Metamaterials

    Science.gov (United States)

    Schuller, Jon

    2009-03-01

    Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this talk, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial [1]. We further show that these particles can serve as ``broadcasting'' antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas and discuss extensions of the demonstrated concepts to different materials systems and frequency regimes. [1] J.A. Schuller, et al., Phys. Rev. Lett. 99, 107401 (2007)

  10. Effective material parameter retrieval of anisotropic elastic metamaterials with inherent nonlocality

    Science.gov (United States)

    Lee, Hyung Jin; Lee, Heung Son; Ma, Pyung Sik; Kim, Yoon Young

    2016-09-01

    In this paper, the scattering (S-) parameter retrieval method is presented specifically for anisotropic elastic metamaterials; so far, no retrieval has been accomplished when elastic metamaterials exhibit fully anisotropic behavior. Complex constitutive property and intrinsic scattering behavior of elastic metamaterials make their characterization far more complicated than that for acoustic and electromagnetic metamaterials. In particular, elastic metamaterials generally exhibit anisotropic scattering behavior due to higher scattering modes associated with shear deformation. They also exhibit nonlocal responses to some degrees, which originate from strong multiple scattering interactions even in the long wavelength limit. Accordingly, the conventional S-parameter retrieval methods cannot be directly used for elastic metamaterials, because they determine only the diagonal components in effective tensor property. Also, the conventional methods simply use the analytic inversion formulae for the material characterization so that inherent nonlocality cannot be taken into account. To establish a retrieval method applicable to anisotropic elastic metamaterials, we propose an alternative S-parameter method to deal with full anisotropy of elastic metamaterials. To retrieve the whole effective anisotropic parameter, we utilize not only normal but also oblique wave incidences. For the retrieval, we first retrieve the ratio of the effective stiffness tensor to effective density and then determine the effective density. The proposed retrieval method is validated by characterizing the effective material parameters of various types of non-resonant anisotropic metamaterials. It is found that the whole effective parameters are retrieved consistently regardless of used retrieval conditions in spite of inherent nonlocality.

  11. Micromachined tunable metamaterials: a review

    International Nuclear Information System (INIS)

    Liu, A Q; Zhu, W M; Tsai, D P; Zheludev, N I

    2012-01-01

    This paper reviews micromachined tunable metamaterials, whereby the tuning capabilities are based on the mechanical reconfiguration of the lattice and/or the metamaterial element geometry. The primary focus of this review is the feasibility of the realization of micromachined tunable metamaterials via structure reconfiguration and the current state of the art in the fabrication technologies of structurally reconfigurable metamaterial elements. The micromachined reconfigurable microstructures not only offer a new tuning method for metamaterials without being limited by the nonlinearity of constituent materials, but also enable a new paradigm of reconfigurable metamaterial-based devices with mechanical actuations. With recent development in nanomachining technology, it is possible to develop structurally reconfigurable metamaterials with faster tuning speed, higher density of integration and more flexible choice of the working frequencies. (review article)

  12. Nanoparticle-coated micro-optofluidic ring resonator as a detector for microscale gas chromatographic vapor analysis.

    Science.gov (United States)

    Scholten, K; Collin, W R; Fan, X; Zellers, E T

    2015-05-28

    A vapor sensor comprising a nanoparticle-coated microfabricated optofluidic ring resonator (μOFRR) is introduced. A multilayer film of polyether functionalized, thiolate-monolayer-protected gold nanoparticles (MPN) was solvent cast on the inner wall of the hollow cylindrical SiOxμOFRR resonator structure, and whispering gallery mode (WGM) resonances were generated with a 1550 nm tunable laser via an optical fiber taper. Reversible shifts in the WGM resonant wavelength upon vapor exposure were detected with a photodetector. The μOFRR chip was connected to a pair of upstream etched-Si chips containing PDMS-coated separation μcolumns and calibration curves were generated from the peak-area responses to five volatile organic compounds (VOCs). Calibration curves were linear, and the sensitivities reflected the influence of analyte volatility and analyte-MPN functional group affinity. Sorption-induced changes in film thickness apparently dominate over changes in the refractive index of the film as the determinant of responses for all VOCs. Peaks from the MPN-coated μOFRR were just 20-50% wider than those from a flame ionization detector for similar μcolumn separation conditions, reflecting the rapid response of the sensor for VOCs. The five VOCs were baseline separated in <1.67 min, with detection limits as low as 38 ng.

  13. A novel method of support vector machine to compute the resonant frequency of annular ring compact microstrip antennas

    Directory of Open Access Journals (Sweden)

    Ahmet Kayabasi

    2015-12-01

    Full Text Available An application of support vector machine (SVM to compute the resonant frequency at dominant mode TM11 of annular ring compact microstrip antennas (ARCMAs is presented in this paper. ARCMAs have some useful features; resonant modes can be adjusted by controlling the ratio of the outer radius to the inner radius. The resonant frequencies of 100 ARCMAs with varied dimensions and electrical parameters in accordance with UHF band covering GSM, LTE, WLAN, and WiMAX applications were simulated with IE3D™ which is a robust numerical electromagnetic computational tool. Then, the SVM model was built with simulation data and 88 simulated ARCMAs were operated for training and the remaining 12 ARCMAs were used for testing this model. The proposed model has been confirmed by comparing with the suggestions reported elsewhere via measurement data published earlier in the literature, and it has further validated on an ARCMA operating at 3 GHz fabricated in this study. The obtained results show that this technique can be successfully used to compute the resonant frequency of ARCMAs without involving any sophisticated methods. The novelty of the approach described here is to offer ease of designing the process using this method.

  14. Nanoparticle-coated micro-optofluidic ring resonator as a detector for microscale gas chromatographic vapor analysis

    Science.gov (United States)

    Scholten, K.; Collin, W. R.; Fan, X.; Zellers, E. T.

    2015-05-01

    A vapor sensor comprising a nanoparticle-coated microfabricated optofluidic ring resonator (μOFRR) is introduced. A multilayer film of polyether functionalized, thiolate-monolayer-protected gold nanoparticles (MPN) was solvent cast on the inner wall of the hollow cylindrical SiOx μOFRR resonator structure, and whispering gallery mode (WGM) resonances were generated with a 1550 nm tunable laser via an optical fiber taper. Reversible shifts in the WGM resonant wavelength upon vapor exposure were detected with a photodetector. The μOFRR chip was connected to a pair of upstream etched-Si chips containing PDMS-coated separation μcolumns and calibration curves were generated from the peak-area responses to five volatile organic compounds (VOCs). Calibration curves were linear, and the sensitivities reflected the influence of analyte volatility and analyte-MPN functional group affinity. Sorption-induced changes in film thickness apparently dominate over changes in the refractive index of the film as the determinant of responses for all VOCs. Peaks from the MPN-coated μOFRR were just 20-50% wider than those from a flame ionization detector for similar μcolumn separation conditions, reflecting the rapid response of the sensor for VOCs. The five VOCs were baseline separated in <1.67 min, with detection limits as low as 38 ng.

  15. Dependence of transmittance and group index on the coupling strength between constituents of a metamaterial

    International Nuclear Information System (INIS)

    Thuy Vu, Tran Thanh; Lee, Young Pak; Nguyen, Thanh Tung; Rhee, Joo Yull; Vu, Dinh Lam

    2011-01-01

    Recent studies on the coupling effects between constituent elements of metamaterials have opened up a new gateway to many fascinating electromagnetic properties and functionalities that cannot be explained by the uncoupled point of view. In this work, we numerically investigated, in a THz regime, the coupling between a cut wire and a split-ring resonator, which gives rise to an interesting phenomenon—the so-called electromagnetically induced transparency-like effect. The trade-off between the maximum transmittance of the transmission window and the group index, which depends on the coupling strength between constituent elements, was systematically studied. Furthermore, by characterizing this trade-off by the transmittance-delay product (figure of merit), a criterion for slow-light applications was provided

  16. Topological Creation of Acoustic Pseudospin Multipoles in a Flow-Free Symmetry-Broken Metamaterial Lattice

    Science.gov (United States)

    Zhang, Zhiwang; Wei, Qi; Cheng, Ying; Zhang, Ting; Wu, Dajian; Liu, Xiaojun

    2017-02-01

    The discovery of topological acoustics has revolutionized fundamental concepts of sound propagation, giving rise to strikingly unconventional acoustic edge modes immune to scattering. Because of the spinless nature of sound, the "spinlike" degree of freedom crucial to topological states in acoustic systems is commonly realized with circulating background flow or preset coupled resonator ring waveguides, which drastically increases the engineering complexity. Here we realize the acoustic pseudospin multipolar states in a simple flow-free symmetry-broken metamaterial lattice, where the clockwise (anticlockwise) sound propagation within each metamolecule emulates pseudospin down (pseudospin up). We demonstrate that tuning the strength of intermolecular coupling by simply contracting or expanding the metamolecule can induce the band inversion effect between the pseudospin dipole and quadrupole, which leads to a topological phase transition. Topologically protected edge states and reconfigurable topological one-way transmission for sound are further demonstrated. These results provide diverse routes to construct novel acoustic topological insulators with versatile applications.

  17. Integration of an Optical Ring Resonator Biosensor into a Self-Contained Microfluidic Cartridge with Active, Single-Shot Micropumps

    Directory of Open Access Journals (Sweden)

    Sascha Geidel

    2016-09-01

    Full Text Available While there have been huge advances in the field of biosensors during the last decade, their integration into a microfluidic environment avoiding external tubing and pumping is still neglected. Herein, we show a new microfluidic design that integrates multiple reservoirs for reagent storage and single-use electrochemical pumps for time-controlled delivery of the liquids. The cartridge has been tested and validated with a silicon nitride-based photonic biosensor incorporating multiple optical ring resonators as sensing elements and an immunoassay as a potential target application. Based on experimental results obtained with a demonstration model, subcomponents were designed and existing protocols were adapted. The newly-designed microfluidic cartridges and photonic sensors were separately characterized on a technical basis and performed well. Afterwards, the sensor was functionalized for a protein detection. The microfluidic cartridge was loaded with the necessary assay reagents. The integrated pumps were programmed to drive the single process steps of an immunoassay. The prototype worked selectively, but only with a low sensitivity. Further work must be carried out to optimize biofunctionalization of the optical ring resonators and to have a more suitable flow velocity progression to enhance the system’s reproducibility.

  18. A Broadband Ultrathin Nonlinear Switching Metamaterial

    Directory of Open Access Journals (Sweden)

    E. Zarnousheh Farahani

    2017-05-01

    Full Text Available In this paper, an ultrathin planar nonlinear metamaterial slab is designed and simulated. Nonlinearity is provided through placing diodes in each metamaterial unit cell. The diodes are auto-biased and activated by an incident wave. The proposed structure represents a broadband switching property between two transmission and reflection states depending on the intensity of the incident wave. High permittivity values are presented creating a near zero effective impedance at low power states, around the second resonant mode of the structure unit cell; as the result, the incident wave is reflected. Increasing the incident power to the level which can activate the loaded diodes in the structure results in elimination of the resonance and consequently a drop in the permittivity values near the permeability one as well as a switch to the transmission state. A full wave as well as a nonlinear simulations are performed. An optimization method based on weed colonization is applied to the unit cell of the metamaterial slab to achieve the maximum switching bandwidth. The structure represents a 24% switching bandwidth of a 10 dB reduction in the reflection coefficient.

  19. Photonic crystal ring resonator-based four-channel dense wavelength division multiplexing demultiplexer on silicon on insulator platform: design and analysis

    Science.gov (United States)

    Sreenivasulu, Tupakula; Bhowmick, Kaustav; Samad, Shafeek A.; Yadunath, Thamerassery Illam R.; Badrinarayana, Tarimala; Hegde, Gopalkrishna; Srinivas, Talabattula

    2018-04-01

    A micro/nanofabrication feasible compact photonic crystal (PC) ring-resonator-based channel drop filter has been designed and analyzed for operation in C and L bands of communication window. The four-channel demultiplexer consists of ring resonators of holes in two-dimensional PC slab. The proposed assembly design of dense wavelength division multiplexing setup is shown to achieve optimal quality factor, without altering the lattice parameters or resonator size or inclusion of scattering holes. Transmission characteristics are analyzed using the three-dimensional finite-difference time-domain simulation approach. The radiation loss of the ring resonator was minimized by forced cancelation of radiation fields by fine-tuning the air holes inside the ring resonator. An average cross talk of -34 dB has been achieved between the adjacent channels maintaining an average quality factor of 5000. Demultiplexing is achieved by engineering only the air holes inside the ring, which makes it a simple and tolerant design from the fabrication perspective. Also, the device footprint of 500 μm2 on silicon on insulator platform makes it easy to fabricate the device using e-beam lithography technique.

  20. Metamaterial electromagnetic wave absorbers.

    Science.gov (United States)

    Watts, Claire M; Liu, Xianliang; Padilla, Willie J

    2012-06-19

    The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Textile inspired flexible metamaterial with negative refractive index

    Science.gov (United States)

    Burgnies, L.; Lheurette, É.; Lippens, D.

    2015-04-01

    This work introduces metallo-dielectric woven fabric as a metamaterial for phase-front manipulation. Dispersion diagram as well as effective medium parameters retrieved from reflection and transmission coefficients point out negative values of refractive index. By numerical simulations, it is evidenced that a pair of meandered metallic wires, arranged in a top to bottom configuration, can yield to a textile metamaterial with simultaneously negative permittivity and permeability. While the effective negative permittivity stems from the metallic grid arrangement, resonating current loop resulting from the top to bottom configuration of two meandered metallic wires in near proximity produces magnetic activity with negative permeability. By adjusting the distance between pairs of metallic wires, the electric plasma frequency can be shifted to overlap the magnetic resonance. Finally, it is shown that the woven metamaterial is insensitive to the incident angle up to around 60°.

  2. Stealth metamaterial objects characterized in the far field by Radar Cross Section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Fan, K.; Strikwerda, A. C.

    Reflection spectra and radar cross sections (RCS) at terahertz frequencies are measured on structures incorporating absorbing metamaterials. Reduction of the RCS by the factor of 375 at the resonant frequencies is observed.......Reflection spectra and radar cross sections (RCS) at terahertz frequencies are measured on structures incorporating absorbing metamaterials. Reduction of the RCS by the factor of 375 at the resonant frequencies is observed....

  3. Bianisotropic metamaterials based on twisted asymmetric crosses

    International Nuclear Information System (INIS)

    Reyes-Avendaño, J A; Sampedro, M P; Juárez-Ruiz, E; Pérez-Rodríguez, F

    2014-01-01

    The effective bianisotropic response of 3D periodic metal-dielectric structures, composed of crosses with asymmetrically-cut wires, is investigated within a general homogenization theory using the Fourier formalism and the form-factor division approach. It is found that the frequency dependence of the effective permittivity for a system of periodically-repeated layers of metal crosses exhibits two strong resonances, whose separation is due to the cross asymmetry. Besides, bianisotropic metamaterials, having a base of four twisted asymmetric crosses, are proposed. The designed metamaterials possess negative refractive index at frequencies determined by the cross asymmetry, the gap between the arms of adjacent crosses lying on the same plane, and the type of Bravais lattice. (papers)

  4. Metamaterial Embedded Wearable Rectangular Microstrip Patch Antenna

    Directory of Open Access Journals (Sweden)

    J. G. Joshi

    2012-01-01

    Full Text Available This paper presents an indigenous low-cost metamaterial embedded wearable rectangular microstrip patch antenna using polyester substrate for IEEE 802.11a WLAN applications. The proposed antenna resonates at 5.10 GHz with a bandwidth and gain of 97 MHz and 4.92 dBi, respectively. The electrical size of this antenna is 0.254λ×0.5λ. The slots are cut in rectangular patch to reduce the bending effect. This leads to mismatch the impedance at WLAN frequency band; hence, a metamaterial square SRR is embedded inside the slot. A prototype antenna has been fabricated and tested, and the measured results are presented in this paper. The simulated and measured results of the proposed antenna are found to be in good agreement. The bending effect on the performance of this antenna is experimentally verified.

  5. AMELIORATE OF BANDWIDTH AND RETURN LOSS OF RECTANGULAR PATCH ANTENNA USING METAMATERIAL STRUCTURE FOR RFID TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    RAJESH SAHA

    2016-09-01

    Full Text Available Radio Frequency Identification is an emerging research topic to identify any object automatically and it has applications in many fields like manufacture industry, business, animal tracking, vehicle tracking etc. In automatic identification system, the main role of radio frequency identification system is radiation and detection. The reader and the tag are the important components in radio frequency identification technology. In radio frequency identification system, antenna plays very significant role to transmit and receive data in both direction (i.e., from reader to tag and vice versa. An antenna with high gain, high directivity, high bandwidth and more down in negative S11 (dB value works as an effective antenna. So design and optimization of an effective antenna is very necessary for any application. In this paper, firstly itdesigned a rectangular patch antenna and simulated through High Frequency Structure Simulator. In next step, it designed a metamaterial structure having U shape Split Ring Resonator with both one and two port, on the rectangular patch antenna to improve the return loss and bandwidth of patch antenna; so that the performance of the tag can be increased for the radio frequency identification system. By simulation it has been seen that, two port antenna provides maximum return loss and bandwidth of - 41.2dB and 870MHz respectively. Finally, the output parameters such as return loss, gain, directivity that are obtained from simulation of the metamaterial Split Ring Resonator structure antenna are compared with the network output of Artificial Neural Network to find the Mean Square Error between the simulated output and Artificial Neural Network output.

  6. New Physics of Metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhong-Yue, E-mail: zhongyuewang@ymail.com

    2014-06-15

    Einstein utilized Lorentz invariance from Maxwell's equations to modify mechanical laws and establish the special theory of relativity. Similarly, we may have a different theory if there exists another covariance of Maxwell's equations. In this paper, we find such a new transformation where Maxwell's equations are still unchanged. Consequently, Veselago's metamaterial and other systems have negative phase velocities without double negative permittivity and permeability can be described by a unified theory. People are interested in the application of metamaterials and negative phase velocities but do not appreciate the magnitude and significance to the spacetime conception of modern physics and philosophy.

  7. The local surface plasmon resonance property and refractive index sensitivity of metal elliptical nano-ring arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Weihua, E-mail: linwh-whu@hotmail.com; Wang, Qian; Dong, Anhua [Key Laboratory of Artificial Micro-and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Li, Qiuze [School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, Henan (China)

    2014-11-15

    In this paper, we systematically investigate the optical property and refractive index sensitivity (RIS) of metal elliptical nano-ring (MENR) arranged in rectangle lattice by finite-difference time-domain method. Eight kinds of considered MENRs are divided into three classes, namely fixed at the same outer size, at the same inner size, and at the same middle size. All MENR arrays show a bonding mode local surface plasmon resonance (LSPR) peak in the near-infrared region under longitudinal and transverse polarizations, and lattice diffraction enhanced LSPR peaks emerge, when the LSPR peak wavelength (LSPRPW) matches the effective lattice constant of the array. The LSPRPW is determined by the charge moving path length, the parallel and cross interactions induced by the stable distributed charges, and the moving charges inter-attraction. High RIS can be achieved by small particle distance arrays composed of MENRs with big inner size and small ring-width. On the other hand, for a MENR array, the comprehensive RIS (including RIS and figure of merit) under transverse polarization is superior to that under longitudinal polarization. Furthermore, on condition that compared arrays are fixed at the same lattice constant, the phenomenon that the RIS of big ring-width MENR arrays may be higher than that of small ring-width MENR arrays only appears in the case of compared arrays with relatively small lattice constant and composed of MENRs fixed at the same inner size simultaneously. Meanwhile, the LSPRPW of the former MENR arrays is also larger than that of the latter MENR arrays. Our systematic results may help experimentalists work with this type of systems.

  8. The local surface plasmon resonance property and refractive index sensitivity of metal elliptical nano-ring arrays

    International Nuclear Information System (INIS)

    Lin, Weihua; Wang, Qian; Dong, Anhua; Li, Qiuze

    2014-01-01

    In this paper, we systematically investigate the optical property and refractive index sensitivity (RIS) of metal elliptical nano-ring (MENR) arranged in rectangle lattice by finite-difference time-domain method. Eight kinds of considered MENRs are divided into three classes, namely fixed at the same outer size, at the same inner size, and at the same middle size. All MENR arrays show a bonding mode local surface plasmon resonance (LSPR) peak in the near-infrared region under longitudinal and transverse polarizations, and lattice diffraction enhanced LSPR peaks emerge, when the LSPR peak wavelength (LSPRPW) matches the effective lattice constant of the array. The LSPRPW is determined by the charge moving path length, the parallel and cross interactions induced by the stable distributed charges, and the moving charges inter-attraction. High RIS can be achieved by small particle distance arrays composed of MENRs with big inner size and small ring-width. On the other hand, for a MENR array, the comprehensive RIS (including RIS and figure of merit) under transverse polarization is superior to that under longitudinal polarization. Furthermore, on condition that compared arrays are fixed at the same lattice constant, the phenomenon that the RIS of big ring-width MENR arrays may be higher than that of small ring-width MENR arrays only appears in the case of compared arrays with relatively small lattice constant and composed of MENRs fixed at the same inner size simultaneously. Meanwhile, the LSPRPW of the former MENR arrays is also larger than that of the latter MENR arrays. Our systematic results may help experimentalists work with this type of systems

  9. Wireless measurement of elastic and plastic deformation by a metamaterial-based sensor.

    Science.gov (United States)

    Ozbey, Burak; Demir, Hilmi Volkan; Kurc, Ozgur; Erturk, Vakur B; Altintas, Ayhan

    2014-10-20

    We report remote strain and displacement measurement during elastic and plastic deformation using a metamaterial-based wireless and passive sensor. The sensor is made of a comb-like nested split ring resonator (NSRR) probe operating in the near-field of an antenna, which functions as both the transmitter and the receiver. The NSRR probe is fixed on a standard steel reinforcing bar (rebar), and its frequency response is monitored telemetrically by a network analyzer connected to the antenna across the whole stress-strain curve. This wireless measurement includes both the elastic and plastic region deformation together for the first time, where wired technologies, like strain gauges, typically fail to capture. The experiments are further repeated in the presence of a concrete block between the antenna and the probe, and it is shown that the sensing system is capable of functioning through the concrete. The comparison of the wireless sensor measurement with those undertaken using strain gauges and extensometers reveals that the sensor is able to measure both the average strain and the relative displacement on the rebar as a result of the applied force in a considerably accurate way. The performance of the sensor is tested for different types of misalignments that can possibly occur due to the acting force. These results indicate that the metamaterial-based sensor holds great promise for its accurate, robust and wireless measurement of the elastic and plastic deformation of a rebar, providing beneficial information for remote structural health monitoring and post-earthquake damage assessment.

  10. Aperiodic signals processing via parameter-tuning stochastic resonance in a photorefractive ring cavity

    Directory of Open Access Journals (Sweden)

    Xuefeng Li

    2014-04-01

    Full Text Available Based on solving numerically the generalized nonlinear Langevin equation describing the nonlinear dynamics of stochastic resonance by Fourth-order Runge-Kutta method, an aperiodic stochastic resonance based on an optical bistable system is numerically investigated. The numerical results show that a parameter-tuning stochastic resonance system can be realized by choosing the appropriate optical bistable parameters, which performs well in reconstructing aperiodic signals from a very high level of noise background. The influences of optical bistable parameters on the stochastic resonance effect are numerically analyzed via cross-correlation, and a maximum cross-correlation gain of 8 is obtained by optimizing optical bistable parameters. This provides a prospective method for reconstructing noise-hidden weak signals in all-optical signal processing systems.

  11. Assembling optically active and nonactive metamaterials with chiral units

    Directory of Open Access Journals (Sweden)

    Xiang Xiong

    2012-12-01

    Full Text Available Metamaterials constructed with chiral units can be either optically active or nonactive depending on the spatial configuration of the building blocks. For a class of chiral units, their effective induced electric and magnetic dipoles, which originate from the induced surface electric current upon illumination of incident light, can be collinear at the resonant frequency. This feature provides significant advantage in designing metamaterials. In this paper we concentrate on several examples. In one scenario, chiral units with opposite chiralities are used to construct the optically nonactive metamaterial structure. It turns out that with linearly polarized incident light, the pure electric or magnetic resonance (and accordingly negative permittivity or negative permeability can be selectively realized by tuning the polarization of incident light for 90°. Alternatively, units with the same chirality can be assembled as a chiral metamaterial by taking the advantage of the collinear induced electric and magnetic dipoles. It follows that for the circularly polarized incident light, negative refractive index can be realized. These examples demonstrate the unique approach to achieve certain optical properties by assembling chiral building blocks, which could be enlightening in designing metamaterials.

  12. Mechanical meta-materials

    NARCIS (Netherlands)

    Zadpoor, A.A.

    2016-01-01

    The emerging concept of mechanical meta-materials has received increasing attention during the last few years partially due to the advances in additive manufacturing techniques that have enabled fabricating materials with arbitrarily complex micro/nano-architectures. The rationally designed

  13. Unravelling Origami Metamaterial Behavior

    Science.gov (United States)

    Eidini, Maryam; Paulino, Glaucio

    2015-03-01

    Origami has shown to be a substantial source of inspiration for innovative design of mechanical metamaterials for which the material properties arise from their geometry and structural layout. Most research on origami-inspired materials relies on known patterns, especially on classic Miura-ori pattern. In the present research, we have created origami-inspired metamaterials and we have shown that the folded materials possess properties as remarkable as those of Miura-ori on which there is a lot of recent research. We have also introduced and placed emphasis on several important concepts that are confused or overlooked in the literature, e.g. concept of planar Poisson's ratio for folded materials from different conceptual viewpoints, and we have clarified the importance of such concepts by applying them to the folded sheet metamaterials introduced in our research. The new patterns are appropriate for a broad range of applications, from mechanical metamaterials to deployable and kinetic structures, at both small and large scales.

  14. Broadband low-frequency sound isolation by lightweight adaptive metamaterials

    Science.gov (United States)

    Liao, Yunhong; Chen, Yangyang; Huang, Guoliang; Zhou, Xiaoming

    2018-03-01

    Blocking broadband low-frequency airborne noises is highly desirable in lots of engineering applications, while it is extremely difficult to be realized with lightweight materials and/or structures. Recently, a new class of lightweight adaptive metamaterials with hybrid shunting circuits has been proposed, demonstrating super broadband structure-borne bandgaps. In this study, we aim at examining their potentials in broadband sound isolation by establishing an analytical model that rigorously combines the piezoelectric dynamic couplings between adaptive metamaterials and acoustics. Sound transmission loss of the adaptive metamaterial is investigated with respect to both the frequency and angular spectrum to demonstrate their sound-insulation effects. We find that efficient sound isolation can indeed be pursued in the broadband bi-spectrum for not only the case of the small resonator's periodicity where only one mode relevant to the mass-spring resonance exists, but also for the large-periodicity scenario, so that the total weight can be even lighter, in which the multiple plate-resonator coupling modes appear. In the latter case, the negative spring stiffness provided by the piezoelectric stack has been utilized to suppress the resonance-induced high acoustic transmission. Such kinds of adaptive metamaterials could open a new approach for broadband noise isolation with extremely lightweight structures.

  15. Electromagnetically induced transparency in metamaterials at near-infrared frequency

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Jeppesen, Claus

    2010-01-01

    We employ a planar metamaterial structure composed of a splitring-resonator (SRR) and paired nano-rods to experimentally realize a spectral response at near-infrared frequencies resembling that of electromagnetically induced transparency. A narrow transparency window associated with low loss...

  16. A tunable Fabry-Perot filter (λ/18) based on all-dielectric metamaterials

    Science.gov (United States)

    Ao, Tianhong; Xu, Xiangdong; Gu, Yu; Jiang, Yadong; Li, Xinrong; Lian, Yuxiang; Wang, Fu

    2018-05-01

    A tunable Fabry-Perot filter composed of two separated all-dielectric metamaterials is proposed and numerically investigated. Different from metallic metamaterials reflectors, the all-dielectric metamaterials are constructed by high-permittivity TiO2 cylinder arrays and exhibit high reflection in a broadband of 2.49-3.08 THz. The high reflection is attributed to the first and second Mie resonances, by which the all-dielectric metamaterials can serve as reflectors in the Fabry-Perot filter. Both the results from phase analysis method and CST simulations reveal that the resonant frequency of the as-proposed filter appears at 2.78 THz, responding to a cavity with λ/18 wavelength thickness. Particularly, the resonant frequency can be adjusted by changing the cavity thickness. This work provides a feasible approach to design low-loss terahertz filters with a thin air cavity.

  17. Broadband tunable electromagnetically induced transparency analogue metamaterials based on graphene in terahertz band

    Science.gov (United States)

    Wang, Yue; Leng, Yanbing; Wang, Li; Dong, Lianhe; Liu, Shunrui; Wang, Jun; Sun, Yanjun

    2018-06-01

    Most of the actively controlled electromagnetically induced transparency analogue (EIT-like) metamaterials were implemented with narrowband modulations. In this paper, a broadband tunable EIT-like metamaterial based on graphene in the terahertz band is presented. It consists of a cut wire as the bright resonator and two couples of H-shaped resonators in mirror symmetry as the dark resonators. A broadband tunable property of transmission amplitude is realized by changing the Fermi level of graphene. Furthermore, the geometries of the metamaterial structure are optimized to achieve the ideal curve through the simulation. Such EIT-like metamaterials proposed here are promising candidates for designing active wide-band slow-light devices, wide-band terahertz active filters, and wide-band terahertz modulators.

  18. Aperiodic-metamaterial-based absorber

    Directory of Open Access Journals (Sweden)

    Quanlong Yang

    2017-09-01

    Full Text Available The periodic-metamaterial-based perfect absorber has been studied broadly. Conversely, if the unit cell in the metamaterial-based absorber is arranged aperiodically (aperiodic-metamaterial-based absorber, how does it perform? Inspired by this, here we present a systematic study of the aperiodic-metamaterial-based absorber. By investigating the response of metamaterial absorbers based on periodic, Fibonacci, Thue-Morse, and quasicrystal lattices, we found that aperiodic-metamaterial-based absorbers could display similar absorption behaviors as the periodic one in one hand. However, their absorption behaviors show different tendency depending on the thicknesses of the spacer. Further studies on the angle and polarization dependence of the absorption behavior are also presented.

  19. Polymer dual ring resonators for label-free optical biosensing using microfluidics.

    Science.gov (United States)

    Salleh, Muhammad H M; Glidle, Andrew; Sorel, Marc; Reboud, Julien; Cooper, Jonathan M

    2013-04-18

    We demonstrate a polymer resonator microfluidic biosensor that overcomes the complex manufacturing procedures required to fabricate traditional devices. In this new format, we show that a gapless light coupling photonic configuration, fabricated in SU8 polymer, can achieve high sensitivity, label-free chemical sensing in solution and high sensitivity biological sensing, at visible wavelengths.

  20. Optical Backplane Based on Ring-Resonators: Scalability and Performance Analysis for 10 Gb/s OOK-NRZ

    Directory of Open Access Journals (Sweden)

    Giuseppe Rizzelli

    2014-05-01

    Full Text Available The use of architectures that implement optical switching without any need of optoelectronic conversion allows us to overcome the limits imposed by today’s electronic backplane, such as power consumption and dissipation, as well as power supply and footprint requirements. We propose a ring-resonator based optical backplane for router line-card interconnection. In particular we investigate how the scalability of the architecture is affected by the following parameters: number of line cards, switching-element round-trip losses, frequency drifting due to thermal variations, and waveguide-crossing effects. Moreover, to quantify the signal distortions introduced by filtering operations, the bit error rate for the different parameter conditions are shown in case of an on-off keying non-return-to-zero (OOK-NRZ input signal at 10 Gb/s.

  1. Compact 6 dB Two-Color Continuous Variable Entangled Source Based on a Single Ring Optical Resonator

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2018-02-01

    Full Text Available Continuous-variable entangled optical beams at the degenerate wavelength of 0.8 μm or 1.5 μm have been investigated extensively, but separately. The two-color entangled states of these two useful wavelengths, with sufficiently high degrees of entanglement, still lag behind. In this work, we analyze the various limiting factors that affect the entanglement degree. On the basis of this, we successfully achieve 6 dB of two-color quadrature entangled light beams by improving the escape efficiency of the nondegenerate optical amplifier, the stability of the phase-locking servo system, and the detection efficiency. Our entangled source is constructed only from a single ring optical resonator, and thus is highly compact, which is suitable for applications in long-distance quantum communication networks.

  2. Study of split-ring resonators for use on a pharmaceutical drug capsule for microwave activated drug release

    DEFF Research Database (Denmark)

    Jónasson, Sævar Þór; Jensen, Brian Sveistrup; Johansen, Tom Keinicke

    2012-01-01

    In this paper, a novel method for externally activating a pharmaceutical drug capsule by use of split-ring resonators (SRR) is introduced. To this end, the effect of the orientation of the SRRs on the ability to activate the capsules is examined. A coplanar waveguide is used to excite an identical...... pair of SRRs fabricated on a substrate, representing an enlarged lid for a pharmaceutical drug capsule. Orientations where the electric field component of a quasi-TEM wave lies across the gap of the SRRs provides the largest response. The optimal case is when the electric field component lies across...... the gap simultaneously with the magnetic field component normal to the SRRs. Furthermore, an analysis of the optimal conductivity and relative permittivity for enhanced temperature rise in the lid is performed. Conductivity of 0.09 S/m and relative permittivity of 12 shows the highest temperature rise....

  3. A UWB Band-Pass Antenna with Triple-Notched Band Using Common Direction Rectangular Complementary Split-Ring Resonators

    Directory of Open Access Journals (Sweden)

    Bo Yan

    2013-01-01

    Full Text Available A novel ultrawideband (UWB antenna which has a triple-band notch function is presented. The proposed antenna can block interfering signals from C-band satellite communication systems, IEEE802.11a, and HIPERLAN/2 WLAN systems for example. The antenna is excited by using novel common direction rectangular complementary split-ring resonators (CSRR fabricated on radiating patch of the dielectric substrate with coplanar waveguide (CPW feed strip line. The voltage standing wave ratio (VSWR of the proposed antenna is less than 2.0 in the frequency band from 2.8 to 12 GHz, while showing a very sharp band-rejection performance at 3.9 GHz, 5.2 GHz, and 5.9 GHz. The measurement results show that the proposed antenna provides good omnidirectional field pattern over its whole frequency band excluding the rejected band, which is suitable for UWB applications.

  4. Ultra-fast all-optical plasmonic switching in near infra-red spectrum using a Kerr nonlinear ring resonator

    Science.gov (United States)

    Nurmohammadi, Tofiq; Abbasian, Karim; Yadipour, Reza

    2018-03-01

    In this paper, an all-optical plasmonic switch based on metal-insulator-metal (MIM) nanoplasmonic waveguide with a Kerr nonlinear ring resonator is introduced and studied. Two-dimensional simulations utilizing the finite-difference time-domain algorithm are used to demonstrate an apparent optical bistability and significant switching mechanisms (in enabled-low condition: T(ON/OFF) =21.9 and in enabled-high condition: T(ON/OFF) =24.9) of the signal light arisen by altering the pump-light intensity. The proposed all-optical switching demonstrates femtosecond-scale feedback time (90 fs) and then ultra-fast switching can be achieved. The offered all-optical switch may recognize potential significant applications in integrated optical circuits.

  5. High-sensitive nitrogen dioxide and ethanol gas sensor using a reduced graphene oxide-loaded double split ring resonator

    Science.gov (United States)

    Singh, Sandeep Kumar; Azad, Prakrati; Akhtar, M. J.; Kar, Kamal K.

    2017-08-01

    A reduced graphene oxide (rGO) incorporated double split ring resonator (DSRR) portable microwave gas sensor is proposed in this work. The sensor is fabricated using two major steps: the DSRR is fabricated on the FR-4 substrate, which is excited by a high impedance microstrip line. The rGO is synthesized via a chemical route and coated inside the smaller ring of the DSRR. The SEM micrographs reveal crumpled sheets of rGO that provide a large surface area, and the XRD patterns of the as-synthesized rGO reveal the two-dimensional structure of the rGO nanosheets. The sensor performance is measured at room temperature using 100-400 ppm of ethanol and NO2 target gases. At 400 ppm, the sensor reveals a shift of 420 and 390 MHz in the S 21 frequency for NO2 and ethanol gases, respectively. The frequency shifts of 130 and 120 MHz in the S 21 resonance frequency are obtained for NO2 and ethanol gases, respectively, at a very low concentration of 100 ppm. The high sensitivity of the proposed rGO gas sensor is achieved due to the combined effect of the large surface area of the rGO responsible for accommodating more gas molecules, and its increased conductivity due to the transfer of the electron from the rGO. Moreover, an exceedingly short response time is observed for NO2 in comparison to ethanol, which allows the proposed sensor to be used for the selective detection of NO2 in a harsh environment. The overall approach used in this study is quite simple, and has great potential to enhance the gas detection behaviour of rGO.

  6. Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links.

    Science.gov (United States)

    Zhuang, Leimeng; Taddei, Caterina; Hoekman, Marcel; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris

    2013-11-04

    In this paper, we propose and experimentally demonstrate a novel wideband on-chip photonic modulation transformer for phase-modulated microwave photonic links. The proposed device is able to transform phase-modulated optical signals into intensity-modulated versions (or vice versa) with nearly zero conversion of laser phase noise to intensity noise. It is constructed using waveguide-based ring resonators, which features simple architecture, stable operation, and easy reconfigurability. Beyond the stand-alone functionality, the proposed device can also be integrated with other functional building blocks of photonic integrated circuits (PICs) to create on-chip complex microwave photonic signal processors. As an application example, a PIC consisting of two such modulation transformers and a notch filter has been designed and realized in TriPleX(TM) waveguide technology. The realized device uses a 2 × 2 splitting circuit and 3 ring resonators with a free spectral range of 25 GHz, which are all equipped with continuous tuning elements. The device can perform phase-to-intensity modulation transform and carrier suppression simultaneously, which enables high-performance phase-modulated microwave photonics links (PM-MPLs). Associated with the bias-free and low-complexity advantages of the phase modulators, a single-fiber-span PM-MPL with a RF bandwidth of 12 GHz (3 dB-suppression band 6 to 18 GHz) has been demonstrated comprising the proposed PIC, where the achieved spurious-free dynamic range performance is comparable to that of Class-AB MPLs using low-biased Mach-Zehnder modulators.

  7. Metamaterial based embedded acoustic filters for structural applications

    Directory of Open Access Journals (Sweden)

    Hongfei Zhu

    2013-09-01

    Full Text Available We investigate the use of acoustic metamaterials to design structural materials with frequency selective characteristics. By exploiting the properties of acoustic metamaterials, we tailor the propagation characteristics of the host structure to effectively filter the constitutive harmonics of an incoming broadband excitation. The design approach exploits the characteristics of acoustic waveguides coupled by cavity modes. By properly designing the cavity we can tune the corresponding resonant mode and, therefore, coupling the waveguide at a prescribed frequency. This structural design can open new directions to develop broadband passive vibrations and noise control systems fully integrated in structural components.

  8. Research Advance in Smart Metamaterials

    Directory of Open Access Journals (Sweden)

    YU Xiang-long

    2016-07-01

    Full Text Available Metamaterials, man-made materials, enable us to design our own "atoms", and thereby to create materials with unprecedented effective properties that have not yet been found in nature. Smart metamaterial is one of those that is an intelligent perceptive to the changes from external environments and simultaneously having the capability to respond to thermal and mechanical stimuli. This paper can provide a review on these smart metamaterials in perspective of science, engineering and industrial products. We divide smart metamaterials according to what they are tuning into: optical, mechanical, thermal and coupled smart metamaterials. The rest of two techniques we addressed are modelling/simulation and fabrication/gene engineering. All of these types smart materials presented here are associated with at least five fundamental research: coupled mechanism of multi-physics fields, man-made design for atom/molecular, metamaterials coupled with natural materials, tunability of metamaterials, and mechanism of sensing metamaterials. Therefore, we give a systematic overview of various potential smart metamaterials together with the upcoming challenges in the intriguing and promising research field.

  9. Electrically driven hybrid photonic metamaterials for multifunctional control

    Science.gov (United States)

    Kang, Lei; Liu, Liu; Campbell, Sawyer D.; Yue, Taiwei; Ren, Qiang; Mayer, Theresa S.; Werner, Douglas H.

    2017-08-01

    The unique light-matter interaction in metamaterials, a type of artificial medium in which the geometrical features of subunits dominate their optical responses, have been utilized to achieve exotic material properties that are rare or nonexistent in natural materials. Furthermore, to extend their behaviors, active materials have been introduced into metamaterial systems to advance tunability, switchability and nonlinearity. Nevertheless, practical examples of versatile photonic metamaterials remain exceedingly rare for two main reasons. On the one hand, in sharp contrast to the broad material options available at lower frequencies, it is less common to find active media in the optical regime that can provide pronounced dielectric property changes under external stimuli, such as electric and magnetic fields. Vanadium dioxide (VO2), offering a large refractive index variation over a broad frequency range due to its near room temperature insulator-to-metal transition (IMT), has been favored in recent studies on tunable metamaterials. On the other hand, it turns out that regulating responses of hybrid metamaterials to external forces in an integrated manner is not a straightforward task. Recently, metamaterial-enabled devices (i.e., metadevices) with `self-sufficient' or `self-contained' electrical and optical properties have enabled complex functionalities. Here, we present a design methodology along with the associated experimental validation of a VO2 thin film integrated optical metamaterial absorber as a hybrid photonic platform for electrically driven multifunctional control, including reflectance switching, a rewritable memory process and manageable localized camouflage. The nanoengineered topologically continuous metal structure simultaneously supports the optical resonance and electrical functionality that actuates the phase transition in VO2 through the process of Joule heating. This work provides a universal approach to creating self-sufficient and highly

  10. A Microwave Method for Dielectric Characterization Measurement of Small Liquids Using a Metamaterial-Based Sensor.

    Science.gov (United States)

    Liu, Weina; Sun, Haoran; Xu, Lei

    2018-05-05

    We present a microwave method for the dielectric characterization of small liquids based on a metamaterial-based sensor The proposed sensor consists of a micro-strip line and a double split-ring resonator (SRR). A large electric field is observed on the two splits of the double SRRs at the resonance frequency (1.9 GHz). The dielectric property data of the samples under test (SUTs) were obtained with two measurements. One is with the sensor loaded with the reference liquid (REF) and the other is with the sensor loaded with the SUTs. Additionally, the principle of extracting permittivity from measured changes of resonance characteristics changes of the sensor loaded with REF and SUTs is given. Some measurements were carried out at 1.9 GHz, and the calculated results of methanol⁻water mixtures with different molar fractions agree well with the time-domain reflectometry method. Moreover, the proposed sensor is compact and highly sensitive for use of sub-wavelength resonance. In comparison with literature data, relative errors are less than 3% for the real parts and 2% for the imaginary parts of complex permittivity.

  11. Compact circularly polarized truncated square ring slot antenna with suppressed higher resonances.

    Directory of Open Access Journals (Sweden)

    Mursyidul Idzam Sabran

    Full Text Available This paper presents a compact circularly polarized (CP antenna with an integrated higher order harmonic rejection filter. The proposed design operates within the ISM band of 2.32 GHz- 2.63 GHz and is suitable for example for wireless power transfer applications. Asymmetrical truncated edges on a square ring create a defected ground structure to excite the CP property, simultaneously realizing compactness. It offers a 50.5% reduced patch area compared to a conventional design. Novel stubs and slot shapes are integrated in the transmission line to reduce higher (up to the third order harmonics. The proposed prototype yields a -10 dB reflection coefficient (S11 impedance bandwidth of 12.53%, a 3 dB axial ratio bandwidth of 3.27%, and a gain of 5.64 dBi. Measurements also show good agreement with simulations.

  12. Tunable plasmon-induced absorption effects in a graphene-based waveguide coupled with graphene ring resonators

    Science.gov (United States)

    Huang, Pei-Nian; Xia, Sheng-Xuan; Fu, Guang-Lai; Liang, Mei-Zhen; Qin, Meng; Zhai, Xiang; Wang, Ling-Ling

    2018-03-01

    In this paper, we propose a structure composed of two graphene waveguides and dual coupled graphene ring resonators (GRRs) to achieve a plasmon-induced absorption (PIA) effect. A three-level plasmonic system and a temporal coupled mode theory (CMT) are utilized to verify the simulation results. Moreover, a double-window-PIA effect can be conveniently attained by introducing another GRR with proper parameters to meet more specific acquirement in optical modulation process. The pronounced PIA resonances can be tuned in a number of ways, such as by adjusting the coupling distance between the GRRs and the couplings between the GRR and the waveguide, and tuning the radius and the Fermi energy of the GRRs. Besides, the produced PIA effect shows a high group delay up to - 1 . 87 ps, exhibiting a particularly prominent fast-light feature. Our results have potential applications in the realization of THz-integrated spectral control and graphene plasmonic devices such as sensors, filters, ultra-fast optical switches and so on.

  13. Microwave bio-sensor based on symmetrical split ring resonator with spurline filters for therapeutic goods detection.

    Directory of Open Access Journals (Sweden)

    Rammah A Alahnomi

    Full Text Available A novel symmetrical split ring resonator (SSRR based microwave sensor with spurline filters for detecting and characterizing the properties of solid materials has been developed. Due to the weak perturbation in the interaction of material under test (MUT and planar microwave sensor, spurline filters were embedded to the SSRR microwave sensor which effectively enhanced Q-factor with suppressing the undesired harmonic frequency. The spurline filter structures force the presented sensor to resonate at a fundamental frequency of 2.2 GHz with the capabilities of suppressing rejected harmonic frequency and miniaturization in circuit size. A wide bandwidth rejection is achieved by using double spurlines filters with high Q-factor achievement (up to 652.94 compared to single spurline filter. The new SSRR sensor with spurline filters displayed desired properties such as high sensitivity, accuracy, and performance with a 1.3% typical percentage error in the measurement results. Furthermore, the sensor has been successfully applied for detecting and characterizing solid materials (such as Roger 5880, Roger 4350, and FR4 and evidently demonstrated that it can suppress the harmonic frequency effectively. This novel design with harmonic suppression is useful for various applications such as food industry (meat, fruit, vegetables, biological medicine (derived from proteins and other substances produced by the body, and Therapeutic goods (antiseptics, vitamins, anti-psychotics, and other medicines.

  14. Seismic isolation of buildings using composite foundations based on metamaterials

    Science.gov (United States)

    Casablanca, O.; Ventura, G.; Garescı, F.; Azzerboni, B.; Chiaia, B.; Chiappini, M.; Finocchio, G.

    2018-05-01

    Metamaterials can be engineered to interact with waves in entirely new ways, finding application on the nanoscale in various fields such as optics and acoustics. In addition, acoustic metamaterials can be used in large-scale experiments for filtering and manipulating seismic waves (seismic metamaterials). Here, we propose seismic isolation based on a device that combines some properties of seismic metamaterials (e.g., periodic mass-in-mass systems) with that of a standard foundation positioned right below the building for isolation purposes. The concepts on which this solution is based are the local resonance and a dual-stiffness structure that preserves large (small) rigidity for compression (shear) effects. In other words, this paper introduces a different approach to seismic isolation by using certain principles of seismic metamaterials. The experimental demonstrator tested on the laboratory scale exhibits a spectral bandgap that begins at 4.5 Hz. Within the bandgap, it filters more than 50% of the seismic energy via an internal dissipation process. Our results open a path toward the seismic resilience of buildings and a critical infrastructure to shear seismic waves, achieving higher efficiency compared to traditional seismic insulators and passive energy-dissipation systems.

  15. Spectroscopic studies of resonant coupling of silver optical antenna arrays to a near-surface quantum well

    International Nuclear Information System (INIS)

    Gehl, Michael; Zandbergen, Sander; Gibson, Ricky; Nader, Nima; Sears, Jasmine; Keiffer, Patrick; Khitrova, Galina; Béchu, Muriel; Wegener, Martin; Hendrickson, Joshua

    2014-01-01

    The coupling of radiation emitted on semiconductor inter-band transitions to resonant optical-antenna arrays allows for enhanced light–matter interaction via the Purcell effect. Semiconductor optical gain also potentially allows for loss reduction in metamaterials. Here we extend our previous work on optically pumped individual near-surface InGaAs quantum wells coupled to silver split-ring-resonator arrays to wire and square-antenna arrays. By comparing the transient pump-probe experimental results with the predictions of a simple model, we find that the effective coupling is strongest for the split rings, even though the split rings have the weakest dipole moment. The effect of the latter must thus be overcompensated by a smaller effective mode volume of the split rings. Furthermore, we also present a systematic variation of the pump-pulse energy, which was fixed in our previous experiments. (paper)

  16. Hierarchical honeycomb auxetic metamaterials

    Science.gov (United States)

    Mousanezhad, Davood; Babaee, Sahab; Ebrahimi, Hamid; Ghosh, Ranajay; Hamouda, Abdelmagid Salem; Bertoldi, Katia; Vaziri, Ashkan

    2015-12-01

    Most conventional materials expand in transverse directions when they are compressed uniaxially resulting in the familiar positive Poisson’s ratio. Here we develop a new class of two dimensional (2D) metamaterials with negative Poisson’s ratio that contract in transverse directions under uniaxial compressive loads leading to auxeticity. This is achieved through mechanical instabilities (i.e., buckling) introduced by structural hierarchy and retained over a wide range of applied compression. This unusual behavior is demonstrated experimentally and analyzed computationally. The work provides new insights into the role of structural organization and hierarchy in designing 2D auxetic metamaterials, and new opportunities for developing energy absorbing materials, tunable membrane filters, and acoustic dampeners.

  17. Thermally tunable magnetic metamaterials at THz frequencies

    International Nuclear Information System (INIS)

    Bui, Son Tung; Nguyen, Van Dung; Bui, Xuan Khuyen; Vu, Dinh Lam; Nguyen, Thanh Tung; Lievens, Peter; Lee, YoungPak

    2013-01-01

    We investigate theoretically and numerically the tunability of the magnetic property of metamaterial in the THz region via thermal control. One component of the meta-atom is InSb, playing an important role as an alterable metal. When the temperature of the InSb stack increases from 300 to 350 K, the resonance peak of the transmission spectra shows a shift from 0.6 to 0.85 THz accompanied by a stronger magnetic behavior. The S-parameter retrieval method realizes the tunability of the negative permeability achieved in the above heating range. (paper)

  18. Seismic metamaterials based on isochronous mechanical oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Finocchio, G., E-mail: gfinocchio@unime.it; Garescì, F.; Azzerboni, B. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, C.da di Dio, I-98166 Messina (Italy); Casablanca, O.; Chiappini, M. [Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via Vigna Murata 605, 00143 Roma (Italy); Ricciardi, G. [Department of Civil, Informatic, Architectural, and Environmental Engineering and Applied Mathematics, C.da di Dio, I-98166 Messina (Italy); Alibrandi, U. [Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576 (Singapore)

    2014-05-12

    This Letter introduces a seismic metamaterial (SM) composed by a chain of mass-in-mass system able to filter the S-waves of an earthquake. We included the effect of the SM into the mono dimensional model for the soil response analysis. The SM modifies the soil behavior and in presence of an internal damping the amplitude of the soil amplification function is reduced also in a region near the resonance frequency. This SM can be realized by a continuous structure with inside a 3d-matrix of isochronous oscillators based on a sphere rolling over a cycloidal trajectory.

  19. Impedance matched thin metamaterials make metals absorbing.

    Science.gov (United States)

    Mattiucci, N; Bloemer, M J; Aközbek, N; D'Aguanno, G

    2013-11-13

    Metals are generally considered good reflectors over the entire electromagnetic spectrum up to their plasma frequency. Here we demonstrate an approach to tailor their absorbing characteristics based on the effective metamaterial properties of thin, periodic metallo-dielectric multilayers by exploiting a broadband, inherently non-resonant, surface impedance matching mechanism. Based on this mechanism, we design, fabricate and test omnidirectional, thin ( 99%) over a frequency range spanning from the UV to the IR. Our approach opens new venues to design cost effective materials for many applications such as thermo-photovoltaic energy conversion devices, light harvesting for solar cells, flat panel display, infrared detectors, stray light reduction, stealth and others.

  20. Radio Frequency and Optical Metamaterials

    Science.gov (United States)

    2013-03-01

    nanoparticle ring resonating at 560THz. Since the nanoring in Figure 17 was modeled as four silver nanospheres suspended in air, this nanoring could not be...nanoparticles means our nanorings will not behave like the modeled silver nanoparticle ring suspended in air. To confirm the HFSS simulation results of our...it in HFSS. We modeled the Engheta and Alù’s nanoring with silver and gold since we planned to use gold for the initial study. The results from the

  1. Structured light generation by magnetic metamaterial half-wave plates at visible wavelength

    Science.gov (United States)

    Zeng, Jinwei; Luk, Ting S.; Gao, Jie; Yang, Xiaodong

    2017-12-01

    Metamaterial or metasurface unit cells functioning as half-wave plates play an essential role for realizing ideal Pancharatnam-Berry phase optical elements capable of tailoring light phase and polarization as desired. Complex light beam manipulation through these metamaterials or metasurfaces unveils new dimensions of light-matter interactions for many advances in diffraction engineering, beam shaping, structuring light, and holography. However, the realization of metamaterial or metasurface half-wave plates in visible spectrum range is still challenging mainly due to its specific requirements of strong phase anisotropy with amplitude isotropy in subwavelength scale. Here, we propose magnetic metamaterial structures which can simultaneously exploit the electric field and magnetic field of light for achieving the nanoscale half-wave plates at visible wavelength. We design and demonstrate the magnetic metamaterial half-wave plates in linear grating patterns with high polarization conversion purity in a deep subwavelength thickness. Then, we characterize the equivalent magnetic metamaterial half-wave plates in cylindrical coordinate as concentric-ring grating patterns, which act like an azimuthal half-wave plate and accordingly exhibit spatially inhomogeneous polarization and phase manipulations including spin-to-orbital angular momentum conversion and vector beam generation. Our results show potentials for realizing on-chip beam converters, compact holograms, and many other metamaterial devices for structured light beam generation, polarization control, and wavefront manipulation.

  2. Magnetoactive Acoustic Metamaterials.

    Science.gov (United States)

    Yu, Kunhao; Fang, Nicholas X; Huang, Guoliang; Wang, Qiming

    2018-04-11

    Acoustic metamaterials with negative constitutive parameters (modulus and/or mass density) have shown great potential in diverse applications ranging from sonic cloaking, abnormal refraction and superlensing, to noise canceling. In conventional acoustic metamaterials, the negative constitutive parameters are engineered via tailored structures with fixed geometries; therefore, the relationships between constitutive parameters and acoustic frequencies are typically fixed to form a 2D phase space once the structures are fabricated. Here, by means of a model system of magnetoactive lattice structures, stimuli-responsive acoustic metamaterials are demonstrated to be able to extend the 2D phase space to 3D through rapidly and repeatedly switching signs of constitutive parameters with remote magnetic fields. It is shown for the first time that effective modulus can be reversibly switched between positive and negative within controlled frequency regimes through lattice buckling modulated by theoretically predicted magnetic fields. The magnetically triggered negative-modulus and cavity-induced negative density are integrated to achieve flexible switching between single-negative and double-negative. This strategy opens promising avenues for remote, rapid, and reversible modulation of acoustic transportation, refraction, imaging, and focusing in subwavelength regimes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Tuning gain and bandwidth of traveling wave tubes using metamaterial beam-wave interaction structures

    International Nuclear Information System (INIS)

    Lipton, Robert; Polizzi, Anthony

    2014-01-01

    We employ metamaterial beam-wave interaction structures for tuning the gain and bandwidth of short traveling wave tubes. The interaction structures are made from metal rings of uniform cross section, which are periodically deployed along the length of the traveling wave tube. The aspect ratio of the ring cross sections is adjusted to control both gain and bandwidth. The frequency of operation is controlled by the filling fraction of the ring cross section with respect to the size of the period cell.

  4. Modeling of causality with metamaterials

    International Nuclear Information System (INIS)

    Smolyaninov, Igor I

    2013-01-01

    Hyperbolic metamaterials may be used to model a 2 + 1-dimensional Minkowski space–time in which the role of time is played by one of the spatial coordinates. When a metamaterial is built and illuminated with a coherent extraordinary laser beam, the stationary pattern of light propagation inside the metamaterial may be treated as a collection of particle world lines, which represents a complete ‘history’ of this 2 + 1-dimensional space–time. While this model may be used to build interesting space–time analogs, such as metamaterial ‘black holes’ and a metamaterial ‘big bang’, it lacks causality: since light inside the metamaterial may propagate back and forth along the ‘timelike’ spatial coordinate, events in the ‘future’ may affect events in the ‘past’. Here we demonstrate that a more sophisticated metamaterial model may fix this deficiency via breaking the mirror and temporal (PT) symmetries of the original model and producing one-way propagation along the ‘timelike’ spatial coordinate. The resulting 2 + 1-dimensional Minkowski space–time appears to be causal. This scenario may be considered as a metamaterial model of the Wheeler–Feynman absorber theory of causality. (paper)

  5. Light propagation in multilayer metamaterials

    NARCIS (Netherlands)

    Maas, R.C.

    2015-01-01

    Metamaterials are artificially constructed materials composed of sub-wavelength building blocks that are designed to interact with light in ways that cannot be achieved with natural materials. Over the last years, improvements in nanoscale fabrication and in metamaterial design have led to the

  6. Spatial gradient tuning in metamaterials

    Science.gov (United States)

    Driscoll, Tom; Goldflam, Michael; Jokerst, Nan; Basov, Dimitri; Smith, David

    2011-03-01

    Gradient Index (GRIN) metamaterials have been used to create devices inspired by, but often surpassing the potential of, conventional GRIN optics. The unit-cell nature of metamaterials presents the opportunity to exert much greater control over spatial gradients than is possible in natural materials. This is true not only during the design phase but also offers the potential for real-time reconfiguration of the metamaterial gradient. This ability fits nicely into the picture of transformation-optics, in which spatial gradients can enable an impressive suite of innovative devices. We discuss methods to exert control over metamaterial response, focusing on our recent demonstrations using Vanadium Dioxide. We give special attention to role of memristance and mem-capacitance observed in Vanadium Dioxide, which simplify the demands of stimuli and addressing, as well as intersecting metamaterials with the field of memory-materials.

  7. Controlling sound with acoustic metamaterials

    DEFF Research Database (Denmark)

    Cummer, Steven A. ; Christensen, Johan; Alù, Andrea

    2016-01-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...

  8. A Switchable Magnetic Low-Index Metamaterial for Use in a Dynamically Reconfigurable Beam-Scanning Lens Antenna with a Single Feed

    Science.gov (United States)

    2014-12-01

    Metamaterial Resonators and Unit Cell The active element of the reconfigurable metamaterial must be selected for its ability to generate the desired...arbitrary curvilin- ear geometrical shapes required to implement a metamaterial unit cell . Common PCB design rules require that traces follow...buffers inside the lens itself to regenerate the clock, at least every 7-8 unit cells . The green borders in Fig. 5.3 illustrate the location of the

  9. The bright-bright and bright-dark mode coupling-based planar metamaterial for plasmonic EIT-like effect

    Science.gov (United States)

    Yu, Wei; Meng, Hongyun; Chen, Zhangjie; Li, Xianping; Zhang, Xing; Wang, Faqiang; Wei, Zhongchao; Tan, Chunhua; Huang, Xuguang; Li, Shuti

    2018-05-01

    In this paper, we propose a novel planar metamaterial structure for the electromagnetically induced transparency (EIT)-like effect, which consists of a split-ring resonator (SRR) and a pair of metal strips. The simulated results indicate that a single transparency window can be realized in the symmetry situation, which originates from the bright-bright mode coupling. Further, a dual-band EIT-like effect can be achieved in the asymmetry situation, which is due to the bright-bright mode coupling and bright-dark mode coupling, respectively. Different EIT-like effect can be simultaneously achieved in the proposed structure with the different situations. It is of certain significance for the study of EIT-like effect.

  10. Elastic metamaterials for tuning circular polarization of electromagnetic waves.

    Science.gov (United States)

    Zárate, Yair; Babaee, Sahab; Kang, Sung H; Neshev, Dragomir N; Shadrivov, Ilya V; Bertoldi, Katia; Powell, David A

    2016-06-20

    Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.

  11. Broadband infrared metamaterial absorber based on anodic aluminum oxide template

    Science.gov (United States)

    Yang, Jingfan; Qu, Shaobo; Ma, Hua; Wang, Jiafu; Yang, Shen; Pang, Yongqiang

    2018-05-01

    In this work, a broadband infrared metamaterial absorber is proposed based on trapezoid-shaped anodic aluminum oxide (AAO) template. Unlike traditional metamaterial absorber constructed from metal-dielectric-metal sandwich structure, our proposed absorber is composed of trapezoid-shaped AAO template with metallic nanowires inside. The infrared absorption efficiency is numerically calculated and the mechanism analysis is given in the paper. Owing to the superposition of multiple resonances produced by the nanowires with different heights, the infrared metamatrial absorber can keep high absorption efficiency during broad working wavelength band from 3.4 μm to 6.1 μm. In addition, the resonance wavelength is associated with the height of nanowires, which indicates that the resonance wavelength can be modulated flexibly through changing the heights of nanowires. This kind of design can also be adapted to other wavelength regions.

  12. Metal-dielectric metamaterials for guided wave silicon photonics.

    Science.gov (United States)

    Lupu, A; Dubrovina, N; Ghasemi, R; Degiron, A; de Lustrac, A

    2011-11-21

    The aim of the present paper is to investigate the potential of metallic metamaterials for building optical functions in guided wave optics at 1.5 µm. A significant part of this work is focused on the optimization of the refractive index variation associated with localized plasmon resonances. The minimization of metal related losses is specifically addressed as well as the engineering of the resonance frequency of the localized plasmons. Our numerical modeling results show that a periodic chain of gold cut wires placed on the top of a 100 nm silicon waveguide makes it possible to achieve a significant index variation in the vicinity of the metamaterial resonance and serve as building blocks for implementing optical functions. The considered solutions are compatible with current nano-fabrication technologies. © 2011 Optical Society of America

  13. Active Metamaterials for Terahertz Communication and Imaging

    Science.gov (United States)

    Rout, Saroj

    In recent years there has been significant interest in terahertz (THz) systems mostly due to their unique applications in communication and imaging. One of the primary reason for this resurgence is the use of metamaterials to design THz devices due to lack of natural materials that can respond to this electromagnetic spectrum, the so-called ''THz gap''. Even after years of intense research, THz systems are complex and expensive, unsuitable for mainstream applications. This work focuses on bridging this gap by building all solid-state THz devices for imaging and communication applications in a commercial integrated circuit (IC) technology. One such canonical device is a THz wave modulator that can be used in THz wireless communication devices and as spatial light modulator (SLM) for THz imaging systems. The key contribution of this thesis is a metamaterial based THz wave modulator fabricated in a commercial gallium arsenide (GaAs) process resonant at 0.46 THz using a novel approach of embedding pseudomorphic high electron mobility transistors (pHEMTs) in metamaterial and demonstrate modulation values over 30%, and THz modulation at frequencies up to 10 MHz. Using the THz wave modulator, we fabricated and experimentally demonstrated an all solid-state metamaterial based THz spatial light modulator (SLM) as a 2x2 pixel array operating around 0.46 THz, by raster scanning an occluded metal object in polystyrene using a single-pixel imaging setup. This was an important step towards building an low-voltage (1V), low power, on-chip integrable THz imaging device. Using the characterization result from the THz SLM, we computationally demonstrated a multi-level amplitude shift keying (ASK) terahertz wireless communication system using spatial light modulation instead of traditional voltage mode modulation, achieving higher spectral efficiency for high speed communication. We show two orders of magnitude improvement in symbol error rate (SER) for a degradation of 20 dB in

  14. Effective Medium Theory for Anisotropic Metamaterials

    KAUST Repository

    Zhang, Xiujuan

    2017-11-12

    This dissertation includes the study of effective medium theories (EMTs) and their applications in describing wave propagation in anisotropic metamaterials, which can guide the design of metamaterials. An EMT based on field averaging is proposed to describe a peculiar anisotropic dispersion relation that is linear along the symmetry line but quadratic in the perpendicular direction. This dispersion relation is associated with the topological transition of the iso-frequency contours (IFCs), suggesting interesting wave propagation behaviors from beam shaping to beam splitting. In the framework of coherent potential approximation, an analytical EMT is further developed, with the ability to build a direct connection between the microscopic structure and the macroscopic material properties, which overcomes the requirement of prior knowledge of the field distributions. The derived EMT is valid beyond the long-wavelength limit. Using the EMT, an anisotropic zero-index metamaterial is designed. Moreover, the derived EMT imposes a condition that no scattered wave is generated in the ambient medium, which suggests the input signal cannot detect any object that might exist, making it invisible. Such correspondence between the EMT and the invisibilityinspires us to explore the wave cloaking in the same framework of coherent potential approximation. To further broaden the application realm of EMT, an EMT using the parameter retrieval method is studied in the regimes where the previously-developed EMTs are no longer accurate. Based on this study, in conjunction with the EMT mentioned above, a general scheme to realize coherent perfect absorption (CPA) in anisotropic metamaterials is proposed. As an exciting area in metamaterials, the field of metasurfaces has drawn great attention recently. As an easily attainable device, a grating may be the simplest version of metasurfaces. Here, an analytical EMT for gratings made of cylinders is developed by using the multiple scattering

  15. Numerical studies on a plasmonic temperature nanosensor based on a metal-insulator-metal ring resonator structure for optical integrated circuit applications

    Science.gov (United States)

    Al-mahmod, Md. Jubayer; Hyder, Rakib; Islam, Md Zahurul

    2017-07-01

    A nanosensor, based on a metal-insulator-metal (MIM) plasmonic ring resonator, is proposed for potential on-chip temperature sensing and its performance is evaluated numerically. The sensor components can be fabricated by using planar processes on a silicon substrate, making its manufacturing compatible to planar electronic fabrication technology. The sensor, constructed using silver as the metal rings and a thermo-optic liquid ethanol film between the metal layers, is capable of sensing temperature with outstanding optical sensitivity, as high as -0.53 nm/°C. The resonance wavelength is found to be highly sensitive to the refractive index of the liquid dielectric film. The resonance peak can be tuned according to the requirement of intended application by changing the radii of the ring resonator geometries in the design phase. The compact size, planar and silicon-based design, and very high resolutions- these characteristics are expected to make this sensor technology a preferred choice for lab-on-a-chip applications, as compared to other contemporary sensors.

  16. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    Directory of Open Access Journals (Sweden)

    Xin Duan

    2016-12-01

    Full Text Available A novel metamaterial rectifying surface (MRS for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  17. A metamaterial electromagnetic energy rectifying surface with high harvesting efficiency

    Science.gov (United States)

    Duan, Xin; Chen, Xing; Zhou, Lin

    2016-12-01

    A novel metamaterial rectifying surface (MRS) for electromagnetic energy capture and rectification with high harvesting efficiency is presented. It is fabricated on a three-layer printed circuit board, which comprises an array of periodic metamaterial particles in the shape of mirrored split rings, a metal ground, and integrated rectifiers employing Schottky diodes. Perfect impedance matching is engineered at two interfaces, i.e. one between free space and the surface, and the other between the metamaterial particles and the rectifiers, which are connected through optimally positioned vias. Therefore, the incident electromagnetic power is captured with almost no reflection by the metamaterial particles, then channeled maximally to the rectifiers, and finally converted to direct current efficiently. Moreover, the rectifiers are behind the metal ground, avoiding the disturbance of high power incident electromagnetic waves. Such a MRS working at 2.45 GHz is designed, manufactured and measured, achieving a harvesting efficiency up to 66.9% under an incident power density of 5 mW/cm2, compared with a simulated efficiency of 72.9%. This high harvesting efficiency makes the proposed MRS an effective receiving device in practical microwave power transmission applications.

  18. Dual curved photonic crystal ring resonator based channel drop filter using two-dimensional photonic crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com [Deptt. of Electronics and Communication Engineering, Government Engineering College Ajmer Rajasthan INDIA (India); Dusad, Lalit Kumar [Rajasthan Technical University Kota, Rajasthan (India)

    2016-05-06

    In this paper channel drop filter (CDF) is designed using dual curved photonic crystal ring resonator (PCRR). The photonic band gap (PBG) is calculated by plane wave expansion (PWE) method and the photonic crystal (PhC) based on two dimensional (2D) square lattice periodic arrays of silicon (Si) rods in air structure have been investigated using finite difference time domain (FDTD) method. The number of rods in Z and X directions is 21 and 20 respectively with lattice constant 0.540 nm and rod radius r = 0.1 µm. The channel drop filter has been optimized for telecommunication wavelengths λ = 1.591 µm with refractive indices 3.533. In the designed structure further analysis is also done by changing whole rods refractive index and it has been observed that this filter may be used for filtering several other channels also. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.

  19. Design of S-Band Phased Array Antenna with High Isolation Using Broadside Coupled Split Ring Resonator

    Directory of Open Access Journals (Sweden)

    Sungyoun Hwang

    2018-04-01

    Full Text Available In this paper, a method of designing a Vivaldi type phased array antenna (PAA which operates at S-band (2.8–3.3 GHz is presented. The presented antenna uses broadside coupled split ring resonators (BC-SRRs for high isolation, wide field of view, and good active S-parameter characteristics. As an example, we design a 1 × 8 array antenna with various BC-SRR structures using theory and EM simulations. The antenna is fabricated and measured to verify the design. With the BC-SRR implemented between the two radiating elements, the isolation is shown to be enhanced by 6 dB, up to 23 dB. The scan angle is shown to be within ±53° based on a −10 dB active reflection coefficient. The operation of the scan angle is possible within ±60° with a little larger reflection coefficient (−7 dB to −8 dB. The proposed design with BC-SRRs is expected to be useful for PAA applications.

  20. Robust magnon-photon coupling in a planar-geometry hybrid of inverted split-ring resonator and YIG film.

    Science.gov (United States)

    Bhoi, Biswanath; Kim, Bosung; Kim, Junhoe; Cho, Young-Jun; Kim, Sang-Koog

    2017-09-20

    We experimentally demonstrate strongly enhanced coupling between excited magnons in an Yttrium Iron Garnet (YIG) film and microwave photons in an inverted pattern of split-ring resonator (noted as ISRR). The anti-crossing effects of the ISRR's photon mode and the YIG's magnon modes were found from |S 21 |-versus-frequency measurements for different strengths and directions of externally applied magnetic fields. The spin-number-normalized coupling strength (i.e. single spin-photon coupling) [Formula: see text] was determined to 0.194 Hz ([Formula: see text] = 90 MHz) at 3.7 GHz frequency. Furthermore, we found that additional fine features in the anti-crossing region originate from the excitation of different spin-wave modes (such as the magnetostatic surface and the backward-volume magnetostatic spin-waves) rather than the Kittel-type mode. These spin-wave modes, as coupled with the ISRR mode, modify the anti-crossing effect as well as their coupling strength. An equivalent circuit model very accurately reproduced the observed anti-crossing effect and its coupling strength variation with the magnetic field direction in the planar-geometry ISRR/YIG hybrid system. This work paves the way for the design of new types of high-gain magnon-photon coupling systems in planar geometry.

  1. Advanced fabrication of hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Shkondin, Evgeniy; Sukham, Johneph; Panah, Mohammad Esmail Aryaee

    2017-01-01

    Hyperbolic metamaterials can provide unprecedented properties in accommodation of high-k (high wave vector) waves and enhancement of the optical density of states. To reach such performance the metamaterials have to be fabricated with as small imperfections as possible. Here we report on our...... advances in two approaches in fabrication of optical metamaterials. We deposit ultrathin ultrasmooth gold layers with the assistance of organic material (APTMS) adhesion layer. The technology supports the stacking of such layers in a multiperiod construction with alumina spacers between gold films, which...

  2. Ultrathin microwave metamaterial absorber utilizing embedded resistors

    Science.gov (United States)

    Kim, Young Ju; Hwang, Ji Sub; Yoo, Young Joon; Khuyen, Bui Xuan; Rhee, Joo Yull; Chen, Xianfeng; Lee, YoungPak

    2017-10-01

    We numerically and experimentally studied an ultrathin and broadband perfect absorber by enhancing the bandwidth with embedded resistors into the metamaterial structure, which is easy to fabricate in order to lower the Q-factor and by using multiple resonances with the patches of different sizes. We analyze the absorption mechanism in terms of the impedance matching with the free space and through the distribution of surface current at each resonance frequency. The magnetic field, induced by the antiparallel surface currents, is formed strongly in the direction opposite to the incident electromagnetic wave, to cancel the incident wave, leading to the perfect absorption. The corresponding experimental absorption was found to be higher than 97% in 0.88-3.15 GHz. The agreement between measurement and simulation was good. The aspects of our proposed structure can be applied to future electronic devices, for example, advanced noise-suppression sheets in the microwave regime.

  3. Planetary Rings

    Science.gov (United States)

    Nicholson, P. D.

    2001-11-01

    A revolution in the studies in planetary rings studies occurred in the period 1977--1981, with the serendipitous discovery of the narrow, dark rings of Uranus, the first Voyager images of the tenuous jovian ring system, and the many spectacular images returned during the twin Voyager flybys of Saturn. In subsequent years, ground-based stellar occultations, HST observations, and the Voyager flybys of Uranus (1986) and Neptune (1989), as well as a handful of Galileo images, provided much additional information. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. Perhaps most puzzling is Saturn's multi-stranded, clumpy F ring, which continues to defy a simple explanation 20 years after it was first glimpsed in grainy images taken by Pioneer 11. Voyager and HST images reveal a complex, probably chaotic, dynamical interaction between unseen parent bodies within this ring and its two shepherd satellites, Pandora and Prometheus. The work described here reflects contributions by Joe Burns, Jeff Cuzzi, Luke Dones, Dick French, Peter Goldreich, Colleen McGhee, Carolyn Porco, Mark Showalter, and Bruno Sicardy, as well as those of the author. This research has been supported by NASA's Planetary Geology and Geophysics program and the

  4. Broadband terahertz generation of metamaterials

    Science.gov (United States)

    Luo, Liang; Wang, Jigang; Koschny, Thomas; Wegener, Martin; Soukoulis, Costas M.

    2017-06-20

    Provided are systems and methods to generate single-cycle THz pulses from a few tens of nanometers thin layer of split ring resonators (SRRs) via optical rectification of femtosecond laser pulses. The emitted THz radiation, with a spectrum ranging from about 0.1 to 4 THz, arises exclusively from pumping the magnetic-dipole resonance of SRRs around 200 THz. This resonant enhancement, together with pump polarization dependence and power scaling of the THz emission, underpins the nonlinearity from optically induced circulating currents in SRRs, with a huge effective nonlinear susceptibility of 0.8.times.10.sup.-16 m.sup.2/V that far exceeds surface nonlinearities of both thin films and bulk organic/inorganic crystals and sheet nonlinearities of non-centrosymmetric materials such as ZnTe.

  5. Hyperbolic Metamaterials with Complex Geometry

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Andryieuski, Andrei; Zhukovsky, Sergei

    2016-01-01

    We investigate new geometries of hyperbolic metamaterialssuch as highly corrugated structures, nanoparticle monolayer assemblies, super-structured or vertically arranged multilayersand nanopillars. All structures retain basic propertiesof hyperbolic metamaterials, but have functionality improved...

  6. Perspective: Acoustic metamaterials in transition

    KAUST Repository

    Wu, Ying; Yang, Min; Sheng, Ping

    2017-01-01

    Acoustic metamaterials derive their novel characteristics from the interaction between acoustic waves with designed structures. Since its inception seventeen years ago, the field has been driven by fundamental geometric and physical principles

  7. Shape morphing Kirigami mechanical metamaterials.

    Science.gov (United States)

    Neville, Robin M; Scarpa, Fabrizio; Pirrera, Alberto

    2016-08-05

    Mechanical metamaterials exhibit unusual properties through the shape and movement of their engineered subunits. This work presents a new investigation of the Poisson's ratios of a family of cellular metamaterials based on Kirigami design principles. Kirigami is the art of cutting and folding paper to obtain 3D shapes. This technique allows us to create cellular structures with engineered cuts and folds that produce large shape and volume changes, and with extremely directional, tuneable mechanical properties. We demonstrate how to produce these structures from flat sheets of composite materials. By a combination of analytical models and numerical simulations we show how these Kirigami cellular metamaterials can change their deformation characteristics. We also demonstrate the potential of using these classes of mechanical metamaterials for shape change applications like morphing structures.

  8. Radiative Heat Transfer with Nanowire/Nanohole Metamaterials for Thermal Energy Harvesting Applications

    Science.gov (United States)

    Chang, Jui-Yung

    Recently, nanostructured metamaterials have attracted lots of attentions due to its tunable artificial properties. In particular, nanowire/nanohole based metamaterials which are known of the capability of large area fabrication were intensively studied. Most of the studies are only based on the electrical responses of the metamaterials; however, magnetic response, is usually neglected since magnetic material does not exist naturally within the visible or infrared range. For the past few years, artificial magnetic response from nanostructure based metamaterials has been proposed. This reveals the possibility of exciting resonance modes based on magnetic responses in nanowire/nanohole metamaterials which can potentially provide additional enhancement on radiative transport. On the other hand, beyond classical far-field radiative heat transfer, near-field radiation which is known of exceeding the Planck's blackbody limit has also become a hot topic in the field. This PhD dissertation aims to obtain a deep fundamental understanding of nanowire/nanohole based metamaterials in both far-field and near-field in terms of both electrical and magnetic responses. The underlying mechanisms that can be excited by nanowire/nanohole metamaterials such as electrical surface plasmon polariton, magnetic hyperbolic mode, magnetic polariton, etc., will be theoretically studied in both far-field and near-field. Furthermore, other than conventional effective medium theory which only considers the electrical response of metamaterials, the artificial magnetic response of metamaterials will also be studied through parameter retrieval of far-field optical and radiative properties for studying near-field radiative transport. Moreover, a custom-made AFM tip based metrology will be employed to experimentally study near-field radiative transfer between a plate and a sphere separated by nanometer vacuum gaps in vacuum. This transformative research will break new ground in nanoscale radiative heat

  9. Permanently reconfigured metamaterials due to terahertz induced mass transfer of gold

    DEFF Research Database (Denmark)

    Strikwerda, Andrew; Zalkovskij, Maksim; Iwaszczuk, Krzysztof

    2015-01-01

    We present a new technique for permanent metamaterial reconfiguration via optically induced mass transfer of gold. This mass transfer, which can be explained by field-emission induced electromigration, causes a geometric change in the metamaterial sample. Since a metamaterial's electromagnetic...... response is dictated by its geometry, this structural change massively alters the metamaterial's behavior. We show this by optically forming a conducting pathway between two closely spaced dipole antennas, thereby changing the resonance frequency by a factor of two. After discussing the physics...... of the process, we conclude by presenting an optical fuse that can be used as a sacrificial element to protect sensitive components, demonstrating the applicability of optically induced mass transfer for device design. (C)2015 Optical Society of America...

  10. Optical absorption of hyperbolic metamaterial with stochastic surfaces

    DEFF Research Database (Denmark)

    Liu, Jingjing; Naik, Gururaj V.; Ishii, Satoshi

    2014-01-01

    We investigate the absorption properties of planar hyperbolic metamaterials (HMMs) consisting of metal-dielectric multilayers, which support propagating plane waves with anomalously large wavevectors and high photonic-density-of-states over a broad bandwidth. An interface formed by depositing...... indium-tin-oxide nanoparticles on an HMM surface scatters light into the high-k propagating modes of the metamaterial and reduces reflection. We compare the reflection and absorption from an HMM with the nanoparticle cover layer versus those of a metal film with the same thickness also covered...... with the nanoparticles. It is predicted that the super absorption properties of HMM show up when exceedingly large amounts of high-k modes are excited by strong plasmonic resonances. In the case that the coupling interface is formed by non-resonance scatterers, there is almost the same enhancement in the absorption...

  11. Science meets magic: photonic metamaterials

    Science.gov (United States)

    Ozbay, Ekmel

    2012-05-01

    The word "magic" is usually associated with movies, fiction, children stories, etc. but seldom with the natural sciences. Recent advances in metamaterials have changed this notion, in which we can now speak of "almost magical" properties that scientists could only dream about only a decade ago. In this article, we review some of the recent "almost magical" progress in the field of meta-materials.

  12. Critical opalescence in hyperbolic metamaterials

    International Nuclear Information System (INIS)

    Smolyaninov, Igor I

    2011-01-01

    Hyperbolic metamaterials in which the dielectric component exhibits critical opalescence have been considered. It appears that fluctuations of the effective refractive index in these materials are strongly enhanced and so 'virtual electromagnetic black holes' may appear as a result of these fluctuations. Therefore, the behaviour of 'optical space' inside hyperbolic metamaterials looks somewhat similar to the behaviour of real physical space-time on the Planck scale

  13. Critical opalescence in hyperbolic metamaterials

    Science.gov (United States)

    Smolyaninov, Igor I.

    2011-12-01

    Hyperbolic metamaterials in which the dielectric component exhibits critical opalescence have been considered. It appears that fluctuations of the effective refractive index in these materials are strongly enhanced and so 'virtual electromagnetic black holes' may appear as a result of these fluctuations. Therefore, the behaviour of 'optical space' inside hyperbolic metamaterials looks somewhat similar to the behaviour of real physical space-time on the Planck scale.

  14. Application of Metamaterials to RF Energy Harvesting and Infrared Photodetection

    Science.gov (United States)

    Fowler, Clayton M.

    Techniques for adapting metamaterials for the improvement of RF energy harvesting and infrared photodetection are demonstrated using experimental and computer simulation methods. Two methods for RF energy harvesting are experimentally demonstrated and supported by computer simulation. In the first method, a metamaterial perfect absorber (MPA) is made into a rectenna capable of harvesting RF energy and delivering power to a load by soldering Schottky diodes onto connected split ring resonator (SRR) structures composing the planar metasurface of the perfect absorber. The metamaterial rectenna is accompanied by a ground plane placed parallel to it, which forms a Fabry-Perot cavity between the metasurface and the ground plane. The Fabry-Perot cavity stores energy in the form of standing waves which is transferred to the SRR structures of the metasurface as AC currents that are rectified by the diodes to create DC power. This type of design enables highly efficient energy harvesting for low input power, creates a large antenna capture area, and uses elements with small electrical size, such that 100 uW of power (enough to operate simple devices) can be captured at ambient intensities 1 - 2 uW/cm2. Two designs using this method are presented, one that operates for linear polarizations at 0.9 GHz and a smaller polarization-independent design that operates around 1.5 GHz. In the second method, the energy stored in the standing waves of an MPA Fabry-Perot cavity is instead harvested by placing a separate energy harvesting antenna within the cavity. The cavity shapes and enhances the incident electric field, and then the separate energy harvesting antenna is designed to be inserted into the cavity so that its shape and/or radiation pattern matches the electric field lines within the cavity and maximally extracts the stored energy. This method allows for great customization of antenna design parameters, such as operating frequency, polarization dependence, and directionality

  15. Bidirectional reconfiguration and thermal tuning of microcantilever metamaterial device operating from 77 K to 400 K

    Science.gov (United States)

    Pitchappa, Prakash; Manjappa, Manukumara; Krishnamoorthy, Harish N. S.; Chang, Yuhua; Lee, Chengkuo; Singh, Ranjan

    2017-12-01

    We experimentally report the bidirectional reconfiguration of an out-of-plane deformable microcantilever based metamaterial for advanced and dynamic manipulation of terahertz waves. The microcantilever is made of a bimaterial stack with a large difference in the coefficient of thermal expansion of the constituent materials. This allows for the continuous deformation of microcantilevers in upward or downward direction in response to positive or negative temperature gradient, respectively. The fundamental resonance frequency of the fabricated microcantilever metamaterial is measured at 0.4 THz at room temperature of 293 K. With decreasing temperature, the resonance frequency continuously blue shifts by 30 GHz at 77 K. On the other hand, with increasing temperature, the resonance frequency gradually red shifts by 80 GHz and saturates at 0.32 THz for 400 K. Furthermore, as the temperature is increased above room temperature, which results in the downward actuation of the microcantilever, a significant resonance line-narrowing with an enhanced quality factor is observed due to tight field confinement in the metamaterial structure. The thermal control of the microcantilever possesses numerous inherent advantages such as enhanced tunable range (˜37.5% in this work compared to previously reported microcantilever metamaterials), continuous tunability, and repeatable operations. The microcantilever metamaterial also shows high robustness to operate at cryogenic conditions and hence opens up the possibility of using meta-devices in harsh environments such as space, polar, and deep sea applications.

  16. Peripartum changes of the pelvic ring: usefulness of magnetic resonance imaging; Peripartale Veraenderungen des Beckenringes: Wie sinnvoll ist die Magnetresonanztomografie?

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, K.G.A.; Muehler, M.R.; Lembcke, A.; Hamm, B. [Charite - Universitaetsmedizin Berlin (Germany). Inst. fuer Radiologie; Halle, H. [Charite - Universitaetsmedizin Berlin (Germany). Klinik fuer Geburtshilfe und Perinatalmedizin; Reisshauer, A. [Charite - Universitaetsmedizin Berlin (Germany). Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie; Schink, T. [Charite - Universitaetsmedizin Berlin (Germany). Inst. fuer Biometrie und Klinische Epidemiologie; Vsianska, L.; Bollow, M. [Augusta-Kranken-Anstalt, Bochum (Germany). Inst. fuer Radiologie

    2007-12-15

    Purpose: Postpartum pelvic pain beyond the normal level poses a problem to obstetricians. Beyond normal physiologic loosening of the pubic symphysis and sacroiliac joints (SIJs) during pregnancy, symphyseal separation and rupture must be excluded. The aim of this prospective study was to determine whether magnetic resonance imaging (MRI) allows for reliable differentiation of normal postpartum findings and pathologic lesions. Material and Methods: The study included a total of 77 women (mean age 30), among them 21 healthy subjects (group A), 21 asymptomatic postpartum women (group B), and 35 patients with postpartum pelvic pain (group C). The analyzed parameters comprised symphyseal and iliosacral tenderness, subjective pain assessed on a visual analog scale, and data pertaining to obstetric history. All 77 women underwent 1.5T MRI of the pelvic ring using oblique angulated coronal T 1-weighted and STIR sequences for imaging of the symphysis and SIJs in one slice package. Analysis of the MR images comprised signal intensities of pelvic bone marrow, width of the symphyseal cleft, and the symphyseal capsule. Results: Subjects in group A in general had a normal bone marrow signal. The STIR sequence showed increased signal intensity of the pubic bone near the symphysis in 16 women (76%) of group B and 31 patients of group C (86%) (not significant). An increased periarticular bone marrow signal of the SIJs on the STIR images was seen in 13 women (62%) of group B and 23 patients (63%) of group C. The mean width of the symphyseal cleft differed significantly among the three groups (3.4 mm vs. 5.4 mm vs. 6.7 mm). A width > 10 mm was observed in only 4 cases (11%). Moreover, associated findings such as interpubic hematoma (n = 23) or tears of the symphyseal capsule (n = 7) were detected in patients of group C. (orig.)

  17. Uneven-Layered Coding Metamaterial Tile for Ultra-wideband RCS Reduction and Diffuse Scattering.

    Science.gov (United States)

    Su, Jianxun; He, Huan; Li, Zengrui; Yang, Yaoqing Lamar; Yin, Hongcheng; Wang, Junhong

    2018-05-25

    In this paper, a novel uneven-layered coding metamaterial tile is proposed for ultra-wideband radar cross section (RCS) reduction and diffuse scattering. The metamaterial tile is composed of two kinds of square ring unit cells with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Due to the phase cancellation between two unit cells, the metamaterial tile has the scattering pattern of four strong lobes deviating from normal direction. The metamaterial tile and its 90-degree rotation can be encoded as the '0' and '1' elements to cover an object, and diffuse scattering pattern can be realized by optimizing phase distribution, leading to reductions of the monostatic and bi-static RCSs simultaneously. The metamaterial tile can achieve -10 dB RCS reduction from 6.2 GHz to 25.7 GHz with the ratio bandwidth of 4.15:1 at normal incidence. The measured and simulated results are in good agreement and validate the proposed uneven-layered coding metamaterial tile can greatly expanding the bandwidth for RCS reduction and diffuse scattering.

  18. Shape-matching soft mechanical metamaterials

    NARCIS (Netherlands)

    Mirzaali Mazandarani, M.; Janbaz, S.; Strano, M.; Vergani, L.; Zadpoor, A.A.

    2018-01-01

    Architectured materials with rationally designed geometries could be used to create mechanical metamaterials with unprecedented or rare properties and functionalities. Here, we introduce "shape-matching" metamaterials where the geometry of cellular structures comprising auxetic and conventional

  19. The 'partial resonance' of the ring in the NLO crystal melaminium formate: study using vibrational spectra, DFT, HOMO-LUMO and MESP mapping.

    Science.gov (United States)

    Binoy, J; Marchewka, M K; Jayakumar, V S

    2013-03-01

    The molecular geometry and vibrational spectral investigations of melaminium formate, a potential material known for toxicity and NLO activity, has been performed. The FT IR and FT Raman spectral investigations of melaminium formate is performed aided by the computed spectra of melaminium formate, triazine, melamine, melaminium and formate ion, along with bond orders and PED, computed using the density functional method (B3LYP) with 6-31G(d) basis set and XRD data, to reveal intermolecular interactions of amino groups with neighbor formula units in the crystal, intramolecular H⋯H repulsion of amino group hydrogen with protonating hydrogen, consequent loss of resonance in the melaminium ring, restriction of resonance to N(3)C(1)N(1) moiety leading to special type resonance of the ring and the resonance structure of CO(2) group of formate ion. The 3D matrix of hyperpolarizability tensor components has been computed to quantify NLO activity of melamine, melaminium and melaminium formate and the hyperpolarizability enhancement is analyzed using computed plots of HOMO and LUMO orbitals. A new mechanism of proton transfer responsible for NLO activity has been suggested, based on anomalous IR spectral bands in the high wavenumber region. The computed MEP contour maps have been used to analyze the interaction of melaminium and formate ions in the crystal. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. The `partial resonance' of the ring in the NLO crystal melaminium formate: Study using vibrational spectra, DFT, HOMO-LUMO and MESP mapping

    Science.gov (United States)

    Binoy, J.; Marchewka, M. K.; Jayakumar, V. S.

    2013-03-01

    The molecular geometry and vibrational spectral investigations of melaminium formate, a potential material known for toxicity and NLO activity, has been performed. The FT IR and FT Raman spectral investigations of melaminium formate is performed aided by the computed spectra of melaminium formate, triazine, melamine, melaminium and formate ion, along with bond orders and PED, computed using the density functional method (B3LYP) with 6-31G(d) basis set and XRD data, to reveal intermolecular interactions of amino groups with neighbor formula units in the crystal, intramolecular H⋯H repulsion of amino group hydrogen with protonating hydrogen, consequent loss of resonance in the melaminium ring, restriction of resonance to N3C1N1 moiety leading to special type resonance of the ring and the resonance structure of CO2 group of formate ion. The 3D matrix of hyperpolarizability tensor components has been computed to quantify NLO activity of melamine, melaminium and melaminium formate and the hyperpolarizability enhancement is analyzed using computed plots of HOMO and LUMO orbitals. A new mechanism of proton transfer responsible for NLO activity has been suggested, based on anomalous IR spectral bands in the high wavenumber region. The computed MEP contour maps have been used to analyze the interaction of melaminium and formate ions in the crystal.

  1. Microwave Imaging Sensor Using Compact Metamaterial UWB Antenna with a High Correlation Factor

    Directory of Open Access Journals (Sweden)

    Md. Moinul Islam

    2015-07-01

    Full Text Available The design of a compact metamaterial ultra-wideband (UWB antenna with a goal towards application in microwave imaging systems for detecting unwanted cells in human tissue, such as in cases of breast cancer, heart failure and brain stroke detection is proposed. This proposed UWB antenna is made of four metamaterial unit cells, where each cell is an integration of a modified split ring resonator (SRR, capacitive loaded strip (CLS and wire, to attain a design layout that simultaneously exhibits both a negative magnetic permeability and a negative electrical permittivity. This design results in an astonishing negative refractive index that enables amplification of the radiated power of this reported antenna, and therefore, high antenna performance. A low-cost FR4 substrate material is used to design and print this reported antenna, and has the following characteristics: thickness of 1.6 mm, relative permeability of one, relative permittivity of 4.60 and loss tangent of 0.02. The overall antenna size is 19.36 mm × 27.72 mm × 1.6 mm where the electrical dimension is 0.20 λ × 0.28 λ × 0.016 λ at the 3.05 GHz lower frequency band. Voltage Standing Wave Ratio (VSWR measurements have illustrated that this antenna exhibits an impedance bandwidth from 3.05 GHz to more than 15 GHz for VSWR < 2 with an average gain of 4.38 dBi throughout the operating frequency band. The simulations (both HFSS and computer simulation technology (CST and the measurements are in high agreement. A high correlation factor and the capability of detecting tumour simulants confirm that this reported UWB antenna can be used as an imaging sensor.

  2. Deformable wire array: fiber drawn tunable metamaterials

    DEFF Research Database (Denmark)

    Fleming, Simon; Stefani, Alessio; Tang, Xiaoli

    2017-01-01

    By fiber drawing we fabricate a wire array metamaterial, the structure of which can be actively modified. The plasma frequency can be tuned by 50% by compressing the metamaterial; recovers when released and the process can be repeated.......By fiber drawing we fabricate a wire array metamaterial, the structure of which can be actively modified. The plasma frequency can be tuned by 50% by compressing the metamaterial; recovers when released and the process can be repeated....

  3. Transmission line model and fields analysis of metamaterial absorber in the terahertz band.

    Science.gov (United States)

    Wen, Qi-Ye; Xie, Yun-Song; Zhang, Huai-Wu; Yang, Qing-Hui; Li, Yuan-Xun; Liu, Ying-Li

    2009-10-26

    Metamaterial (MM) absorber is a novel device to provide near-unity absorption to electromagnetic wave, which is especially important in the terahertz (THz) band. However, the principal physics of MM absorber is still far from being understood. In this work, a transmission line (TL) model for MM absorber was proposed, and with this model the S-parameters, energy consumption, and the power loss density of the absorber were calculated. By this TL model, the asymmetric phenomenon of THz absorption in MM absorber is unambiguously demonstrated, and it clarifies that strong absorption of this absorber under studied is mainly related to the LC resonance of the split-ring-resonator structure. The distribution of power loss density in the absorber indicates that the electromagnetic wave is firstly concentrated into some specific locations of the absorber and then be strongly consumed. This feature as electromagnetic wave trapper renders MM absorber a potential energy converter. Based on TL model, some design strategies to widen the absorption band were also proposed for the purposes to extend its application areas.

  4. Nonlinear metamaterials for electromagnetic energy harvesting (Conference Presentation)

    Science.gov (United States)

    Oumbe Tekam, Gabin Thibaut; Ginis, Vincent; Seetharamdoo, Divitha; Danckaert, Jan

    2016-09-01

    Surrounded by electromagnetic radiation coming from wireless power transfer to consumer devices such as mobile phones, computers and television, our society is facing the scientific and technological challenge to recover energy that is otherwise lost to the environment. Energy harvesting is an emerging field of research focused on this largely unsolved problem, especially in the microwave regime. Metamaterials provide a very promising platform to meet this purpose. These artificial materials are made from subwavelength building blocks, and can be designed by resonate at particular frequencies, depending on their shape, geometry, size, and orientation. In this work, we show that an efficient electromagnetic energy harvester can be design by inserting a nonlinear element directly within the metamaterial unit cell, leading to the conversion of RF input power to DC charge accumulation. The electromagnetic energy harvester operating at microwave frequencies is built from a cut-wire metasurface, which operates as a quasistatic electric dipole resonator. Using the equivalent electrical circuit, we design the parameters to tune the resonance frequency of the harvester at the desired frequency, and we compare these results with numerical simulations. Finally, we discuss the efficiency of our metamaterial energy harvesters. This work potentially offers a variety of applications, for example in the telecommunications industry to charge phones, in robotics to power microrobots, and also in medicine to advance pacemakers or health monitoring sensors.

  5. All-optically tunable waveform synthesis by a silicon nanowaveguide ring resonator coupled with a photonic-crystal fiber frequency shifter

    KAUST Repository

    Savvin, Aleksandr D.

    2011-03-01

    A silicon nanowaveguide ring resonator is combined with a photonic-crystal fiber (PCF) frequency shifter to demonstrate an all-optically tunable synthesis of ultrashort pulse trains, modulated by ultrafast photoinduced free-carrier generation in the silicon resonator. Pump-probe measurements performed with a 50-fs, 625-nm second-harmonic output of a Cr:forsterite laser, used as a carrier-injecting pump, and a 1.50-1.56-μm frequency-tunable 100-fs soliton output of a photonic-crystal fiber, serving as a probe, resolve tunable ultrafast oscillatory features in the silicon nanowaveguide resonator response. © 2010 Elsevier B.V. All rights reserved.

  6. All-optically tunable waveform synthesis by a silicon nanowaveguide ring resonator coupled with a photonic-crystal fiber frequency shifter

    KAUST Repository

    Savvin, Aleksandr D.; Melnikov, Vasily; Fedotov, Il'ya V.; Fedotov, Andrei B.; Perova, Tatiana S.; Zheltikov, Aleksei M.

    2011-01-01

    A silicon nanowaveguide ring resonator is combined with a photonic-crystal fiber (PCF) frequency shifter to demonstrate an all-optically tunable synthesis of ultrashort pulse trains, modulated by ultrafast photoinduced free-carrier generation in the silicon resonator. Pump-probe measurements performed with a 50-fs, 625-nm second-harmonic output of a Cr:forsterite laser, used as a carrier-injecting pump, and a 1.50-1.56-μm frequency-tunable 100-fs soliton output of a photonic-crystal fiber, serving as a probe, resolve tunable ultrafast oscillatory features in the silicon nanowaveguide resonator response. © 2010 Elsevier B.V. All rights reserved.

  7. Fractal THz metamaterials

    DEFF Research Database (Denmark)

    Malureanu, Radu; Jepsen, Peter Uhd; Xiao, S.

    2010-01-01

    applications. THz radiation can be employed for various purposes, among them the study of vibrations in biological molecules, motion of electrons in semiconductors and propagation of acoustic shock waves in crystals. We propose here a new THz fractal MTM design that shows very high transmission in the desired...... frequency range as well as a clear differentiation between one polarisation and another. Based on theoretical predictions we fabricated and measured a fractal based THz metamaterial that shows more than 60% field transmission at around 1THz for TE polarized light while the TM waves have almost 80% field...... transmission peak at 0.6THz. One of the main characteristics of this design is its tunability by design: by simply changing the length of the fractal elements one can choose the operating frequency window. The modelling, fabrication and characterisation results will be presented in this paper. Due to the long...

  8. Metamaterials for perfect absorption

    CERN Document Server

    Lee, Young Pak; Yoo, Young Joon; Kim, Ki Won

    2016-01-01

    This book provides a comprehensive overview of the theory and practical development of metamaterial-based perfect absorbers (MMPAs). It begins with a brief history of MMPAs which reviews the various theoretical and experimental milestones in their development. The theoretical background and fundamental working principles of MMPAs are then discussed, providing the necessary background on how MMPAs work and are constructed. There then follows a section describing how different MMPAs are designed and built according to the operating frequency of the electromagnetic wave, and how their behavior is changed. Methods of fabricating and characterizing MMPAs are then presented. The book elaborates on the performance and characteristics of MMPAs, including electromagnetically-induced transparency (EIT). It also covers recent advances in MMPAs and their applications, including multi-band, broadband, tunability, polarization independence and incidence independence. Suitable for graduate students in optical sciences and e...

  9. Electro-magnetostatic homogenization of bianisotropic metamaterials

    OpenAIRE

    Fietz, Chris

    2012-01-01

    We apply the method of asymptotic homogenization to metamaterials with microscopically bianisotropic inclusions to calculate a full set of constitutive parameters in the long wavelength limit. Two different implementations of electromagnetic asymptotic homogenization are presented. We test the homogenization procedure on two different metamaterial examples. Finally, the analytical solution for long wavelength homogenization of a one dimensional metamaterial with microscopically bi-isotropic i...

  10. Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials

    Science.gov (United States)

    Qureshi, Awais; Li, Bing; Tan, K. T.

    2016-06-01

    In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes.

  11. Scalable nanofabrication of U-shaped nanowire resonators with tunable optical magnetism.

    Science.gov (United States)

    Zhou, Fan; Wang, Chen; Dong, Biqin; Chen, Xiangfan; Zhang, Zhen; Sun, Cheng

    2016-03-21

    Split ring resonators have been studied extensively in reconstituting the diminishing magnetism at high electromagnetic frequencies in nature. However, breakdown in the linear scaling of artificial magnetism is found to occur at the near-infrared frequency mainly due to the increasing contribution of self-inductance while reducing dimensions of the resonators. Although alternative designs have enabled artificial magnetism at optical frequencies, their sophisticated configurations and fabrication procedures do not lend themselves to easy implementation. Here, we report scalable nanofabrication of U-shaped nanowire resonators (UNWRs) using the high-throughput nanotransfer printing method. By providing ample area for conducting oscillating electric current, UNWRs overcome the saturation of the geometric scaling of the artificial magnetism. We experimentally demonstrated coarse and fine tuning of LC resonances over a wide wavelength range from 748 nm to 1600 nm. The added flexibility in transferring to other substrates makes UNWR a versatile building block for creating functional metamaterials in three dimensions.

  12. Large-scale fabrication of achiral plasmonic metamaterials with giant chiroptical response

    Directory of Open Access Journals (Sweden)

    Morten Slyngborg

    2016-06-01

    Full Text Available A variety of extrinsic chiral metamaterials were fabricated by a combination of self-ordering anodic oxidation of aluminum foil, nanoimprint lithography and glancing angle deposition. All of these techniques are scalable and pose a significant improvement to standard metamaterial fabrication techniques. Different interpore distances and glancing angle depositions enable the plasmonic resonance wavelength to be tunable in the range from UVA to IR. These extrinsic chiral metamaterials only exhibit significant chiroptical response at non-normal angles of incidence. This intrinsic property enables the probing of both enantoimeric structures on the same sample, by inverting the tilt of the sample relative to the normal angle. In biosensor applications this allows for more precise, cheap and commercialized devices. As a proof of concept two different molecules were used to probe the sensitivity of the metamaterials. These proved the applicability to sense proteins through non-specific adsorption on the metamaterial surface or through functionalized surfaces to increase the sensing sensitivity. Besides increasing the sensing sensitivity, these metamaterials may also be commercialized and find applications in surface-enhanced IR spectroscopy, terahertz generation and terahertz circular dichroism spectroscopy.

  13. Combined Brillouin light scattering and microwave absorption study of magnon-photon coupling in a split-ring resonator/YIG film system

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, S., E-mail: stefan.klingler@wmi.badw.de; Maier-Flaig, H.; Weiler, M. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Straße 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Gross, R.; Huebl, H.; Goennenwein, S. T. B. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Straße 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), 80799 Munich (Germany); Hu, C.-M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T2N2 (Canada)

    2016-08-15

    Microfocused Brillouin light scattering (BLS) and microwave absorption (MA) are used to study magnon-photon coupling in a system consisting of a split-ring microwave resonator and an yttrium iron garnet (YIG) film. The split-ring resonator is defined by optical lithography and loaded with a 1 μm-thick YIG film grown by liquid phase epitaxy. BLS and MA spectra of the hybrid system are simultaneously recorded as a function of the applied magnetic field magnitude and microwave excitation frequency. Strong coupling of the magnon and microwave resonator modes is found with a coupling strength of g{sub eff} /2π = 63 MHz. The combined BLS and MA data allow us to study the continuous transition of the hybridized modes from a purely magnonic to a purely photonic mode by varying the applied magnetic field and microwave frequency. Furthermore, the BLS data represent an up-conversion of the microwave frequency coupling to optical frequencies.

  14. TiO{sub 2} microsphere-based metamaterials exhibiting effective magnetic response in the terahertz regime

    Energy Technology Data Exchange (ETDEWEB)

    Yahiaoui, R.; Mounaix, P. [Universite Bordeaux 1, CNRS, UMR 5798, LOMA, Talence (France); Nemec, H.; Kadlec, C.; Kadlec, F.; Kuzel, P. [Academy of Sciences of the Czech Republic, Institute of Physics, Prague (Czech Republic); Chung, U.C. [Universite Bordeaux, CNRS - UPR 9048, ICMCB, Pessac (France); CRPP, CNRS - UPR 8641, Pessac (France); Elissalde, C.; Maglione, M. [Universite Bordeaux, CNRS - UPR 9048, ICMCB, Pessac (France)

    2012-12-15

    Thin layers of all-dielectric metamaterials based on TiO{sub 2} spherical particle resonators are investigated. A new method based on spray drying of dissolved nanoparticles is used in the fabrication process. Spectral footprints of electric and magnetic dipoles are reported numerically and through experimental tests. It is a promising step for the construction of novel three-dimensional isotropic metamaterials exhibiting desired electromagnetic properties for terahertz applications. (orig.)

  15. A tunable hybrid metamaterial absorber based on vanadium oxide films

    International Nuclear Information System (INIS)

    Wen Qiye; Zhang Huaiwu; Yang Qinghui; Long Yang; Jing Yulan; Lin Yuan; Chen Zhi; Zhang Peixin

    2012-01-01

    A tunable hybrid metamaterial absorber (MA) in the microwave band was designed, fabricated and characterized. The hybrid MA was realized by incorporating a VO 2 film into the conventional resonant MA. By thermally triggering the insulator-metal phase transition of the VO 2 film, the impedance match condition was broken and a deep amplitude modulation of about 63.3% to the electromagnetic wave absorption was achieved. A moderate blue-shift of the resonance frequency was observed which is promising for practical applications. This VO 2 -based MA exhibits many advantages such as strong tunability, frequency agility, simple fabrication and ease of scaling to the terahertz band. (paper)

  16. A Metamaterial-Inspired Approach to RF Energy Harvesting

    Science.gov (United States)

    Fowler, Clayton; Zhou, Jiangfeng

    2016-03-01

    We demonstrate an RF energy harvesting rectenna design based on a metamaterial perfect absorber (MPA). With the embedded Schottky diodes, the rectenna converts captured RF energy to DC currents. The Fabry-Perot cavity resonance of the MPA greatly improves the amount of energy captured and hence improves the rectification efficiency. Furthermore, the FP resonance exhibits a high Q-factor and significantly increases the voltage across the Schottky diodes. This leads to a factor of 16 improvement of RF-DC conversion efficiency at ambient intensity level.

  17. FDTD-SPICE for Characterizing Metamaterials Integrated with Electronic Circuits

    Directory of Open Access Journals (Sweden)

    Zhengwei Hao

    2012-01-01

    Full Text Available A powerful time-domain FDTD-SPICE simulator is implemented and applied to the broadband analysis of metamaterials integrated with active and tunable circuit elements. First, the FDTD-SPICE modeling theory is studied and details of interprocess communication and hybridization of the two techniques are discussed. To verify the model, some simple cases are simulated with results in both time domain and frequency domain. Then, simulation of a metamaterial structure constructed from periodic resonant loops integrated with lumped capacitor elements is studied, which demonstrates tuning resonance frequency of medium by changing the capacitance of the integrated elements. To increase the bandwidth of the metamaterial, non-Foster transistor configurations are integrated with the loops and FDTD-SPICE is applied to successfully bridge the physics of electromagnetic and circuit topologies and to model the whole composite structure. Our model is also applied to the design and simulation of a metasurface integrated with nonlinear varactors featuring tunable reflection phase characteristic.

  18. Numerical methods for metamaterial design

    CERN Document Server

    2013-01-01

    This book describes a relatively new approach for the design of electromagnetic metamaterials.  Numerical optimization routines are combined with electromagnetic simulations to tailor the broadband optical properties of a metamaterial to have predetermined responses at predetermined wavelengths. After a review of both the major efforts within the field of metamaterials and the field of mathematical optimization, chapters covering both gradient-based and derivative-free design methods are considered.  Selected topics including surrogate-base optimization, adaptive mesh search, and genetic algorithms are shown to be effective, gradient-free optimization strategies.  Additionally, new techniques for representing dielectric distributions in two dimensions, including level sets, are demonstrated as effective methods for gradient-based optimization.  Each chapter begins with a rigorous review of the optimization strategy used, and is followed by numerous examples that combine the strategy with either electromag...

  19. Experimental demonstration of ultrasensitive sensing with terahertz metamaterial absorbers: A comparison with the metasurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Longqing; Singh, Ranjan, E-mail: ranjans@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Tan, Siyu [School of Electrical Engineering and Computer Science, Oklahoma State University, Stillwater, Oklahoma 87074 (United States); Key Lab of All Optical Network and Advanced Telecommunication Network of EMC, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044 (China); Yahiaoui, Riad [XLIM, Limoges University, CNRS, UMR 7252, 7 rue Jules Vallès, F-19100 Brive (France); Yan, Fengping [Key Lab of All Optical Network and Advanced Telecommunication Network of EMC, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Weili [School of Electrical Engineering and Computer Science, Oklahoma State University, Stillwater, Oklahoma 87074 (United States)

    2015-01-19

    Planar metasurfaces and plasmonic resonators have shown great promise for sensing applications across the electromagnetic domain ranging from the microwaves to the optical frequencies. However, these sensors suffer from lower figure of merit and sensitivity due to the radiative and the non-radiative loss channels in the plasmonic metamaterial systems. We demonstrate a metamaterial absorber based ultrasensitive sensing scheme at the terahertz frequencies with significantly enhanced sensitivity and an order of magnitude higher figure of merit compared to planar metasurfaces. Magnetic and electric resonant field enhancement in the impedance matched absorber cavity enables stronger interaction with the dielectric analyte. This finding opens up opportunities for perfect metamaterial absorbers to be applied as efficient sensors in the finger print region of the electromagnetic spectrum with several organic, explosive, and bio-molecules that have unique spectral signature at the terahertz frequencies.

  20. Harnessing fluid-structure interactions to design self-regulating acoustic metamaterials

    Science.gov (United States)

    Casadei, Filippo; Bertoldi, Katia

    2014-01-01

    The design of phononic crystals and acoustic metamaterials with tunable and adaptive wave properties remains one of the outstanding challenges for the development of next generation acoustic devices. We report on the numerical and experimental demonstration of a locally resonant acoustic metamaterial with dispersion characteristics, which autonomously adapt in response to changes of an incident aerodynamic flow. The metamaterial consists of a slender beam featuring a periodic array or airfoil-shaped masses supported by a linear and torsional springs. The resonance characteristics of the airfoils lead to strong attenuation at frequencies defined by the properties of the airfoils and the speed on the incident fluid. The proposed concept expands the ability of existing acoustic bandgap materials to autonomously adapt their dispersion properties through fluid-structure interactions, and has the potential to dramatically impact a variety of applications, such as robotics, civil infrastructures, and defense systems.

  1. Harnessing fluid-structure interactions to design self-regulating acoustic metamaterials

    International Nuclear Information System (INIS)

    Casadei, Filippo; Bertoldi, Katia

    2014-01-01

    The design of phononic crystals and acoustic metamaterials with tunable and adaptive wave properties remains one of the outstanding challenges for the development of next generation acoustic devices. We report on the numerical and experimental demonstration of a locally resonant acoustic metamaterial with dispersion characteristics, which autonomously adapt in response to changes of an incident aerodynamic flow. The metamaterial consists of a slender beam featuring a periodic array or airfoil-shaped masses supported by a linear and torsional springs. The resonance characteristics of the airfoils lead to strong attenuation at frequencies defined by the properties of the airfoils and the speed on the incident fluid. The proposed concept expands the ability of existing acoustic bandgap materials to autonomously adapt their dispersion properties through fluid-structure interactions, and has the potential to dramatically impact a variety of applications, such as robotics, civil infrastructures, and defense systems

  2. Harnessing fluid-structure interactions to design self-regulating acoustic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Casadei, Filippo [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Bertoldi, Katia [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Kavli Institute for Bionano Science, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2014-01-21

    The design of phononic crystals and acoustic metamaterials with tunable and adaptive wave properties remains one of the outstanding challenges for the development of next generation acoustic devices. We report on the numerical and experimental demonstration of a locally resonant acoustic metamaterial with dispersion characteristics, which autonomously adapt in response to changes of an incident aerodynamic flow. The metamaterial consists of a slender beam featuring a periodic array or airfoil-shaped masses supported by a linear and torsional springs. The resonance characteristics of the airfoils lead to strong attenuation at frequencies defined by the properties of the airfoils and the speed on the incident fluid. The proposed concept expands the ability of existing acoustic bandgap materials to autonomously adapt their dispersion properties through fluid-structure interactions, and has the potential to dramatically impact a variety of applications, such as robotics, civil infrastructures, and defense systems.

  3. Flexible metamaterial absorbers for stealth applications at terahertz frequencies.

    Science.gov (United States)

    Iwaszczuk, Krzysztof; Strikwerda, Andrew C; Fan, Kebin; Zhang, Xin; Averitt, Richard D; Jepsen, Peter Uhd

    2012-01-02

    We have wrapped metallic cylinders with strongly absorbing metamaterials. These resonant structures, which are patterned on flexible substrates, smoothly coat the cylinder and give it an electromagnetic response designed to minimize its radar cross section. We compare the normal-incidence, small-beam reflection coefficient with the measurement of the far-field bistatic radar cross section of the sample, using a quasi-planar THz wave with a beam diameter significantly larger than the sample dimensions. In this geometry we demonstrate a near-400-fold reduction of the radar cross section at the design frequency of 0.87 THz. In addition we discuss the effect of finite sample dimensions and the spatial dependence of the reflection spectrum of the metamaterial.

  4. Back to basics: history of photonic crystals and metamaterials

    Science.gov (United States)

    Soukoulis, Costas M.

    2018-04-01

    We will review the history of photonic crystals and overview of the theoretical and experimental efforts in obtaining a photonic bandgap, a frequency band in three-dimensional dielectric structures in which electromagnetic (EM) waves are forbidden, is presented. Many experimental groups all over the world still employ this woodpile structure to fabricate PCs at optical wavelengths, waveguides, enhance nanocavities, and produce nanolasers with a low threshold limit. We have been focused on a new class of materials, the so-called metamaterials (MMs) or negative-index materials, which exhibit highly unusual electromagnetic properties and hold promise for new device applications. Metamaterials can be designed to exhibit both electric and magnetic resonances that can be separately tuned to occur in frequency bands from megahertz to terahertz frequencies, and hope-fully to the visible region of the EM spectrum.

  5. Babinet's principle for optical frequency metamaterials and nanoantennas

    Science.gov (United States)

    Zentgraf, T.; Meyrath, T. P.; Seidel, A.; Kaiser, S.; Giessen, H.; Rockstuhl, C.; Lederer, F.

    2007-07-01

    We consider Babinet’s principle for metamaterials at optical frequencies and include realistic conditions which deviate from the theoretical assumptions of the classic principle such as an infinitely thin and perfectly conducting metal layer. It is shown that Babinet’s principle associates not only transmission and reflection between a structure and its complement but also the field modal profiles of the electromagnetic resonances as well as effective material parameters—a critical concept for metamaterials. Also playing an important role in antenna design, Babinet’s principle is particularly interesting to consider in this case where the metasurfaces and their complements can be regarded as variations on a folded dipole antenna array and patch antenna array, respectively.

  6. Periodic waves in nonlinear metamaterials

    International Nuclear Information System (INIS)

    Liu, Wen-Jun; Xiao, Jing-Hua; Yan, Jie-Yun; Tian, Bo

    2012-01-01

    Periodic waves are presented in this Letter. With symbolic computation, equations for monochromatic waves are studied, and analytic periodic waves are obtained. Factors affecting properties of periodic waves are analyzed. Nonlinear metamaterials, with the continuous distribution of the dielectric permittivity obtained, are different from the ones with the discrete distribution. -- Highlights: ► Equations for the monochromatic waves in transverse magnetic polarization have been studied. ► Analytic periodic waves for the equations have been obtained. ► Periodic waves are theoretically presented and studied in the nonlinear metamaterials.

  7. Topological Gyroscopic Metamaterials

    Science.gov (United States)

    Nash, Lisa Michelle

    Topological materials are generally insulating in their bulk, with protected conducting states on their boundaries that are robust against disorder and perturbation of material property. The existence of these conducting edge states is characterized by an integer topological invariant. Though the phenomenon was first discovered in electronic systems, recent years have shown that topological states exist in classical systems as well. In this thesis we are primarily concerned with the topological properties of gyroscopic materials, which are created by coupling networks of fast-spinning objects. Through a series of simulations, numerical calculations, and experiments, we show that these materials can support topological edge states. We find that edge states in these gyroscopic metamaterials bear the hallmarks of topology related to broken time reversal symmetry: they transmit excitations unidirectionally and are extremely robust against experimental disorder. We also explore requirements for topology by studying several lattice configurations and find that topology emerges naturally in gyroscopic systems.A simple prescription can be used to create many gyroscopic lattices. Though many of our gyroscopic networks are periodic, we explore amorphous point-sets and find that topology also emerges in these networks.

  8. A lightweight vibro-acoustic metamaterial demonstrator: Numerical and experimental investigation

    Science.gov (United States)

    Claeys, C.; Deckers, E.; Pluymers, B.; Desmet, W.

    2016-03-01

    In recent years metamaterials gained a lot of attention due to their superior noise and vibration insulation properties, be it at least in some targeted and tuneable frequency ranges, referred to as stopbands. These are frequency zones for which free wave propagation is prevented throughout the metamaterial, resulting in frequency zones of pronounced wave attenuation. Metamaterials are achieved due to addition of an, often periodic, grid of resonant structures to a host material or structure. The interaction between resonant inclusions and host structure can lead to a performance which is superior to the ones of any of the constituent materials. A key element in this concept is that waves can be affected by incorporating structural resonant elements of sub-wavelength sizes, i.e. features that are actually smaller than the wavelength of the waves to be affected. This paves the way towards compact and light vibro-acoustic solutions in the lower frequency ranges. This paper discusses the numerical design and experimental validation of acoustic insulation based on the concept of metamaterials: a hollow core periodic sandwich structure with added local resonant structures. In order to investigate the sensitivity to specific parameters in the metamaterial design and the robustness of the design, a set of variations on the nominal design are investigated. The stop bands are numerically predicted through unit cell modelling after which a full vibro-acoustic finite element model is applied to predict the insertion loss of the demonstrator. The results of these analyses are compared with measurements; both indicate that this metamaterials concept can be applied to combine light weight, compact volume and good acoustic behaviour.

  9. New approach for extraordinary transmission through an array of subwavelength apertures using thin ENNZ metamaterial liners.

    Science.gov (United States)

    Baladi, Elham; Pollock, Justin G; Iyer, Ashwin K

    2015-08-10

    Extraordinary transmission (ET) through a periodic array of subwavelength apertures on a perfect metallic screen has been studied extensively in recent years, and has largely been attributed to diffraction effects, for which the periodicity of the apertures, rather than their dimensions, dominates the response. The transmission properties of the apertures at resonance, on the other hand, are not typically considered 'extraordinary' because they may be explained using more conventional aperture-theoretical mechanisms. This work describes a novel approach for achieving ET in which subwavelength apertures are made to resonate by lining them using thin, epsilon-negative and near-zero (ENNZ) metamaterials. The use of ENNZ metamaterials has recently proven successful in miniaturizing circular waveguides by strongly reducing their natural cutoff frequencies, and the theory is adapted here for the design of subwavelength apertures in a metallic screen. We present simulations and proof-of-concept measurements at microwave frequencies that demonstrate ET for apertures measuring one-quarter of a wavelength in diameter and suggest the potential for even more dramatic miniaturization simply by engineering the ENNZ metamaterial dispersion. The results exhibit a fano-like profile whose frequency varies with the properties of the metamaterial liner, but is independent of period. It is suggested that similar behaviour can be obtained at optical frequencies, where ENNZ metamaterials may be realized using appropriately arranged chains of plasmonic nanoparticles.

  10. Space-coiling fractal metamaterial with multi-bandgaps on subwavelength scale

    Science.gov (United States)

    Man, Xianfeng; Liu, Tingting; Xia, Baizhan; Luo, Zhen; Xie, Longxiang; Liu, Jian

    2018-06-01

    Acoustic metamaterials are remarkably different from conventional materials, as they can flexibly manipulate and control the propagation of sound waves. Unlike the locally resonant metamaterials introduced in earlier studies, we designed an ultraslow artificial structure with a sound speed much lower than that in air. In this paper, the space-coiling approach is proposed for achieving artificial metamaterial for extremely low-frequency airborne sound. In addition, the self-similar fractal technique is utilized for designing space-coiling Mie-resonance-based metamaterials (MRMMs) to obtain a band-dispersive spectrum. The band structures of two-dimensional (2D) acoustic metamaterials with different fractal levels are illustrated using the finite element method. The low-frequency bandgap can easily be formed, and multi-bandgap properties are observed in high-level fractals. Furthermore, the designed MRMMs with higher order fractal space coiling shows a good robustness against irregular arrangement. Besides, the proposed artificial structure was found to modify and control the radiation field arbitrarily. Thus, this work provides useful guidelines for the design of acoustic filtering devices and acoustic wavefront shaping applications on the subwavelength scale.

  11. Ferrite Film Loaded Frequency Selective Metamaterials for Sub-GHz Applications

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2016-12-01

    Full Text Available Electromagnetic metamaterials are constructed with sub-wavelength structures that exhibit particular electromagnetic properties under a certain frequency range. Because the form-factor of the substructures has to be comparable to the wavelength of the operating frequency, few papers have discussed the metamaterials under GHz frequency. In this paper, we developed an innovative method to reduce the resonant frequency of metamaterals. By integrating the meta-structures with ferrite materials of higher permeability, the cell size of the meta-structure can be scaled down. This paper describes the methodology, design, and development of low-profile GHz ferrite loaded metamaterials. A ferrite film with a permeability of 20 could reduce the resonant frequency of metamaterials by up to 50%. A prototype has been fabricated and the measurement data align well with the simulation results. Because of the lowered operational frequency, the proposed ferrite loaded metamaterials offer more flexibility for various sub-GHz microwave applications, such as cloaks, absorbers, and frequency selective surfaces.

  12. Altered left ventricular vortex ring formation by 4-dimensional flow magnetic resonance imaging after repair of atrioventricular septal defects.

    Science.gov (United States)

    Calkoen, Emmeline E; Elbaz, Mohammed S M; Westenberg, Jos J M; Kroft, Lucia J M; Hazekamp, Mark G; Roest, Arno A W; van der Geest, Rob J

    2015-11-01

    During normal left ventricular (LV) filling, a vortex ring structure is formed distal to the left atrioventricular valve (LAVV). Vortex structures contribute to efficient flow organization. We aimed to investigate whether LAVV abnormality in patients with a corrected atrioventricular septal defect (AVSD) has an impact on vortex ring formation. Whole-heart 4D flow MRI was performed in 32 patients (age: 26 ± 12 years), and 30 healthy subjects (age: 25 ± 14 years). Vortex ring cores were detected at peak early (E-peak) and peak late filling (A-peak). When present, the 3-dimensional position and orientation of the vortex ring was defined, and the circularity index was calculated. Through-plane flow over the LAVV, and the vortex formation time (VFT), were quantified to analyze the relationship of vortex flow with the inflow jet. Absence of a vortex ring during E-peak (healthy subjects 0%, vs patients 19%; P = .015), and A-peak (healthy subjects 10% vs patients 44%; P = .008) was more frequent in patients. In 4 patients, this was accompanied by a high VFT (5.1-7.8 vs 2.4 ± 0.6 in healthy subjects), and in another 2 patients with abnormal valve anatomy. In patients compared with controls, the vortex cores had a more-anterior and apical position, closer to the ventricular wall, with a more-elliptical shape and oblique orientation. The shape of the vortex core closely resembled the valve shape, and its orientation was related to the LV inflow direction. This study quantitatively shows the influence of abnormal LAVV and LV inflow on 3D vortex ring formation during LV inflow in patients with corrected AVSD, compared with healthy subjects. Copyright © 2015. Published by Elsevier Inc.

  13. Elastic metamaterial with simultaneously negative refraction for longitudinal and transverse waves

    Directory of Open Access Journals (Sweden)

    Ji-En Wu

    2017-10-01

    Full Text Available We present a study of elastic metamaterial that possesses multiple local resonances. We demonstrated that the elastic metamaterial can have simultaneously three negative effective parameters, i.e., negative effective mass, effective bulk modulus and effective shear modulus at a certain frequency range. Through the analysis of the resonant field, it has been elucidated that the three negative parameters are induced by dipolar, monopolar and quadrupolar resonance respectively. The dipolar and monopolar resonances result into the negative band for longitudinal waves, while the dipolar and quadrupolar resonances cause the negative band for transverse waves. The two bands have an overlapping frequency regime. A simultaneously negative refraction for both longitudinal waves and transverse waves has been demonstrated in the system.

  14. Prospects of high-resolution resonant X-ray inelastic scattering studies on solid materials, liquids and gases at diffraction-limited storage rings

    International Nuclear Information System (INIS)

    Schmitt, Thorsten; Groot, Frank M. F. de; Rubensson, Jan-Erik

    2014-01-01

    Diffraction-limited storage rings will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size in resonant inelastic X-ray scattering (RIXS) experiments to new limits. In this article the types of improved soft X-ray RIXS studies that will become possible with these instrumental improvements are envisioned. The spectroscopic technique of resonant inelastic X-ray scattering (RIXS) will particularly profit from immensely improved brilliance of diffraction-limited storage rings (DLSRs). In RIXS one measures the intensities of excitations as a function of energy and momentum transfer. DLSRs will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size to new limits. With RIXS one nowadays probes a broad range of electronic systems reaching from simple molecules to complex materials displaying phenomena like peculiar magnetism, two-dimensional electron gases, superconductivity, photovoltaic energy conversion and heterogeneous catalysis. In this article the types of improved RIXS studies that will become possible with X-ray beams from DLSRs are envisioned

  15. Homogenization scheme for acoustic metamaterials

    KAUST Repository

    Yang, Min

    2014-02-26

    We present a homogenization scheme for acoustic metamaterials that is based on reproducing the lowest orders of scattering amplitudes from a finite volume of metamaterials. This approach is noted to differ significantly from that of coherent potential approximation, which is based on adjusting the effective-medium parameters to minimize scatterings in the long-wavelength limit. With the aid of metamaterials’ eigenstates, the effective parameters, such as mass density and elastic modulus can be obtained by matching the surface responses of a metamaterial\\'s structural unit cell with a piece of homogenized material. From the Green\\'s theorem applied to the exterior domain problem, matching the surface responses is noted to be the same as reproducing the scattering amplitudes. We verify our scheme by applying it to three different examples: a layered lattice, a two-dimensional hexagonal lattice, and a decorated-membrane system. It is shown that the predicted characteristics and wave fields agree almost exactly with numerical simulations and experiments and the scheme\\'s validity is constrained by the number of dominant surface multipoles instead of the usual long-wavelength assumption. In particular, the validity extends to the full band in one dimension and to regimes near the boundaries of the Brillouin zone in two dimensions.

  16. Multiscale mechanics of dynamical metamaterials

    NARCIS (Netherlands)

    Geers, M.G.D.; Kouznetsova, V.; Sridhar, A.; Krushynska, A.; Kleiber, M.; Burczynski, T.; Wilde, K.; Gorski, J.; Winkelmann, K.; Smakosz, L.

    2016-01-01

    This contribution focuses on the computational multi-scale solution of wave propagation phenomena in dynamic metamaterials. Taking the Bloch-Floquet solution for the standard elastic case as a point of departure, an extended scheme is presented to solve for heterogeneous visco-elastic materials. The

  17. Analysis of Broadband Metamaterial Shielding for Counter-Directed Energy Weapons

    Science.gov (United States)

    2017-06-01

    six laminated resonator layers (depicted in Figure 6) to see if the algorithm could homogenize a metamaterial with multiple features over a wide... Prepreg 2116 with a fairly consistent permittivity of 4.4 throughout the analyzed spectrum, resulting in the predictable responses at 6.7 GHz, 7.5 GHz

  18. A New Compact Octagonal Shape Perfect Metamaterial Absorber for Microwave Applications

    Directory of Open Access Journals (Sweden)

    Mohammad Jakir Hossain

    2017-12-01

    Full Text Available A new compact octagonal shape perfect metamaterial absorber (PMA design, numerical simulation, fabrication, and investigational verification of unit cell that is based on a simple structure are presented in this paper. The suggested structure comprised of three layers, in which interact to produce the plasmonic resonances. The finite-integration technique (FIT based Computer Simulation Technology (CST microwave electromagnetic simulator was utilized to examine the design parameters and conduct absorption analysis. The design structure exhibited peak absorption values as 99.64% and 99.95% at frequencies 8.08 GHz and 11.41 GHz, respectively. The absorption characteristics were analysed using the polarization angle of the structure, layer thickness, PMA with resistive load, and number of rings. An N5227A vector network analyser was used for the measurement. The measured results of the fabricated prototype were in good agreement with the simulation results. The suggested perfect absorber structure enables innumerable application aimed at X-band for applications like, defence, security, and stealth technology.

  19. Effects of Metamaterial Slabs Applied to Wireless Power Transfer at 13.56 MHz

    Directory of Open Access Journals (Sweden)

    Gunyoung Kim

    2015-01-01

    Full Text Available This paper analyzes the effects of a metamaterial slab (or a practical “perfect lens” with negative permeability applied to a two loop magnetically coupled wireless power transfer (WPT system at 13.56 MHz, based on theory, full-wave electromagnetic- (EM- simulations, and measurements. When using lossless slabs with ideal negative permeability in EM-simulations, the WPT efficiencies have been found to be enhanced close to 100% due to the magnetic field focusing. For the case of using a realistic slab made of ring resonators (RR μr=-1-j0.23 with s/d=0.5 (s: slab width, d: distance between the transmitting and receiving loops, the WPT efficiency has been found to significantly decrease to about 20%, even lower than that of a free space case (32% due to the heavy power absorption in the slab. However, some efficiency enhancement can be achieved when s/d is optimized between 0.1 and 0.3. Overall, the significant enhancement of efficiencies when using a lossless slab becomes moderate or only marginal when employing a realistic slab.

  20. Casimir interactions between graphene sheets and metamaterials

    International Nuclear Information System (INIS)

    Drosdoff, D.; Woods, Lilia M.

    2011-01-01

    The Casimir force between graphene sheets and metamaterials is studied. Theoretical results based on the Lifshitz theory for layered, planar, two-dimensional systems in media are presented. We consider graphene-graphene, graphene-metamaterial, and metal-graphene-metamaterial configurations. We find that quantum effects of the temperature-dependent force are not apparent until the submicron range. In contrast to results with bulk dielectric and bulk metallic materials, no Casimir repulsion is found when graphene is placed on top of a magnetically active metamaterial substrate, regardless of the strength of the low-frequency magnetic response. In the case of the metal-graphene-metamaterial setting, repulsion between the metamaterial and the metal-graphene system is possible only when the dielectric response from the metal contributes significantly.