WorldWideScience

Sample records for ring polymers implications

  1. Ring closure in actin polymers

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Supurna, E-mail: supurna@rri.res.in [Raman Research Institute, Bangalore 560080 (India); Chattopadhyay, Sebanti [Doon University, Dehradun 248001 (India)

    2017-03-18

    We present an analysis for the ring closure probability of semiflexible polymers within the pure bend Worm Like Chain (WLC) model. The ring closure probability predicted from our analysis can be tested against fluorescent actin cyclization experiments. We also discuss the effect of ring closure on bend angle fluctuations in actin polymers. - Highlights: • Ring closure of biopolymers. • Worm like chain model. • Predictions for experiments.

  2. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana

    2013-10-15

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  3. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana; Vasilakopoulos, Thodoris C.; Jeong, Youncheol; Lee, Hyojoon; Rogers, Simon A.; Sakellariou, Georgios; Allgaier, Jü rgen B.; Takano, Atsushi; Brá s, Ana Rita E; Chang, Taihyun; Gooß en, Sebastian; Pyckhout-Hintzen, Wim; Wischnewski, Andreas; Hadjichristidis, Nikolaos; Richter, Dieter R.; Rubinstein, Michael H.; Vlassopoulos, Dimitris

    2013-01-01

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  4. Polymer dynamics: Floored by the rings

    Science.gov (United States)

    McLeish, Tom

    2008-12-01

    The tube model can explain how mutually entangled polymer chains move and interact, but it relies on the loose ends of chains to generate relaxation. Ring polymers have no ends - so how do they relax?

  5. Miscibility phase diagram of ring-polymer blends: A topological effect.

    Science.gov (United States)

    Sakaue, Takahiro; Nakajima, Chihiro H

    2016-04-01

    The miscibility of polymer blends, a classical problem in polymer science, may be altered, if one or both of the component do not have chain ends. Based on the idea of topological volume, we propose a mean-field theory to clarify how the topological constraints in ring polymers affect the phase behavior of the blends. While the large enhancement of the miscibility is expected for ring-linear polymer blends, the opposite trend toward demixing, albeit comparatively weak, is predicted for ring-ring polymer blends. Scaling formulas for the shift of critical point for both cases are derived. We discuss the valid range of the present theory, and the crossover to the linear polymer blends behaviors, which is expected for short chains. These analyses put forward a view that the topological constraints could be represented as an effective excluded-volume effects, in which the topological length plays a role of the screening factor.

  6. Osmotic pressure of ring polymer solutions : A Monte Carlo study

    NARCIS (Netherlands)

    Flikkema, Edwin; Brinke, Gerrit ten

    2000-01-01

    Using the wall theorem, the osmotic pressure of ring polymers in solution has been determined using an off-lattice topology conserving Monte Carlo algorithm. The ring polymers are modeled as freely-jointed chains with point-like beads, i.e., under conditions corresponding to θ-conditions for the

  7. Polymers Containing 1, 3, 4-Oxadiazole Rings for Advanced Materials

    Directory of Open Access Journals (Sweden)

    Mariana-Dana Damaceanu

    2011-10-01

    Full Text Available This paper presents the synthesis, properties and potential applications of new polymers containing 1, 3, 4-oxadiazole rings, tacking into account the requirements of the modern technologies. Two classes of polymers containing oxadiazole rings were approached: polyamides and polyimides. All the polymers were characterized with respect to the identification of their chemical structure, solubility, molecular weights, film forming ability, thermal, dielectric and optical properties, and the behaviour of polyoxadiazole films upon irradiation with pulsed KrF laser. All the properties were discussed in correlation with their chemical structure and compared with those of related polymers.

  8. Integrated polymer micro-ring resonators for optical sensing applications

    Science.gov (United States)

    Girault, Pauline; Lorrain, Nathalie; Poffo, Luiz; Guendouz, Mohammed; Lemaitre, Jonathan; Carré, Christiane; Gadonna, Michel; Bosc, Dominique; Vignaud, Guillaume

    2015-03-01

    Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as core layer and PMATRIFE polymer as lower cladding layer. The refractive index of the polymers and of the waveguide structure as a function of the wavelength is presented. Using these results, a theoretical study of the coupling between ring and straight waveguides has been undertaken in order to define the MR design. Sub-micronic gaps of 0.5 μm to 1 μm between the ring and the straight waveguides have been successfully achieved with UV (i-lines) photolithography. Different superstrates such as air, water, and aqueous solutions with glucose at different concentrations have been studied. First results show a good normalized transmission contrast of 0.98, a resonator quality factor around 1.5 × 104 corresponding to a coupling ratio of 14.7%, and ring propagation losses around 5 dB/cm. Preliminary sensing experiments have been performed for different concentrations of glucose; a sensitivity of 115 ± 8 nm/RIU at 1550 nm has been obtained with this couple of polymers.

  9. Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. I. Statics

    Science.gov (United States)

    Halverson, Jonathan D.; Lee, Won Bo; Grest, Gary S.; Grosberg, Alexander Y.; Kremer, Kurt

    2011-05-01

    Molecular dynamics simulations were conducted to investigate the structural properties of melts of nonconcatenated ring polymers and compared to melts of linear polymers. The longest rings were composed of N = 1600 monomers per chain which corresponds to roughly 57 entanglement lengths for comparable linear polymers. For the rings, the radius of gyration squared, , was found to scale as N4/5 for an intermediate regime and N2/3 for the larger rings indicating an overall conformation of a crumpled globule. However, almost all beads of the rings are "surface beads" interacting with beads of other rings, a result also in agreement with a primitive path analysis performed in the next paper [J. D. Halverson, W. Lee, G. S. Grest, A. Y. Grosberg, and K. Kremer, J. Chem. Phys. 134, 204905 (2011)], 10.1063/1.3587138. Details of the internal conformational properties of the ring and linear polymers as well as their packing are analyzed and compared to current theoretical models.

  10. Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. II. Dynamics

    Science.gov (United States)

    Halverson, Jonathan D.; Lee, Won Bo; Grest, Gary S.; Grosberg, Alexander Y.; Kremer, Kurt

    2011-05-01

    Molecular dynamics simulations were conducted to investigate the dynamic properties of melts of nonconcatenated ring polymers and compared to melts of linear polymers. The longest rings were composed of N = 1600 monomers per chain which corresponds to roughly 57 entanglement lengths for comparable linear polymers. The ring melts were found to diffuse faster than their linear counterparts, with both architectures approximately obeying a D ˜ N-2.4 scaling law for large N. The mean-square displacement of the center-of-mass of the rings follows a sub-diffusive behavior for times and distances beyond the ring extension , neither compatible with the Rouse nor the reptation model. The rings relax stress much faster than linear polymers, and the zero-shear viscosity was found to vary as η0 ˜ N1.4 ± 0.2 which is much weaker than the N3.4 behavior of linear chains, not matching any commonly known model for polymer dynamics when compared to the observed mean-square displacements. These findings are discussed in view of the conformational properties of the rings presented in the preceding paper [J. D. Halverson, W. Lee, G. S. Grest, A. Y. Grosberg, and K. Kremer, J. Chem. Phys. 134, 204904 (2011)], 10.1063/1.3587137.

  11. Dimension of ring polymers in bulk studied by Monte-Carlo simulation and self-consistent theory.

    Science.gov (United States)

    Suzuki, Jiro; Takano, Atsushi; Deguchi, Tetsuo; Matsushita, Yushu

    2009-10-14

    We studied equilibrium conformations of ring polymers in melt over the wide range of segment number N of up to 4096 with Monte-Carlo simulation and obtained N dependence of radius of gyration of chains R(g). The simulation model used is bond fluctuation model (BFM), where polymer segments bear excluded volume; however, the excluded volume effect vanishes at N-->infinity, and linear polymer can be regarded as an ideal chain. Simulation for ring polymers in melt was performed, and the nu value in the relationship R(g) proportional to N(nu) is decreased gradually with increasing N, and finally it reaches the limiting value, 1/3, in the range of N>or=1536, i.e., R(g) proportional to N(1/3). We confirmed that the simulation result is consistent with that of the self-consistent theory including the topological effect and the osmotic pressure of ring polymers. Moreover, the averaged chain conformation of ring polymers in equilibrium state was given in the BFM. In small N region, the segment density of each molecule near the center of mass of the molecule is decreased with increasing N. In large N region the decrease is suppressed, and the density is found to be kept constant without showing N dependence. This means that ring polymer molecules do not segregate from the other molecules even if ring polymers in melt have the relationship nu=1/3. Considerably smaller dimensions of ring polymers at high molecular weight are due to their inherent nature of having no chain ends, and hence they have less-entangled conformations.

  12. Weighted density approximation for bonding in molecules: ring and cage polymers

    CERN Document Server

    Sweatman, M B

    2003-01-01

    The focus of this work is the bonded contribution to the intrinsic Helmholtz free energy of molecules. A weighted density approximation (WDA) for this contribution is presented within the interaction site model (ISM) for ring and cage polymers. The resulting density functional theory (ISM/WDA) for these systems is no more complex than theories for a pure simple fluid, and much less complex than density functional approaches that treat the bonding functional exactly. The ISM/WDA bonding functional is much more accurate than either the ISM/HNC or ISM/PY bonding functionals, which are related to the reference interaction-site model (RISM)/HNC and RISM/PY integral equations respectively, for ideal ring polymers. This means that the ISM/WDA functional should generally be more accurate for most 'real' ring or cage polymer systems when any reasonable approximation for the 'excess' contribution to the intrinsic Helmholtz free energy is employed.

  13. Weighted density approximation for bonding in molecules: ring and cage polymers

    International Nuclear Information System (INIS)

    Sweatman, M B

    2003-01-01

    The focus of this work is the bonded contribution to the intrinsic Helmholtz free energy of molecules. A weighted density approximation (WDA) for this contribution is presented within the interaction site model (ISM) for ring and cage polymers. The resulting density functional theory (ISM/WDA) for these systems is no more complex than theories for a pure simple fluid, and much less complex than density functional approaches that treat the bonding functional exactly. The ISM/WDA bonding functional is much more accurate than either the ISM/HNC or ISM/PY bonding functionals, which are related to the reference interaction-site model (RISM)/HNC and RISM/PY integral equations respectively, for ideal ring polymers. This means that the ISM/WDA functional should generally be more accurate for most 'real' ring or cage polymer systems when any reasonable approximation for the 'excess' contribution to the intrinsic Helmholtz free energy is employed

  14. RPMDrate: Bimolecular chemical reaction rates from ring polymer molecular dynamics

    KAUST Repository

    Suleimanov, Yu.V.

    2013-03-01

    We present RPMDrate, a computer program for the calculation of gas phase bimolecular reaction rate coefficients using the ring polymer molecular dynamics (RPMD) method. The RPMD rate coefficient is calculated using the Bennett-Chandler method as a product of a static (centroid density quantum transition state theory (QTST) rate) and a dynamic (ring polymer transmission coefficient) factor. The computational procedure is general and can be used to treat bimolecular polyatomic reactions of any complexity in their full dimensionality. The program has been tested for the H+H2, H+CH 4, OH+CH4 and H+C2H6 reactions. © 2012 Elsevier B.V. All rights reserved.

  15. RPMDrate: Bimolecular chemical reaction rates from ring polymer molecular dynamics

    KAUST Repository

    Suleimanov, Yu.V.; Allen, J.W.; Green, W.H.

    2013-01-01

    We present RPMDrate, a computer program for the calculation of gas phase bimolecular reaction rate coefficients using the ring polymer molecular dynamics (RPMD) method. The RPMD rate coefficient is calculated using the Bennett-Chandler method as a product of a static (centroid density quantum transition state theory (QTST) rate) and a dynamic (ring polymer transmission coefficient) factor. The computational procedure is general and can be used to treat bimolecular polyatomic reactions of any complexity in their full dimensionality. The program has been tested for the H+H2, H+CH 4, OH+CH4 and H+C2H6 reactions. © 2012 Elsevier B.V. All rights reserved.

  16. Efficient Homodifunctional Bimolecular Ring-Closure Method for Cyclic Polymers by Combining RAFT and Self-Accelerating Click Reaction.

    Science.gov (United States)

    Qu, Lin; Sun, Peng; Wu, Ying; Zhang, Ke; Liu, Zhengping

    2017-08-01

    An efficient metal-free homodifunctional bimolecular ring-closure method is developed for the formation of cyclic polymers by combining reversible addition-fragmentation chain transfer (RAFT) polymerization and self-accelerating click reaction. In this approach, α,ω-homodifunctional linear polymers with azide terminals are prepared by RAFT polymerization and postmodification of polymer chain end groups. By virtue of sym-dibenzo-1,5-cyclooctadiene-3,7-diyne (DBA) as small linkers, well-defined cyclic polymers are then prepared using the self-accelerating double strain-promoted azide-alkyne click (DSPAAC) reaction to ring-close the azide end-functionalized homodifunctional linear polymer precursors. Due to the self-accelerating property of DSPAAC ring-closing reaction, this novel method eliminates the requirement of equimolar amounts of telechelic polymers and small linkers in traditional bimolecular ring-closure methods. It facilitates this method to efficiently and conveniently produce varied pure cyclic polymers by employing an excess molar amount of DBA small linkers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Universal size properties of a star-ring polymer structure in disordered environments

    Science.gov (United States)

    Haydukivska, K.; Blavatska, V.

    2018-03-01

    We consider the complex polymer system, consisting of a ring polymer connected to the f1-branched starlike structure, in a good solvent in the presence of structural inhomogeneities. In particular cases f1=1 and f1=2 , such a system restores the synthesized tadpole-shaped polystyrenes [Doi et al., Macromolecules 46, 1075 (2013), 10.1021/ma302511j]. We assume that structural defects are correlated at large distances x according to a power law x-a. Applying the direct polymer renormalization approach, we evaluate the universal size characteristics such as the ratio of the radii of gyration of star-ring and star topologies, and compare the effective sizes of single arms in complex structures and isolated polymers of the same total molecular weight. The nontrivial impact of disorder on these quantities is analyzed.

  18. Integrated polymer micro-ring resonators for optical sensing applications

    OpenAIRE

    Girault , Pauline; Lorrain , Nathalie; Poffo , Luiz; Guendouz , Mohammed; Lemaitre , Jonathan; Carré , Christiane; Gadonna , Michel; Bosc , Dominique; Vignaud , Guillaume

    2015-01-01

    International audience; Micro-resonators (MR) have become a key element for integrated optical sensors due to their integration capability and their easy fabrication with low cost polymer materials. Nowadays, there is a growing need on MRs as highly sensitive and selective functions especially in the areas of food and health. The context of this work is to implement and study integrated micro-ring resonators devoted to sensing applications. They are fabricated by processing SU8 polymer as cor...

  19. New transition metal complexes and their ring-opened polymers

    Science.gov (United States)

    Apodaca, Paula

    An exciting new class of metallacycle (eta5-C5 H4Fe) (CO)2CH2SiR2 that undergoes ring-opening polymerization was recently reported by Sharma et al. [1]. We are interested in further expanding this research area by synthesizing related cyclopentadienyl derivatives containing Fe, Mo, and W in combination with other elements of the group 14. We report here the synthesis and crystal structure characterization of new germa-metallacyclobutanes of Mo and W. In addition, we have successfully synthesized and characterized new ring-opening polymers of the related germanium systems [(eta5-C5 H4Fe)(CO) 2(CH2GeR2)] n. The new polymers were characterized using various spectroscopic techniques and gel permeation chromatography. The recent report on the synthesis of a new class of siloxane polymers based upon base-catalyzed ring opening of phenylene-bridged cyclic siloxanes [2] encouraged us to investigate the related ferrocenyl (Fc, (C5H 5)Fe(C5H4)) siloxane systems. The incorporation of ferrocene could provide new materials with all the interesting properties usually associated with these groups such as thermal and photochemical stability, electrochemical activity and potentially conducting materials. Thus far a new required organometallic monomer containing Fc-R, where R = disilaoxacyclopentene 5 has been synthesized and completely characterized. Based-induced ring-opening polymerizations of 5 were attempted under different reaction conditions and produced, inter alia: (C5H5)Fe(C 5H4)C(SiMe2OH)=CH(SiMe2R), R = nBu (2), tBu (3), Ph (4). The single crystal X-ray structures and full spectroscopic analysis of such products has been accomplished. Furthermore, the reactivity of the ferrocenyl silanols concerning condensation and their behavior under acidic conditions has been investigated. 1Sharma, H.; Cervantes-Lee, F.; Pannell, K. H. J. Am. Chem. Soc. 2004, 126, 1326. 2 Loy, A. D.; Rahimian, K.; Samara, M. Angew. Chem. 1999, 38, 45.

  20. Preparation of Bottlebrush Polymers via a One-Pot Ring-Opening Polymerization (ROP) and Ring-Opening Metathesis Polymerization (ROMP) Grafting-Through Strategy.

    Science.gov (United States)

    Radzinski, Scott C; Foster, Jeffrey C; Matson, John B

    2016-04-01

    Bottlebrush polymers are synthesized using a tandem ring-opening polymerization (ROP) and ring-opening metathesis polymerization (ROMP) strategy. For the first time, ROP and ROMP are conducted sequentially in the same pot to yield well-defined bottlebrush polymers with molecular weights in excess of 10(6) Da. The first step of this process involves the synthesis of a polylactide macromonomer (MM) via ROP of d,l-lactide initiated by an alcohol-functionalized norbornene. ROMP grafting-through is then carried out in the same pot to produce the bottlebrush polymer. The applicability of this methodology is evaluated for different MM molecular weights and bottlebrush backbone degrees of polymerization. Size-exclusion chromatographic and (1)H NMR spectroscopic analyses confirm excellent control over both polymerization steps. In addition, bottlebrush polymers are imaged using atomic force microscopy and stain-free transmission electron microscopy on graphene oxide. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Developing new methods for the mono-end functionalization of living ring opening metathesis polymers.

    Science.gov (United States)

    Kilbinger, Andreas F M

    2012-01-01

    In this article we present a review of our recent results in one area of research we are involved in. All research efforts in our group focus on functional polymers and new ways of gaining higher levels of control with regard to the placement of functional groups within these polymers. Here, the living ring opening metathesis polymerization (ROMP) will be reviewed for which end-functionalization methods had been rare until very recently. Polymers carrying particular functional groups only at the chain-ends are, however, very interesting for a variety of industrial and academic applications. Polymeric surfactants and polymer-protein conjugates are two examples for the former and polymer-β-sheet-peptide conjugates one example for the latter. The functionalization of macroscopic or nanoscopic surfaces often relies on mono-end functional polymers. Complex macromolecular architectures are often constructed from macromolecules carrying exactly one functional group at their chain- end. The ring opening metathesis polymerization is particularly interesting in this context as it is one of the most functional group tolerant polymerization methods known. Additionally, high molecular weight polymers are readily accessible with this technique, a feature that living radical polymerizations often struggle to achieve. Finding new ways of functionalizing the polymer chain-end of ROMP polymers has therefore been a task long overdue. Here, we present our contribution to this area of research.

  2. How to remove the spurious resonances from ring polymer molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Mariana; Manolopoulos, David E. [Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ (United Kingdom); Ceriotti, Michele [Laboratory of Computational Science and Modeling, IMX, École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)

    2014-06-21

    Two of the most successful methods that are presently available for simulating the quantum dynamics of condensed phase systems are centroid molecular dynamics (CMD) and ring polymer molecular dynamics (RPMD). Despite their conceptual differences, practical implementations of these methods differ in just two respects: the choice of the Parrinello-Rahman mass matrix and whether or not a thermostat is applied to the internal modes of the ring polymer during the dynamics. Here, we explore a method which is halfway between the two approximations: we keep the path integral bead masses equal to the physical particle masses but attach a Langevin thermostat to the internal modes of the ring polymer during the dynamics. We justify this by showing analytically that the inclusion of an internal mode thermostat does not affect any of the established features of RPMD: thermostatted RPMD is equally valid with respect to everything that has actually been proven about the method as RPMD itself. In particular, because of the choice of bead masses, the resulting method is still optimum in the short-time limit, and the transition state approximation to its reaction rate theory remains closely related to the semiclassical instanton approximation in the deep quantum tunneling regime. In effect, there is a continuous family of methods with these properties, parameterised by the strength of the Langevin friction. Here, we explore numerically how the approximation to quantum dynamics depends on this friction, with a particular emphasis on vibrational spectroscopy. We find that a broad range of frictions approaching optimal damping give similar results, and that these results are immune to both the resonance problem of RPMD and the curvature problem of CMD.

  3. How to remove the spurious resonances from ring polymer molecular dynamics

    International Nuclear Information System (INIS)

    Rossi, Mariana; Manolopoulos, David E.; Ceriotti, Michele

    2014-01-01

    Two of the most successful methods that are presently available for simulating the quantum dynamics of condensed phase systems are centroid molecular dynamics (CMD) and ring polymer molecular dynamics (RPMD). Despite their conceptual differences, practical implementations of these methods differ in just two respects: the choice of the Parrinello-Rahman mass matrix and whether or not a thermostat is applied to the internal modes of the ring polymer during the dynamics. Here, we explore a method which is halfway between the two approximations: we keep the path integral bead masses equal to the physical particle masses but attach a Langevin thermostat to the internal modes of the ring polymer during the dynamics. We justify this by showing analytically that the inclusion of an internal mode thermostat does not affect any of the established features of RPMD: thermostatted RPMD is equally valid with respect to everything that has actually been proven about the method as RPMD itself. In particular, because of the choice of bead masses, the resulting method is still optimum in the short-time limit, and the transition state approximation to its reaction rate theory remains closely related to the semiclassical instanton approximation in the deep quantum tunneling regime. In effect, there is a continuous family of methods with these properties, parameterised by the strength of the Langevin friction. Here, we explore numerically how the approximation to quantum dynamics depends on this friction, with a particular emphasis on vibrational spectroscopy. We find that a broad range of frictions approaching optimal damping give similar results, and that these results are immune to both the resonance problem of RPMD and the curvature problem of CMD

  4. Cracks in Polymer Spherulites: Phenomenological Mechanisms in Correlation with Ring Bands

    Directory of Open Access Journals (Sweden)

    Eamor M. Woo

    2016-09-01

    Full Text Available This article reviews possible mechanisms of various crack forms and their likely correlations with interior crystal lamellae and discontinuous interfaces in spherulites. Complex yet periodically repetitive patterns of cracks in spherulites are beyond attributions via differences in thermal expansion coefficients, which would cause random and irregular cracks in the contract direction only. Cracks in brittle polymers such as poly(l-lactic acid (PLLA, or poly(4-hydroxyl butyrate (PHB, or more ductile polymers such as poly(trimethylene terephthalate (PTT are examined and illustrated, although for focus and demonstration, more discussions are spent on PLLA. The cracks can take many shapes that bear extremely striking similarity to the ring-band or lamellar patterns in the same spherulites. Crack patterns may differ significantly between the ring-banded and ringless spherulites, suggesting that the cracks may be partially shaped and governed by interfaces of lamellae and how the lamellar crystals assemble themselves in spherulites. Similarly, with some exceptions, most of the cracks patterns in PHB or PTT are also highly guided by the lamellar assembly in either ring-banded spherulites or ringless spherulites. Some exceptions of cracks in spherulites deviating from the apparent crystal birefringence patterns do exist; nevertheless, discontinuous interfaces in the initial lamellae neat the nuclei center might be hidden by top crystal over-layers of the spherulites, which might govern crack propagation.

  5. Thermoset polymers via ring opening metathesis polymerization of functionalized oils

    Science.gov (United States)

    Larock, Richard C; Henna, Phillip H; Kessier, Michael R

    2012-11-27

    The invention provides a method for producing a thermosetting resin from renewable oils, the method comprising supplying renewable oil molecules containing strained ring alkene moieties; reacting the alkene moieties with cyclic alkenes to create a polymer; and repeating the above two steps until the resin having desired characteristics are obtained. Also provided is a thermoset resin comprising functionalized renewable oil polymerized with a co-monomer.

  6. Perspective: Ring-polymer instanton theory

    Science.gov (United States)

    Richardson, Jeremy O.

    2018-05-01

    Since the earliest explorations of quantum mechanics, it has been a topic of great interest that quantum tunneling allows particles to penetrate classically insurmountable barriers. Instanton theory provides a simple description of these processes in terms of dominant tunneling pathways. Using a ring-polymer discretization, an efficient computational method is obtained for applying this theory to compute reaction rates and tunneling splittings in molecular systems. Unlike other quantum-dynamics approaches, the method scales well with the number of degrees of freedom, and for many polyatomic systems, the method may provide the most accurate predictions which can be practically computed. Instanton theory thus has the capability to produce useful data for many fields of low-temperature chemistry including spectroscopy, atmospheric and astrochemistry, as well as surface science. There is however still room for improvement in the efficiency of the numerical algorithms, and new theories are under development for describing tunneling in nonadiabatic transitions.

  7. Variable diameter CO2 laser ring-cutting system adapted to a zoom microscope for applications on polymer tapes.

    Science.gov (United States)

    Förster, Erik; Bohnert, Patrick; Kraus, Matthias; Kilper, Roland; Müller, Ute; Buchmann, Martin; Brunner, Robert

    2016-11-20

    This paper presents the conception and implementation of a variable diameter ring-cutting system for a CO2 laser with a working wavelength of 10.6 μm. The laser-cutting system is adapted to an observation zoom microscope for combined use and is applicable for the extraction of small circular areas from polymer films, such as forensic adhesive tapes in a single shot. As an important characteristic for our application, the variable diameter ring-cutting system provides telecentricity in the target area. Ring diameters are continuously tunable between 500 μm and 2 mm. A minimum width of less than 20 μm was found for the ring profile edge. The basic characteristics of the system, including telecentricity, were experimentally evaluated and demonstrated by cutting experiments on different polymer tapes and further exemplary samples.

  8. Integrated optics ring-resonator chemical sensor with polymer transduction layer

    Science.gov (United States)

    Ksendzov, A.; Homer, M. L.; Manfreda, A. M.

    2004-01-01

    An integrated optics chemical sensor based on a ring resonator with an ethyl cellulose polymer coating has been demonstrated. The measured sensitivity to isopropanol in air is 50 ppm-the level immediately useful for health-related air quality monitoring. The resonator was fabricated using SiO2 and SixNy materials. The signal readout is based on tracking the wavelength of a resonance peak. The resonator layout optimisation for sensing applications is discussed.

  9. Effects of topology on the adsorption of singly tethered ring polymers to attractive surfaces.

    Science.gov (United States)

    Li, Bing; Sun, Zhao-Yan; An, Li-Jia

    2015-07-14

    We investigate the effect of topology on the equilibrium behavior of singly tethered ring polymers adsorbed on an attractive surface. We focus on the change of square radius of gyration Rg(2), the perpendicular component Rg⊥(2) and the parallel component Rg‖(2) to the adsorbing surface, the mean contacting number of monomers with the surface , and the monomer distribution along z-direction during transition from desorption to adsorption. We find that both of the critical point of adsorption εc and the crossover exponent ϕ depend on the knot type when the chain length of ring ranges from 48 to 400. The behaviors of Rg(2), Rg⊥(2), and Rg‖(2) are found to be dependent on the topology and the monomer-surface attractive strength. At weak adsorption, the polymer chains with more complex topology are more adsorbable than those with simple topology. However, at strong adsorption, the polymer chains with complex topology are less adsorbable. By analyzing the distribution of monomer along z-direction, we give a possible mechanism for the effect of topology on the adsorption behavior.

  10. Nonequilibrium molecular dynamics study of ring polymer melts under shear and elongation flows: A comparison with their linear analogs

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jeongha; Kim, Jinseong; Baig, Chunggi, E-mail: cbaig@unist.ac.kr [Department of Chemical Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of)

    2016-07-15

    We present detailed results for the structural and rheological properties of unknotted and unconcatenated ring polyethylene (PE) melts under shear and elongation flows via direct atomistic nonequilibrium molecular dynamics simulations. Short (C{sub 78}H{sub 156}) and long (C{sub 400}H{sub 800}) ring PE melts were subjected to planar Couette flow (PCF) and planar elongational flow (PEF) across a wide range of strain rates from linear to highly nonlinear flow regimes. The results are analyzed in detail through a direct comparison with those of the corresponding linear polymers. We found that, in comparison to their linear analogs, ring melts possess rather compact chain structures at or near the equilibrium state and exhibit a considerably lesser degree of structural deformation with respect to the applied flow strength under both PCF and PEF. The large structural resistance of ring polymers against an external flow field is attributed to the intrinsic closed-loop configuration of the ring and the topological constraint of nonconcatenation between ring chains in the melt. As a result, there appears to be a substantial discrepancy between ring and linear systems in terms of their structural and rheological properties such as chain orientation, the distribution of chain dimensions, viscosity, flow birefringence, hydrostatic pressure, the pair correlation function, and potential interaction energies. The findings and conclusions drawn in this work would be a useful guide in future exploration of the characteristic dynamical and relaxation mechanisms of ring polymers in bulk or confined systems under flowing conditions.

  11. Polymers Containing Diphenylvinyl-Substituted Indole Rings as Charge-Transporting Materials for OLEDs

    Science.gov (United States)

    Grigalevicius, S.; Zostautiene, R.; Sipaviciute, D.; Stulpinaite, B.; Volyniuk, D.; Grazulevicius, J. V.; Liu, L.; Xie, Z.; Zhang, B.

    2016-02-01

    Monomers and polymers containing electronically isolated diphenylvinyl-substituted indole rings were synthesized and characterized by nuclear magnetic resonance (NMR) and mass spectroscopies as well as by gel permeation chromatography. The polymers represent amorphous materials with glass transition temperatures of 91-109°C and thermal decomposition starting above 307°C. Electron photoemission spectra of thin films of the synthesized polymers revealed ionization potentials of 5.54-5.58 eV. The synthesized polymers were tested as hole-transporting materials in simple electroluminescent organic light-emitting diode (OLED) devices with tris(quinolin-8-olato)aluminium (Alq3) as an emitter as well as an electron-transporting layer. A green OLED device containing a hole-transporting layer of poly[1-(2,3-epithiopropyl)-2-methyl-3-(2,2-diphenylvinyl)índole] exhibited the best overall performance with a driving voltage of 4.0 V, maximum photometric efficiency of 2.8 cd/A and maximum brightness of about 4200 cd/m2.

  12. The influence of polymer architectures on the dewetting behavior of thin polymer films: from linear chains to ring chains.

    Science.gov (United States)

    Wang, Lina; Xu, Lin; Liu, Binyuan; Shi, Tongfei; Jiang, Shichun; An, Lijia

    2017-05-03

    The dewetting behavior of ring polystyrene (RPS) film and linear polystyrene (LPS) film on silanized Si substrates with different grafting densities and PDMS substrate was investigated. Results showed that polymer architectures greatly influenced the dewetting behavior of the thin polymer film. On the silanized Si substrate with 69% grafting density, RPS chains exhibited stronger adsorption compared with LPS chains, and as a result the wetting layer formed more easily. For LPS films, with a decreased annealing temperature, the stability of the polymer film changed from non-slip dewetting via apparent slip dewetting to apparently stable. However, for RPS films, the polymer film stability switched from apparent slip dewetting to apparently stable. On the silanized Si substrate with 94% grafting density, the chain adsorption became weaker and the dewetting processes were faster than that on the substrate with 69% grafting density at the same experimental temperature for both the LPS and RPS films. Moreover, on the PDMS substrate, LPS films always showed non-slip dewetting, while the dewetting kinetics of RPS films switched from non-slip dewetting to slip dewetting behaviour. Forming the wetting layer strongly influenced the stability and dewetting behavior of the thin polymer films.

  13. Thermodynamic Presynthetic Considerations for Ring-Opening Polymerization.

    Science.gov (United States)

    Olsén, Peter; Odelius, Karin; Albertsson, Ann-Christine

    2016-03-14

    The need for polymers for high-end applications, coupled with the desire to mimic nature's macromolecular machinery fuels the development of innovative synthetic strategies every year. The recently acquired macromolecular-synthetic tools increase the precision and enable the synthesis of polymers with high control and low dispersity. However, regardless of the specificity, the polymerization behavior is highly dependent on the monomeric structure. This is particularly true for the ring-opening polymerization of lactones, in which the ring size and degree of substitution highly influence the polymer formation properties. In other words, there are two important factors to contemplate when considering the particular polymerization behavior of a specific monomer: catalytic specificity and thermodynamic equilibrium behavior. This perspective focuses on the latter and undertakes a holistic approach among the different lactones with regard to the equilibrium thermodynamic polymerization behavior and its relation to polymer synthesis. This is summarized in a monomeric overview diagram that acts as a presynthetic directional cursor for synthesizing highly specific macromolecules; the means by which monomer equilibrium conversion relates to starting temperature, concentration, ring size, degree of substitution, and its implications for polymerization behavior are discussed. These discussions emphasize the importance of considering not only the catalytic system but also the monomer size and structure relations to thermodynamic equilibrium behavior. The thermodynamic equilibrium behavior relation with a monomer structure offers an additional layer of complexity to our molecular toolbox and, if it is harnessed accordingly, enables a powerful route to both monomer formation and intentional macromolecular design.

  14. A new series of two-ring-based side chain liquid crystalline polymers: synthesis and mesophase characterization

    CSIR Research Space (South Africa)

    Reddy, GSM

    2013-05-01

    Full Text Available A new series of side chain liquid crystalline polymers containing a core, a butamethylenoxy spacer, ester groups, and terminal alkoxy groups were synthesised and their structures were confirmed. The core was constructed with two phenyl rings...

  15. pH-responsive fluorescence chemical sensor constituted by conjugated polymers containing pyridine rings.

    Science.gov (United States)

    Adachi, Naoya; Kaneko, Yuki; Sekiguchi, Kazuki; Sugiyama, Hiroki; Sugeno, Masafumi

    2015-12-01

    Poly(p-pyridinium phenylene ethynylene)s (PPyPE) functionalized with alternating donor-acceptor repeat units were synthesized by a Pd-catalyzed Sonogashira coupling reaction between diethynyl monomer and di-iodopyridine for use as a pH-responsive fluorescence chemical sensor. The synthesized PPyPE, containing pyridine units, was characterized by FT-IR, (1)H and (13)C NMR, UV-visible and fluorescence spectroscopies. We investigated the relationship between changes of optical properties and protonation/deprotonation of PPyPE containing pyridine units in solution. Addition of HCl decreased and red-shifted the fluorescence intensity of the conjugated polymers that contained pyridine rings; fluorescence intensity of the polymers increased upon addition of NaOH solution. The synthesized PPyPE was found to be an effective and reusable chemical sensor for pH sensing. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Chemical Sensors Based on Optical Ring Resonators

    Science.gov (United States)

    Homer, Margie; Manfreda, Allison; Mansour, Kamjou; Lin, Ying; Ksendzov, Alexander

    2005-01-01

    Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong

  17. Topology of polymer chains under nanoscale confinement.

    Science.gov (United States)

    Satarifard, Vahid; Heidari, Maziar; Mashaghi, Samaneh; Tans, Sander J; Ejtehadi, Mohammad Reza; Mashaghi, Alireza

    2017-08-24

    Spatial confinement limits the conformational space accessible to biomolecules but the implications for bimolecular topology are not yet known. Folded linear biopolymers can be seen as molecular circuits formed by intramolecular contacts. The pairwise arrangement of intra-chain contacts can be categorized as parallel, series or cross, and has been identified as a topological property. Using molecular dynamics simulations, we determine the contact order distributions and topological circuits of short semi-flexible linear and ring polymer chains with a persistence length of l p under a spherical confinement of radius R c . At low values of l p /R c , the entropy of the linear chain leads to the formation of independent contacts along the chain and accordingly, increases the fraction of series topology with respect to other topologies. However, at high l p /R c , the fraction of cross and parallel topologies are enhanced in the chain topological circuits with cross becoming predominant. At an intermediate confining regime, we identify a critical value of l p /R c , at which all topological states have equal probability. Confinement thus equalizes the probability of more complex cross and parallel topologies to the level of the more simple, non-cooperative series topology. Moreover, our topology analysis reveals distinct behaviours for ring- and linear polymers under weak confinement; however, we find no difference between ring- and linear polymers under strong confinement. Under weak confinement, ring polymers adopt parallel and series topologies with equal likelihood, while linear polymers show a higher tendency for series arrangement. The radial distribution analysis of the topology reveals a non-uniform effect of confinement on the topology of polymer chains, thereby imposing more pronounced effects on the core region than on the confinement surface. Additionally, our results reveal that over a wide range of confining radii, loops arranged in parallel and cross

  18. Ring-Expansion/Contraction Radical Crossover Reactions of Cyclic Alkoxyamines: A Mechanism for Ring Expansion-Controlled Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Atsushi Narumi

    2018-06-01

    Full Text Available Macrocyclic polymers present an important class of macromolecules, displaying the reduced radius of gyration or impossibility to entangle. A rare approach for their synthesis is the ring expansion-controlled radical “vinyl” polymerization, starting from a cyclic alkoxyamine. We here describe ring-expansion radical crossover reactions of cyclic alkoxyamines which run in parallel to chain-propagation reactions in the polymerization system. The radical crossover reactions extensively occurred at 105–125 °C, eventually producing high molecular weight polymers with multiple inherent dynamic covalent bonds (NOC bonds. A subsequent ring-contraction radical crossover reaction and the second ring-expansion radical crossover reaction are also described. The major products for the respective three stages were shown to possess cyclic morphologies by the molecular weight profiles and the residual ratios for the NOC bonds (φ in %. In particular, the high φ values ranging from ca. 80% to 98% were achieved for this cyclic alkoxyamine system. This result verifies the high availability of this system as a tool demonstrating the ring-expansion “vinyl” polymerization that allows them to produce macrocyclic polymers via a one-step vinyl polymerization.

  19. Large ring polymers align FtsZ polymers for normal septum formation

    NARCIS (Netherlands)

    Guendogdu, Muhammet E.; Kawai, Yoshikazu; Pavlendova, Nada; Ogasawara, Naotake; Errington, Jeff; Scheffers, Dirk-Jan; Hamoen, Leendert W.; Gündoğdu, Muhammet E.

    2011-01-01

    Cytokinesis in bacteria is initiated by polymerization of the tubulin homologue FtsZ into a circular structure at midcell, the Z-ring. This structure functions as a scaffold for all other cell division proteins. Several proteins support assembly of the Z-ring, and one such protein, SepF, is required

  20. Effects of temperature and isotopic substitution on electron attachment dynamics of guanine–cytosine base pair: Ring-polymer and classical molecular dynamics simulations

    International Nuclear Information System (INIS)

    Minoshima, Yusuke; Seki, Yusuke; Takayanagi, Toshiyuki; Shiga, Motoyuki

    2016-01-01

    Highlights: • Dynamics of excess electron attachment to guanine–cytosine base pair. • Ring-polymer and classical molecular dynamics simulations are performed. • Temperature and isotope substitution effects are investigated. - Abstract: The dynamical process of electron attachment to a guanine–cytosine pair in the normal (h-GC) and deuterated (d-GC) forms has been studied theoretically by semiclassical ring-polymer molecular dynamics (RPMD) simulations using the empirical valence bond model. The initially formed dipole-bound anion is converted rapidly to the valence-bound anion within about 0.1 ps in both h-GC and d-GC. However, the subsequent proton transfer in h-GC occurs with a rate five times greater than the deuteron transfer in d-GC. The change of rates with isotopic substitution and temperature variation in the RPMD simulations are quantitatively and qualitatively different from those in the classical molecular dynamics (MD) simulations, demonstrating the importance of nuclear quantum effects on the dynamics of this system.

  1. Effects of temperature and isotopic substitution on electron attachment dynamics of guanine–cytosine base pair: Ring-polymer and classical molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Minoshima, Yusuke; Seki, Yusuke [Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan); Takayanagi, Toshiyuki, E-mail: tako@mail.saitama-u.ac.jp [Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan); Shiga, Motoyuki [Center for Computational Science and E-Systems, Japan Atomic Energy Agency, 148-4, Kashiwanoha Campus, 178-4 Wakashiba, Kashiwa, Chiba 277-0871 (Japan)

    2016-06-15

    Highlights: • Dynamics of excess electron attachment to guanine–cytosine base pair. • Ring-polymer and classical molecular dynamics simulations are performed. • Temperature and isotope substitution effects are investigated. - Abstract: The dynamical process of electron attachment to a guanine–cytosine pair in the normal (h-GC) and deuterated (d-GC) forms has been studied theoretically by semiclassical ring-polymer molecular dynamics (RPMD) simulations using the empirical valence bond model. The initially formed dipole-bound anion is converted rapidly to the valence-bound anion within about 0.1 ps in both h-GC and d-GC. However, the subsequent proton transfer in h-GC occurs with a rate five times greater than the deuteron transfer in d-GC. The change of rates with isotopic substitution and temperature variation in the RPMD simulations are quantitatively and qualitatively different from those in the classical molecular dynamics (MD) simulations, demonstrating the importance of nuclear quantum effects on the dynamics of this system.

  2. From coffee ring to spherulites ring of poly(ethylene oxide) film from drying droplet

    Science.gov (United States)

    Hu, Yinchun; Zhang, Xuerong; Qiu, Maibo; Wei, Yan; Zhou, Qiong; Huang, Di

    2018-03-01

    We discuss how the "spherulites ring" morphology and "coffee ring" profile of PEO film formed by the drying droplet at glass substrate with different heating rate. Upon increasing the heating rate of substrate, it is found that deposited PEO film from drying droplet shows the unusually observed "coffee ring" profile and "spherulites ring" morphology. The main mechanism for this phenomenon is proposed to be an enhanced Marangoni convection which is induced by the increased solute concentration gradient and reduced viscous force above 70 °C. A simple formation mechanism of the unusually observed "coffee ring" profile and "spherulites ring" morphology is proposed. These findings can be exploited to trace the center of Marangoni convection, with potential applications in designing the spherulite patterns of crystalline polymer films in ink-jet printing and self-assembly fields.

  3. Evaluation of the Performance of O-rings Made with Different Elastomeric Polymers in Simulated Geothermal Environments at 300°C

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, Toshifumi [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pyatina, Tatiana [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Redline, Erica Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McElhanon, James R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Blankenship, Douglas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-12-01

    This paper aims to evaluate the survival of O-rings made with six different elastomeric polymers, EPDM, type I- and II-FKM, FEPM, FFKM, and FSR, in five different simulated geothermal environments at 300°C. It further defines the relative strengths and weaknesses of the materials in each environment. The environments tested were: 1) non-aerated steam-cooling cycles, 2) aerated steam-cooling cycles, 3) water-based drilling fluid, 4) CO2-rich geo-brine fluid, and, 5) heat-cool water quenching cycles. Following exposure, the extent of oxidation, oxidationinduced degradation, thermal behaviors, micro-defects, permeation depths of ionic species present in environments throughout the O-ring, silicate-related scale-deposition, and changes in mechanical properties were assessed.

  4. METHOD FOR MAKING A POLYMER, A POLYMER ARTICLE, A BIODEVICE, AND CYCLIC CARBONATE

    NARCIS (Netherlands)

    Zhong, Zhiyuan; Meng, Fenghua; Wang, Rong; Feijen, Jan

    2014-01-01

    The present invention relates to a method for making a polymer wherein during ring opening polymerisation is incorporated into the polymer chain at least one cyclic (alkyl) carbonate monomer having the formula (1) wherein Y is optional and represents the residue of a sulfhydryl reacted group, X

  5. Ring-opening of gamma-valerolactone with amino compounds

    NARCIS (Netherlands)

    Chalid, Mochamad; Heeres, Hero J.; Broekhuis, Antonius A.

    2012-01-01

    Diols obtained by the ring-opening of biomass-based gamma-valerolactone (GVL) are potentially valuable building blocks that can be used as precursors in the manufacture of green polymers and resins. We report here a study on the ring-opening of GVL through adding amine compounds. The reactivity of

  6. Influence of the molecular structure on indentation size effect in polymers

    International Nuclear Information System (INIS)

    Han, Chung-Souk

    2010-01-01

    Size dependent deformation of polymers has been observed by various researchers in various experimental settings including micro beam bending, foams and indentation testing. Here in this article the indentation size effect in polymers is examined which manifests itself in increased hardness at decreasing indentation depths. Based on previously suggested rationale of size dependent deformation and depth dependent hardness model the depth dependent hardness of various polymers are analyzed. It is found that polymers containing aromatic rings in their molecular structure exhibit depth dependent hardness above the micron length scale. For polymers not containing aromatic rings polymers the indentation size effect starts at smaller indentation depths if they are present at all.

  7. Comparing the results of lattice and off-lattice simulations for the melt of nonconcatenated rings

    International Nuclear Information System (INIS)

    Halverson, Jonathan D; Kremer, Kurt; Grosberg, Alexander Y

    2013-01-01

    To study the conformational properties of unknotted and nonconcatenated ring polymers in the melt, we present a detailed qualitative and quantitative comparison of simulation data obtained by molecular dynamics simulation using an off-lattice bead-spring model and by Monte Carlo simulation using a lattice model. We observe excellent, and sometimes even unexpectedly good, agreement between the off-lattice and lattice results for many quantities measured including the gyration radii of the ring polymers, gyration radii of their subchains, contact probabilities, surface characteristics, number of contacts between subchains, and the static structure factors of the rings and their subchains. These results are, in part, put in contrast to Moore curves, and the open, linear polymer counterparts. While our analysis is extensive, our understanding of the ring melt conformations is still rather preliminary. (paper)

  8. Swelling of two-dimensional polymer rings by trapped particles.

    Science.gov (United States)

    Haleva, E; Diamant, H

    2006-09-01

    The mean area of a two-dimensional Gaussian ring of N monomers is known to diverge when the ring is subject to a critical pressure differential, p c ~ N -1. In a recent publication (Eur. Phys. J. E 19, 461 (2006)) we have shown that for an inextensible freely jointed ring this divergence turns into a second-order transition from a crumpled state, where the mean area scales as [A]~N-1, to a smooth state with [A]~N(2). In the current work we extend these two models to the case where the swelling of the ring is caused by trapped ideal-gas particles. The Gaussian model is solved exactly, and the freely jointed one is treated using a Flory argument, mean-field theory, and Monte Carlo simulations. For a fixed number Q of trapped particles the criticality disappears in both models through an unusual mechanism, arising from the absence of an area constraint. In the Gaussian case the ring swells to such a mean area, [A]~ NQ, that the pressure exerted by the particles is at p c for any Q. In the freely jointed model the mean area is such that the particle pressure is always higher than p c, and [A] consequently follows a single scaling law, [A]~N(2) f (Q/N), for any Q. By contrast, when the particles are in contact with a reservoir of fixed chemical potential, the criticality is retained. Thus, the two ensembles are manifestly inequivalent in these systems.

  9. An experimental determination of the hot electron ring geometry in a Bumpy Torus and its implications for Bumpy Torus stability

    International Nuclear Information System (INIS)

    Hillis, D.L.; Wilgen, J.B.; Bigelow, T.S.; Jaeger, E.F.; Swain, D.W.; Hankins, O.E.; Juhala, R.E.

    1986-10-01

    The hot electron rings of the ELMO Bumpy Torus (EBT) [Plasma Physics and Controlled Nuclear Fusion (IAEA, Vienna, 1975), Vol. II, p. 141] are formed by electron cyclotron resonance heating (ECRH) and have an electron temperature of 350 to 500 keV. The original intention of these hot electron rings was to provide a local minimum in the magnetic field and, thereby, stabilize the simple interchange and flute modes, which are inherent in a closed field line bumpy torus. To evaluate the electron energy density of the EBT rings and determine if enough stored energy is present to provide a local minimum in the magnetic field, a detailed understanding of the spatial distribution of the rings is imperative. The purpose of this report is to measure the ring thickness and investigate its implications for bumpy torus stability. The spatial location and radial profile of the hot electron ring are measured with a unique metal ball pellet injector, which injects small metallic balls into the EBT ring plasma. From these measurements the radial extent (or ring thickness) is about 5 to 7 cm full width at half maximum for typical EBT operation, which is much larger than previously expected. These measurements and recent modeling of the EBT plasma indicate that the hot electron ring's stored energy may not be sufficient to produce a local minimum in the magnetic field

  10. Electro Optic Modulation In a Polymer Ringresonator

    Science.gov (United States)

    Leinse, A.; Driessen, A.; Diemeer, M. B. J.

    2004-05-01

    A thermo optic and electro optic (EO) tunable polymer ringresonator was realized and tested. The device consisted of a microring resonator made of the 4-dimethylamino-4‵-nitrostilbene (DANS) containing polymer and measurements were done on the through port of this device. The ring was used in a vertical coupling structure. The port waveguides were made of the photo-definable epoxy (SU8). The rings used had a diameter of 100 μm and thermo optic tuning of about 170 pm/°C was measured. EO modulation was measured for TE polarization.

  11. Entanglements in Marginal Solutions: A Means of Tuning Pre-Aggregation of Conjugated Polymers with Positive Implications for Charge Transport

    KAUST Repository

    Hu, Hanlin

    2015-06-17

    The solution-processing of conjugated polymers, just like commodity polymers, is subject to solvent and molecular weight-dependent solubility, interactions and chain entanglements within the polymer, all of which can influence the crystallization and microstructure development in semi-crystalline polymers and consequently affect charge transport and optoelectronic properties. Disentanglement of polymer chains in marginal solvents was reported to work via ultrasonication, facilitating the formation of photophysically ordered polymer aggregates. In this contribution, we explore how a wide range of technologically relevant solvents and formulations commonly used in organic electronics influence chain entanglement and the aggregation behaviour of P3HT using a combination of rheological and spectrophotometric measurements. The specific viscosity of the solution offers an excellent indication of the degree of entanglements in the solution, which is found to be related to the solubility of P3HT in a given solvent. Moreover, deliberately disentangling the solution in the presence of solvophobic driving forces, leads consistently to formation of photophysically visible aggregates which is indicative of local and perhaps long range order in the solute. We show for a broad range of solvents and molecular weights that disentanglement ultimately leads to significant ordering of the polymer in the solid state and a commensurate increase in charge transport properties. In doing so we demonstrate a remarkable ability to tune the microstructure which has important implications for transport properties. We discuss its potential implications in the context of organic photovoltaics.

  12. Entanglements in Marginal Solutions: A Means of Tuning Pre-Aggregation of Conjugated Polymers with Positive Implications for Charge Transport

    KAUST Repository

    Hu, Hanlin; Zhao, Kui; Fernandes, Nikhil J.; Boufflet, Pierre; Bannock, James Henry; Yu, Liyang; de Mello, John C; Stingelin, Natalie; Heeney, Martin; Giannelis, Emmanuel P.; Amassian, Aram

    2015-01-01

    The solution-processing of conjugated polymers, just like commodity polymers, is subject to solvent and molecular weight-dependent solubility, interactions and chain entanglements within the polymer, all of which can influence the crystallization and microstructure development in semi-crystalline polymers and consequently affect charge transport and optoelectronic properties. Disentanglement of polymer chains in marginal solvents was reported to work via ultrasonication, facilitating the formation of photophysically ordered polymer aggregates. In this contribution, we explore how a wide range of technologically relevant solvents and formulations commonly used in organic electronics influence chain entanglement and the aggregation behaviour of P3HT using a combination of rheological and spectrophotometric measurements. The specific viscosity of the solution offers an excellent indication of the degree of entanglements in the solution, which is found to be related to the solubility of P3HT in a given solvent. Moreover, deliberately disentangling the solution in the presence of solvophobic driving forces, leads consistently to formation of photophysically visible aggregates which is indicative of local and perhaps long range order in the solute. We show for a broad range of solvents and molecular weights that disentanglement ultimately leads to significant ordering of the polymer in the solid state and a commensurate increase in charge transport properties. In doing so we demonstrate a remarkable ability to tune the microstructure which has important implications for transport properties. We discuss its potential implications in the context of organic photovoltaics.

  13. Corrosion at the Polymer-Metal Interface in Artificial Seawater Solutions

    Directory of Open Access Journals (Sweden)

    Amelia M. Anderson-Wile

    2012-01-01

    Full Text Available Polymer components for liquid sealing applications are employed in a variety of potentially corrosive environments, such as seawater. Frequently, corrosion of the metal is found at or adjacent to the rubber-metal interface rather than at a noncontact area. The corrosion of different metal alloys (titanium, bronze, nickel, aluminum, 316 stainless steel, and 4130 steel in combination with rubber O-rings (Buna-N and EPDM of varying internal diameters and cross-sectional shapes in seawater over a period of four years is described herein. The corrosion of some metals (i.e., 4130 stainless steel was found to be accelerated through interaction with Buna-N rubber O-rings. Theories to account for corrosion at the polymer-metal interface, especially with respect to polymer composition and O-ring size and shape, are discussed.

  14. Phase behaviour of polyethylene knotted ring chains

    International Nuclear Information System (INIS)

    Wen Xiao-Hui; Xia A-Gen; Chen Hong-Ping; Zhang Lin-Xi

    2011-01-01

    The phase behaviour of polyethylene knotted ring chains is investigated by using molecular dynamics simulations. In this paper, we focus on the collapse of the polyethylene knotted ring chain, and also present the results of linear and ring chains for comparison. At high temperatures, a fully extensive knot structure is observed. The mean-square radius of gyration per bond (S 2 )/(Nb 2 ) and the shape factor (δ*) depend on not only the chain length but also the knot type. With temperature decreasing, chain collapse is observed, and the collapse temperature decreases with the chain length increasing. The actual collapse transition can be determined by the specific heat capacity C v , and the knotted ring chain undergoes gas—liquid—solid-like transition directly. The phase transition of a knotted ring chain is only one-stage collapse, which is different from the polyethylene linear and ring chains. This investigation can provide some insights into the statistical properties of knotted polymer chains. (condensed matter: structural, mechanical, and thermal properties)

  15. Fabrication of an electro optic polymer ringresonator

    NARCIS (Netherlands)

    Leinse, Arne; Driessen, A.; Diemeer, Mart; de Ridder, R.M.; de Ridder, R.M; Altena, G.; Altena, G; Geuzebroek, D.H.; Dekker, R; Dekker, R.

    2003-01-01

    A ringresonator made of an electro optic (EO) polymer was designed, realized and characterized. The ring was made of a 4-dimethylamino-4-nitrostilbene (DANS) containing polymer and used in a vertical coupling with the waveguides. The waveguides were made of the photo-definable SU8, preventing an

  16. Solid structures of the stepwise self-assembled copillar[5]arene-based supramolecular polymers

    International Nuclear Information System (INIS)

    Park, Yeon Sil; Hwang, Seong Min; Shin, Jae Yeon; Paek, Kyung Soo

    2016-01-01

    Development of supramolecular polymer has attracted much interest because of their interesting properties such as stimuli-responsiveness, recycling, self-healing and degradability, and their consequential applications. The essential feature of this class of polymers is the self-assembly of discrete monomeric subunits via non-covalent interactions or dynamic covalent bonds. Among the many monomeric subunits, pillar[n]arenes have been ideal building blocks for the fabrication of polymeric supramolecules because of their intrinsic characteristics. The ring-shaped morphologies in supramolecular polymer P are probably due to the tendency of the end-to-end connection in the solid state of long flexible supramolecular chains. The size increase of nano-rings as the stepwise addition increases might be due to the fact that the linear supramolecular polymer P in solution seems to be maintained until the nano-ring formation by solidification

  17. Solid structures of the stepwise self-assembled copillar[5]arene-based supramolecular polymers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeon Sil; Hwang, Seong Min; Shin, Jae Yeon; Paek, Kyung Soo [Dept. of Chemistry, Soongsil University, Seoul (Korea, Republic of)

    2016-10-15

    Development of supramolecular polymer has attracted much interest because of their interesting properties such as stimuli-responsiveness, recycling, self-healing and degradability, and their consequential applications. The essential feature of this class of polymers is the self-assembly of discrete monomeric subunits via non-covalent interactions or dynamic covalent bonds. Among the many monomeric subunits, pillar[n]arenes have been ideal building blocks for the fabrication of polymeric supramolecules because of their intrinsic characteristics. The ring-shaped morphologies in supramolecular polymer P are probably due to the tendency of the end-to-end connection in the solid state of long flexible supramolecular chains. The size increase of nano-rings as the stepwise addition increases might be due to the fact that the linear supramolecular polymer P in solution seems to be maintained until the nano-ring formation by solidification.

  18. Determination of hoop direction effective elastic moduli of non-circular profile, fiber reinforced polymer composite sewer liner pipes from lateral ring compression tests

    International Nuclear Information System (INIS)

    Czél, Gergely; Takács, Dénes

    2015-01-01

    A new material property determination method is presented for the calculation of effective elastic moduli of non-circular ring specimens cut from filament wound oval profile polymer composite sewer liner pipes. The hoop direction elastic moduli was determined using the test results obtained from ring compression tests, which is a very basic setup, and requires no special equipment. Calculations were executed for many different oval profiles, and diagrams were constructed, from which the cross section dependent C_e_f_f constants can be taken. The new method was validated by the comparison of tests and finite element analysis results. The calculation method and the diagrams are essential design tools for engineers, and a big step forward in sizing non-circular profile liner pipes. - Highlights: • A simple modulus measurement method is presented for non-circular ring specimens. • The evaluation method is validated against a finite element model. • Profile shape dependent constants are presented for a wide range of cross-sections. • A set of charts with the constants are provided to aid design engineers.

  19. Functionalization of multi-walled carbon nanotubes by epoxide ring-opening polymerization

    International Nuclear Information System (INIS)

    Jin Fanlong; Rhee, Kyong Yop; Park, Soo-Jin

    2011-01-01

    In this study, covalent functionalization of carbon nanotubes (CNTs) was accomplished by surface-initiated epoxide ring-opening polymerization. FT-IR spectra showed that polyether and epoxide group covalently attached to the sidewalls of CNTs. TGA results indicated that the polyether was successfully grown from the CNT surface, with the final products having a polymer weight percentage of ca. 14–74 wt%. The O/C ratio of CNTs increased significantly from 5.1% to 29.8% after surface functionalization of CNTs. SEM and TEM images of functionalized CNTs exhibited that the tubes were enwrapped by polymer chains with thickness of several nanometers, forming core–shell structures with CNTs at the center. - Graphical abstract: Functionalized CNTs were enwrapped by polymer chains with thickness of several nanometers, forming core–shell structures with CNTs at the center. Highlights: ► CNTs were functionalized by epoxide ring-opening polymerization. ► Polyether and epoxide group covalently attached to the sidewalls of CNTs. ► Functionalized CNTs have a polymer weight percentage of ca. 14–74 wt%. ► Functionalized CNTs were enwrapped by polymer chains with thickness of several nanometers.

  20. Dithiopheneindenofluorene (TIF) Semiconducting Polymers with Very High Mobility in Field-Effect Transistors

    KAUST Repository

    Chen, Hu

    2017-07-19

    The charge-carrier mobility of organic semiconducting polymers is known to be enhanced when the energetic disorder of the polymer is minimized. Fused, planar aromatic ring structures contribute to reducing the polymer conformational disorder, as demonstrated by polymers containing the indacenodithiophene (IDT) repeat unit, which have both a low Urbach energy and a high mobility in thin-film-transistor (TFT) devices. Expanding on this design motif, copolymers containing the dithiopheneindenofluorene repeat unit are synthesized, which extends the fused aromatic structure with two additional phenyl rings, further rigidifying the polymer backbone. A range of copolymers are prepared and their electrical properties and thin-film morphology evaluated, with the co-benzothiadiazole polymer having a twofold increase in hole mobility when compared to the IDT analog, reaching values of almost 3 cm2 V−1 s−1 in bottom-gate top-contact organic field-effect transistors.

  1. Resonance capture and Saturn's rings

    International Nuclear Information System (INIS)

    Patterson, C.W.

    1986-05-01

    We have assigned the resonances apparently responsible for the stabilization of the Saturn's shepherd satellites and for the substructure seen in the F-ring and the ringlets in the C-ring. We show that Saturn's narrow ringlets have a substructure determined by three-body resonances with Saturn's ringmoons and the sun. We believe such resonances have important implications to satellite formation. 17 refs., 1 fig., 1 tab

  2. Accidental ingestion of BiTine ring and a note on inefficient ring separation forceps

    Directory of Open Access Journals (Sweden)

    Baghele ON

    2011-05-01

    Full Text Available Om Nemichand Baghele1, Mangala Om Baghele21Department of Periodontology, SMBT Dental College and Hospital, Sangamner, Ahmednagar, Maharashtra, India; 2Private General Dental Practice, Mumbai, IndiaBackground: Accidental ingestion of medium-to-large instruments is relatively uncommon during dental treatment but can be potentially dangerous. A case of BiTine ring ingestion is presented with a note on inefficient ring separation forceps.Case description: A 28-year-old male patient accidentally ingested the BiTine ring (2 cm diameter, 0.5 cm outward projections while it was being applied to a distoproximal cavity in tooth # 19. The ring placement forceps were excessively flexible; bending of the beaks towards the ring combined with a poor no-slippage mechanism led to sudden disengagement of the ring and accelerated movement towards the pharynx. We followed the patient with bulk forming agents and radiographs. Fortunately the ring passed out without any complications.Clinical implications: Checking equipment and methods is as important as taking precautions against any preventable medical emergency. It is the responsibility of the clinician to check, verify and then use any instrument/equipment.Keywords: foreign bodies/radiography, foreign bodies/complications, equipment failure, dental instrument, accidental ingestion

  3. Damage Mechanisms In Polymers Upon NIR Femtosecond Pulse Laser Irradiation: Sub-Threshold Processes And Their Implications For Laser Safety Applications

    International Nuclear Information System (INIS)

    Bonse, Joern; Krueger, Joerg; Solis, Javier; Spielmann, Christian; Lippert, Thomas

    2010-01-01

    This contribution investigates laser-induced damage of thin film and bulk polymer samples, with the focus on physical processes occurring close to the damage threshold. In-situ real-time reflectivity (RTR) measurements with picosecond (ps) and nanosecond (ns) temporal resolution were performed on thin polymer films on a timescale up to a few microseconds (μs). A model for polymer thin film damage is presented, indicating that irreversible chemical modification processes take place already below the fluence threshold for macroscopic damage. On dye-doped bulk polymer filters (as used for laser goggles), transmission studies using fs-and ps-laser pulses reveal the optical saturation behavior of the material and its relation to the threshold of permanent damage. Implications of the sub-threshold processes for laser safety applications will be discussed for thin film and bulk polymer damage.

  4. Thiophene Rings Improve the Device Performance of Conjugated Polymers in Polymer Solar Cells with Thick Active Layers

    NARCIS (Netherlands)

    Duan, C.; Gao, K.; Colberts, F. J. M.; Liu, F.; Meskers, S. C. J.; Wienk, M. M.; Janssen, R. A. J.

    2017-01-01

    Developing novel materials that tolerate thickness variations of the active layer is critical to further enhance the efficiency of polymer solar cells and enable large-scale manufacturing. Presently, only a few polymers afford high efficiencies at active layer thickness exceeding 200 nm and

  5. Bond-equilibrium theory of liquid Se-Te alloys. II. Effect of singly attached ring molecules

    Science.gov (United States)

    Cutler, Melvin; Bez, Wolfgang G.

    1981-06-01

    A statistical-mechanical theory for bond equilibrium of chain polymers containing threefold (3F) and onefold (1F) bond defects is extended to include the effects of free ring molecules and ring molecules attached to chains by a single 3F atom. Positively charged singly attached rings are shown to play a key role in bond equilibrium in liquid Sex Te1-x by permitting the formation of ion pairs in which both constituents are effectively chain terminators, thus decreasing the average polymer size. The theory is applied to explain the behavior of the paramagnetic susceptibility, χp, and electronic transport as affected by the Fermi energy EF. It is found that the increase in χp with the concentration of Te is primarily the result of the smaller energy for breaking Te bonds. In addition, attached rings play an important role in determining the effect of temperature on χp. At x<~0.5, the concentrations of both free and attached rings becomes small at high T because of the high concentration of bond defects.

  6. Tree-rings and climate: Implications for Great Basin paleoenvironmental studies

    International Nuclear Information System (INIS)

    Graybill, D.A.; Rose, M.R.; Nials, F.L.

    1994-01-01

    The Quaternary Sciences Center of the Desert Research Institute is currently conducting a multi-phased study of floral, faunal, and geomorphic response to long- and short-term climate change and extremes in assessing Yucca Mountain's suitability as a high-level nuclear waste repository. Preliminary results of these studies indicate synchronous responses in late Holocene tree-ring, palynology and geomorphic records. A tree-ring chronology for paleoclimatic reconstruction is developed by collection of multiple cores from 20-60 living trees and a similar number of dead trees in a climate-sensitive location. Samples are cross-dated and every growth layer in each specimen is measured to the nearest .001 mm. The measured ring width series potentially contain a variety of climatic, biological, and anthropogenic signals. Each ring width series is subjected to a numerical standarization procedure that removes an age-related biological growth trend, reduces endogeneous and exogenous stand disturbance factors, and maximizes any climatic signal that is present. Each of these empirically defined components can be graphically portrayed and subjected to further analyses. The geophysical signal analysis techniques involved in the standarized protocol are well-documented and established. The final result is a tree-ring chronology that represents regional paleoclimatic variability over the time represented by the sample population

  7. Role of special cross-links in structure formation of bacterial DNA polymer

    Science.gov (United States)

    Agarwal, Tejal; Manjunath, G. P.; Habib, Farhat; Lakshmi Vaddavalli, Pavana; Chatterji, Apratim

    2018-01-01

    Using data from contact maps of the DNA-polymer of Escherichia coli (E. Coli) (at kilobase pair resolution) as an input to our model, we introduce cross-links between monomers in a bead-spring model of a ring polymer at very specific points along the chain. Via suitable Monte Carlo simulations, we show that the presence of these cross-links leads to a particular organization of the chain at large (micron) length scales of the DNA. We also investigate the structure of a ring polymer with an equal number of cross-links at random positions along the chain. We find that though the polymer does get organized at the large length scales, the nature of the organization is quite different from the organization observed with cross-links at specific biologically determined positions. We used the contact map of E. Coli bacteria which has around 4.6 million base pairs in a single circular chromosome. In our coarse-grained flexible ring polymer model, we used 4642 monomer beads and observed that around 80 cross-links are enough to induce the large-scale organization of the molecule accounting for statistical fluctuations caused by thermal energy. The length of a DNA chain even of a simple bacterial cell such as E. Coli is much longer than typical proteins, hence we avoided methods used to tackle protein folding problems. We define new suitable quantities to identify the large scale structure of a polymer chain with a few cross-links.

  8. Polymer dual ring resonators for label-free optical biosensing using microfluidics.

    Science.gov (United States)

    Salleh, Muhammad H M; Glidle, Andrew; Sorel, Marc; Reboud, Julien; Cooper, Jonathan M

    2013-04-18

    We demonstrate a polymer resonator microfluidic biosensor that overcomes the complex manufacturing procedures required to fabricate traditional devices. In this new format, we show that a gapless light coupling photonic configuration, fabricated in SU8 polymer, can achieve high sensitivity, label-free chemical sensing in solution and high sensitivity biological sensing, at visible wavelengths.

  9. Integrated optics ring-resonator chemical sensor for detection of air contamination

    Science.gov (United States)

    Manfreda, A. M.; Homer, M. L.; Ksendzov, A.

    2004-01-01

    We report a silicon nitride-based ring resonator chemical sensor with sensing polymer coating. Its sensitivity to isopropanol in air is at least 50 ppm - well under the permissible exposure level of 400 ppm.

  10. Intregrated optics ring-resonator chemical sensor for detection of air contamination

    Science.gov (United States)

    Ksendzov, Alexander; Homer, Margie L.; Manfreda, Allison M.

    2004-01-01

    We report a silicon nitride-based ring resonator chemical sensor with sensing polymer coating. Its sensitivity to isopropanol in air is at least 50 ppm - well under the permissible exposure level of 400 ppm.

  11. Molecular modeling of polymer composite-analyte interactions in electronic nose sensors

    Science.gov (United States)

    Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Zhou, H.; Manatt, K. S.

    2003-01-01

    We report a molecular modeling study to investigate the polymer-carbon black (CB) composite-analyte interactions in resistive sensors. These sensors comprise the JPL electronic nose (ENose) sensing array developed for monitoring breathing air in human habitats. The polymer in the composite is modeled based on its stereoisomerism and sequence isomerism, while the CB is modeled as uncharged naphthalene rings with no hydrogens. The Dreiding 2.21 force field is used for the polymer, solvent molecules and graphite parameters are assigned to the carbon black atoms. A combination of molecular mechanics (MM) and molecular dynamics (NPT-MD and NVT-MD) techniques are used to obtain the equilibrium composite structure by inserting naphthalene rings in the polymer matrix. Polymers considered for this work include poly(4-vinylphenol), polyethylene oxide, and ethyl cellulose. Analytes studied are representative of both inorganic and organic compounds. The results are analyzed for the composite microstructure by calculating the radial distribution profiles as well as for the sensor response by predicting the interaction energies of the analytes with the composites. c2003 Elsevier Science B.V. All rights reserved.

  12. Polymer Main-Chain Substitution Effects on the Efficiency of Nonfullerene BHJ Solar Cells

    KAUST Repository

    Firdaus, Yuliar; Maffei, Luna Pratali; Cruciani, Federico; Mü ller, Michael A.; Liu, Shengjian; Lopatin, Sergei; Wehbe, Nimer; Ngongang Ndjawa, Guy Olivier; Amassian, Aram; Laquai, Fré dé ric; Beaujuge, Pierre

    2017-01-01

    “Nonfullerene” acceptors are proving effective in bulk heterojunction (BHJ) solar cells when paired with selected polymer donors. However, the principles that guide the selection of adequate polymer donors for high-efficiency BHJ solar cells with nonfullerene acceptors remain a matter of some debate and, while polymer main-chain substitutions may have a direct influence on the donor–acceptor interplay, those effects should be examined and correlated with BHJ device performance patterns. This report examines a set of wide-bandgap polymer donor analogues composed of benzo[1,2-b:4,5-b′]dithiophene (BDT), and thienyl ([2H]T) or 3,4-difluorothiophene ([2F]T) motifs, and their BHJ device performance pattern with the nonfullerene acceptor “ITIC”. Studies show that the fluorine- and ring-substituted derivative PBDT(T)[2F]T largely outperforms its other two polymer donor counterparts, reaching power conversion efficiencies as high as 9.8%. Combining several characterization techniques, the gradual device performance improvements observed on swapping PBDT[2H]T for PBDT[2F]T, and then for PBDT(T)[2F]T, are found to result from (i) notably improved charge generation and collection efficiencies (estimated as ≈60%, 80%, and 90%, respectively), and (ii) reduced geminate recombination (being suppressed from ≈30%, 25% to 10%) and bimolecular recombination (inferred from recombination rate constant comparisons). These examinations will have broader implications for further studies on the optimization of BHJ solar cell efficiencies with polymer donors and a wider range of nonfullerene acceptors.

  13. Polymer Main-Chain Substitution Effects on the Efficiency of Nonfullerene BHJ Solar Cells

    KAUST Repository

    Firdaus, Yuliar

    2017-07-21

    “Nonfullerene” acceptors are proving effective in bulk heterojunction (BHJ) solar cells when paired with selected polymer donors. However, the principles that guide the selection of adequate polymer donors for high-efficiency BHJ solar cells with nonfullerene acceptors remain a matter of some debate and, while polymer main-chain substitutions may have a direct influence on the donor–acceptor interplay, those effects should be examined and correlated with BHJ device performance patterns. This report examines a set of wide-bandgap polymer donor analogues composed of benzo[1,2-b:4,5-b′]dithiophene (BDT), and thienyl ([2H]T) or 3,4-difluorothiophene ([2F]T) motifs, and their BHJ device performance pattern with the nonfullerene acceptor “ITIC”. Studies show that the fluorine- and ring-substituted derivative PBDT(T)[2F]T largely outperforms its other two polymer donor counterparts, reaching power conversion efficiencies as high as 9.8%. Combining several characterization techniques, the gradual device performance improvements observed on swapping PBDT[2H]T for PBDT[2F]T, and then for PBDT(T)[2F]T, are found to result from (i) notably improved charge generation and collection efficiencies (estimated as ≈60%, 80%, and 90%, respectively), and (ii) reduced geminate recombination (being suppressed from ≈30%, 25% to 10%) and bimolecular recombination (inferred from recombination rate constant comparisons). These examinations will have broader implications for further studies on the optimization of BHJ solar cell efficiencies with polymer donors and a wider range of nonfullerene acceptors.

  14. Crystal and molecular simulation of high-performance polymers.

    Science.gov (United States)

    Colquhoun, H M; Williams, D J

    2000-03-01

    Single-crystal X-ray analyses of oligomeric models for high-performance aromatic polymers, interfaced to computer-based molecular modeling and diffraction simulation, have enabled the determination of a range of previously unknown polymer crystal structures from X-ray powder data. Materials which have been successfully analyzed using this approach include aromatic polyesters, polyetherketones, polythioetherketones, polyphenylenes, and polycarboranes. Pure macrocyclic homologues of noncrystalline polyethersulfones afford high-quality single crystals-even at very large ring sizes-and have provided the first examples of a "protein crystallographic" approach to the structures of conventionally amorphous synthetic polymers.

  15. Recent New Methodologies for Acetylenic Polymers with Advanced Functionalities.

    Science.gov (United States)

    Qiu, Zijie; Han, Ting; Lam, Jacky W Y; Tang, Ben Zhong

    2017-08-01

    Polymers synthesized from acetylenic monomers often possess electronically unsaturated fused rings and thus show versatile optoelectronic properties and advanced functionalities. To expand the family of acetylenic polymers, development of new catalyst systems and synthetic routes is critically important. We summarize herein recent research progress on development of new methodologies towards functional polymers using alkyne building blocks since 2014. The polymerizations are categorized by the number of monomer components, namely homopolymerizations, two-component polymerizations, and multicomponent polymerizations. The properties and applications of acetylenic polymers, such as aggregation-induced emission, fluorescent photopatterning, light refraction, chemosensing, mechanochromism, chain helicity, etc., are also discussed.

  16. Engineering a degradable polyurethane intravaginal ring for sustained delivery of dapivirine.

    Science.gov (United States)

    Kaur, Manpreet; Gupta, Kavita M; Poursaid, Azadeh E; Karra, Prasoona; Mahalingam, Alamelu; Aliyar, Hyder A; Kiser, Patrick F

    2011-06-01

    We describe the engineering of a degradable intravaginal ring (IVR) for the delivery of the potent HIV-1 reverse transcriptase inhibitor dapivirine. The degradable polymer used in fabricating the device incorporated poly(caprolactone) ester blocks in a poly(tetramethylene ether) glycol ABA type polyurethane backbone. The polymer was designed to maintain its structure for 1 month during usage and then degrade in the environment post-disposal. In vitro release of dapivirine showed zero-order kinetics for up to 1 month and significant levels of drug release into engineered vaginal tissue. The mechanical properties of the degradable IVR were comparable to those of a widely used contraceptive intravaginal ring upon exposure to simulated vaginal conditions. Incubation under simulated vaginal conditions for a month caused minimal degradation with minimal effect on the mechanical properties of the ring and polymer. The cytotoxicity evaluation of the drug-loaded IVRs against Vk2/E6E7 human vaginal epithelial cells, Lactobacillus jensenii, and engineered vaginal tissue constructs showed the degradable polyurethane to be non-toxic. In vitro evaluation of inflammatory potential monitored through the levels of inflammatory cytokines IL-8, IL-1α, IL-6, IL-1β, and MIP-3α when engineered EpiVaginal™ tissue was incubated with the polyurethanes suggested that the degradable polyurethane was comparable to commercial medical grade polyurethane. These results are encouraging for further development of this degradable IVR for topical vaginal delivery of microbicides.

  17. Ring substituents mediate the morphology of PBDTTPD-PCBM bulk-heterojunction solar cells

    KAUST Repository

    Warnan, Julien

    2014-04-08

    Among π-conjugated polymer donors for efficient bulk-heterojunction (BHJ) solar cell applications, poly(benzo[1,2-b:4,5-b′]dithiophene- thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymers yield some of the highest open-circuit voltages (VOC, ca. 0.9 V) and fill-factors (FF, ca. 70%) in conventional (single-cell) BHJ devices with PCBM acceptors. In PBDTTPD, side chains of varying size and branching affect polymer self-assembly, nanostructural order, and impact material performance. However, the role of the polymer side-chain pattern in the intimate mixing between polymer donors and PCBM acceptors, and on the development of the BHJ morphology is in general less understood. In this contribution, we show that ring substituents such as furan (F), thiophene (T) and selenophene (S)-incorporated into the side chains of PBDTTPD polymers-can induce significant and, of importance, very different morphological effects in BHJs with PCBM. A combination of experimental and theoretical (via density functional theory) characterizations sheds light on how varying the heteroatom of the ring substituents impacts (i) the preferred side-chain configurations and (ii) the ionization, electronic, and optical properties of the PBDTTPD polymers. In parallel, we find that the PBDT(X)TPD analogs (with X = F, T, or S) span a broad range of power conversion efficiencies (PCEs, 3-6.5%) in optimized devices with improved thin-film morphologies via the use of 1,8-diiodooctane (DIO), and discuss that persistent morphological impediments at the nanoscale can be at the origin of the spread in PCE across optimized PBDT(X)TPD-based devices. With their high VOC ∼1 V, PBDT(X)TPD polymers are promising candidates for use in the high-band gap cell of tandem solar cells. © 2014 American Chemical Society.

  18. Ring substituents mediate the morphology of PBDTTPD-PCBM bulk-heterojunction solar cells

    KAUST Repository

    Warnan, Julien; El Labban, Abdulrahman; Cabanetos, Clement; Hoke, Eric T.; Shukla, Pradeep Kumar; Risko, Chad; Bré das, Jean Luc; McGehee, Michael D.; Beaujuge, Pierre

    2014-01-01

    Among π-conjugated polymer donors for efficient bulk-heterojunction (BHJ) solar cell applications, poly(benzo[1,2-b:4,5-b′]dithiophene- thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymers yield some of the highest open-circuit voltages (VOC, ca. 0.9 V) and fill-factors (FF, ca. 70%) in conventional (single-cell) BHJ devices with PCBM acceptors. In PBDTTPD, side chains of varying size and branching affect polymer self-assembly, nanostructural order, and impact material performance. However, the role of the polymer side-chain pattern in the intimate mixing between polymer donors and PCBM acceptors, and on the development of the BHJ morphology is in general less understood. In this contribution, we show that ring substituents such as furan (F), thiophene (T) and selenophene (S)-incorporated into the side chains of PBDTTPD polymers-can induce significant and, of importance, very different morphological effects in BHJs with PCBM. A combination of experimental and theoretical (via density functional theory) characterizations sheds light on how varying the heteroatom of the ring substituents impacts (i) the preferred side-chain configurations and (ii) the ionization, electronic, and optical properties of the PBDTTPD polymers. In parallel, we find that the PBDT(X)TPD analogs (with X = F, T, or S) span a broad range of power conversion efficiencies (PCEs, 3-6.5%) in optimized devices with improved thin-film morphologies via the use of 1,8-diiodooctane (DIO), and discuss that persistent morphological impediments at the nanoscale can be at the origin of the spread in PCE across optimized PBDT(X)TPD-based devices. With their high VOC ∼1 V, PBDT(X)TPD polymers are promising candidates for use in the high-band gap cell of tandem solar cells. © 2014 American Chemical Society.

  19. Breakaway frictions of dynamic O-rings in mechanical seals

    Science.gov (United States)

    Lai, Tom; Kay, Peter

    1993-05-01

    Breakaway friction of a dynamic O-ring affects the mechanical seal's response to large axial shaft movement and face wear. However, little data exist to help designers. Therefore, a test rig was developed to measure breakaway friction. The research quantitatively shows the effects of lubrication with silicone grease and a change of surface finish. By using the Taguchi statistical experimental design method, the significance of test parameters was evaluated with a minimum number of tests. It was found that fluid pressure, dwell time, and O-ring percentage squeeze affect O-ring breakaway friction more than the O-ring cross sectional diameter and axial sliding speed within the range of values tested. The authors showed that breakaway friction increased linearly with pressure. However, O-rings made of different materials had significantly different increase rates, even if they had nominally the same durometer hardness. Breakaway friction also increased with logarithm of dwell time. Again, the increase rate depended strongly on the specific O-ring material tested. These observations led the authors to believe that the typical approach of generalizing data based on generic polymer type and durometer was inappropriate.

  20. Polymer Soft-Landing Isolation of Acetylene on Polystyrene and Poly(vinylpyridine): A Novel Approach to Probing Hydrogen Bonding in Polymers.

    Science.gov (United States)

    Li, Yike; Samet, Cindy

    2015-09-17

    Hydrogen-bonded complexes of acetylene (Ac) with the polymers polystyrene (PS), poly(4-vinylpyridine) (P4VP), and poly(2-vinylpyridine) (P2VP) have been characterized for the first time at 16 K in a "polymer soft-landing isolation" experiment which is being pioneered in our research laboratory. In particular, changes in vibrational modes of Ac provide ample evidence for hydrogen-bonded complexes between Ac and the phenyl groups of PS or the pyridyl groups of P4VP and P2VP. With PS, the proton on the top Ac molecule of the classic T-shaped Ac dimer interacts with the π cloud of the benzene (Bz) ring to form a C-H---π interaction, while the π cloud of the lower Ac forms a second C-H---π interaction with a proton on the Bz ring. An analogous (ring)1-(Ac)2 double interaction occurs between an Ac dimer and the pyridine (Pyr) rings on both P2VP and P4VP, yielding a C-H---N and C-H---π interaction. With P4VP and P2VP a second bridged (ring)2-(Ac)2 product is formed, with the Ac dimer forming nearly collinear C-H---N hydrogen bonds to adjacent Pyr rings. On P2VP this bridged product is the only one after extensive annealing. These complexes in which Ac acts as both proton donor and acceptor have not previously been observed in conventional matrix isolation experiments. This study is the second from our laboratory employing this method, which represents a slight modification of the traditional matrix isolation technique.

  1. Functional polypeptides obtained by living ring opening polymerizations of N-carboxyanhydrides

    NARCIS (Netherlands)

    Habraken, G.J.M.

    2011-01-01

    N-Carboxyanhydride ring opening polymerization (NCA ROP) is a method to prepare polypeptides with a high degree of polymerization in large quantities. The living polymerization technique of NCA ROP gave the opportunity to synthesize many polymer architectures with well-defined blocks and copolymers

  2. Hydrophilic Polymer Embolism: Implications for Manufacturing, Regulation, and Postmarket Surveillance of Coated Intravascular Medical Devices.

    Science.gov (United States)

    Mehta, Rashi I; Mehta, Rupal I

    2018-03-19

    Hydrophilic polymers are ubiquitously applied as surface coatings on catheters and intravascular medical technologies. Recent clinical literature has heightened awareness on the complication of hydrophilic polymer embolism, the phenomenon wherein polymer coating layers separate from catheter and device surfaces, and may be affiliated with a range of unanticipated adverse reactions. Significant system barriers have limited and delayed reporting on this iatrogenic complication, the full effects of which remain underrecognized by healthcare providers and manufacturers of various branded devices. In 2015, the United States Food and Drug Administration acknowledged rising clinical concerns and stated that the agency would work with stakeholders to further evaluate gaps that exist in current national and international device standards for coated intravascular medical technologies. The present article reviews current knowledge on this complication as well as factors that played a role in delaying detection and dissemination of information and new knowledge once hazards and clinical risks were identified. Furthermore, organ-specific effects and adverse reaction patterns are summarized, along with implications for device manufacturing, safety assurance, and regulation. Qualitative and quantitative particulate testing are needed to optimize coated intravascular device technologies. Moreover, general enhanced processes for medical device surveillance are required for timely adverse event management and to ensure patient safety.

  3. Dynamics of the evaporative dewetting of a volatile liquid film confined within a circular ring.

    Science.gov (United States)

    Sun, Wei; Yang, Fuqian

    2015-04-07

    The dewetting dynamics of a toluene film confined within a copper ring on a deformable PMMA film is studied. The toluene film experiences evaporation and dewetting, which leads to the formation of a circular contact line around the center of the copper ring. The contact line recedes smoothly toward the copper ring at a constant velocity until reaching a dynamic "stick" state to form the first circular polymer ridge. The average receding velocity is found to be dependent on the dimensions of the copper ring (the copper ring diameter and the cross-sectional diameter of the copper wire) and the thickness of the PMMA films. A model is presented to qualitatively explain the evaporative dewetting phenomenon.

  4. Green Polymer Chemistry: Investigating the Mechanism of Radical Ring-Opening Redox Polymerization (R3P of 3,6-Dioxa-1,8-octanedithiol (DODT

    Directory of Open Access Journals (Sweden)

    Emily Q. Rosenthal-Kim

    2015-04-01

    Full Text Available The mechanism of the new Radical Ring-opening Redox Polymerization (R3P of 3,6-dioxa-1,8-octanedithiol (DODT by triethylamine (TEA and dilute H2O2 was investigated. Scouting studies showed that the formation of high molecular weight polymers required a 1:2 molar ratio of DODT to TEA and of DODT to H2O2. Further investigation into the chemical composition of the organic and aqueous phases by 1H-NMR spectroscopy and mass spectrometry demonstrated that DODT is ionized by two TEA molecules (one for each thiol group and thus transferred into the aqueous phase. The organic phase was found to have cyclic disulfide dimers, trimers and tetramers. Dissolving DODT and TEA in water before the addition of H2O2 yielded a polymer with Mn = 55,000 g/mol, in comparison with Mn = 92,000 g/mol when aqueous H2O2 was added to a DODT/TEA mixture. After polymer removal, MALDI-ToF MS analysis of the residual reaction mixtures showed only cyclic oligomers remaining. Below the LCST for TEA in water, 18.7 °C, the system yielded a stable emulsion, and only cyclic oligomers were found. Below DODT/TEA and H2O2 1:2 molar ratio mostly linear oligomers were formed, with <20% cyclic oligomers. The findings support the proposed mechanism of R3P.

  5. GRAIL Gravity Observations of the Transition from Complex Crater to Peak-Ring Basin on the Moon: Implications for Crustal Structure and Impact Basin Formation

    Science.gov (United States)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-01-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles for free-air anomalies and Bouguer anomalies for peak-ring basins, proto-basins, and the largest complex craters. Complex craters and proto-basins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (approx. 200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the

  6. GRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation

    Science.gov (United States)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-08-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles of free-air anomalies and Bouguer anomalies for peak-ring basins, protobasins, and the largest complex craters. Complex craters and protobasins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (∼200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon

  7. High speed electro optic polymer micro-ringresonator

    NARCIS (Netherlands)

    Leinse, Arne; Diemeer, Mart; Driessen, A.

    2004-01-01

    An electro-optic polymer micro-ring resonator for high speed modulation was designed, realized and characterized. The design of layer-stack and electrodes was done such that modulation frequencies up till 1 GHz should be possible. The device consists of a ridge waveguide, defined in a negative

  8. Chemical Reaction Rates from Ring Polymer Molecular Dynamics: Zero Point Energy Conservation in Mu + H2 → MuH + H.

    Science.gov (United States)

    Pérez de Tudela, Ricardo; Aoiz, F J; Suleimanov, Yury V; Manolopoulos, David E

    2012-02-16

    A fundamental issue in the field of reaction dynamics is the inclusion of the quantum mechanical (QM) effects such as zero point energy (ZPE) and tunneling in molecular dynamics simulations, and in particular in the calculation of chemical reaction rates. In this work we study the chemical reaction between a muonium atom and a hydrogen molecule. The recently developed ring polymer molecular dynamics (RPMD) technique is used, and the results are compared with those of other methods. For this reaction, the thermal rate coefficients calculated with RPMD are found to be in excellent agreement with the results of an accurate QM calculation. The very minor discrepancies are within the convergence error even at very low temperatures. This exceptionally good agreement can be attributed to the dominant role of ZPE in the reaction, which is accounted for extremely well by RPMD. Tunneling only plays a minor role in the reaction.

  9. Integrated circuits based on conjugated polymer monolayer.

    Science.gov (United States)

    Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo; Carpenter, Joshua H; Yan, Hongping; Ade, Harald; Yan, He; Müllen, Klaus; Blom, Paul W M; Pisula, Wojciech; de Leeuw, Dago M; Asadi, Kamal

    2018-01-31

    It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2  V -1  s -1 . The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Real logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.

  10. Synthesis and properties of imidazole-grafted hybrid inorganic-organic polymer membranes

    International Nuclear Information System (INIS)

    Li Siwen; Zhou Zhen; Liu Meilin; Li Wen; Ukai, Junzo; Hase, Kohei; Nakanishi, Masatsugu

    2006-01-01

    Imidazole rings were grafted on alkoxysilane with a simple nucleophilic substitute reaction to form hybrid inorganic-organic polymers with imidazole rings. Proton exchange membranes (PEM) based on these hybrid inorganic-organic polymers and H 3 PO 4 exhibit high proton conductivity and high thermal stability in an atmosphere of low relative humidity. The grafted imidazole rings improved the proton conductivity of the membranes in the high temperature range. It is found that the proton conductivities increase with H 3 PO 4 content and temperature, reaching 3.2 x 10 -3 S/cm at 110 deg. C in a dry atmosphere for a membrane with 1 mole of imidazole ring and 7 moles of H 3 PO 4 . The proton conductivity increases with relative humidity (RH) as well, reaching 4.3 x 10 -2 S/cm at 110 deg. C when the RH is increased to about 20%. Thermogravimetric analysis (TGA) indicates that these membranes are thermally stable up to 250 deg. C in dry air, implying that they have a good potential to be used as the membranes for high-temperature PEM fuel cells

  11. Polymers and Random graphs: Asymptotic equivalence to branching processes

    International Nuclear Information System (INIS)

    Spouge, J.L.

    1985-01-01

    In 1974, Falk and Thomas did a computer simulation of Flory's Equireactive RA/sub f/ Polymer model, rings forbidden and rings allowed. Asymptotically, the Rings Forbidden model tended to Stockmayer's RA/sub f/ distribution (in which the sol distribution ''sticks'' after gelation), while the Rings Allowed model tended to the Flory version of the RA/sub f/ distribution. In 1965, Whittle introduced the Tree and Pseudomultigraph models. We show that these random graphs generalize the Falk and Thomas models by incorporating first-shell substitution effects. Moreover, asymptotically the Tree model displays postgelation ''sticking.'' Hence this phenomenon results from the absence of rings and occurs independently of equireactivity. We also show that the Pseudomultigraph model is asymptotically identical to the Branching Process model introduced by Gordon in 1962. This provides a possible basis for the Branching Process model in standard statistical mechanics

  12. Atomic cranks and levers control sugar ring conformations

    International Nuclear Information System (INIS)

    Zhang Qingmin; Lee, Gwangrog; Marszalek, Piotr E

    2005-01-01

    In this paper we review the conformational analysis of sugar rings placed under tension during mechanical manipulations of single polysaccharide molecules with the atomic force microscope and during steered molecular dynamics simulations. We examine the role of various chemical bonds and linkages between sugar rings in inhibiting or promoting their conformational transitions by means of external forces. Small differences in the orientation of one chemical bond on the sugar ring can produce significantly different mechanical properties at the polymer level as exemplified by two polysaccharides: cellulose, composed of β-1→4-linked D-glucose, and amylose, composed of α-1→4-linked D-glucose. In contrast to β-glucose rings, which are mechanically stable and produce simple entropic elasticity of the chain, α-glucose rings flip under tension from their chair to a boat-like structure and these transitions produce deviations of amylose elasticity from the freely jointed chain model. We also examine the deformation of two mechanically complementary 1→6-linked polysaccharides: pustulan, a β-1→6-linked glucan, and dextran, a α-1→6-linked glucan. Forced rotations about the C 5 -C 6 bonds govern the elasticity of pustulan, and complex conformational transitions that involve simultaneous C 5 -C 6 rotations and chair-boat transitions govern the elasticity of dextran. Finally, we discuss the likelihood of various conformational transitions in sugar rings in biological settings and speculate on their significance

  13. Topological effects on the mechanical properties of polymer knots

    Science.gov (United States)

    Zhao, Yani; Ferrari, Franco

    2017-11-01

    The mechanical properties of knotted polymer rings under stretching in a bad or good solvent are investigated by applying a force F to a point of the knot while keeping another point fixed. The Monte Carlo sampling of the polymer conformations is performed on a simple cubic lattice using the Wang-Landau algorithm. The specific energy, specific heat capacity, gyration radius and the force-elongation curves are computed for several knot topologies with lengths up to 120 lattice units. The common features of the mechanical and thermal behavior of stretched short polymer rings forming knots of a given topological type are analyzed as well as the differences arising due to topology and size effects. It is found that these systems admit three different phases depending on the values of the tensile force F and the temperature T. The transitions from one phase to the other are well characterized by the peaks of the specific heat capacity and by the data of the gyration radius and specific energy. At very low temperatures the force-elongation curves show that the stretching of a knot is a stepwise process, which becomes smooth at higher temperatures. Criteria for distinguishing topological and size effects are provided. It turns out from our study that the behavior of short polymer rings is strongly influenced by topological effects. In particular, the swelling and the swelling rate of knots are severely limited by the topological constraints. Several other properties that are affected by topology, like the decay of the specific energy at high tensile forces, are discussed. The fading out of the influences of topological origin with increasing knot lengths has been verified. Some anomalies detected in the plots of the specific heat capacity of very short and complex knots have been explained by the limitations in the number of accessible energy states due to the topological constraints.

  14. Sulfuric acid as a catalyst for ring-opening of biobased bis-epoxides

    Science.gov (United States)

    Vegetable oils can be relatively and easily transformed into bio-based epoxides. Because of this, the acid-catalyzed epoxide ring-opening has been explored for the preparation of bio-based lubricants and polymers. Detailed model studies are carried out only with mono-epoxide made from methyl oleate,...

  15. Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cells

    KAUST Repository

    Woo, Claire H.

    2010-11-10

    The design, synthesis, and characterization of the first examples of furan-containing low band-gap polymers, PDPP2FT and PDPP3F, with substantial power conversion efficiencies in organic solar cells are reported. Inserting furan moieties in the backbone of the conjugated polymers enables the use of relatively small solubilizing side chains because of the significant contribution of the furan rings to overall polymer solubility in common organic solvents. Bulk heterojunction solar cells fabricated from furan-containing polymers and PC71BM as the acceptor showed power conversion efficiencies reaching 5.0%. © 2010 American Chemical Society.

  16. Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cells

    KAUST Repository

    Woo, Claire H.; Beaujuge, Pierre M.; Holcombe, Thomas W.; Lee, Olivia P.; Fréchet, Jean M. J.

    2010-01-01

    The design, synthesis, and characterization of the first examples of furan-containing low band-gap polymers, PDPP2FT and PDPP3F, with substantial power conversion efficiencies in organic solar cells are reported. Inserting furan moieties in the backbone of the conjugated polymers enables the use of relatively small solubilizing side chains because of the significant contribution of the furan rings to overall polymer solubility in common organic solvents. Bulk heterojunction solar cells fabricated from furan-containing polymers and PC71BM as the acceptor showed power conversion efficiencies reaching 5.0%. © 2010 American Chemical Society.

  17. Solid-state polymerisation via [2+2] cycloaddition reaction involving coordination polymers.

    Science.gov (United States)

    Medishetty, Raghavender; Park, In-Hyeok; Lee, Shim Sung; Vittal, Jagadese J

    2016-03-14

    Highly crystalline metal ions containing organic polymers are potentially useful to manipulate the magnetic and optical properties to make advanced multifunctional materials. However, it is challenging to synthesise monocrystalline metal complexes of organic polymers and single-phase hybrid materials made up of both coordination and organic polymers by traditional solution crystallisation. This requires an entirely different approach in the solid-state by thermal or photo polymerisation of the ligands. Among the photochemical methods available, [2+2] cycloaddition reaction has been recently employed to generate cyclobutane based coordination polymers from the metal complexes. Cyclobutane polymers have also been integrated into coordination polymers in this way. Recent advancements in the construction of polymeric chains of cyclobutane rings through photo-dimerisation reaction in the monocrystalline solids containing metal complexes, coordination polymers and metal-organic framework structures are discussed here.

  18. PREFACE: Special section on vortex rings Special section on vortex rings

    Science.gov (United States)

    Fukumoto, Yasuhide

    2009-10-01

    This special section of Fluid Dynamics Research includes five articles on vortex rings in both classical and quantum fluids. The leading scientists of the field describe the trends in and the state-of-the-art development of experiments, theories and numerical simulations of vortex rings. The year 2008 was the 150th anniversary of 'vortex motion' since Hermann von Helmholtz opened up this field. In 1858, Helmholtz published a paper in Crelle's Journal which put forward the concept of 'vorticity' and made the first analysis of vortex motion. Fluid mechanics before that was limited to irrotational motion. In the absence of vorticity, the motion of an incompressible homogeneous fluid is virtually equivalent to a rigid-body motion in the sense that the fluid motion is determined once the boundary configuration is specified. Helmholtz proved, among other things, that, without viscosity, a vortex line is frozen into the fluid. This Helmholtz's law immediately implies the preservation of knots and links of vortex lines and its implication is enormous. One of the major trends of fluid mechanics since the latter half of the 20th century is to clarify the topological meaning of Helmholtz's law and to exploit it to develop theoretical and numerical methods to find the solutions of the Euler equations and to develop experimental techniques to gain an insight into fluid motion. Vortex rings are prominent coherent structures in a variety of fluid motions from the microscopic scale, through human and mesoscale to astrophysical scales, and have attracted people's interest. The late professor Philip G Saffman (1981) emphasized the significance of studies on vortex rings. One particular motion exemplifies the whole range of problems of vortex motion and is also a commonly known phenomenon, namely the vortex ring or smoke ring. Vortex rings are easily produced by dropping drops of one liquid into another, or by puffing fluid out of a hole, or by exhaling smoke if one has the skill

  19. Adiabatic compression of ion rings

    International Nuclear Information System (INIS)

    Larrabee, D.A.; Lovelace, R.V.

    1982-01-01

    A study has been made of the compression of collisionless ion rings in an increasing external magnetic field, B/sub e/ = zB/sub e/(t), by numerically implementing a previously developed kinetic theory of ring compression. The theory is general in that there is no limitation on the ring geometry or the compression ratio, lambdaequivalentB/sub e/ (final)/B/sub e/ (initial)> or =1. However, the motion of a single particle in an equilibrium is assumed to be completely characterized by its energy H and canonical angular momentum P/sub theta/ with the absence of a third constant of the motion. The present computational work assumes that plasma currents are negligible, as is appropriate for a low-temperature collisional plasma. For a variety of initial ring geometries and initial distribution functions (having a single value of P/sub theta/), it is found that the parameters for ''fat'', small aspect ratio rings follow general scaling laws over a large range of compression ratios, 1 3 : The ring radius varies as lambda/sup -1/2/; the average single particle energy as lambda/sup 0.72/; the root mean square energy spread as lambda/sup 1.1/; and the total current as lambda/sup 0.79/. The field reversal parameter is found to saturate at values typically between 2 and 3. For large compression ratios the current density is found to ''hollow out''. This hollowing tends to improve the interchange stability of an embedded low β plasma. The implications of these scaling laws for fusion reactor systems are discussed

  20. Structure and properties of nanocrystalline soft magnetic composite materials with silicon polymer matrix

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Nowosielski, R.; Konieczny, J.; PrzybyI, A.; WysIocki, J.

    2005-01-01

    The paper concerns investigation of nanocrystalline composites technology preparation. The composites in the form of rings with rectangular transverse section, and with polymer matrix and nanocrystalline metallic powders fulfillment were made, for obtaining good ferromagnetic properties. The nanocrystalline ferromagnetic powders were manufactured by high-energy ball milling of metallic glasses strips in an as-quenched state. Generally for investigation, Co matrix alloys with the silicon polymer were used. Magnetic properties in the form of hysteresis loop by rings method were measured. Generally composite cores showed lower soft ferromagnetic properties than winded cores of nanocrystalline strips, but composite cores showed interesting mechanical properties. Furthermore, the structure of strips and powders on properties of composites were investigated

  1. Development of Polymer Acceptors for Organic Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Yujeong Kim

    2014-02-01

    Full Text Available This review provides a current status report of the various n-type polymer acceptors for use as active materials in organic photovoltaic cells (OPVs. The polymer acceptors are divided into four categories. The first section of this review focuses on rylene diimide-based polymers, including perylene diimide, naphthalene diimide, and dithienocoronene diimide-based polymers. The high electron mobility and good stability of rylene diimides make them suitable for use as polymer acceptors in OPVs. The second section deals with fluorene and benzothiadiazole-based polymers such as poly(9,9’-dioctylfluorene-co-benzothiadiazole, and the ensuing section focuses on the cyano-substituted polymer acceptors. Cyano-poly(phenylenevinylene and poly(3-cyano-4-hexylthiophene have been used as acceptors in OPVs and exhibit high electron affinity arising from the electron-withdrawing cyano groups in the vinylene group of poly(phenylenevinylene or the thiophene ring of polythiophene. Lastly, a number of other electron-deficient groups such as thiazole, diketopyrrolopyrrole, and oxadiazole have also been introduced onto polymer backbones to induce n-type characteristics in the polymer. Since the first report on all-polymer solar cells in 1995, the best power conversion efficiency obtained with these devices to date has been 3.45%. The overall trend in the development of n-type polymer acceptors is presented in this review.

  2. Polyphosphazenes - New polymers with inorganic backbone atoms

    Science.gov (United States)

    Allcock, H. R.

    1976-01-01

    Unique and useful properties of the class of nonhydrocarbon, nonhalocarbon, nonsilicone polymers known as polyphosphazenes are discussed at length. These polymers, with molecular weights to 4 million (degree of polymerization 15,000), can be fabricated as tubes, fibers, woven fabrics, flexible films, or plates, and many variants are stable to attack by water, bases, aqueous acids, jet fuels, oils, hydraulic fluids, gasoline, or other hydrocarbons. Rubbery polymers with these properties can be fashioned into flexible hose, fuel hose, gaskets, or O-rings. Since they do not provoke clotting reactions in blood, and reveal no carcinogenic effects to date, they are considered for internal prosthetic applications (replacement bone, temporary skin, heart valves), as biodegradable suturing material, as carriers for slow release of drugs, and as carriers for chemotherapeutic agents against cancers.

  3. Method of manufacturing conductive heterocyclic polymers, new heterocyclic conductive polymers, new intermediate products for the preparation of the polymers, and synthesis of the intermediate products

    NARCIS (Netherlands)

    1989-01-01

    Polymers I (Ar1-2 = arom. groups; R = H, C1-10 alkyl; X = S, NH; n >=25) having high mol. wt. are prepd. by ring closure of (Ar1COZAr2COZCO)n [Z = CH(R)CH2]. Thus, adding 21.55 mmol terephthaldehyde DMF (20 mL) soln. to a 80 mL DMF soln. contg. a small amt. of NaCN and 21.5 mmol

  4. Statistical properties of multi-theta polymer chains

    Science.gov (United States)

    Uehara, Erica; Deguchi, Tetsuo

    2018-04-01

    We study statistical properties of polymer chains with complex structures whose chemical connectivities are expressed by graphs. The multi-theta curve of m subchains with two branch points connected by them is one of the simplest graphs among those graphs having closed paths, i.e. loops. We denoted it by θm , and for m  =  2 it is given by a ring. We derive analytically the pair distribution function and the scattering function for the θm -shaped polymer chains consisting of m Gaussian random walks of n steps. Surprisingly, it is shown rigorously that the mean-square radius of gyration for the Gaussian θm -shaped polymer chain does not depend on the number m of subchains if each subchain has the same fixed number of steps. For m  =  3 we show the Kratky plot for the theta-shaped polymer chain consisting of hard cylindrical segments by the Monte-Carlo method including reflection at trivalent vertices.

  5. Thermal degradation of biocidal organic N-halamines and N-halamine polymers

    Energy Technology Data Exchange (ETDEWEB)

    Chylińska, Marta; Kaczmarek, Halina, E-mail: halina@chem.umk.pl

    2014-05-01

    Highlights: • Novel biocidal N-halamines have been substituted to poly(p-methyl styrene). • Thermal stability of all obtained compounds has been studied by thermogravimetry. • Stabilization of selected polymer has been achieved using octyl tin mercaptide. • The mechanism of thermal degradation of N-halamine polymers has been proposed. - Abstract: Novel biocidal organic N-halamines (based on imidazoline dione rings) were used as a substituents for poly(p-methyl styrene). The biocidal polymers and substituents have been investigated using thermogravimetric analysis. The thermal resistance of investigated compounds was compared to those of non-halogenated precursors. The introduction of chlorine atoms to polymers decreases their thermal resistance comparing to precursors but efficient stabilization is possible by using octyl tin mercaptide. The complex mechanism of thermal decomposition of polymers has been discussed.

  6. Chemical stabilization of polymers: Implications for dermal exposure to additives.

    Science.gov (United States)

    Bartsch, N; Girard, M; Schneider, L; Weijgert, V Van De; Wilde, A; Kappenstein, O; Vieth, B; Hutzler, C; Luch, A

    2018-04-16

    Technical benefits of additives in polymers stand in marked contrast to their associated health risks. Here, a multi-analyte method based on gas chromatography coupled to tandem mass spectrometry (GC-MS/MS) was developed to quantify polymer additives in complex matrices such as low-density polyethylene (LDPE) and isolated human skin layers after dermal exposure ex vivo. That way both technical aspects and dermal exposure were investigated. The effects of polymer additivation on the material were studied using the example of LDPE. To this end, a tailor-made polymer was applied in aging studies that had been furnished with two different mixtures of phenol- and diarylamine-based antioxidants, plasticizers and processing aids. Upon accelerated thermo-oxidative aging of the material, the formation of LDPE degradation products was monitored with attenuated total reflectance-Fourier transformed infrared (ATR-FTIR) spectroscopy. Compared to pure LDPE, a protective effect of added antioxidants could be observed on the integrity of the polymer. Further, thermo-oxidative degradation of the additives and its kinetics were investigated using LDPE or squalane as matrix. The half-lives of additives in both matrices revealed significant differences between the tested additives as well as between LDPE and squalane. For instance, 2-tert-butyl-6-[(3-tert-butyl-2-hydroxy-5-methylphenyl)methyl]-4-methylphenol (Antioxidant 2246) showed a half-life 12 times lower when incorporated in LDPE as compared to squalane. As a model for dermal exposure of consumers, human skin was brought into contact with the tailor-made LDPE containing additives ex vivo in static Franz diffusion cells. The skin was then analyzed for additives and decomposition products. This study proved 10 polymer additives of diverse pysicochemical properties and functionalities to migrate out of the polymer and eventually overcome the intact human skin barrier during contact. Moreover, their individual distribution within

  7. Evaporation-induced self-assembly of quantum dots-based concentric rings on polymer-based nanocomposite films.

    Science.gov (United States)

    Zhang, Shaofu; Luan, Weiling; Zhong, Qixin; Yin, Shaofeng; Yang, Fuqian

    2016-10-12

    The "ball-on-film" template is used to construct concentric rings on the surface of PMMA-QDs (polymethyl methacrylate - quantum dots) nanocomposite films via the evaporation of pure chloroform droplets, which are confined by a steel ball. The concentric rings consist of QDs, as revealed by the fluorescence images of the concentric rings. The photoluminescence intensity of the concentric rings increases with the increase of the distance to the ball center, suggesting that the amount of QDs accumulated around the contact line at individual stick state increases with the increase of the distance to the ball center. Both the wavelength and cross-sectional area (width) of the concentric rings increase approximately linearly with increasing distance to the ball center, independent of the ball size, the film thickness and the QDs concentration. For the PMMA-QDs nanocomposite films prepared from the same QDs concentration in chloroform, the thicker the PMMA-QDs nanocomposite film, the larger the wavelength for the same distance to the ball center. The effect of confinement of two steel balls on the surface patterns over the PMMA-QDs nanocomposite films is studied via a template of "two spheres on film". Symmetric surface patterns are formed. There exist two types of featureless zone between the two balls, depending on the distance between the two balls: one is the inner featureless zone and the other is the outer featureless zone. The size of both featureless zones increases with the increase of the ball distance.

  8. Containing Ebola at the Source with Ring Vaccination.

    Directory of Open Access Journals (Sweden)

    Stefano Merler

    2016-11-01

    Full Text Available Interim results from the Guinea Ebola ring vaccination trial suggest high efficacy of the rVSV-ZEBOV vaccine. These findings open the door to the use of ring vaccination strategies in which the contacts and contacts of contacts of each index case are promptly vaccinated to contain future Ebola virus disease outbreaks. To provide a numerical estimate of the effectiveness of ring vaccination strategies we introduce a spatially explicit agent-based model to simulate Ebola outbreaks in the Pujehun district, Sierra Leone, structurally similar to previous modelling approaches. We find that ring vaccination can successfully contain an outbreak for values of the effective reproduction number up to 1.6. Through an extensive sensitivity analysis of parameters characterising the readiness and capacity of the health care system, we identify interventions that, alongside ring vaccination, could increase the likelihood of containment. In particular, shortening the time from symptoms onset to hospitalisation to 2-3 days on average through improved contact tracing procedures, adding a 2km spatial component to the vaccination ring, and decreasing human mobility by quarantining affected areas might contribute increase our ability to contain outbreaks with effective reproduction number up to 2.6. These results have implications for future control of Ebola and other emerging infectious disease threats.

  9. A new strategy for aromatic ring alkylation in cylindrocyclophane biosynthesis.

    Science.gov (United States)

    Nakamura, Hitomi; Schultz, Erica E; Balskus, Emily P

    2017-08-01

    Alkylation of aromatic rings with alkyl halides is an important transformation in organic synthesis, yet an enzymatic equivalent is unknown. Here, we report that cylindrocyclophane biosynthesis in Cylindrospermum licheniforme ATCC 29412 involves chlorination of an unactivated carbon center by a novel halogenase, followed by a previously uncharacterized enzymatic dimerization reaction featuring sequential, stereospecific alkylations of resorcinol aromatic rings. Discovery of the enzymatic machinery underlying this unique biosynthetic carbon-carbon bond formation has implications for biocatalysis and metabolic engineering.

  10. A ring polymer molecular dynamics study of the isotopologues of the H + H2 reaction.

    Science.gov (United States)

    Suleimanov, Yury V; de Tudela, Ricardo Pérez; Jambrina, Pablo G; Castillo, Jesús F; Sáez-Rábanos, Vicente; Manolopoulos, David E; Aoiz, F Javier

    2013-03-14

    The inclusion of Quantum Mechanical (QM) effects such as zero point energy (ZPE) and tunneling in simulations of chemical reactions, especially in the case of light atom transfer, is an important problem in computational chemistry. In this respect, the hydrogen exchange reaction and its isotopic variants constitute an excellent benchmark for the assessment of approximate QM methods. In particular, the recently developed ring polymer molecular dynamics (RPMD) technique has been demonstrated to give very good results for bimolecular chemical reactions in the gas phase. In this work, we have performed a detailed RPMD study of the H + H(2) reaction and its isotopologues Mu + H(2), D + H(2) and Heμ + H(2), at temperatures ranging from 200 to 1000 K. Thermal rate coefficients and kinetic isotope effects have been computed and compared with exact QM calculations as well as with quasiclassical trajectories and experiment. The agreement with the QM results is good for the heaviest isotopologues, with errors ranging from 15% to 45%, and excellent for Mu + H(2), with errors below 15%. We have seen that RPMD is able to capture the ZPE effect very accurately, a desirable feature of any method based on molecular dynamics. We have also verified Richardson and Althorpe's prediction [J. O. Richardson and S. C. Althorpe, J. Chem. Phys., 2009, 131, 214106] that RPMD will overestimate thermal rates for asymmetric reactions and underestimate them for symmetric reactions in the deep tunneling regime. The ZPE effect along the reaction coordinate must be taken into account when assigning the reaction symmetry in the multidimensional case.

  11. Tellurium rings as electron pair donors in cluster compounds and coordination polymers; Tellurringe als Elektronenpaardonoren in Clusterverbindungen und Koordinationspolymeren

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Anja

    2011-11-08

    In this dissertation novel and already known molecular tellurium rings are presented in cluster compounds and quasi-one-dimensional coordination polymers. The cyclic, homonuclear units are always stabilized by coordination to electron-rich transition metal atoms, with the coordinating tellurium atoms acting as two-electron donors. As a synthesis route, the solid-state reaction in quartz glass vials was used uniformly. In addition to structural determination, the focus was on the characterization of the resulting compounds. For this purpose, resistance measurements were carried out on selected compounds, the magnetic behavior and the thermal degradation reactions were investigated and accompanying quantum chemical calculations were carried out. [German] In dieser Dissertation werden neuartige sowie bereits bekannte molekulare Tellurringe in Clusterverbindungen und quasi-eindimensionalen Koordinationspolymeren vorgestellt. Die Stabilisierung der zyklischen, homonuklearen Einheiten erfolgt dabei stets durch die Koordination an elektronenreiche Uebergangsmetallatome, wobei die koordinierenden Telluratome gegenueber diesen als Zwei-Elektronendonoren fungieren. Als Syntheseroute wurde dabei einheitlich auf die Festkoerperreaktion in Quarzglasampullen zurueckgegriffen. Neben der Strukturaufklaerung stand die Charakterisierung der erhaltenden Verbindungen im Fokus der Arbeit. Dazu wurden an ausgewaehlten Verbindungen Widerstandsmessungen durchgefuehrt, das magnetische Verhalten sowie die thermischen Abbaureaktionen untersucht und begleitende quantenchemische Rechnungen durchgefuehrt.

  12. Polymer density functional approach to efficient evaluation of path integrals

    DEFF Research Database (Denmark)

    Brukhno, Andrey; Vorontsov-Velyaminov, Pavel N.; Bohr, Henrik

    2005-01-01

    A polymer density functional theory (P-DFT) has been extended to the case of quantum statistics within the framework of Feynman path integrals. We start with the exact P-DFT formalism for an ideal open chain and adapt its efficient numerical solution to the case of a ring. We show that, similarly......, the path integral problem can, in principle, be solved exactly by making use of the two-particle pair correlation function (2p-PCF) for the ends of an open polymer, half of the original. This way the exact data for one-dimensional quantum harmonic oscillator are reproduced in a wide range of temperatures....... The exact solution is not, though, reachable in three dimensions (3D) because of a vast amount of storage required for 2p-PCF. In order to treat closed paths in 3D, we introduce a so-called "open ring" approximation which proves to be rather accurate in the limit of long chains. We also employ a simple self...

  13. Energetic ion injection and formation of the storm-time symmetric ring current

    Directory of Open Access Journals (Sweden)

    L. Xie

    2006-12-01

    Full Text Available An extensive study of ring current injection and intensification of the storm-time ring current is conducted with three-dimensional (3-D test particle trajectory calculations (TPTCs. The TPTCs reveal more accurately the process of ring current injection, with the main results being the following: (1 an intense convection electric field can effectively energize and inject plasma sheet particles into the ring current region within 1–3 h. (2 Injected ions often follow chaotic trajectories in non-adiabatic regions, which may have implications in storm and ring current physics. (3 The shielding electric field, which arises as a consequence of enhanced convection and co-exists with the injection and convection electric field, may cause the original open trajectories of injected ions with higher energy to change into closed ones, thus playing a role in the formation of the symmetric ring current.

  14. Polymer-Block-Polypeptides and Polymer-Conjugated Hybrid Materials as Stimuli-Responsive Nanocarriers for Biomedical Applications.

    Science.gov (United States)

    John, Johnson V; Johnson, Renjith P; Heo, Min Seon; Moon, Byeong Kyu; Byeon, Seong Jin; Kim, Il

    2015-01-01

    Stimuli-responsive nanocarriers are a class of soft materials that includes natural polymers, synthetic polymers, and polypeptides. Recently, modern synthesis tools such as atom transfer radical polymerization, reversible addition-fragmentation chain transfer polymerization, nitroxide-mediated radical polymerization, ring-opening polymerization of α-amino acid N-carboxyanhydrides, and various "click" chemistry strategies were simultaneously employed for the design and synthesis of nanosized drug delivery vehicles. Importantly, the research focused on the improvement of the nanocarrier targetability and the site-specific, triggered release of therapeutics with high drug loading efficiency and minimal drug leakage during the delivery to specific targets. In this context, nanocarriers responsive to common stimuli such as pH, temperature, redox potential, light, etc. have been widely used for the controlled delivery of therapeutics to pathological sites. Currently, different synthesis and self-assembly strategies improved the drug loading efficacy and targeted delivery of therapeutic agents to the desired site. In particular, polypeptide-containing hybrid materials have been developed for the controlled delivery of therapeutic agents. Therefore, stimuli-sensitive synthetic polypeptide-based materials have been extensively investigated in recent years. This review focuses on recent advances in the development of polymer-block-polypeptides and polymer-conjugated hybrid materials that have been designed and evaluated for various stimuli-responsive drug and gene delivery applications.

  15. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly

    Science.gov (United States)

    Caillat, Christophe; Macheboeuf, Pauline; Wu, Yuanfei; McCarthy, Andrew A.; Boeri-Erba, Elisabetta; Effantin, Gregory; Göttlinger, Heinrich G.; Weissenhorn, Winfried; Renesto, Patricia

    2015-12-01

    The vacuolar protein sorting 4 AAA-ATPase (Vps4) recycles endosomal sorting complexes required for transport (ESCRT-III) polymers from cellular membranes. Here we present a 3.6-Å X-ray structure of ring-shaped Vps4 from Metallosphera sedula (MsVps4), seen as an asymmetric pseudohexamer. Conserved key interface residues are shown to be important for MsVps4 assembly, ATPase activity in vitro, ESCRT-III disassembly in vitro and HIV-1 budding. ADP binding leads to conformational changes within the protomer, which might propagate within the ring structure. All ATP-binding sites are accessible and the pseudohexamer binds six ATP with micromolar affinity in vitro. In contrast, ADP occupies one high-affinity and five low-affinity binding sites in vitro, consistent with conformational asymmetry induced on ATP hydrolysis. The structure represents a snapshot of an assembled Vps4 conformation and provides insight into the molecular motions the ring structure undergoes in a concerted action to couple ATP hydrolysis to ESCRT-III substrate disassembly.

  16. Dynamics of rings around elongated bodies

    Science.gov (United States)

    Sicardy, Bruno; Leiva, Rodrigo; Ortiz, Jose Luis; Santos Sanz, Pablo; Renner, Stefan; El Moutamid, Maryame; Berard, Diane; Desmars, Josselin; Meza, Erick; Rossi, Gustavo; Braga-Ribas, Felipe; Camargo, Julio; Vieira-Martins, Roberto; Morales, Nicolas; Duffard, Rene; Colas, Francois; Maquet, Lucie; Bouley, Sylvain; Bath, Karl-Ludwig; Beisker, Wolfgang; Dauverge, Jean-Luc; Kretlow, Mike; Chariklo Occultations Team; Haumea Occultation Team

    2017-10-01

    Dense and narrow rings are encountered around small bodies like the Centaur object Chariklo, and possibly Chiron. The rings and central bodies can be studied in great details thanks to stellar occultations, which accuracies at the km-level. Here we present new results from three high-quality occultations by Chariklo observed in 2017. They provide new insights on the ring geometry and Chariklo's shape. Data are currently being analyzed, but preliminary results are consistent with a triaxial model for Chariklo, with semi-axes a>b>c, where (a-b) may reach values as large as 10-15 km, depending on the model.Such large values induce a strong coupling between the body and an initial collisional debris disk from which the rings emerged. This coupling stems from Lindblad resonances between the ring particle mean motion and Chariklo's spin rate. We find that the resonances clear the corotation zone (estimated to lie at about 215 km from Chariklo's center) in very short time scales (centuries) and pushes the material well beyond the 3/2 resonance - that lies at an estimated radius of 280 km, thus consistent with the radius of Chariklo's main ring C1R, 390 km.Other cases will be examined in view of multi-chord stellar occultations by Trans-Neptunian Objects successfully observed in 2017, as they provide constraints for the presence of material around these bodies. Results and dynamical implications will be presented.Part of this work has received funding from the European Research Council under the European Community's H2020 2014-2020 ERC grant Agreement n°669416 "Lucky Star"

  17. Synthesis and Ring-Opening Metathesis Polymerization of Second-Generation Dendronized Poly(ether Monomers Initiated by Ruthenium Carbenes

    Directory of Open Access Journals (Sweden)

    Guzmán Pablo E.

    2016-03-01

    Full Text Available The Ring-Opening Metathesis Polymerization (ROMP of second-generation dendronized monomers is described. Using the highly active and fast-initiating third-generation ruthenium complex [(H2IMes(pyr2Cl2RuCHPh], moderate to high molecular weight polymers (430-2230 kDa are efficiently synthesized with low dispersities (Ð = 1.01-1.17. This study highlights the power of the metathesis approach toward polymer synthesis in a context where monomer structure can significantly impede polymerization.

  18. Development of high-speed reactive processing system for carbon fiber-reinforced polyamide-6 composite: In-situ anionic ring-opening polymerization

    International Nuclear Information System (INIS)

    Kim, Sang-Woo; Seong, Dong Gi; Yi, Jin-Woo; Um, Moon-Kwang

    2016-01-01

    In order to manufacture carbon fiber-reinforced polyamide-6 (PA-6) composite, we optimized the reactive processing system. The in-situ anionic ring-opening polymerization of ε-caprolactam was utilized with proper catalyst and initiator for PA-6 matrix. The mechanical properties such as tensile strength, inter-laminar shear strength and compressive strength of the produced carbon fiber-reinforced PA-6 composite were measured, which were compared with the corresponding scanning electron microscope (SEM) images to investigate the polymer properties as well as the interfacial interaction between fiber and polymer matrix. Furthermore, kinetics of in-situ anionic ring-opening polymerization of ε-caprolactam will be discussed in the viewpoint of increasing manufacturing speed and interfacial bonding between PA-6 matrix and carbon fiber during polymerization.

  19. Development of high-speed reactive processing system for carbon fiber-reinforced polyamide-6 composite: In-situ anionic ring-opening polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-Woo; Seong, Dong Gi; Yi, Jin-Woo; Um, Moon-Kwang [Composites Research Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 642–831 (Korea, Republic of)

    2016-05-18

    In order to manufacture carbon fiber-reinforced polyamide-6 (PA-6) composite, we optimized the reactive processing system. The in-situ anionic ring-opening polymerization of ε-caprolactam was utilized with proper catalyst and initiator for PA-6 matrix. The mechanical properties such as tensile strength, inter-laminar shear strength and compressive strength of the produced carbon fiber-reinforced PA-6 composite were measured, which were compared with the corresponding scanning electron microscope (SEM) images to investigate the polymer properties as well as the interfacial interaction between fiber and polymer matrix. Furthermore, kinetics of in-situ anionic ring-opening polymerization of ε-caprolactam will be discussed in the viewpoint of increasing manufacturing speed and interfacial bonding between PA-6 matrix and carbon fiber during polymerization.

  20. Ring Theory

    CERN Document Server

    Jara, Pascual; Torrecillas, Blas

    1988-01-01

    The papers in this proceedings volume are selected research papers in different areas of ring theory, including graded rings, differential operator rings, K-theory of noetherian rings, torsion theory, regular rings, cohomology of algebras, local cohomology of noncommutative rings. The book will be important for mathematicians active in research in ring theory.

  1. Coffee-ring effects in laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Hu, Jie-Bi; Chen, Yu-Chie; Urban, Pawel L

    2013-03-05

    This report focuses on the heterogeneous distribution of small molecules (e.g. metabolites) within dry deposits of suspensions and solutions of inorganic and organic compounds with implications for chemical analysis of small molecules by laser desorption/ionization (LDI) mass spectrometry (MS). Taking advantage of the imaging capabilities of a modern mass spectrometer, we have investigated the occurrence of "coffee rings" in matrix-assisted laser desorption/ionization (MALDI) and surface-assisted laser desorption/ionization (SALDI) sample spots. It is seen that the "coffee-ring effect" in MALDI/SALDI samples can be both beneficial and disadvantageous. For example, formation of the coffee rings gives rise to heterogeneous distribution of analytes and matrices, thus compromising analytical performance and reproducibility of the mass spectrometric analysis. On the other hand, the coffee-ring effect can also be advantageous because it enables partial separation of analytes from some of the interfering molecules present in the sample. We report a "hidden coffee-ring effect" where under certain conditions the sample/matrix deposit appears relatively homogeneous when inspected by optical microscopy. Even in such cases, hidden coffee rings can still be found by implementing the MALDI-MS imaging technique. We have also found that to some extent, the coffee-ring effect can be suppressed during SALDI sample preparation. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Phytosterol Recognition via Rationally Designed Molecularly Imprinted Polymers

    Directory of Open Access Journals (Sweden)

    Lachlan J. Schwarz

    2018-02-01

    Full Text Available Molecularly imprinted polymers (MIPs prepared via a semi-covalent imprinting strategy using stigmasteryl methacrylate as a polymerisable template have been evaluated by static binding methods for their ability to selectively capture other valuable phytosterol targets, including campesterol and brassicasterol. Design criteria based on molecular modelling procedures and interaction energy calculations were employed to aid the selection of the co-monomer type, as well as the choice of co-monomer:template ratios for the formation of the pre-polymerisation complex. These novel hybrid semi-covalently imprinted polymers employed N,N′-dimethylacryl-amide (N,N′-DMAAM as the functional co-monomer and displayed specific binding capacities in the range 5.2–5.9 mg sterol/g MIP resin. Their binding attributes and selectivities towards phytosterol compounds were significantly different to the corresponding MIPs prepared via non-covalent procedures or when compared to non-imprinted polymers. Cross-reactivity studies using stigmasterol, ergosterol, cholesterol, campesterol, and brassicasterol as single analytes revealed the importance of the A-ring C-3-β-hydroxyl group and the orientational preferences of the D-ring alkyl chain structures in their interaction in the templated cavity with the N,N′-dimethylamide functional groups of the MIP. Finally, to obtain useful quantities of both campersterol and brassicasterol for these investigations, improved synthetic routes have been developed to permit the conversion of the more abundant, lower cost stigmasterol via a reactive aldehyde intermediate to these other sterols.

  3. Report of the eRHIC Ring-Ring Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer, E. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brennan, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palmer, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Parker, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Peggs, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Willeke, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-10-13

    This report evaluates the ring-ring option for eRHIC as a lower risk alternative to the linac-ring option. The reduced risk goes along with a reduced initial luminosity performance. However, a luminosity upgrade path is kept open. This upgrade path consists of two branches, with the ultimate upgrade being either a ring-ring or a linac-ring scheme. The linac-ring upgrade could be almost identical to the proposed linac-ring scheme, which is based on an ERL in the RHIC tunnel. This linac-ring version has been studied in great detail over the past ten years, and its significant risks are known. On the other hand, no detailed work on an ultimate performance ring-ring scenario has been performed yet, other than the development of a consistent parameter set. Pursuing the ring-ring upgrade path introduces high risks and requires significant design work that is beyond the scope of this report.

  4. Wafer-Level Packaging Method for RF MEMS Applications Using Pre-Patterned BCB Polymer

    OpenAIRE

    Zhuhao Gong; Yulong Zhang; Xin Guo; Zewen Liu

    2018-01-01

    A radio-frequency micro-electro-mechanical system (RF MEMS) wafer-level packaging (WLP) method using pre-patterned benzo-cyclo-butene (BCB) polymers with a high-resistivity silicon cap is proposed to achieve high bonding quality and excellent RF performance. In this process, the BCB polymer was pre-defined to form the sealing ring and bonding layer by the spin-coating and patterning of photosensitive BCB before the cavity formation. During anisotropic wet etching of the silicon wafer to gener...

  5. New rapid-curing, stable polyimide polymers with high-temperature strength and thermal stability

    Science.gov (United States)

    Burns, E. A.; Jones, J. F.; Kendrick, W. R.; Lubowitz, H. R.; Thorpe, R. S.; Wilson, E. R.

    1969-01-01

    Additive-type polymerization reaction forms thermally stable polyimide polymers, thereby eliminating the volatile matter attendant with the condensation reaction. It is based on the utilization of reactive alicyclic rings positioned on the ends of polyimide prepolymers having relatively low molecular weights.

  6. Strength of Drug–Polymer Interactions: Implications for Crystallization in Dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Mistry, Pinal; Suryanarayanan, Raj

    2016-09-07

    We investigated the influence of the strength of drug–polymer interactions on the crystallization behavior of a model drug in amorphous solid dispersions (ASDs). Ketoconazole ASDs were prepared with each poly(acrylic acid), poly(2-hydroxyethyl methacrylate), and polyvinylpyrrolidone. Over a wide temperature range in the supercooled region, the α-relaxation time was obtained, which provided a measure of molecular mobility. Isothermal crystallization studies were performed in the same temperature interval using either a synchrotron (for low levels of crystallinity) or a laboratory X-ray (for crystallization kinetics) source. The stronger the drug–polymer interaction, the longer was the delay in crystallization onset time, indicating an increase in physical stability. Stronger drug–polymer interactions also translated to a decrease in the magnitude of the crystallization rate constant. In amorphous ketoconazole as well as in the dispersions, the coupling coefficient, a measure of the extent of coupling between relaxation and crystallization times was ~0.5. This value was unaffected by the strength of drug–polymer interactions. On the basis of these results, the crystallization times in ASDs were predicted at temperatures very close to Tg, using the coupling coefficient experimentally determined for amorphous ketoconazole. The predicted and experimental crystallization times were in good agreement, indicating the usefulness of the model.

  7. Fusion of heterocyclic polymerogenic units onto a central ring: a fruitful approach to the investigation and specific tailoring of the dependence of electrical properties on monomer structure in conductive polyheterocycles

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, A.; Brenna, E.; Pagani, G.A.; Sannicolo, F. (Dipt. di Chimica Organica e Industriale, Univ. di Milano (Italy) Centro CNR Speciali Sistemi Organici, Milan (Italy)); Zotti, G.; Schiavon, G. (CNR, Ist. di Polarografia ed Elettrochimica Preparativa, Padua (Italy))

    1992-09-01

    In this review the ''spacer'' strategy is described and evaluated in detail. According to this principle, the monomer contains, as terminal units, two polymerogenic rings (pyrrole or thiophene) linked to a central [pi]-conjugatively-active frame; as spacers, we have investigated ethenylic, sulphide, and aromatic moieties. In this way the redox potentials, E[sup 0], of the polymers derived from such monomers can be calibrated by the substituent effect exerted by the spacer. This control is beneficial because it is possible to increase the E[sup 0] value of polypyrrole-type systems and decrease the E[sup 0] value of polythiophene-type systems. Also, the ''spacer'' may be further functionalised and, being remote from the polymerisation site, cannot alter the conductivity characteristics typical of the polymer derived from the parent heterocycle (pyrrole or thiophene): such a functionalisation may provide the final, tailored, conductive polymer with special properties (e.g., solubility). If the central ring, acting as a ''spacer'', is formed linking two positions of a di-heterocycle with a saturated chain, it is possible partially to control the twist angle between the heterocyclic units. Crystal and molecular structures have shown that dipyrrole units, further linked through the nitrogen atoms, are quite sensitive to the central ring size. With regard to the conductivity of unsubstituted polypyrrole, the conductivity of the polymers derived from such monomers is dependent upon the twist angle between the rings. This result is relevant to a description of conjugation conditions between the heterocyclic units of a monomer required to produce a conductive polymer on doping. (orig.).

  8. Mechanical Properties of a Library of Low-Band-Gap Polymers

    DEFF Research Database (Denmark)

    Roth, Bérenger; Savagatrup, Suchol; de los Santos, Nathaniel V.

    2016-01-01

    The mechanical properties of low-band-gap polymers are important for the long-term survivability of roll to-roll processed organic electronic devices. Such devices, e.g., solar cells, displays, and thin-film transistors, must survive the rigors of roll-to-roll coating and also thermal...... of low-band-gap polymers to better understand the connection between molecular structures and mechanical properties in order to design conjugated polymers that permit mechanical robustness and even extreme deformability. While one of the principal conclusions of these experiments is that the structure...... of an isolated molecule only partially determines the mechanical properties another important codeterminant is the packing structure some general trends can be identified. (1) Fused rings tend to increase the modulus and decrease the ductility. (2) Branched side chains have the opposite effect. Despite...

  9. Long-term evaluation of fluoroelastomer O-rings in UF6

    International Nuclear Information System (INIS)

    Russell, R.G.; Otey, M.G.; Dippo, G.L.

    1986-01-01

    A major component in the gaseous centrifuge enrichment plant (GCEP) was fluoroelastomer O-rings, which were used to seal the uranium hexafluoride (UF 6 ) gas system. A program utilizing accelerated test conditions was used to help identify the best material out of four selected candidates and to predict the service life of these materials at GCEP conditions. The tests included accelerated temperatures, mechanical stress, and UF 6 exposure. Data were evaluated using the Newman--Keuls 1 ranking system to identify the best material and a zero-order reaction rate equation to help predict service life. This presentation includes a description of the test facility, the materials tested, the types of tests, objectives of the study, service life predictions, and conclusions. The O-rings are predicted to last approx. 30 years, and a high-molecular-weight polymer had the best performance ranking

  10. A Selenophene-Based Low-Bandgap Donor-Acceptor Polymer Leading to Fast Ambipolar Logic

    KAUST Repository

    Kronemeijer, Auke J.

    2012-02-20

    Fast ambipolar CMOS-like logic is demonstrated using a new selenophene-based donor-acceptor polymer semiconductor. The polymer exhibits saturation hole and electron mobilities of 0.46 cm 2/Vs and 0.84 cm 2/Vs. Inverters are fabricated with high gains while three-stage ring oscillators show stable oscillation with an unprecedented maximum frequency of 182 kHz at a relatively low supply voltage of 50 V. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A Selenophene-Based Low-Bandgap Donor-Acceptor Polymer Leading to Fast Ambipolar Logic

    KAUST Repository

    Kronemeijer, Auke J.; Gili, Enrico; Shahid, Munazza; Rivnay, Jonathan; Salleo, Alberto; Heeney, Martin; Sirringhaus, Henning

    2012-01-01

    Fast ambipolar CMOS-like logic is demonstrated using a new selenophene-based donor-acceptor polymer semiconductor. The polymer exhibits saturation hole and electron mobilities of 0.46 cm 2/Vs and 0.84 cm 2/Vs. Inverters are fabricated with high gains while three-stage ring oscillators show stable oscillation with an unprecedented maximum frequency of 182 kHz at a relatively low supply voltage of 50 V. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. ASSOCIATIVE RINGS SOLVED AS LIE RINGS

    Directory of Open Access Journals (Sweden)

    M. B. Smirnov

    2011-01-01

    Full Text Available The paper has proved that an associative ring which is solvable of a n- class as a Lie ring has a nilpotent ideal of the nilpotent class not more than 3×10n–2  and a corresponding quotient ring satisfies an identity [[x1, x2, [x3, x4

  13. Degradation of amine-based water treatment polymers during chloramination as N-nitrosodimethylamine (NDMA) precursors.

    Science.gov (United States)

    Park, Sang-Hyuck; Wei, Shuting; Mizaikoff, Boris; Taylor, Amelia E; Favero, Cedrick; Huang, Ching-Hua

    2009-03-01

    Recent studies indicated that water treatment polymers such as poly(epichlorohydrin dimethylamine) (polyamine) and poly(diallyldimethylammonium chloride) (polyDADMAC) may form N-nitrosodimethylamine (NDMA) when in contact with chloramine water disinfectants. To minimize such potential risk and improve the polymer products, the mechanisms of how the polymers behave as NDMA precursors need to be elucidated. Direct chloramination of polymers and intermediate monomers in reagent water was conducted to probe the predominant mechanisms. The impact of polymer properties including polymer purity, polymer molecular weight and structure, residual dimethylamine (DMA), and other intermediate compounds involved in polymer synthesis, and reaction conditions such as pH, oxidant dose, and contact time on the NDMA formation potential (NDMA-FP) was investigated. Polymer degradation after reaction with chloramines was monitored at the molecular level using FT-IR and Raman spectroscopy. Overall, polyamines have greater NDMA-FP than polyDADMAC, and the NDMA formation from both polymers is strongly related to polymer degradation and DMA release during chloramination. Polyamines' tertiary amine chain ends play a major role in their NDMA-FP, while polyDADMACs' NDMA-FP is related to degradation of the quaternary ammonium ring group.

  14. Blending of styrene-block-butadiene-block-styrene copolymer with sulfonated vinyl aromatic polymers

    NARCIS (Netherlands)

    Ruggeri, Giacomo; Passaglia, Elisa; Giorgi, Ivan; Picchioni, Francesco; Aglietto, Mauro

    2001-01-01

    Different polymers containing sulfonic groups attached to the phenyl rings were prepared by sulfonation of polystyrene (PS) and styrene-block-(ethylene-co-1-butene)-block-styrene (SEBS). The sulfonation degree (SD) was varied between 1 and 20 mol% of the styrene units. Polyphase materials containing

  15. Mapping Ring Particle Cooling across Saturn's Rings with Cassini CIRS

    Science.gov (United States)

    Brooks, Shawn M.; Spilker, L. J.; Edgington, S. G.; Pilorz, S. H.; Deau, E.

    2010-10-01

    Previous studies have shown that the rings' thermal inertia, a measure of their response to changes in the thermal environment, varies from ring to ring. Thermal inertia can provide insight into the physical structure of Saturn's ring particles and their regoliths. Low thermal inertia and quick temperature responses are suggestive of ring particles that have more porous or fluffy regoliths or that are riddled with cracks. Solid, coherent particles can be expected to have higher thermal inertias (Ferrari et al. 2005). Cassini's Composite Infrared Spectrometer has recorded millions of spectra of Saturn's rings since its arrival at Saturn in 2004 (personal communication, M. Segura). CIRS records far infrared radiation between 10 and 600 cm-1 (16.7 and 1000 µm) at focal plane 1 (FP1), which has a field of view of 3.9 mrad. Thermal emission from Saturn's rings peaks in this wavelength range. FP1 spectra can be used to infer ring temperatures. By tracking how ring temperatures vary, we can determine the thermal inertia of the rings. In this work we focus on CIRS observations of the shadowed portion of Saturn's rings. The thermal budget of the rings is dominated by the solar radiation absorbed by its constituent particles. When ring particles enter Saturn's shadow this source of energy is abruptly cut off. As a result, ring particles cool as they traverse Saturn's shadow. From these shadow observations we can create cooling curves at specific locations across the rings. We will show that the rings' cooling curves and thus their thermal inertia vary not only from ring to ring, but by location within the individual rings. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

  16. Production of atmospheric pressure microwave plasma with dielectric half-mirror resonator and its application to polymer surface treatment

    Science.gov (United States)

    Sasai, Kensuke; Keyamura, Kazuki; Suzuki, Haruka; Toyoda, Hirotaka

    2018-06-01

    For the surface treatment of a polymer tube, a ring-shaped atmospheric pressure microwave plasma (APMP) using a coaxial waveguide is studied. In this APMP, a dielectric plate is used not only as a partial mirror for cavity resonation but also for the precise alignment of the discharge gap for ring-shaped plasma production. The optimum position of the dielectric plate is investigated by electromagnetic wave simulation. On the basis of simulation results, a ring-shaped plasma with good uniformity along the ring is produced. The coaxial APMP is applied to the surface treatment of ethylene tetrafluoroethylene. A very fast surface modification within 3 s is observed.

  17. Atomistic simulations of bulk, surface and interfacial polymer properties

    Science.gov (United States)

    Natarajan, Upendra

    In chapter I, quasi-static molecular mechanics based simulations are used to estimate the activation energy of phenoxy rings flips in the amorphous region of a semicrystalline polyimide. Intra and intermolecular contributions to the flip activation energy, the torsional cooperativity accompanying the flip, and the effect of the flip on the motion in the glassy bulk state, are looked at. Also, comparison of the weighted mean activation energy is made with experimental data from solid state NMR measurements; the simulated value being 17.5 kcal/mol., while the experimental value was observed to be 10.5 kcal/mol. Chapter II deals with construction of random copolymer thin films of styrene-butadiene (SB) and styrene-butadiene-acrylonitrile (SBA). The structure and properties of the free surfaces presented by these thin films are analysed by, the atom mass density profiles, backbone bond orientation function, and the spatial distribution of acrylonitrile groups and styrene rings. The surface energies of SB and SBA are calculated using an atomistic equation and are compared with experimental data in the literature. In chapter III, simulations of polymer-polymer interfaces between like and unlike polymers, specifically cis-polybutadiene (PBD) and atatic polypropylene (PP), are presented. The structure of an incompatible polymer-polymer interface, and the estimation of the thermodynamic work of adhesion and interfacial energy between different incompatible polymers, form the focus here. The work of adhesion is calculated using an atomistic equation and is further used in a macroscopic equation to estimate the interfacial energy. The interfacial energy is compared with typical values for other immiscible systems in the literature. The interfacial energy compared very well with interfacial energy values for a few other immiscible hydrocarbon pairs. In chapter IV, the study proceeds to look at the interactions between nonpolar and polar small molecules with SB and SBA thin

  18. Plasma treatment of polymers for improved adhesion

    International Nuclear Information System (INIS)

    Kelber, J.A.

    1988-01-01

    A variety of plasma treatments of polymer sufaces for improved adhesion are reviewed: noble and reactive has treatment of fluoropolymers; noble and reactive treatment of polyolefins, and plasma-induced amination of polymer fibers. The plasma induced surface chemical and morphological changer are discussed, as are the mechanisms of adhersion to polymeric adhesives, particularly epoxy. Noble has plasma eching of fluoropolymers produces a partially defluorinated, textured surface. The mechanical interlocking of this textured surface is the primary cause of improved adhsion to epoxy. Reactive has plasma also induce defluorination, but oxygen containing gases cause continual ablation of the fluoropolymer surface. Noble and reactive gas (except for hydrogen) etching of polyolefins results in surface oxidation and imrprove adhesion via hydrogen bonding of these exygen containing groups across the interface. The introduction of amine groups to a polymer surface by ammonia or amine plasma treatment generally results in improved adhesion to epoxy. However, amine-epoxy ring interactions can be severely effected by steric factors due to chemical group surrounding the amine

  19. Non-Linear Dynamics of Saturn's Rings

    Science.gov (United States)

    Esposito, L. W.

    2016-12-01

    Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. Stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, that push the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like `straw' that can explain the halo morphology and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; this requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping explains both small and large particles at resonances. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating it as an asymmetric random walk with reflecting boundaries

  20. The effects of temperature on the radiation chemistry of polymers

    International Nuclear Information System (INIS)

    Hill, D.J.T.

    1995-01-01

    The effects of high energy radiation on polymers is dependent on a number of factors. One of the most important factors is the radiolysis temperature. This paper discusses the effects of the α-transition and the other secondary transitions, as well as the ceiling and melting temperatures, on the nature of the radiolysis reactions which occur for a number of polymers. Some implications of changes in the radiation chemistry of polymers with a change in the temperature are also considered. (author)

  1. Using 2D NMR to determine the degree of branching of complicated hyperbranched polymers

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Degree of branching (DB) is a crucial structure parameter of hyperbranched polymers, which can be determined by 1H NMR, quantitative 13C NMR, degradative method, etc. However, for complicated hy-perbranched polymers, intricate structure and severe overlap of spectral signals hinder the determina-tion of DB using traditional methods. In this work, the architecture of complicated hyperbranched polymers has been elucidated with the help of 2D NMR techniques. Using such a method, overlapped NMR signals can be well separated into a two-dimensional space, and additional structural information is also available. Correspondingly, quantitative analysis for complicated systems can be realized. De-termination of DBs for three types of complicated hyperbranched polymers synthesized from step-polymerization, self-condensation vinyl polymerization and self-condensation ring-opening po-lymerization is shown as examples.

  2. Peptide/protein-polymer conjugates: synthetic strategies and design concepts.

    Science.gov (United States)

    Gauthier, Marc A; Klok, Harm-Anton

    2008-06-21

    This feature article provides a compilation of tools available for preparing well-defined peptide/protein-polymer conjugates, which are defined as hybrid constructs combining (i) a defined number of peptide/protein segments with uniform chain lengths and defined monomer sequences (primary structure) with (ii) a defined number of synthetic polymer chains. The first section describes methods for post-translational, or direct, introduction of chemoselective handles onto natural or synthetic peptides/proteins. Addressed topics include the residue- and/or site-specific modification of peptides/proteins at Arg, Asp, Cys, Gln, Glu, Gly, His, Lys, Met, Phe, Ser, Thr, Trp, Tyr and Val residues and methods for producing peptides/proteins containing non-canonical amino acids by peptide synthesis and protein engineering. In the second section, methods for introducing chemoselective groups onto the side-chain or chain-end of synthetic polymers produced by radical, anionic, cationic, metathesis and ring-opening polymerization are described. The final section discusses convergent and divergent strategies for covalently assembling polymers and peptides/proteins. An overview of the use of chemoselective reactions such as Heck, Sonogashira and Suzuki coupling, Diels-Alder cycloaddition, Click chemistry, Staudinger ligation, Michael's addition, reductive alkylation and oxime/hydrazone chemistry for the convergent synthesis of peptide/protein-polymer conjugates is given. Divergent approaches for preparing peptide/protein-polymer conjugates which are discussed include peptide synthesis from synthetic polymer supports, polymerization from peptide/protein macroinitiators or chain transfer agents and the polymerization of peptide side-chain monomers.

  3. New polymers containing BF2-benzoylacetonate groups. Synthesis, luminescence, excimer and exciplex formation

    International Nuclear Information System (INIS)

    Fedorenko, Elena V.; Mirochnik, Anatolii G.; Beloliptsev, Anton Yu.

    2017-01-01

    In the present study, a new synthetic method for the functionalization of polystyrene (PS) and (styrene-methyl methacrylate) copolymer has been developed. Using the new method, polymers containing BF 2 -benzoylacetonate groups have been obtained through double acylation by acetic anhydride with boron trifluoride. Luminescence of the produced polymers in solutions and films has been studied. Quantum yields of polymer solution luminescence are significantly higher than those of the low-molecular-weight analog – boron difluoride benzoylacetonate. For the polymer, in which styrene fragments are separated by methyl methacrylate groups, at low concentrations of the polymer in solution one observes the monomer luminescence of BF 2 -benzoylacetonate groups, while at high concentrations – the excimer luminescence. In case of PS-based polymers, in which BF 2 -benzoylacetonate groups and phenyl rings are not separated, in diluted solutions one observes the fluorescence of the intramolecular exciplexes, while at the concentration increase – the luminescence of intermolecular exciplexes. The ability of excimer formation is responsible for the increased photostability of the produced polymers. - Highlights: •Polymers containing BF 2 -benzoylacetonate groups have been synthesized. •Luminescence of the produced polymers in solutions and films has been studied. •Formation of excimers and exciplexes in solution has been revealed. •Formation of excimers in films increases their photostability.

  4. Non-Linear Dynamics of Saturn’s Rings

    Science.gov (United States)

    Esposito, Larry W.

    2015-11-01

    Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects

  5. Syntheses and optical properties of triphenylene-containing conjugated polymers

    International Nuclear Information System (INIS)

    Chou, C.-E.; Wang Degang; Bagui, Mahuya; Hsu, Jeffrey; Chakraborty, Sanjiban; Peng Zhonghua

    2010-01-01

    In this paper, we report the detailed synthesis and optical properties of three new conjugated polymers containing triphenylene units in the backbone. Polymer PTPT exhibits strong folding propensity and forms foldamers in both polar and nonpolar solvents. PTPA, with two long alkyl chains attached to the bridging phenyl ring, exhibits mainly as interchain aggregates in 'poor' solvents (DMSO and acetonitrile), but adopts a folding conformation in solvent mixtures with a high poor solvent content. PTPV, on the other hand, adopts a random nonfolding conformation in both polar and nonpolar solvents. The low folding propensity of PTPV is likely due to the added geometrical flexibility of the vinyl bonds. Among the three polymers, PTPV is most fluorescent with a fluorescence quantum yield as high as 0.87, suggesting its potential applications as light-emitting materials or fluorescence-based sensors. PTPT, on the other hand, with its strong folding property, may find applications as efficient charge-transporting materials.

  6. Printed polymer photonic devices for optical interconnect systems

    Science.gov (United States)

    Subbaraman, Harish; Pan, Zeyu; Zhang, Cheng; Li, Qiaochu; Guo, L. J.; Chen, Ray T.

    2016-03-01

    Polymer photonic device fabrication usually relies on the utilization of clean-room processes, including photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which are expensive and are limited to areas as large as a wafer. Utilizing a novel and a scalable printing process involving ink-jet printing and imprinting, we have fabricated polymer based photonic interconnect components, such as electro-optic polymer based modulators and ring resonator switches, and thermo-optic polymer switch based delay networks and demonstrated their operation. Specifically, a modulator operating at 15MHz and a 2-bit delay network providing up to 35.4ps are presented. In this paper, we also discuss the manufacturing challenges that need to be overcome in order to make roll-to-roll manufacturing practically viable. We discuss a few manufacturing challenges, such as inspection and quality control, registration, and web control, that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. We have overcome these challenges, and currently utilizing our inhouse developed hardware and software tools, <10μm alignment accuracy at a 5m/min is demonstrated. Such a scalable roll-to-roll manufacturing scheme will enable the development of unique optoelectronic devices which can be used in a myriad of different applications, including communication, sensing, medicine, security, imaging, energy, lighting etc.

  7. Novel polybenzimidazole derivatives for high temperature polymer electrolyte membrane fuel cell applications

    Science.gov (United States)

    Xiao, Lixiang

    Recent advances have made polymer electrolyte membrane fuel cells (PEMFCs) a leading alternative to internal combustion engines for both stationary and transportation applications. In particular, high temperature polymer electrolyte membranes operational above 120°C without humidification offer many advantages including fast electrode kinetics, high tolerance to fuel impurities and simple thermal and water management systems. A series of polybenzimidazole (PBI) derivatives including pyridine-based PBI (PPBI) and sulfonated PBI (SPBI) homopolymers and copolymers have been synthesized using polyphosphoric acid (PPA) as both solvent and polycondensation agent. High molecular weight PBI derivative polymers were obtained with well controlled backbone structures in terms of pyridine ring content, polymer backbone rigidity and degree of sulfonation. A novel process, termed the PPA process, has been developed to prepare phosphoric acid (PA) doped PBI membranes by direct-casting of the PPA polymerization solution without isolation or re-dissolution of the polymers. The subsequent hydrolysis of PPA to PA by moisture absorbed from the atmosphere usually induced a transition from the solution-like state to a gel-like state and produced PA doped PBI membranes with a desirable suite of physiochemical properties characterized by the PA doping levels, mechanical properties and proton conductivities. The effects of the polymer backbone structure on the polymer characteristics and membrane properties, i.e., the structure-property relationships of the PBI derivative polymers have been studied. The incorporation of additional basic nitrogen containing pyridine rings and sulfonic acid groups enhanced the polymer solubility in acid and dipolar solvents while retaining the inherently high thermal stability of the PBI heteroaromatic backbone. In particular, the degradation of the SPBI polymers with reasonable high molecular weights commenced above 450°C, notably higher than other

  8. Evolution of sequence-defined highly functionalized nucleic acid polymers

    Science.gov (United States)

    Chen, Zhen; Lichtor, Phillip A.; Berliner, Adrian P.; Chen, Jonathan C.; Liu, David R.

    2018-03-01

    The evolution of sequence-defined synthetic polymers made of building blocks beyond those compatible with polymerase enzymes or the ribosome has the potential to generate new classes of receptors, catalysts and materials. Here we describe a ligase-mediated DNA-templated polymerization and in vitro selection system to evolve highly functionalized nucleic acid polymers (HFNAPs) made from 32 building blocks that contain eight chemically diverse side chains on a DNA backbone. Through iterated cycles of polymer translation, selection and reverse translation, we discovered HFNAPs that bind proprotein convertase subtilisin/kexin type 9 (PCSK9) and interleukin-6, two protein targets implicated in human diseases. Mutation and reselection of an active PCSK9-binding polymer yielded evolved polymers with high affinity (KD = 3 nM). This evolved polymer potently inhibited the binding between PCSK9 and the low-density lipoprotein receptor. Structure-activity relationship studies revealed that specific side chains at defined positions in the polymers are required for binding to their respective targets. Our findings expand the chemical space of evolvable polymers to include densely functionalized nucleic acids with diverse, researcher-defined chemical repertoires.

  9. Black rings

    International Nuclear Information System (INIS)

    Emparan, Roberto; Reall, Harvey S

    2006-01-01

    A black ring is a five-dimensional black hole with an event horizon of topology S 1 x S 2 . We provide an introduction to the description of black rings in general relativity and string theory. Novel aspects of the presentation include a new approach to constructing black ring coordinates and a critical review of black ring microscopics. (topical review)

  10. Crosslinking of SAVY-4000 O-rings as a Function of Aging Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Van Buskirk, Caleb Griffith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-08

    SAVY-4000 containers were developed as a part of DOE M 441.1-1 to protect workers who handle stored nuclear material from exposure due to loss of containment.1 The SAVY-4000 is comprised of three parts: a lid, a container, and a cross-linked fluoropolymer O-ring. Degradation of the O-ring during use could limit the lifetime of the SAVY-4000. In order to quantify the chemical changes of the Oring over time, the molecular weight between crosslinks was determined as a function of aging conditions using a swelling technique. Because the O-ring is a cross-linked polymer, it will absorb solvent into its matrix without dissolving. The relative amount of solvent uptake can be related to the degree of crosslinking using an equation developed by Paul Flory and John Rehner Jr3. This method was used to analyze O-ring samples aged under thermal and ionizing-radiation conditions. It was found that at the harsher thermal gaining conditions in absence of ionizing-radiation the average molecular weight between crosslinks decreased, indicating a rise in crosslinks, which may be attributable to advanced aging with no ionizing radiation present. Inversely, in the presence of ionizing radiation it was found that material has a higher level of cross-linking with age. This information could be used to help predict the lifetime of the O-rings in SAVY-4000 containers under service conditions.

  11. High performance inkjet-printed metal oxide thin film transistors via addition of insulating polymer with proper molecular weight

    Science.gov (United States)

    Sun, Dawei; Chen, Cihai; Zhang, Jun; Wu, Xiaomin; Chen, Huipeng; Guo, Tailiang

    2018-01-01

    Fabrication of metal oxide thin film transistor (MOTFT) arrays using the inkjet printing process has caused tremendous interest for low-cost and large-area flexible electronic devices. However, the inkjet-printed MOTFT arrays usually exhibited a non-uniform geometry due to the coffee ring effect, which restricted their commercial application. Therefore, in this work, a strategy is reported to control the geometry and enhance device performance of inkjet-printed MOTFT arrays by the addition of an insulating polymer to the precursor solution prior to film deposition. Moreover, the impact of the polymer molecular weight (MW) on the geometry, chemical constitution, crystallization, and MOTFT properties of inkjet-printed metal oxide depositions was investigated. The results demonstrated that with an increase of MW of polystyrene (PS) from 2000 to 200 000, the coffee ring was gradually faded and the coffee ring effect was completely eliminated when MW reached 200 000, which is associated with the enhanced viscosity with the insulating polymer, providing a high resistance to the outward capillary flow, which facilitated the depinning of the contact line, leading to the elimination of the coffee ring. More importantly, the carrier mobility increased significantly from 4.2 cm2 V-1 s-1 up to 13.7 cm2 V-1 s-1 as PS MW increased from 2000 to 200 000, which was about 3 times that of the pristine In2O3 TFTs. Grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy results indicated that PS doping of In2O3 films not only frustrated crystallization but also altered chemical constitution by enhancing the formation of the M-O structure, both of which facilitated the carrier transport. These results demonstrated that the simple polymer additive process provides a promising method that can efficiently control the geometry of MO arrays during inkjet printing and maximize the device performance of MOTFT arrays, which showed great potential for the application in next

  12. Variations in Ring Particle Cooling across Saturn's Rings with Cassini CIRS

    Science.gov (United States)

    Brooks, S. M.; Spilker, L. J.; Pilorz, S.; Edgington, S. G.; Déau, E.; Altobelli, N.

    2010-12-01

    Cassini's Composite Infrared Spectrometer has recorded over two million of spectra of Saturn's rings in the far infrared since arriving at Saturn in 2004. CIRS records far infrared radiation between 10 and 600 cm-1 ( 16.7 and 1000 μ {m} ) at focal plane 1 (FP1), which has a field of view of 3.9 mrad. Thermal emission from Saturn’s rings peaks in this wavelength range. Ring temperatures can be inferred from FP1 data. By tracking how ring temperatures vary, we can determine the thermal inertia of the rings. Previous studies have shown that the rings' thermal inertia, a measure of their response to changes in the thermal environment, varies from ring to ring. Thermal inertia can provide insight into the physical structure of Saturn's ring particles and their regoliths. Low thermal inertia and rapidly changing temperatures are suggestive of ring particles that have more porous or fluffy regoliths or that are riddled with cracks. Solid particles can be expected to have higher thermal inertias. Ferrari et al. (2005) fit thermal inertia values of 5218 {Jm)-2 {K}-1 {s}-1/2 to their B ring data and 6412 {Jm)-2 {K}-1 {s}-1/2 to their C ring data. In this work we focus on CIRS observations of the shadowed portion of Saturn's rings. The rings’ thermal budget is dominated by its absorption of solar radiation. As a result, ring particles abruptly cool as they traverse Saturn's shadow. From these shadow observations we can create cooling curves at specific locations across the rings. We will show that the rings' cooling curves and thus their thermal inertia vary not only from ring to ring, but by location within the individual rings. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

  13. Design of water-soluble, thiol-reactive polymers of controlled molecular weight: a novel multivalent scaffold

    Science.gov (United States)

    Carrillo, Alvaro; Gujraty, Kunal V.; Rai, Prakash R.; Kane, Ravi S.

    2005-07-01

    Multivalent molecules, i.e. scaffolds presenting multiple copies of a suitable ligand, constitute an emerging class of nanoscale therapeutics. We present a novel approach for the design of multivalent ligands, which allows the biofunctionalization of polymers with proteins or peptides in a controlled orientation. It consists of the synthesis of water-soluble, activated polymer scaffolds of controlled molecular weight, which can be biofunctionalized with various thiolated ligands in aqueous media under mild conditions. These polymers were synthesized by ring-opening metathesis polymerization (ROMP) and further modified to make them water-soluble. The incorporation of chloride groups activated the polymers to react with thiol-containing peptides or proteins, and the formation of multivalent ligands in aqueous media was demonstrated. This strategy represents a convenient route for synthesizing multivalent ligands of controlled dimensions and valency.

  14. Spectral and time-resolved properties of photoinduced hydroxyquinolines doped thin polymer films

    Science.gov (United States)

    Mehata, Mohan Singh

    2018-01-01

    Quinoline and its derivatives have a wide range of biological and pharmacological activities. Quinoline ring is used to design functional materials (quinoline derivatives) for OLEDs and field-induce electrooptics. It possesses antibacterial, antifungal, antimalarial, cardiotonic, anthelmintic, anti-inflammatory, anticonvulsant and analgesic activity. Here, we have examined photoexcitation dynamics of 6-hydroxyquinoline (6-HQ) doped in polymer films of polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA) and cellulose acetate (CA) at atmospheric conditions. The absorption maximum of 6-HQ in polymer films was observed at 333 ± 1 nm, whereas fluorescence (FL) maximum fell in the range of 365-371 nm. In PVA film, in addition to the typical FL, a band maximum at 432 nm appeared as a result of an excited-state intermolecular proton transfer (ESIPT) reaction facilitated in the hydrogen-bonded complex formed in the ground state between 6-HQ:PVA. The multi-exponential decay behavior of 6-HQ in all the three polymer films indicates a nanoscale heterogeneity of the polymer environments.

  15. Naphtho[1,2-b:5,6-b']dithiophene-Based Conjugated Polymers for Fullerene-Free Inverted Polymer Solar Cells.

    Science.gov (United States)

    Jiang, Zhaoyan; Li, Huan; Wang, Zhen; Zhang, Jianqi; Zhang, Yajie; Lu, Kun; Wei, Zhixiang

    2018-03-23

    Three novel copolymers based on zigzag naphthodithiophene (zNDT) with different aromatic rings as π bridges and different core side substitutions are designed and synthesized (PzNDT-T-1,3-bis(4-(2-ethylhexyl)-thiophen-2-yl)-5,7-bis(2-ethylhexyl)benzo[1,2-c:4,5-c']-dithiophene-4,8-dione (BDD), PzNDT-TT-BDD, and PzNDTP-T-BDD, respectively). The 2D conjugation structure and molecular planarity of the polymers can be effectively altered through the modification of conjugated side chains and π-bridges. These alterations contribute to the variation in energy levels, light absorption capacity, and morphology compatibility of the polymers. When blended with the nonfullerene acceptor (2,2'-[(4,4,9,9-tetrahexyl-4,9-dihydro-sindaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis[methylidyne(3-oxo-1H-indene-2,1(3H)-diylidene)

  16. Influence of processing and intrinsic polymer parameters on photochemical stability of polythiophene thin films

    DEFF Research Database (Denmark)

    Vesterager Madsen, Morten; Tromholt, Thomas; Böttiger, Arvid P.L.

    2012-01-01

    shielding effects were shown to have a negligible effect on the photochemical degradation rate. The results obtained in this work advance the understanding of polymer stability and will help improve the design of materials used for polymer solar cells resulting in longer lifetimes, which will push......Intrinsic polymer parameters such as regio-regularity, molecular weight, and crystallinity play an important role when studying polymer stability. 18 different batches of poly-3-hexyl-thiophene (P3HT) were degraded in a solar simulator (AM1.5G, 1000 W/m2) and the degradation kinetics were monitored....... The results suggest that the radical reaction responsible for the photodegradation takes place at terminal thiophene rings exposed at points were the conjugation is broken. This proposed mechanism is supported by the fact that stability scales with regio-regularity following the ratio of head...

  17. Control of polymer-packing orientation in thin films through synthetic tailoring of backbone coplanarity

    KAUST Repository

    Chen, Mark S.

    2013-10-22

    Controlling solid-state order of π-conjugated polymers through macromolecular design is essential for achieving high electronic device performance; yet, it remains a challenge, especially with respect to polymer-packing orientation. Our work investigates the influence of backbone coplanarity on a polymer\\'s preference to pack face-on or edge-on relative to the substrate. Isoindigo-based polymers were synthesized with increasing planarity by systematically substituting thiophenes for phenyl rings in the acceptor comonomer. This increasing backbone coplanarity, supported by density functional theory (DFT) calculations of representative trimers, leads to the narrowing of polymer band gaps as characterized by ultraviolet-visible-near infrared (UV-vis-NIR) spectroscopy and cyclic voltammetry. Among the polymers studied, regiosymmetric II and TII polymers exhibited the highest hole mobilities in organic field-effect transistors (OFETs), while in organic photovoltaics (OPVs), TBII polymers that display intermediate levels of planarity provided the highest power conversion efficiencies. Upon thin-film analysis by atomic force microscropy (AFM) and grazing-incidence X-ray diffraction (GIXD), we discovered that polymer-packing orientation could be controlled by tuning polymer planarity and solubility. Highly soluble, planar polymers favor face-on orientation in thin films while the less soluble, nonplanar polymers favor an edge-on orientation. This study advances our fundamental understanding of how polymer structure influences nanostructural order and reveals a new synthetic strategy for the design of semiconducting materials with rationally engineered solid-state properties. © 2013 American Chemical Society.

  18. Alternative loop rings

    CERN Document Server

    Goodaire, EG; Polcino Milies, C

    1996-01-01

    For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri

  19. Primitivity and weak distributivity in near rings and matrix near rings

    International Nuclear Information System (INIS)

    Abbasi, S.J.

    1993-08-01

    This paper shows the structure of matrix near ring constructed over a weakly distributive and primative near ring. It is proved that a weakly distributive primitive near ring is a ring and the matrix near rings constructed over it is also a bag. (author). 14 refs

  20. Synthesis, Crystal Structure and Luminescent Property of A Novel Cd(II) Coordination Polymer with Bis-imidazole Ligand

    International Nuclear Information System (INIS)

    Zhou, Yong Hong

    2013-01-01

    The key to the successful design of metal-organic coordination polymers is the judicious selection of organic ligand. Recently, polydentate aromatic nitrogen heterocyclic ligands with five-membered rings have been well-studied in the construction of supramolecular structure for their N-coordinated sites apt to coordinating to transition metals. Similar to six-membered N-heterocyclic ligands, the azole-based five-membered N-heterocyclic ligands, such as imidazoles, triazoles and tetrazoles have been extensively employed in the construction of various coordination polymers with diverse topologies and interesting properties. The bis(azole) ligands in which N-donor azole rings (imidazole, triazole, or tetrazole) are separated by alkyl, (CH 2 ) n , spacers are good choices for flexible bridging ligands. The conformational flexibility of the spacers makes the ligands adaptable to various coordination networks with one-, two-, and three dimensional structures

  1. Fluorescent Polymer Incorporating Triazolyl Coumarin Units for Cu2+ Detection via Planarization of Ict-Based Fluorophore.

    Science.gov (United States)

    Ngororabanga, Jean Marie Vianney; Du Plessis, Jacolien; Mama, Neliswa

    2017-08-30

    A novel fluorescent polymer with pendant triazolyl coumarin units was synthesized through radical polymerization. The polymer showed reasonable sensitivity and selectivity towards Cu 2+ in acetonitrile in comparison to other tested metal ions with a significant quenching effect on fluorescence and blue shifting in the range of 20 nm. The blue shift was assigned to the conformation changes of the diethylamino group from the coumarin moiety which led to planarization of the triazolyl coumarin units. The possible binding modes for Cu 2+ towards the polymer were determined through the comparison of the emission responses of the polymer, starting vinyl monomer and reference compound, and the triazole ring was identified as one of the possible binding sites for Cu 2+ . The detection limits of the polymer and vinyl monomer towards Cu 2+ were determined from fluorescence titration experiments and a higher sensitivity (35 times) was observed for the polymer compared with its starting monomer.

  2. Fluorescent Polymer Incorporating Triazolyl Coumarin Units for Cu2+ Detection via Planarization of Ict-Based Fluorophore

    Science.gov (United States)

    Ngororabanga, Jean Marie Vianney; Du Plessis, Jacolien; Mama, Neliswa

    2017-01-01

    A novel fluorescent polymer with pendant triazolyl coumarin units was synthesized through radical polymerization. The polymer showed reasonable sensitivity and selectivity towards Cu2+ in acetonitrile in comparison to other tested metal ions with a significant quenching effect on fluorescence and blue shifting in the range of 20 nm. The blue shift was assigned to the conformation changes of the diethylamino group from the coumarin moiety which led to planarization of the triazolyl coumarin units. The possible binding modes for Cu2+ towards the polymer were determined through the comparison of the emission responses of the polymer, starting vinyl monomer and reference compound, and the triazole ring was identified as one of the possible binding sites for Cu2+. The detection limits of the polymer and vinyl monomer towards Cu2+ were determined from fluorescence titration experiments and a higher sensitivity (35 times) was observed for the polymer compared with its starting monomer. PMID:28867764

  3. Application of a silver–olefin coordination polymer as a catalytic curing agent for self-healing epoxy polymers

    International Nuclear Information System (INIS)

    Everitt, D T; Coope, T S; Trask, R S; Bond, I P; Wass, D F

    2015-01-01

    A silver–olefin based coordination polymer was prepared in a simple, one step process to act as an initiator to facilitate the ring-opening polymerization of epoxides. Thermal analysis found the complex to be capable of curing a range of commercially available epoxy resins used in the manufacture of conventional composite materials. Curing of the oligomeric diglycidyl ether bisphenol A resin, Epon 828, in combination with a non-toxic solvent, ethyl phenylacetate, was studied by differential scanning calorimetry. The mechanical characterization of the resultant cured polymers was conducted by single lap shear tests. Tapered double cantilever beam (TDCB) test specimens containing 2.5 pph of silver–olefin initiator, both with and without embedded microcapsules, were analyzed for their healing performance. Healing efficiency values were found to be strongly dependent on the applied healing temperature. A mean recovery of 74% fracture load was found in TDCB samples after being healed at 70 °C for 48 h. (paper)

  4. Interaction of ring dark solitons with ring impurities in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Xue Jukui

    2005-01-01

    The interaction of ring dark solitons/vortexes with the ring-shaped repulsive and attractive impurities in two-dimensional Bose-Einstein condensates is investigated numerically. Very rich interaction phenomena are obtained, i.e., not only the interaction between the ring soliton and the impurity, but also the interaction between vortexes and the impurity. The interaction characters, i.e., snaking of ring soliton, quasitrapping or reflection of ring soliton and vortexes by the impurity, strongly depend on initial ring soliton velocity, impurity strength, initial position of ring soliton and impurity. The numerical results also reveal that ring dark solitons/vortexes can be trapped and dragged by an adiabatically moving attractive ring impurity

  5. Degradation in tensile properties of aromatic polymers by electron beam irradiation

    International Nuclear Information System (INIS)

    Sasuga, T.; Hayakawa, N.; Yoshida, K.; Hagiwara, M.

    1985-01-01

    Electron beam irradiation effects of ten kinds of polymers containing various aromatic rings linked by functional groups in the main chain (aromatic polymer) were studied with reference to change in tensile properties. The polymers studied were polyimides 'Kapton H', and 'UPILEX', polyetherimide 'ULTEM', polyamides 'A-Film' and 'APH-50 (nomex type paper)', poly-ether-ether-ketone 'PEEK', polyarylate 'U-Polymer', polysulphones 'Udel-Polysulphone' and 'PES', and modified poly(phenylene oxide) 'NORYL'. Irradiation was carried out by use of electron beam at a dose rate of 5 x 10 3 Gy s -1 at room temperature. The elongation at break was the most severely influenced by the irradiation and it decreased with increasing dose. The order of radiation resistivity which was evaluated from the dose required for the elongation to become 50% and 20% of the initial value was as follows: Polyimide > PEEK > polyamide > polyetherimide > polyarylate > polysulphone, poly(phenylene oxide). Based on the above experimental results, an order is proposed for the radiation stability of the aromatic repeating units composing the main chain. (author)

  6. Self-Assembly of Telechelic Tyrosine End-Capped PEO Star Polymers in Aqueous Solution.

    Science.gov (United States)

    Edwards-Gayle, Charlotte J C; Greco, Francesca; Hamley, Ian W; Rambo, Robert P; Reza, Mehedi; Ruokolainen, Janne; Skoulas, Dimitrios; Iatrou, Hermis

    2018-01-08

    We investigate the self-assembly of two telechelic star polymer-peptide conjugates based on poly(ethylene oxide) (PEO) four-arm star polymers capped with oligotyrosine. The conjugates were prepared via N-carboxy anhydride-mediated ring-opening polymerization from PEO star polymer macroinitiators. Self-assembly occurs above a critical aggregation concentration determined via fluorescence probe assays. Peptide conformation was examined using circular dichroism spectroscopy. The structure of self-assembled aggregates was probed using small-angle X-ray scattering and cryogenic transmission electron microscopy. In contrast to previous studies on linear telechelic PEO-oligotyrosine conjugates that show self-assembly into β-sheet fibrils, the star architecture suppresses fibril formation and micelles are generally observed instead, a small population of fibrils only being observed upon pH adjustment. Hydrogelation is also suppressed by the polymer star architecture. These peptide-functionalized star polymer solutions are cytocompatible at sufficiently low concentration. These systems present tyrosine at high density and may be useful in the development of future enzyme or pH-responsive biomaterials.

  7. Storage Rings

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Storage rings are circular machines that store particle beams at a constant energy. Beams are stored in rings without acceleration for a number of reasons (Tab. 1). Storage rings are used in high-energy, nuclear, atomic, and molecular physics, as well as for experiments in chemistry, material and life sciences. Parameters for storage rings such as particle species, energy, beam intensity, beam size, and store time vary widely depending on the application. The beam must be injected into a storage ring but may not be extracted (Fig. 1). Accelerator rings such as synchrotrons are used as storage rings before and after acceleration. Particles stored in rings include electrons and positrons; muons; protons and anti-protons; neutrons; light and heavy, positive and negative, atomic ions of various charge states; molecular and cluster ions, and neutral polar molecules. Spin polarized beams of electrons, positrons, and protons were stored. The kinetic energy of the stored particles ranges from 10 -6 eV to 3.5 x 10 12 eV (LHC, 7 x 10 12 eV planned), the number of stored particles from one (ESR) to 1015 (ISR). To store beam in rings requires bending (dipoles) and transverse focusing (quadrupoles). Higher order multipoles are used to correct chromatic aberrations, to suppress instabilities, and to compensate for nonlinear field errors of dipoles and quadrupoles. Magnetic multipole functions can be combined in magnets. Beams are stored bunched with radio frequency systems, and unbunched. The magnetic lattice and radio frequency system are designed to ensure the stability of transverse and longitudinal motion. New technologies allow for better storage rings. With strong focusing the beam pipe dimensions became much smaller than previously possible. For a given circumference superconducting magnets make higher energies possible, and superconducting radio frequency systems allow for efficient replenishment of synchrotron radiation losses of large current electron or positron beams

  8. Fluid Effects in Polymers and Polymeric Composites

    CERN Document Server

    Weitsman, Y Jack

    2012-01-01

    Fluid Effects in Polymers and Polymeric Composites, written by the late Dr. Y. Jack Weitsman, addresses the wide range of parameters that affect the interaction of fluids with polymers and polymeric composites. The book aims at broadening the scope of available data, mostly limited up to this time to weight-gain recordings of fluid ingress into polymers and composites, to the practical circumstances of fluctuating exposure. Various forms of experimental data are given, in conjunction with theoretical models derived from basic scientific principles, and correlated with severity of exposure conditions and interpreted by means of rationally based theoretical models. The practical implications of the effects of fluids are discussed. The issue of fluid effects on polymers and polymeric composites is of concern to engineers and scientists active in aerospace and naval structures, as an increasing portion of these structures are made of polymeric composites and employ polymeric adhesives as a joining device. While...

  9. Rings in drugs.

    Science.gov (United States)

    Taylor, Richard D; MacCoss, Malcolm; Lawson, Alastair D G

    2014-07-24

    We have analyzed the rings, ring systems, and frameworks in drugs listed in the FDA Orange Book to understand the frequency, timelines, molecular property space, and the application of these rings in different therapeutic areas and target classes. This analysis shows that there are only 351 ring systems and 1197 frameworks in drugs that came onto the market before 2013. Furthermore, on average six new ring systems enter drug space each year and approximately 28% of new drugs contain a new ring system. Moreover, it is very unusual for a drug to contain more than one new ring system and the majority of the most frequently used ring systems (83%) were first used in drugs developed prior to 1983. These observations give insight into the chemical novelty of drugs and potentially efficient ways to assess compound libraries and develop compounds from hit identification to lead optimization and beyond.

  10. Bioinspired bioadhesive polymers: dopa-modified poly(acrylic acid) derivatives.

    Science.gov (United States)

    Laulicht, Bryan; Mancini, Alexis; Geman, Nathanael; Cho, Daniel; Estrellas, Kenneth; Furtado, Stacia; Hopson, Russell; Tripathi, Anubhav; Mathiowitz, Edith

    2012-11-01

    The one-step synthesis and characterization of novel bioinspired bioadhesive polymers that contain Dopa, implicated in the extremely adhesive byssal fibers of certain gastropods, is reported. The novel polymers consist of combinations of either of two polyanhydride backbones and one of three amino acids, phenylalanine, tyrosine, or Dopa, grafted as side chains. Dopa-grafted hydrophobic backbone polymers exhibit as much as 2.5 × the fracture strength and 2.8 × the tensile work of bioadhesion of a commercially available poly(acrylic acid) derivative as tested on live, excised, rat intestinal tissue. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Implications of Liebig’s law of the minimum for tree-ring reconstructions of climate

    Science.gov (United States)

    Stine, A. R.; Huybers, P.

    2017-11-01

    A basic principle of ecology, known as Liebig’s Law of the Minimum, is that plant growth reflects the strongest limiting environmental factor. This principle implies that a limiting environmental factor can be inferred from historical growth and, in dendrochronology, such reconstruction is generally achieved by averaging collections of standardized tree-ring records. Averaging is optimal if growth reflects a single limiting factor and noise but not if growth also reflects locally variable stresses that intermittently limit growth. In this study a collection of Arctic tree ring records is shown to follow scaling relationships that are inconsistent with the signal-plus-noise model of tree growth but consistent with Liebig’s Law acting at the local level. Also consistent with law-of-the-minimum behavior is that reconstructions based on the least-stressed trees in a given year better-follow variations in temperature than typical approaches where all tree-ring records are averaged. Improvements in reconstruction skill occur across all frequencies, with the greatest increase at the lowest frequencies. More comprehensive statistical-ecological models of tree growth may offer further improvement in reconstruction skill.

  12. Effects of rotational symmetry breaking in polymer-coated nanopores

    Science.gov (United States)

    Osmanović, D.; Kerr-Winter, M.; Eccleston, R. C.; Hoogenboom, B. W.; Ford, I. J.

    2015-01-01

    The statistical theory of polymers tethered around the inner surface of a cylindrical channel has traditionally employed the assumption that the equilibrium density of the polymers is independent of the azimuthal coordinate. However, simulations have shown that this rotational symmetry can be broken when there are attractive interactions between the polymers. We investigate the phases that emerge in these circumstances, and we quantify the effect of the symmetry assumption on the phase behavior of the system. In the absence of this assumption, one can observe large differences in the equilibrium densities between the rotationally symmetric case and the non-rotationally symmetric case. A simple analytical model is developed that illustrates the driving thermodynamic forces responsible for this symmetry breaking. Our results have implications for the current understanding of the behavior of polymers in cylindrical nanopores.

  13. Effects of rotational symmetry breaking in polymer-coated nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Osmanović, D.; Hoogenboom, B. W.; Ford, I. J. [London Centre for Nanotechnology (LCN) and Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Kerr-Winter, M.; Eccleston, R. C. [Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-01-21

    The statistical theory of polymers tethered around the inner surface of a cylindrical channel has traditionally employed the assumption that the equilibrium density of the polymers is independent of the azimuthal coordinate. However, simulations have shown that this rotational symmetry can be broken when there are attractive interactions between the polymers. We investigate the phases that emerge in these circumstances, and we quantify the effect of the symmetry assumption on the phase behavior of the system. In the absence of this assumption, one can observe large differences in the equilibrium densities between the rotationally symmetric case and the non-rotationally symmetric case. A simple analytical model is developed that illustrates the driving thermodynamic forces responsible for this symmetry breaking. Our results have implications for the current understanding of the behavior of polymers in cylindrical nanopores.

  14. Selectivity of radiation-induced processes in hydrocarbons, related polymers and organized polymer systems

    International Nuclear Information System (INIS)

    Feldman, V.I.; Sukhov, F.F.; Zezin, A.A.; Orlov, A.Yu.

    1999-01-01

    Fundamental aspects of the selectivity of radiation-induced events in polymers and polymeric systems were considered: (1) The grounds of selectivity of the primary events were analyzed on the basis of the results of studies of model compounds (molecular aspect). Basic results were obtained for hydrocarbon molecules irradiated in low-temperature matrices. The effects of selective localization of the primary events on the radical formation were examined for several polymers irradiated at low and superlow temperatures (77 and 15 K). A remarkable correlation between the properties of prototype ionized molecules (radical cations) and selectivity of the primary bond rupture in the corresponding polymers were found for polyethylene, polystyrene and some other hydrocarbon polymers. The first direct indication of selective localization of primary events at conformational defects was obtained for oriented high-crystalline polyethylene irradiated at 15 K. The significance of dimeric ring association was proved for the radiation chemistry of polystyrene. Specific mechanisms of low-temperature radiation-induced degradation were also analyzed for polycarbonate and poly(alkylene terephthalates). (2) Specific features of the localization of primary radiation-induced events in microheterogeneous polymeric systems were investigated (microstructural aspect). It was found that the interphase processes played an important role in the radiation chemistry of such systems. The interphase electron migration may result in both positive and negative non-additive effects in the formation of radiolysis products. The effects of component diffusion and chemical reactions on the radiation-induced processes in microheterogeneous polymeric systems were studied with the example of polycarbonate - poly(alkylene terephthalate) blends. (3) The effects of restricted molecular motion on the development of the radiation-chemical processes in polymers were investigated (dynamic aspect). In particular, it

  15. Pooled versus separate tree-ring δD measurements, and implications for reconstruction of the Arctic Oscillation in northwestern China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaohong, E-mail: liuxh@lzb.ac.cn [State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000 (China); An, Wenling [MOE, Key Laboratory for Coast and Island Development, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093 (China); Treydte, Kerstin [Swiss Federal Research Institute WSL, Dendro Sciences Unit, Zürcherstrasse 111, CH-8903 Birmensdorf (Switzerland); Wang, Wenzhi; Xu, Guobao; Zeng, Xiaomin; Wu, Guoju; Wang, Bo; Zhang, Xuanwen [State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2015-04-01

    Stable hydrogen isotope ratios (δD) in tree rings are an attractive but still rarely explored terrestrial archive of past climatic information. Because the preparation of the cellulose nitrate for δD measurements requires more wood and a longer preparation time than preparation techniques for other isotopes in cellulose (δ{sup 18}O or δ{sup 13}C), it is challenging to obtain high-resolution records, especially for slow-growing trees at high elevations and in boreal regions. Here, we tested whether annually pooled samples of Qinghai spruce (Picea crassifolia Kom.) trees from northwestern China provided results similar to those derived as the mean of individual measurements of the same trees and whether the resulting chronologies recorded useful climate information. Inter-tree variability of δD was higher than that of measured ring width for the same trees. We found higher and significant coherence between pooled and mean isotope chronologies than that among the individual series. It showed a logarithmic relationship between ring mass and δD; however, accounting for the influence of ring mass on δD values only slightly improved the strength of climatic signals in the pooled records. Tree-ring δD was significantly positively correlated with the mean, maximum, and minimum temperatures during the previous winter and with maximum temperature during the current August, and significantly negatively correlated with precipitation in the previous November to January and the current July. The winter climate signal seems to dominate tree-ring δD through the influence of large-scale atmospheric circulation patterns, i.e. the Arctic Oscillation. These results will facilitate reconstruction of winter atmospheric circulation patterns over northwestern China based on a regional tree-ring δD networks. - Highlights: • The difference between mean and pooled tree-ring δD chronologies was tested. • High coherence between the chronologies for northwestern China. • Tree-ring

  16. Pooled versus separate tree-ring δD measurements, and implications for reconstruction of the Arctic Oscillation in northwestern China

    International Nuclear Information System (INIS)

    Liu, Xiaohong; An, Wenling; Treydte, Kerstin; Wang, Wenzhi; Xu, Guobao; Zeng, Xiaomin; Wu, Guoju; Wang, Bo; Zhang, Xuanwen

    2015-01-01

    Stable hydrogen isotope ratios (δD) in tree rings are an attractive but still rarely explored terrestrial archive of past climatic information. Because the preparation of the cellulose nitrate for δD measurements requires more wood and a longer preparation time than preparation techniques for other isotopes in cellulose (δ 18 O or δ 13 C), it is challenging to obtain high-resolution records, especially for slow-growing trees at high elevations and in boreal regions. Here, we tested whether annually pooled samples of Qinghai spruce (Picea crassifolia Kom.) trees from northwestern China provided results similar to those derived as the mean of individual measurements of the same trees and whether the resulting chronologies recorded useful climate information. Inter-tree variability of δD was higher than that of measured ring width for the same trees. We found higher and significant coherence between pooled and mean isotope chronologies than that among the individual series. It showed a logarithmic relationship between ring mass and δD; however, accounting for the influence of ring mass on δD values only slightly improved the strength of climatic signals in the pooled records. Tree-ring δD was significantly positively correlated with the mean, maximum, and minimum temperatures during the previous winter and with maximum temperature during the current August, and significantly negatively correlated with precipitation in the previous November to January and the current July. The winter climate signal seems to dominate tree-ring δD through the influence of large-scale atmospheric circulation patterns, i.e. the Arctic Oscillation. These results will facilitate reconstruction of winter atmospheric circulation patterns over northwestern China based on a regional tree-ring δD networks. - Highlights: • The difference between mean and pooled tree-ring δD chronologies was tested. • High coherence between the chronologies for northwestern China. • Tree-ring

  17. A Ring Polymer Molecular Dynamics Approach to Study the Transition between Statistical and Direct Mechanisms in the H2 + H3+ → H3+ + H2 Reaction.

    Science.gov (United States)

    Suleimanov, Yury V; Aguado, Alfredo; Gómez-Carrasco, Susana; Roncero, Octavio

    2018-05-03

    Because of its fundamental importance in astrochemistry, the H 2 + H 3 + → H 3 + + H 2 reaction has been studied experimentally in a wide temperature range. Theoretical studies of the title reaction significantly lag primarily because of the challenges associated with the proper treatment of the zero-point energy (ZPE). As a result, all previous theoretical estimates for the ratio between a direct proton-hop and indirect exchange (via the H 5 + complex) channels deviate from the experiment, in particular, at lower temperatures where the quantum effects dominate. In this work, the ring polymer molecular dynamics (RPMD) method is applied to study this reaction, providing very good agreement with the experiment. RPMD is immune to the shortcomings associated with the ZPE leakage and is able to describe the transition from direct to indirect mechanisms below room temperature. We argue that RPMD represents a useful tool for further studies of numerous ZPE-sensitive chemical reactions that are of high interest in astrochemistry.

  18. Preactivated thiolated glycogen as mucoadhesive polymer for drug delivery.

    Science.gov (United States)

    Perrone, Mara; Lopalco, Antonio; Lopedota, Angela; Cutrignelli, Annalisa; Laquintana, Valentino; Douglas, Justin; Franco, Massimo; Liberati, Elisa; Russo, Vincenzo; Tongiani, Serena; Denora, Nunzio; Bernkop-Schnürch, Andreas

    2017-10-01

    The purpose of this study was to synthesize and characterize a novel thiolated glycogen, so-named S-preactivated thiolated glycogen, as a mucosal drug delivery systems and the assessment of its mucoadhesive properties. In this regard, glycogen-cysteine and glycogen-cysteine-2-mercaptonicotinic acid conjugates were synthesized. Glycogen was activated by an oxidative ring opening with sodium periodate resulting in reactive aldehyde groups to which cysteine was bound via reductive amination. The obtained thiolated polymer displayed 2203.09±200μmol thiol groups per gram polymer. In a second step, the thiol moieties of thiolated glycogen were protected by disulfide bond formation with the thiolated aromatic residue 2-mercaptonicotinic acid (2MNA). In vitro screening of mucoadhesive properties was performed on porcine intestinal mucosa using different methods. In particular, in terms of rheology investigations of mucus/polymer mixtures, the S-preactivated thiolated glycogen showed a 4.7-fold increase in dynamic viscosity over a time period of 5h, in comparison to mucus/Simulated Intestinal Fluid control. The S-preactivated polymer remained attached on freshly excised porcine mucosa for 45h. Analogous results were obtained with tensile studies demonstrating a 2.7-fold increase in maximum detachment force and 3.1- fold increase in total work of adhesion for the S-preactivated polymer compared to unmodified glycogen. Moreover, water-uptake studies showed an over 4h continuing weight gain for the S-preactivated polymer, whereas disintegration took place for the unmodified polymer within the first hour. Furthermore, even in the highest tested concentration of 2mg/ml the new conjugates did not show any cytotoxicity on Caco-2 cell monolayer using an MTT assay. According to these results, S-preactivated glycogen represents a promising type of mucoadhesive polymers useful for the development of various mucosal drug delivery systems. Copyright © 2017 Elsevier B.V. All rights

  19. New polymers containing BF{sub 2}-benzoylacetonate groups. Synthesis, luminescence, excimer and exciplex formation

    Energy Technology Data Exchange (ETDEWEB)

    Fedorenko, Elena V., E-mail: gev@ich.dvo.ru [Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 letiya Vladivostoka, Vladivostok 690022 (Russian Federation); Mirochnik, Anatolii G.; Beloliptsev, Anton Yu. [Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100 letiya Vladivostoka, Vladivostok 690022 (Russian Federation)

    2017-05-15

    In the present study, a new synthetic method for the functionalization of polystyrene (PS) and (styrene-methyl methacrylate) copolymer has been developed. Using the new method, polymers containing BF{sub 2}-benzoylacetonate groups have been obtained through double acylation by acetic anhydride with boron trifluoride. Luminescence of the produced polymers in solutions and films has been studied. Quantum yields of polymer solution luminescence are significantly higher than those of the low-molecular-weight analog – boron difluoride benzoylacetonate. For the polymer, in which styrene fragments are separated by methyl methacrylate groups, at low concentrations of the polymer in solution one observes the monomer luminescence of BF{sub 2}-benzoylacetonate groups, while at high concentrations – the excimer luminescence. In case of PS-based polymers, in which BF{sub 2}-benzoylacetonate groups and phenyl rings are not separated, in diluted solutions one observes the fluorescence of the intramolecular exciplexes, while at the concentration increase – the luminescence of intermolecular exciplexes. The ability of excimer formation is responsible for the increased photostability of the produced polymers. - Highlights: •Polymers containing BF{sub 2}-benzoylacetonate groups have been synthesized. •Luminescence of the produced polymers in solutions and films has been studied. •Formation of excimers and exciplexes in solution has been revealed. •Formation of excimers in films increases their photostability.

  20. Projections for the Production of Bulk Volume Bio-Based Polymers in Europe and Environmental Implications

    NARCIS (Netherlands)

    Patel, M.K.; Crank, M.

    2007-01-01

    In this paper we provide an overview of the most important emerging groups of bio-based polymers for bulk volume applications and we discuss market projections for these types of bio-based polymers in the EU, thereby distinguishing between three scenarios. Bio-based polymers are projected to reach a

  1. CIRS High-Resolution Thermal Scans and the Structure of Saturn's B Ring

    Science.gov (United States)

    Brooks, S. M.; Spilker, L. J.; Showalter, M.; Pilorz, S.; Edgington, S. G.

    2017-12-01

    The flyby of Titan on November 29, 2016, sent the Cassini spacecraft on a trajectory that would take it within 10,000 kilometers of Saturn's F ring multiple times before a subsequent Titan encounter on April 22, 2017, would send it on ballistic trajectory carrying it between Saturn's cloud tops and the planet's D ring for several flybys. This geometry has proven beneficial for high-resolution studies of the rings, not just because of Cassini's proximity to the rings, but also because of the spacecraft's high elevation angle above the rings, which reduces the foreshortening that tends to degrade resolution in the ring plane. We will report on several observations of Saturn's main rings at the high spatial resolutions enabled by the end-of-mission geometry, particulary the B ring, with the Composite Infrared Spectrometer onboard Cassini during the F-ring and proximal orbits. CIRS' three infrared detectors cover a combined spectral range of 10 to 1400 cm-1 (1 mm down to 7 microns). We focus on data from Focal Plane 1, which covers the 10 to 600 cm-1 range (1 mm to 16 microns). The apodized spectral resolution of the instrument can be varied from 15 cm-1 to 0.5 cm-1 (Flasar et al. 2004). FP1's wavelength range makes it well-suited to sensing thermal emission from objects at temperatures typical of Saturn's rings. Correlating ring optical depth with temperatures retrieved from scans of the face of the rings exposed to direct solar illumination (the lit face) and the opposite (unlit) face suggests differences in ring structure or particle transport between the lit and unlit sides of the rings in different regions of the B ring. Lit side temperatures in the core of the B ring range between 82 and 87 K; temperatures on the unlit side of the core vary from 66 K up to 74 K. Ferrari and Reffet (2013) and Pilorz et al. (2015) published thorough analyses of the thermal throughput across this optically thick ring. We will discuss these recent CIRS rings observations and their

  2. Electro-Optical and Electrochemical Properties of a Conjugated Polymer Prepared by the Cyclopolymerization of Diethyl Dipropargylmalonate

    Directory of Open Access Journals (Sweden)

    Yeong-Soon Gal

    2008-01-01

    Full Text Available The electro-optical and electrochemical properties of poly(diethyl dipropargylmalonate were measured and discussed. Poly(diethyl dipropargylmalonate prepared by (NBDPdCl2 catalyst was used for study. The chemical structure of poly(diethyl dipropargylmalonate was characterized by such instrumental methods as NMR (1H-, 13C-, IR, and UV-visible spectroscopies to have the conjugated cyclopolymer backbone system. The microstructure analysis of polymer revealed that this polymer have the six-membered ring moieties majorly. The photoluminescence peak of polymer was observed at 543 nm, which is corresponded to the photon energy of 2.51 eV. The cyclovoltamograms of the polymer exhibited the irreversible electrochemical behaviors between the doping and undoping peaks. It was found that the kinetics of the redox process of this conjugated cyclopolymer might be controlled by the diffusion-control process from the experiment of the oxidation current density of polymer versus the scan rate.

  3. White Ring; White ring

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, H.; Yuzawa, H. [Nikken Sekkei Ltd., Osaka (Japan)

    1998-01-05

    White Ring is a citizen`s gymnasium used for figure skating and short track speed skating games of 18th Winter Olympic Games in 1998. White Ring is composed of a main-arena and a sub-arena. For the main-arena with an area 41mtimes66m, an ice link can be made by disengaging the potable floor and by flowing brine in the bridged polystyrene pipes embedded in the concrete floor. Due to the fortunate groundwater in this site, well water is used for the outside air treatment energy in 63% during heating and in 35% during cooling. Ammonia is used as a cooling medium for refrigerating facility. For the heating of audience area in the large space, heat load from the outside is reduced by enhancing the heat insulation performance of the roof of arena. The audience seats are locally heated using heaters. For the White Ring, high quality environment is realized for games through various functions of the large-scale roof of the large space. Success of the big event was expected. 15 figs., 4 tabs.

  4. Token Ring Project

    Directory of Open Access Journals (Sweden)

    Adela Ionescu

    2007-01-01

    Full Text Available Ring topology is a simple configuration used to connect processes that communicate among themselves. A number of network standards such as token ring, token bus, and FDDI are based on the ring connectivity. This article will develop an implementation of a ring of processes that communicate among themselves via pipe links. The processes are nodes in the ring. Each process reads from its standard input and writes in its standard output. N-1 process redirects the its standard output to a standard input of the process through a pipe. When the ring-structure is designed, the project can be extended to simulate networks or to implement algorithms for mutual exclusion

  5. Semi-algebraic function rings and reflectors of partially ordered rings

    CERN Document Server

    Schwartz, Niels

    1999-01-01

    The book lays algebraic foundations for real geometry through a systematic investigation of partially ordered rings of semi-algebraic functions. Real spectra serve as primary geometric objects, the maps between them are determined by rings of functions associated with the spectra. The many different possible choices for these rings of functions are studied via reflections of partially ordered rings. Readers should feel comfortable using basic algebraic and categorical concepts. As motivational background some familiarity with real geometry will be helpful. The book aims at researchers and graduate students with an interest in real algebra and geometry, ordered algebraic structures, topology and rings of continuous functions.

  6. Boiling characteristics of dilute polymer solutions and implications for the suppression of vapor explosions

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K.H.; Kim, M.H. [Univ. of Science and Technology, Pohang (Korea, Republic of)

    1995-09-01

    Quenching experiments of hot solid spheres in dilute aqueous solutions of polyethylene oxide polymer have been conducted for the purpose of investigating the physical mechanisms of the suppression of vapor explosions in this polymer solutions. Two spheres of 22.2mm and 9.5mm-diameter were tested in the polymer solutions of various concentrations at 30{degrees}C. Minimum film boiling temperature ({Delta}T{sub MFB}) in this highly-subcooled liquid rapidly decreased from over 700{degrees}c for pure water to about 150{degrees}C as the polymer concentration was increased up to 300ppm for 22.2mm sphere, and it decreased to 350{degrees}C for 9.5mm sphere. This rapid reduction of minimum film boiling temperature in the PEO aqueous solutions can explain its ability of the suppression of spontaneous vapor explosions. The ability of suppression of vapor explosions by dilute polyethylene oxide solutions against an external trigger pressure was tested by dropping molten tin into the polymer solutions at 25{degrees}C. It was observed that in 50ppm solutions more mass fragmented than in pure water, but produced weaker explosion pressures. The explosion was completely suppressed in 300ppm solutions with the external trigger. The debris size distributions of fine fragments smaller than 0.7mm were shown almost identical regardless of the polymer concentrations.

  7. A facile route to ketene-functionalized polymers for general materials applications

    Science.gov (United States)

    Leibfarth, Frank A.; Kang, Minhyuk; Ham, Myungsoo; Kim, Joohee; Campos, Luis M.; Gupta, Nalini; Moon, Bongjin; Hawker, Craig J.

    2010-03-01

    Function matters in materials science, and methodologies that provide paths to multiple functionality in a single step are to be prized. Therefore, we introduce a robust and efficient strategy for exploiting the versatile reactivity of ketenes in polymer chemistry. New monomers for both radical and ring-opening metathesis polymerization have been developed, which take advantage of Meldrum's acid as both a synthetic building block and a thermolytic precursor to dialkyl ketenes. The ketene-functionalized polymers are directly detected by their characteristic infrared absorption and are found to be stable under ambient conditions. The inherent ability of ketenes to provide crosslinking via dimerization and to act as reactive chemical handles via addition, provides simple methodology for application in complex materials challenges. Such versatile characteristics are illustrated by covalently attaching and patterning a dye through microcontact printing. The strategy highlights the significant opportunities afforded by the traditionally neglected ketene functional group in polymer chemistry.

  8. Rotating ring-ring electrode theory and experiment

    NARCIS (Netherlands)

    Kuiken, H.K.; Bakkers, E.P.A.M.; Ligthart, H.; Kellyb, J.J.

    2000-01-01

    A model is presented for the rotating ring-ring electrode. Although the electrode is defined by four characteristic lengths, it is shown that the collection efficiency depends on only two dimensionless parameters. A simple relationship between these and the corresponding parameters for the rotating

  9. Something new in the field of PLA/GA bioresorbable polymers?

    Science.gov (United States)

    Vert, M; Schwach, G; Engel, R; Coudane, J

    1998-04-30

    Polymers issued from glycolic acid and lactic acids (PLAGA) are now used worldwide as bioresorbable devices in surgery and in pharmacology. Their abiotic hydrolytic degradation has been shown to depend on diffusion-reaction phenomena and to proceed homogeneously or heterogeneously, depending on many factors. Two initiators are presently used industrially to make PLAGA polymers by ring opening polymerisation of lactide and/or glycolide in the bulk, namely Sn octanoate and zinc metal. In this contribution, attention is paid to the differences generated by the use of these two initiator systems in the case of the polymerisation of DL-lactide. Various poly(DL-lactide)s were prepared and characterised by size-exclusion chromatography (SEC), differential scanning calorimetry (DSC) and nuclear magnetic resonance spectroscopy (NMR). These polymers were allowed to age in pH=7.4 isoosmolar phosphate buffer at 37 degrees C. Under these conditions, polymers prepared by the two initiator systems showed dramatic differences when the fates of parallel sided specimens of rather large dimensions were considered. These differences were related to the esterification of some of the OH chain ends by octanoic acid and to the presence of rather hydrophobic low molecular weight by-products which were insoluble in the solvent generally used to purify the crude PLAGA polymers. These new findings should be of great interest in the case of PLAGA based matrices aimed at drug delivery.

  10. Topological ring currents in the "empty" ring of benzo-annelated perylenes.

    Science.gov (United States)

    Dickens, Timothy K; Mallion, Roger B

    2011-01-27

    Cyclic conjugation in benzo-annelated perylenes is examined by means of the topological π-electron ring currents calculated for each of their constituent rings, in a study that is an exact analogy of a recent investigation by Gutman et al. based on energy-effect values for the corresponding rings in each of these structures. "Classical" approaches, such as Kekulé structures, Clar "sextet" formulas, and circuits of conjugation, predict that the central ring in perylene is "empty" and thus contributes negligibly to cyclic conjugation. However, conclusions from the present calculations of topological ring currents agree remarkably with those arising from the earlier study involving energy-effect values in that, contrary to what would be predicted from the classical approaches, rings annelated in an angular fashion relative to the central ring of these perylene structures materially increase the extent of that ring's involvement in cyclic conjugation. It is suggested that such close quantitative agreement between the predictions of these two superficially very different indices (energy effect and topological ring current) might be due to the fact that, ultimately, both depend, albeit in ostensibly quite different ways, only on an adjacency matrix that contains information about the carbon-carbon connectivity of the conjugated system in question.

  11. Pronounced Side Chain Effects in Triple Bond-Conjugated Polymers Containing Naphthalene Diimides for n-Channel Organic Field-Effect Transistors

    KAUST Repository

    Nam, Sungho; Hahm, Suk Gyu; Khim, Dongyoon; Kim, Hwajeong; Sajoto, Tissa; Ree, Moonhor; Marder, Seth R.; Anthopoulos, Thomas D.; Bradley, Donal D.C.; Kim, Youngkyoo

    2018-01-01

    on the surface morphology/nanostructure, thus playing a critical role in charge-transporting properties of the three NDI-based copolymers. Among the polymers, the one with an octyldodecyl (OD) chain at the nitrogen atoms of imide ring and a hexadecyloxy (HO

  12. Ring Opening Metathesis Polymerization of Cyclopentene Using a Ruthenium Catalyst Confined by a Branched Polymer Architecture

    KAUST Repository

    Mugemana, Clement; Bukhriakov, Konstantin; Bertrand, Olivier; Vu, Khanh B.; Gohy, Jean-Francois; Hadjichristidis, Nikolaos; Rodionov, Valentin

    2016-01-01

    Multi-arm polystyrene stars functionalized with Grubbs-type catalysts in their cores were synthesized and used for the ring-opening metathesis polymerization (ROMP) of cyclopentene. The spatial confinement of the catalytic sites and the nanoscale phase separation between polystyrene and the growing polypentenamer chains lead to a dramatic inhibition of the ROMP termination and chain transfer steps. Consequently, cyclopentene polymerizations proceeded fast and with a high degree of conversion even in air. The Grubbs second generation catalyst was oxidatively inactivated under the same conditions. In contrast to conventional small-molecule catalysts, the ultimate degree of conversion of cyclopentene monomer and the polydispersity of the product polypentenamer are not affected by the temperature. This indicates that spatial confinement of the catalyst resulted in a significant change in the activation parameters for the alkene metathesis ring-opening.

  13. Ring Opening Metathesis Polymerization of Cyclopentene Using a Ruthenium Catalyst Confined by a Branched Polymer Architecture

    KAUST Repository

    Mugemana, Clement

    2016-03-22

    Multi-arm polystyrene stars functionalized with Grubbs-type catalysts in their cores were synthesized and used for the ring-opening metathesis polymerization (ROMP) of cyclopentene. The spatial confinement of the catalytic sites and the nanoscale phase separation between polystyrene and the growing polypentenamer chains lead to a dramatic inhibition of the ROMP termination and chain transfer steps. Consequently, cyclopentene polymerizations proceeded fast and with a high degree of conversion even in air. The Grubbs second generation catalyst was oxidatively inactivated under the same conditions. In contrast to conventional small-molecule catalysts, the ultimate degree of conversion of cyclopentene monomer and the polydispersity of the product polypentenamer are not affected by the temperature. This indicates that spatial confinement of the catalyst resulted in a significant change in the activation parameters for the alkene metathesis ring-opening.

  14. Kayser-Fleischer Rings

    Science.gov (United States)

    ... Support Contacts Lab Tracker/Copper Calculator Stories Programs & Research ... About Everything you need to know about Wilson Disease Kayser-Fleischer Rings Definition Kayser-Fleischer Ring: Clinical sign. Brownish-yellow ring visible around the corneo- ...

  15. Planetary Rings

    Science.gov (United States)

    Nicholson, P. D.

    2001-11-01

    A revolution in the studies in planetary rings studies occurred in the period 1977--1981, with the serendipitous discovery of the narrow, dark rings of Uranus, the first Voyager images of the tenuous jovian ring system, and the many spectacular images returned during the twin Voyager flybys of Saturn. In subsequent years, ground-based stellar occultations, HST observations, and the Voyager flybys of Uranus (1986) and Neptune (1989), as well as a handful of Galileo images, provided much additional information. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. Perhaps most puzzling is Saturn's multi-stranded, clumpy F ring, which continues to defy a simple explanation 20 years after it was first glimpsed in grainy images taken by Pioneer 11. Voyager and HST images reveal a complex, probably chaotic, dynamical interaction between unseen parent bodies within this ring and its two shepherd satellites, Pandora and Prometheus. The work described here reflects contributions by Joe Burns, Jeff Cuzzi, Luke Dones, Dick French, Peter Goldreich, Colleen McGhee, Carolyn Porco, Mark Showalter, and Bruno Sicardy, as well as those of the author. This research has been supported by NASA's Planetary Geology and Geophysics program and the

  16. Local piezoelectric response of ZnO nanoparticles embedded in a photosensitive polymer

    Energy Technology Data Exchange (ETDEWEB)

    Prashanthi, K.; Zhang, H.; Thundat, T. [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta (Canada); Ramgopal Rao, V. [Department of Electrical Engineering, Indian Institute of Technology, Bombay, Mumbai (India)

    2012-02-15

    Local piezoelectric properties of ZnO nanoparticles (NPs) embedded in a photo-epoxy polymer are investigated by piezoresponse force microscopy (PFM). Integrating ZnO NPs into a photosensitive SU-8 polymer matrix not only retains the highly desired piezoelectric properties of the ZnO, but also preserves photosensitivity and optical transparency of the SU-8 polymer. These results have strong implications for simple photolithography based low-cost fabrication of piezoelectric microelectromechanicalsystems (MEMS) and nanoelectromechanicalsystems (NEMS) in both sensing and energy harvesting applications. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Polymer scaffolds bearing azobenzene - Potential for optical information storage

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Ramanujam, P.S.

    2001-01-01

    % or greater, and erasability. The implications of the main chain nature for polyester morphology and for the permanency of the induced anisotropy are discussed. The design and methods of preparation of other significantly different polymer scaffolds supporting cyanoazobenzene are elaborated. Oligopeptides...

  18. Scaling of Engineered Vascular Grafts Using 3D Printed Guides and the Ring Stacking Method.

    Science.gov (United States)

    Pinnock, Cameron B; Xu, Zhengfan; Lam, Mai T

    2017-03-27

    Coronary artery disease remains a leading cause of death, affecting millions of Americans. With the lack of autologous vascular grafts available, engineered grafts offer great potential for patient treatment. However, engineered vascular grafts are generally not easily scalable, requiring manufacture of custom molds or polymer tubes in order to customize to different sizes, constituting a time-consuming and costly practice. Human arteries range in lumen diameter from about 2.0-38 mm and in wall thickness from about 0.5-2.5 mm. We have created a method, termed the "Ring Stacking Method," in which variable size rings of tissue of the desired cell type, demonstrated here with vascular smooth muscle cells (SMCs), can be created using guides of center posts to control lumen diameter and outer shells to dictate vessel wall thickness. These tissue rings are then stacked to create a tubular construct, mimicking the natural form of a blood vessel. The vessel length can be tailored by simply stacking the number of rings required to constitute the length needed. With our technique, tissues of tubular forms, similar to a blood vessel, can be readily manufactured in a variety of dimensions and lengths to meet the needs of the clinic and patient.

  19. Role of Molecular Interactions for Synergistic Precipitation Inhibition of Poorly Soluble Drug in Supersaturated Drug-Polymer-Polymer Ternary Solution.

    Science.gov (United States)

    Prasad, Dev; Chauhan, Harsh; Atef, Eman

    2016-03-07

    We are reporting a synergistic effect of combined Eudragit E100 and PVP K90 in precipitation inhibition of indomethacin (IND) in solutions at low polymer concentration, a phenomenon that has significant implications on the usefulness of developing novel ternary solid dispersion of poorly soluble drugs. The IND supersaturation was created by cosolvent technique, and the precipitation studies were performed in the absence and the presence of individual and combined PVP K90 and Eudragit E100. The studies were also done with PEG 8000 as a noninteracting control polymer. A continuous UV recording of the IND absorption was used to observe changes in the drug concentration over time. The polymorphic form and morphology of precipitated IND were characterized by Raman spectroscopy and scanning electron microscopy. The change in the chemical shift in solution (1)H NMR was used as novel approach to probe IND-polymer interactions. Molecular modeling was used for calculating binding energy between IND-polymer as another indication of IND-polymer interaction. Spontaneous IND precipitation was observed in the absence of polymers. Eudragit E100 showed significant inhibitory effect on nuclei formation due to stronger interaction as reflected in higher binding energy and greater change in chemical shift by NMR. PVP K90 led to significant crystal growth inhibition due to adsorption on growing IND crystals as confirmed by modified crystal habit of precipitate in the presence of PVP K90. Combination of polymers resulted in a synergistic precipitation inhibition and extended supersaturation. The NMR confirmed interaction between IND-Eudragit E100 and IND-PVP K90 in solution. The combination of polymers showed similar peak shift albeit using lower polymer concentration indicating stronger interactions. The results established the significant synergistic precipitation inhibition effect upon combining Eudragit E100 and PVP K90 due to drug-polymer interaction.

  20. Preparation for electron ring - plasma ring merging experiments in RECE-MERGE

    International Nuclear Information System (INIS)

    Taggart, D.; Sekiguchi, A.; Fleischmann, H.H.

    1986-01-01

    The formation of a mixed-CT using relativistic electron rings and gun-produced plasma rings by MERGE-ing them axially is simulated. This process is similar to the axial stacking of relativistic electron rings in RECE-Christa. The results of their first plasm production experiment are reported here. After study of the gun-produced plasma's properties is completed, the gun will be mounted at the downstream end of the vacuum tank and the source of relativistic electron rings will be at the upstream end. The two rings, formed at opposite ends of the tank, will be translated axially and merged

  1. Effect of chain stiffness on the structure of single-chain polymer nanoparticles

    Science.gov (United States)

    Moreno, Angel J.; Bacova, Petra; Lo Verso, Federica; Arbe, Arantxa; Colmenero, Juan; Pomposo, José A.

    2018-01-01

    Polymeric single-chain nanoparticles (SCNPs) are soft nano-objects synthesized by purely intramolecular cross-linking of single polymer chains. By means of computer simulations, we investigate the conformational properties of SCNPs as a function of the bending stiffness of their linear polymer precursors. We investigate a broad range of characteristic ratios from the fully flexible case to those typical of bulky synthetic polymers. Increasing stiffness hinders bonding of groups separated by short contour distances and increases looping over longer distances, leading to more compact nanoparticles with a structure of highly interconnected loops. This feature is reflected in a crossover in the scaling behaviour of several structural observables. The scaling exponents change from those characteristic for Gaussian chains or rings in θ-solvents in the fully flexible limit, to values resembling fractal or ‘crumpled’ globular behaviour for very stiff SCNPs. We characterize domains in the SCNPs. These are weakly deformable regions that can be seen as disordered analogues of domains in disordered proteins. Increasing stiffness leads to bigger and less deformable domains. Surprisingly, the scaling behaviour of the domains is in all cases similar to that of Gaussian chains or rings, irrespective of the stiffness and degree of cross-linking. It is the spatial arrangement of the domains which determines the global structure of the SCNP (sparse Gaussian-like object or crumpled globule). Since intramolecular stiffness can be varied through the specific chemistry of the precursor or by introducing bulky side groups in its backbone, our results propose a new strategy to tune the global structure of SCNPs.

  2. Streaks to rings to vortex grids: generic patterns in transient convective spin up of an evaporating fluid.

    Science.gov (United States)

    Zhong, J-Q; Patterson, M D; Wettlaufer, J S

    2010-07-23

    We observe the transient formation of a ringed pattern state during spin up of an evaporating fluid on a time scale of order a few Ekman spin up times. The ringed state is probed using infrared thermometry and particle image velocimetry and it is demonstrated to be a consequence of the transient balance between Coriolis and viscous forces which dominate inertia, each of which are extracted from the measured velocity field. The breakdown of the ringed state is quantified in terms of the antiphasing of these force components which drives a Kelvin-Helmholtz instability and we show that the resulting vortex grid spacing scales with the ring wavelength. This is the fundamental route to quasi-two-dimensional turbulent vortex flow and thus may have implications in astrophysics and geophysics wherein rotating convection is ubiquitous.

  3. Gallium-containing polymer brush film as efficient supported Lewis acid catalyst in a glass microreactor

    Directory of Open Access Journals (Sweden)

    Rajesh Munirathinam

    2013-08-01

    Full Text Available Polystyrene sulfonate polymer brushes, grown on the interior of the microchannels in a microreactor, have been used for the anchoring of gallium as a Lewis acid catalyst. Initially, gallium-containing polymer brushes were grown on a flat silicon oxide surface and were characterized by FTIR, ellipsometry, and X-ray photoelectron spectroscopy (XPS. XPS revealed the presence of one gallium per 2–3 styrene sulfonate groups of the polymer brushes. The catalytic activity of the Lewis acid-functionalized brushes in a microreactor was demonstrated for the dehydration of oximes, using cinnamaldehyde oxime as a model substrate, and for the formation of oxazoles by ring closure of ortho-hydroxy oximes. The catalytic activity of the microreactor could be maintained by periodic reactivation by treatment with GaCl3.

  4. Syntheses and Post-Polymerization Modifications of Well-Defined Styrenic Polymers Containing Three-Membered Heterocyclic Functionalities

    Science.gov (United States)

    McLeod, David Charles

    Macromolecules that contain electrophilic moieties, such as benzyl halides, activated esters, and epoxides, will readily undergo efficient nucleophilic substitution reactions with a wide variety of compounds under mild conditions, and are therefore ideally suited to act as "universal" precursors to functional materials. Epoxide-containing polymers derived from the radical polymerization of commercially-available glycidyl methacrylate are often employed in this role; however, methacrylic polymers suffer from certain limitations as a result of the incorporated ester groups, which are not stabile in the presence of strong nucleophiles, acids, bases, or esterase enzymes. Styrenic polymers that do not contain labile carbonyl moieties are usually the precursors of choice when high chemical stability is desired in the end product, but the production of functional materials from epoxide-containing styrenic polymers is relatively unexplored. In this dissertation, improved methods were developed for synthesizing 4-vinylphenyloxirane (4VPO) and 4-vinylphenyl glycidyl ether (4VPGE), two of the better-known epoxide-containing styrenic monomers, in high-yield and purity. Well-defined, epoxide-containing styrenic polymers with targeted molecular weights, narrow molecular weight distributions, and controlled architectures (specifically, linear and star-shaped homopolymers, as well as linear block copolymers with styrene) were produced from 4VPO and 4VPGE for the first time using reversible-deactivation radical polymerization techniques, such as low-catalyst-concentration atom transfer radical polymerization (LCC ATRP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization. The robust nature and utility of poly4VPO and poly4VPGE were then demonstrated by the efficient, ring-opening modification of the pendant epoxide groups with a structurally- and functionally-diverse array of alcohols under acidic conditions at ambient temperature. The macromolecular

  5. Synthesis and properties of a novel bio-based polymer from modified soybean oil

    Science.gov (United States)

    Li, Y. T.; Yang, L. T.; Zhang, H.; Tang, Z. J.

    2017-02-01

    Maleated acrylated epoxidized soybean oil (MAESO) was prepared by acrylated epoxidized soybean oil (AESO) and maleic anhydride. AESO were obtained by the reaction of epoxidized soybean oil (ESO) with acrylic acid as the ring-opening reagent. The polymer was prepared by MAESO react with styrene. The structures of the products were studied by Fourier transformation infrared spectrometer (FT-IR), and were consistent with the theoretical structures. Swelling experiment indicated that the crosslinking degree increased with increasing epoxy value of ESO. Thermal properties was tested by thermo-gravimetric analysis (TG) and differential scanning calorimetry analysis (DSC), indicating that glass transition temperature (Tg) of the polymer increased with increasing epoxy value of ESO, and thermal stability of polymer have a good correlation with the crosslinking degree. Mechanical properties analysis presented that tensile strength and impact strength affected by epoxy value of ESO. With the increase of epoxy value, the tensile strength increase, while the impact strength decrease. The property of the polymer ranged from elastomer to plastic character depended on the functionality of the ESO.

  6. Soluble Electrochromic Polymers Incorporating Benzoselenadiazole and Electron Donor Units (Carbazole or Fluorene: Synthesis and Electronic-Optical Properties

    Directory of Open Access Journals (Sweden)

    Jianzhong Xu

    2018-04-01

    Full Text Available A series of π-conjugated polymers containing alternating benzoselenadiazole (BSe-bi(thiophene derivative-carbazole or benzoththiadiazole (BSe-bi(thiophene derivative-fluorene units were designed and synthesized. Thiophene derivatives, namely 3-hexylthiophene, 3,4-bihexyloxythiophene, and 3,4-bioctyloxythiophene, were used as the π-bridges of the polymers. The polymers were characterized in detail in terms of their thermal stabilities, cyclic voltammograms, UV-Vis absorption, spectroelectrochemistry, dynamic switching property and so forth. The alkoxy thiophene π-bridged polymers have lower onset oxidation potentials and bandgaps than that of their corresponding alkyl thiophene π-bridged polymers. The selection of the donor units between the carbazole and the fluorene units has nearly no effect on the bandgaps and colors as well as the onset oxidation potentials of the polymers. The increase in the length of the side alkyl chains on the thiophene ring caused a slight increase in the polymer bandgap, which may be caused by the space hindrance effect. The dynamic switching abilities of the polymers were obtained by the chronoabsorptometry method, and the results also suggested that the alkoxy thiophene-containing polymers (as π-bridges have higher contrast ratios than the corresponding alkyl thiophene-containing polymers. Furthermore, the increase in the length of the side alkyl chain might have a detrimental effect on the optical contrast ratios of the polymers.

  7. Synthesis and characterisation of new types of side chain cholesteryl polymers.

    Science.gov (United States)

    Wang, Bin; Du, Haiyan; Zhang, Junhua

    2011-01-01

    A series of cholesterol derivatives have been synthesised via the alkylation reaction of the 3-hydroxyl group with the aliphatic bromide compounds with different chain lengths, namely 3β-alkyloxy-cholesterol. The double bond between the C5 and C6 positions in these cholesterol derivatives was oxidised into epoxy, followed by an epoxy-ring-opening reaction with the treatment with acrylic acid, resulting in a series of 3β-alkyloxy-5α-hydroxy-6β-acryloyloxycholesterol, C(n)OCh (n=1, 2, 4, 6, 8, 10, 12), The acrylate group is connected to the C6 position, which is confirmed by the single crystal structure analysis. The corresponding polymers, PC(n)OCh, were prepared via free radical polymerisation. The structure of monomers and the resulting polymers were characterised with nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC). The thermal properties of PC(n)OCh were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). To determine the secondary structure of polymers, circular dichroism (CD) spectra were performed. It was found that not all monomers produce high-molecular-weight polymers because of steric hindrance. However, all polymers have a helical structure, which can be enhanced by increasing the alkoxy chain length. In addition, increasing the alkoxy chain length decreases the glass transition temperature and increases the decomposition temperature of the polymers. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Conductivity and properties of polysiloxane-polyether cluster-LiTFSI networks as hybrid polymer electrolytes

    Science.gov (United States)

    Boaretto, Nicola; Joost, Christine; Seyfried, Mona; Vezzù, Keti; Di Noto, Vito

    2016-09-01

    This report describes the synthesis and the properties of a series of polymer electrolytes, composed of a hybrid inorganic-organic matrix doped with LiTFSI. The matrix is based on ring-like oligo-siloxane clusters, bearing pendant, partially cross-linked, polyether chains. The dependency of the thermo-mechanic and of the transport properties on several structural parameters, such as polyether chains' length, cross-linkers' concentration, and salt concentration is studied. Altogether, the materials show good thermo-mechanical and electrochemical stabilities, with conductivities reaching, at best, 8·10-5 S cm-1 at 30 °C. In conclusion, the cell performances of one representative sample are shown. The scope of this report is to analyze the correlations between structure and properties in networked and hybrid polymer electrolytes. This could help the design of optimized polymer electrolytes for application in lithium metal batteries.

  9. Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers

    KAUST Repository

    Andernach, Rolf

    2015-07-22

    We report the synthesis of a novel polythiophene-based host-guest copolymer incorporating a Pt-porphyrin complex (TTP-Pt) into the backbone for efficient singlet to triplet polymer exciton sensitization. We elucidated the exciton dynamics in thin films of the material by means of Transient Absorption Spectrosopcy (TAS) on multiple timescales and investigated the mechanism of triplet exciton formation. During sensitization, single exciton diffusion is followed by exciton transfer from the polymer backbone to the complex where it undergoes intersystem crossing to the triplet state of the complex. We directly monitored the triplet exciton back transfer from the Pt-porphyrin to the polymer and find that 60% of the complex triplet excitons are transferred with a time constant of 1087 ps. We propose an equilibrium between polymer and porphyrin triplet states as a result of the low triplet diffusion length in the polymer backbone and hence an increased local triplet population resulting in increased triplet-triplet annihilation. This novel system has significant implications for the design of novel materials for triplet sensitized solar cells and up-conversion layers.

  10. Ring faults and ring dikes around the Orientale basin on the Moon.

    Science.gov (United States)

    Andrews-Hanna, Jeffrey C; Head, James W; Johnson, Brandon; Keane, James T; Kiefer, Walter S; McGovern, Patrick J; Neumann, Gregory A; Wieczorek, Mark A; Zuber, Maria T

    2018-08-01

    The Orientale basin is the youngest and best-preserved multiring impact basin on the Moon, having experienced only modest modification by subsequent impacts and volcanism. Orientale is often treated as the type example of a multiring basin, with three prominent rings outside of the inner depression: the Inner Rook Montes, the Outer Rook Montes, and the Cordillera. Here we use gravity data from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission to reveal the subsurface structure of Orientale and its ring system. Gradients of the gravity data reveal a continuous ring dike intruded into the Outer Rook along the plane of the fault associated with the ring scarp. The volume of this ring dike is ~18 times greater than the volume of all extrusive mare deposits associated with the basin. The gravity gradient signature of the Cordillera ring indicates an offset along the fault across a shallow density interface, interpreted to be the base of the low-density ejecta blanket. Both gravity gradients and crustal thickness models indicate that the edge of the central cavity is shifted inward relative to the equivalent Inner Rook ring at the surface. Models of the deep basin structure show inflections along the crust-mantle interface at both the Outer Rook and Cordillera rings, indicating that the basin ring faults extend from the surface to at least the base of the crust. Fault dips range from 13-22° for the Cordillera fault in the northeastern quadrant, to 90° for the Outer Rook in the northwestern quadrant. The fault dips for both outer rings are lowest in the northeast, possibly due to the effects of either the direction of projectile motion or regional gradients in pre-impact crustal thickness. Similar ring dikes and ring faults are observed around the majority of lunar basins.

  11. Extreme Drought Events Revealed in Amazon Tree Ring Records

    Science.gov (United States)

    Jenkins, H. S.; Baker, P. A.; Guilderson, T. P.

    2010-12-01

    The Amazon basin is a center of deep atmospheric convection and thus acts as a major engine for global hydrologic circulation. Yet despite its significance, a full understanding of Amazon rainfall variability remains elusive due to a poor historical record of climate. Temperate tree rings have been used extensively to reconstruct climate over the last thousand years, however less attention has been given to the application of dendrochronology in tropical regions, in large part due to a lower frequency of tree species known to produce annual rings. Here we present a tree ring record of drought extremes from the Madre de Dios region of southeastern Peru over the last 190 years. We confirm that tree ring growth in species Cedrela odorata is annual and show it to be well correlated with wet season precipitation. This correlation is used to identify extreme dry (and wet) events that have occurred in the past. We focus on drought events identified in the record as drought frequency is expected to increase over the Amazon in a warming climate. The Cedrela chronology records historic Amazon droughts of the 20th century previously identified in the literature and extends the record of drought for this region to the year 1816. Our analysis shows that there has been an increase in the frequency of extreme drought (mean recurrence interval = 5-6 years) since the turn of the 20th century and both Atlantic and Pacific sea surface temperature (SST) forcing mechanisms are implicated.

  12. Groups, rings, modules

    CERN Document Server

    Auslander, Maurice

    2014-01-01

    This classic monograph is geared toward advanced undergraduates and graduate students. The treatment presupposes some familiarity with sets, groups, rings, and vector spaces. The four-part approach begins with examinations of sets and maps, monoids and groups, categories, and rings. The second part explores unique factorization domains, general module theory, semisimple rings and modules, and Artinian rings. Part three's topics include localization and tensor products, principal ideal domains, and applications of fundamental theorem. The fourth and final part covers algebraic field extensions

  13. Saturn's Rings Edge-on

    Science.gov (United States)

    1995-01-01

    In one of nature's most dramatic examples of 'now-you see-them, now-you-don't', NASA's Hubble Space Telescope captured Saturn on May 22, 1995 as the planet's magnificent ring system turned edge-on. This ring-plane crossing occurs approximately every 15 years when the Earth passes through Saturn's ring plane.For comparison, the top picture was taken by Hubble on December 1, 1994 and shows the rings in a more familiar configuration for Earth observers.The bottom picture was taken shortly before the ring plane crossing. The rings do not disappear completely because the edge of the rings reflects sunlight. The dark band across the middle of Saturn is the shadow of the rings cast on the planet (the Sun is almost 3 degrees above the ring plane.) The bright stripe directly above the ring shadow is caused by sunlight reflected off the rings onto Saturn's atmosphere. Two of Saturn's icy moons are visible as tiny starlike objects in or near the ring plane. They are, from left to right, Tethys (slightly above the ring plane) and Dione.This observation will be used to determine the time of ring-plane crossing and the thickness of the main rings and to search for as yet undiscovered satellites. Knowledge of the exact time of ring-plane crossing will lead to an improved determination of the rate at which Saturn 'wobbles' about its axis (polar precession).Both pictures were taken with Hubble's Wide Field Planetary Camera 2. The top image was taken in visible light. Saturn's disk appears different in the bottom image because a narrowband filter (which only lets through light that is not absorbed by methane gas in Saturn's atmosphere) was used to reduce the bright glare of the planet. Though Saturn is approximately 900 million miles away, Hubble can see details as small as 450 miles across.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and

  14. The Rotating Ring-Ring Electrode. Theory and Experiment

    NARCIS (Netherlands)

    Kuiken, H.K.; Bakkers, E.P.A.M.; Ligthart, H.; Kelly, J.J.

    2000-01-01

    A model is presented for the rotating ring-ring electrode. Although the electrode is defined by four characteristic lengths, it is shown that the collection efficiency depends on only two dimensionless parameters. A simple relationship between these and the corresponding parameters for the rotating

  15. Polyethers with pendent phenylvinyl substituted carbazole rings as polymers for hole transporting layers of OLEDs

    Science.gov (United States)

    Griniene, R.; Liu, L.; Tavgeniene, D.; Sipaviciute, D.; Volyniuk, D.; Grazulevicius, J. V.; Xie, Z.; Zhang, B.; Leduskrasts, K.; Grigalevicius, S.

    2016-01-01

    Polyethers containing pendent 3-(2-phenylvinyl)carbazole moieties have been synthesized by the multi-step synthetic routes. Full characterization of their structures is presented. The polymers represent materials of high thermal stability with initial thermal degradation temperatures exceeding 370 °C. The glass transition temperatures of the amorphous materials were in the range of 56-658 °C. The electron photoemission spectra of thin layers of the polymers showed ionization potentials of about 5.6 eV. Hole-transporting properties of the polymeric materials were tested in the structures of organic light emitting diodes with Alq3 as the green emitter and electron transporting layer. The device containing hole-transporting layers of poly{9-[6-(3-methyloxetan-3-ylmethoxy)hexyl]-3-(2-phenylvinyl)carbazole} exhibited the best overall performance with a maximum photometric efficiency of about 4.0 cd/A and maximum brightness exceeding 6430 cd/m2.

  16. Compositional and sensory characterization of red wine polymers.

    Science.gov (United States)

    Wollmann, Nadine; Hofmann, Thomas

    2013-03-06

    After isolation from red wine by means of ultrafiltration and gel adsorption chromatography, the composition of the highly astringent tasting high-molecular weight polymers was analyzed by means of HPLC-MS/MS, HPLC-UV/vis, and ion chromatography after thiolytic, alkaline, and acidic depolymerization and, on the basis of the quantitative data obtained as well as model incubation experiments, key structural features of the red wine polymers were proposed. The structural backbone of the polymers seems to be comprised of a procyanidin chain with (-)-epicatechin, (+)-catechin, (-)-epicatechin-3-O-gallate units as extension and terminal units as well as (-)-epigallocatechin as extension units. In addition, acetaldehyde was shown to link different procyanidins at the A-ring via an 1,1-ethylene bridge and anthocyanins and pyranoanthocyanins were found to be linked to the procyanidin backbone via a C-C-linkage at position C(6) or C(8), respectively. Alkaline hydrolysis demonstrated the polymeric procyanidins to be esterified with various organic acids and phenolic acids, respectively. In addition, the major part of the polysaccharides present in the red wine polymeric fraction were found not to be covalently linked to procyanidins. Interestingly, sensory evaluation of individual fractions of the red wine polymers did not show any significant difference in the astringent threshold concentrations, nor in the astringency intensity in supra-threshold concentrations and demonstrated the mean degree of polymerization as well as the galloylation degree not to have an significant influence on the astringency perception.

  17. Exploiting the Physicochemical Properties of Dendritic Polymers for Environmental and Biological Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Priyanka; Geitner, Nicholas K.; Sarupria, Sapna; Ke, Pu Chun

    2013-04-07

    In this Perspective we first examine the rich physicochemical properties of dendritic polymers for hosting cations, anions, and polyaromatic hydrocarbons. We then extrapolate these conceptual discussions to the use of dendritic polymers for humic acid antifouling, oil dispersion, copper sensing, and fullerenol remediation. In addition, we review the state-of-the-art of dendrimer research and elaborate on their 10 implications for water purification, environmental remediation, nanomedicine, and energy harvesting.

  18. Wear Analysis of Top Piston Ring to Reduce Top Ring Reversal Bore Wear

    Directory of Open Access Journals (Sweden)

    P. Ilanthirayan

    2017-12-01

    Full Text Available The piston rings are the most important part in engine which controls the lubricating oil consumption and blowby of the gases. The lubricating film of oil is provided to seal of gases towards crankcase and also to give smooth friction free translatory motion between rings and liner. Of the three rings present top ring is more crucial as it does the main work of restricting gases downwards the crankcase. Boundary lubrication is present at the Top dead centre (TDC and Bottom dead centre (BDC of the liner surface. In addition to this, top ring is exposed to high temperature gases which makes the oil present near the top ring to get evaporated and decreasing its viscosity, making metal-metal contact most of the time. Due to this at TDC, excess wear happens on the liner which is termed as Top ring reversal bore wear. The wear rate depends upon many parameters such as lubrication condition, viscosity index, contact type, normal forces acting on ring, geometry of ring face, surface roughness, material property. The present work explores the wear depth for different geometries of barrel ring using Finite Element model with the help of Archard wear law and the same is validated through experimentation. The study reveals that Asymmetric barrel rings have less contact pressure which in turn reduces the wear at Top dead centre.

  19. Vortex rings

    CERN Document Server

    Akhmetov, D G

    2009-01-01

    This text on vortex rings covers their theoretical foundation, systematic investigations, and practical applications such as the extinction of fires at gushing oil wells. It pays special attention to the formation and motion of turbulent vortex rings.

  20. FUZZY RINGS AND ITS PROPERTIES

    Directory of Open Access Journals (Sweden)

    Karyati Karyati

    2017-01-01

      One of algebraic structure that involves a binary operation is a group that is defined  an un empty set (classical with an associative binary operation, it has identity elements and each element has an inverse. In the structure of the group known as the term subgroup, normal subgroup, subgroup and factor group homomorphism and its properties. Classical algebraic structure is developed to algebraic structure fuzzy by the researchers as an example semi group fuzzy and fuzzy group after fuzzy sets is introduced by L. A. Zadeh at 1965. It is inspired of writing about semi group fuzzy and group of fuzzy, a research on the algebraic structure of the ring is held with reviewing ring fuzzy, ideal ring fuzzy, homomorphism ring fuzzy and quotient ring fuzzy with its properties. The results of this study are obtained fuzzy properties of the ring, ring ideal properties fuzzy, properties of fuzzy ring homomorphism and properties of fuzzy quotient ring by utilizing a subset of a subset level  and strong level  as well as image and pre-image homomorphism fuzzy ring.   Keywords: fuzzy ring, subset level, homomorphism fuzzy ring, fuzzy quotient ring

  1. Pooled versus separate tree-ring δD measurements, and implications for reconstruction of the Arctic Oscillation in northwestern China.

    Science.gov (United States)

    Liu, Xiaohong; An, Wenling; Treydte, Kerstin; Wang, Wenzhi; Xu, Guobao; Zeng, Xiaomin; Wu, Guoju; Wang, Bo; Zhang, Xuanwen

    2015-04-01

    Stable hydrogen isotope ratios (δD) in tree rings are an attractive but still rarely explored terrestrial archive of past climatic information. Because the preparation of the cellulose nitrate for δD measurements requires more wood and a longer preparation time than preparation techniques for other isotopes in cellulose (δ18O or δ13C), it is challenging to obtain high-resolution records, especially for slow-growing trees at high elevations and in boreal regions. Here, we tested whether annually pooled samples of Qinghai spruce (Picea crassifolia Kom.) trees from northwestern China provided results similar to those derived as the mean of individual measurements of the same trees and whether the resulting chronologies recorded useful climate information. Inter-tree variability of δD was higher than that of measured ring width for the same trees. We found higher and significant coherence between pooled and mean isotope chronologies than that among the individual series. It showed a logarithmic relationship between ring mass and δD; however, accounting for the influence of ring mass on δD values only slightly improved the strength of climatic signals in the pooled records. Tree-ring δD was significantly positively correlated with the mean, maximum, and minimum temperatures during the previous winter and with maximum temperature during the current August, and significantly negatively correlated with precipitation in the previous November to January and the current July. The winter climate signal seems to dominate tree-ring δD through the influence of large-scale atmospheric circulation patterns, i.e. the Arctic Oscillation. These results will facilitate reconstruction of winter atmospheric circulation patterns over northwestern China based on a regional tree-ring δD networks. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Polarization Insensitivity in Double-Split Ring and Triple-Split Ring Terahertz Resonators

    International Nuclear Information System (INIS)

    Wu Qian-Nan; Lan Feng; Tang Xiao-Pin; Yang Zi-Qiang

    2015-01-01

    A modified double-split ring resonator and a modified triple-split ring resonator, which offer polarization-insensitive performance, are investigated, designed and fabricated. By displacing the two gaps of the conventional double-split ring resonator away from the center, the second resonant frequency for the 0° polarized wave and the resonant frequency for the 90° polarized wave become increasingly close to each other until they are finally identical. Theoretical and experimental results show that the modified double-split ring resonator and the modified triple-split ring resonator are insensitive to different polarized waves and show strong resonant frequency dips near 433 and 444 GHz, respectively. The results of this work suggest new opportunities for the investigation and design of polarization-dependent terahertz devices based on split ring resonators. (paper)

  3. Fluorinated arene, imide and unsaturated pyrrolidinone based donor acceptor conjugated polymers: Synthesis, structure-property and device studies

    Science.gov (United States)

    Liyanage, Arawwawala Don Thilanga

    the structure-property study of imide functionalized D-A polymers. Here we used thiophene-imide (TPD) as the acceptor moiety and prepare several D-A polymers by varying the donor units. When selecting the donor units, more priority goes to the fused ring systems. One main reason to use imide functionality is due to the, open position of the imide nitrogen, which provides an attaching position to alkyl substituent. Through this we can easily manipulate solubility and solid state packing arrangement. Also these imide acceptors have low-lying LUMOs due to their electron deficient nature and this will allow tuning the optical energy gap by careful choice of donor materials with different electron donating ability. The fourth chapter mainly contribute to the synthesis and structure property study of a completely novel electron acceptor moiety consist of a unsaturated pyrrolidinone unit known as Pechmann dye (PD) core. Pechmann dyes are closely related to the Indigo family. This can refer as 3-butenolide dimer connected via an alkene bridge, containing a benzene ring at the 5 and 5' positions of the lactone rings. We have prepared several D-A polymers using this PD system with benzodithiophene (BDT) as the donor unit. Different to common D-A polymers the HOMO and LUMO of the PD acceptor moiety are energetically located within the gap of the BDT, so that the electronic and optical properties (HOMO-LUMO transition) are dictated by the PD properties. The promising electronic properties, band gaps, high absorption coefficients and broad absorption suggest this new D-A polymers as an interesting donor material for organic solar cell (OSC) applications. KEY WORDS: Organic semiconductor materials, Self assembly, (opto)-electronic properties, Donor-Acceptor conjugated polymers, Fluorinated arene, 3,3'-bithiophene donors, Thiophene-imide (TPD), Pechmann dye, benzodithiophene, organic solar cell.

  4. Probing Stereoselectivity in Ring-Opening Metathesis Polymerization Mediated by Cyclometalated Ruthenium-Based Catalysts: A Combined Experimental and Computational Study

    OpenAIRE

    Rosebrugh, L. E.; Ahmed, T. S.; Marx, V. M.; Hartung, J.; Liu, P.; López, J. G.; Houk, K. N.; Grubbs, R. H.

    2016-01-01

    The microstructures of polymers produced by ring-opening metathesis polymerization (ROMP) with cyclometalated Ru-carbene metathesis catalysts were investigated. A strong bias for a cis,syndiotactic microstructure with minimal head-to-tail bias was observed. In instances where trans errors were introduced, it was determined that these regions were also syndiotactic. Furthermore, hypothetical reaction intermediates and transition structures were analyzed computationally. Combined experimental a...

  5. A Review on Polymer Crystallization Theories

    Directory of Open Access Journals (Sweden)

    Michael C. Zhang

    2016-12-01

    Full Text Available It is the aim of this article to review the major theories of polymer crystallization since up to now we still have not completely comprehended the underlying mechanism in a unified framework. A lack of paradigm is an indicator of immaturity of the field itself; thus, the fundamental issue of polymer crystallization remains unsolved. This paper provides an understanding of the basic hypothesis, as well as relevant physical implications and consequences of each theory without too much bias. We try to present the essential aspects of the major theories, and intuitive physical arguments over rigorously mathematical calculations are highlighted. In addition, a detailed comparison of various theories will be made in a logical and self-contained fashion. Our personal view of the existing theories is presented as well, aiming to inspire further open discussions. We expect that new theories based on the framework of kinetics with direct consideration of long-range multi-body correlation will help solve the remaining problems in the field of polymer crystallization.

  6. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  7. Stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  8. Physics of quantum rings

    International Nuclear Information System (INIS)

    Fomin, Vladimir M.

    2014-01-01

    Presents the new class of materials of quantum rings. Provides an elemental basis for low-cost high-performance devices promising for electronics, optoelectronics, spintronics and quantum information processing. Explains the physical properties of quantum rings to cover a gap in scientific literature. Presents the application of most advanced nanoengineering and nanocharacterization techniques. This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is possible on the basis of modern characterization methods of nanostructures, such as Scanning Tunneling Microscopy. A high level of complexity is demonstrated to be needed for a dedicated theoretical model to adequately represent the specific features of quantum rings. The findings presented in this book contribute to develop low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings.

  9. How does the blue-ringed octopus (Hapalochlaena lunulata) flash its blue rings?

    Science.gov (United States)

    Mäthger, Lydia M; Bell, George R R; Kuzirian, Alan M; Allen, Justine J; Hanlon, Roger T

    2012-11-01

    The blue-ringed octopus (Hapalochlaena lunulata), one of the world's most venomous animals, has long captivated and endangered a large audience: children playing at the beach, divers turning over rocks, and biologists researching neurotoxins. These small animals spend much of their time in hiding, showing effective camouflage patterns. When disturbed, the octopus will flash around 60 iridescent blue rings and, when strongly harassed, bite and deliver a neurotoxin that can kill a human. Here, we describe the flashing mechanism and optical properties of these rings. The rings contain physiologically inert multilayer reflectors, arranged to reflect blue-green light in a broad viewing direction. Dark pigmented chromatophores are found beneath and around each ring to enhance contrast. No chromatophores are above the ring; this is unusual for cephalopods, which typically use chromatophores to cover or spectrally modify iridescence. The fast flashes are achieved using muscles under direct neural control. The ring is hidden by contraction of muscles above the iridophores; relaxation of these muscles and contraction of muscles outside the ring expose the iridescence. This mechanism of producing iridescent signals has not previously been reported in cephalopods and we suggest that it is an exceptionally effective way to create a fast and conspicuous warning display.

  10. α-Skew π-McCoy Rings

    Directory of Open Access Journals (Sweden)

    Areej M. Abduldaim

    2013-01-01

    Full Text Available As a generalization of α-skew McCoy rings, we introduce the concept of α-skew π-McCoy rings, and we study the relationships with another two new generalizations, α-skew π1-McCoy rings and α-skew π2-McCoy rings, observing the relations with α-skew McCoy rings, π-McCoy rings, α-skew Armendariz rings, π-regular rings, and other kinds of rings. Also, we investigate conditions such that α-skew π1-McCoy rings imply α-skew π-McCoy rings and α-skew π2-McCoy rings. We show that in the case where R is a nonreduced ring, if R is 2-primal, then R is an α-skew π-McCoy ring. And, let R be a weak (α,δ-compatible ring; if R is an α-skew π1-McCoy ring, then R is α-skew π2-McCoy.

  11. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network

    Science.gov (United States)

    Bin Imran, Abu; Esaki, Kenta; Gotoh, Hiroaki; Seki, Takahiro; Ito, Kohzo; Sakai, Yasuhiro; Takeoka, Yukikazu

    2014-01-01

    Stimuli-sensitive hydrogels changing their volumes and shapes in response to various stimulations have potential applications in multiple fields. However, these hydrogels have not yet been commercialized due to some problems that need to be overcome. One of the most significant problems is that conventional stimuli-sensitive hydrogels are usually brittle. Here we prepare extremely stretchable thermosensitive hydrogels with good toughness by using polyrotaxane derivatives composed of α-cyclodextrin and polyethylene glycol as cross-linkers and introducing ionic groups into the polymer network. The ionic groups help the polyrotaxane cross-linkers to become well extended in the polymer network. The resulting hydrogels are surprisingly stretchable and tough because the cross-linked α-cyclodextrin molecules can move along the polyethylene glycol chains. In addition, the polyrotaxane cross-linkers can be used with a variety of vinyl monomers; the mechanical properties of the wide variety of polymer gels can be improved by using these cross-linkers. PMID:25296246

  12. VUV optical ring resonator for Duke storage ring free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H.; Litvinenko, V.N.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)] [and others

    1995-12-31

    The conceptual design of the multifaceted-mirror ring resonator for Duke storage ring VUV FEL is presented. The expected performance of the OK-4 FEL with ring resonator is described. We discuss in this paper our plans to study reflectivity of VUV mirrors and their resistivity to soft X-ray spontaneous radiation from OK-4 undulator.

  13. Investigation of cobalt porphyrin doped polymer membrane films for the optical sensing of imidazole and its derivatives

    Directory of Open Access Journals (Sweden)

    Yueyang Tan

    2015-03-01

    Full Text Available A cobalt(II porphyrin was successfully incorporated into polymer membranes for the optical sensing of imidazole and its derivatives. This research has led to a better understanding of the behavior of Co(II porphyrin in solution and in polymeric membranes. In aprotic dichloromethane (DCM, the Co(II tetraphenylporphyrin (CoTPP and Co(II octaethylporphyrin (CoOEP show a sensitive response to imidazole due to the strong ligation of the N-3 on the imidazole ring to the Co(II center, which induces an absorbance change to the Soret band. However, when doped in polymeric films, only the CoTPP exhibits moderate sensitivity towards aqueous imidazole, histamine and histidine. This weakened coordination ability of CoTPP towards imidazole in the polymer films may be due to the coordination of the plasticizer, the impurities from the THF and polymer matrix at the Co(II center. The selectivity of the polymer films towards imidazole over common anions is high. Lifetime of the cobalt(II porphyrin incorporated polymer film was relatively short.

  14. Interaction Region Design for a Ring-Ring LHeC

    CERN Document Server

    Thompson, L N S; Bernard, N R; Fitterer, M; Holzer, B; Klein, M; Kostka, P

    2011-01-01

    tively low energy and moderately high intensity provides high luminosity TeV-scale e-p collisions at one of the LHC interaction points, running simultaneously with existing experiments. Two designs are studied; an electron ring situated in the LHC tunnel, and an electron linac. The focus of this paper is on the ring design. Designing an e-p machine presents interesting accelerator physics and design challenges, particularly when considering the interaction region. These include coupled optics, beam separation and unconventional mini-beta focusing schemes. Designs are constrained by an array of interdependent factors, including beam-beam interaction, detector dimensions and acceptance, luminosity and synchrotron radiation. Methods of addressing these complex issues are discussed. The current designs for the LHeC Ring-Ring interaction region and long straight section are presented and discussed, in the context of the project goals and design challenges encountered. Future developments and work are also discusse...

  15. Warden’s Five-Ring System Theory: Legitimate Wartime Military Targeting or an Increased Potential to Violate the Law and Norms of Expected Behavior?

    Science.gov (United States)

    2000-04-01

    the five-ring system theory that dramatically improves the warfighters ability to systematically identify wartime targets. However, for all of its...acclaim, little has been written about Warden’s five-ring system theory . Even less has been written about the legal and moral implications of using Warden’s theory to identify wartime targets.

  16. Implications of treadmilling for the stability and polarity of actin and tubulin polymers in vivo.

    Science.gov (United States)

    Kirschner, M W

    1980-07-01

    In this report, we examine how the cell can selectively stabilize anchored filaments and suppress spontaneous filament assembly. Because microtubules and actin filaments have an organized distribution in cells, the cell must have a mechanism for suppressing spontaneous and random polymerization. Though the mechanism for suppressing spontaneous polymerization is unknown, an unusual property of these filaments has been demonstrated recently, i.e., under steady-stae conditions, in vitro actin filaments and microtubules can exhibit a flux of subunits through the polymers called "treadmilling." In vivo, however, most, if not all, of these polymers are attached at one end to specific structures and treadmilling should not occur. The function of treadmilling in vivo is, therefore, unclear at present. However, as shown here, the same physicochemical property of coupling assembly to ATP or GTP hydrolysis that leads to treadmilling in vitro can act to selectively stabilize anchored polymers in vivo. I show here that the theory of treadmilling implies that the concentration of subunits necessary for assembly of the nonanchored polymer will in general be higher than the concentration necessary for the assembly of polymers anchored with a specific polarity. This disparity in the monomer concentrations required for assembly can lead to a selective stabilization of anchored polymers and complete suppression of spontaneous polymerization at apparent equilibrium in vivo. It is possible, therefore, that the phenomenon of treadmilling is an in vitro manifestation of a mechanism designed to use ATP or GTP hydrolysis to control the spatial organization of filaments in the cell.

  17. Uniquely Strongly Clean Group Rings

    Institute of Scientific and Technical Information of China (English)

    WANG XIU-LAN

    2012-01-01

    A ring R is called clean if every element is the sum of an idempotent and a unit,and R is called uniquely strongly clean (USC for short) if every element is uniquely the sum of an idempotent and a unit that commute.In this article,some conditions on a ring R and a group G such that RG is clean are given.It is also shown that if G is a locally finite group,then the group ring RG is USC if and only if R is USC,and G is a 2-group.The left uniquely exchange group ring,as a middle ring of the uniquely clean ring and the USC ring,does not possess this property,and so does the uniquely exchange group ring.

  18. Mass spectrometry for the elucidation of the subtle molecular structure of biodegradable polymers and their degradation products.

    Science.gov (United States)

    Kowalczuk, Marek; Adamus, Grażyna

    2016-01-01

    Contemporary reports by Polish authors on the application of mass spectrometric methods for the elucidation of the subtle molecular structure of biodegradable polymers and their degradation products will be presented. Special emphasis will be given to natural aliphatic (co)polyesters (PHA) and their synthetic analogues, formed through anionic ring-opening polymerization (ROP) of β-substituted β-lactones. Moreover, the application of MS techniques for the evaluation of the structure of biodegradable polymers obtained in ionic and coordination polymerization of cyclic ethers and esters as well as products of step-growth polymerization, in which bifunctional or multifunctional monomers react to form oligomers and eventually long chain polymers, will be discussed. Furthermore, the application of modern MS techniques for the assessment of polymer degradation products, frequently bearing characteristic end groups that can be revealed and differentiated by MS, will be discussed within the context of specific degradation pathways. Finally, recent Polish accomplishments in the area of mass spectrometry will be outlined. © 2015 Wiley Periodicals, Inc.

  19. Designing molecular structure to achieve ductile fracture behavior in a stiff and strong 2D polymer, "graphylene".

    Science.gov (United States)

    Sandoz-Rosado, E; Beaudet, T D; Balu, R; Wetzel, E D

    2016-06-07

    As the simplest two-dimensional (2D) polymer, graphene has immensely high intrinsic strength and elastic stiffness but has limited toughness due to brittle fracture. We use atomistic simulations to explore a new class of graphene/polyethylene hybrid 2D polymer, "graphylene", that exhibits ductile fracture mechanisms and has a higher fracture toughness and flaw tolerance than graphene. A specific configuration of this 2D polymer hybrid, denoted "GrE-2" for the two-carbon-long ethylene chains connecting benzene rings in the inherent framework, is prioritized for study. MD simulations of crack propagation show that the energy release rate to propagate a crack in GrE-2 is twice that of graphene. We also demonstrate that GrE-2 exhibits delocalized failure and other energy-dissipating fracture mechanisms such as crack branching and bridging. These results demonstrate that 2D polymers can be uniquely tailored to achieve a balance of fracture toughness with mechanical stiffness and strength.

  20. Adsorbed Polymer Nanolayers on Solids: Mechanism, Structure and Applications

    Science.gov (United States)

    Sen, Mani Kuntal

    In this thesis, by combining various advanced x-ray scattering, spectroscopic and other surface sensitive characterization techniques, I report the equilibrium polymer chain conformations, structures, dynamics and properties of polymeric materials at the solid-polymer melt interfaces. Following the introduction, in chapter 2, I highlight that the backbone chains (constituted of CH and CH2 groups) of the flattened polystyrene (PS) chains preferentially orient normal to the weakly interactive substrate surface via thermal annealing regardless of the initial chain conformations, while the orientation of the phenyl rings becomes randomized, thereby increasing the number of surface-segmental contacts (i.e., enthalpic gain) which is the driving force for the flattening process of the polymer chains even onto a weakly interactive solid. In chapter 3, I elucidate the flattened structures in block copolymer (BCP) thin films where both blocks lie flat on the substrate, forming a 2D randomly phase-separated structure irrespective of their microdomain structures and interfacial energetics. In chapter 4, I reveal the presence of an irreversibly adsorbed BCP layer which showed suppressed dynamics even at temperatures far above the individual glass transition temperatures of the blocks. Furthermore, this adsorbed BCP layer plays a crucial role in controlling the microdomain orientation in the entire film. In chapter 5, I report a radically new paradigm of designing a polymeric coating layer of a few nanometers thick ("polymer nanolayer") with anti-biofouling properties.

  1. Influence of ring growth rate on damage development in hot ring rolling

    NARCIS (Netherlands)

    Wang, C.; Geijselaers, H. J.M.; Omerspahic, E.; Recina, V.; van den Boogaard, A. H.

    2015-01-01

    As an incremental forming process of bulk metal, ring rolling provides a cost effective process route to manufacture seamless rings. In the production of hot rolled rings, defects such as porosity can sometimes be found in high alloyed steel, manufactured from ingots having macro-segregation. For

  2. Synthesis and Crosslinking of Polyether-Based Main Chain Benzoxazine Polymers and Their Gas Separation Performance

    Directory of Open Access Journals (Sweden)

    Muntazim Munir Khan

    2018-02-01

    Full Text Available The poly(ethylene glycol-based benzoxazine polymers were synthesized via a polycondensation reaction between Bisphenol-A, paraformaldehyde, and poly(ether diamine/(Jeffamine®. The structures of the polymers were confirmed by proton nuclear magnetic resonance spectroscopy (1H-NMR, indicating the presence of a cyclic benzoxazine ring. The polymer solutions were casted on the glass plate and cross-linked via thermal treatment to produce tough and flexible films without using any external additives. Thermal properties and the crosslinking behaviour of these polymers were studied by thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. Single gas (H2, O2, N2, CO2, and CH4 transport properties of the crosslinked polymeric membranes were measured by the time-lag method. The crosslinked PEG-based polybenzoxazine membranes show improved selectivities for CO2/N2 and CO2/CH4 gas pairs. The good separation selectivities of these PEG-based polybenzoxazine materials suggest their utility as efficient thin film composite membranes for gas and liquid membrane separation technology.

  3. Ring rotational speed trend analysis by FEM approach in a Ring Rolling process

    Science.gov (United States)

    Allegri, G.; Giorleo, L.; Ceretti, E.

    2018-05-01

    Ring Rolling is an advanced local incremental forming technology to fabricate directly precise seamless ring-shape parts with various dimensions and materials. In this process two different deformations occur in order to reduce the width and the height of a preform hollow ring; as results a diameter expansion is obtained. In order to guarantee a uniform deformation, the preform is forced toward the Driver Roll whose aim is to transmit the rotation to the ring. The ring rotational speed selection is fundamental because the higher is the speed the higher will be the axial symmetry of the deformation process. However, it is important to underline that the rotational speed will affect not only the final ring geometry but also the loads and energy needed to produce it. Despite this importance in industrial environment, usually, a constant value for the Driver Roll angular velocity is set so to result in a decreasing trend law for the ring rotational speed. The main risk due to this approach is not fulfilling the axial symmetric constrain (due to the diameter expansion) and to generate a high localized ring section deformation. In order to improve the knowledge about this topic in the present paper three different ring rotational speed trends (constant, linearly increasing and linearly decreasing) were investigated by FEM approach. Results were compared in terms of geometrical and dimensional analysis, loads and energies required.

  4. Mechanical improvement of metal reinforcement rings for a finite ring-shaped superconducting bulk

    Science.gov (United States)

    Huang, Chen-Guang; Zhou, You-He

    2018-03-01

    As a key technique, reinforcement of type-II superconducting bulks with metal rings can efficiently improve their mechanical properties to enhance the maximum trapped field. In this paper, we study the magnetostrictive and fracture behaviors of a finite superconducting ring bulk reinforced by three typical reinforcing structures composed of metal rings during the magnetizing process by means of the minimization of magnetic energy and the finite element method. After a field-dependent critical current density is adopted, the magnetostriction, pinning-induced stress, and crack tip stress intensity factor are calculated considering the demagnetization effects. The results show that the mechanical properties of the ring bulk are strongly dependent on the reinforcing structure and the material and geometrical parameters of the metal rings. Introducing the metal ring can significantly reduce the hoop stress, and the reduction effect by internal reinforcement is much improved relative to external reinforcement. By comparison, bilateral reinforcement seems to be the best candidate structure. Only when the metal rings have particular Young's modulus and radial thickness will they contribute to improve the mechanical properties the most. In addition, if an edge crack is pre-existing in the ring bulk, the presence of metal rings can effectively avoid crack propagation since it reduces the crack tip stress intensity factor by nearly one order of magnitude.

  5. Polymer nanocomposites: polymer and particle dynamics

    KAUST Repository

    Kim, Daniel

    2012-01-01

    Polymer nanocomposites containing nanoparticles smaller than the random coil size of their host polymer chains are known to exhibit unique properties, such as lower viscosity and glass transition temperature relative to the neat polymer melt. It has been hypothesized that these unusual properties result from fast diffusion of the nanostructures in the host polymer, which facilitates polymer chain relaxation by constraint release and other processes. In this study, the effects of addition of sterically stabilized inorganic nanoparticles to entangled cis-1,4-polyisoprene and polydimethylsiloxane on the overall rheology of nanocomposites are discussed. In addition, insights about the relaxation of the host polymer chains and transport properties of nanoparticles in entangled polymer nanocomposites are presented. The nanoparticles are found to act as effective plasticizers for their entangled linear hosts, and below a critical, chemistry and molecular-weight dependent particle volume fraction, lead to reduced viscosity, glass transition temperature, number of entanglements, and polymer relaxation time. We also find that the particle motions in the polymer host are hyperdiffusive and at the nanoparticle length scale, the polymer host acts like a simple, ideal fluid and the composites\\' viscosity rises with increasing particle concentration. © 2012 The Royal Society of Chemistry.

  6. Ring correlations in random networks.

    Science.gov (United States)

    Sadjadi, Mahdi; Thorpe, M F

    2016-12-01

    We examine the correlations between rings in random network glasses in two dimensions as a function of their separation. Initially, we use the topological separation (measured by the number of intervening rings), but this leads to pseudo-long-range correlations due to a lack of topological charge neutrality in the shells surrounding a central ring. This effect is associated with the noncircular nature of the shells. It is, therefore, necessary to use the geometrical distance between ring centers. Hence we find a generalization of the Aboav-Weaire law out to larger distances, with the correlations between rings decaying away when two rings are more than about three rings apart.

  7. The role of water on the structure and mechanical properties of a thermoplastic natural block co-polymer from squid sucker ring teeth.

    Science.gov (United States)

    Rieu, Clément; Bertinetti, Luca; Schuetz, Roman; Salinas-Zavala, Cesar Ca; Weaver, James C; Fratzl, Peter; Miserez, Ali; Masic, Admir

    2016-09-02

    Hard biological polymers exhibiting a truly thermoplastic behavior that can maintain their structural properties after processing are extremely rare and highly desirable for use in advanced technological applications such as 3D-printing, biodegradable plastics and robust composites. One exception are the thermoplastic proteins that comprise the sucker ring teeth (SRT) of the Humboldt jumbo squid (Dosidicus gigas). In this work, we explore the mechanical properties of reconstituted SRT proteins and demonstrate that the material can be re-shaped by simple processing in water and at relatively low temperature (below 100 °C). The post-processed material maintains a high modulus in the GPa range, both in the dry and the wet states. When transitioning from low to high humidity, the material properties change from brittle to ductile with an increase in plastic deformation, where water acts as a plasticizer. Using synchrotron x-ray scattering tools, we found that water mostly influences nano scale structure, whereas at the molecular level, the protein structure remains largely unaffected. Furthermore, through simultaneous in situ x-ray scattering and mechanical tests, we show that the supramolecular network of the reconstituted SRT material exhibits a progressive alignment along the strain direction, which is attributed to chain alignment of the amorphous domains of SRT proteins. The high modulus in both dry and wet states, combined with their efficient thermal processing characteristics, make the SRT proteins promising substitutes for applications traditionally reserved for petroleum-based thermoplastics.

  8. Structural study of synthetic polymers by MALDI-TOFMS; MALDI-TOFMS ni yoru gosei kobunshi no kozo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, K.; Hirayama, K. [Ajinomoto Co. Inc., Tokyo (Japan)

    1998-08-01

    As observation results on the time-dependent change in the ring-opening reaction of novolac epoxy resin with acetic acid by MALDI-TOFMS, the epoxy ring was opened with reaction time, the hydroxy group formed by the ring-opening reaction was acetylated, those components were measured. In the case of the FABMS/MS observation of materials and the reaction products, the estimation structure could be confirmed from the measured results of MALDI-TOFMS. In the polymerization of bisphenol A epoxy resin with N, N`-dimethylethylenediamine, it was observed by MALDI-TOFMS that many kinds of polymers with high molecular weight were formed with an increase of reaction time. In this case, the LSIMS/MS observation of materials and the reaction products was carried out, the estimation structure could be confirmed from the measured results of MALDI-TOFMS. 19 refs., 8 figs.

  9. Alpha - Skew Pi - Armendariz Rings

    Directory of Open Access Journals (Sweden)

    Areej M Abduldaim

    2018-03-01

    Full Text Available In this article we introduce a new concept called Alpha-skew Pi-Armendariz rings (Alpha - S Pi - ARas a generalization of the notion of Alpha-skew Armendariz rings.Another important goal behind studying this class of rings is to employ it in order to design a modern algorithm of an identification scheme according to the evolution of using modern algebra in the applications of the field of cryptography.We investigate general properties of this concept and give examples for illustration. Furthermore, this paperstudy the relationship between this concept and some previous notions related to Alpha-skew Armendariz rings. It clearly presents that every weak Alpha-skew Armendariz ring is Alpha-skew Pi-Armendariz (Alpha-S Pi-AR. Also, thisarticle showsthat the concepts of Alpha-skew Armendariz rings and Alpha-skew Pi- Armendariz rings are equivalent in case R is 2-primal and semiprime ring.Moreover, this paper proves for a semicommutative Alpha-compatible ringR that if R[x;Alpha] is nil-Armendariz, thenR is an Alpha-S Pi-AR. In addition, if R is an Alpha - S Pi -AR, 2-primal and semiprime ring, then N(R[x;Alpha]=N(R[x;Alpha]. Finally, we look forwardthat Alpha-skew Pi-Armendariz rings (Alpha-S Pi-ARbe more effect (due to their properties in the field of cryptography than Pi-Armendariz rings, weak Armendariz rings and others.For these properties and characterizations of the introduced concept Alpha-S Pi-AR, we aspire to design a novel algorithm of an identification scheme.

  10. Effects of Grafting Density on Block Polymer Self-Assembly: From Linear to Bottlebrush.

    Science.gov (United States)

    Lin, Tzu-Pin; Chang, Alice B; Luo, Shao-Xiong; Chen, Hsiang-Yun; Lee, Byeongdu; Grubbs, Robert H

    2017-11-28

    Grafting density is an important structural parameter that exerts significant influences over the physical properties of architecturally complex polymers. In this report, the physical consequences of varying the grafting density (z) were studied in the context of block polymer self-assembly. Well-defined block polymers spanning the linear, comb, and bottlebrush regimes (0 ≤ z ≤ 1) were prepared via grafting-through ring-opening-metathesis polymerization. ω-Norbornenyl poly(d,l-lactide) and polystyrene macromonomers were copolymerized with discrete comonomers in different feed ratios, enabling precise control over both the grafting density and molecular weight. Small-angle X-ray scattering experiments demonstrate that these graft block polymers self-assemble into long-range-ordered lamellar structures. For 17 series of block polymers with variable z, the scaling of the lamellar period with the total backbone degree of polymerization (d* ∼ N bb α ) was studied. The scaling exponent α monotonically decreases with decreasing z and exhibits an apparent transition at z ≈ 0.2, suggesting significant changes in the chain conformations. Comparison of two block polymer systems, one that is strongly segregated for all z (System I) and one that experiences weak segregation at low z (System II), indicates that the observed trends are primarily caused by the polymer architectures, not segregation effects. A model is proposed in which the characteristic ratio (C ∞ ), a proxy for the backbone stiffness, scales with N bb as a function of the grafting density: C ∞ ∼ N bb f(z) . The scaling behavior disclosed herein provides valuable insights into conformational changes with grafting density, thus introducing opportunities for block polymer and material design.

  11. ROMP-based thermosetting polymers from modified castor oil with various cross-linking agents

    Science.gov (United States)

    Ding, Rui

    Polymers derived from bio-renewable resources are finding an increase in global demand. In addition, polymers with distinctive functionalities are required in certain advanced fields, such as aerospace and civil engineering. In an attempt to meet both these needs, the goal of this work aims to develop a range of bio-based thermosetting matrix polymers for potential applications in multifunctional composites. Ring-opening metathesis polymerization (ROMP), which recently has been explored as a powerful method in polymer chemistry, was employed as a unique pathway to polymerize agricultural oil-based reactants. Specifically, a novel norbornyl-functionalized castor oil alcohol (NCA) was investigated to polymerize different cross-linking agents using ROMP. The effects of incorporating dicyclopentadiene (DCPD) and a norbornene-based crosslinker (CL) were systematically evaluated with respect to curing behavior and thermal mechanical properties of the polymers. Isothermal differential scanning calorimetry (DSC) was used to investigate the conversion during cure. Dynamic DSC scans at multiple heating rates revealed conversion-dependent activation energy by Ozawa-Flynn-Wall analysis. The glass transition temperature, storage modulus, and loss modulus for NCA/DCPD and NCA/CL copolymers with different cross-linking agent loading were compared using dynamic mechanical analysis. Cross-link density was examined to explain the very different dynamic mechanical behavior. Mechanical stress-strain curves were developed through tensile test, and thermal stability of the cross-linked polymers was evaluated by thermogravimetric analysis to further investigate the structure-property relationships in these systems.

  12. Plasma-ring, fast-opening switch

    International Nuclear Information System (INIS)

    Hartman, C.W.; Eddleman, J.; Hammer, J.H.

    1986-01-01

    The authors discuss a fast-opening switch concept based on magnetically confined plasma rings, PROS (for Plasma Ring Opening Switch). In PROS, the plasma ring, confined by Bθ /sub and B/poloidal /sub fields of a compact torus, provide a low mass, localized conduction path between coaxial electrodes. To operate the switch, driver current is passed across the electrodes through the ring, storing inductive energy in external inductance and between the electrodes on the driver side of the ring. The ring is accelerated away from the driver by the field of the driver current and passes over a load gap transferring the current to the load. The authors distinguish two configurations in PROS, straight PROS where the electrodes are coaxial cylinders, and cone PROS with conical electrodes. In straight PROS ring acceleration takes place during the inductive store period as in foil switches, but with the localized ring providing the current path. Increased performance is predicted for the cone PROS (see figure) which employs compression of the ring in the cone during the inductive store period. Here, the B/θ /sub field of the driver forces the ring towards the apex of the cone but the force is in near balance with the opposing component of the radial equilibrium force of the ring along the cone. As a result, the ring undergoes a slow, quasistatic compression limited only by resistive decay of the ring field. Slow compression allows inductive storage with low-power drivers (homopoloar, magneto cumulative generators, high C-low V capacitor banks, etc.). Near the apex of the cone, near peak compression, the ring is allowed to enter a straight coaxial section where, because of low-mass, it rapidly accelerates to high velocity and crosses the load gap

  13. Fusion Rings for Quantum Groups

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Stroppel, Catharina

    2014-01-01

    We study the fusion rings of tilting modules for a quantum group at a root of unity modulo the tensor ideal of negligible tilting modules. We identify them in type A with the combinatorial rings from Korff, C., Stroppel, C.: The sl(ˆn)k-WZNW fusion ring: a combinato-rial construction...... and a realisation as quotient of quantum cohomology. Adv. Math. 225(1), 200–268, (2010) and give a similar description of the sp2n-fusion ring in terms of non-commutative symmetric functions. Moreover we give a presentation of all fusion rings in classical types as quotients of polynomial rings. Finally we also...... compute the fusion rings for type G2....

  14. Selective detection of antibodies in microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm; Hoiby, P.E.; Emiliyanov, Grigoriy Andreev

    2005-01-01

    was applied to selectively capture either α-streptavidin or α-CRP antibodies inside these air holes. A sensitive and easy-to-use fluorescence method was used for the optical detection. Our results show that mPOF based biosensors can provide reliable and selective antibody detection in ultra small sample......We demonstrate selective detection of fluorophore labeled antibodies from minute samples probed by a sensor layer of complementary biomolecules immobilized inside the air holes of microstructured Polymer Optical Fiber (mPOF). The fiber core is defined by a ring of 6 air holes and a simple procedure...

  15. The LSU Electron Storage Ring, the first commercially-built storage ring

    International Nuclear Information System (INIS)

    Sah, R.

    1990-01-01

    The Brobeck Division of Maxwell Laboratories, Inc., is building the first industrially-produced storage ring. It will be located at Louisiana State University (LSU) at the Center for Advanced Microstructures and Devices (CAMD) in Baton Rouge. The purpose of this electron storage ring is to provide intense beams of x-rays to advance the state-of-the-art in lithography and to permit research in a broad area. This facility consists of a 1.2 GeV, 400 mA electron storage ring with a 200 MeV linac injector. The magnet lattice is a Chasman-Green design (double-bend achromat), and the ring circumference is 55.2 meters. There are four 3.0 meter, dispersion-free straight sections, one for injection, one for the 500 MHz RF cavity, and two for possible future insertion devices. The storge ring construction project is in the detailed-design stage, and many systems are in the initial stages of fabrication. 4 figs., 1 tab

  16. Fusion rings and fusion ideals

    DEFF Research Database (Denmark)

    Andersen, Troels Bak

    by the so-called fusion ideals. The fusion rings of Wess-Zumino-Witten models have been widely studied and are well understood in terms of precise combinatorial descriptions and explicit generating sets of the fusion ideals. They also appear in another, more general, setting via tilting modules for quantum......This dissertation investigates fusion rings, which are Grothendieck groups of rigid, monoidal, semisimple, abelian categories. Special interest is in rational fusion rings, i.e., fusion rings which admit a finite basis, for as commutative rings they may be presented as quotients of polynomial rings...

  17. Dewetting acrylic polymer films with water/propylene carbonate/surfactant mixtures - implications for cultural heritage conservation.

    Science.gov (United States)

    Baglioni, M; Montis, C; Brandi, F; Guaragnone, T; Meazzini, I; Baglioni, P; Berti, D

    2017-09-13

    The removal of hydrophobic polymer films from surfaces is one of the top priorities of modern conservation science. Nanostructured fluids containing water, good solvents for polymers, either immiscible or partially miscible with water, and surfactants have been used in the last decade to achieve controlled removal. The dewetting of the polymer film is often an essential step to achieve efficient removal; however, the role of the surfactant throughout the process is yet to be fully understood. We report on the dewetting of a methacrylate/acrylate copolymer film induced by a ternary mixture of water, propylene carbonate (PC) and C 9-11 E 6 , a nonionic alcohol ethoxylate surfactant. The fluid microstructure was characterised through small angle X-ray scattering and the interactions between the film and water, water/PC and water/PC/C 9-11 E 6 , were monitored through confocal laser-scanning microscopy (CLSM) and analised both from a thermodynamic and a kinetic point of view. The presence of a surfactant is a prerequisite to induce dewetting of μm-thick films at room temperature, but it is not a thermodynamic driver. The amphiphile lowers the interfacial energy between the phases and favors the loss of adhesion of the polymer on glass, decreasing, in turn, the activation energy barrier, which can be overcome by the thermal fluctuations of polymer film stability, initiating the dewetting process.

  18. Evaluation of ring impedance of the Photon Factory storage ring

    International Nuclear Information System (INIS)

    Kiuchi, T.; Izawa, M.; Tokumoto, S.; Hori, Y.; Sakanaka, S.; Kobayashi, M.; Kobayakawa, H.

    1992-05-01

    The loss parameters of the ducts in the Photon Factory (PF) storage ring were evaluated using the wire method and the code TBCI. Both the measurement and the calculation were done for a different bunch length (σ) ranging from 23 to 80 ps. The PF ring impedance was estimated to be |Z/n|=3.2 Ω using the broadband impedance model. The major contribution to the impedance comes from the bellows and the gate valve sections. Improvements of these components will lower the ring impedance by half. (author)

  19. Tree Rings: Timekeepers of the Past.

    Science.gov (United States)

    Phipps, R. L.; McGowan, J.

    One of a series of general interest publications on science issues, this booklet describes the uses of tree rings in historical and biological recordkeeping. Separate sections cover the following topics: dating of tree rings, dating with tree rings, tree ring formation, tree ring identification, sample collections, tree ring cross dating, tree…

  20. Carboxyl-terminal-dependent recruitment of nonmuscle myosin II to megakaryocyte contractile ring during polyploidization.

    Science.gov (United States)

    Badirou, Idinath; Pan, Jiajia; Legrand, Céline; Wang, Aibing; Lordier, Larissa; Boukour, Siham; Roy, Anita; Vainchenker, William; Chang, Yunhua

    2014-10-16

    Endomitosis is a unique megakaryocyte (MK) differentiation process that is the consequence of a late cytokinesis failure associated with a contractile ring defect. Evidence from in vitro studies has revealed the distinct roles of 2 nonmuscle myosin IIs (NMIIs) on MK endomitosis: only NMII-B (MYH10), but not NMII-A (MYH9), is localized in the MK contractile ring and implicated in mitosis/endomitosis transition. Here, we studied 2 transgenic mouse models in which nonmuscle myosin heavy chain (NMHC) II-A was genetically replaced either by II-B or by a chimeric NMHCII that combined the head domain of II-A with the rod and tail domains of II-B. This study provides in vivo evidence on the specific role of NMII-B on MK polyploidization. It demonstrates that the carboxyl-terminal domain of the heavy chains determines myosin II localization to the MK contractile ring and is responsible for the specific role of NMII-B in MK polyploidization.

  1. Crystal Structures and Physical Properties of Ag(I) Coordination Polymers with Unsymmetrical Dipyridyl Ligand

    International Nuclear Information System (INIS)

    Lee, Eunji; Ryu, Hyunsoo; Park, Kimin

    2013-01-01

    Three Ag(I) coordination polymers with the formula [Ag(L)]·(X)·(DMSO) n (X = ClO 4 (1), BF 4 (2), and PF 6 (3), and L = dipyridyl ligand) were prepared and characterized fully their structures. All three compounds are isostructures and stable 2-D honeycomb type coordination polymers, in which 1-D zigzag chains with -(Ag-L)- motif are linked by the argentophilic interactions and the π···π stacking interactions between pyridine rings. The investigation on photophysical properties of all compounds shows that the nature of emission can be attributed to the metal-to-ligand charge transfer as well as the formation of the polymeric structures with restriction of the flexibility of the free ligand. Based on the present solid state results, further investigation on the development and characterization of new coordination polymers using flexible unsymmetrical ligand is in progress. During last two decades, silver coordination polymers based on dipyridyl type ligands have attracted particular interest because of the various intriguing architectures caused by a variety of coordination geometry of Ag(I) ion as well as their potential applications as functional materials

  2. Controlling Film Morphology in Conjugated Polymer

    Science.gov (United States)

    Park, Lee Y.; Munro, Andrea M.; Ginger, David S.

    2009-01-01

    behaviors observed and the wide range of control over polymer morphology achieved at a variety of different length scales have important implications for the development of bulk heterojunction solar cells. PMID:18983150

  3. Some Aspects of Ring Theory

    CERN Document Server

    Herstein, IN

    2011-01-01

    S. Amitsur: Associative rings with identities.- I.N. Herstein: Topics in ring theory.- N. Jacobson: Representation theory of Jordan algebras.- I. Kaplansky: The theory of homological dimension.- D. Buchsbaum: Complexes in local ring theory.- P.H. Cohn: Two topics in ring theory.- A.W. Goldie: Non-commutative localisation.

  4. Improving the Accuracy of Laplacian Estimation with Novel Variable Inter-Ring Distances Concentric Ring Electrodes

    Directory of Open Access Journals (Sweden)

    Oleksandr Makeyev

    2016-06-01

    Full Text Available Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, the superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation, has been demonstrated in a range of applications. In our recent work, we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1-polar electrode with n rings using the (4n + 1-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2 and quadripolar (n = 3 electrode configurations are compared to their constant inter-ring distances counterparts. Finite element method modeling and analytic results are consistent and suggest that increasing inter-ring distances electrode configurations may decrease the truncation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration, the truncation error may be decreased more than two-fold, while for the quadripolar configuration more than a six-fold decrease is expected.

  5. Improving the Accuracy of Laplacian Estimation with Novel Variable Inter-Ring Distances Concentric Ring Electrodes

    Science.gov (United States)

    Makeyev, Oleksandr; Besio, Walter G.

    2016-01-01

    Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, the superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation, has been demonstrated in a range of applications. In our recent work, we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are compared to their constant inter-ring distances counterparts. Finite element method modeling and analytic results are consistent and suggest that increasing inter-ring distances electrode configurations may decrease the truncation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration, the truncation error may be decreased more than two-fold, while for the quadripolar configuration more than a six-fold decrease is expected. PMID:27294933

  6. Radar imaging of Saturn's rings

    Science.gov (United States)

    Nicholson, Philip D.; French, Richard G.; Campbell, Donald B.; Margot, Jean-Luc; Nolan, Michael C.; Black, Gregory J.; Salo, Heikki J.

    2005-09-01

    We present delay-Doppler images of Saturn's rings based on radar observations made at Arecibo Observatory between 1999 and 2003, at a wavelength of 12.6 cm and at ring opening angles of 20.1°⩽|B|⩽26.7°. The average radar cross-section of the A ring is ˜77% relative to that of the B ring, while a stringent upper limit of 3% is placed on the cross-section of the C ring and 9% on that of the Cassini Division. These results are consistent with those obtained by Ostro et al. [1982, Icarus 49, 367-381] from radar observations at |B|=21.4°, but provide higher resolution maps of the rings' reflectivity profile. The average cross-section of the A and B rings, normalized by their projected unblocked area, is found to have decreased from 1.25±0.31 to 0.74±0.19 as the rings have opened up, while the circular polarization ratio has increased from 0.64±0.06 to 0.77±0.06. The steep decrease in cross-section is at variance with previous radar measurements [Ostro et al., 1980, Icarus 41, 381-388], and neither this nor the polarization variations are easily understood within the framework of either classical, many-particle-thick or monolayer ring models. One possible explanation involves vertical size segregation in the rings, whereby observations at larger elevation angles which see deeper into the rings preferentially see the larger particles concentrated near the rings' mid-plane. These larger particles may be less reflective and/or rougher and thus more depolarizing than the smaller ones. Images from all four years show a strong m=2 azimuthal asymmetry in the reflectivity of the A ring, with an amplitude of ±20% and minima at longitudes of 67±4° and 247±4° from the sub-Earth point. We attribute the asymmetry to the presence of gravitational wakes in the A ring as invoked by Colombo et al. [1976, Nature 264, 344-345] to explain the similar asymmetry long seen at optical wavelengths. A simple radiative transfer model suggests that the enhancement of the azimuthal

  7. NATO Advanced Study Institute on Ring-opening Metathesis Polymerization of Olefins and Polymerization of Alkynes

    CERN Document Server

    1998-01-01

    The first NATO Advanced Study Institute on Olefin Metathesis and Polymerization Catalysts was held on September 10-22, 1989 in Akcay, Turkey. Based on the fundamental research of RRSchrock, RGrubbs and K.B.Wagener in the field of ring opening metathesis polymerization (ROMP), acyclic diene metathesis (ADMET) and alkyne polymerization, these areas gained growing interest within the last years. Therefore the second NATO-ASI held on metathesis reactions was on Ring Opening Metathesis Po­ lymerization of Olefins and Polymerization of Alkynes on September 3-16, 1995 in Akcay, Turkey. The course joined inorganic, organic and polymer chemists to exchange their knowledge in this field. This volume contains the main and short lectures held in Akcay. To include ADMET reactions better into the title of this volume we changed it into: Metathesis Polymerization of Olefins and Alkyne Polymerization. This volume is addressed to research scientists, but also to those who start to work in the area of olefin metathesis and al...

  8. Study of improvement in 1st ring`s gas-seal; Top ring no gas seal seino kojo no kento

    Energy Technology Data Exchange (ETDEWEB)

    Ando, H; Tateishi, Y; Fujimura, K; Hitosugi, H [Nippon Piston Ring Co. Ltd., Tokyo (Japan)

    1997-10-01

    The authors studied the effect of an angle of 1st ring twist on the amount of blow-by concerning higher speed/higher output engines for motorcycles. As a result, the authors found the twist made the ring restrained in a ring groove of piston , and confirmed its suitable range for blow-by. By means of the developed optimization method, the authors have achieved significant reduction in blow-by at high engine speed. 1 ref., 9 figs., 2 tabs.

  9. Processing considerations with plasma-based ion implantation of polymers: theoretical aspects, limitations, and experimental results

    International Nuclear Information System (INIS)

    Lacoste, A.; Pelletier, J.

    2003-01-01

    Processing of polymers using plasma-based ion implantation techniques (PBII) has general implications in terms of plasma specifications and pulse characteristics. In particular, the different aspects of the processing of polymer layers are discussed as functions of plasma density, pulse duration, and layer characteristics (thickness and permittivity). Clearly, severe limitations (true implantation energy, arcing) may appear for high-density plasmas as well as for long pulse durations, when processing polymer layers with thickness in the mm range. A review of the experimental results of ion implantation in polymeric materials via PBII processing is presented. The experimental results demonstrate the possibility of processing polymer layers with the PBII technique, but with severe limitations resulting from the process itself

  10. Evidence of the layer structure formation of chitosan microtubes by the Liesegang ring mechanism

    Science.gov (United States)

    Babicheva, T. S.; Gegel, N. O.; Shipovskaya, A. B.

    2018-04-01

    In the work, an experiment was performed to simulate the process of chitosan microtube formation through the interphase polysalt -> polybase chemical reaction, on the one hand, and the formation of spatially separated structures under the conditions of reactive diffusion of one of the components, on the other hand. The formation of alternating dark and light bands or concentric rings of the chitosan polybase as a result of the polymer-analogous transformation is visualized by optical microscopy. The results obtained confirm our assumption that the layered structure of our chitosan microtubes is formed according to the Liesegang reaction mechanism.

  11. ring og refleksion

    DEFF Research Database (Denmark)

    Wahlgren, B.; Rattleff, Pernille; Høyrup, S.

    State of the art inden for forskning om læring på arbejdspladsen samt gennemgang af læringsteori og refleksionsbegrebet hos Dewey, Dreyfus, Schön, Argyris, Kolb, Jarvis, Mezirow og Brookfield. Afsluttes med diskussion af syntetiseret model for læring på arbejdspladsen.......State of the art inden for forskning om læring på arbejdspladsen samt gennemgang af læringsteori og refleksionsbegrebet hos Dewey, Dreyfus, Schön, Argyris, Kolb, Jarvis, Mezirow og Brookfield. Afsluttes med diskussion af syntetiseret model for læring på arbejdspladsen....

  12. Birth Control Ring

    Science.gov (United States)

    ... Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Birth Control Ring KidsHealth / For Teens / Birth Control Ring What's ...

  13. Micro-resonators based on integrated polymer technology for optical sensing

    Science.gov (United States)

    Girault, Pauline; Lemaitre, Jonathan; Guendouz, Mohammed; Lorrain, Nathalie; Poffo, Luiz; Gadonna, Michel; Bosc, Dominique

    2014-05-01

    Research on sensors has experienced a noticeable development over the last decades especially in label free optical biosensors. However, compact sensors without markers for rapid, reliable and inexpensive detection of various substances induce a significant research of new technological solutions. The context of this work is the development of a sensor based on easily integrated and inexpensive micro-resonator (MR) component in integrated optics, highly sensitive and selective mainly in the areas of health and food. In this work, we take advantage of our previous studies on filters based on micro-resonators (MR) to experiment a new couple of polymers in the objective to use MR as a sensing function. MRs have been fabricated by processing SU8 polymer as core and PMATRIFE polymer as cladding layer of the waveguide. The refractive index contrast reaches 0.16 @ 1550 nm. Sub-micronic ring waveguides gaps from 0.5 to 1 μm have been successfully achieved with UV (i-line) photolithography. This work confirms our forecasts, published earlier, about the resolution that can be achieved. First results show a good extinction coefficient of ~17 dB, a quality factor around 104 and a finesse of 12. These results are in concordance with the theoretical study and they allow us to validate our technology with this couple of polymers. Work is going on with others lower cladding materials that will be used to further increase refractive index contrast for sensing applications.

  14. Phenylene ring dynamics in phenoxy and the effect of intramolecular linkages on the dynamics of some engineering thermoplastics below the glass transition temperature

    International Nuclear Information System (INIS)

    Arrese-Igor, Silvia; Arbe, Arantxa; Alegria, Angel; Colmenero, Juan; Frick, Bernhard

    2007-01-01

    We have investigated the dynamics of phenylene rings in the engineering thermoplastic bisphenol-A poly(hydroxyether)--phenoxy--below its glass transition temperature by means of neutron scattering techniques. A relatively wide dynamic range has been covered thanks to the combination of two different types of neutron spectrometers, time of flight and backscattering. Partially deuterated samples have been used in order to isolate the phenylene ring dynamics. The resulting neutron scattering signal of phenoxy has been described by a model that considers π flips and oscillation motions for phenylene rings. The associated time scales are broadly distributed with mean activation energies equal to 0.41 and 0.21 eV, respectively. Finally, a comparative study with the literature shows that the dielectric and mechanical γ relaxation in phenoxy exhibit good correlation with the characteristic times of the aliphatic chain published elsewhere and with the characteristic times observed for the motion of phenylene rings by neutron scattering. These findings are discussed in a more general framework that considers, in addition, previous results on other polymers, which also contain the bisphenol-A unit

  15. Systematic Search for Rings around Kepler Planet Candidates: Constraints on Ring Size and Occurrence Rate

    Science.gov (United States)

    Aizawa, Masataka; Masuda, Kento; Kawahara, Hajime; Suto, Yasushi

    2018-05-01

    We perform a systematic search for rings around 168 Kepler planet candidates with sufficient signal-to-noise ratios that are selected from all of the short-cadence data. We fit ringed and ringless models to their light curves and compare the fitting results to search for the signatures of planetary rings. First, we identify 29 tentative systems, for which the ringed models exhibit statistically significant improvement over the ringless models. The light curves of those systems are individually examined, but we are not able to identify any candidate that indicates evidence for rings. In turn, we find several mechanisms of false positives that would produce ringlike signals, and the null detection enables us to place upper limits on the size of the rings. Furthermore, assuming the tidal alignment between axes of the planetary rings and orbits, we conclude that the occurrence rate of rings larger than twice the planetary radius is less than 15%. Even though the majority of our targets are short-period planets, our null detection provides statistical and quantitative constraints on largely uncertain theoretical models of the origin, formation, and evolution of planetary rings.

  16. New monomers for high performance polymers

    Science.gov (United States)

    Gratz, Roy F.

    1993-01-01

    This laboratory has been concerned with the development of new polymeric materials with high thermo-oxidative stability for use in the aerospace and electronics industries. Currently, there is special emphasis on developing matrix resins and composites for the high speed civil transport (HSCT) program. This application requires polymers that have service lifetimes of 60,000 hr at 350 F (177 C) and that are readily processible into void-free composites, preferably by melt-flow or powder techniques that avoid the use of high boiling solvents. Recent work has focused on copolymers which have thermally stable imide groups separated by flexible arylene ether linkages, some with trifluoromethyl groups attached to the aromatic rings. The presence of trifluoromethyl groups in monomers and polymers often improves their solubility and processibility. The goal of this research was to synthesize several new monomers containing pendant trifluoromethyl groups and to incorporate these monomers into new imide/arylene ether copolymers. Initially, work was begun on the synthesis of three target compounds. The first two, 3,5-dihydroxybenzo trifluoride and 3-amino 5-hydroxybenzo trifluoride, are intermediates in the synthesis of more complex monomers. The third, 3,5-bis (3-amino-phenoxy) benzotrifluoride, is an interesting diamine that could be incorporated into a polyimide directly.

  17. A study on the noise characteristics of polymer ball bearings under various lubrication conditions

    Science.gov (United States)

    Dinç, S. K.; Temiz, V.; Kamburoǧlu, E.

    2013-12-01

    Polymer bearings are generally praised by the manufacturers for running silently. However such statements never go beyond qualitative assumptions. Therefore, studying polymer ball bearing noise would have been meaningful solely on the perspective of silent running machinery. On the other hand, the service life of a polymer ball bearing is unpredictable and there's no preventive maintenance practice that provides data regarding the condition of a polymer ball bearing. In this study, we assume that an investigation of their noise characteristics could also reveal clues concerning their performances. The main objective of this study is to determine the noise characteristics of polymer ball bearings lubricated with different lubricant greases of varying viscosity grades through experimental means. Sound pressure level measurements of SKF brand polymer bearings with polypropylene rings, polypropylene cage and glass balls were made with a 1/2 inch microphone in 1/3-octave bands, at frequencies up to 12.5 kHz, under various radial loads and rotational speeds. The bearings were mounted on a shaft driven by an AC motor with stepless speed control, adjustable between 0 - 1400 rpm. The ball bearings were running inside an acoustic chamber designed for the insulation of environmental noise and the noise of the motor at target frequencies. The resulting sound pressure level spectra were evaluated and the effects of the lubrication conditions on the noise of the ball bearing and possible diagnostic insight that could be gained through studying bearing noise characteristics were discussed.

  18. An iterative method for hydrodynamic interactions in Brownian dynamics simulations of polymer dynamics

    Science.gov (United States)

    Miao, Linling; Young, Charles D.; Sing, Charles E.

    2017-07-01

    Brownian Dynamics (BD) simulations are a standard tool for understanding the dynamics of polymers in and out of equilibrium. Quantitative comparison can be made to rheological measurements of dilute polymer solutions, as well as direct visual observations of fluorescently labeled DNA. The primary computational challenge with BD is the expensive calculation of hydrodynamic interactions (HI), which are necessary to capture physically realistic dynamics. The full HI calculation, performed via a Cholesky decomposition every time step, scales with the length of the polymer as O(N3). This limits the calculation to a few hundred simulated particles. A number of approximations in the literature can lower this scaling to O(N2 - N2.25), and explicit solvent methods scale as O(N); however both incur a significant constant per-time step computational cost. Despite this progress, there remains a need for new or alternative methods of calculating hydrodynamic interactions; large polymer chains or semidilute polymer solutions remain computationally expensive. In this paper, we introduce an alternative method for calculating approximate hydrodynamic interactions. Our method relies on an iterative scheme to establish self-consistency between a hydrodynamic matrix that is averaged over simulation and the hydrodynamic matrix used to run the simulation. Comparison to standard BD simulation and polymer theory results demonstrates that this method quantitatively captures both equilibrium and steady-state dynamics after only a few iterations. The use of an averaged hydrodynamic matrix allows the computationally expensive Brownian noise calculation to be performed infrequently, so that it is no longer the bottleneck of the simulation calculations. We also investigate limitations of this conformational averaging approach in ring polymers.

  19. Strategies to Fabricate Polypeptide-Based Structures via Ring-Opening Polymerization of N-Carboxyanhydrides

    Directory of Open Access Journals (Sweden)

    Carmen M. González-Henríquez

    2017-10-01

    Full Text Available In this review, we provide a general and clear overview about the different alternatives reported to fabricate a myriad of polypeptide architectures based on the ring-opening polymerization of N-carbonyanhydrides (ROP NCAs. First of all, the strategies for the preparation of NCA monomers directly from natural occurring or from modified amino acids are analyzed. The synthetic alternatives to prepare non-functionalized and functionalized NCAs are presented. Protection/deprotection protocols, as well as other functionalization chemistries are discussed in this section. Later on, the mechanisms involved in the ROP NCA polymerization, as well as the strategies developed to reduce the eventually occurring side reactions are presented. Finally, a general overview of the synthetic strategies described in the literature to fabricate different polypeptide architectures is provided. This part of the review is organized depending on the complexity of the macromolecular topology prepared. Therefore, linear homopolypeptides, random and block copolypeptides are described first. The next sections include cyclic and branched polymers such as star polypeptides, polymer brushes and highly branched structures including arborescent or dendrigraft structures.

  20. Structure and dynamics of ringed galaxies

    International Nuclear Information System (INIS)

    Buta, R.J.

    1984-01-01

    In many spiral and SO galaxies, single or multiple ring structures are visible in the disk. These inner rings (r), outer rings (R), and nuclear rings (nr) were investigated by means of morphology, photometry, and spectroscopy in order to provide basic data on a long neglected phenomenon. The metric properties of each ring are investigated and found to correlate with the structure of the parent galaxy. When properly calibrated, inner rings in barred (SB) systems can be used as geometric extragalactic distance indicators to distances in excess of 100 Mpc. Other statistics are presented that confirm previous indications that the rings have preferred shapes, relative sizes, and orientations with respect to bars. A survey is made of the less homogeneous non-barred (SA) ringed systems, and the causes of the inhomogeneity are isolated. It is shown that rings can be identified in multiple-ring SA systems that are exactly analogous to those in barred spirals

  1. Evanescent wave cavity ring-down spectroscopy (EW-CRDS) as a probe of macromolecule adsorption kinetics at functionalized interfaces.

    Science.gov (United States)

    O'Connell, Michael A; de Cuendias, Anne; Gayet, Florence; Shirley, Ian M; Mackenzie, Stuart R; Haddleton, David M; Unwin, Patrick R

    2012-05-01

    Evanescent wave cavity ring-down spectroscopy (EW-CRDS) has been employed to study the interfacial adsorption kinetics of coumarin-tagged macromolecules onto a range of functionalized planar surfaces. Such studies are valuable in designing polymers for complex systems where the degree of interaction between the polymer and surface needs to be tailored. Three tagged synthetic polymers with different functionalities are examined: poly(acrylic acid) (PAA), poly(3-sulfopropyl methacrylate, potassium salt) (PSPMA), and a mannose-modified glycopolymer. Adsorption transients at the silica/water interface are found to be characteristic for each polymer, and kinetics are deduced from the initial rates. The chemistry of the adsorption interfaces has been varied by, first, manipulation of silica surface chemistry via the bulk pH, followed by surfaces modified by poly(L-glutamic acid) (PGA) and cellulose, giving five chemically different surfaces. Complementary atomic force microscopy (AFM) imaging has been used for additional surface characterization of adsorbed layers and functionalized interfaces to allow adsorption rates to be interpreted more fully. Adsorption rates for PSPMA and the glycopolymer are seen to be highly surface sensitive, with significantly higher rates on cellulose-modified surfaces, whereas PAA shows a much smaller rate dependence on the nature of the adsorption surface.

  2. Multiplicative Structure and Hecke Rings of Generator Matrices for Codes over Quotient Rings of Euclidean Domains

    Directory of Open Access Journals (Sweden)

    Hajime Matsui

    2017-12-01

    Full Text Available In this study, we consider codes over Euclidean domains modulo their ideals. In the first half of the study, we deal with arbitrary Euclidean domains. We show that the product of generator matrices of codes over the rings mod a and mod b produces generator matrices of all codes over the ring mod a b , i.e., this correspondence is onto. Moreover, we show that if a and b are coprime, then this correspondence is one-to-one, i.e., there exist unique codes over the rings mod a and mod b that produce any given code over the ring mod a b through the product of their generator matrices. In the second half of the study, we focus on the typical Euclidean domains such as the rational integer ring, one-variable polynomial rings, rings of Gaussian and Eisenstein integers, p-adic integer rings and rings of one-variable formal power series. We define the reduced generator matrices of codes over Euclidean domains modulo their ideals and show their uniqueness. Finally, we apply our theory of reduced generator matrices to the Hecke rings of matrices over these Euclidean domains.

  3. Binomial Rings: Axiomatisation, Transfer and Classification

    OpenAIRE

    Xantcha, Qimh Richey

    2011-01-01

    Hall's binomial rings, rings with binomial coefficients, are given an axiomatisation and proved identical to the numerical rings studied by Ekedahl. The Binomial Transfer Principle is established, enabling combinatorial proofs of algebraical identities. The finitely generated binomial rings are completely classified. An application to modules over binomial rings is given.

  4. AN N-BODY INTEGRATOR FOR GRAVITATING PLANETARY RINGS, AND THE OUTER EDGE OF SATURN'S B RING

    International Nuclear Information System (INIS)

    Hahn, Joseph M.; Spitale, Joseph N.

    2013-01-01

    A new symplectic N-body integrator is introduced, one designed to calculate the global 360° evolution of a self-gravitating planetary ring that is in orbit about an oblate planet. This freely available code is called epi i nt, and it is distinct from other such codes in its use of streamlines to calculate the effects of ring self-gravity. The great advantage of this approach is that the perturbing forces arise from smooth wires of ring matter rather than discreet particles, so there is very little gravitational scattering and so only a modest number of particles are needed to simulate, say, the scalloped edge of a resonantly confined ring or the propagation of spiral density waves. The code is applied to the outer edge of Saturn's B ring, and a comparison of Cassini measurements of the ring's forced response to simulations of Mimas's resonant perturbations reveals that the B ring's surface density at its outer edge is σ 0 = 195 ± 60 g cm –2 , which, if the same everywhere across the ring, would mean that the B ring's mass is about 90% of Mimas's mass. Cassini observations show that the B ring-edge has several free normal modes, which are long-lived disturbances of the ring-edge that are not driven by any known satellite resonances. Although the mechanism that excites or sustains these normal modes is unknown, we can plant such a disturbance at a simulated ring's edge and find that these modes persist without any damping for more than ∼10 5 orbits or ∼100 yr despite the simulated ring's viscosity ν s = 100 cm 2 s –1 . These simulations also indicate that impulsive disturbances at a ring can excite long-lived normal modes, which suggests that an impact in the recent past by perhaps a cloud of cometary debris might have excited these disturbances, which are quite common to many of Saturn's sharp-edged rings

  5. Looped star polymers show conformational transition from spherical to flat toroidal shapes.

    Science.gov (United States)

    Reiss, Pascal; Fritsche, Miriam; Heermann, Dieter W

    2011-11-01

    Inspired by the topological organization of the circular Escherichia coli chromosome, which is compacted by separate domains, we study a polymer architecture consisting of a central ring to which either looped or linear side chains are grafted. A shape change from a spherical to a toroidal organization takes place as soon as the inner ring becomes large enough for the attached arms to fit within its circumference. Building up a torus, the system flattens, depending on the effective bending rigidity of the chain induced by entropic repulsion of the attached loops and, to a lesser extent, linear arms. Our results suggest that the natural formation of a toroidal structure with a decreased amount of writhe induced by a specific underlying topology could be one driving force, among others, that nature exploits to ensure proper packaging of the genetic material within a rod-shaped, bacterial envelope.

  6. Galactic rings revisited - I. CVRHS classifications of 3962 ringed galaxies from the Galaxy Zoo 2 Database

    Science.gov (United States)

    Buta, Ronald J.

    2017-11-01

    Rings are important and characteristic features of disc-shaped galaxies. This paper is the first in a series that re-visits galactic rings with the goals of further understanding the nature of the features and for examining their role in the secular evolution of galaxy structure. The series begins with a new sample of 3962 galaxies drawn from the Galaxy Zoo 2 citizen science data base, selected because zoo volunteers recognized a ring-shaped pattern in the morphology as seen in Sloan Digital Sky Survey colour images. The galaxies are classified within the framework of the Comprehensive de Vaucouleurs revised Hubble-Sandage system. It is found that zoo volunteers cued on the same kinds of ring-like features that were recognized in the 1995 Catalogue of Southern Ringed Galaxies. This paper presents the full catalogue of morphological classifications, comparisons with other sources of classifications and some histograms designed mainly to highlight the content of the catalogue. The advantages of the sample are its large size and the generally good quality of the images; the main disadvantage is the low physical resolution that limits the detectability of linearly small rings such as nuclear rings. The catalogue includes mainly inner and outer disc rings and lenses. Cataclysmic (`encounter-driven') rings (such as ring and polar ring galaxies) are recognized in less than 1 per cent of the sample.

  7. Effects of electric field and charge distribution on nanoelectronic processes involving conducting polymers

    International Nuclear Information System (INIS)

    Ramos, Marta M.D.; Correia, Helena M.G.

    2006-01-01

    The injection of charge carriers in conducting polymer layers gives rise to local electric fields which should have serious implications on the charge transport through the polymer layer. The charge distribution and the related electric field inside the ensemble of polymer molecules, with different molecular arrangements at nanoscale, determine whether or not intra-molecular charge transport takes place and the preferential direction for charge hopping between neighbouring molecules. Consequently, these factors play a significant role in the competition between current flow, charge trapping and recombination in polymer-based electronic devices. By suitable Monte Carlo calculations, we simulated the continuous injection of electrons and holes into polymer layers with different microstructures and followed their transport through those polymer networks. Results of these simulations provided a detailed picture of charge and electric field distribution in the polymer layer and allowed us to assess the consequences for current transport and recombination efficiency as well as the distribution of recombination events within the polymer film. In the steady state we found an accumulation of electrons and holes near the collecting electrodes giving rise to an internal electric field which is greater than the external applied field close to the electrodes and lower than the one in the central region of the polymer layer. We also found that a strong variation of electric field inside the polymer layer leads to an increase of recombination events in regions inside the polymer layer where the values of the internal electric field are lower

  8. Star-Branched Polymers (Star Polymers)

    KAUST Repository

    Hirao, Akira

    2015-09-01

    The synthesis of well-defined regular and asymmetric mixed arm (hereinafter miktoarm) star-branched polymers by the living anionic polymerization is reviewed in this chapter. In particular, much attention is being devoted to the synthetic development of miktoarm star polymers since 2000. At the present time, the almost all types of multiarmed and multicomponent miktoarm star polymers have become feasible by using recently developed iterative strategy. For example, the following well-defined stars have been successfully synthesized: 3-arm ABC, 4-arm ABCD, 5-arm ABCDE, 6-arm ABCDEF, 7-arm ABCDEFG, 6-arm ABC, 9-arm ABC, 12-arm ABC, 13-arm ABCD, 9-arm AB, 17-arm AB, 33-arm AB, 7-arm ABC, 15-arm ABCD, and 31-arm ABCDE miktoarm star polymers, most of which are quite new and difficult to synthesize by the end of the 1990s. Several new specialty functional star polymers composed of vinyl polymer segments and rigid rodlike poly(acetylene) arms, helical polypeptide, or helical poly(hexyl isocyanate) arms are introduced.

  9. Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implications

    Directory of Open Access Journals (Sweden)

    Alexandra Ancelmo Piscitelli Mansur

    2008-09-01

    Full Text Available Adhesion between tiles and mortars are crucial to the stability of ceramic tile systems. From the chemical point of view, weak forces such as van der Waals forces and hydrophilic interactions are expected to be developed preferably at the tiles and polymer modified Portland cement mortar interface. The main goal of this paper was to use organosilanes as primers to modify ceramic tile hydrophilic properties to improve adhesion between ceramic tiles and polymer modified mortars. Glass tile surfaces were treated with several silane derivatives bearing specific functionalities. Contact angle measurements and Fourier Transform Infrared Spectroscopy (FTIR were used for evaluating the chemical changes on the tile surface. In addition, pull-off tests were conducted to assess the effect on adhesion properties between tile and poly(ethylene-co-vinyl acetate, EVA, modified mortar. The bond strength results have clearly shown the improvement of adherence at the tile-polymer modified mortar interface, reflecting the overall balance of silane, cement and polymer interactions.

  10. Quantum Fourier Transform Over Galois Rings

    OpenAIRE

    Zhang, Yong

    2009-01-01

    Galois rings are regarded as "building blocks" of a finite commutative ring with identity. There have been many papers on classical error correction codes over Galois rings published. As an important warm-up before exploring quantum algorithms and quantum error correction codes over Galois rings, we study the quantum Fourier transform (QFT) over Galois rings and prove it can be efficiently preformed on a quantum computer. The properties of the QFT over Galois rings lead to the quantum algorit...

  11. Polymer nanocomposites: polymer and particle dynamics

    KAUST Repository

    Kim, Daniel; Srivastava, Samanvaya; Narayanan, Suresh; Archer, Lynden A.

    2012-01-01

    Polymer nanocomposites containing nanoparticles smaller than the random coil size of their host polymer chains are known to exhibit unique properties, such as lower viscosity and glass transition temperature relative to the neat polymer melt. It has

  12. Novel manifestations of the Aharonov-Bohm effect in quantum rings and Moebius rings

    International Nuclear Information System (INIS)

    Fomin, Vladimir M.

    2013-01-01

    - An overview is given on the recent experimental and theoretical advancements in studies of novel manifestations of the Aharonov-Bohm quantum-interference effect for excitons confined to self assembled quantum rings and other semiconductor nanostructures with ring-like states of charge carriers as well as for electrons in Moebius rings at the micro- and nanoscale. The exciton Aharonov-Bohm effect can be effectively controlled by an out-of-plane magnetic field, a vertical electric field, a spin disorder. A 'delocalization-to-localization' transition for the electron ground state occurs in a Moebius ring as it is made more inhomogeneous. (authors)

  13. Electroluminescence of Multicomponent Conjugated Polymers. 1. Roles of Polymer/Polymer Interfaces in Emission Enhancement and Voltage-Tunable Multicolor Emission in Semiconducting Polymer/Polymer Heterojunctions

    National Research Council Canada - National Science Library

    Zhang, Xuejun, Ph.D

    1999-01-01

    Effects of the electronic structure of polymer/polymer interfaces on the electroluminescence efficiency and tunable multicolor emission of polymer heterojunction light-emitting diodes were explored...

  14. Ageing effects of polymers at very low dose-rates

    International Nuclear Information System (INIS)

    Chenion, J.; Armand, X.; Berthet, J.; Carlin, F.; Gaussens, G.; Le Meur, M.

    1987-10-01

    The equipment irradiation dose-rate into the containment is variable from 10 -6 to 10 -4 gray per second for the most exposed materials. During qualification, safety equipments are submitted in France to dose-rates around 0.28 gray per second. This study purpose is to now if a so large irradiation dose-rate increase is reasonable. Three elastomeric materials used in electrical cables, o'rings seals and connectors, are exposed to a very large dose-rates scale between 2.1.10 -4 and 1.4 gray per second, to 49 KGy dose. This work was carried out during 3.5 years. Oxygen consumption measurement of the air in contact with polymer materials, as mechanical properties measurement show that: - at very low dose-rate, oxygen consumption is maximum at the same time (1.4 year) for the three elastomeric samples. Also, mechanical properties simultaneously change with oxygen consumption. At very low dose-rate, for the low irradiation doses, oxygen consumption is at least 10 times more important that it is showed when irradiation is carried out with usual material qualification dose-rate. At very low dose-rate, oxygen consumption decreases when absorbed irradiation dose by samples increases. The polymer samples irradiation dose is not still sufficient (49 KGy) to certainly determine, for the three chosen polymer materials, the reasonable irradiation acceleration boundary during nuclear qualification tests [fr

  15. On P-coherent endomorphism rings

    Indian Academy of Sciences (India)

    A ring is called right -coherent if every principal right ideal is finitely presented. Let M R be a right -module. We study the -coherence of the endomorphism ring of M R . It is shown that is a right -coherent ring if and only if every endomorphism of M R has a pseudokernel in add M R ; S is a left -coherent ring if and ...

  16. Population differentiation in tree-ring growth response of white fir (Abies concolor) to climate: Implications for predicting forest responses to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Deborah Bowne [Univ. of California, Berkeley, CA (United States)

    1993-01-01

    Forest succession models and correlative models have predicted 200--650 kilometer shifts in the geographic range of temperate forests and forest species as one response to global climate change. Few studies have investigated whether population differences may effect the response of forest species to climate change. This study examines differences in tree-ring growth, and in the phenotypic plasticity of tree-ring growth in 16-year old white fir, Abies concolor, from ten populations grown in four common gardens in the Sierra Nevada of California. For each population, tree-ring growth was modelled as a function of precipitation and degree-day sums. Tree-ring growth under three scenarios of doubled CO2 climates was estimated.

  17. Faithfully quadratic rings

    CERN Document Server

    Dickmann, M

    2015-01-01

    In this monograph the authors extend the classical algebraic theory of quadratic forms over fields to diagonal quadratic forms with invertible entries over broad classes of commutative, unitary rings where -1 is not a sum of squares and 2 is invertible. They accomplish this by: (1) Extending the classical notion of matrix isometry of forms to a suitable notion of T-isometry, where T is a preorder of the given ring, A, or T = A^2. (2) Introducing in this context three axioms expressing simple properties of (value) representation of elements of the ring by quadratic forms, well-known to hold in

  18. BERKELEY: ALS ring

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-06-15

    Everybody at Lawrence Berkeley Laboratory's Center for Beam Physics is pleased with the rapid progress in commissioning LBL's Advanced Light Source (ALS) electron storage ring, the foundation for this third-generation synchrotron radiation facility. Designed for a maximum current of 400 mA, the ALS storage ring reached 407 mA just 24 days after storing the first beam on 16 March. ALS construction as a US Department of Energy (DOE) national user facility to provide high-brightness vacuum ultra-violet and soft x-ray radiation began in October 1987. One technical requirement marking project completion was to accumulate a 50-mA current in the storage ring. The ALS passed this milestone on 24 March, a week ahead of the official deadline. Once injected, the electron beam decays quasi-exponentially primarily because of interactions with residual gas molecules in the storage-ring vacuum chamber. Eventually, when the pressure in the vacuum chamber with beam decreases toward the expected operating level of 1 nano Torr, it will only be necessary to refill the storage ring at intervals of four to eight hours. At present the vacuum is improving rapidly as surfaces are irradiated (scrubbed) by the synchrotron radiation itself. At 100 mA, beam lifetime was about one hour (9 April)

  19. Compressible Vortex Ring

    Science.gov (United States)

    Elavarasan, Ramasamy; Arakeri, Jayawant; Krothapalli, Anjaneyulu

    1999-11-01

    The interaction of a high-speed vortex ring with a shock wave is one of the fundamental issues as it is a source of sound in supersonic jets. The complex flow field induced by the vortex alters the propagation of the shock wave greatly. In order to understand the process, a compressible vortex ring is studied in detail using Particle Image Velocimetry (PIV) and shadowgraphic techniques. The high-speed vortex ring is generated from a shock tube and the shock wave, which precedes the vortex, is reflected back by a plate and made to interact with the vortex. The shadowgraph images indicate that the reflected shock front is influenced by the non-uniform flow induced by the vortex and is decelerated while passing through the vortex. It appears that after the interaction the shock is "split" into two. The PIV measurements provided clear picture about the evolution of the vortex at different time interval. The centerline velocity traces show the maximum velocity to be around 350 m/s. The velocity field, unlike in incompressible rings, contains contributions from both the shock and the vortex ring. The velocity distribution across the vortex core, core diameter and circulation are also calculated from the PIV data.

  20. BERKELEY: ALS ring

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Everybody at Lawrence Berkeley Laboratory's Center for Beam Physics is pleased with the rapid progress in commissioning LBL's Advanced Light Source (ALS) electron storage ring, the foundation for this third-generation synchrotron radiation facility. Designed for a maximum current of 400 mA, the ALS storage ring reached 407 mA just 24 days after storing the first beam on 16 March. ALS construction as a US Department of Energy (DOE) national user facility to provide high-brightness vacuum ultra-violet and soft x-ray radiation began in October 1987. One technical requirement marking project completion was to accumulate a 50-mA current in the storage ring. The ALS passed this milestone on 24 March, a week ahead of the official deadline. Once injected, the electron beam decays quasi-exponentially primarily because of interactions with residual gas molecules in the storage-ring vacuum chamber. Eventually, when the pressure in the vacuum chamber with beam decreases toward the expected operating level of 1 nano Torr, it will only be necessary to refill the storage ring at intervals of four to eight hours. At present the vacuum is improving rapidly as surfaces are irradiated (scrubbed) by the synchrotron radiation itself. At 100 mA, beam lifetime was about one hour (9 April)

  1. Ring current shifts in {sup 19}F-NMR of membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dongsheng, E-mail: liudsh@shanghaitech.edu.cn; Wüthrich, Kurt, E-mail: kwuthrich@shanghaitech.edu.cn [ShanghaiTech University, iHuman Institute (China)

    2016-05-15

    Fluorine-19 NMR markers are attractive reporter groups for use in studies of complex biomacromolecular systems, in particular also for studies of function-related conformational equilibria and rate processes in membrane proteins. Advantages of {sup 19}F-NMR probes include high sensitivity of the {sup 19}F chemical shifts to variations in the non-covalent environment. Nonetheless, in studies of G protein-coupled receptors (GPCR) we encountered situations where {sup 19}F chemical shifts were not responsive to conformational changes that had been implicated by other methods. This prompted us to examine possible effects of aromatic ring current fields on the chemical shifts of {sup 19}F-NMR probes used in GPCRs. Analysis of previously reported {sup 19}F-NMR data on the β{sub 2}-adrenergic receptor and mammalian rhodopsin showed that all {sup 19}F-labeling sites which manifested conformational changes are located near aromatic residues. Although ring current effects are small when compared to other known non-covalent effects on {sup 19}F chemical shifts, there is thus an indication that their contributions are significant when studying activation processes in GPCRs, since the observed activation-related {sup 19}F-NMR chemical shifts are comparable in size to the calculated ring current shifts. Considering the impact of ring current shifts may thus be helpful in identifying promising indigenous or engineered labeling sites for future {sup 19}F-NMR studies of GPCR activation, and novel information may be obtained on the nature of conformational rearrangements near the {sup 19}F-labels. It will then also be interesting to see if the presently indicated role of ring current shifts in membrane protein studies with {sup 19}F-NMR markers can be substantiated by a more extensive data base resulting from future studies.

  2. Synthesis of hydrazone functionalized epoxy polymers for non-linear optical device applications

    Science.gov (United States)

    Singh, Rajendra K.

    A series of twelve, thermally crosslinkable, epoxy polymers bearing covalently attached NLO-active hydrazone chromophores were synthesized. The primary focus was on the synthesis of two series of NLO-active hydroxy functionalized hydrazone chromophores. The first series, called the monohydroxy series (Hydrazones I--VI) comprised of six monohydroxy functionalized hydrazones and the second series consisted of six dihydroxy functionalized hydrazones (Hydrazones VII--XII). These hydrazone chromophores were then grafted, via the hydroxy functionality, on to a commercial epoxy polymer to obtain twelve NLO-active soluble prepolymers. The grafting reaction yields multiple secondary hydroxyl sites due to opening of the epoxide rings and these hydroxyl groups were used for further crosslinking by formulating the prepolymers with a blocked polyisocyanate commercial crosslinker. This formulation was spin coated on glass slides to form 2--2.5 m m thick uniform, defect free, transparent films. The films were corona poled, above their Tg, to align the chromophores in a noncentrosymmetric fashion and simultaneously complete the thermal cure that results in a highly crosslinked network. Finally the thermal characteristics of the second order nonlinearity of the twelve polymers are compared to illustrate the key structure-property relationships underlying the performance of the films.

  3. On the Laurent polynomial rings

    International Nuclear Information System (INIS)

    Stefanescu, D.

    1985-02-01

    We describe some properties of the Laurent polynomial rings in a finite number of indeterminates over a commutative unitary ring. We study some subrings of the Laurent polynomial rings. We finally obtain two cancellation properties. (author)

  4. The Hi-Ring DCN Architecture

    DEFF Research Database (Denmark)

    Galili, Michael; Kamchevska, Valerija; Ding, Yunhong

    2016-01-01

    We will review recent work on the proposed hierarchical ring-based architecture (HiRing) proposed for data center networks. We will discuss the architecture and initial demonstrations of optical switching performance and time-domain synchronization......We will review recent work on the proposed hierarchical ring-based architecture (HiRing) proposed for data center networks. We will discuss the architecture and initial demonstrations of optical switching performance and time-domain synchronization...

  5. EBT ring physics

    International Nuclear Information System (INIS)

    Uckan, N.A.

    1980-04-01

    This workshop attempted to evaluate the status of the current experimental and theoretical understanding of hot electron ring properties. The dominant physical processes that influence ring formation, scaling, and their optimal behavior are also studied. Separate abstracts were prepared for each of the 27 included papers

  6. Ground Movement in SSRL Ring

    International Nuclear Information System (INIS)

    Sunikumar, Nikita

    2011-01-01

    Users of the Stanford Synchrotron Radiation Lightsource (SSRL) are being affected by diurnal motion of the synchrotron's storage ring, which undergoes structural changes due to outdoor temperature fluctuations. In order to minimize the effects of diurnal temperature fluctuations, especially on the vertical motion of the ring floor, scientists at SSRL tried three approaches: painting the storage ring white, covering the asphalt in the middle of the ring with highly reflective Mylar and installing Mylar on a portion of the ring roof and walls. Vertical motion in the storage ring is measured by a Hydrostatic Leveling System (HLS), which calculates the relative height of water in a pipe that extends around the ring. The 24-hr amplitude of the floor motion was determined using spectral analysis of HLS data, and the ratio of this amplitude before and after each experiment was used to quantitatively determine the efficacy of each approach. The results of this analysis showed that the Mylar did not have any significant effect on floor motion, although the whitewash project did yield a reduction in overall HLS variation of 15 percent. However, further analysis showed that the reduction can largely be attributed to a few local changes rather than an overall reduction in floor motion around the ring. Future work will consist of identifying and selectively insulating these local regions in order to find the driving force behind diurnal floor motion in the storage ring.

  7. Token ring technology report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. This report provides an overview of the IBM Token-Ring technology and products built by IBM and compatible vendors. It consists of two sections: 1. A summary of the design trade-offs for the IBM Token-Ring. 2. A summary of the products of the major token-ring compatible vendors broken down by adapters and components, wiring systems, testing, and new chip technology.

  8. Polymer electronics

    CERN Document Server

    Hsin-Fei, Meng

    2013-01-01

    Polymer semiconductor is the only semiconductor that can be processed in solution. Electronics made by these flexible materials have many advantages such as large-area solution process, low cost, and high performance. Researchers and companies are increasingly dedicating time and money in polymer electronics. This book focuses on the fundamental materials and device physics of polymer electronics. It describes polymer light-emitting diodes, polymer field-effect transistors, organic vertical transistors, polymer solar cells, and many applications based on polymer electronics. The book also disc

  9. Biodegradable Polymers

    OpenAIRE

    Vroman, Isabelle; Tighzert, Lan

    2009-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  10. Prototype moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1982-01-01

    We have completed a design of the Prototype Moving-Ring Reactor. The fusion fuel is confined in current-carrying rings of magnetically-field-reversed plasma (Compact Toroids). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three burn stations. Separator coils and a slight axial guide field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for 1/3 of the total burn time at each station. D-T- 3 He ice pellets refuel the rings at a rate which maintains constant radiated power

  11. Radiolucent rings around bioabsorbable anchors after rotator cuff repair are not associated with clinical outcomes.

    Science.gov (United States)

    Park, Jin-Young; Jang, Suk-Hwan; Oh, Kyung-Soo; Li, Yi Jin

    2017-11-01

    Various researchers have observed small areas of osteolysis after using bioabsorbable anchors in shoulder surgeries. The purpose of this study is to determine whether radiographic perianchor radiolucent rings after rotator cuff repair are associated with the failure of repair and also assess their clinical implications. Further, the most frequent location of the radiolucent rings in the double-row suture bridge configuration was also assessed. One hundred and twenty-nine consecutive patients who underwent arthroscopic rotator cuff repair by suture bridge technique were retrospectively evaluated radiographically and clinically. The number and size of the rings that appeared at each follow-up were recorded. Also, the locations of each ring were recorded as anterior, middle or posterior, and medial or lateral according to the construct of the anchors used for suture bridge technique. The size of the tear, the number of anchors used and age of the patients were compared. Re-tear rates according to ultrasound examinations were also analyzed. After rotator cuff repair, the mean American Shoulder and Elbow Surgeons (ASES) score increased from 46.7 to 88.0 and the overall re-tear rate was 8.5% (11 cases). Seventy-three patients (56.6%) showed RR (total number of 99 rings) at least once during the course of their follow-up and the rings appeared at a mean period of 18.2 months after surgery. Mean size of the rings initially was 5.6 mm and the rings increased or decreased in mean size of 0.4 mm during mean follow-up of 37 months. No correlation was seen with the number of RRs and the rate of re-tears, number of anchors, size of tears, and clinical outcome as determined by the ASES score. Radiolucent ring measurement reproducibility was confirmed by independent, repeated measurements. The rings appeared mostly at anteromedial anchors (75 rings, 75.8%) and the authors suggest that mechanical factors may play a role for the cause of radiolucent rings. The number and the

  12. Polycomb Group Proteins RING1A and RING1B Regulate the Vegetative Phase Transition in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jian Li

    2017-05-01

    Full Text Available Polycomb group (PcG protein-mediated gene silencing is a major regulatory mechanism in higher eukaryotes that affects gene expression at the transcriptional level. Here, we report that two conserved homologous PcG proteins, RING1A and RING1B (RING1A/B, are required for global H2A monoubiquitination (H2Aub in Arabidopsis. The mutation of RING1A/B increased the expression of members of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL gene family and caused an early vegetative phase transition. The early vegetative phase transition observed in ring1a ring1b double mutant plants was dependent on an SPL family gene, and the H2Aub status of the chromatin at SPL locus was dependent on RING1A/B. Moreover, mutation in RING1A/B affected the miRNA156a-mediated vegetative phase transition, and RING1A/B and the AGO7-miR390-TAS3 pathway were found to additively regulate this transition in Arabidopsis. Together, our results demonstrate that RING1A/B regulates the vegetative phase transition in Arabidopsis through the repression of SPL family genes.

  13. Thermochemical Properties of Hydrophilic Polymers from Cashew and Khaya Exudates and Their Implications on Drug Delivery

    Directory of Open Access Journals (Sweden)

    Emmanuel O. Olorunsola

    2016-01-01

    Full Text Available Characterization of a polymer is essential for determining its suitability for a particular purpose. Thermochemical properties of cashew gum (CSG extracted from exudates of Anacardium occidentale L. and khaya gum (KYG extracted from exudates of Khaya senegalensis were determined and compared with those of acacia gum BP (ACG. The polymers were subjected to different thermal and chemical analyses. Exudates of CSG contained higher amount of hydrophilic polymer. The pH of 2% w/v gum dispersions was in the order KYG < CSG < ACG. Calcium was the predominant ion in CSG while potassium was predominant in KYG. The FTIR spectra of CSG and KYG were similar and slightly different from that of ACG. Acacia and khaya gums exhibited the same thermal behaviour which is different from that of CSG. X-ray diffraction revealed that the three gums are the same type of polymer, the major difference being the concentration of metal ions. This work suggests the application of cashew gum for formulation of basic and oxidizable drugs while using khaya gum for acidic drugs.

  14. Researches on the Piston Ring

    Science.gov (United States)

    Ehihara, Keikiti

    1944-01-01

    In internal combustion engines, steam engines, air compressors, and so forth, the piston ring plays an important role. Especially, the recent development of Diesel engines which require a high compression pressure for their working, makes, nowadays, the packing action of the piston ring far more important than ever. Though a number of papers have been published in regard to researches on the problem of the piston ring, none has yet dealt with an exact measurement of pressure exerted on the cylinder wall at any given point of the ring. The only paper that can be traced on this subject so far is Mr. Nakagawa's report on the determination of the relative distribution of pressure on the cylinder wall, but the measuring method adopted therein appears to need further consideration. No exact idea has yet been obtained as to how the obturation of gas between the piston and cylinder, the frictional resistance of the piston, and the wear of the cylinder wall are affected by the intensity and the distribution of the radial pressure of the piston ring. Consequently, the author has endeavored, by employing an apparatus of his own invention, to get an exact determination of the pressure distribution of the piston ring. By means of a newly devised ring tester, to which piezoelectricity of quartz was applied, the distribution of the radial pressure of many sample rings on the market was accurately determined. Since many famous piston rings show very irregular pressure distribution, the author investigated and achieved a manufacturing process of the piston ring which will exert uniform pressure on the cylinder wall. Temperature effects on the configuration and on the mean spring power have also been studied. Further, the tests were performed to ascertain how the gas tightness of the piston ring may be affected by the number or spring power. The researches as to the frictional resistance between the piston ring and the cylinder wall were carried out, too. The procedure of study, and

  15. Generation of stable mixed-compact-toroid rings by inducing plasma currents in strong E rings

    International Nuclear Information System (INIS)

    Jayakumar, R.; Taggart, D.P.; Parker, M.R.; Fleischmann, H.H.

    1989-01-01

    In the RECE-Christa device, hybrid-type compact toroid rings are generated by inducing large toroidal plasma currents I rho in strong electron rings using a thin induction coil positioned along the ring axis. Starting from field-reversal values δ ο = 50 - 120 percent of the original pure fast-electron ring, the induced plasma current I rho raises δ to a maximum value of up to 240 percent with I rho contributing more than 50 percent of the total ring current. Quite interestingly, the generated hybrid compact toroid configurations appear gross-stable during the full I rho pulse length (half-amplitude width about 100 μs)

  16. Magnetization of two coupled rings

    International Nuclear Information System (INIS)

    Avishai, Y; Luck, J M

    2009-01-01

    We investigate the persistent currents and magnetization of a mesoscopic system consisting of two clean metallic rings sharing a single contact point in a magnetic field. Many novel features with respect to the single-ring geometry are underlined, including the explicit dependence of wavefunctions on the Aharonov-Bohm fluxes, the complex pattern of two-fold and three-fold degeneracies, the key role of length and flux commensurability, and in the case of commensurate ring lengths the occurrence of idle levels which do not carry any current. Spin-orbit interactions, induced by the electric fields of charged wires threading the rings, give rise to a peculiar version of the Aharonov-Casher effect where, unlike for a single ring, spin is not conserved. Remarkably enough, this can only be realized when the Aharonov-Bohm fluxes in both rings are neither integer nor half-integer multiples of the flux quantum

  17. Radioactive gold ring dermatitis

    International Nuclear Information System (INIS)

    Miller, R.A.; Aldrich, J.E.

    1990-01-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy

  18. Analytical model for double split ring resonators with arbitrary ring width

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Jensen, Thomas; Krozer, Viktor

    2008-01-01

    For the first time, the analytical model for a double split ring resonator with unequal width rings is developed. The proposed models for the resonators with equal and unequal widths are based on an impedance matrix representation and provide the prediction of performance in a wide frequency range...

  19. Design and synthesis of a novel cationic thiolated polymer.

    Science.gov (United States)

    Rahmat, Deni; Sakloetsakun, Duangkamon; Shahnaz, Gul; Perera, Glen; Kaindl, Reinhard; Bernkop-Schnürch, Andreas

    2011-06-15

    The purpose of this study was to design and characterize a novel cationic thiolated polymer. In this regard a hydroxyethylcellulose-cysteamine conjugate (HEC-cysteamine) was synthesized. Oxidative ring opening with periodate and reductive amination with cysteamine were performed in order to immobilize free thiol groups to HEC. The resulting HEC-cysteamine displayed 2035 ± 162 μmol immobilized free thiol groups and 185 ± 64 μmol disulfide bonds per gram of polymer being soluble in both acidic and basic conditions. Unlike the unmodified HEC, in case of HEC-cysteamine, a three-fold increase in the viscosity was observed when equal volumes of the polymer were mixed with mucin solution. Tablets based on HEC-cysteamine remained attached on freshly excised porcine mucosa for 8 0h and displayed increased disintegration time of 2h. Swelling behavior of HEC-cysteamine tablets in 0.1M phosphate buffer pH 6.8 indicated swelling ratio of 19 within 8h. In contrast, tablets comprising unmodified HEC detached from the mucosa within few seconds and immediately disintegrated. In addition, they did not exhibit swelling behavior. The transport of rhodamine 123 across freshly excised rat intestine enhanced by a value of approximately 1.6-fold (p-value = 0.0024) in the presence of 0.5% (m/v) HEC-cysteamine as compared to buffer control. Result from cytotoxicity test of HEC-cysteamine applied to Caco-2 cells in concentration of 0.5% (m/v) revealed 82.4 ± 4.60% cell viability. According to these results, HEC-cysteamine seems to be a promising polymer for various pharmaceutical applications especially for intestinal drug delivery. Copyright © 2011. Published by Elsevier B.V.

  20. Cylindrical polymer brushes with dendritic side chains by iterative anionic reactions

    KAUST Repository

    Zhang, Hefeng

    2015-05-01

    We report in this paper an easy method for the synthesis of cylindrical polymer brushes with dendritic side chains through anionic reaction. The synthesis is accomplished by iteratively grafting a living block copolymer, polyisoprene-. b-polystyrenyllithium (PI-. b-PSLi), to the main chain and subsequently to the branches in a divergent way. PI segment is short and serves as a precursor for multifunctional branching unit. The grafting reaction involves two successive steps: i) epoxidation of internal double bonds of PI segments, either in main chain or side chains; ii) ring-opening addition to the resulting epoxy group by the living PI-. b-PSLi. Repeating the two steps affords a series of cylindrical polymer brushes with up to 3rd generation and extremely high molecular weight. The branching multiplicity depends on the average number of oxirane groups per PI segment, usually ca. 8 in the present work. The high branching multiplicity leads to tremendous increase in molecular weights of the cylindrical products with generation growth. Several series of cylindrical polymer brushes with tunable aspect ratios are prepared using backbones and branches with controlled lengths. Shape anisotropy is investigated in dilute solution using light scattering technique. Worm-like single molecular morphology with large persistence length is observed on different substrates by atomic force microscopy.

  1. Anion-Controlled Architecture and Photochromism of Naphthalene Diimide-Based Coordination Polymers

    Directory of Open Access Journals (Sweden)

    Jian-Jun Liu

    2018-02-01

    Full Text Available Three new cadmium coordination polymers, namely [Cd(NO32(DPNDI(CH3OH]·CH3OH (1, [Cd(SCN2(DPNDI] (2, and [Cd(DPNDI2(DMF2]·2ClO4 (3 (DPNDI = N,N-di(4-pyridyl-1,4,5,8-naphthalene diimide, DMF = N,N-dimethylformamide have been synthesized by reactions of DPNDI with Cd(NO32, Cd(SCN2, and Cd(ClO42, respectively. Compound 1 is a one-dimensional coordination polymer with strong lone pair-π interactions between the coordinated NO3− anions and the imide ring of DPNDI; while 2 is a two-dimensional network with a (4, 4 net topology. In the case of 3, due to the presence of uncoordinated perchlorate counter ions, it exhibits a non-interpenetrated square-grid coordination polymer containing one-dimensional rhomboid channels. The structural diversity in these compounds is attributed to different coordination abilities and geometries of counter anions. Due to the presence of electron-deficient NDI moiety, the photochromic behavior of these compounds was studied. Interestingly, only compounds 1 and 3 exhibit color changes under light irradiation. The influence of the anions on the photochromism process of the NDI-based materials has been discussed.

  2. Polymer Crowding in Confined Polymer-Nanoparticle Mixtures

    Science.gov (United States)

    Davis, Wyatt J.; Denton, Alan R.

    Crowding can influence the conformations and thus functionality of macromolecules in quasi-two-dimensional environments, such as DNA or proteins confined to a cell membrane. We explore such crowding within a model of polymers as penetrable ellipses, whose shapes are governed by the statistics of a 2D random walk. The principal radii of the polymers fluctuate according to probability distributions of the eigenvalues of the gyration tensor. Within this coarse-grained model, we perform Monte Carlo simulations of mixtures of polymers and hard nanodisks, including trial changes in polymer conformation (shape and orientation). Penetration of polymers by nanodisks is incorporated with a free energy cost predicted by polymer field theory. Over ranges of size ratio and nanodisk density, we analyze the influence of crowding on polymer shape by computing eigenvalue distributions, mean radius of gyration, and mean asphericity of the polymer. We compare results with predictions of free-volume theory and with corresponding results in three dimensions. Our approach may help to interpret recent (and motivate future) experimental studies of biopolymers interacting with cell membranes, with relevance for drug delivery and gene therapy. This work was supported by the National Science Foundation under Grant No. DMR-1106331.

  3. Pure subrings of the rings

    International Nuclear Information System (INIS)

    Tsarev, Andrei V

    2009-01-01

    Pure subrings of finite rank in the Z-adic completion of the ring of integers and in its homomorphic images are considered. Certain properties of these rings are studied (existence of an identity element, decomposability into a direct sum of essentially indecomposable ideals, condition for embeddability into a csp-ring, etc.). Additive groups of these rings and conditions under which these rings are subrings of algebraic number fields are described. Bibliography: 12 titles.

  4. Ring accelerators

    International Nuclear Information System (INIS)

    Gisler, G.; Faehl, R.

    1983-01-01

    We present two-dimensional simulations in (r-z) and r-theta) cylinderical geometries of imploding-liner-driven accelerators of rings of charged particles. We address issues of azimuthal and longitudinal stability of the rings. We discuss self-trapping designs in which beam injection and extraction is aided by means of external cusp fields. Our simulations are done with the 2-1/2-D particle-in-cell plasma simulation code CLINER, which combines collisionless, electromagnetic PIC capabilities with a quasi-MHD finite element package

  5. Manipulation of vortex rings for flow control

    International Nuclear Information System (INIS)

    Toyoda, Kuniaki; Hiramoto, Riho

    2009-01-01

    This paper reviews the dynamics of vortex rings and the control of flow by the manipulation of vortex rings. Vortex rings play key roles in many flows; hence, the understanding of the dynamics of vortex rings is crucial for scientists and engineers dealing with flow phenomena. We describe the structures and motions of vortex rings in circular and noncircular jets, which are typical examples of flows evolving into vortex rings. For circular jets the mechanism of evolving, merging and breakdown of vortex rings is described, and for noncircular jets the dynamics of three-dimensional deformation and interaction of noncircular vortex rings under the effect of self- and mutual induction is discussed. The application of vortex-ring manipulation to the control of various flows is reviewed with successful examples, based on the relationship between the vortex ring dynamics and the flow properties. (invited paper)

  6. The Rings of Saturn

    Science.gov (United States)

    Cuzzi, J. N.; Filacchione, G.; Marouf, E. A.

    2018-03-01

    One could become an expert on Saturn's iconic rings pretty easily in the early 1970s, as very little was known about them beyond the distinction between the A, B, and C rings, and the Cassini Division or "gap" between rings A and B (Alexander, 1962; Bobrov, 1970). Water ice was discovered spectroscopically on the ring particle surfaces, and radar and microwave emission observations proved that the particles must be centimeters to meters in size, consisting primarily, not just superficially, of water ice (Pollack, 1975). While a 2:1 orbital resonance with Mimas had long been suspected of having something to do with the Cassini Division, computers of the time were unable to model the subtle dynamical effects that we now know to dominate ring structure. This innocent state of affairs was exploded by the Voyager 1 and 2 encounters in 1980 and 1981. Spectacular images revealed filigree structure and odd regional color variations, and exquisitely detailed radial profiles of fluctuating particle abundance were obtained from the first stellar and radio occultations, having resolution almost at the scale of single particles. Voyager-era understanding was reviewed by Cuzzi et al. (1984) and Esposito et al. (1984). While the Voyager data kept ring scientists busy for decades, planning which led to the monumentally successful NASA-ESA-ASI Cassini mission, which arrived in 2004, had been under way even before Voyager got to Saturn. A review of pre-Cassini knowledge of Saturn's Rings can be found in Orton et al. (2009). This chapter will build on recent topical and process-specific reviews that treat the gamut of ring phenomena and its underlying physics in considerable detail (Colwell et al., 2009; Cuzzi et al., 2009; Horányi et al., 2009; Schmidt et al., 2009; Esposito, 2010; Tiscareno, 2013b; Esposito, 2014). We will follow and extend the general organization of Cuzzi et al. (2010), the most recent general discussion of Saturn's rings. For brevity and the benefit of the

  7. ANL stochastic-cooling experiments using the FNAL 200-MeV cooling ring

    International Nuclear Information System (INIS)

    Hogrefe, R.L.; Kellogg, K.D.; Konecny, R.S.; Kramer, S.L.; Simpson, J.D.; Suddeth, D.E.; Hardek, T.W.

    1981-01-01

    Studies of stochastic momentum cooling are being conducted on the FNAL 200-MeV Storage Ring. The specific goal of the activity is to establish confidence in the theory and simulation methods used to describe the cooling process, and to develop techniques and devices suitable for use in the antiproton-accumulation scheme now planned for construction at FNAL. A summary of the activity, including hardware design, results of experiments, comparison with theory, and implications for the antiproton accumulator are presented

  8. Slippage and nanorheology of thin liquid polymer films

    International Nuclear Information System (INIS)

    Bäumchen, Oliver; Fetzer, Renate; Klos, Mischa; Lessel, Matthias; Marquant, Ludovic; Hähl, Hendrik; Jacobs, Karin

    2012-01-01

    Thin liquid films on surfaces are part of our everyday life; they serve, e.g., as coatings or lubricants. The stability of a thin layer is governed by interfacial forces, described by the effective interface potential, and has been subject of many studies in recent decades. In recent years, the dynamics of thin liquid films has come into focus since results on the reduction of the glass transition temperature raised new questions on the behavior of especially polymeric liquids in confined geometries. The new focus was fired by theoretical models that proposed significant implication of the boundary condition at the solid/liquid interface on the dynamics of dewetting and the form of a liquid front. Our study reflects these recent developments and adds new experimental data to corroborate the theoretical models. To probe the solid/liquid boundary condition experimentally, different methods are possible, each bearing advantages and disadvantages, which will be discussed. Studying liquid flow on a variety of different substrates entails a view on the direct implications of the substrate. The experimental focus of this study is the variation of the polymer chain length; the results demonstrate that inter-chain entanglements and in particular their density close to the interface, originating from non-bulk conformations, govern the liquid slip of a polymer. (paper)

  9. Examination techniques for non-magnetic rings

    International Nuclear Information System (INIS)

    Metala, M.J.; Kilpatrick, N.L.; Frank, W.W.

    1990-01-01

    Until the introduction of 18Mn18Cr rings a few years ago, most non-magnetic steel rings for generator rotors were made from 18Mn5Cr alloy steel, which is highly susceptible to stress corrosion cracking in the presence of water. This, the latest in a series of papers on the subject of non-magnetic rings by the authors' company, provides a discussion of nondestructive examination of 18Mn5Cr rings for stress corrosion distress. With rings on the rotor, fluorescent penetrant, ultrasonic and special visual techniques are applied. With rings off the rotor, the fluorescent penetrant technique is used, with and without stress enhancement

  10. Radiation chemistry of polymeric X-ray resists; Zur Strahlenchemie polymerer Roentgenresists

    Energy Technology Data Exchange (ETDEWEB)

    Wollersheim, O.

    1995-03-01

    In this study, the radiation chemical reactions in poly(methyl-methacrylate) (PMMA) and homo- and copolymers of lactide and glycollide during X-ray exposure with synchrotron radiation from the Bonn ELSA electron storage ring are quantitatively analyzed. In situ studies of the irradiated PMMA and lactide/glycollide polymers with mass spectroscopy, infrared spectroscopy and ESR spectroscopy combined with ex situ methods as size exclusion chromatography and titration lead to a complete and quantitative understanding of the radiation chemical reactions in both polymer classes. The implications for the application of the polymers in the X-ray deep etch lithography, which is the appropriate process for the production of microsystem components, are discussed. (orig.)

  11. Ionization cooling ring for muons

    Directory of Open Access Journals (Sweden)

    R. Palmer

    2005-06-01

    Full Text Available Practical ionization cooling rings could lead to lower cost or improved performance in neutrino factory or muon collider designs. The ring modeled here uses realistic three-dimensional fields. The performance of the ring compares favorably with the linear cooling channel used in the second U.S. Neutrino Factory Study. The normalized 6D emittance of an ideal ring is decreased by a factor of approximately 240, compared with a factor of only 15 for the linear channel. We also examine such real-world effects as windows on the absorbers and rf cavities and leaving empty lattice cells for injection and extraction. For realistic conditions the ring decreases the normalized 6D emittance by a factor of 49.

  12. Structure–property relationships of oligothiophene–isoindigo polymers for efficient bulk-heterojunction solar cells

    KAUST Repository

    Ma, Zaifei

    2014-01-01

    A series of alternating oligothiophene (nT)-isoindigo (I) copolymers (PnTI) were synthesized to investigate the influence of the oligothiophene block length on the photovoltaic (PV) properties of PnTI:PCBM bulk-heterojunction blends. Our study indicates that the number of thiophene rings (n) in the repeating unit alters both polymer crystallinity and polymer-fullerene interfacial energetics, which results in a decreasing open-circuit voltage (Voc) of the solar cells with increasing n. The short-circuit current density (Jsc) of P1TI:PCBM devices is limited by the absence of a significant driving force for electron transfer. Instead, blends based on P5TI and P6TI feature large polymer domains, which limit charge generation and thus Jsc. The best PV performance with a power conversion efficiency of up to 6.9% was achieved with devices based on P3TI, where a combination of a favorable morphology and an optimal interfacial energy level offset ensures efficient exciton separation and charge generation. The structure-property relationship demonstrated in this work would be a valuable guideline for the design of high performance polymers with small energy losses during the charge generation process, allowing for the fabrication of efficient solar cells that combine a minimal loss in Voc with a high Jsc. © 2014 The Royal Society of Chemistry.

  13. Pathogenic Chlamydia Lack a Classical Sacculus but Synthesize a Narrow, Mid-cell Peptidoglycan Ring, Regulated by MreB, for Cell Division.

    Science.gov (United States)

    Liechti, George; Kuru, Erkin; Packiam, Mathanraj; Hsu, Yen-Pang; Tekkam, Srinivas; Hall, Edward; Rittichier, Jonathan T; VanNieuwenhze, Michael; Brun, Yves V; Maurelli, Anthony T

    2016-05-01

    The peptidoglycan (PG) cell wall is a peptide cross-linked glycan polymer essential for bacterial division and maintenance of cell shape and hydrostatic pressure. Bacteria in the Chlamydiales were long thought to lack PG until recent advances in PG labeling technologies revealed the presence of this critical cell wall component in Chlamydia trachomatis. In this study, we utilize bio-orthogonal D-amino acid dipeptide probes combined with super-resolution microscopy to demonstrate that four pathogenic Chlamydiae species each possess a ≤ 140 nm wide PG ring limited to the division plane during the replicative phase of their developmental cycles. Assembly of this PG ring is rapid, processive, and linked to the bacterial actin-like protein, MreB. Both MreB polymerization and PG biosynthesis occur only in the intracellular form of pathogenic Chlamydia and are required for cell enlargement, division, and transition between the microbe's developmental forms. Our kinetic, molecular, and biochemical analyses suggest that the development of this limited, transient, PG ring structure is the result of pathoadaptation by Chlamydia to an intracellular niche within its vertebrate host.

  14. Pathogenic Chlamydia Lack a Classical Sacculus but Synthesize a Narrow, Mid-cell Peptidoglycan Ring, Regulated by MreB, for Cell Division.

    Directory of Open Access Journals (Sweden)

    George Liechti

    2016-05-01

    Full Text Available The peptidoglycan (PG cell wall is a peptide cross-linked glycan polymer essential for bacterial division and maintenance of cell shape and hydrostatic pressure. Bacteria in the Chlamydiales were long thought to lack PG until recent advances in PG labeling technologies revealed the presence of this critical cell wall component in Chlamydia trachomatis. In this study, we utilize bio-orthogonal D-amino acid dipeptide probes combined with super-resolution microscopy to demonstrate that four pathogenic Chlamydiae species each possess a ≤ 140 nm wide PG ring limited to the division plane during the replicative phase of their developmental cycles. Assembly of this PG ring is rapid, processive, and linked to the bacterial actin-like protein, MreB. Both MreB polymerization and PG biosynthesis occur only in the intracellular form of pathogenic Chlamydia and are required for cell enlargement, division, and transition between the microbe's developmental forms. Our kinetic, molecular, and biochemical analyses suggest that the development of this limited, transient, PG ring structure is the result of pathoadaptation by Chlamydia to an intracellular niche within its vertebrate host.

  15. Water vapor permeabilities through polymers: diffusivities from experiments and simulations

    International Nuclear Information System (INIS)

    Seethamraju, Sindhu; Ramamurthy, Praveen Chandrashekarapura; Madras, Giridhar

    2014-01-01

    This study experimentally determines water vapor permeabilities, which are subsequently correlated with the diffusivities obtained from simulations. Molecular dynamics (MD) simulations were used for determining the diffusion of water vapor in various polymeric systems such as polyethylene, polypropylene, poly (vinyl alcohol), poly (vinyl acetate), poly (vinyl butyral), poly (vinylidene chloride), poly (vinyl chloride) and poly (methyl methacrylate). Cavity ring down spectroscopy (CRDS) based methodology has been used to determine the water vapor transmission rates. These values were then used to calculate the diffusion coefficients for water vapor through these polymers. A comparative analysis is provided for diffusivities calculated from CRDS and MD based results by correlating the free volumes. (paper)

  16. Development of polymer films by the coalescence of polymer particles in powdered and aqueous polymer-modified mortars

    International Nuclear Information System (INIS)

    Afridi, M.U.K.; Ohama, Y.; Demura, K.; Iqbal, M.Z.

    2003-01-01

    This paper evaluates and compares the coalescence of polymer particles (continuous polymer films formation) in powdered polymer-modified mortars (PPMMs) and aqueous polymer-modified mortars (APMMs). Polymer-modified mortars (PMMs) using various redispersible polymer powders (powdered cement modifiers) and polymer dispersions (aqueous cement modifiers) were prepared by varying the polymer-cement ratio (P/C) and were tested for the characterization of polymer films using a scanning electron microscope (SEM) after curing for 28 days. It is concluded from the test results that mortar constituents of unmodified mortar (UMM) are loosely joined with each other due to the absence of polymer films, thus having a structure with comparatively lower mechanical and durability characteristics. By contrast, mortar constituents in PPMMs and APMMs are compactly joined with each other due to the presence of interweaving polymer films, thereby forming a monolithic structure with improved mechanical and durability characteristics. However, the results make obvious the poor coalescence of polymer particles or development of inferior quality polymers films in PPMMs as compared to that observed in APMMs. Moreover, PPMMs show less uniform distribution of polymer films as compared to that in APMMs. Different powdered cement modifiers have different film-forming capabilities. However, such difference is hardly recognized in aqueous cement modifiers. The polymer films in PPMMs and APMMs may acquire different structures. They may appear as mesh-like, thread-like, rugged, dense or fibrous with fine or rough surfaces. Development of coherent polymer films is not well pronounced at a P/C of 5% in PPMMs, whereas sometimes coherent polymer films are observed at a P/C of 5% in APMMs. At a P/C of 10% or more, fully developed, coherent polymer films are observed in both PPMMs and APMMs

  17. Thinning Approximation for Two-Dimensional Scattering Patterns from Coarse-Grained Polymer Melts under Shear Flow

    Science.gov (United States)

    Hagita, Katsumi; Murashima, Takahiro; Takano, Hiroshi; Kawakatsu, Toshihiro

    2017-12-01

    We proposed a thinning approximation (TA) for estimation of the two-dimensional (2D) wide-angle scattering patterns from Kremer-Grest polymer melts under shear. In the TA, extra particles are inserted at the middle of bonds for fine-graining of the coarse-grained polymers. For the case without the TA, spots corresponding to the orientation of bonds at a high shear rate are difficult to observe because the bond length of successive particles is comparable to the distance between neighboring particles. With the insertion of the extra particles, a ring pattern originating from the neighboring particles can be moved to a wide-angle region. Thus, we can observe the spots at high shear rates. We also examined the relationship between 2D scattering patterns and the Weissenberg number, which is defined as the product of the shear rate and the longest relaxation time. It is confirmed that the relationship for coarse-grained polymers with the TA is consistent with that of the all-atomistic model of polyethylene.

  18. Self-gravitation in Saturn's rings

    International Nuclear Information System (INIS)

    Salo, H.; Lukkari, J.

    1982-01-01

    In a ring-shaped collisional system self-gravitation reduces the equilibrium values of the geometric and optical thickness. In Saturn's rings both effects are appreciable. The previously found discrepancy between the calculated profile and the observed profile of the rings is chiefly caused by the omission of self-gravitation. (Auth.)

  19. Understanding the Effects of Defect Modification on the Structure and Properties of Fluorinated Polymers and Implications for Capacitive Energy Storage Technologies

    Science.gov (United States)

    Gadinski, Matthew R.

    As the world begins to turn to alternative energy technologies and our electronic devices have become more both mobile and integral to everyday life, increasing interest has been focused on energy storage technologies. Capacitors are one of these energy storage technologies that utilize the polarization of an insulating material sandwiched by two electrodes as a means to store electric charge. Polymers are a preferred dielectric material for capacitors because of both their performance and practicality. However, polymer dielectrics are limited in energy density by low dielectric constant, and high loss at elevated temperature. This work aims to address these issues in order to enable polymer dielectrics for future applications and demands. As most polymer tend to have low dielectric constants (˜2-3), but impressive breakdown strengths, only a moderate improvement in dielectric constant has the potential to vastly improve the energy density of polymer capacitors. As such tremendous interest has been placed on poly(vinylidene fluoride) (PVDF) which has a dielectric of 10+ due to the highly polar C-F bonds of its backbone. To improve PVDF's performance defect monomers have been introduced to tailor the polymorphic crystalline phase to tune its properties. Additionally, this defect modification has implications for piezoelectric, electrocaloric, and thermoelectric applications of PVDF. In Chapter 2 a copolymer of VDF and bromotrifluoroethylene (BTFE) was produced. The effect of BTFE on the structure and dielectric properties of the resulting copolymer had not been previously evaluated, and its synthesis allowed for the comparison to previously reported VDF based copolymers including P(VDF-CTFE) and P(VDF-HFP). Through 19F NMR it was determined due to reactivity ratio differences of BTFE in comparison to previously explored copolymers, BTFE during synthesis is much more likely to link with itself. This results in long runs of BTFE-BTFE defects along with isolated

  20. Saturn’s ring temperatures at equinox

    Science.gov (United States)

    Spilker, Linda J.; Ferrari, C.; Morishima, R.

    2013-10-01

    Modeling the thermal emission of Saturn's rings is challenging due to the numerous heating sources as well as the structural properties of the disk and of the particles that are closely related. At equinox, however, the main rings are externally heated by Saturn alone and the problem is somewhat simplified. We test the abilities of our current models to reproduce the temperatures observed with the Cassini CIRS instrument around equinox in August 2009. A simple semi-analytic model which includes mutual shadowing effects can mostly explain the radial profile of the equinox ring temperatures, except the model predicts lower temperatures than those observed for the A ring. The temperature variation at a given saturnocentric radius is primarily caused by observational geometry variations relative to Saturn. The observed temperature increases with decreasing Saturn-ring-observer angle. In addition, we found evidence that the leading hemispheres of particles are warmer than the trailing hemispheres at least for the C ring and probably for the A and B rings as well. This is explained if some fraction of particles has spin rates lower than the synchronous rotation rate as predicted by N-body simulations. The spin model for a monolayer ring (Ferrari, C., Leyrat, C., 2006, Astron. Astrophys. 447, 745-760) can fit the temperature variations with spacecraft longitude observed in the C ring with currently known thermal properties and a mixing of slow and fast rotators. The multilayer model (Morishima, R., Salo, H., Ohtsuki, K., 2009, Icarus 201, 634-654) can reproduce the temperatures of the B and C rings but gives A ring temperatures that are significantly lower than those observed as does the simple semi-analytic model. More advanced models which take into account self-gravity wakes may explain the A ring temperature behavior.

  1. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  2. Adsorption and flocculation by polymers and polymer mixtures.

    Science.gov (United States)

    Gregory, John; Barany, Sandor

    2011-11-14

    Polymers of various types are in widespread use as flocculants in several industries. In most cases, polymer adsorption is an essential prerequisite for flocculation and kinetic aspects are very important. The rates of polymer adsorption and of re-conformation (relaxation) of adsorbed chains are key factors that influence the performance of flocculants and their mode of action. Polyelectrolytes often tend to adopt a rather flat adsorbed configuration and in this state their action is mainly through charge effects, including 'electrostatic patch' attraction. When the relaxation rate is quite low, particle collisions may occur while the adsorbed chains are still in an extended state and flocculation by polymer bridging may occur. These effects are now well understood and supported by much experimental evidence. In recent years there has been considerable interest in the use of multi-component flocculants, especially dual-polymer systems. In the latter case, there can be significant advantages over the use of single polymers. Despite some complications, there is a broad understanding of the action of dual polymer systems. In many cases the sequence of addition of the polymers is important and the pre-adsorbed polymer can have two important effects: providing adsorption sites for the second polymer or causing a more extended adsorbed conformation as a result of 'site blocking'. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Split ring containment attachment device

    International Nuclear Information System (INIS)

    Sammel, A.G.

    1996-01-01

    A containment attachment device is described for operatively connecting a glovebag to plastic sheeting covering hazardous material. The device includes an inner split ring member connected on one end to a middle ring member wherein the free end of the split ring member is inserted through a slit in the plastic sheeting to captively engage a generally circular portion of the plastic sheeting. A collar potion having an outer ring portion is provided with fastening means for securing the device together wherein the glovebag is operatively connected to the collar portion. 5 figs

  4. Treatment of aqueous diethyl phthalate by adsorption using a functional polymer resin.

    Science.gov (United States)

    Xu, Zhengwen; Zhang, Weiming; Pan, Bingcai; Lv, Lu; Jiang, Zhengmao

    2011-01-01

    To study the adsorptive separation efficiency, adsorption and desorption performances of diethyl phthalate (DEP) were investigated with a functional polymer resin (NDA-702). A macroporous polymer resin (XAD-4) and a coal-based granular activated carbon (AC-750) were chosen for comparison. The kinetic adsorption data obeyed the pseudo-second-order rate model, and the adsorption processes were limited by both film and intraparticle diffusions. Adsorption equilibrium data were well fitted by the Freundlich equation, and the larger uptake and higher selection of NDA-702 than AC-750 and XAD-4 was probably due to the microporous structure, phenyl rings and polar groups on NDA-702. Thermodynamic adsorption studies indicated that the test adsorbents spontaneously adsorbed DEP, driven mainly by enthalpy change. Continuous fixed-bed runs demonstrated that there no significant loss of the resin's adsorption capacity and there was complete regeneration of NDA-702. The results suggest that NDA-702 has excellent potential as an adsorption material for water treatment.

  5. An N-body Integrator for Planetary Rings

    Science.gov (United States)

    Hahn, Joseph M.

    2011-04-01

    A planetary ring that is disturbed by a satellite's resonant perturbation can respond in an organized way. When the resonance lies in the ring's interior, the ring responds via an m-armed spiral wave, while a ring whose edge is confined by the resonance exhibits an m-lobed scalloping along the ring-edge. The amplitude of these disturbances are sensitive to ring surface density and viscosity, so modelling these phenomena can provide estimates of the ring's properties. However a brute force attempt to simulate a ring's full azimuthal extent with an N-body code will likely fail because of the large number of particles needed to resolve the ring's behavior. Another impediment is the gravitational stirring that occurs among the simulated particles, which can wash out the ring's organized response. However it is possible to adapt an N-body integrator so that it can simulate a ring's collective response to resonant perturbations. The code developed here uses a few thousand massless particles to trace streamlines within the ring. Particles are close in a radial sense to these streamlines, which allows streamlines to be treated as straight wires of constant linear density. Consequently, gravity due to these streamline is a simple function of the particle's radial distance to all streamlines. And because particles are responding to smooth gravitating streamlines, rather than discrete particles, this method eliminates the stirring that ordinarily occurs in brute force N-body calculations. Note also that ring surface density is now a simple function of streamline separations, so effects due to ring pressure and viscosity are easily accounted for, too. A poster will describe this N-body method in greater detail. Simulations of spiral density waves and scalloped ring-edges are executed in typically ten minutes on a desktop PC, and results for Saturn's A and B rings will be presented at conference time.

  6. Minimal Gromov-Witten rings

    International Nuclear Information System (INIS)

    Przyjalkowski, V V

    2008-01-01

    We construct an abstract theory of Gromov-Witten invariants of genus 0 for quantum minimal Fano varieties (a minimal class of varieties which is natural from the quantum cohomological viewpoint). Namely, we consider the minimal Gromov-Witten ring: a commutative algebra whose generators and relations are of the form used in the Gromov-Witten theory of Fano varieties (of unspecified dimension). The Gromov-Witten theory of any quantum minimal variety is a homomorphism from this ring to C. We prove an abstract reconstruction theorem which says that this ring is isomorphic to the free commutative ring generated by 'prime two-pointed invariants'. We also find solutions of the differential equation of type DN for a Fano variety of dimension N in terms of the generating series of one-pointed Gromov-Witten invariants

  7. Photochemistry in Saturn’s Ring-Shadowed Atmosphere: Modulation of Hydrocarbons and Aerosols

    Science.gov (United States)

    Edgington, Scott G.; Atreya, Sushil K.; Wilson, Eric H.; Baines, Kevin H.; West, Robert A.; Bjoraker, Gordon L.; Fletcher, Leigh N.; Momary, Tom

    2015-11-01

    Cassini has been orbiting Saturn for over eleven years now. During this epoch, the ring shadow has moved from covering much of the northern hemisphere (the solar inclination was 24 degrees) to covering a large swath south of the equator and it continues to move southward. At Saturn Orbit Insertion in 2004, the projection of the A-ring onto Saturn reached as far as 40N along the central meridian (52N at the terminator). At its maximum extent, the ring shadow can reach as far as 48N/S (58N/S at the terminator). The net effect is that the intensity of both ultraviolet and visible sunlight penetrating through the rings to any particular latitude will vary depending on both Saturn’s axis relative to the Sun and the optical thickness of each ring system. In essence, the rings act like semi-transparent venetian blinds.Our previous work, examined the variation of the solar flux as a function of solar inclination, i.e. for each 7.25-year season at Saturn. Here, we report on the impact of the oscillating ring shadow on the photolysis and production rates of hydrocarbons (acetylene, ethane, propane, and benzene) and phosphine in Saturn’s stratosphere and upper troposphere. The impact of these production and loss rates on the abundance of long-lived photochemical products leading to haze formation are explored. Similarly, we assess their impact on phosphine abundance, a disequilibrium species whose presence in the upper troposphere can be used as a tracer of convective processes in the deeper atmosphere.We will also present our ongoing analysis of Cassini’s datasets that provide an estimate of the evolving haze content of the northern hemisphere and we will begin to assess the implications for dynamical mixing. In particular, we will examine how the now famous hexagonal jet stream acts like a barrier to transport, isolating Saturn’s north polar region from outside transport of photochemically-generated molecules and haze.The research described in this paper was carried

  8. Electro-optical hybrid slip ring

    Science.gov (United States)

    Hong, En

    2005-11-01

    The slip ring is a rotary electrical interface, collector, swivel or rotary joint. It is a physical system that can perform continuous data transfer and data exchange between a stationary and a rotating structure. A slip ring is generally used to transfer data or power from an unrestrained, continuously rotating electro-mechanical system in real-time, thereby simplifying operations and eliminating damage-prone wires dangling from moving joints. Slip rings are widely used for testing, evaluating, developing and improving various technical equipment and facilities with rotating parts. They are widely used in industry, especially in manufacturing industries employing turbo machinery, as in aviation, shipbuilding, aerospace, defense, and in precise facilities having rotating parts such as medical Computerized Tomography (CT) and MRI scanners and so forth. Therefore, any improvement in slip ring technology can impact large markets. Research and development in this field will have broad prospects long into the future. The goal in developing the current slip ring technology is to improve and increase the reliability, stability, anti-interference, and high data fidelity between rotating and stationary structures. Up to now, there have been numerous approaches used for signal and data transfer utilizing a slip ring such as metal contacts, wires, radio transmission, and even liquid media. However, all suffer from drawbacks such as data transfer speed limitations, reliability, stability, electro-magnetic interference and durability. The purpose of the current research is to break through these basic limitations using an optical solution, thereby improving performance in current slip ring applications. This dissertation introduces a novel Electro-Optical Hybrid Slip Ring technology, which makes "through the air" digital-optical communication between stationary and rotating systems a reality with high data transfer speed, better reliability and low interference susceptibility

  9. Multiple Linear Regression Modeling To Predict the Stability of Polymer-Drug Solid Dispersions: Comparison of the Effects of Polymers and Manufacturing Methods on Solid Dispersion Stability.

    Science.gov (United States)

    Fridgeirsdottir, Gudrun A; Harris, Robert J; Dryden, Ian L; Fischer, Peter M; Roberts, Clive J

    2018-03-29

    Solid dispersions can be a successful way to enhance the bioavailability of poorly soluble drugs. Here 60 solid dispersion formulations were produced using ten chemically diverse, neutral, poorly soluble drugs, three commonly used polymers, and two manufacturing techniques, spray-drying and melt extrusion. Each formulation underwent a six-month stability study at accelerated conditions, 40 °C and 75% relative humidity (RH). Significant differences in times to crystallization (onset of crystallization) were observed between both the different polymers and the two processing methods. Stability from zero days to over one year was observed. The extensive experimental data set obtained from this stability study was used to build multiple linear regression models to correlate physicochemical properties of the active pharmaceutical ingredients (API) with the stability data. The purpose of these models is to indicate which combination of processing method and polymer carrier is most likely to give a stable solid dispersion. Six quantitative mathematical multiple linear regression-based models were produced based on selection of the most influential independent physical and chemical parameters from a set of 33 possible factors, one model for each combination of polymer and processing method, with good predictability of stability. Three general rules are proposed from these models for the formulation development of suitably stable solid dispersions. Namely, increased stability is correlated with increased glass transition temperature ( T g ) of solid dispersions, as well as decreased number of H-bond donors and increased molecular flexibility (such as rotatable bonds and ring count) of the drug molecule.

  10. Double acting stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1986-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  11. Polymer crowding and shape distributions in polymer-nanoparticle mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Wei Kang; Denton, Alan R., E-mail: alan.denton@ndsu.edu [Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050 (United States)

    2014-09-21

    Macromolecular crowding can influence polymer shapes, which is important for understanding the thermodynamic stability of polymer solutions and the structure and function of biopolymers (proteins, RNA, DNA) under confinement. We explore the influence of nanoparticle crowding on polymer shapes via Monte Carlo simulations and free-volume theory of a coarse-grained model of polymer-nanoparticle mixtures. Exploiting the geometry of random walks, we model polymer coils as effective penetrable ellipsoids, whose shapes fluctuate according to the probability distributions of the eigenvalues of the gyration tensor. Accounting for the entropic cost of a nanoparticle penetrating a larger polymer coil, we compute the crowding-induced shift in the shape distributions, radius of gyration, and asphericity of ideal polymers in a theta solvent. With increased nanoparticle crowding, we find that polymers become more compact (smaller, more spherical), in agreement with predictions of free-volume theory. Our approach can be easily extended to nonideal polymers in good solvents and used to model conformations of biopolymers in crowded environments.

  12. Polymer crowding and shape distributions in polymer-nanoparticle mixtures

    International Nuclear Information System (INIS)

    Lim, Wei Kang; Denton, Alan R.

    2014-01-01

    Macromolecular crowding can influence polymer shapes, which is important for understanding the thermodynamic stability of polymer solutions and the structure and function of biopolymers (proteins, RNA, DNA) under confinement. We explore the influence of nanoparticle crowding on polymer shapes via Monte Carlo simulations and free-volume theory of a coarse-grained model of polymer-nanoparticle mixtures. Exploiting the geometry of random walks, we model polymer coils as effective penetrable ellipsoids, whose shapes fluctuate according to the probability distributions of the eigenvalues of the gyration tensor. Accounting for the entropic cost of a nanoparticle penetrating a larger polymer coil, we compute the crowding-induced shift in the shape distributions, radius of gyration, and asphericity of ideal polymers in a theta solvent. With increased nanoparticle crowding, we find that polymers become more compact (smaller, more spherical), in agreement with predictions of free-volume theory. Our approach can be easily extended to nonideal polymers in good solvents and used to model conformations of biopolymers in crowded environments

  13. Fusion Rings for Quantum Groups

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Stroppel, Catharina

    2012-01-01

    We study the fusion rings of tilting modules for a quantum group at a root of unity modulo the tensor ideal of negligible tilting modules. We identify them in type A with the combinatorial rings from [12] and give a similar description of the sp2n-fusion ring in terms of noncommutative symmetric...

  14. Topological rings

    CERN Document Server

    Warner, S

    1993-01-01

    This text brings the reader to the frontiers of current research in topological rings. The exercises illustrate many results and theorems while a comprehensive bibliography is also included. The book is aimed at those readers acquainted with some very basic point-set topology and algebra, as normally presented in semester courses at the beginning graduate level or even at the advanced undergraduate level. Familiarity with Hausdorff, metric, compact and locally compact spaces and basic properties of continuous functions, also with groups, rings, fields, vector spaces and modules, and with Zorn''s Lemma, is also expected.

  15. Structure and Dynamics of Polymer/Polymer grafted nanoparticle composite

    Science.gov (United States)

    Archer, Lynden

    Addition of nanoparticles to polymers is a well-practiced methodology for augmenting various properties of the polymer host, including mechanical strength, thermal stability, barrier properties, dimensional stability and wear resistance. Many of these property changes are known to arise from nanoparticle-induced modification of polymer structure and chain dynamics, which are strong functions of the dispersion state of the nanoparticles' and on their relative size (D) to polymer chain dimensions (e.g. Random coil radius Rg or entanglement mesh size a) . This talk will discuss polymer nanocomposites (PNCs) comprised of Polyethylene Glycol (PEG) tethered silica nanoparticles (SiO2-PEG) dispersed in polymers as model systems for investigating phase stability and dynamics of PNCs. On the basis of small-angle X-ray Scattering, it will be shown that favorable enthalpic interactions between particle-tethered chains and a polymer host provides an important mechanism for creating PNCs in which particle aggregation is avoided. The talk will report on polymer and particle scale dynamics in these materials and will show that grafted nanoparticles well dispersed in a polymer host strongly influence the host polymer relaxation dynamics on all timescales and the polymers in turn produce dramatic changes in the nature (from diffusive to hyperdiffusive) and speed of nano particle decorrelation dynamics at the polymer entanglement threshold. A local viscosity model capable of explaining these observations is discussed and the results compared with scaling theories for NP motions in polymers This material is based on work supported by the National Science Foundation Award Nos. DMR-1609125 and CBET-1512297.

  16. Energy spectra of quantum rings.

    Science.gov (United States)

    Fuhrer, A; Lüscher, S; Ihn, T; Heinzel, T; Ensslin, K; Wegscheider, W; Bichler, M

    2001-10-25

    Quantum mechanical experiments in ring geometries have long fascinated physicists. Open rings connected to leads, for example, allow the observation of the Aharonov-Bohm effect, one of the best examples of quantum mechanical phase coherence. The phase coherence of electrons travelling through a quantum dot embedded in one arm of an open ring has also been demonstrated. The energy spectra of closed rings have only recently been studied by optical spectroscopy. The prediction that they allow persistent current has been explored in various experiments. Here we report magnetotransport experiments on closed rings in the Coulomb blockade regime. Our experiments show that a microscopic understanding of energy levels, so far limited to few-electron quantum dots, can be extended to a many-electron system. A semiclassical interpretation of our results indicates that electron motion in the rings is governed by regular rather than chaotic motion, an unexplored regime in many-electron quantum dots. This opens a way to experiments where even more complex structures can be investigated at a quantum mechanical level.

  17. Forandringslæring med autismediagnoser?

    DEFF Research Database (Denmark)

    Gustafson, Kari Ingrid; Mørck, Line Lerche

    2013-01-01

    Artiklen drøfter en række aktuelle spørgsmål omkring læring hos børn og unge med autisme-spektrum-forstyrrelses diagnoser. Der introduceres til en social praksisteoretisk forståelse af forandringslæring, der diskuterer forandring ikke kun i relation til en persons identitet, men også aktuelle og...... potentielle forandringer, når det gælder overskridelse af binær logik i autisme versus normalitet, samt i relation til at overskride individualiserede og dualistiske problem-forståelser af fejl og mangler ved det autistiske barn. Det illustreres, hvordan disse former for dualistisk tænkning er forankret i et...... Rasmus’ ændringer i læring, selvforståelse og tilhørsforhold perspektiveres med andre ASF-diagnostiseredes læring udforsket bl.a. gennem gruppeinterviews i regi af Asperger-foreningen. Artiklen byder således på et alternativ i form af at forstå forandringslæring som overskridende læring, med langt større...

  18. Constitutional Isomers of Dendrimer-like Star Polymers: Design, Synthesis and Conformational and Structural Properties; TOPICAL

    International Nuclear Information System (INIS)

    Pople, John A.

    2001-01-01

    The design, synthesis and solution properties of six constitutional isomers of dendrimer-like star polymers is described. Each of the polymers have comparable molecular weights ((approx) 80,000 g/mol), narrow polydispersities ( and lt; 1.19) and an identical number of branching junctures (45) and surface hydroxyl functionalities (48). The only difference in the six isomers is the placement of the branching junctures. The polymers are constructed from high molecular weight poly(e-caprolactone) with branching junctures derived from 2,2'-bis(hydroxylmethyl) propionic acid (bis-MPA) emanating from a central core. The use of various generations of dendritic initiators and dendrons coupled with the ring opening polymerization of e-caprolactones allowed a modular approach to the dendrimer-like star polymer isomers. The most pronounced effects on the physical properties/morphology and hydrodynamic volume was for those polymers in which the branching was distributed throughout the sample in a dendrimer-like fashion. The versatility of this approach has provided the possibility of understanding the relationship between architecture and physical properties. Dynamic light scattering and small angle X-ray scattering techniques were used to determine the hydrodynamic radius Rh and radius of gyration Rg respectively. The relationship between Rg and molecular weight was indicative of a compact star-like structure, and did not show advanced bias towards either the dense core or dense shell models. The radial density distribution of the isomers was therefore modeled according to a many arm star polymer, and good agreement was found with experimental measures of Rh/Rg

  19. The Lord of Rings - the mysterious case of the stolen rings: a critical analysis

    Science.gov (United States)

    Sandrelli, S.

    The Lord of Rings - the mysterious case of the stolen rings: a critical analysis S. Sandrelli INAF - Osservatorio Astronomico di Brera, Milano, Italy (stefano.sandrelli@brera.inaf.it / Fax: 02 72001600 / Phone: +39 02 72320337) "The Lord of Rings - the mysterious case of the stolen rings" is a live astronomical role-playing game for kids aged 10 -13. Its goal is to introduce them to some of the main topics of the Solar System: a) the role of gravity; b) the distribution of mass & light; c) the effects of rotation; d) the distribution of water. The game was held both at the Perugia (2004) and the Genova Science Festival (2005), obtaining great success. Teams of about 6-8 members are introduced to Mr Schioppanelli, the astro-detective of the town (the name is a pun: it reminds Schiaparelli, the famous italian astronomer, and it is a slang expression meaning "ring-breaker"). Mr Schioppanelli has his office in an "gastronomical astronomical observatory", known as The Red Giant Pizzeria. Schioppanelli informs the kids that a mysterious Centaur succeded in stealing the rings of Saturn. The partecipants are appointed astro-detectives in-charge and asked to find the rings by browsing around the Solar System, which is scaled so as to fit the town historical centre or a pedestrian area, going from the Sun to Saturn or beyond, depending on the actual area at disposal. Great care must be taken allowing children playing only in a car-free area of the town. At the right scaled distances, the partecipants meet characters playing as the various planets. The kids can talk to them after solving a riddle, obtaining useful informations. A special characters play as a comet, timely going in and out of the inner solar system. The teams can also talk to some shepherd-moons of the rings. They easily discover that the rings were totally destroyed by the Centaur: a real disaster! They are also suggested to gather the necessary ingredients (gravity, light, rotation, inclination, dust and

  20. Vortex rings in classical and quantum systems

    International Nuclear Information System (INIS)

    Barenghi, C F; Donnelly, R J

    2009-01-01

    The study of vortex rings has been pursued for decades and is a particularly difficult subject. However, the discovery of quantized vortex rings in superfluid helium has greatly increased interest in vortex rings with very thin cores. While rapid progress has been made in the simulation of quantized vortex rings, there has not been comparable progress in laboratory studies of vortex rings in a viscous fluid such as water. This article overviews the history and current frontiers of classical and quantum vortex rings. After introducing the classical results, this review discusses thin-cored vortex rings in superfluid helium in section 2, and recent progress in understanding vortex rings of very thin cores propagating in water in section 3. (invited paper)

  1. Polymer dynamics from synthetic polymers to proteins

    Indian Academy of Sciences (India)

    Keywords. Polymer dynamics; reptation; domain dynamics biomolecules. Abstract. Starting from the standard model of polymer motion - the Rouse model - we briefly present some key experimental results on the mesoscopic dynamics of polymer systems. We touch the role of topological confinement as expressed in the ...

  2. Laparoscopic appendicectomy using endo-ring applicator and fallope rings

    International Nuclear Information System (INIS)

    Ali, Iyoob V; Maliekkal, Joji I

    2009-01-01

    Wider adoption of laparoscopic appendicectomy (LA) is limited by problems in securing the appendiceal base as well as the cost and the duration compared with the open procedure. The objective of this study was to assess the feasibility and efficacy of a new method for securing the appendiceal base in LA, so as to make the entire procedure simpler and cheaper, and hence, more popular. Twenty-five patients who were candidates for appendicectomy (emergency as well as elective) and willing for the laparoscopic procedure were selected for this study. Ports used were 10 mm at the umbilicus, 5 mm at the lower right iliac fossa, and 10 mm at the left iliac fossa. Extremely friable, ruptured, or turgid organs of diameters larger than 8 mm were excluded from the study. The mesoappendix was divided close to the appendix by diathermy. Fallope rings were applied to the appendiceal base using a special ring applicator, and the appendix was divided and extracted through the lumen of the applicator. The procedure was successful in 23 (92%) cases, and the mean duration of the procedure was 20 minutes (15-32 minutes). There were no procedural complications seen during a median follow-up of two weeks. The equipment and rings were cheaper when compared with that of the standard methods of securing the base of the appendix. LA using fallope rings is a safe, simple, easy-to-learn, and economically viable method. (author)

  3. SMARANDACHE NON-ASSOCIATIVE RINGS

    OpenAIRE

    Vasantha, Kandasamy

    2002-01-01

    An associative ring is just realized or built using reals or complex; finite or infinite by defining two binary operations on it. But on the contrary when we want to define or study or even introduce a non-associative ring we need two separate algebraic structures say a commutative ring with 1 (or a field) together with a loop or a groupoid or a vector space or a linear algebra. The two non-associative well-known algebras viz. Lie algebras and Jordan algebras are mainly built using a vecto...

  4. Heavy ion storage rings

    International Nuclear Information System (INIS)

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented. 35 refs

  5. Deformation and degradation of polymers in ultra-high-pressure liquid chromatography.

    Science.gov (United States)

    Uliyanchenko, Elena; van der Wal, Sjoerd; Schoenmakers, Peter J

    2011-09-28

    Ultra-high-pressure liquid chromatography (UHPLC) using columns packed with sub-2 μm particles has great potential for separations of many types of complex samples, including polymers. However, the application of UHPLC for the analysis of polymers meets some fundamental obstacles. Small particles and narrow bore tubing in combination with high pressures generate significant shear and extensional forces in UHPLC systems, which may affect polymer chains. At high stress conditions flexible macromolecules may become extended and eventually the chemical bonds in the molecules can break. Deformation and degradation of macromolecules will affect the peak retention and the peak shape in the chromatogram, which may cause errors in the obtained results (e.g. the calculated molecular-weight distributions). In the present work we explored the limitations of UHPLC for the analysis of polymers. Degradation and deformation of macromolecules were studied by collecting and re-injecting polymer peaks and by off-line two-dimensional liquid chromatography. Polystyrene standards with molecular weight of 4 MDa and larger were found to degrade at UHPLC conditions. However, for most polymers degradation could be avoided by using low linear velocities. No degradation of 3-MDa PS (and smaller) was observed at linear velocities up to 7 mm/s. The column frits were implicated as the main sources of polymer degradation. The extent of degradation was found to depend on the type of the column and on the column history. At high flow rates degradation was observed without a column being installed. We demonstrated that polymer deformation preceded degradation. Stretched polymers eluted from the column in slalom chromatography mode (elution order opposite to that in SEC or HDC). Under certain conditions we observed co-elution of large and small PS molecules though a convolution of slalom chromatography and hydrodynamic chromatography. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Apple ring rot-responsive putative microRNAs revealed by high-throughput sequencing in Malus × domestica Borkh.

    Science.gov (United States)

    Yu, Xin-Yi; Du, Bei-Bei; Gao, Zhi-Hong; Zhang, Shi-Jie; Tu, Xu-Tong; Chen, Xiao-Yun; Zhang, Zhen; Qu, Shen-Chun

    2014-08-01

    MicroRNAs (miRNAs) are small non-coding RNAs, which silence target mRNA via cleavage or translational inhibition to function in regulating gene expression. MiRNAs act as important regulators of plant development and stress response. For understanding the role of miRNAs responsive to apple ring rot stress, we identified disease-responsive miRNAs using high-throughput sequencing in Malus × domestica Borkh.. Four small RNA libraries were constructed from two control strains in M. domestica, crabapple (CKHu) and Fuji Naga-fu No. 6 (CKFu), and two disease stress strains, crabapple (DSHu) and Fuji Naga-fu No. 6 (DSFu). A total of 59 miRNA families were identified and five miRNAs might be responsive to apple ring rot infection and validated via qRT-PCR. Furthermore, we predicted 76 target genes which were regulated by conserved miRNAs potentially. Our study demonstrated that miRNAs was responsive to apple ring rot infection and may have important implications on apple disease resistance.

  7. A new parameter in the electrochemical etching of polymer track detectors

    International Nuclear Information System (INIS)

    Sohrabi, M.; Katouzi, M.

    1993-01-01

    It was discovered that the pressure applied to the electrochemical etching (ECE) chamber system and in turn to washers holding the detector tight in place between two semi-chambers has a direct effect on the internal heating and time to breakdown of the polymer detector. The effect was found to be dependent on the type, material, shape and size of the washers holding the detector in place under pressure. To verify such parameters, a pressure ECE chamber (PECE) with measurable and reproducible pressure was designed and constructed. Three types of rubber washers, such as ''O'' rings, flat rings and sheets as well as polycarbonate (PC) detectors glued directly between two semi-syringes, were used. Flat rubber sheets were shown to have relatively minor effects on the internal heating rate and are recommended. The effect seems to be due to forced vibrations of the detector under an electric field, the frequency of which depends on the degree to which the detector is stretched under pressure, like winding the strings of a musical instrument. The results of the above studies are presented and discussed. (orig.)

  8. Moving ring reactor 'Karin-1'

    International Nuclear Information System (INIS)

    1983-12-01

    The conceptual design of a moving ring reactor ''Karin-1'' has been carried out to advance fusion system design, to clarify the research and development problems, and to decide their priority. In order to attain these objectives, a D-T reactor with tritium breeding blanket is designed, a commercial reactor with net power output of 500 MWe is designed, the compatibility of plasma physics with fusion engineering is demonstrated, and some other guideline is indicated. A moving ring reactor is composed mainly of three parts. In the first formation section, a plasma ring is formed and heated up to ignition temperature. The plasma ring of compact torus is transported from the formation section through the next burning section to generate fusion power. Then the plasma ring moves into the last recovery section, and the energy and particles of the plasma ring are recovered. The outline of a moving ring reactor ''Karin-1'' is described. As a candidate material for the first wall, SiC was adopted to reduce the MHD effect and to minimize the interaction with neutrons and charged particles. The thin metal lining was applied to the SiC surface to solve the problem of the compatibility with lithium blanket. Plasma physics, the engineering aspect and the items of research and development are described. (Kako, I.)

  9. Tinkering at the main-ring lattice

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, S.

    1982-08-23

    To improve production of usable antiprotons using the proton beam from the main ring and the lossless injection of cooled antiprotons into the main ring, modifications of the main ring lattice are recommended.

  10. Discrepancy between different estimates of the hydrodynamic diameter of polymer-coated iron oxide nanoparticles in solution

    International Nuclear Information System (INIS)

    Regmi, R.; Gumber, V.; Subba Rao, V.; Kohli, I.; Black, C.; Sudakar, C.; Vaishnava, P.; Naik, V.; Naik, R.; Mukhopadhyay, A.; Lawes, G.

    2011-01-01

    We have synthesized iron oxide nanoparticles coated with a monolayer of dextran, with molecular weights of the polymer between 5 and 670 kDa. Transmission electron microscopy images confirm that the hard core has a crystalline diameter of approximately 12 nm. The hydrodynamic diameters of these coated nanoparticles in solution measured using dynamical light scattering and estimated from magnetic susceptibility studies vary from near 90 nm for the lightest polymer to 140 nm for the heaviest polymer. Conversely, fluorescence correlation spectroscopy measurements yield a diameter of approximately 55 nm for the 15–20 kDa dextran coated nanoparticles, which is consistent with the expected value estimated from the sum of the hard-core diameter and monolayer dextran coating. We discuss the implications of this discrepancy for applications involving polymer-coated magnetic nanoparticles.

  11. Intrinsically Microporous Polymer Membranes for High Performance Gas Separation

    KAUST Repository

    Swaidan, Raja

    2014-11-01

    This dissertation addresses the rational design of intrinsically microporous solutionprocessable polyimides and ladder polymers for highly permeable and highly selective gas transport in cornerstone applications of membrane-based gas separation – that is, air enrichment, hydrogen recovery and natural gas sweetening. By virtue of rigid and contorted chains that pack inefficiently in the solid state, polymers of intrinsic microporosity (PIMs) have the potential to unite the solution-processability, mechanical flexibility and organic tunability of commercially relevant polymers with the microporosity characteristics of porous crystalline materials. The performance enhancements of PIMs over conventional low-free-volume polymers have been primarily permeability-driven, compromising the selectivity essential to commercial viability. An approach to unite high permeability with high selectivity for performance transcending the state-of-the-art in air and hydrogen separations was demonstrated via a fused-ring integration of a three-dimensional, shape persistent triptycene moiety optimally substituted with short, branched isopropyl chains at the 9,10-bridgeheads into a highly inflexible backbone. The resulting polymers exhibited selectivities (i.e., O2/N2, H2/N2, H2/CH4) similar to or higher than commercial materials matched with permeabilities up to three hundred times higher. However, the intra-chain rigidity central to such conventional PIM-design principles was not a singular solution to suppression of CO2-induced plasticization in CO2/CH4 mixedgas separations. Plasticization diminishes the sieving capacity of the membrane, resulting in costly hydrocarbon losses that have significantly limited the commercialization of new polymers. Unexpectedly, the most permeable and selective PIMs designed for air and hydrogen separations strongly plasticized in 50:50 CO2/CH4 mixtures, enduring up to three-fold increases in mixed-gas CH4 permeability by 30 bar and strong drops in

  12. The ring plus project: safety and acceptability of vaginal rings that protect women from unintended pregnancy

    OpenAIRE

    Schurmans, C?line; De Baetselier, Irith; Kestelyn, Evelyne; Jespers, Vicky; Delvaux, Th?r?se; Agaba, Stephen K; van Loen, Harry; Menten, Joris; van de Wijgert, Janneke; Crucitti, Tania

    2015-01-01

    Background Research is ongoing to develop multipurpose vaginal rings to be used continuously for contraception and to prevent Human Immunodeficiency Virus (HIV) infection. Contraceptive vaginal rings (CVRs) are available in a number of countries and are most of the time used intermittently i.e. three weeks out of a 4-week cycle. Efficacy trials with a dapivirine-containing vaginal ring for HIV prevention are ongoing and plans to develop multi-purpose vaginal rings for prevention of both HIV a...

  13. Thon rings from amorphous ice and implications of beam-induced Brownian motion in single particle electron cryo-microscopy

    Energy Technology Data Exchange (ETDEWEB)

    McMullan, G., E-mail: gm2@mrc-lmb.cam.ac.uk; Vinothkumar, K.R.; Henderson, R.

    2015-11-15

    We have recorded dose-fractionated electron cryo-microscope images of thin films of pure flash-frozen amorphous ice and pre-irradiated amorphous carbon on a Falcon II direct electron detector using 300 keV electrons. We observe Thon rings [1] in both the power spectrum of the summed frames and the sum of power spectra from the individual frames. The Thon rings from amorphous carbon images are always more visible in the power spectrum of the summed frames whereas those of amorphous ice are more visible in the sum of power spectra from the individual frames. This difference indicates that while pre-irradiated carbon behaves like a solid during the exposure, amorphous ice behaves like a fluid with the individual water molecules undergoing beam-induced motion. Using the measured variation in the power spectra amplitude with number of electrons per image we deduce that water molecules are randomly displaced by a mean squared distance of ∼1.1 Å{sup 2} for every incident 300 keV e{sup −}/Å{sup 2}. The induced motion leads to an optimal exposure with 300 keV electrons of 4.0 e{sup −}/Å{sup 2} per image with which to observe Thon rings centred around the strong 3.7 Å scattering peak from amorphous ice. The beam-induced movement of the water molecules generates pseudo-Brownian motion of embedded macromolecules. The resulting blurring of single particle images contributes an additional term, on top of that from radiation damage, to the minimum achievable B-factor for macromolecular structure determination. - Highlights: • Thon rings can be seen from amorphous ice. • Radiation damage to amorphous ice randomly displaces water molecules. • Each incident 300 keV e{sup −}/Å{sup 2} displaces water molecules on average by ∼1 Å. • Macromolecules embedded in amorphous ice undergo beam induced Brownian motion.

  14. Pyrimidine-pyridine ring interconversion

    NARCIS (Netherlands)

    Plas, van der H.C.

    2003-01-01

    This chapter discusses the pyrimidine-to-pyridine ring transformation and pyridine-to-pyrimidine ring transformation. In nucleophile-induced pyrimidine-to-pyridine rearrangements, two types of reactions can be distinguished depending on the structure of the nucleophile: (1) reactions in which the

  15. Electron beam cooling at a magnetic storage ring, TARN II, and an electrostatic storage ring

    International Nuclear Information System (INIS)

    Tanabe, Tetsumi

    2006-01-01

    At the High Energy Accelerator Research Organization (KEK), a magnetic storage ring, TARN II, with an electron cooler was operated from 1989 to 1999, while an electrostatic storage ring with a small electron cooler has been operational since 2000. In this paper, the electron cooling at TARN II and the electrostatic storage ring is described. (author)

  16. Leapfrogging of multiple coaxial viscous vortex rings

    International Nuclear Information System (INIS)

    Cheng, M.; Lou, J.; Lim, T. T.

    2015-01-01

    A recent theoretical study [Borisov, Kilin, and Mamaev, “The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem,” Regular Chaotic Dyn. 18, 33 (2013); Borisov et al., “The dynamics of vortex rings: Leapfrogging in an ideal and viscous fluid,” Fluid Dyn. Res. 46, 031415 (2014)] shows that when three coaxial vortex rings travel in the same direction in an incompressible ideal fluid, each of the vortex rings alternately slips through (or leapfrogs) the other two ahead. Here, we use a lattice Boltzmann method to simulate viscous vortex rings with an identical initial circulation, radius, and separation distance with the aim of studying how viscous effect influences the outcomes of the leapfrogging process. For the case of two identical vortex rings, our computation shows that leapfrogging can be achieved only under certain favorable conditions, which depend on Reynolds number, vortex core size, and initial separation distance between the two rings. For the case of three coaxial vortex rings, the result differs from the inviscid model and shows that the second vortex ring always slips through the leading ring first, followed by the third ring slipping through the other two ahead. A simple physical model is proposed to explain the observed behavior

  17. Multi-scale entropic depletion phenomena in polymer liquids

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Debapriya [Department of Materials Science, University of Illinois, Urbana, Illinois 61801 (United States); Schweizer, Kenneth S., E-mail: kschweiz@illinois.edu [Department of Materials Science, University of Illinois, Urbana, Illinois 61801 (United States); Department of Chemistry, University of Illinois, Urbana, Illinois 61801 (United States); Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)

    2015-06-07

    We apply numerical polymer integral equation theory to study the entropic depletion problem for hard spheres dissolved in flexible chain polymer melts and concentrated solutions over an exceptionally wide range of polymer radius of gyration to particle diameter ratios (R{sub g}/D), particle-monomer diameter ratios (D/d), and chain lengths (N) including the monomer and oligomer regimes. Calculations are performed based on a calibration of the effective melt packing fraction that reproduces the isobaric dimensionless isothermal compressibility of real polymer liquids. Three regimes of the polymer-mediated interparticle potential of mean force (PMF) are identified and analyzed in depth. (i) The magnitude of the contact attraction that dominates thermodynamic stability scales linearly with D/d and exhibits a monotonic and nonperturbative logarithmic increase with N ultimately saturating in the long chain limit. (ii) A close to contact repulsive barrier emerges that grows linearly with D/d and can attain values far in excess of thermal energy for experimentally relevant particle sizes and chain lengths. This raises the possibility of kinetic stabilization of particles in nanocomposites. The barrier grows initially logarithmically with N, attains a maximum when 2R{sub g} ∼ D/2, and then decreases towards its asymptotic long chain limit as 2R{sub g} ≫ D. (iii) A long range (of order R{sub g}) repulsive, exponentially decaying component of the depletion potential emerges when polymer coils are smaller than, or of order, the nanoparticle diameter. Its amplitude is effectively constant for 2R{sub g} ≤ D. As the polymer becomes larger than the particle, the amplitude of this feature decreases extremely rapidly and becomes negligible. A weak long range and N-dependent component of the monomer-particle pair correlation function is found which is suggested to be the origin of the long range repulsive PMF. Implications of our results for thermodynamics and miscibility are

  18. Polymer compound

    NARCIS (Netherlands)

    1995-01-01

    A Polymer compound comprising a polymer (a) that contains cyclic imidesgroups and a polymer (b) that contains monomer groups with a 2,4-diamino-1,3,5-triazine side group. According to the formula (see formula) whereby themole percentage ratio of the cyclic imides groups in the polymer compoundwith

  19. Production and Characterization of Polycarbonate Microstructured Polymer Optical Fiber Bragg Grating Sensor

    DEFF Research Database (Denmark)

    Fasano, Andrea; Woyessa, Getinet; Stajanca, P.

    2015-01-01

    , such as casting of pol-ymer granulates into a solid rod, machining and drilling of a 3-ring hexagonal lattice of holes into it, and finally drawing into fiber. We demonstrate that the obtained PC mPOF is photosensitive and FBGs can be conveniently inscribed into it, thereby enabling FBG-based temperature...... and strain sensing. The PC optical fibers are for some applications an attractive alternative to conventional materials used in POF fabrication, such as polymethyl methacrylate (PMMA). In general, PC can be used at temperature up to 120 °C and breaks at considerably higher strains than PMMA....

  20. Redox shuttles having an aromatic ring fused to a 1,1,4,4-tetrasubstituted cyclohexane ring

    Science.gov (United States)

    Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

    2015-12-01

    An electrolyte includes an alkali metal salt; an aprotic solvent; and a redox shuttle additive including an aromatic compound having at least one aromatic ring fused with at least one non-aromatic ring, the aromatic ring having two or more oxygen or phosphorus-containing substituents.

  1. Star Polymers.

    Science.gov (United States)

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  2. Interaction of Vortex Ring with Cutting Plate

    Science.gov (United States)

    Musta, Mustafa

    2015-11-01

    The interaction of a vortex ring impinging on a thin cutting plate was made experimentally using Volumetric 3-component Velocitmetry (v3v) technique. The vortex rings were generated with piston-cylinder vortex ring generator using piston stroke-to-diameter ratios and Re at 2-3 and 1500 - 3000, respectively. The cutting of vortex rings below center line leads to the formation of secondary vortices on each side of the plate which is look like two vortex rings, and a third vortex ring propagates further downstream in the direction of the initial vortex ring, which is previously showed by flow visualization study of Weigand (1993) and called ``trifurcation''. Trifurcation is very sensitive to the initial Reynolds number and the position of the plate with respect to the vortex ring generator pipe. The present work seeks more detailed investigation on the trifurcation using V3V technique. Conditions for the formation of trifurcation is analyzed and compared with Weigand (1993). The formed secondary vortex rings and the propagation of initial vortex ring in the downstream of the plate are analyzed by calculating their circulation, energy and trajectories.

  3. Electronic Interactions of n-Doped Perylene Diimide Groups Appended to Polynorbornene Chains: Implications for Electron Transport in Organic Electronics.

    Science.gov (United States)

    Nguyen, Minh T; Biberdorf, Joshua D; Holliday, Bradley J; Jones, Richard A

    2017-11-01

    A polymer consisting of a polynorbornene backbone with perylene diimide (PDI) pendant groups on each monomeric unit is synthesized via ring opening metathesis polymerization. The PDI pendant groups along the polymer backbone, studied by UV-vis absorption, fluorescence emission, and electron paramagnetic resonance spectroscopy in addition to electrochemical methods, show evidence of molecular aggregation and corresponding electronic coupling with neighboring groups, which forms pathways for efficient electron transport from one group to another in a specific reduced form. When n-doped, the title polymer shows redox conductivity of 5.4 × 10 -3 S cm -1 , comparable with crystalline PDI materials, and is therefore a promising material for use in organic electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Magnetic ring for stripping enhancement

    International Nuclear Information System (INIS)

    Selph, F.

    1992-10-01

    A ring designed to recycle ions through a stripping medium offers the possibility for increasing output of the desired charge state by up to 4x. This could be a very important component of a Radioactive Nuclear Beam Facility. In order for such a ring to work effectively it must satisfy certain design conditions. These include achromaticity at the stripper, a dispersed region for an extraction magnet, and a number of first and higher order optics constraints which are necessary to insure that the beam emittance is not degraded unduly by the ring. An example is given of a candidate design of a stripping ring

  5. Acceleration of magnetized plasma rings

    International Nuclear Information System (INIS)

    Hartman, D.; Eddleman, J.; Hammer, J.H.

    1982-01-01

    One scheme is considered, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focussing) during acceleration. Because the allowable acceleration force F/sub a/ = kappa U/sub m//R (kappa - 2 , the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency

  6. All-solid-state ion-selective silicone rubber membrane electrodes with a new conducting polymer

    International Nuclear Information System (INIS)

    Park, Eun Rang; Chung, Yeon Joon; Hwang, Sun Woo

    2012-01-01

    New conducting polymers containing heterocyclic rings with carbazole, ethylene dioxythiophene (EDOT) and benzobisthiazole were synthesized and the characterized by using organic spectroscopic methods. Potentiometric ion-selective membrane electrodes (ISMEs) have been extensively used for ion analysis in clinical, environmental, and industrial fields owing to their wide response range (4 to 7 orders of magnitude), no effect of sample turbidity, fast response time, and ease of miniaturization. Considerable attention has been given to alternative use of room-temperature vulcanizing (RTV)-type silicone rubber (SR) owing to its strong adhesion and high thermal durability. Unfortunately, the high membrane resistance of SR-based ion-selective membranes (ISMs) (2 to 3 higher orders of magnitude compared to those of poly(vinyl chloride)(PVC)-based ones) has significantly restricted their application. Herein, we demonstrate a new method to reduce the membrane resistance via addition of a new conducting polymer into the SR-based ISMs.

  7. Spin coating and plasma process for 2.5D integrated photonics on multilayer polymers

    International Nuclear Information System (INIS)

    Zebda, A.; Camberlein, L.; Beche, B.; Gaviot, E.; Beche, E.; Duval, D.; Zyss, J.; Jezequel, G.; Solal, F.; Godet, C.

    2008-01-01

    Polymer spin coating, surface plasma treatment and selective UV-lithography processes have been developed to realize 2.5D photonic micro-resonators, made of disk- or ring-shaped upper rib waveguides, using common polymers such as SU8 (biphenol A ether glycidyl), PS233 (polymeric silane) and SOG (siloxane Spin on Glass). Both oxygen and argon plasma treatments, applied to PS233 and SOG before spin-coating the SU8, improve substantially the grip of multilayer devices (SU8 / PS233 or SU8 / SOG). Surface energy components derived from contact angle measurements have been used to optimize the processing conditions. In such integrated photonic devices, the both single-electromagnetic-modes called transverse electric (TE 00 ) and transverse magnetic (TM 00 ) have been excited in a SU8 micro-disk, with a single mode propagation strongly localized near the edge of the disk (i.e. the so called whispering gallery modes)

  8. Pronounced Side Chain Effects in Triple Bond-Conjugated Polymers Containing Naphthalene Diimides for n-Channel Organic Field-Effect Transistors

    KAUST Repository

    Nam, Sungho

    2018-03-23

    Three triple bond-conjugated naphthalene diimide (NDI) copolymers, poly{[N,N′-bis(2-R1)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-[(2,5-bis(2-R2)-1,4-phenylene)bis(ethyn-2,1-diyl)]} (PNDIR1-R2), were synthesized via Sonogashira coupling polymerization with varying alkyl side chains at the nitrogen atoms of the imide ring and 2,5-positions of the 1,4-diethynylbenzene moiety. Considering their identical polymer backbone structures, the side chains were found to have a strong influence on the surface morphology/nanostructure, thus playing a critical role in charge-transporting properties of the three NDI-based copolymers. Among the polymers, the one with an octyldodecyl (OD) chain at the nitrogen atoms of imide ring and a hexadecyloxy (HO) chain at the 2,5-positions of 1,4-diethynylbenzene, P(NDIOD-HO), exhibited the highest electron mobility of 0.016 cm2 V–1 s–1, as compared to NDI-based copolymers with an ethylhexyl chain at the 2,5-positions of 1,4-diethynylbenzene. The enhanced charge mobility in the P(NDIOD-HO) layers is attributed to the well-aligned nano-fiber-like surface morphology and highly ordered packing structure with a dominant edge-on orientation, thus enabling efficient in-plane charge transport. Our results on the molecular structure–charge transport property relationship in these materials may provide an insight into novel design of n-type conjugated polymers for applications in the organic electronics of the future.

  9. A Study of Structural Stress Technique for Fracture Prediction of an Auto-Mobile Clutch Snap-Ring

    International Nuclear Information System (INIS)

    Kim, Ju Hee; Myeong, Man Sik; Oh, Chang Sik; Kim, Yun Jae

    2016-01-01

    The endurance reliability assessment of a highly complex mechanism is generally predicted by the fatigue life based on simple stress analysis. This study discusses various fatigue life assessment techniques for an automobile clutch snap ring. Finite element analyses were conducted to determine the structural stress on the snap ring. Structural stress that is insensitive in regards to the mesh size and type definition is presented in this study. The structural stress definition is consistent with elementary structural mechanics theory and provides an effective measure of a stress state that pertains to fatigue behavior of welded joints in the form of both membrane and bending components. Numerical procedures for both solid models and shell or plate element models are presented to demonstrate the mesh-size insensitivity when extracting the structural stress parameters. Conventional finite element models can be used with the structural stress calculations as a post-processing procedure. The two major implications from this research were: (a) structural stresses pertaining to fatigue behavior can be consistently calculated in a mesh-insensitive manner regardless of the types of finite element models; and (b) by comparing with the clutch snap-ring fatigue test data, we should predict the fatigue fractures of an automobile clutch snap ring using this method

  10. A first course in noncommutative rings

    CERN Document Server

    Lam, T Y

    2001-01-01

    A First Course in Noncommutative Rings, an outgrowth of the author's lectures at the University of California at Berkeley, is intended as a textbook for a one-semester course in basic ring theory. The material covered includes the Wedderburn-Artin theory of semisimple rings, Jacobson's theory of the radical, representation theory of groups and algebras, prime and semiprime rings, local and semilocal rings, perfect and semiperfect rings, etc. By aiming the level of writing at the novice rather than the connoisseur and by stressing th the role of examples and motivation, the author has produced a text that is suitable not only for use in a graduate course, but also for self- study in the subject by interested graduate students. More than 400 exercises testing the understanding of the general theory in the text are included in this new edition.

  11. Biocatalytic synthesis and polymerization via ROMP of new biobased phenolic monomers: a greener process towards sustainable antioxidant polymers

    Science.gov (United States)

    Diot-Néant, Florian; Migeot, Loïs; Hollande, Louis; Reano, Felix A.; Domenek, Sandra; Allais, Florent

    2017-12-01

    Antioxidant norbornene-based monomers bearing biobased sterically hindered phenols (SHP) - NDF (norbornene dihydroferulate) and NDS (norbornene dihydrosinapate) - have been successfully prepared through biocatalysis from naturally occurring ferulic and sinapic acids, respectively, in presence of Candida antarctica Lipase B (Cal-B). The ring opening metathesis polymerization (ROMP) of these monomers was investigated according to ruthenium catalyst type (GI) vs. (HGII) and monomer to catalyst molar ratio ([M]/[C]). The co-polymerization of antioxidant functionalized monomer (NDF or NDS) and non-active norbornene (N) has also been performed in order to adjust the number of SHP groups present per weight unit and tune the antioxidant activity of the copolymers. The polydispersity of the resulting copolymers was readily improved by a simple acetone wash to provide antioxidant polymers with well-defined structures. After hydrogenation with p-toluenesulfonylhydrazine (p-TSH), the radical scavenging ability of the resulting saturated polymers was evaluated using α,α-diphenyl-β-picrylhydrazyl (DPPH) analysis. Results demonstrated that polymers bearing sinapic acid SHP exhibited higher antiradical activity than the polymer bearing ferulic acid SHP. In addition it was also shown that only a small SHP content was needed in the copolymers to exhibit a potent antioxidant activity.

  12. A primary microcephaly protein complex forms a ring around parental centrioles.

    Science.gov (United States)

    Sir, Joo-Hee; Barr, Alexis R; Nicholas, Adeline K; Carvalho, Ofelia P; Khurshid, Maryam; Sossick, Alex; Reichelt, Stefanie; D'Santos, Clive; Woods, C Geoffrey; Gergely, Fanni

    2011-10-09

    Autosomal recessive primary microcephaly (MCPH) is characterized by a substantial reduction in prenatal human brain growth without alteration of the cerebral architecture and is caused by biallelic mutations in genes coding for a subset of centrosomal proteins. Although at least three of these proteins have been implicated in centrosome duplication, the nature of the centrosome dysfunction that underlies the neurodevelopmental defect in MCPH is unclear. Here we report a homozygous MCPH-causing mutation in human CEP63. CEP63 forms a complex with another MCPH protein, CEP152, a conserved centrosome duplication factor. Together, these two proteins are essential for maintaining normal centrosome numbers in cells. Using super-resolution microscopy, we found that CEP63 and CEP152 co-localize in a discrete ring around the proximal end of the parental centriole, a pattern specifically disrupted in CEP63-deficient cells derived from patients with MCPH. This work suggests that the CEP152-CEP63 ring-like structure ensures normal neurodevelopment and that its impairment particularly affects human cerebral cortex growth.

  13. Design of Piston Ring Friction Tester Apparatus

    DEFF Research Database (Denmark)

    Klit, Peder

    2006-01-01

    One of the major prerequisites for calculating piston ring friction is a good description of the tribological situation. Piston rings operate in three different lubrication regimes and the theoretical models should be capable to describe this. A very important condition for describing the frictio......One of the major prerequisites for calculating piston ring friction is a good description of the tribological situation. Piston rings operate in three different lubrication regimes and the theoretical models should be capable to describe this. A very important condition for describing...... the frictional behavior of a piston ring correctly is knowledge about the amount of lubricant present. For piston rings the external load may be established by measuring the pressure distribution, i.e. the pressure drop in the piston ring package. Speed and temperature may also be established. The amount...... available is reflected in the friction absorbed in the bearing. The following properties will be measured: Oil fillm thickness - along liner (axial variation), oil film thickness - along piston ring (circumferential variation), piston tilt, temperature of piston rings and liner, pressure at piston lands...

  14. Study of photoconductor polymers synthesized by plasma

    International Nuclear Information System (INIS)

    Enriquez P, M.A.

    2007-01-01

    -vis spectroscopy it was found that the PTh absorbs light in the interval of wavelength from 300 to 60 0 nm and the PPy of 300 to 60 0 nm; however, when the polymer it was doped with iodine a displacement toward the right of 100 nm is presented. The absorption of electromagnetic radiation depends on the structure of the compound and it is related with the transition π-π * of the aromatic rings. On the other hand, the Pth, PPy/I and PPy emit light in the interval of wavelength from 453 to 463 nm, of blue coloration, related with the transition that is produced from the singlet excited state of smaller energy, S 1 , until the fundamental state, S 0 . The electrical properties of the polymers were evaluated in function of the discharge power with excitement by temperature and with UV beams and visible. The excitement with light produces significant changes in the electric response of the polymers. Without excitement, the conductivity oscillates around 10 -15 S/cm, with a behavior of insulating matter. When exciting them with visible light it increases 1 order of magnitude and when exciting them with UV light it is increased until 3 orders of magnitude, behaving as photosensitive materials. (Author)

  15. Study for ILC Damping Ring at KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, J.W.; Fukuma, H.; Kanazawa, K.I.; Koiso, H.; Masuzawa, M.; Ohmi, Kazuhito; Ohnishi, Y.; Oide, Katsunobu; Suetsugu, Y.; Tobiyama, M.; /KEK, Tsukuba; Pivi, M.; /SLAC

    2011-11-04

    ILC damping ring consists of very low emittance electron and positron storage rings. It is necessary for ILC damping ring to study electron cloud effects in such low emittance positron ring. We propose a low emittance operation of KEKB to study the effects.

  16. Planetary ring systems properties, structures, and evolution

    CERN Document Server

    Murray, Carl D

    2018-01-01

    Planetary rings are among the most intriguing structures of our solar system and have fascinated generations of astronomers. Collating emerging knowledge in the field, this volume reviews our current understanding of ring systems with reference to the rings of Saturn, Uranus, Neptune, and more. Written by leading experts, the history of ring research and the basics of ring–particle orbits is followed by a review of the known planetary ring systems. All aspects of ring system science are described in detail, including specific dynamical processes, types of structures, thermal properties and their origins, and investigations using computer simulations and laboratory experiments. The concluding chapters discuss the prospects of future missions to planetary rings, the ways in which ring science informs and is informed by the study of other astrophysical disks, and a perspective on the field's future. Researchers of all levels will benefit from this thorough and engaging presentation.

  17. Plasticization effect of C60 on the fast dynamics of polystyrene and related polymers: an incoherent neutron scattering study

    International Nuclear Information System (INIS)

    Sanz, Alejandro; Ruppel, Markus; Cabral, Joao T; Douglas, Jack F

    2008-01-01

    We utilize inelastic incoherent neutron scattering (INS) to quantify how fullerenes affect the 'fast' molecular dynamics of a family of polystyrene related macromolecules. In particular, we prepared bulk nanocomposites of (hydrogenous and ring-deuterated) polystyrene and poly(4-methyl styrene) using a rapid precipitation method where the C 60 relative mass fraction ranged from 0% to 4%. Elastic window scan measurements, using a high resolution (0.9 μeV) backscattering spectrometer, are reported over a wide temperature range (2-450 K). Apparent Debye-Waller (DW) factors 2 >, characterizing the mean-square amplitude of proton displacements, are determined as a function of temperature, T. We find that the addition of C 60 to these polymers leads to a progressive increase in 2 > relative to the pure polymer value over the entire temperature range investigated, where the effect is larger for larger nanoparticle concentration. This general trend seems to indicate that the C 60 nanoparticles plasticize the fast (∼10 -15 s) local (∼1 A) dynamics of these polymer glasses. Generally, we expect nanoparticle additives to affect polymer dynamics in a similar fashion to thin films in the sense that the high interfacial area may cause both a speeding up and slowing down of the glass state dynamics depending on the polymer-surface interaction

  18. Shape memory polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Thomas S.; Bearinger, Jane P.

    2017-08-29

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  19. Shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  20. Longitudinal beam instability due to the ring impedance at KEK's accelerator test facility damping ring

    International Nuclear Information System (INIS)

    Kim, Eun-San

    2003-01-01

    This paper shows the results of a numerical study of the impedance in the Accelerator Test Facility damping ring. The longitudinal impedance in the damping ring is shown to be inductive. It is shown that the total impedance |Z || /n| is 0.23 Ω and the inductance is L = 14 nH. In the extremely low emittance beam of the damping ring, bunch lengthening is caused by both the effects of potential-well distortion and intra-beam scattering. In this paper, the bunch-lengthening due to the ring impedance is numerically investigated, and the result shows qualitative agreement with the result of an analysis performed using the bunch-length measurement. With the calculated longitudinal impedance, the instability threshold in the damping ring is estimated to be a bunch population of 3.3 x 10 10 by using both a Vlasov equation approach and a multi-particle tracking method.

  1. Structural origin of gap states in semicrystalline polymers and the implications for charge transport

    KAUST Repository

    Rivnay, Jonathan

    2011-03-16

    We quantify the degree of paracrystalline disorder in the π-π stacking direction of crystallites of a high performing semicrystalline semiconducting polymer with advanced x-ray line-shape analysis. Using density functional theory calculations to provide input to a simple tight-binding model, we obtain the density of states of a system of π-π stacked polymer chains with increasing amounts of paracrystalline disorder. We find that, for an aligned film of PBTTT, the paracrystalline disorder is 7.3%. This type of disorder induces a tail of trap states with a breadth of ∼100 meV as determined through calculation. This finding agrees with previous device modeling and provides physical justification for the mobility edge model. © 2011 American Physical Society.

  2. Structural origin of gap states in semicrystalline polymers and the implications for charge transport

    KAUST Repository

    Rivnay, Jonathan; Noriega, Rodrigo; Northrup, John E.; Kline, R. Joseph; Toney, Michael F.; Salleo, Alberto

    2011-01-01

    We quantify the degree of paracrystalline disorder in the π-π stacking direction of crystallites of a high performing semicrystalline semiconducting polymer with advanced x-ray line-shape analysis. Using density functional theory calculations to provide input to a simple tight-binding model, we obtain the density of states of a system of π-π stacked polymer chains with increasing amounts of paracrystalline disorder. We find that, for an aligned film of PBTTT, the paracrystalline disorder is 7.3%. This type of disorder induces a tail of trap states with a breadth of ∼100 meV as determined through calculation. This finding agrees with previous device modeling and provides physical justification for the mobility edge model. © 2011 American Physical Society.

  3. Implication of multi-walled carbon nanotubes on polymer/graphene composites

    International Nuclear Information System (INIS)

    Araby, Sherif; Saber, Nasser; Ma, Xing; Kawashima, Nobuyuki; Kang, Hailan; Shen, Heng; Zhang, Liqun; Xu, Jian; Majewski, Peter; Ma, Jun

    2015-01-01

    Highlights: • Influence of adding carbon nanotubes (CNTs) into elastomer/graphene composites. • Multi-walled CNTs work supplementally to GnPs by forming conductive networks. • The findings illuminate marked synergistic effect between MWCNTs and graphene sheets. - Abstract: Graphene sheets stack in polymer matrices while multi-walled carbon nanotubes (MWCNTs) entangle themselves, forming two daunting challenges in the design and fabrication of polymer composites. Both challenges have been simultaneously addressed in this study by hybridizing the two nanomaterials through melt compounding to develop elastomer/graphene platelet/MWCNT (3-phase) composites, where MWCNTs were fixed at 2.8 vol% (5 wt%) for all fractions. We investigated the composites’ structure and properties, and compared the 3-phase composites with elastomer/graphene platelet (2-phase) composites. MWCNTs may bridge graphene platelets (GnPs) and promote their dispersion in the matrix, which would provide more interface area between the matrix and the fillers. MWCNTs worked supplementally to GnPs by forming conductive networks, where MWCNTs acted as long nanocables to transport electrons and stress while GnPs served as interconnection sites between the tubes forming local conductive paths. This produced a percolation threshold of electrical conductivity at 2.3 vol% for 3-phase composites, 88% lower than that of 2-phase composites. At 26.7 vol% of total filler content (MWCNTs + GnPs), tensile strength, Young’s modulus and tear strength showed respectively 303%, 115%, 155% further improvements over those of 2-phase composites. These improvements are originated from the synergistic effect between GnPs and MWCNTs. The conducting elastomeric composites developed would potentially open the door for applications in automotive and aerospace industries

  4. Polymers – A New Open Access Scientific Journal on Polymer Science

    Directory of Open Access Journals (Sweden)

    Shu-Kun Lin

    2009-12-01

    Full Text Available Polymers is a new interdisciplinary, Open Access scientific journal on polymer science, published by Molecular Diversity Preservation International (MDPI. This journal welcomes manuscript submissions on polymer chemistry, macromolecular chemistry, polymer physics, polymer characterization and all related topics. Both synthetic polymers and natural polymers, including biopolymers, are considered. Manuscripts will be thoroughly peer-reviewed in a timely fashion, and papers will be published, if accepted, within 6 to 8 weeks after submission. [...

  5. Thermally induced texture flip in semiconducting polymer stabilized by epitaxial relationship

    Science.gov (United States)

    O'Hara, Kathryn A.; Pokuri, Balaji S. S.; Takacs, Christopher J.; Beaujuge, Pierre M.; Ganapathysubramanian, Baskar; Chabinyc, Michael L.

    The morphology of semiconducting polymer films has a large effect on the charge transport properties. Charges can move easily along the conjugated backbone and in the pi-pi stacking direction. However, transport through the film is determined by the connectivity between domains, which is not well understood. We previously observed quadrites in the polymer, PSBTBT, and proposed that the preferential overlap between lamellae may improve connectivity and provide an additional conduction pathway. Now, the presence of quadrites is revealed in another successful donor polymer, PBDTTPD, using high resolution transmission electron microscopy (HRTEM). A study of how side-chain substitution affects the epitaxial crossing is conducted by examining several PBDTTPD derivatives. The stability of the film texture with annealing is also examined as a function of quadrite formation. It has been shown that heating some semicrystalline polymers above the melting temperature and slow cooling can flip the lamellar texture from face-on to edge-on. We hypothesize that the orientation of lamellar crystallites in PBDTTPD films is stabilized by the epitaxial overlap between adjacent crystalline domains. This may have important implications for the electronic transport properties.

  6. Seasonal climate signals from multiple tree ring metrics: A case study of Pinus ponderosa in the upper Columbia River Basin

    Science.gov (United States)

    Dannenberg, Matthew P.; Wise, Erika K.

    2016-04-01

    Projected changes in the seasonality of hydroclimatic regimes are likely to have important implications for water resources and terrestrial ecosystems in the U.S. Pacific Northwest. The tree ring record, which has frequently been used to position recent changes in a longer-term context, typically relies on signals embedded in the total ring width of tree rings. Additional climatic inferences at a subannual temporal scale can be made using alternative tree ring metrics such as earlywood and latewood widths and the density of tree ring latewood. Here we examine seasonal precipitation and temperature signals embedded in total ring width, earlywood width, adjusted latewood width, and blue intensity chronologies from a network of six Pinus ponderosa sites in and surrounding the upper Columbia River Basin of the U.S. Pacific Northwest. We also evaluate the potential for combining multiple tree ring metrics together in reconstructions of past cool- and warm-season precipitation. The common signal among all metrics and sites is related to warm-season precipitation. Earlywood and latewood widths differ primarily in their sensitivity to conditions in the year prior to growth. Total and earlywood widths from the lowest elevation sites also reflect cool-season moisture. Effective correlation analyses and composite-plus-scale tests suggest that combining multiple tree ring metrics together may improve reconstructions of warm-season precipitation. For cool-season precipitation, total ring width alone explains more variance than any other individual metric or combination of metrics. The composite-plus-scale tests show that variance-scaled precipitation reconstructions in the upper Columbia River Basin may be asymmetric in their ability to capture extreme events.

  7. Polymer chemistry (revised edition)

    International Nuclear Information System (INIS)

    Kim, Jae Mum

    1987-02-01

    This book deals with polymer chemistry, which is divided into fourteen chapters. The contents of this book are development of polymer chemistry, conception of polymer, measurement of polymer chemistry, conception of polymer, measurement of polymer, molecule structure of polymer, thermal prosperities of solid polymer, basic theory of polymerization, radical polymerization, ion polymerization, radical polymerization, copolymerization, polymerization by step-reaction, polymer reaction, crown polymer and inorganic polymer on classification and process of creation such as polymeric sulfur and carbon fiber.

  8. Comparison of cold and warm vacuum systems for intersecting storage rings

    International Nuclear Information System (INIS)

    Halama, H.J.; Herrera, J.C.

    1975-01-01

    In storage rings employing superconducting magnets, the use of a cold bore as a cryopump appears, at first glance, as simple and economical. Since the selection of a cold or warm vacuum system has far-reaching implications on the basic design, each system is considered in some detail. The theoretical and practical limitations imposed on the maximum beam current by the gas desorption from the chamber walls are discussed. A realistic design of a cold vacuum chamber is developed and then compared with the proposed warm ISABELLE vacuum system. The comparison shows that the warm approach is preferable. (U.S.)

  9. Accretion in Saturn's F Ring

    Science.gov (United States)

    Meinke, B. K.; Esposito, L. W.; Stewart, G.

    2012-12-01

    Saturn's F ring is the solar system's principal natural laboratory for direct observation of accretion and disruption processes. The ring resides in the Roche zone, where tidal disruption competes with self-gravity, which allows us to observe the lifecycle of moonlets. Just as nearby moons create structure at the B ring edge (Esposito et al. 2012) and the Keeler gap (Murray 2007), the F ring "shepherding" moons Prometheus and Pandora stir up ring material and create observably changing structures on timescales of days to decades. In fact, Beurle et al (2010) show that Prometheus makes it possible for "distended, yet gravitationally coherent clumps" to form in the F ring, and Barbara and Esposito (2002) predicted a population of ~1 km bodies in the ring. In addition to the observations over the last three decades, the Cassini Ultraviolet Imaging Spectrograph (UVIS) has detected 27 statistically significant features in 101 occultations by Saturn's F ring since July 2004. Seventeen of those 27 features are associated with clumps of ring material. Two features are opaque in occultation, which makes them candidates for solid objects, which we refer to as Moonlets. The 15 other features partially block stellar signal for 22 m to just over 3.7 km along the radial expanse of the occultation. Upon visual inspection of the occultation profile, these features resemble Icicles, thus we will refer to them as such here. The density enhancements responsible for such signal attenuations are likely due to transient clumping of material, evidence that aggregations of material are ubiquitous in the F ring. Our lengthy observing campaign reveals that Icicles are likely transient clumps, while Moonlets are possible solid objects. Optical depth is an indicator of clumping because more-densely aggregated material blocks more light; therefore, it is natural to imagine moonlets as later evolutionary stage of icicle, when looser clumps of material compact to form a feature that appears

  10. Integration of conducting polymer network in non-conductive polymer substrates

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; West, Keld; Hassager, Ole

    2006-01-01

    Anew method for integration ofconjugated, inherently conducting polymers into non-conductive polymer substrates has been developed. Alayer of the conducting polymer is polymerised by chemical oxidation, e.g. using Fe(ID) p-toluene sulfonate (ferri tosylate) followed by washing with a solvent which...... simultaneously removes residual and spent oxidant and at the same time dissolves the top layer of the polymer substrate. This results in an integration of the conducting polymer into the surface layers of the polymer substrate. Several combinations of conducting polymers and substrates have been tested...... absorption during sequential reactive ion etching has allowed for analysis of the PEDOT distribution within the surface layer of thePMMA substrate. The surface resistance ofthe conducting polymer layer remains low while the surface layer at the same time adapts some of the mechanical properties...

  11. Nonlinear analysis of ring oscillator circuits

    KAUST Repository

    Ge, Xiaoqing

    2010-06-01

    Using nonlinear systems techniques, we analyze the stability properties and synchronization conditions for ring oscillator circuits, which are essential building blocks in digital systems. By making use of its cyclic structure, we investigate local and global stability properties of an n-stage ring oscillator. We present a sufficient condition for global asymptotic stability of the origin and obtain necessity if the ring oscillator consists of identical inverter elements. We then give a synchronization condition for identical interconnected ring oscillators.

  12. Nonlinear analysis of ring oscillator circuits

    KAUST Repository

    Ge, Xiaoqing; Arcak, Murat; Salama, Khaled N.

    2010-01-01

    Using nonlinear systems techniques, we analyze the stability properties and synchronization conditions for ring oscillator circuits, which are essential building blocks in digital systems. By making use of its cyclic structure, we investigate local and global stability properties of an n-stage ring oscillator. We present a sufficient condition for global asymptotic stability of the origin and obtain necessity if the ring oscillator consists of identical inverter elements. We then give a synchronization condition for identical interconnected ring oscillators.

  13. Quality Assurance Project Plan for Verification of Sediment Ecotoxicity Assessment Ring(SEA Ring)

    Science.gov (United States)

    The objective of the verification is to test the efficacy and ability of the Sediment Ecotoxicity Assessment Ring (SEA Ring) to evaluate the toxicity of contaminants in the sediment, at the sediment-water interface, and WC to organisms that live in those respective environments.

  14. Dynamical Evolution of Ring-Satellite Systems

    Science.gov (United States)

    Ohtsuki, Keiji

    2005-01-01

    The goal of this research was to understand dynamical processes related to the evolution of size distribution of particles in planetary rings and application of theoretical results to explain features in the present rings of giant planets. We studied velocity evolution and accretion rates of ring particles in the Roche zone. We developed a new numerical code for the evolution of ring particle size distribution, which takes into account the above results for particle velocity evolution and accretion rates. We also studied radial diffusion rate of ring particles due to inelastic collisions and gravitational encounters. Many of these results can be also applied to dynamical evolution of a planetesimal disk. Finally, we studied rotation rates of moonlets and particles in planetary rings, which would influence the accretional evolution of these bodies. We describe our key accomplishments during the past three years in more detail in the following.

  15. Propellers in Saturn's rings

    Science.gov (United States)

    Sremcevic, M.; Stewart, G. R.; Albers, N.; Esposito, L. W.

    2013-12-01

    Theoretical studies and simulations have demonstrated the effects caused by objects embedded in planetary rings. Even if the objects are too small to be directly observed, each creates a much larger gravitational imprint on the surrounding ring material. These strongly depend on the mass of the object and range from "S" like propeller-shaped structures for about 100m-sized icy bodies to the opening of circumferential gaps as in the case of the embedded moons Pan and Daphnis and their corresponding Encke and Keeler Gaps. Since the beginning of the Cassini mission many of these smaller objects (~data from Cassini Ultraviolet Imaging Spectrograph (UVIS) and Imaging Science Subsystem (ISS) experiments. We show evidence that B ring seems to harbor two distinct populations of propellers: "big" propellers covering tens of degrees in azimuth situated in the densest part of B ring, and "small" propellers in less dense inner B ring that are similar in size and shape to known A ring propellers. The population of "big" propellers is exemplified with a single object which is observed for 5 years of Cassini data. The object is seen as a very elongated bright stripe (40 degrees wide) in unlit Cassini images, and dark stripe in lit geometries. In total we report observing the feature in images at 18 different epochs between 2005 and 2010. In UVIS occultations we observe this feature as an optical depth depletion in 14 out of 93 occultation cuts at corrotating longitudes compatible with imaging data. Combining the available Cassini data we infer that the object is a partial gap located at r=112,921km embedded in the high optical depth region of the B ring. The gap moves at Kepler speed appropriate for its radial location. Radial offsets of the gap locations in UVIS occultations are consistent with an asymmetric propeller shape. The asymmetry of the observed shape is most likely a consequence of the strong surface mass density gradient, as the feature is located at an edge between

  16. Cosmic rings from colliding galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Mitton, S

    1976-11-18

    Research on two ring galaxies has led to the proposal of an interaction model to account for the rings. It is envisaged that this class of galaxy is created when a compact galaxy crashes through the disc of a spiral galaxy. The results of a spectroscopic investigation of the galaxy known as the Cartwheel and of another ring galaxy 11 NZ 4 are discussed. The general picture of ring galaxies which emerges from these studies of a massive starry nucleus with a necklace of emitting gas and some spokes and along the spin axis of the wheel a small companion galaxy that is devoid of interstellar gas. An explanation of these properties is considered.

  17. Endothelial cell adhesion to ion implanted polymers

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y; Kusakabe, M [SONY Corp., Tokyo (Japan); Lee, J S; Kaibara, M; Iwaki, M; Sasabe, H [RIKEN (Inst. of Physical and Chemical Research), Saitama (Japan)

    1992-03-01

    The biocompatibility of ion implanted polymers has been studied by means of adhesion measurements of bovine aorta endothelial cells in vitro. The specimens used were polystyrene (PS) and segmented polyurethane (SPU). Na{sup +}, N{sub 2}{sup +}, O{sub 2}{sup +} and Kr{sup +} ion implantations were performed at an energy of 150 keV with fluences ranging from 1x10{sup 15} to 3x10{sup 17} ions/cm{sup 2} at room temperature. The chemical and physical structures of ion-implanted polymers have been investigated in order to analyze their tissue compatibility such as improvement of endothelial cell adhesion. The ion implanted SPU have been found to exhibit remarkably higher adhesion and spreading of endothelial cells than unimplanted specimens. By contrast, ion implanted PS demonstrated a little improvement of adhesion of cells in this assay. Results of FT-IR-ATR showed that ion implantation broke the original chemical bond to form new radicals such as OH, ....C=O, SiH and condensed rings. The results of Raman spectroscopy showed that ion implantation always produced a peak near 1500 cm{sup -1}, which indicated that these ion implanted PS and SPU had the same carbon structure. This structure is considered to bring the dramatic increase in the extent of cell adhesion and spreading to these ion implanted PS and SPU. (orig.).

  18. Fluorination of polymers

    International Nuclear Information System (INIS)

    Du Toit, F.J.

    1991-01-01

    Polyethylene and polypropylene were reacted with elemental fluorine under carefully controlled conditions to produce fluorocarbon polymers. Fluorination of polymer films resulted in fluorination of only the outer surfaces of the films, while the reaction of elemental fluorine with powdered hydrocarbon polymers produced perfluorocarbon polymers. Existing and newly developed techniques were used to characterize the fluorinated polymers. It was shown that the degree of fluorination was influenced by the surface area of the hydrocarbon material, the concentration, of the fluorine gas, and the time and temperature of fluorination. A fluidized-bed reactor used for the fluorination of polymer powders effectively increased the reaction rate. The surface tension and the oxygen permeability of the fluorinated polymers were studied. The surface tension of hydrocarbon polymers was not influenced by different solvents, but the surface tension of fluorinated polymers was affected by the type of solvent that was used. There were indications that the surface tension was affected by oxygen introduced into the polymer surface during fluorination. Fluorination lowered the permeability of oxygen through hydrocarbon polymers. 55 refs., 51 figs., 26 tabs

  19. Surface area loss and increased sphericity account for the splenic entrapment of subpopulations of Plasmodium falciparum ring-infected erythrocytes.

    Directory of Open Access Journals (Sweden)

    Innocent Safeukui

    splenic retention of ring-iRBCs has significant implications for diagnosis (spleen functionality and drug treatment (screening of adjuvant therapy targeting ring-iRBCs.

  20. On Semiprime Noetherian PI-Rings

    OpenAIRE

    Chiba, Katsuo

    2000-01-01

    Let R be a semiprime Noetherian PI-ring and Q(R) the semisimple Artinian ring of fractions of R. We shall prove the following conditions are equivalent: (1) the Krull dimention of R is at most one, (2) Any ring between R and Q(R) is again right Noetherian, (3) Let a, b be central regular elements of Q(R). Then the subring R + aR[b] of Q(R) is right Noetherian.

  1. Convergence of Artificial Protein Polymers and Intrinsically Disordered Proteins.

    Science.gov (United States)

    Dzuricky, Michael; Roberts, Stefan; Chilkoti, Ashutosh

    2018-05-01

    A flurry of research in recent years has revealed the molecular origins of many membraneless organelles to be the liquid phase separation of intrinsically disordered proteins (IDPs). Consequently, protein disorder has emerged as an important driver of intracellular compartmentalization by providing specialized microenvironments chemically distinct from the surrounding medium. Though the importance of protein disorder and its relationship to intracellular phase behavior are clear, a detailed understanding of how such phase behavior can be predicted and controlled remains elusive. While research in IDPs has largely focused on the implications of structural disorder on cellular function and disease, another field, that of artificial protein polymers, has focused on the de novo design of protein polymers with controllable material properties. A subset of these polymers, specifically those derived from structural proteins such as elastin and resilin, are also disordered sequences that undergo liquid-liquid phase separation. This phase separation has been used in a variety of biomedical applications, and researchers studying these polymers have developed methods to precisely characterize and tune their phase behavior. Despite their disparate origins, both fields are complementary as they study the phase behavior of intrinsically disordered polypeptides. This Perspective hopes to stimulate collaborative efforts by highlighting the similarities between these two fields and by providing examples of how such collaboration could be mutually beneficial.

  2. On zero divisor graph of unique product monoid rings over Noetherian reversible ring

    Directory of Open Access Journals (Sweden)

    Ebrahim Hashemi

    2016-02-01

    Full Text Available Let $R$ be an associative ring with identity and $Z^*(R$ be its set of non-zero zero divisors.  The zero-divisor graph of $R$, denoted by $Gamma(R$, is the graph whose vertices are the non-zero  zero-divisors of  $R$, and two distinct vertices $r$ and $s$ are adjacent if and only if $rs=0$ or $sr=0$.  In this paper, we bring some results about undirected zero-divisor graph of a monoid ring over reversible right (or left Noetherian ring $R$. We essentially classify the diameter-structure of this graph and show that $0leq mbox{diam}(Gamma(Rleq mbox{diam}(Gamma(R[M]leq 3$. Moreover, we give a characterization for the possible diam$(Gamma(R$ and diam$(Gamma(R[M]$, when $R$ is a reversible Noetherian ring and $M$ is a u.p.-monoid. Also, we study relations between the girth of $Gamma(R$ and that of $Gamma(R[M]$.

  3. Imidazolopiperazines (IPZ) kill both rings and dormant rings in wild type and K13 artemisinin resistant Plasmodium falciparum in vitro.

    Science.gov (United States)

    Dembele, Laurent; Gupta, Devendra Kumar; Lim, Michelle Yi-Xiu; Ang, Xiaoman; Selva, Jeremy J; Chotivanich, Kesinee; Nguon, Chea; Dondorp, Arjen M; Bonamy, Ghislain M C; Diagana, Thierry T; Bifani, Pablo

    2018-03-12

    Artemisinin (ART) resistance has spread through Southeast Asia, posing serious threat to the control and elimination of malaria. ART resistance has been associated with mutations in the Plasmodium falciparum kelch-13 ( Pfk13 ) propeller domain. Phenotypically, ART resistance is defined as delayed parasite clearance in patients' due to the reduced susceptibility of early ring-stage parasites to the active metabolite of ART dihydroartemisinin (DHA). Early rings can enter a state of quiescence upon DHA exposure and resume growth in its absence. These quiescent rings are referred to as dormant rings or DHA-pretreated rings (called here dormant rings). The imidazolopiperazine (IPZ) is a novel class of antimalarial drugs, which has demonstrated efficacy in early clinical trials. Here, we characterized the stage of action of IPZ GNF179 and evaluated its activity against rings and dormant rings in wild type and ART resistant parasites. Unlike DHA, GNF179 does not induce dormancy. We show that GNF179 is more rapidly cidal against schizonts than ring and trophozoite stages. However, with 12 hours exposure, the compound effectively kills rings and dormant rings of both susceptible and ART resistant parasites within 72 hours. We further demonstrate that in combination with ART, GNF179 effectively prevent recrudescence of dormant rings including those bearing pfk13 propeller mutations. Copyright © 2018 Dembele et al.

  4. Electric field induced dewetting at polymer/polymer interfaces

    NARCIS (Netherlands)

    Lin, Z.Q.; Kerle, T.; Russell, T.P.; Schäffer, E.; Steiner, U

    2002-01-01

    External electric fields were used to amplify interfacial fluctuations in the air/polymer/polymer system where one polymer dewets the other. Two different hydrodynamic regimes were found as a function of electric field strength. If heterogeneous nucleation leads to the formation of holes before the

  5. Complete snake and rotator schemes for spin polarization in proton rings and large electron rings

    International Nuclear Information System (INIS)

    Steffen, K.

    1983-11-01

    In order to maintain spin polarization in proton rings and large electron rings, some generalized Siberian Snake scheme may be required to make the spin tune almost independent of energy and thus avoid depolarizing resonances. The practical problem of finding such schemes that, at reasonable technical effort, can be made to work over large energy ranges has been addressed before and is here revisited in a broadened view and with added new suggestions. As a result, possibly optimum schemes for electron rings (LEP) and proton rings are described. In the proposed LEP scheme, spin rotation is devised such that, at the interaction points, the spin direction is longitudinal as required for experiments. (orig.)

  6. White polymer light-emitting diode based on polymer blending

    International Nuclear Information System (INIS)

    Lee, Yong Kyun; Kwon, Soon Kab; Kim, Jun Young; Park, Tae Jin; Song, Dae Ho; Kwon, Jang Hyuk; Choo, Dong Jun; Jang, Jin; Jin, Jae Kyu; You, Hong

    2006-01-01

    A series of white polymer light emitting devices have been fabricated by using a polymer blending system of polyfluorene-based blue and MEH-PPV red polymers. A device structure of ITO/PEDOT:PSS/polymer/LiF/Al was employed. The white polymer device exhibited a current efficiency of 4.33 cd/A (4,816 cd/m 2 , Q.E. = 1.9 %) and a maximum luminance of 21,430 cd/m 2 at 9.2 V. The CIE coordinates were (0.35, 0.37) at 5 V and (0.29, 0.30) at 9 V.

  7. Koffka's Ring Effect Depends on Thickness, Not Continuity

    OpenAIRE

    Abigail E. Huang; Alice J. Hon; Eric L. Altschuler

    2007-01-01

    More than 70 years ago Gestalt psychologist Kurt Koffka described a fascinating effect1,2: When a contiguous grey ring is placed on a background half of one shade of grey (different from the ring) and half of another shade of grey, the ring appears to be a homogenous. However, if the ring is slightly divided, now the two halves of the ring appear different shades of grey with the half of the ring on the darker background appearing lighter than the half of the ring on the darker background. Th...

  8. Almost ring theory

    CERN Document Server

    2003-01-01

    This book develops thorough and complete foundations for the method of almost etale extensions, which is at the basis of Faltings' approach to p-adic Hodge theory. The central notion is that of an "almost ring". Almost rings are the commutative unitary monoids in a tensor category obtained as a quotient V-Mod/S of the category V-Mod of modules over a fixed ring V; the subcategory S consists of all modules annihilated by a fixed ideal m of V, satisfying certain natural conditions. The reader is assumed to be familiar with general categorical notions, some basic commutative algebra and some advanced homological algebra (derived categories, simplicial methods). Apart from these general prerequisites, the text is as self-contained as possible. One novel feature of the book - compared with Faltings' earlier treatment - is the systematic exploitation of the cotangent complex, especially for the study of deformations of almost algebras.

  9. IAG ring test animal proteins 2014

    NARCIS (Netherlands)

    Raamsdonk, van L.W.D.; Pinckaers, V.G.Z.; Scholtens-Toma, I.M.J.; Prins, T.W.; Voet, van der H.; Vliege, J.J.M.

    2014-01-01

    A ring test was organized for the detection of animal proteins in animal feed by microscopy in the framework of the annual ring tests of the IAG – International Association for Feeding stuff Analysis, Section Feeding stuff Microscopy. The aim of the ring study was to provide the participants

  10. IAG ring test animal proteins 2015

    NARCIS (Netherlands)

    Raamsdonk, van L.W.D.; Rhee, van de N.E.; Scholtens-Toma, I.M.J.; Prins, T.W.; Vliege, J.J.M.; Pinckaers, V.G.Z.

    2015-01-01

    A ring test was organized for the detection of animal proteins in animal feed by microscopy in the framework of the annual ring tests of the IAG - International Association for Feeding stuff Analysis, Section Feeding stuff Microscopy. The organizer of the ring test was RIKILT - Wageningen UR, The

  11. IAG ring test animal proteins 2013

    NARCIS (Netherlands)

    Raamsdonk, van L.W.D.; Pinckaers, V.G.Z.; Scholtens-Toma, I.M.J.; Prins, T.W.; Vliege, J.J.M.

    2013-01-01

    A ring test was organized for the detection of animal proteins in animal feed by microscopy in the framework of the annual ring tests of the IAG - International Association for Feeding stuff Analysis, Section Feeding stuff Microscopy. The organizer of the the ring study was to provide the

  12. Cooling rings for TeV colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1985-02-01

    Consideration is given to quantum fluctuations, intra beam scattering, cooling rates, and ring acceptance in order to see if one can obtain a normalized emittance of 10 -8 in any plausible cooling ring. It is concluded that only a small gain is obtained by varying the partition functions, but a very significant gain is made by using higher bending fields. The ring is found to get bigger if the magnet apertures are increased. The ring diameter is found to increase if the momentum spread of the beam is reduced. It is shown that the power can be reduced by allowing a high beamstrahlung energy loss resulting in higher current in the cooling ring. Parameters are also given for a 10 -7 m radian emittance case

  13. Imprint of the Atlantic multidecadal oscillation on tree-ring widths in northeastern Asia since 1568.

    Directory of Open Access Journals (Sweden)

    Xiaochun Wang

    Full Text Available We present a new tree-ring reconstruction of the Atlantic Multidecadal Oscillation (AMO spanning 1568-2007 CE from northeast Asia. Comparison of the instrumental AMO index, an existing tree-ring based AMO reconstruction, and this new record show strongly similar annual to multidecadal patterns of variation over the last 440 years. Warm phases of the AMO are related to increases in growth of Scots pine trees and moisture availability in northeast China and central eastern Siberia. Multi-tape method (MTM and cross-wavelet analyses indicate that robust multidecadal (∼64-128 years variability is present throughout the new proxy record. Our results have important implications concerning the influence of North Atlantic sea surface temperatures on East Asian climate, and provide support for the possibility of an AMO signature on global multidecadal climate variability.

  14. Rapid, Efficient and Versatile Strategies for Functionally Sophisticated Polymers and Nanoparticles: Degradable Polyphosphoesters and Anisotropic Distribution of Chemical Functionalities

    Science.gov (United States)

    Zhang, Shiyi

    The overall emphasis of this dissertation research included two kinds of asymmetrically-functionalized nanoparticles with anisotropic distributions of chemical functionalities, three degradable polymers synthesized by organocatalyzed ring-opening polymerizations, and two polyphosphoester-based nanoparticle systems for various biomedical applications. Inspired by the many hierarchical assembly processes that afford complex materials in Nature, the construction of asymmetrically-functionalized nanoparticles with efficient surface chemistries and the directional organization of those building blocks into complex structures have attracted much attention. The first method generated a Janus-faced polymer nanoparticle that presented two orthogonally click-reactive surface chemistries, thiol and azido. This robust method involved reactive functional group transfer by templating against gold nanoparticle substrates. The second method produced nanoparticles with sandwich-like distribution of crown ether functionalities through a stepwise self-assembly process that utilized crown ether-ammonium supramolecular interactions to mediate inter-particle association and the local intra-particle phase separation of unlike hydrophobic polymers. With the goal to improve the efficiency of the production of degradable polymers with tunable chemical and physical properties, a new type of reactive polyphosphoester was synthesized bearing alkynyl groups by an organocatalyzed ring-opening polymerization, the chemical availability of the alkyne groups was investigated by employing "click" type azide-alkyne Huisgen cycloaddition and thiol-yne radical-mediated reactions. Based on this alkyne-functionalized polyphosphoester polymer and its two available "click" type reactions, two degradable nanoparticle systems were developed. To develop the first system, the well defined poly(ethylene oxide)-block-polyphosphester diblock copolymer was transformed into a multifunctional Paclitaxel drug

  15. Dipole Magnets for the LHeC Ring-Ring Option

    CERN Document Server

    Tommasini, D; Chritin, R

    2012-01-01

    The Ring-Ring option of a Large Hadron electron Collider (LHeC) requires 3080 bending magnets, 5.35-meter-long each providing a magnetic field ranging from 0.0127 T at 10 GeV to 0.0763 T at 60 GeV. Main issues in the design of these magnets are the very low injection field, constituting a challenge in achieving a satisfactory field reproducibility from cycle to cycle, and the required compactness to fit in the existing LHC tunnel. This paper describes and discusses a design meeting these requirements, together with its experimental validation by the manufacture and measurement of a 400-mm-long magnet model.

  16. The multi-bend achromat storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Mikael [MAX IV Laboratory Ole Römers v. 1 22100 Lund Sweden (Sweden)

    2016-07-27

    Not very long ago, the 3{sup rd} generation storage ring technology was judged as mature. Most of the 3{sup rd} generation storage rings used the Double-Bend Achromat (DBA) or Triple-Bend Achromat (TBA) concepts. It was however a well-known fact that increasing the number of magnet cells in the rings is a powerful way of decreasing the electron beam emittance and thus the source brilliance, but at the penalty of increasing the size and cost of the rings. Preserving the Dynamic Aperture (DA) in the rings became also an issue when increasing the number of magnet cells. The Multi-Bend Achromat (MBA) concept, including a miniaturization of the ring elements, has now drastically changed the picture. The MBA rings, now in construction or being planned, offer orders of magnitudes higher brilliance than rings of conventional designs. Several light sources around the world are now implementing or planning to implement this MBA concept. This article touches on the science drivers for higher brilliance. We will then describe the MBA concept with its advantages as well as its challenges. A short survey of the MBA activity around the world will also be presented. The author apologies for focusing on the MAX IV project regarding technical solutions. This is motivated by that MAX IV is the facility he knows best and it might be regarded as a fore-runner for the MBA concept.

  17. The multi-bend achromat storage rings

    International Nuclear Information System (INIS)

    Eriksson, Mikael

    2016-01-01

    Not very long ago, the 3"r"d generation storage ring technology was judged as mature. Most of the 3"r"d generation storage rings used the Double-Bend Achromat (DBA) or Triple-Bend Achromat (TBA) concepts. It was however a well-known fact that increasing the number of magnet cells in the rings is a powerful way of decreasing the electron beam emittance and thus the source brilliance, but at the penalty of increasing the size and cost of the rings. Preserving the Dynamic Aperture (DA) in the rings became also an issue when increasing the number of magnet cells. The Multi-Bend Achromat (MBA) concept, including a miniaturization of the ring elements, has now drastically changed the picture. The MBA rings, now in construction or being planned, offer orders of magnitudes higher brilliance than rings of conventional designs. Several light sources around the world are now implementing or planning to implement this MBA concept. This article touches on the science drivers for higher brilliance. We will then describe the MBA concept with its advantages as well as its challenges. A short survey of the MBA activity around the world will also be presented. The author apologies for focusing on the MAX IV project regarding technical solutions. This is motivated by that MAX IV is the facility he knows best and it might be regarded as a fore-runner for the MBA concept.

  18. Ring wormholes via duality rotations

    Directory of Open Access Journals (Sweden)

    Gary W. Gibbons

    2016-09-01

    Full Text Available We apply duality rotations and complex transformations to the Schwarzschild metric to obtain wormhole geometries with two asymptotically flat regions connected by a throat. In the simplest case these are the well-known wormholes supported by phantom scalar field. Further duality rotations remove the scalar field to yield less well known vacuum metrics of the oblate Zipoy–Voorhees–Weyl class, which describe ring wormholes. The ring encircles the wormhole throat and can have any radius, whereas its tension is always negative and should be less than −c4/4G. If the tension reaches the maximal value, the geometry becomes exactly flat, but the topology remains non-trivial and corresponds to two copies of Minkowski space glued together along the disk encircled by the ring. The geodesics are straight lines, and those which traverse the ring get to the other universe. The ring therefore literally produces a hole in space. Such wormholes could perhaps be created by negative energies concentrated in toroidal volumes, for example by vacuum fluctuations.

  19. Magnetic silica hybrids modified with guanidine containing co-polymers for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Timin, Alexander S., E-mail: a_timin@mail.ru [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000 Ivanovo (Russian Federation); RASA Center in Tomsk, Tomsk Polytechnic University, 30, Lenin Avenue, 634500 Tomsk (Russian Federation); Khashirova, Svetlana Yu. [Kabardino-Balkar State University, ul. Chernyshevskogo 173, Nal' chik, 360004 Kabardino-Balkaria (Russian Federation); Rumyantsev, Evgeniy V.; Goncharenko, Alexander A. [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000 Ivanovo (Russian Federation)

    2016-07-01

    Guanidine containing co-polymers grafted onto silica nanoparticles to form core-shell structure were prepared by sol-gel method in the presence of γ-Fe{sub 2}O{sub 3} nanoparticles. The morphological features for uncoated and coated silica particles have been characterized with scanning electron microscopy. The results show that the polymer coated silicas exhibit spherical morphology with rough polymeric surface covered by γ-Fe{sub 2}O{sub 3} nanoparticles. The grafting amount of guanidine containing co-polymers evaluated by thermogravimetric analysis was in the range from 17 to 30%. Then, the drug loading properties and cumulative release of silica hybrids modified with guanidine containing co-polymers were evaluated using molsidomine as a model drug. It was shown that after polymer grafting the loading content of molsidomine could reach up to 3.42 ± 0.21 and 2.34 ± 0.14 mg/g respectively. The maximum drug release of molsidomine is achieved at pH 1.6 (approximately 71–75% release at 37 °C), whereas at pH 7.4 drug release is lower (50.4–59.6% release at 37 °C). These results have an important implication that our magneto-controlled silica hybrids modified with guanidine containing co-polymers are promising as drug carriers with controlled behaviour under influence of magnetic field. - Highlights: • Polymer coated silica hybrids containing γ-Fe{sub 2}O{sub 3} were prepared via sol–gel method. • Polymer grafting influences pH-response and surface properties of final products. • Molsidomine as a model drug was effectively loaded into polymer coated silicas. • The drug loading depends on the nature of grafted polymer and its content.

  20. Evidence for Quantisation in Planetary Ring Systems

    OpenAIRE

    WAYTE, RICHARD

    2017-01-01

    Absolute radial positions of the main features in Saturn's ring system have been calculated by adapting the quantum theory of atomic spectra. Fine rings superimposed upon broad rings are found to be covered by a harmonic series of the form N α A(r)1/2, where N and A are integers. Fourier analysis of the ring system shows that the spectral amplitude fits a response profile which is characteristic of a resonant system. Rings of Jupiter, Uranus and Neptune also obey the same rules. Involvement o...

  1. Segmented polyurethane intravaginal rings for the sustained combined delivery of antiretroviral agents dapivirine and tenofovir.

    Science.gov (United States)

    Johnson, Todd J; Gupta, Kavita M; Fabian, Judit; Albright, Theodore H; Kiser, Patrick F

    2010-02-19

    Dual segment polyurethane intravaginal rings (IVRs) were fabricated to enable sustained release of antiretroviral agents dapivirine and tenofovir to prevent the male to female sexual transmission of the human immunodeficiency virus. Due to the contrasting hydrophilicity of the two drugs, dapivirine and tenofovir were separately formulated into polymers with matching hydrophilicity via solvent casting and hot melt extrusion. The resultant drug loaded rods were then joined together to form dual segment IVRs. Compression testing of the IVRs revealed that they are mechanically comparable to the widely accepted NuvaRing IVR. Physical characterization of the individual IVR segments using wide angle X-ray scattering and differential scanning calorimetry determined that dapivirine and tenofovir are amorphous and crystalline within their polymeric segments, respectively. In vitro release of tenofovir from the dual segment IVR was sustained over 30 days while dapivirine exhibited linear release over the time period. A 90 day accelerated stability study confirmed that dapivirine and tenofovir are stable in the IVR formulation. Altogether, these results suggest that multisegment polyurethane IVRs are an attractive formulation for the sustained vaginal delivery of drugs with contrasting hydrophilicity such as dapivirine and tenofovir. 2009 Elsevier B.V. All rights reserved.

  2. Polymer Electrolytes

    Science.gov (United States)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  3. Multiplication modules over non-commutative rings

    International Nuclear Information System (INIS)

    Tuganbaev, A A

    2003-01-01

    It is proved that each submodule of a multiplication module over a regular ring is a multiplicative module. If A is a ring with commutative multiplication of right ideals, then each projective right ideal is a multiplicative module, and a finitely generated A-module M is a multiplicative module if and only if all its localizations with respect to maximal right ideals of A are cyclic modules over the corresponding localizations of A. In addition, several known results on multiplication modules over commutative rings are extended to modules over not necessarily commutative rings

  4. Status of the SLC damping rings

    International Nuclear Information System (INIS)

    Hutton, A.M.; Davies-White, W.A.; Delahaye, J.P.

    1985-06-01

    Electron beams of full design energy 1.21 GeV and nearly full design intensity 4 x 10 10 particles/pulse (design 5 x 10 10 ) have been extracted from the Stanford Linac and successfully stored in the electron damping ring. Beams of less intensity have been extracted from the ring and reinjected into the Linac. The present intensity limits are not thought to be fundamental. The operating experience with the electron ring and the status of the construction of the positron ring will be discussed. 11 refs., 1 fig., 2 tabs

  5. Characterization of heterocyclic rings through quantum chemical topology.

    Science.gov (United States)

    Griffiths, Mark Z; Popelier, Paul L A

    2013-07-22

    Five-membered rings are found in a myriad of molecules important in a wide range of areas such as catalysis, nutrition, and drug and agrochemical design. Systematic insight into their largely unexplored chemical space benefits from first principle calculations presented here. This study comprehensively investigates a grand total of 764 different rings, all geometry optimized at the B3LYP/6-311+G(2d,p) level, from the perspective of Quantum Chemical Topology (QCT). For the first time, a 3D space of local topological properties was introduced, in order to characterize rings compactly. This space is called RCP space, after the so-called ring critical point. This space is analogous to BCP space, named after the bond critical point, which compactly and successfully characterizes a chemical bond. The relative positions of the rings in RCP space are determined by the nature of the ring scaffold, such as the heteroatoms within the ring or the number of π-bonds. The summed atomic QCT charges of the five ring atoms revealed five features (number and type of heteroatom, number of π-bonds, substituent and substitution site) that dictate a ring's net charge. Each feature independently contributes toward a ring's net charge. Each substituent has its own distinct and systematic effect on the ring's net charge, irrespective of the ring scaffold. Therefore, this work proves the possibility of designing a ring with specific properties by fine-tuning it through manipulation of these five features.

  6. Single photon emission and quantum ring-cavity coupling in InAs/GaAs quantum rings

    International Nuclear Information System (INIS)

    Gallardo, E; Nowak, A K; Sanvitto, D; Meulen, H P van der; Calleja, J M; MartInez, L J; Prieto, I; Alija, A R; Granados, D; Taboada, A G; GarcIa, J M; Postigo, P A; Sarkar, D

    2010-01-01

    Different InAs/GaAs quantum rings embedded in a photonic crystal microcavity are studied by quantum correlation measurements. Single photon emission, with g (2) (0) values around 0.3, is demonstrated for a quantum ring not coupled to the microcavity. Characteristic rise-times are found to be longer for excitons than for biexcitons, resulting in the time asymmetry of the exciton-biexciton cross-correlation. No antibunching is observed in another quantum ring weakly coupled to the microcavity.

  7. Polymer compositions, polymer films and methods and precursors for forming same

    Science.gov (United States)

    Klaehn, John R; Peterson, Eric S; Orme, Christopher J

    2013-09-24

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  8. Powder metallurgy ferrous synchronizer ring with brass-based friction layer; Tetsu-do niso shoketsu synchronize ring no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Okajima, H; Yoshikawa, K; Miyajima, K; Sugiyama, M [Toyota Motor Corp., Aichi (Japan); Nakamura, M; Ito, M [Japan Powder Metallurgy Co. Ltd., Tokyo (Japan)

    1997-10-01

    Synchronizer rings for manual transmissions are generally made of brass or molybdenum coated brass. Powder metallurgy (PM) synchronizer ring was developed for the purpose of high performance and cost reduction. This synchronizer ring consists of the high strength PM ferrous ring that needs neither special densification nor heat treatment, and it has the brass-based friction layer. New joining technique was required because of that shape and two different materials. Powder of copper-phosphorus alloy are admixed with the friction material. While sintering, that melt and migrate to the interface. Then the friction layer and the ferrous ring are joined tightly. 7 refs., 9 figs., 6 tabs.

  9. The Quest for Converting Biorenewable Bifunctional α-Methylene-γ-butyrolactone into Degradable and Recyclable Polyester: Controlling Vinyl-Addition/Ring-Opening/Cross-Linking Pathways

    KAUST Repository

    Tang, Xiaoyan

    2016-10-04

    α-Methylene-γ-butyrolactone (MBL), a naturally occurring and biomass-sourced bifunctional monomer, contains both a highly reactive exocyclic C═C bond and a highly stable five-membered γ-butyrolactone ring. Thus, all previous work led to exclusive vinyl-addition polymerization (VAP) product P(MBL)VAP. Now, this work reverses this conventional chemoselectivity to enable the first ring-opening polymerization (ROP) of MBL, thereby producing exclusively unsaturated polyester P(MBL)ROP with Mn up to 21.0 kg/mol. This elusive goal was achieved through uncovering the thermodynamic, catalytic, and processing conditions. A third reaction pathway has also been discovered, which is a crossover propagation between VAP and ROP processes, thus affording cross-linked polymer P(MBL)CLP. The formation of the three types of polymers, P(MBL)VAP, P(MBL)CLP, and P(MBL)ROP, can be readily controlled by adjusting the catalyst (La)/initiator (ROH) ratio, which is determined by the unique chemoselectivity of the La–X (X = OR, NR2, R) group. The resulting P(MBL)ROP is degradable and can be readily postfunctionalized into cross-linked or thiolated materials but, more remarkably, can also be fully recycled back to its monomer thermochemically. Computational studies provided the theoretical basis for, and a mechanistic understanding of, the three different polymerization processes and the origin of the chemoselectivity.

  10. The Quest for Converting Biorenewable Bifunctional α-Methylene-γ-butyrolactone into Degradable and Recyclable Polyester: Controlling Vinyl-Addition/Ring-Opening/Cross-Linking Pathways

    KAUST Repository

    Tang, Xiaoyan; Hong, Miao; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene Y X

    2016-01-01

    α-Methylene-γ-butyrolactone (MBL), a naturally occurring and biomass-sourced bifunctional monomer, contains both a highly reactive exocyclic C═C bond and a highly stable five-membered γ-butyrolactone ring. Thus, all previous work led to exclusive vinyl-addition polymerization (VAP) product P(MBL)VAP. Now, this work reverses this conventional chemoselectivity to enable the first ring-opening polymerization (ROP) of MBL, thereby producing exclusively unsaturated polyester P(MBL)ROP with Mn up to 21.0 kg/mol. This elusive goal was achieved through uncovering the thermodynamic, catalytic, and processing conditions. A third reaction pathway has also been discovered, which is a crossover propagation between VAP and ROP processes, thus affording cross-linked polymer P(MBL)CLP. The formation of the three types of polymers, P(MBL)VAP, P(MBL)CLP, and P(MBL)ROP, can be readily controlled by adjusting the catalyst (La)/initiator (ROH) ratio, which is determined by the unique chemoselectivity of the La–X (X = OR, NR2, R) group. The resulting P(MBL)ROP is degradable and can be readily postfunctionalized into cross-linked or thiolated materials but, more remarkably, can also be fully recycled back to its monomer thermochemically. Computational studies provided the theoretical basis for, and a mechanistic understanding of, the three different polymerization processes and the origin of the chemoselectivity.

  11. Random Poly(Amino Acids Synthesized by Ring Opening Polymerization as Additives in the Biomimetic Mineralization of CaCO3

    Directory of Open Access Journals (Sweden)

    Vladimir Dmitrovic

    2012-05-01

    Full Text Available Biominerals such as bones, teeth and seashells, very often have advanced material properties and are a source of inspiration for material chemists. As in biological systems acidic proteins play an important role in regulating the formation of CaCO3 biominerals, we employ poly(amino acids to mimic the processes involved in the laboratory. Here we report on the synthesis of random aminoacid copolymers of glutamic acid (Glu, lysine (Lys and alanine (Ala using the ring opening polymerization (ROP of their respective N-carboxy anhydrides (NCA. The synthetic approach yields a series of polymers with different monomer composition but with similar degrees of polymerization (DP 45–56 and comparable polydispersities (PDI 1.2–1.6. Using random copolymers we can investigate the influence of composition on the activity of the polymers without having to take into account the effects of secondary structure or specific sequences. We show that variation of the Glu content of the polymer chains affects the nucleation and thereby also the particle size. Moreover, it is shown that the polymers with the highest Glu content affect the kinetics of mineral formation such that the first precipitate is more soluble than in the case of the control.

  12. Epoxy/anhydride thermosets modified with end-capped star polymers with poly(ethyleneimine cores of different molecular weight and poly(ε–caprolactone arms

    Directory of Open Access Journals (Sweden)

    C. Acebo

    2015-09-01

    Full Text Available Multiarm star polymers, with a hyperbranched poly(ethyleneimine (PEI core and poly(ε-caprolactone (PCL arms end-capped with acetyl groups were synthesized by ring-opening polymerization of ε-caprolactone from PEI cores of different molecular weight. These star polymers were used as toughening agents for epoxy/anhydride thermosets. The curing process was studied by calorimetry, thermomechanical analysis and infrared spectroscopy. The final properties of the resulting materials were determined by thermal and mechanical tests. The addition of the star polymers led to an improvement up to 130% on impact strength and a reduction in the thermal stresses up to 55%. The structure and molecular weight of the modifier used affected the morphology of the resulting materials. Electron microscopy showed phase-separated morphologies with nano-sized fine particles well adhered to the epoxy/anhydride matrix when the higher molecular weight modifier was used.

  13. Vortex Ring Dynamics in Radially Confined Domains

    Science.gov (United States)

    Stewart, Kelley; Niebel, Casandra; Jung, Sunghwan; Vlachos, Pavlos

    2010-11-01

    Vortex ring dynamics have been studied extensively in semi-infinite quiescent volumes. However, very little is known about vortex-ring formation in wall-bounded domains where vortex wall interaction will affect both the vortex ring pinch-off and propagation velocity. This study addresses this limitation and studies vortex formation in radially confined domains to analyze the affect of vortex-ring wall interaction on the formation and propagation of the vortex ring. Vortex rings were produced using a pneumatically driven piston cylinder arrangement and were ejected into a long cylindrical tube which defined the confined downstream domain. A range of confinement domains were studied with varying confinement diameters Velocity field measurements were performed using planar Time Resolved Digital Particle Image Velocimetry (TRDPIV) and were processed using an in-house developed cross-correlation PIV algorithm. The experimental analysis was used to facilitate the development of a theoretical model to predict the variations in vortex ring circulation over time within confined domains.

  14. Radiation Synthesis of Superabsorbent Polymers Based on Natural Polymers

    International Nuclear Information System (INIS)

    Sen, Murat; Hayrabolulu, Hande

    2010-01-01

    The objectives of proposed research contract were first synthesize superabsorbent polymers based on natural polymers to be used as disposable diapers and soil conditioning materials in agriculture, horticulture and other super adsorbent using industries. We have planned to use the natural polymers; locust beam gum, tara gum, guar gum and sodium alginate on the preparation of natural superabsorbent polymers(SAP). The aqueous solution of natural polymers and their blends with trace amount of monomer and cross-linking agents will be irradiated in paste like conditions by gamma rays for the preparation of cross-linked superabsorbent systems. The water absorption and deswellling capacity of prepared super adsorbents and retention capacity, absorbency under load, suction power, swelling pressure and pet-rewet properties will be determined. Use of these materials instead of synthetic super absorbents will be examined by comparing the performance of finished products. The experimental studies achieved in the second year of project mainly on the effect of radiation on the chemistry of sodium alginate polymers in different irradiation conditions and structure-property relationship particularly with respect to radiation induced changes on the molecular weight of natural polymers and preliminary studies on the synthesis of natural-synthetic hydride super adsorbent polymers were given in details

  15. The Conversion of Wiswesser Line Notations to Ring Codes. I. The Conversion of Ring Systems

    Science.gov (United States)

    Granito, Charles E.; And Others

    1972-01-01

    The computerized conversion of Wiswesser Line Notations to Ring Codes, using a two-part approach, and the set of computer programs generated for the conversion of ring systems are described. (9 references) (Author)

  16. Bacterial population solitary waves can defeat rings of funnels

    International Nuclear Information System (INIS)

    Morris, Ryan J; Phan, Trung V; Austin, Robert H; Black, Matthew; Bos, Julia A; Lin, Ke-Chih; Kevrekidis, Ioannis G

    2017-01-01

    We have constructed a microfabricated circular corral for bacteria made of rings of concentric funnels which channel motile bacteria outwards via non-hydrodynamic interactions with the funnel walls. Initially bacteria do move rapidly outwards to the periphery of the corral. At the edge, nano-slits allow for the transport of nutrients into the device while keeping the bacteria from escaping. After a period of time in which the bacteria increase their cell density in this perimeter region, they are then able to defeat the physical constrains of the funnels by launching back-propagating collective waves. We present the basic data and some nonlinear modeling which can explain how bacterial population waves propagate through a physical funnel, and discuss possible biological implications. (paper)

  17. Polymer and Polymer Gel of Liquid Crystalline Semiconductors

    Institute of Scientific and Technical Information of China (English)

    Teppei Shimakawa; Naoki Yoshimoto; Jun-ichi Hanna

    2004-01-01

    It prepared a polymer and polymer gel of a liquid crystalline (LC) semiconductor having a 2-phenylnaphthalene moiety and studied their charge carrier transport properties by the time-of-flight technique. It is found that polyacrylate having the mesogenic core moiety of 2-phenylnaphtalene (PNP-acrylate) exhibited a comparable mobility of 10-4cm2/Vs in smectic A phase to those in smectic A (SmA) phase of small molecular liquid crystals with the same core moiety, e.g., 6-(4'-octylphenyl)- 2-dodecyloxynaphthalene (8-PNP-O12), and an enhanced mobility up to 10-3cm2/Vs in the LC-glassy phase at room temperature, when mixed with a small amount of 8-PNP-O12. On the other hand, the polymer gel consisting of 20 wt %-hexamethylenediacrylate (HDA)-based cross-linked polymer and 8-PNP-O12 exhibited no degraded mobility when cross-linked at the mesophase. These results indicate that the polymer and polymer composite of liquid crystalline semiconductors provide us with an easy way to realize a quality organic semiconductor thin film for the immediate device applications.

  18. Metal-polymer interfaces studied with adsorption microcalorimetry and photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bebensee, Fabian

    2010-06-21

    The interface formation between calcium and two different semiconducting, ?-conjugated polymers, namely poly(3-hexylthiophene) (P3HT) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-(1-cyanovilylene)phenylene] (CN-MEH-PPV), was investigated using adsorption microcalorimetry, low energy ion scattering spectroscopy (LEIS), atomic beam scattering and X-ray photoelectron spectroscopy. In addition to the interface formation on pristine, i.e., untreated polymer surfaces, the influence of electron irradiation prior to calcium deposition and the effect of dosing calcium at a low substrate temperature was studied. The reactive site for the interaction of calcium atoms impinging on a pristine P3HT surface appears to be the sulfur in the thiophene ring, as is concluded from a combination of XPS, adsorption calorimetry and theory results. The interaction, in fact, is strong enough that the sulfur atoms abstracted from the thiophene ring under formation of calcium sulfide with an overall reaction energy of this process of 405 kJ per mol. Quantitative evaluation of XPS data reveal that the depth up to which Ca atoms react with sulfur in the polymer is 3 nm, irrespective of increasing the amount of Ca dosed onto the substrate. A closed layer of Ca is only formed at a Ca coverage exceeding 11 ML, as suggested by LEIS. Irradiation of P3HT with electrons with a kinetic energy of 100 eV results in dehydrogenation of the hexyl side chains and formation of new C=C double bonds. This in turn results in a higher initial sticking probability of 0.63 for Ca, while no other significant changes could be observed: XPS indicates that the thiophene rings remain intact and the measured heat of adsorption is the same as observed for the deposition of Ca on pristine P3HT. Dosing Ca onto P3HT held at low temperature (130 K) is found to result in a very low saturation thickness of the reacted layer of approximately 0.3 nm. Upon warming the sample up to room temperature, the thickness of the reacted layer

  19. The Saturnian rings

    International Nuclear Information System (INIS)

    Alfven, H.

    1975-09-01

    The structure of the Saturnian rings is traditionally believed to be due to resonances caused by Mimas (and possibly other satellites). It is shown that both theoretical and observational evidence rule out this interpretation. The increased observational accuracy on one hand and the increased understanding of the cosmogonic processes on the other makes it possible to explain the structure of the ring system as a product of condensation from a partially corotating plasma. In certain respects the agreement between theory and observations is about 1%. (Auth.)

  20. Photochemistry in Saturn's Ring-Shadowed Atmosphere: Modulation of Hydrocarbons and Observations of Dust Content

    Science.gov (United States)

    Edgington, S. G.; Atreya, S. K.; Wilson, E. H.; Baines, K. H.; West, R. A.; Bjoraker, G. L.; Fletcher, L. N.; Momary, T.

    2016-12-01

    Cassini has been orbiting Saturn for over twelve years now. During this epoch, the ring shadow has moved from covering much of the northern hemisphere with solar inclination of 24 degrees to covering a large swath south of the equator and it continues to move southward. At Saturn Orbit Insertion in 2004, the projection of the A-ring onto Saturn reached as far as 40N along the central meridian (52N at the terminator). At its maximum extent, the ring shadow can reach as far as 48N/S (58N/S at the terminator). The net effect is that the intensity of both ultraviolet and visible sunlight penetrating through the rings to any particular latitude will vary depending on both Saturn's axis relative to the Sun and the optical thickness of each ring system. In essence, the rings act like semi-transparent venetian blinds.Previous work examined the variation of the solar flux as a function of solar inclination, i.e. for each 7.25-year season at Saturn. Here, we report on the impact of the oscillating ring shadow on the photolysis and production rates of hydrocarbons (acetylene, ethane, propane, and benzene) and phosphine in Saturn's stratosphere and upper troposphere. The impact of these production and loss rates on the abundance of long-lived photochemical products leading to haze formation are explored. We assess their impact on phosphine abundance, a disequilibrium species whose presence in the upper troposphere can be used as a tracer of convective processes in the deeper atmosphere.We will also present our ongoing analysis of Cassini's CIRS, UVIS, and VIMS datasets that provide an estimate of the evolving haze content of the northern hemisphere and we will begin to assess the implications for dynamical mixing. In particular, we will examine how the now famous hexagonal jet stream acts like a barrier to transport, isolating Saturn's north polar region from outside transport of photochemically-generated molecules and haze.The research described in this paper was carried out

  1. Hubble again views Saturn's Rings Edge-on

    Science.gov (United States)

    1995-01-01

    Saturn's magnificent ring system is seen tilted edge-on -- for the second time this year -- in this NASA Hubble Space Telescope picture taken on August 10, 1995, when the planet was 895 million miles (1,440 million kilometers) away. Hubble snapped the image as Earth sped back across Saturn's ring plane to the sunlit side of the rings. Last May 22, Earth dipped below the ring plane, giving observers a brief look at the backlit side of the rings. Ring-plane crossing events occur approximately every 15 years. Earthbound observers won't have as good a view until the year 2038. Several of Saturn's icy moons are visible as tiny starlike objects in or near the ring plane. They are from left to right, Enceladus, Tethys, Dione and Mimas. 'The Hubble data shows numerous faint satellites close to the bright rings, but it will take a couple of months to precisely identify them,' according to Steve Larson (University of Arizona). During the May ring plane crossing, Hubble detected two, and possibly four, new moons orbiting Saturn. These new observations also provide a better view of the faint E ring, 'to help determine the size of particles and whether they will pose a collision hazard to the Cassini spacecraft,' said Larson. The picture was taken with Hubble's Wide Field Planetary Camera 2 in wide field mode. This image is a composite view, where a long exposure of the faint rings has been combined with a shorter exposure of Saturn's disk to bring out more detail. When viewed edge-on, the rings are so dim they almost disappear because they are very thin -- probably less than a mile thick.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  2. Modeling CO2 Laser Ablative Impulse with Polymers

    International Nuclear Information System (INIS)

    Sinko, John E.; Phipps, Claude R.; Sasoh, Akihiro

    2010-01-01

    Laser ablation vaporization models have usually ignored the spatial dependence of the laser beam. Here, we consider effects from modeling using a Gaussian beam for both photochemical and photothermal conditions. The modeling results are compared to experimental and literature data for CO 2 laser ablation of the polymer polyoxymethylene under vacuum, and discussed in terms of the ablated mass areal density and momentum coupling coefficient. Extending the scope of discussion, laser ablative impulse generation research has lacked a cohesive strategy for linking the vaporization and plasma regimes. Existing models, mostly formulated for ultraviolet laser systems or metal targets, appear to be inappropriate or impractical for applications requiring CO 2 laser ablation of polymers. A recently proposed method for linking the vaporization and plasma regimes for analytical modeling is addressed here along with the implications of its use. Key control parameters are considered, along with the major propulsion parameters needed for laser ablation propulsion modeling.

  3. Vaginal rings for delivery of HIV microbicides.

    Science.gov (United States)

    Malcolm, R Karl; Fetherston, Susan M; McCoy, Clare F; Boyd, Peter; Major, Ian

    2012-01-01

    Following the successful development of long-acting steroid-releasing vaginal ring devices for the treatment of menopausal symptoms and contraception, there is now considerable interest in applying similar devices to the controlled release of microbicides against HIV. In this review article, the vaginal ring concept is first considered within the wider context of the early advances in controlled-release technology, before describing the various types of ring device available today. The remainder of the article highlights the key developments in HIV microbicide-releasing vaginal rings, with a particular focus on the dapivirine ring that is presently in late-stage clinical testing.

  4. The ring plus project: safety and acceptability of vaginal rings that protect women from unintended pregnancy.

    Science.gov (United States)

    Schurmans, Céline; De Baetselier, Irith; Kestelyn, Evelyne; Jespers, Vicky; Delvaux, Thérèse; Agaba, Stephen K; van Loen, Harry; Menten, Joris; van de Wijgert, Janneke; Crucitti, Tania

    2015-04-10

    Research is ongoing to develop multipurpose vaginal rings to be used continuously for contraception and to prevent Human Immunodeficiency Virus (HIV) infection. Contraceptive vaginal rings (CVRs) are available in a number of countries and are most of the time used intermittently i.e. three weeks out of a 4-week cycle. Efficacy trials with a dapivirine-containing vaginal ring for HIV prevention are ongoing and plans to develop multi-purpose vaginal rings for prevention of both HIV and pregnancy have been elaborated. In contrast with the CVRs, multi-purpose vaginal rings will have to be used continuously. Women who continuously use a CVR will no longer have menses. Furthermore, some safety aspects of CVR use have never been studied in-depth in the past, such as the impact of the vaginal ring on the vaginal microbiota, biofilm formation and induction of inflammation. We studied acceptability and these novel aspects of safety in Rwandan women. Although significant progress has been made over the past decade, Rwanda still has a high unmet need for contraception (with 47% unplanned births) and a generalized HIV epidemic, and CVRs are not yet available. We will conduct an open label, single centre, randomized controlled trial. A total of 120 HIV-negative women will be randomized to intermittent CVR use (to allow menstruation) or continuous CVR use. Women will be followed for a maximum of 14 weeks. In parallel, we will conduct a qualitative study using in-depth interview and focus group discussion methodology. In addition to evaluating the safety and acceptability of intermittent and continuous CVR use in Rwandan women, we hope that our findings will inform the development of future multipurpose vaginal rings, will prepare Rwandan study populations for future clinical trials of multipurpose vaginal rings, and will pave the way for introduction of CVRs on African markets. Clinicaltrials.gov NCT01796613 . Registered 14 February 2013.

  5. Common pass decentered annular ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, D. A.; Waite, T. R.

    1985-04-30

    An optical resonator having an annular cylindrical gain region for use in a chemical laser or the like in which two ring-shaped mirrors having substantially conical reflecting surfaces are spaced apart along a common axis of revolution of the respective conical surfaces. A central conical mirror reflects incident light directed along said axis radially outwardly to the reflecting surface of a first one of the ring-shaped mirrors. The radial light rays are reflected by the first ring mirror to the second ring mirror within an annular cylindrical volume concentric with said common axis and forming a gain region. Light rays impinging on the second ring mirror are reflected to diametrically opposite points on the same conical mirror surfaces and back to the first ring mirror through the same annular cylindrical volume. The return rays are then reflected by the conical mirror surface of the first ring mirror back to the central conical mirror. The mirror surfaces are angled such that the return rays are reflected back along the common axis by the central mirror in a concentric annular cylindrical volume. A scraper mirror having a central opening centered on said axis and an offset opening reflects all but the rays passing through the two openings in an output beam. The rays passing through the second opening are reflected back through the first opening to provide feedback.

  6. Tritium concentrations in tree ring cellulose

    International Nuclear Information System (INIS)

    Kaji, Toshio; Momoshima, Noriyuki; Takashima, Yoshimasa.

    1989-01-01

    Measurements of tritium (tissue bound tritium; TBT) concentration in tree rings are presented and discussed. Such measurement is expected to provide a useful means of estimating the tritium level in the environment in the past. The concentration of tritium bound in the tissue (TBT) in a tree ring considered to reflect the environmental tritium level in the area at the time of the formation of the ring, while the concentration of tritium in the free water in the tissue represents the current environmental tritium level. First, tritium concentration in tree ring cellulose sampled from a cedar tree grown in a typical environment in Fukuoka Prefecture is compared with the tritium concentration in precipitation in Tokyo. Results show that the year-to-year variations in the tritium concentration in the tree rings agree well with those in precipitation. The maximum concentration, which occurred in 1963, is attibuted to atmospheric nuclear testing which was performed frequently during the 1961 - 1963 period. Measurement is also made of the tritium concentration in tree ring cellulose sampled from a pine tree grown near the Isotope Center of Kyushu University (Fukuoka). Results indicate that the background level is higher probably due to the release of tritium from the facilities around the pine tree. Thus, measurement of tritium in tree ring cellulose clearly shows the year-to-year variation in the tritium concentration in the atmosphere. (N.K.)

  7. Inorganic glass ceramic slip rings

    Science.gov (United States)

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  8. Translational velocity oscillations of piston generated vortex rings

    Science.gov (United States)

    Kumar, Manoj; Arakeri, J. H.; Shankar, P. N.

    1995-11-01

    Experimental results are presented that show that the translational velocities of piston generated vortex rings often undergo oscillations, similar to those recently discovered for drop generated rings. An attempt has been made to minimize uncertainties by utilizing both dye and hydrogen bubbles for visualization and carefully repeating measurements on the same ring and on different realizations under the same nominal piston conditions. The results unambiguously show that under most conditions, both for laminar and turbulent rings and for rings generated from pipes and orifices, the oscillations are present. The present results, together with the earlier results on drop generated rings, give support to the view that translational velocity oscillations are probably an inherent feature of translating vortex ring fields.

  9. Seco-B-Ring Steroidal Dienynes with Aromatic D Ring: Design, Synthesis and Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Marcin Szybinski

    2017-10-01

    Full Text Available Continuing our structure-activity studies on the vitamin D analogs with the altered intercyclic seco-B-ring fragment, we designed compounds possessing dienyne system conjugated with the benzene D ring. Analysis of the literature data and the docking experiments seemed to indicate that the target compounds could mimic the ligands with a good affinity to the vitamin D receptor (VDR. Multi-step synthesis of the C/D-ring building block of the tetralone structure was achieved and its enol triflate was coupled with the known A-ring fragments, possessing conjugated enyne moiety, using Sonogashira protocol. The structures of the final products were confirmed by NMR, UV and mass spectroscopy. Their binding affinities for the full-length human VDR were determined and it was established that compound substituted at C-2 with exomethylene group showed significant binding to the receptor. This analog was also able to induce monocytic differentiation of HL-60 cells.

  10. Saturn's Ring: Pre-Cassini Status and Mission Goals

    Science.gov (United States)

    Cuzzi, Jeff N.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    In November 1980, and again in August 1981, identical Voyager spacecraft flew through the Saturn system, changing forever the way we think about planetary rings. Although Saturn's rings had been the only known ring system for three centuries, a ring system around Uranus had been discovered by stellar occultations from Earth in 1977, and the nearly transparent ring of Jupiter was imaged by Voyager in 1979 (the presence of material there had been inferred from charged particle experiments on Pioneer 10 and 11 several years earlier). While Saturn had thus temporarily lost its uniqueness as having the only ring system, with Voyager it handily recaptured the role of having the most fascinating one. The Voyager breakthroughs included spiral density and bending waves such as cause galactic structure; ubiquitous fine-scale radial 'irregular' structure, with the appearance of record-grooves; regional and local variations in particle color; complex, azimuthally variable ring structure; empty gaps in the rings, some containing very regular, sharp-edged, elliptical rings and one containing both a small moonlet and incomplete arcs of dusty material; and shadowy 'spokes' that flicker across the main rings. One of the paradigm shifts of this period was the realization that many aspects of planetary rings, and even the ring systems themselves, could be 'recent' on geological timescales. These early results are reviewed and summarized in the Arizona Space Science series volumes 'Saturn'. (An excellent review of ring dynamics at a formative stage is by Goldreich and Tremaine.) From the mid 1980's to the time of this writing, progress has been steady, while at a less heady pace, and some of the novel ring properties revealed by Voyager 1 and 2 are beginning to be better understood. It is clearly impossible to cite, much less review, every advance over the last decade; however, below we summarize the main advances in understanding of Saturn's rings since the mid 1980's, in the context

  11. Rings Related to Special Atoms | France-Jackson | Quaestiones ...

    African Journals Online (AJOL)

    Abstract unavailable at this time... Mathematics Subject Classification (1991): 16A21, 16A12 Keywords: ring, special atoms, atoms, *k-ring, prime ring, *-ring, Jacobson, artinia, essential extension, homomorphic image, ideals. Quaestiones Mathematicae 24(1) 2001, 105–109 ...

  12. Phase separation of a Lennard-Jones fluid interacting with a long, condensed polymer chain: implications for the nuclear body formation near chromosomes.

    Science.gov (United States)

    Oh, Inrok; Choi, Saehyun; Jung, YounJoon; Kim, Jun Soo

    2015-08-28

    Phase separation in a biological cell nucleus occurs in a heterogeneous environment filled with a high density of chromatins and thus it is inevitably influenced by interactions with chromatins. As a model system of nuclear body formation in a cell nucleus filled with chromatins, we simulate the phase separation of a low-density Lennard-Jones (LJ) fluid interacting with a long, condensed polymer chain. The influence of the density variation of LJ particles above and below the phase boundary and the role of attractive interactions between LJ particles and polymer segments are investigated at a fixed value of strong self-interaction between LJ particles. For a density of LJ particles above the phase boundary, phase separation occurs and a dense domain of LJ particles forms irrespective of interactions with the condensed polymer chain whereas its localization relative to the polymer chain is determined by the LJ-polymer attraction strength. Especially, in the case of moderately weak attractions, the domain forms separately from the polymer chain and subsequently associates with the polymer chain. When the density is below the phase boundary, however, the formation of a dense domain is possible only when the LJ-polymer attraction is strong enough, for which the domain grows in direct contact with the interacting polymer chain. In this work, different growth behaviors of LJ particles result from the differences in the density of LJ particles and in the LJ-polymer interaction, and this work suggests that the distinct formation of activity-dependent and activity-independent nuclear bodies (NBs) in a cell nucleus may originate from the differences in the concentrations of body-specific NB components and in their interaction with chromatins.

  13. Using Ring Strain to Control 4π-Electrocyclization Reactions: Torquoselectivity in Ring Closing of Medium-Ring Dienes and Ring Opening of Bicyclic Cyclobutenes.

    Science.gov (United States)

    Boon, Byron A; Green, Aaron G; Liu, Peng; Houk, K N; Merlic, Craig A

    2017-05-05

    Syntheses of strained cyclic dienes were accomplished via palladium(II)-catalyzed oxidative cyclizations of terminal bis(vinylboronate esters). The reactions generate strained (E,E)-1,3-dienes that undergo spontaneous 4π-electrocyclizations to form bicyclic cyclobutenes. Formation of the cyclobutenes is driven by the strain in the medium-ring (E,E)-1,3-diene intermediate. Thermal ring openings of the cyclobutenes give (Z,Z)-1,3-diene products, again for thermodynamic reasons. DFT calculations verified the thermodynamic versus kinetic control of the reactions, and kinetic studies are in excellent agreement with the calculated energy changes. An extension of the tandem coupling/4π-electrocyclization pathway was demonstrated by a palladium(II)-catalyzed oxidative homocoupling/8π-electrocyclization cascade.

  14. Dihydroxybenzene/benzoquinone-containing polymers: organic redox polymers

    Energy Technology Data Exchange (ETDEWEB)

    Moulay, S. [Universite de Blida, Lab. de Chimie-Physique Macromoleculaire, Institut de Chimie Industrielle (Algeria)

    2000-08-01

    Polymers containing hydroquinone, catechol or their corresponding benzoquinones are a special class of redox polymers. Three pathways of their syntheses are possible: condensation polymerization of suitable monomers, addition polymerization of vinyl monomers containing redox moiety, and chemical attachment of redox unit onto pre-made polymeric matrix. A range of functionalized matrices have been employed such as polyethers, polyesters, polycarbonates, polyurethanes, polyamides and others. Protection of their phenolic functionality has conducted to chemically interesting redox polymer precursors. The presence of a redox moiety coupled with the extant functionalization of the polymer matrix makes the materials very valuable, of wide properties and consequently of vast applicability. For instance, in the oil field, some polymers such as carboxy-methyl-cellulose (CMC) are often applied as to bring about a viscosity improvement and therefore to facilitate the oil drilling. In this regard, Patel evaluated sulfo-alkylated polymeric catechol, namely sulfo-methylated and sulfo-ethylated resins. Indeed, polymeric catechol chemically modified as such exhibited a marked ability to control the viscosity, the gel strength, as well as the filtrate loss of aqueous oil drilling fluids.

  15. Change in interfacial properties of polymer antifouling coating by controlling ring architecture of functional nanocomposites

    International Nuclear Information System (INIS)

    Yin, Bing; Zhang, Li; Liu, Tao; Li, Jing

    2014-01-01

    Greener protocols, long duration and applications are the necessary conditions of antifouling coating. The stability of anti-bacterial function decides its duration. Core–shell structured nanoparticles with Ag NPs and Ag + were successfully in situ fabricated in polyelectrolyte matrix, to avoid antimicrobial nanomaterials leaching out in the form of Ag or Ag + from the matrix. The nanocomposite materials prepared were well characterized by XRD, XPS, TEM and UV–visible. Through monitoring the hybrid polymer films soaked in the solution, sparingly soluble AgI as the shell in the hybrid structure nanoparticles showed excellent barrier effect. Using the synergy of Ag NPs and Ag + toward the killing of microbes, the duration of antimicrobial activity was prolonged. (paper)

  16. Exploration of a Doxorubicin-Polymer Conjugate in Lipid-Polymer Hybrid Nanoparticle Drug Delivery

    Science.gov (United States)

    Lough, Emily

    Nanoparticle (NP) drug delivery is a major focus in the research community because of its potential to use existing drugs in safer and more effective ways. Chemotherapy encapsulation in NPs shields the drug from the rest of the body while it is within the NP, with less systemic exposure leading to fewer off-target effects of the drug. However, passive loading of drugs into NPs is a suboptimal method, often leading to burst release upon administration. This work explores the impact of incorporating the drug-polymer conjugate doxorubicin-poly (lactic-co-glycolic) acid (Dox-PLGA) into a lipid-polymer hybrid nanoparticle (LPN). The primary difference in using a drug-polymer conjugate for NP drug delivery is the drug's release kinetics. Dox-PLGA LPNs showed a more sustained and prolonged release profile over 28 days compared to LPNs with passively loaded, unconjugated doxorubicin. This sustained release translates to cytotoxicity; when systemic circulation was simulated using dialysis, Dox-PLGA LPNs retained their cytotoxicity at a higher level than the passively loaded LPNs. The in vivo implication of preserving cytotoxic potency through a slower release profile is that the majority of Dox delivered via Dox-PLGA LPNs will be kept within the LPN until it reaches the tumor. This will result in fewer systemic side effects and more effective treatments given the higher drug concentration at the tumor site. An intriguing clinical application of this drug delivery approach lies in using Dox-PLGA LPNs to cross the blood-brain barrier (BBB). The incorporation of Dox-PLGA is hypothesized to have a protective effect on the BBB as its slow release profile will prevent drug from harming the BBB. Using induced pluripotent stem cells differentiated to human brain microvascular endothelial cells that comprise the BBB, the Dox-PLGA LPNs were shown to be less destructive to the BBB than their passively loaded counterparts. Dox-PLGA LPNs showed superior cytotoxicity against plated tumor

  17. Ring Avulsion Injuries: A Systematic Review.

    Science.gov (United States)

    Bamba, Ravinder; Malhotra, Gautam; Bueno, Reuben A; Thayer, Wesley P; Shack, R Bruce

    2018-01-01

    Ring avulsion injuries can range from soft tissue injury to complete amputation. Grading systems have been developed to guide treatment, but there is controversy with high-grade injuries. Traditionally, advanced ring injuries have been treated with completion amputation, but there is evidence that severe ring injuries can be salvaged. The purpose of this systematic review was to pool the current published data on ring injuries. A systematic review of the English literature published from 1980 to 2015 in PubMed and MEDLINE databases was conducted to identify patients who underwent treatment for ring avulsion injuries. Twenty studies of ring avulsion injuries met the inclusion criteria. There were a total of 572 patients reported with ring avulsion injuries. The Urbaniak class breakdown was class I (54 patients), class II (204 patients), and class III (314 patients). The average total arc of motion (TAM) for patients with a class I injury was 201.25 (n = 40). The average 2-point discrimination was 5.6 (n = 10). The average TAM for patients with a class II injury undergoing microsurgical revascularization was 187.0 (n = 114), and the average 2-point discrimination was 8.3 (n = 40). The average TAM for patients with a class III injury undergoing microsurgical revascularization was 168.2 (n = 170), and the average 2-point discrimination was 10.5 (n = 97). Ring avulsion injuries are commonly classified with the Urbaniak class system. Outcomes are superior for class I and II injuries, and there are select class III injuries that can be treated with replantation. Shared decision making with patients is imperative to determine whether replantation is appropriate.

  18. Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar; Nielsen, Kristian; Markos, Christos

    2014-01-01

    We demonstrate fiber Bragg grating (FBG) writing in PMMA microstructured Polymer Optical Fibers (mPOFs) using UV Phase Mask technique with writing times shorter than 10 min. The shortest writing time was 6 minutes and 50 seconds and the longest writing time was 8 min and 50 sec. The FBGs were...... written in a 125 x00B5;m PMMA mPOF having 3-rings of holes, the reflection peaks were centred at 632.6 nm and have a reflectivity as high as 26 dB. We also demonstrate how the writing dynamics depends on the intensity of the writing beam....

  19. Investigation of piston ring – cylinder liner dry wear using a block-on-ring test rig

    DEFF Research Database (Denmark)

    Bihlet, Uffe; Klit, Peder; Felter, Christian L.

    Characterization of the wear of piston rings and cylinder liner is an important aspect of large two stroke diesel engine design. Two major wear mechanisms exist; corrosive wear and mechanical wear. This paper deals with the most aggressive form of the latter, which is known as scuffing. Different...... that ceramic coating on the piston ring decreases the dry wear rate of both piston ring and liner, while the coefficient of friction is increased....

  20. Novel Fiber-Optic Ring Acoustic Emission Sensor.

    Science.gov (United States)

    Wei, Peng; Han, Xiaole; Xia, Dong; Liu, Taolin; Lang, Hao

    2018-01-13

    Acoustic emission technology has been applied to many fields for many years. However, the conventional piezoelectric acoustic emission sensors cannot be used in extreme environments, such as those with heavy electromagnetic interference, high pressure, or strong corrosion. In this paper, a novel fiber-optic ring acoustic emission sensor is proposed. The sensor exhibits high sensitivity, anti-electromagnetic interference, and corrosion resistance. First, the principle of a novel fiber-optic ring sensor is introduced. Different from piezoelectric and other fiber acoustic emission sensors, this novel sensor includes both a sensing skeleton and a sensing fiber. Second, a heterodyne interferometric demodulating method is presented. In addition, a fiber-optic ring sensor acoustic emission system is built based on this method. Finally, fiber-optic ring acoustic emission experiments are performed. The novel fiber-optic ring sensor is glued onto the surface of an aluminum plate. The 150 kHz standard continuous sinusoidal signals and broken lead signals are successfully detected by the novel fiber-optic ring acoustic emission sensor. In addition, comparison to the piezoelectric acoustic emission sensor is performed, which shows the availability and reliability of the novel fiber-optic ring acoustic emission sensor. In the future, this novel fiber-optic ring acoustic emission sensor will provide a new route to acoustic emission detection in harsh environments.

  1. Method for bonding a thermoplastic polymer to a thermosetting polymer component

    NARCIS (Netherlands)

    Van Tooren, M.J.L.

    2012-01-01

    The invention relates to a method for bonding a thermoplastic polymer to a thermosetting polymer component, the thermoplastic polymer having a melting temperature that exceeds the curing temperature of the thermosetting polymer. The method comprises the steps of providing a cured thermosetting

  2. Nilradicals of skew Hurwitz series of rings

    Directory of Open Access Journals (Sweden)

    Morteza Ahmadi

    2015-05-01

    Full Text Available ‎For a ring endomorphism α of a ring R, ‎Krempa called α a rigid endomorphism if aα(a=0 implies a = 0 for a in R. ‎A ring R is called rigid if there exists a rigid endomorphism of R. ‎In this paper‎, ‎we extend the α-rigid property of a ring R to the upper nilradical N_r(R of R. ‎For an endomorphism α and the upper nilradical N_r(R of a ring R, ‎we introduce the condition (*: ‎N_r(R is a α-ideal of R and aα(a in N_r(R implies a in N_r(R for a in R. ‎We study characterizations of a ring R with an endomorphism α satisfying the condition (*, ‎and we investigate their related properties‎. ‎The connections between the upper nilradical of R and the upper nilradical of the skew Hurwitz series ring (HR,α of R are also investigated‎.

  3. Spin transitions in semiconductor quantum rings

    International Nuclear Information System (INIS)

    Baxevanis, Benjamin; Pfannkuche, Daniela

    2010-01-01

    We adopt the path integral Monte Carlo method to accurately resolve the total spin of the ground state of electrons confined in a quantum ring with different geometries. Using this method, an evaluation of the ground state of three electrons in a ring shows a spin transition to the fully polarized state by increasing the radius and thereby enhancing the Coulomb interaction. The total spin of the ground state is determined by the mutual interplay of confinement and electron-electron interaction. An analysis of the four-electron ring demonstrates that in this case no spin transitions take place. Furthermore, the effect of geometric distortion of the ring on its ground state has been investigated. Elliptically deforming the ring breaks the symmetry of the system and leads to the removal of orbital degeneracy. For strong distortion the splitting between hybridized states is sufficient to overcome the exchange-energy saving associated with a higher spin state. We have found that this effect removes the polarization of three electrons. Even in a four-electron ring the ground state is forced by the distortion to be unpolarized and thus suppressing the Hund's rule ground state.

  4. INJECTION EFFICIENCY IN COMPTON RING NESTOR

    Directory of Open Access Journals (Sweden)

    P. I. Gladkikh

    2017-12-01

    Full Text Available NESTOR is the hard X-ray source that is under commissioning at NSC KIPT. NESTOR based on the Compton scattering of laser photons on relativistic electrons. The structure of the facility can be represented as the following components: a linear accelerator, a transport channel, a storage ring, and a laser-optical system. Electrons are stored in the storage ring for energy of 40-200 MeV. Inevitable alignment errors of magnetic elements are strongly effect on the beam dynamics in the storage ring. These errors lead to a shift of the equilibrium orbit relative to the ideal one. Significant shift of the equilibrium orbit could lead to loss of the beam on physical apertures. Transverse sizes of electron and laser beams are only few tens of microns at the interaction point. The shift of electron beam at the interaction point could greatly complicate the operation adjustment of storage ring without sufficient beam position diagnostic system. This article presents the simulation results of the efficiency of electron beam accumulation in the NESTOR storage ring. Also, this article is devoted to electron beam dynamics due to alignment errors of magnetic element in the ring.

  5. Manufacture, integration and demonstration of polymer solar cells in a lamp for the Lighting Africa initiative

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Damgaard Nielsen, Torben; Fyenbo, Jan

    2010-01-01

    Semitransparent flexible polymer solar cells were manufactured in a full roll-to-roll process under ambient conditions. After encapsulation a silver based circuit was printed onto the back side of the polymer solar cell module followed by sheeting and application of discrete components and vias...... two adjacent corners are joined via button contacts whereby the device can stand on a horizontal surface and the circuit is closed such that the battery discharges through the LEDs that illuminate the surface in front of the lamp. Several different lamps were prepared using the same solar cell...... mm. A hole with a ring was punched in one corner to enable mechanical fixation or tying. The lamp has two states. In the charging state it has a completely flat outline and will charge the battery when illuminated from either side while the front side illumination is preferable. When used as a lamp...

  6. Control of ring lasers by means of coupled cavities

    DEFF Research Database (Denmark)

    Buchhave, Preben; Abitan, Haim; Tidemand-Lichtenberg, Peter

    2000-01-01

    Variable phase coupling to an external ring is used to control a unidirectional ring laser. The observed behavior of the coupled rings is explained theoretically. We have found experimentally that by quickly changing the phase of the feedback from the external ring it is possible to Q......-switch the ring laser. Also, at certain values of the phase of the feedback in the external ring, instabilities in the total system occur and oscillations arise in the ring laser....

  7. Moving-ring field-reversed mirror reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1981-01-01

    We describe a first prototype fusion reactor design of the Moving-Ring Field-Reversed Mirror Reactor. The fusion fuel is confined in current-carrying rings of magnetically-field-reversed plasma. The plamsa rings, formed by a coaxial plasma gun, are magnetically compressed to ignition temperature while they are being injected into the reactor's burner section. DT ice pellets refuel the rings during the burn at a rate which maintains constant fusion power. A steady train of plasma rings moves at constant speed through the reactor under the influence of a slightly diverging magnetic field. The aluminum first wall and breeding zone structure minimize induced radioactivity; hands-on maintenance is possible on reactor components outside the breeding blanket. Helium removes the heat from the Li 2 O tritium breeding blanket and is used to generate steam. The reactor produces a constant, net power of 376 MW

  8. Artificial light harvesting by dimerized Möbius ring

    Science.gov (United States)

    Xu, Lei; Gong, Z. R.; Tao, Ming-Jie; Ai, Qing

    2018-04-01

    We theoretically study artificial light harvesting by a Möbius ring. When the donors in the ring are dimerized, the energies of the donor ring are split into two subbands. Because of the nontrivial Möbius boundary condition, both the photon and acceptor are coupled to all collective-excitation modes in the donor ring. Therefore, the quantum dynamics in the light harvesting is subtly influenced by dimerization in the Möbius ring. It is discovered that energy transfer is more efficient in a dimerized ring than that in an equally spaced ring. This discovery is also confirmed by a calculation with the perturbation theory, which is equivalent to the Wigner-Weisskopf approximation. Our findings may be beneficial to the optimal design of artificial light harvesting.

  9. ring system

    African Journals Online (AJOL)

    1,3,2-DIAZABORACYCLOALKANE. RING SYSTEM. Negussie Retta" and Robert H. Neilson. 'Department of Chemistry, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia. Department of Chemistry, Texas Christian University.

  10. Polymer Brushes

    NARCIS (Netherlands)

    Vos, de W.M.; Kleijn, J.M.; Keizer, de A.; Cosgrove, T.; Cohen Stuart, M.A.

    2010-01-01

    A polymer brush can be defined as a dense array of polymers end-attached to an interface that stretch out into the surrounding medium. Polymer brushes have been investigated for the past 30 years and have shown to be an extremely useful tool to control interfacial properties. This review is intended

  11. Ring cavity for a Raman capillary waveguide amplifier

    Science.gov (United States)

    Kurnit, N.A.

    1981-01-27

    A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.

  12. Ring cavity for a Raman capillary waveguide amplifir

    Science.gov (United States)

    Kurnit, N.A.

    1981-01-27

    A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.

  13. Experimental Study of Shock Generated Compressible Vortex Ring

    Science.gov (United States)

    Das, Debopam; Arakeri, Jaywant H.; Krothapalli, Anjaneyulu

    2000-11-01

    Formation of a compressible vortex ring and generation of sound associated with it is studied experimentally. Impulse of a shock wave is used to generate a vortex ring from the open end of a shock-tube. Vortex ring formation process has been studied in details using particle image Velocimetry (PIV). As the shock wave exits the tube it diffracts and expands. A circular vortex sheet forms at the edge and rolls up into a vortex ring. Far field microphone measurement shows that the acoustic pressure consists of a spike due to shock wave followed by a low frequency pressure wave of decaying nature, superimposed with high frequency pressure wave. Acoustic waves consist of waves due to expansion, waves formed in the tube during diaphragm breakage and waves associated with the vortex ring and shear-layer vortices. Unsteady evolution of the vortex ring and shear-layer vortices in the jet behind the ring is studied by measuring the velocity field using PIV. Corresponding vorticity field, circulation around the vortex core and growth rate of the vortex core is calculated from the measured velocity field. The velocity field in a compressible vortex ring differs from that of an incompressible ring due to the contribution from both shock and vortex ring.

  14. [Liesegang's rings resembling helminthiasis].

    Science.gov (United States)

    Zámecník, M; Riedl, I

    1996-12-01

    So called Liesegang's rings are lamellar corpuscles which develop after periodical precipitation of oversaturated solutions in gel medium. They can occur in cysts, closed cavities, inflammatory exudates and necroses. They resemble parasitic eggs, larvae or adult forms. A case of 28-year-old woman is presented with many Liesegang's rings in a stuff from dilated renal calyx. Their preliminary evaluation considered helminths, especially Dioctophyma renale.

  15. Synlig læring

    DEFF Research Database (Denmark)

    Brandsen, Mads

    2017-01-01

    Introduktionen af John Hatties synlig læring i den danske skoleverden møder stadig meget kritik. Mange lærere og pædagoger oplever synlig læring som en tornado, der vil opsuge og ødelægge deres særlige danske udgave af den kontinentale dannelsestænkning, didaktik og pædagogik. Spørgsmålet er om...

  16. How Jupiter's Ring Was Discovered.

    Science.gov (United States)

    Elliot, James; Kerr, Richard

    1985-01-01

    "Rings" (by astronomer James Elliot and science writer Richard Kerr) is a nontechnical book about the discovery and exploration of ring systems from the time of Galileo to the era of the Voyager spacecraft. One of this book's chapters is presented. (JN)

  17. Wafer-Level Packaging Method for RF MEMS Applications Using Pre-Patterned BCB Polymer

    Directory of Open Access Journals (Sweden)

    Zhuhao Gong

    2018-02-01

    Full Text Available A radio-frequency micro-electro-mechanical system (RF MEMS wafer-level packaging (WLP method using pre-patterned benzo-cyclo-butene (BCB polymers with a high-resistivity silicon cap is proposed to achieve high bonding quality and excellent RF performance. In this process, the BCB polymer was pre-defined to form the sealing ring and bonding layer by the spin-coating and patterning of photosensitive BCB before the cavity formation. During anisotropic wet etching of the silicon wafer to generate the housing cavity, the BCB sealing ring was protected by a sputtered Cr/Au (chromium/gold layer. The average measured thickness of the BCB layer was 5.9 μm. In contrast to the conventional methods of spin-coating BCB after fabricating cavities, the pre-patterned BCB method presented BCB bonding layers with better quality on severe topography surfaces in terms of increased uniformity of thickness and better surface flatness. The observation of the bonded layer showed that no void or gap formed on the protruding coplanar waveguide (CPW lines. A shear strength test was experimentally implemented as a function of the BCB widths in the range of 100–400 μm. The average shear strength of the packaged device was higher than 21.58 MPa. A RF MEMS switch was successfully packaged using this process with a negligible impact on the microwave characteristics and a significant improvement in the lifetime from below 10 million to over 1 billion. The measured insertion loss of the packaged RF MEMS switch was 0.779 dB and the insertion loss deterioration caused by the package structure was less than 0.2 dB at 30 GHz.

  18. Vortex Ring Interaction With a Coaxially Aligned Cylinderical Rod

    Science.gov (United States)

    Arakeri, Jaywant H.; Rajmanoharan, P.; Koochesfahani, Manoochehr

    1998-11-01

    We present results of experiments of a fully developed vortex ring interacting with a cylinderical rod, having a rounded nose, placed coaxially in line with the motion of the ring. The pressure field of the translating ring causes unsteady boundary layer separation and results in the formation of one or more ( secondary ) vortex rings, that subsequently interact. The nature and strength of the interaction depends on the ratio of the cylinder diameter to the ring diameter. For the larger diameter cylinders the vortex ring travels a few ring diameters before it breaks up. For the smaller diameter cylinders the vortex ring speed decreases slowly and, simultaneously, its diameter increases.

  19. A study of the outermost ring of Saturn

    International Nuclear Information System (INIS)

    Bobrov, M.S.

    1974-01-01

    The attention is called to the fact that the discovery by Feibelman (1967) of the rarefied outer ring of Saturn is confirmed by the observations of Kuiper (1972). It is proposed to designate this object as E-ring (exterior) in order to avoid confusion with the innermost, also rarefied, D-ring observed by Guerin (1970) and earlier by Barabashov and Semejkin (1933). The effects of the interaction of E-ring with inner Saturn's satellites are briefly discussed. The conclusion is drawn that in cosmogonic time scale these effects are small. It is also shown that the optical thickness of E-ring is lower than 1/20000; the available photometric estimations of the geometric thickness of A- and B-rings need not be corrected for the light scattering and absorption by E-ring. (Auth.)

  20. Antiviral Polymer Therapeutics

    DEFF Research Database (Denmark)

    Smith, Anton Allen Abbotsford

    2014-01-01

    polymerized in a controlled manner with carrier monomers of historically proven biocompatible polymers. The carrier polymers, the loading of ribavirin as well as the size of the polymer were varied systematically with the aid of an automated synthesis platform. These polymers were tested in a cellular assay...... of reversible-addition-fragmentation chain transfer polymerization, which not only controls the size of polymer, but also allows the introduction of a terminal amine on the polymer which can be used for further conjugation. This has allowed for not only fluorescent labeling of the polymer, but also protein...... is mediated through specific transporters, it is thought that the accumulation can be alleviated through the attachment of ribavirin to a macromolecule. To this end, ribavirin was enzymatically modified into a monomer compatible with controlled polymerization techniques. The ribavirin monomers were...