WorldWideScience

Sample records for ring oscillating horizontally

  1. Phase measurement for driven spin oscillations in a storage ring

    Science.gov (United States)

    Hempelmann, N.; Hejny, V.; Pretz, J.; Soltner, H.; Augustyniak, W.; Bagdasarian, Z.; Bai, M.; Barion, L.; Berz, M.; Chekmenev, S.; Ciullo, G.; Dymov, S.; Eversmann, D.; Gaisser, M.; Gebel, R.; Grigoryev, K.; Grzonka, D.; Guidoboni, G.; Heberling, D.; Hetzel, J.; Hinder, F.; Kacharava, A.; Kamerdzhiev, V.; Keshelashvili, I.; Koop, I.; Kulikov, A.; Lehrach, A.; Lenisa, P.; Lomidze, N.; Lorentz, B.; Maanen, P.; Macharashvili, G.; Magiera, A.; Mchedlishvili, D.; Mey, S.; Müller, F.; Nass, A.; Nikolaev, N. N.; Nioradze, M.; Pesce, A.; Prasuhn, D.; Rathmann, F.; Rosenthal, M.; Saleev, A.; Schmidt, V.; Semertzidis, Y.; Senichev, Y.; Shmakova, V.; Silenko, A.; Slim, J.; Stahl, A.; Stassen, R.; Stephenson, E.; Stockhorst, H.; Ströher, H.; Tabidze, M.; Tagliente, G.; Talman, R.; Thörngren Engblom, P.; Trinkel, F.; Uzikov, Yu.; Valdau, Yu.; Valetov, E.; Vassiliev, A.; Weidemann, C.; Wrońska, A.; Wüstner, P.; Zuprański, P.; Żurek, M.; JEDI Collaboration

    2018-04-01

    This paper reports the first simultaneous measurement of the horizontal and vertical components of the polarization vector in a storage ring under the influence of a radio frequency (rf) solenoid. The experiments were performed at the Cooler Synchrotron COSY in Jülich using a vector polarized, bunched 0.97 GeV /c deuteron beam. Using the new spin feedback system, we set the initial phase difference between the solenoid field and the precession of the polarization vector to a predefined value. The feedback system was then switched off, allowing the phase difference to change over time, and the solenoid was switched on to rotate the polarization vector. We observed an oscillation of the vertical polarization component and the phase difference. The oscillations can be described using an analytical model. The results of this experiment also apply to other rf devices with horizontal magnetic fields, such as Wien filters. The precise manipulation of particle spins in storage rings is a prerequisite for measuring the electric dipole moment (EDM) of charged particles.

  2. Nonlinear analysis of ring oscillator circuits

    KAUST Repository

    Ge, Xiaoqing

    2010-06-01

    Using nonlinear systems techniques, we analyze the stability properties and synchronization conditions for ring oscillator circuits, which are essential building blocks in digital systems. By making use of its cyclic structure, we investigate local and global stability properties of an n-stage ring oscillator. We present a sufficient condition for global asymptotic stability of the origin and obtain necessity if the ring oscillator consists of identical inverter elements. We then give a synchronization condition for identical interconnected ring oscillators.

  3. Nonlinear analysis of ring oscillator circuits

    KAUST Repository

    Ge, Xiaoqing; Arcak, Murat; Salama, Khaled N.

    2010-01-01

    Using nonlinear systems techniques, we analyze the stability properties and synchronization conditions for ring oscillator circuits, which are essential building blocks in digital systems. By making use of its cyclic structure, we investigate local and global stability properties of an n-stage ring oscillator. We present a sufficient condition for global asymptotic stability of the origin and obtain necessity if the ring oscillator consists of identical inverter elements. We then give a synchronization condition for identical interconnected ring oscillators.

  4. Small horizontal emittance in the TESLA damping ring

    International Nuclear Information System (INIS)

    Decking, W.

    2001-01-01

    The present TESLA damping ring is designed for a normalized horizontal emittance of 8x10 -6 m. γ-γ collisions at the TESLA linear collider will benefit from a further decrease of the horizontal emittance. This paper reviews the processes which limit the horizontal emittance in the damping ring. Preliminary estimates on the smallest horizontal emittance for the present TESLA damping ring design as well as an ultimate limit of the emittance reachable with the TESLA damping ring concept will be given

  5. On the nonlinear modeling of ring oscillators

    KAUST Repository

    Elwakil, Ahmed S.

    2009-06-01

    We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.

  6. On the nonlinear modeling of ring oscillators

    KAUST Repository

    Elwakil, Ahmed S.; Salama, Khaled N.

    2009-01-01

    We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.

  7. Translational velocity oscillations of piston generated vortex rings

    Science.gov (United States)

    Kumar, Manoj; Arakeri, J. H.; Shankar, P. N.

    1995-11-01

    Experimental results are presented that show that the translational velocities of piston generated vortex rings often undergo oscillations, similar to those recently discovered for drop generated rings. An attempt has been made to minimize uncertainties by utilizing both dye and hydrogen bubbles for visualization and carefully repeating measurements on the same ring and on different realizations under the same nominal piston conditions. The results unambiguously show that under most conditions, both for laminar and turbulent rings and for rings generated from pipes and orifices, the oscillations are present. The present results, together with the earlier results on drop generated rings, give support to the view that translational velocity oscillations are probably an inherent feature of translating vortex ring fields.

  8. Nonlinear Analysis of Ring Oscillator and Cross-Coupled Oscillator Circuits

    KAUST Repository

    Ge, Xiaoqing

    2010-12-01

    Hassan Khalil’s research results and beautifully written textbook on nonlinear systems have influenced generations of researchers, including the authors of this paper. Using nonlinear systems techniques, this paper analyzes ring oscillator and cross-coupled oscillator circuits, which are essential building blocks in digital systems. The paper first investigates local and global stability properties of an n-stage ring oscillator by making use of its cyclic structure. It next studies global stability properties of a class of cross-coupled oscillators which admit the representation of a dynamic system in feedback with a static nonlinearity, and presents su cient conditions for almost global convergence of the solutions to a limit cycle when the feedback gain is in the vicinity of a bifurcation point. The result are also extended to the synchronization of interconnected identical oscillator circuits.

  9. Nonlinear Analysis of Ring Oscillator and Cross-Coupled Oscillator Circuits

    KAUST Repository

    Ge, Xiaoqing; Arcak, Murat; Salama, Khaled N.

    2010-01-01

    Hassan Khalil’s research results and beautifully written textbook on nonlinear systems have influenced generations of researchers, including the authors of this paper. Using nonlinear systems techniques, this paper analyzes ring oscillator and cross-coupled oscillator circuits, which are essential building blocks in digital systems. The paper first investigates local and global stability properties of an n-stage ring oscillator by making use of its cyclic structure. It next studies global stability properties of a class of cross-coupled oscillators which admit the representation of a dynamic system in feedback with a static nonlinearity, and presents su cient conditions for almost global convergence of the solutions to a limit cycle when the feedback gain is in the vicinity of a bifurcation point. The result are also extended to the synchronization of interconnected identical oscillator circuits.

  10. The highlighting of an internal combustion engine piston ring radial oscillations

    Directory of Open Access Journals (Sweden)

    Djallel ZEBBAR

    2016-06-01

    Full Text Available This paper deals with the definition of the lube-oil film thickness in the piston ring cylinder liner junction of an internal combustion engine. At first, a mathematical model for the estimation of the film thickness is established. It is used to point out the oscillating motion of the piston ring normal to the cylinder wall. For the first time, has been highlighted and analytically evaluated the oscillating behavior of the piston ring in its housing in the radial direction. Furthermore, it is demonstrated that the radial oscillations frequency is a function of piston ring stiffness, material and geometry.

  11. Recovery of the Aharonov-Bohm oscillations in asymmetrical quantum rings

    Energy Technology Data Exchange (ETDEWEB)

    Voskoboynikov, O., E-mail: vam@faculty.nctu.edu.tw [Department of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan (China)

    2016-07-15

    We theoretically investigate suppression and recovery of the Aharonov-Bohm oscillations of the diamagnetic response of electrons (holes) confined in self-assembled In{sub c}Ga{sub 1−c}As/GaAs semiconductor reflection asymmetrical quantum rings. Based on the mapping method and gauge-origin-independent definition for the magnetic vector potential we simulate the energies and wave functions of the electron (hole) under external magnetic and electric fields. We examine the transformation of the ground state wave function of the electron (hole) in reflection asymmetrical rings from localized in one of the potential valleys (dotlike shape of the wave function) to distributed over all volume of the ring (ringlike shape) under an appropriate lateral electric field. This transformation greatly recovers the electron (hole) diamagnetic coefficient and Aharonov-Bohm oscillations of the diamagnetic response of the ring. However, the recovering electric field for the first Aharonov-Bohm diamagnetic oscillation of the electron is a suppressing one for the hole (and vice versa). This can block the recovery of the optical Aharonow-Bohm effect in In{sub c}Ga{sub 1−c}As/GaAs asymmetrically wobbled rings. However, the recovery of the Aharonov-Bohm oscillations for the independent electron (hole) by the external electric field remains interesting and feasible objective for the asymmetric rings.

  12. Dynamic electrical characteristics of low-power ring oscillators constructed with inorganic nanoparticles on flexible plastics.

    Science.gov (United States)

    Yun, Junggwon; Cho, Kyoungah; Kim, Sangsig

    2012-11-01

    In this study, we demonstrate for the first time the low-power and stable performance of a ring oscillator constructed on a flexible plastic with solution-processable inorganic nanoparticles (NPs). Our flexible ring oscillator is composed of three inverters based on n- and p-type inorganic NP thin-film transistors. Each of the component inverters exhibits a gain of ∼80 at a voltage of 5 V. For the ring oscillator, the sine waves are generated with a frequency of up to 12 kHz. The waveforms are undistorted under strained conditions and maintained even after 5000 bending cycles. The frequency and waveform of the output waves obtained from our flexible ring oscillator are analyzed and discussed in detail.

  13. High performance ring oscillators from 10-nm wide silicon nanowire field-effect transistors

    KAUST Repository

    Huang, Ruo-Gu; Tham, Douglas; Wang, Dunwei; Heath, James R.

    2011-01-01

    We explore 10-nm wide Si nanowire (SiNW) field-effect transistors (FETs) for logic applications, via the fabrication and testing of SiNW-based ring oscillators. We report on SiNW surface treatments and dielectric annealing, for producing SiNW FETs that exhibit high performance in terms of large on/off-state current ratio (~108), low drain-induced barrier lowering (~30 mV) and low subthreshold swing (~80 mV/decade). The performance of inverter and ring-oscillator circuits fabricated from these nanowire FETs are also explored. The inverter demonstrates the highest voltage gain (~148) reported for a SiNW-based NOT gate, and the ring oscillator exhibits near rail-to-rail oscillation centered at 13.4 MHz. The static and dynamic characteristics of these NW devices indicate that these SiNW-based FET circuits are excellent candidates for various high-performance nanoelectronic applications. © 2011 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  14. High performance ring oscillators from 10-nm wide silicon nanowire field-effect transistors

    KAUST Repository

    Huang, Ruo-Gu

    2011-06-24

    We explore 10-nm wide Si nanowire (SiNW) field-effect transistors (FETs) for logic applications, via the fabrication and testing of SiNW-based ring oscillators. We report on SiNW surface treatments and dielectric annealing, for producing SiNW FETs that exhibit high performance in terms of large on/off-state current ratio (~108), low drain-induced barrier lowering (~30 mV) and low subthreshold swing (~80 mV/decade). The performance of inverter and ring-oscillator circuits fabricated from these nanowire FETs are also explored. The inverter demonstrates the highest voltage gain (~148) reported for a SiNW-based NOT gate, and the ring oscillator exhibits near rail-to-rail oscillation centered at 13.4 MHz. The static and dynamic characteristics of these NW devices indicate that these SiNW-based FET circuits are excellent candidates for various high-performance nanoelectronic applications. © 2011 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  15. Exact solutions of the Schrödinger equation with double ring-shaped oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chang-Yuan, E-mail: yctcccy@163.net [School of Physics and Electronics, Yancheng Teachers University, Yancheng 224051 (China); You, Yuan; Wang, Xiao-Hua [School of Physics and Electronics, Yancheng Teachers University, Yancheng 224051 (China); Dong, Shi-Hai, E-mail: dongsh2@yahoo.com [Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, Mexico D.F. 07738 (Mexico)

    2013-09-16

    We present the exact solutions of the Schrödinger equation with the double ring-shaped oscillator (DRSO) potential. By introducing a new variable x=cosθ and constructing super-universal associated Legendre polynomials we express the polar angular wave functions explicitly. We observe that the present DRSO has caused the symmetry breaking from the original spherical oscillator SU(3)⊃SO(3)⊃O(2) symmetries to the present O(2) symmetry due to the surrounded two ring-shaped inversed square potentials. Some special cases are also discussed.

  16. Exact solutions of the Schrödinger equation with double ring-shaped oscillator

    International Nuclear Information System (INIS)

    Chen, Chang-Yuan; You, Yuan; Wang, Xiao-Hua; Dong, Shi-Hai

    2013-01-01

    We present the exact solutions of the Schrödinger equation with the double ring-shaped oscillator (DRSO) potential. By introducing a new variable x=cosθ and constructing super-universal associated Legendre polynomials we express the polar angular wave functions explicitly. We observe that the present DRSO has caused the symmetry breaking from the original spherical oscillator SU(3)⊃SO(3)⊃O(2) symmetries to the present O(2) symmetry due to the surrounded two ring-shaped inversed square potentials. Some special cases are also discussed.

  17. Chaotic synchronization of three coupled oscillators with ring connection

    International Nuclear Information System (INIS)

    Kyprianidis, I.M.; Stouboulos, I.N.

    2003-01-01

    We study the evolution of three identical, resistively coupled with ring connection, nonlinear and nonautonomous electric circuits from nonsynchronized oscillations to synchronized ones, when they exhibit chaotic behavior. Phase-locked states are also observed, as the coupling parameter is varied. The system's dynamics depends on the way of coupling (unidirectional or bidirectional)

  18. Chaotic synchronization of three coupled oscillators with ring connection

    CERN Document Server

    Kyprianidis, I M

    2003-01-01

    We study the evolution of three identical, resistively coupled with ring connection, nonlinear and nonautonomous electric circuits from nonsynchronized oscillations to synchronized ones, when they exhibit chaotic behavior. Phase-locked states are also observed, as the coupling parameter is varied. The system's dynamics depends on the way of coupling (unidirectional or bidirectional).

  19. Frequency-agile terahertz-wave parametric oscillator in a ring-cavity configuration.

    Science.gov (United States)

    Minamide, Hiroaki; Ikari, Tomofumi; Ito, Hiromasa

    2009-12-01

    We demonstrate a frequency-agile terahertz wave parametric oscillator (TPO) in a ring-cavity configuration (ring-TPO). The TPO consists of three mirrors and a MgO:LiNbO(3) crystal under noncollinear phase-matching conditions. A novel, fast frequency-tuning method was realized by controlling a mirror of the three-mirror ring cavity. The wide tuning range between 0.93 and 2.7 THz was accomplished. For first demonstration using the ring-TPO, terahertz spectroscopy was performed as the verification of the frequency-agile performance, measuring the transmission spectrum of the monosaccharide glucose. The spectrum was obtained within about 8 s in good comparison to those of Fourier transform infrared spectrometer.

  20. RF Spectrum Sensing Based on an Overdamped Nonlinear Oscillator Ring for Cognitive Radios

    Directory of Open Access Journals (Sweden)

    Zhi-Ling Tang

    2016-06-01

    Full Text Available Existing spectrum-sensing techniques for cognitive radios require an analog-to-digital converter (ADC to work at high dynamic range and a high sampling rate, resulting in high cost. Therefore, in this paper, a spectrum-sensing method based on a unidirectionally coupled, overdamped nonlinear oscillator ring is proposed. First, the numerical model of such a system is established based on the circuit of the nonlinear oscillator. Through numerical analysis of the model, the critical condition of the system’s starting oscillation is determined, and the simulation results of the system’s response to Gaussian white noise and periodic signal are presented. The results show that once the radio signal is input into the system, it starts oscillating when in the critical region, and the oscillating frequency of each element is fo/N, where fo is the frequency of the radio signal and N is the number of elements in the ring. The oscillation indicates that the spectrum resources at fo are occupied. At the same time, the sampling rate required for an ADC is reduced to the original value, 1/N. A prototypical circuit to verify the functionality of the system is designed, and the sensing bandwidth of the system is measured.

  1. Effect of electric field on the oscillator strength and cross-section for intersubband transition in a semiconductor quantum ring

    International Nuclear Information System (INIS)

    Bhattacharyya, S; Das, N R

    2012-01-01

    In this paper, we study the oscillator strength and cross-section for intersubband optical transition in an n-type semiconductor quantum ring of cylindrical symmetry in the presence of an electric field perpendicular to the plane of the ring. The analysis is done considering Kane-type band non-parabolicity of the semiconductor and assuming that the polarization of the incident radiation is along the axis of the ring. The results show that the oscillator strength decreases and the transition energy increases with the electric field. The assumption of a parabolic band leads to an overestimation of the oscillator strength. The effects of the electric field, band non-parabolicity and relaxation time on absorption cross-section for intersubband transition in a semiconductor quantum ring are also shown. (paper)

  2. Amplitude death in a ring of nonidentical nonlinear oscillators with unidirectional coupling.

    Science.gov (United States)

    Ryu, Jung-Wan; Kim, Jong-Ho; Son, Woo-Sik; Hwang, Dong-Uk

    2017-08-01

    We study the collective behaviors in a ring of coupled nonidentical nonlinear oscillators with unidirectional coupling, of which natural frequencies are distributed in a random way. We find the amplitude death phenomena in the case of unidirectional couplings and discuss the differences between the cases of bidirectional and unidirectional couplings. There are three main differences; there exists neither partial amplitude death nor local clustering behavior but an oblique line structure which represents directional signal flow on the spatio-temporal patterns in the unidirectional coupling case. The unidirectional coupling has the advantage of easily obtaining global amplitude death in a ring of coupled oscillators with randomly distributed natural frequency. Finally, we explain the results using the eigenvalue analysis of the Jacobian matrix at the origin and also discuss the transition of dynamical behavior coming from connection structure as the coupling strength increases.

  3. Transport and Quantum Coherence in Graphene Rings: Aharonov-Bohm Oscillations, Klein Tunneling, and Particle Localization

    Science.gov (United States)

    Filusch, Alexander; Wurl, Christian; Pieper, Andreas; Fehske, Holger

    2018-06-01

    Simulating quantum transport through mesoscopic, ring-shaped graphene structures, we address various quantum coherence and interference phenomena. First, a perpendicular magnetic field, penetrating the graphene ring, gives rise to Aharonov-Bohm oscillations in the conductance as a function of the magnetic flux, on top of the universal conductance fluctuations. At very high fluxes, the interference gets suppressed and quantum Hall edge channels develop. Second, applying an electrostatic potential to one of the ring arms, nn'n- or npn-junctions can be realized with particle transmission due to normal tunneling or Klein tunneling. In the latter case, the Aharonov-Bohm oscillations weaken for smooth barriers. Third, if potential disorder comes in to play, both Aharonov-Bohm and Klein tunneling effects rate down, up to the point where particle localization sets in.

  4. Polypyrrole Porous Micro Humidity Sensor Integrated with a Ring Oscillator Circuit on Chip

    Science.gov (United States)

    Yang, Ming-Zhi; Dai, Ching-Liang; Lu, De-Hao

    2010-01-01

    This study presents the design and fabrication of a capacitive micro humidity sensor integrated with a five-stage ring oscillator circuit on chip using the complimentary metal oxide semiconductor (CMOS) process. The area of the humidity sensor chip is about 1 mm2. The humidity sensor consists of a sensing capacitor and a sensing film. The sensing capacitor is constructed from spiral interdigital electrodes that can enhance the sensitivity of the sensor. The sensing film of the sensor is polypyrrole, which is prepared by the chemical polymerization method, and the film has a porous structure. The sensor needs a post-CMOS process to coat the sensing film. The post-CMOS process uses a wet etching to etch the sacrificial layers, and then the polypyrrole is coated on the sensing capacitor. The sensor generates a change in capacitance when the sensing film absorbs or desorbs vapor. The ring oscillator circuit converts the capacitance variation of the sensor into the oscillation frequency output. Experimental results show that the sensitivity of the humidity sensor is about 99 kHz/%RH at 25 °C. PMID:22163459

  5. High-energy terahertz wave parametric oscillator with a surface-emitted ring-cavity configuration.

    Science.gov (United States)

    Yang, Zhen; Wang, Yuye; Xu, Degang; Xu, Wentao; Duan, Pan; Yan, Chao; Tang, Longhuang; Yao, Jianquan

    2016-05-15

    A surface-emitted ring-cavity terahertz (THz) wave parametric oscillator has been demonstrated for high-energy THz output and fast frequency tuning in a wide frequency range. Through the special optical design with a galvano-optical scanner and four-mirror ring-cavity structure, the maximum THz wave output energy of 12.9 μJ/pulse is achieved at 1.359 THz under the pump energy of 172.8 mJ. The fast THz frequency tuning in the range of 0.7-2.8 THz can be accessed with the step response of 600 μs. Moreover, the maximum THz wave output energy from this configuration is 3.29 times as large as that obtained from the conventional surface-emitted THz wave parametric oscillator with the same experimental conditions.

  6. Patterns of patterns of synchronization: Noise induced attractor switching in rings of coupled nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Emenheiser, Jeffrey [Complexity Sciences Center, University of California, Davis, California 95616 (United States); Department of Physics, University of California, Davis, California 95616 (United States); Chapman, Airlie; Mesbahi, Mehran [William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195 (United States); Pósfai, Márton [Complexity Sciences Center, University of California, Davis, California 95616 (United States); Department of Computer Science, University of California, Davis, California 95616 (United States); Crutchfield, James P. [Complexity Sciences Center, University of California, Davis, California 95616 (United States); Department of Physics, University of California, Davis, California 95616 (United States); Department of Computer Science, University of California, Davis, California 95616 (United States); Santa Fe Institute, Santa Fe, New Mexico 87501 (United States); D' Souza, Raissa M. [Complexity Sciences Center, University of California, Davis, California 95616 (United States); Department of Computer Science, University of California, Davis, California 95616 (United States); Santa Fe Institute, Santa Fe, New Mexico 87501 (United States); Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616 (United States)

    2016-09-15

    Following the long-lived qualitative-dynamics tradition of explaining behavior in complex systems via the architecture of their attractors and basins, we investigate the patterns of switching between distinct trajectories in a network of synchronized oscillators. Our system, consisting of nonlinear amplitude-phase oscillators arranged in a ring topology with reactive nearest-neighbor coupling, is simple and connects directly to experimental realizations. We seek to understand how the multiple stable synchronized states connect to each other in state space by applying Gaussian white noise to each of the oscillators' phases. To do this, we first analytically identify a set of locally stable limit cycles at any given coupling strength. For each of these attracting states, we analyze the effect of weak noise via the covariance matrix of deviations around those attractors. We then explore the noise-induced attractor switching behavior via numerical investigations. For a ring of three oscillators, we find that an attractor-switching event is always accompanied by the crossing of two adjacent oscillators' phases. For larger numbers of oscillators, we find that the distribution of times required to stochastically leave a given state falls off exponentially, and we build an attractor switching network out of the destination states as a coarse-grained description of the high-dimensional attractor-basin architecture.

  7. High-Frequency Oscillations Recorded on the Scalp of Patients With Epilepsy Using Tripolar Concentric Ring Electrodes.

    Science.gov (United States)

    Besio, Walter G; Martínez-Juárez, Iris E; Makeyev, Oleksandr; Gaitanis, John N; Blum, Andrew S; Fisher, Robert S; Medvedev, Andrei V

    2014-01-01

    Epilepsy is the second most prevalent neurological disorder ([Formula: see text]% prevalence) affecting [Formula: see text] million people worldwide with up to 75% from developing countries. The conventional electroencephalogram is plagued with artifacts from movements, muscles, and other sources. Tripolar concentric ring electrodes automatically attenuate muscle artifacts and provide improved signal quality. We performed basic experiments in healthy humans to show that tripolar concentric ring electrodes can indeed record the physiological alpha waves while eyes are closed. We then conducted concurrent recordings with conventional disc electrodes and tripolar concentric ring electrodes from patients with epilepsy. We found that we could detect high frequency oscillations, a marker for early seizure development and epileptogenic zone, on the scalp surface that appeared to become more narrow-band just prior to seizures. High frequency oscillations preceding seizures were present in an average of 35.5% of tripolar concentric ring electrode data channels for all the patients with epilepsy whose seizures were recorded and absent in the corresponding conventional disc electrode data. An average of 78.2% of channels that contained high frequency oscillations were within the seizure onset or irritative zones determined independently by three epileptologists based on conventional disc electrode data and videos.

  8. Capacitive Micro Pressure Sensor Integrated with a Ring Oscillator Circuit on Chip

    Directory of Open Access Journals (Sweden)

    Cheng-Yang Liu

    2009-12-01

    Full Text Available The study investigates a capacitive micro pressure sensor integrated with a ring oscillator circuit on a chip. The integrated capacitive pressure sensor is fabricated using the commercial CMOS (complementary metal oxide semiconductor process and a post-process. The ring oscillator is employed to convert the capacitance of the pressure sensor into the frequency output. The pressure sensor consists of 16 sensing cells in parallel. Each sensing cell contains a top electrode and a lower electrode, and the top electrode is a sandwich membrane. The pressure sensor needs a post-CMOS process to release the membranes after completion of the CMOS process. The post-process uses etchants to etch the sacrificial layers, and to release the membranes. The advantages of the post-process include easy execution and low cost. Experimental results reveal that the pressure sensor has a high sensitivity of 7 Hz/Pa in the pressure range of 0–300 kPa.

  9. Spontaneous decoherence of coupled harmonic oscillators confined in a ring

    Science.gov (United States)

    Gong, ZhiRui; Zhang, ZhenWei; Xu, DaZhi; Zhao, Nan; Sun, ChangPu

    2018-04-01

    We study the spontaneous decoherence of coupled harmonic oscillators confined in a ring container, where the nearest-neighbor harmonic potentials are taken into consideration. Without any external symmetry-breaking field or surrounding environment, the quantum superposition state prepared in the relative degrees of freedom gradually loses its quantum coherence spontaneously. This spontaneous decoherence is interpreted by the gauge couplings between the center-of-mass and the relative degrees of freedoms, which actually originate from the symmetries of the ring geometry and the corresponding nontrivial boundary conditions. In particular, such spontaneous decoherence does not occur at all at the thermodynamic limit because the nontrivial boundary conditions become the trivial Born-von Karman boundary conditions when the perimeter of the ring container tends to infinity. Our investigation shows that a thermal macroscopic object with certain symmetries has a chance for its quantum properties to degrade even without applying an external symmetry-breaking field or surrounding environment.

  10. New type of chimera structures in a ring of bistable FitzHugh–Nagumo oscillators with nonlocal interaction

    Energy Technology Data Exchange (ETDEWEB)

    Shepelev, I.A., E-mail: igor_sar@li.ru; Vadivasova, T.E., E-mail: vadivasovate@yandex.ru; Bukh, A.V., E-mail: buh.andrey@yandex.ru; Strelkova, G.I., E-mail: strelkovagi@info.sgu.ru; Anishchenko, V.S., E-mail: wadim@info.sgu.ru

    2017-04-25

    We study the spatiotemporal dynamics of a ring of nonlocally coupled FitzHugh–Nagumo oscillators in the bistable regime. A new type of chimera patterns has been found in the noise-free network and when isolated elements do not oscillate. The region of existence of these structures has been explored when the coupling range and the coupling strength between the network elements are varied. - Highlights: • Dynamics of a ring of nonlocally coupled FitzHugh–Nagumo oscillators in the bistable regime is studied. • A new type of chimera patterns has been found in the noise-free network. • The region of existence of new structures has been explored when varying the coupling parameters.

  11. Bistability of self-modulation oscillations in an autonomous solid-state ring laser

    International Nuclear Information System (INIS)

    Dudetskii, V Yu

    2013-01-01

    Bistable self-modulation regimes of generation for a ring YAG : Nd chip laser with the counterpropagating waves asymmetrically coupled via backward scattering are simulated numerically. Two branches of bistable self-modulation regimes of generation are found in the domain of the parametric resonance between the selfmodulation and relaxation oscillations. The self-modulation regimes observed in earlier experiments pertain to only one of the branches. Possible reasons for such a discrepancy are considered, related to the influence of technical and natural noise on the dynamics of solid-state ring lasers. (control of laser radiation parameters)

  12. Polypyrrole Porous Micro Humidity Sensor Integrated with a Ring Oscillator Circuit on Chip

    Directory of Open Access Journals (Sweden)

    De-Hao Lu

    2010-11-01

    Full Text Available This study presents the design and fabrication of a capacitive micro humidity sensor integrated with a five-stage ring oscillator circuit on chip using the complimentary metal oxide semiconductor (CMOS process. The area of the humidity sensor chip is about 1 mm2. The humidity sensor consists of a sensing capacitor and a sensing film. The sensing capacitor is constructed from spiral interdigital electrodes that can enhance the sensitivity of the sensor. The sensing film of the sensor is polypyrrole, which is prepared by the chemical polymerization method, and the film has a porous structure. The sensor needs a post-CMOS process to coat the sensing film. The post-CMOS process uses a wet etching to etch the sacrificial layers, and then the polypyrrole is coated on the sensing capacitor. The sensor generates a change in capacitance when the sensing film absorbs or desorbs vapor. The ring oscillator circuit converts the capacitance variation of the sensor into the oscillation frequency output. Experimental results show that the sensitivity of the humidity sensor is about 99 kHz/%RH at 25 °C.

  13. Aharonov-Bohm oscillations, quantum decoherence and amplitude modulation in mesoscopic InGaAs/InAlAs rings.

    Science.gov (United States)

    Ren, S L; Heremans, J J; Gaspe, C K; Vijeyaragunathan, S; Mishima, T D; Santos, M B

    2013-10-30

    Low-temperature Aharonov-Bohm oscillations in the magnetoresistance of mesoscopic interferometric rings patterned on an InGaAs/InAlAs heterostructure are investigated for their dependence on excitation current and temperature. The rings have an average radius of 650 nm, and a lithographic arm width of 300 nm, yielding pronounced interference oscillations over a wide range of magnetic fields. Apart from a current and temperature dependence, the oscillation amplitude also shows a quasi-periodic modulation with applied magnetic field. The phase coherence length is extracted by analysis of the fundamental and higher Fourier components of the oscillations, and by direct analysis of the amplitude and its dependence on parameters. It is concluded that the Thouless energy forms the measure of excitation energies for quantum decoherence. The amplitude modulation finds an explanation in the effect of the magnetic flux threading the finite width of the interferometer arms.

  14. Single feedback systems for simultaneous damping of horizontal and longitudinal coherent oscillations

    International Nuclear Information System (INIS)

    Chao, A.W.; Morton, P.L.; Rees, J.R.

    1979-03-01

    To describe the horizontal motion of the bunch, we need four coordinates, x and z are the horizontal and longitudinal displacements of the bunch center relative to the ideal trajectory; x' is the angle between the bunch's direction of motion and the ideal trajectory; and δ=ΔE/E is relative energy error of the bunch. Among the four variables, x and z are easy to measure by position monitors, while x' and δ are easy to change by electromagnetic devices. In combination, this suggests four possible types of feedback systems. In the following, we will present a complete analysis of the Type (x, δ) feedback system, using a matrix method. The analyses of other types are similar to that of Type (x, δ) and only the results are included. We then include some comparisons of these types of feedback schemes in terms of power consumptions and the effectiveness in damping the horizontal-betatron and synchrotron oscillations. We will also discuss some effects of position measuring errors on the performance of the feedback system. 2 refs., 3 tabs

  15. Observation of helium flow induced beam orbit oscillations at RHIC

    International Nuclear Information System (INIS)

    Montag, C.; Bonati, R.; Brennan, J.M.; Butler, J.; Cameron, P.; Ganetis, G.; He, P.; Hirzel, W.; Jia, L.X.; Koello, P.; Louie, W.; McIntyre, G.; Nicoletti, A.; Rank, J.; Roser, T.; Satogata, T.; Schmalzle, J.; Sidi-Yekhlef, A.; Sondericker, J.; Tallerico, T.

    2006-01-01

    Horizontal beam orbit jitter at frequencies around 10 Hz has been observed at RHIC for several years. The distinct frequencies of this jitter have been found at superconducting low-beta quadrupole triplet magnets around the ring, where they coincide with mechanical vibration modes of the cold masses. Recently, we have identified liquid helium flow as the driving force of these oscillations

  16. Continuous-wave singly resonant optical parametric oscillator placed inside a ring laser

    DEFF Research Database (Denmark)

    Abitan, Haim; Buchhave, Preben

    2003-01-01

    A cw singly resonant optical parametric oscillator (SRO) was built and placed inside the cavity of a ring laser. The system consists of a diode-end-pumped Nd:YVO4 ring laser with intracavity periodically poled lithium niobate as the nonlinear gain medium of the SRO. When the laser was operated...... in a unidirectional mode, we obtained more than 520 mW of signal power in one beam. When the laser was operated in a bidirectional mode, we obtained 600 mW of signal power (300 mW in two separate beams). The power and the spectral features of the laser in the unidirectional and bidirectional modes were measured while...... the laser was coupled with the SRO. The results show that it is preferable to couple a SRO with a unidirectional ring laser....

  17. Quasi-periodic synchronisation of self-modulation oscillations in a ring chip laser by an external periodic signal

    International Nuclear Information System (INIS)

    Aulova, T V; Kravtsov, Nikolai V; Lariontsev, E G; Chekina, S N

    2011-01-01

    The synchronisation of periodic self-modulation oscillations in a ring Nd:YAG chip laser under an external periodic signal modulating the pump power has been experimentally investigated. A new quasi-periodic regime of synchronisation of self-modulation oscillations is found. The characteristic features of the behaviour of spectral and temporal structures of synchronised quasi-periodic oscillations with a change in the external signal frequency are studied. (control of laser radiation parameters)

  18. Aharonov-Bohm oscillations with fractional period in a multichannel Wigner crystal ring

    International Nuclear Information System (INIS)

    Krive, I.V.; Krokhin, A.A.

    1997-01-01

    We study the persistent current in a quasi 1D ring with strongly correlated electrons forming a multichannel Wigner crystal (WC). The influence of the Coulomb interaction manifests itself only in the presence of external scatterers that pin the WC. Two regimes of weak and strong pinning are considered. For strong pinning we predict the Aharonov-Bohm oscillations with fractional period. Fractionalization is due to the interchannel coupling in the process of quantum tunneling of the WC. The fractional period depends on the filling of the channels and may serve as an indicator of non-Fermi-liquid behaviour of interacting electrons in quasi 1D rings. (author). 20 refs

  19. Chimera regimes in a ring of oscillators with local nonlinear interaction

    Science.gov (United States)

    Shepelev, Igor A.; Zakharova, Anna; Vadivasova, Tatiana E.

    2017-03-01

    One of important problems concerning chimera states is the conditions of their existence and stability. Until now, it was assumed that chimeras could arise only in ensembles with nonlocal character of interactions. However, this assumption is not exactly right. In some special cases chimeras can be realized for local type of coupling [1-3]. We propose a simple model of ensemble with local coupling when chimeras are realized. This model is a ring of linear oscillators with the local nonlinear unidirectional interaction. Chimera structures in the ring are found using computer simulations for wide area of values of parameters. Diagram of the regimes on plane of control parameters is plotted and scenario of chimera destruction are studied when the parameters are changed.

  20. Dependence of synchronization frequency of Kuramoto oscillators on symmetry of intrinsic frequency in ring network

    Science.gov (United States)

    Saha, Arindam; Amritkar, R. E.

    2014-12-01

    Kuramoto oscillators have been proposed earlier as a model for interacting systems that exhibit synchronisation. In this article we study the difference between networks with symmetric and asymmetric distribution of natural frequencies. We first indicate that the synchronisation frequency of the oscillators is independent of the natural frequency distribution for a completely connected network. Further we analyse the case of oscillators in a directed ring-network where asymmetry in the natural frequency distribution is seen to shift the synchronisation frequency of the network. We also present an estimate of the shift in the frequencies for slightly asymmetric distributions.

  1. Stability of phase locking in a ring of unidirectionally coupled oscillators

    International Nuclear Information System (INIS)

    Rogge, J A; Aeyels, D

    2004-01-01

    We discuss the dynamic behaviour of a finite group of phase oscillators unidirectionally coupled in a ring. The dynamics are based on the Kuramoto model. In the case of identical oscillators, all phase locking solutions and their stability properties are obtained. For nonidentical oscillators it is proven that there exist phase locking solutions for sufficiently strong coupling. An algorithm to obtain all phase locking solutions is proposed. These solutions can be classified into classes, each with its own stability properties. The stability properties are obtained by means of a novel extension of Gershgorin's theorem. One class of stable solutions has the property that all phase differences between neighbouring cells are contained in (-π/2, π/2). Contrary to intuition, a second class of stable solutions is established with exactly one of the phase differences contained in (π/2, 3π/2). The stability results are extended from sinusoidal interconnections to a class of odd functions. To conclude, a connection with the field of active antenna arrays is made, generalizing some results earlier obtained in this field

  2. Considerations on 'Harmonic balancing approach to nonlinear oscillations of a punctual charge in the electric field of charged ring'

    International Nuclear Information System (INIS)

    Belendez, A.; Fernandez, E.; Rodes, J.J.; Fuentes, R.; Pascual, I.

    2009-01-01

    In a previous short communication [A. Belendez, E. Fernandez, J.J. Rodes, R. Fuentes, I. Pascual, Phys. Lett. A 373 (2009) 735] the nonlinear oscillations of a punctual charge in the electric field of a charged ring were analyzed. Approximate frequency-amplitude relations and periodic solutions were obtained using the harmonic balance method. Now we clarify an important aspect about of this oscillation charge. Taking into account Earnshaw's theorem, this punctual charge cannot be a free charge and so it must be confined, for example, on a finite conducting wire placed along the axis of the ring. Then, the oscillatory system may consist of a punctual charge on a conducting wire placed along the axis of the uniformly charged ring.

  3. An acetone microsensor with a ring oscillator circuit fabricated using the commercial 0.18 μm CMOS process.

    Science.gov (United States)

    Yang, Ming-Zhi; Dai, Ching-Liang; Shih, Po-Jen

    2014-07-17

    This study investigates the fabrication and characterization of an acetone microsensor with a ring oscillator circuit using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The acetone microsensor contains a sensitive material, interdigitated electrodes and a polysilicon heater. The sensitive material is α-Fe2O3 synthesized by the hydrothermal method. The sensor requires a post-process to remove the sacrificial oxide layer between the interdigitated electrodes and to coat the α-Fe2O3 on the electrodes. When the sensitive material adsorbs acetone vapor, the sensor produces a change in capacitance. The ring oscillator circuit converts the capacitance of the sensor into the oscillation frequency output. The experimental results show that the output frequency of the acetone sensor changes from 128 to 100 MHz as the acetone concentration increases 1 to 70 ppm.

  4. A temperature monitor circuit with small voltage sensitivity using a topology-reconfigurable ring oscillator

    Science.gov (United States)

    Kishimoto, Tadashi; Ishihara, Tohru; Onodera, Hidetoshi

    2018-04-01

    In this paper, we propose a temperature monitor circuit that exhibits a small supply voltage sensitivity adopting a circuit topology of a reconfigurable ring oscillator. The circuit topology of the monitor is crafted such that the oscillation frequency is determined by the amount of subthreshold leakage current, which has an exponential dependence on temperature. Another important characteristic of the monitor is its small supply voltage sensitivity. The measured oscillation frequency of a test chip fabricated in a 65 nm CMOS process varies only 2.6% under a wide range of supply voltages from 0.4 to 1.0 V at room temperature. The temperature estimation error ranges from -0.3 to 0.4 °C over a temperature range of 10 to 100 °C.

  5. Digital power and performance analysis of inkjet printed ring oscillators based on electrolyte-gated oxide electronics

    Science.gov (United States)

    Cadilha Marques, Gabriel; Garlapati, Suresh Kumar; Dehm, Simone; Dasgupta, Subho; Hahn, Horst; Tahoori, Mehdi; Aghassi-Hagmann, Jasmin

    2017-09-01

    Printed electronic components offer certain technological advantages over their silicon based counterparts, like mechanical flexibility, low process temperatures, maskless and additive manufacturing possibilities. However, to be compatible to the fields of smart sensors, Internet of Things, and wearables, it is essential that devices operate at small supply voltages. In printed electronics, mostly silicon dioxide or organic dielectrics with low dielectric constants have been used as gate isolators, which in turn have resulted in high power transistors operable only at tens of volts. Here, we present inkjet printed circuits which are able to operate at supply voltages as low as ≤2 V. Our transistor technology is based on lithographically patterned drive electrodes, the dimensions of which are carefully kept well within the printing resolutions; the oxide semiconductor, the electrolytic insulator and the top-gate electrodes have been inkjet printed. Our inverters show a gain of ˜4 and 2.3 ms propagation delay time at 1 V supply voltage. Subsequently built 3-stage ring oscillators start to oscillate at a supply voltage of only 0.6 V with a frequency of ˜255 Hz and can reach frequencies up to ˜350 Hz at 2 V supply voltage. Furthermore, we have introduced a systematic methodology for characterizing ring oscillators in the printed electronics domain, which has been largely missing. Benefiting from this procedure, we are now able to predict the switching capacitance and driver capability at each stage, as well as the power consumption of our inkjet printed ring oscillators. These achievements will be essential for analyzing the performance and power characteristics of future inkjet printed digital circuits.

  6. Synchronisation of self-oscillations in a solid-state ring laser with pump modulation in the region of parametric resonance between self-modulation and relaxation oscillations

    International Nuclear Information System (INIS)

    Dudetskiy, V Yu; Lariontsev, E G; Chekina, S N

    2014-01-01

    The synchronisation of the self-modulation oscillation frequency in a Nd : YAG ring laser by an external periodic signal modulating the pump power in the region of parametric resonance between self-modulation and relaxation oscillations is studied theoretically and experimentally. The characteristic features of synchronisation processes in lasers operating in the self-modulation regime of the first kind and in the regime with a doubled self-modulation period are considered. Two bistable branches of synchronisation of self-modulation oscillations are found by numerical calculation. The experimental data agree well with the numerical simulation results for one of these branches, but the other branch of bistable self-modulation oscillations was not observed experimentally. (control of laser radiation parameters)

  7. New type of chimera structures in a ring of bistable FitzHugh-Nagumo oscillators with nonlocal interaction

    Science.gov (United States)

    Shepelev, I. A.; Vadivasova, T. E.; Bukh, A. V.; Strelkova, G. I.; Anishchenko, V. S.

    2017-04-01

    We study the spatiotemporal dynamics of a ring of nonlocally coupled FitzHugh-Nagumo oscillators in the bistable regime. A new type of chimera patterns has been found in the noise-free network and when isolated elements do not oscillate. The region of existence of these structures has been explored when the coupling range and the coupling strength between the network elements are varied.

  8. A Low-Profile and Compact Split-Ring Antenna with Horizontally Polarized Omnidirectional Radiation

    Directory of Open Access Journals (Sweden)

    Kittima Lertsakwimarn

    2015-01-01

    Full Text Available This paper presents a low-profile and compact printed antenna having an omnidirectional radiation pattern with horizontal polarization to the ground. The proposed antenna consists of an inner small fed ring, an outer coupled split ring, and a ground plane. The overall dimension of the proposed antenna is 45 mm × 50.5 mm × 11.6 mm (0.138λ0 × 0.155λ0 × 0.036λ0. The −10-dB S11 of the antenna covers the 920-MHz RFID band, and the gain is about 1.45 dBi in the parallel direction to the ground plane. The measured results show good agreements with the simulated results. Furthermore, the reasons for the low-profile structure and the omnidirectional radiation pattern are also discussed.

  9. Motions of deformable inclusions in a horizontally oscillating vessel with a compressible fluid

    DEFF Research Database (Denmark)

    Demidov, I.V.; Sorokin, Vladislav

    2016-01-01

    The paper is concerned with the analysis of rigid particle and compressible gas bubble motion in a horizontally oscillating vessel with a compressible fluid. A nonlinear differential equation describing motion of inclusions with respect to the vessel is derived and solved by the method of direct...... of the bubbles which are affected by the negligible vibrational force is found. Also an approximate expression has been obtained for the average velocity of bubble׳s motion in the fluid; relationship between this velocity and bubble radius and vibration parameters has been revealed. A simple physical explanation...

  10. Harmonic balancing approach to nonlinear oscillations of a punctual charge in the electric field of charged ring

    International Nuclear Information System (INIS)

    Belendez, A.; Fernandez, E.; Rodes, J.J.; Fuentes, R.; Pascual, I.

    2009-01-01

    The harmonic balance method is used to construct approximate frequency-amplitude relations and periodic solutions to an oscillating charge in the electric field of a ring. By combining linearization of the governing equation with the harmonic balance method, we construct analytical approximations to the oscillation frequencies and periodic solutions for the oscillator. To solve the nonlinear differential equation, firstly we make a change of variable and secondly the differential equation is rewritten in a form that does not contain the square-root expression. The approximate frequencies obtained are valid for the complete range of oscillation amplitudes and excellent agreement of the approximate frequencies and periodic solutions with the exact ones are demonstrated and discussed

  11. Novel High Temperature Capacitive Pressure Sensor Utilizing SiC Integrated Circuit Twin Ring Oscillators

    Science.gov (United States)

    Scardelletti, M.; Neudeck, P.; Spry, D.; Meredith, R.; Jordan, J.; Prokop, N.; Krasowski, M.; Beheim, G.; Hunter, G.

    2017-01-01

    This paper describes initial development and testing of a novel high temperature capacitive pressure sensor system. The pressure sensor system consists of two 4H-SiC 11-stage ring oscillators and a SiCN capacitive pressure sensor. One oscillator has the capacitive pressure sensor fixed at one node in its feedback loop and varies as a function of pressure and temperature while the other provides a pressure-independent reference frequency which can be used to temperature compensate the output of the first oscillator. A two-day repeatability test was performed up to 500C on the oscillators and the oscillator fundamental frequency changed by only 1. The SiCN capacitive pressure sensor was characterized at room temperature from 0 to 300 psi. The sensor had an initial capacitance of 3.76 pF at 0 psi and 1.75 pF at 300 psi corresponding to a 54 change in capacitance. The integrated pressure sensor system was characterized from 0 to 300 psi in steps of 50 psi over a temperature range of 25 to 500C. The pressure sensor system sensitivity was 0.113 kHzpsi at 25C and 0.026 kHzpsi at 500C.

  12. High Temperature Capacitive Pressure Sensor Employing a SiC Based Ring Oscillator

    Science.gov (United States)

    Meredith, Roger D.; Neudeck, Philip G.; Ponchak, George E.; Beheim, Glenn M.; Scardelletti, Maximilian; Jordan, Jennifer L.; Chen, Liang-Yu; Spry, David J.; Krawowski, Michael J.; Hunter, Gary W.

    2011-01-01

    In an effort to develop harsh environment electronic and sensor technologies for aircraft engine safety and monitoring, we have used capacitive-based pressure sensors to shift the frequency of a SiC-electronics-based oscillator to produce a pressure-indicating signal that can be readily transmitted, e.g. wirelessly, to a receiver located in a more benign environment. Our efforts target 500 C, a temperature well above normal operating conditions of commercial circuits but within areas of interest in aerospace engines, deep mining applications and for future missions to the Venus atmosphere. This paper reports for the first time a ring oscillator circuit integrated with a capacitive pressure sensor, both operating at 500 C. This demonstration represents a significant step towards a wireless pressure sensor that can operate at 500 C and confirms the viability of 500 C electronic sensor systems.

  13. Contradiction between the results of observations of resistance and critical current quantum oscillations in asymmetric superconducting rings

    International Nuclear Information System (INIS)

    Gurtovoi, V. L.; Dubonos, S. V.; Karpii, S. V.; Nikulov, A. V.; Tulin, V. A.

    2007-01-01

    Magnetic field dependences of critical current, resistance, and rectified voltage of asymmetric (half circles of different widths) and symmetrical (half circles of equal widths) aluminum rings close to the super-conducting transition were measured. All these dependences are periodic magnetic field functions with periods corresponding to the flux quantum in the ring. The periodic dependences of critical current measured in opposite directions were found to be close to each other for symmetrical rings and shifted with respect to each other by half the flux quantum in asymmetric rings with ratios between half circle widths of from 1.25 to 2. This shift of the dependences by a quarter of the flux quantum as the ring becomes asymmetric makes critical current anisotropic, which explains the effect of alternating current rectification observed for asymmetric rings. Shifts of the extrema of the periodic dependences of critical current by a quarter of the flux quantum directly contradict the results obtained by measuring asymmetric ring resistance oscillations, whose extrema are, as for symmetrical rings, observed at magnetic fluxes equal to an integer and a half of flux quanta

  14. Planetary period oscillations in Saturn's magnetosphere: New results from the F-ring and proximal orbits

    Science.gov (United States)

    Provan, G.; Cowley, S. W. H.; Bunce, E. J.; Hunt, G. J.; Dougherty, M. K.

    2017-12-01

    We investigate planetary period oscillations (PPOs) in Saturn's magnetosphere using Cassini magnetic field data during the high cadence ( 7 days) F-ring and proximal orbits. Previous results have shown that there are two PPO systems, one in each hemisphere. Both PPO periods show seasonal dependence, and since mid-2014 the Northern PPO period has been 10.8 h and the Southern PPO period 10.7 h. The beat period of the two oscillations is 45 days. Previous results demonstrated that in the Northern (Southern) polar region only pure Northern (Southern) oscillations can be observed, whilst in the equatorial region both oscillations are present and constructively and destructively interfere over the beat-cycle of the two oscillations. The PPOs are believed to be driven by twin-cell convection patterns in the polar ionosphere/thermosphere regions, with two systems of field-aligned currents transmitting the PPO flows to the magnetospheric plasma.The F-ring and proximal orbits uniquely observe the PPOs over 6 orbits during each PPO beat cycle. This high-cadence data demonstrates that over a beat cycle both the periods and amplitudes of the PPO observed within the each polar region are modulated by the PPO system from the opposite hemisphere. When the two oscillations are in phase (anti-phase) the `drag' of one system on the other acts to decrease (increase) the amplitude of the oscillations and the two PPO periods diverge (converge). We present a theoretical model showing that this coupling is due to the PPO flows from one hemisphere not just being communicated to the magnetosphere as previously assumed, but also to the opposite hemisphere. The result is inter-hemispheric coupling of the PPO flow systems within the ionosphere/thermosphere system, so that the northern PPO system drives a northern twin-cell convection pattern in the southern hemisphere, and vice versa, thus leading to the observed polar modulations of the PPOs.We will also present PPO phase models determined

  15. Three-dimensional coating and rimming flow: a ring of fluid on a rotating horizontal cylinder

    KAUST Repository

    Leslie, G. A.

    2013-01-29

    The steady three-dimensional flow of a thin, slowly varying ring of Newtonian fluid on either the outside or the inside of a uniformly rotating large horizontal cylinder is investigated. Specifically, we study \\'full-ring\\' solutions, corresponding to a ring of continuous, finite and non-zero thickness that extends all of the way around the cylinder. In particular, it is found that there is a critical solution corresponding to either a critical load above which no full-ring solution exists (if the rotation speed is prescribed) or a critical rotation speed below which no full-ring solution exists (if the load is prescribed). We describe the behaviour of the critical solution and, in particular, show that the critical flux, the critical load, the critical semi-width and the critical ring profile are all increasing functions of the rotation speed. In the limit of small rotation speed, the critical flux is small and the critical ring is narrow and thin, leading to a small critical load. In the limit of large rotation speed, the critical flux is large and the critical ring is wide on the upper half of the cylinder and thick on the lower half of the cylinder, leading to a large critical load. We also describe the behaviour of the non-critical full-ring solution and, in particular, show that the semi-width and the ring profile are increasing functions of the load but, in general, non-monotonic functions of the rotation speed. In the limit of large rotation speed, the ring approaches a limiting non-uniform shape, whereas in the limit of small load, the ring is narrow and thin with a uniform parabolic profile. Finally, we show that, while for most values of the rotation speed and the load the azimuthal velocity is in the same direction as the rotation of the cylinder, there is a region of parameter space close to the critical solution for sufficiently small rotation speed in which backflow occurs in a small region on the upward-moving side of the cylinder. © 2013

  16. Three-dimensional coating and rimming flow: a ring of fluid on a rotating horizontal cylinder

    KAUST Repository

    Leslie, G. A.; Wilson, S. K.; Duffy, B. R.

    2013-01-01

    The steady three-dimensional flow of a thin, slowly varying ring of Newtonian fluid on either the outside or the inside of a uniformly rotating large horizontal cylinder is investigated. Specifically, we study 'full-ring' solutions, corresponding to a ring of continuous, finite and non-zero thickness that extends all of the way around the cylinder. In particular, it is found that there is a critical solution corresponding to either a critical load above which no full-ring solution exists (if the rotation speed is prescribed) or a critical rotation speed below which no full-ring solution exists (if the load is prescribed). We describe the behaviour of the critical solution and, in particular, show that the critical flux, the critical load, the critical semi-width and the critical ring profile are all increasing functions of the rotation speed. In the limit of small rotation speed, the critical flux is small and the critical ring is narrow and thin, leading to a small critical load. In the limit of large rotation speed, the critical flux is large and the critical ring is wide on the upper half of the cylinder and thick on the lower half of the cylinder, leading to a large critical load. We also describe the behaviour of the non-critical full-ring solution and, in particular, show that the semi-width and the ring profile are increasing functions of the load but, in general, non-monotonic functions of the rotation speed. In the limit of large rotation speed, the ring approaches a limiting non-uniform shape, whereas in the limit of small load, the ring is narrow and thin with a uniform parabolic profile. Finally, we show that, while for most values of the rotation speed and the load the azimuthal velocity is in the same direction as the rotation of the cylinder, there is a region of parameter space close to the critical solution for sufficiently small rotation speed in which backflow occurs in a small region on the upward-moving side of the cylinder. © 2013 Cambridge

  17. Instabilities in passive dispersion oscillating fiber ring cavities

    Science.gov (United States)

    Copie, François; Conforti, Matteo; Kudlinski, Alexandre; Mussot, Arnaud; Biancalana, Fabio; Trillo, Stefano

    2017-05-01

    We investigate theoretically and experimentally the development of instabilities in passive ring cavities with stepwise longitudinal variation of the dispersion. We derive an extended version of the Lugiato-Lefever equation that permits to model dispersion oscillating cavities and we demonstrate that this equation is valid well beyond the mean field approximation. We review the theory of Turing (modulational) and Faraday (parametric) instability in inhomogeneous fiber cavities. We report the experimental demonstration of the generation of stable Turing and Faraday temporal patterns in the same device, which can be controlled by changing the detuning and/or the input power. Moreover, we experimentally record the round-trip-to-round-trip dynamics of the spectrum, which shows that Turing and Faraday instabilities not only differ by their characteristic frequency but also by their dynamical behavior. Contribution to the Topical Issue: "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  18. Results and analysis of free-electron-laser oscillation in a high-energy storage ring

    International Nuclear Information System (INIS)

    Couprie, M.E.; Velghe, M.; Prazeres, R.; Jaroszynski, D.; Billardon, M.

    1991-01-01

    A storage-ring free-electron laser at Orsay has been operating since 1989 in the visible wavelength range. In contrast with previous experiments, it operates with positrons and at higher energies (600--800 MeV), with the storage ring Super-ACO (ACO denotes Anneau de Collisions d'Orsay). The optical gain, the laser power, the transverse profile, and the macrotemporal structure of the laser are analyzed. In particular, we show that the gain matrix possesses many off-diagonal elements, which results in lasing on a combination of noncylindrical Gaussian modes. The eigenmode of the laser oscillation is a combination of one or two main Gaussian modes and several higher-order modes, which results in most of the power being extracted in these modes

  19. Pooled versus separate tree-ring δD measurements, and implications for reconstruction of the Arctic Oscillation in northwestern China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaohong, E-mail: liuxh@lzb.ac.cn [State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000 (China); An, Wenling [MOE, Key Laboratory for Coast and Island Development, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093 (China); Treydte, Kerstin [Swiss Federal Research Institute WSL, Dendro Sciences Unit, Zürcherstrasse 111, CH-8903 Birmensdorf (Switzerland); Wang, Wenzhi; Xu, Guobao; Zeng, Xiaomin; Wu, Guoju; Wang, Bo; Zhang, Xuanwen [State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2015-04-01

    Stable hydrogen isotope ratios (δD) in tree rings are an attractive but still rarely explored terrestrial archive of past climatic information. Because the preparation of the cellulose nitrate for δD measurements requires more wood and a longer preparation time than preparation techniques for other isotopes in cellulose (δ{sup 18}O or δ{sup 13}C), it is challenging to obtain high-resolution records, especially for slow-growing trees at high elevations and in boreal regions. Here, we tested whether annually pooled samples of Qinghai spruce (Picea crassifolia Kom.) trees from northwestern China provided results similar to those derived as the mean of individual measurements of the same trees and whether the resulting chronologies recorded useful climate information. Inter-tree variability of δD was higher than that of measured ring width for the same trees. We found higher and significant coherence between pooled and mean isotope chronologies than that among the individual series. It showed a logarithmic relationship between ring mass and δD; however, accounting for the influence of ring mass on δD values only slightly improved the strength of climatic signals in the pooled records. Tree-ring δD was significantly positively correlated with the mean, maximum, and minimum temperatures during the previous winter and with maximum temperature during the current August, and significantly negatively correlated with precipitation in the previous November to January and the current July. The winter climate signal seems to dominate tree-ring δD through the influence of large-scale atmospheric circulation patterns, i.e. the Arctic Oscillation. These results will facilitate reconstruction of winter atmospheric circulation patterns over northwestern China based on a regional tree-ring δD networks. - Highlights: • The difference between mean and pooled tree-ring δD chronologies was tested. • High coherence between the chronologies for northwestern China. • Tree-ring

  20. Pooled versus separate tree-ring δD measurements, and implications for reconstruction of the Arctic Oscillation in northwestern China

    International Nuclear Information System (INIS)

    Liu, Xiaohong; An, Wenling; Treydte, Kerstin; Wang, Wenzhi; Xu, Guobao; Zeng, Xiaomin; Wu, Guoju; Wang, Bo; Zhang, Xuanwen

    2015-01-01

    Stable hydrogen isotope ratios (δD) in tree rings are an attractive but still rarely explored terrestrial archive of past climatic information. Because the preparation of the cellulose nitrate for δD measurements requires more wood and a longer preparation time than preparation techniques for other isotopes in cellulose (δ 18 O or δ 13 C), it is challenging to obtain high-resolution records, especially for slow-growing trees at high elevations and in boreal regions. Here, we tested whether annually pooled samples of Qinghai spruce (Picea crassifolia Kom.) trees from northwestern China provided results similar to those derived as the mean of individual measurements of the same trees and whether the resulting chronologies recorded useful climate information. Inter-tree variability of δD was higher than that of measured ring width for the same trees. We found higher and significant coherence between pooled and mean isotope chronologies than that among the individual series. It showed a logarithmic relationship between ring mass and δD; however, accounting for the influence of ring mass on δD values only slightly improved the strength of climatic signals in the pooled records. Tree-ring δD was significantly positively correlated with the mean, maximum, and minimum temperatures during the previous winter and with maximum temperature during the current August, and significantly negatively correlated with precipitation in the previous November to January and the current July. The winter climate signal seems to dominate tree-ring δD through the influence of large-scale atmospheric circulation patterns, i.e. the Arctic Oscillation. These results will facilitate reconstruction of winter atmospheric circulation patterns over northwestern China based on a regional tree-ring δD networks. - Highlights: • The difference between mean and pooled tree-ring δD chronologies was tested. • High coherence between the chronologies for northwestern China. • Tree-ring

  1. A time-domain digitally controlled oscillator composed of a free running ring oscillator and flying-adder

    International Nuclear Information System (INIS)

    Liu Wei; Zhang Shengdong; Wang Yangyuan; Li Wei; Ren Peng; Lin Qinglong

    2009-01-01

    A time-domain digitally controlled oscillator (DCO) is proposed. The DCO is composed of a free-running ring oscillator (FRO) and a two lap-selectors integrated flying-adder (FA). With a coiled cell array which allows uniform loading capacitances of the delay cells, the FRO produces 32 outputs with consistent tap spacing for the FA as reference clocks. The FA uses the outputs from the FRO to generate the output of the DCO according to the control number, resulting in a linear dependence of the output period, instead of the frequency on the digital controlling word input. Thus the proposed DCO ensures a good conversion linearity in a time-domain, and is suitable for time-domain all-digital phase locked loop applications. The DCO was implemented in a standard 0.13 μm digital logic CMOS process. The measurement results show that the DCO has a linear and monotonic tuning curve with gain variation of less than 10%, and a very low root mean square period jitter of 9.3 ps in the output clocks. The DCO works well at supply voltages ranging from 0.6 to 1.2 V, and consumes 4 mW of power with 500 MHz frequency output at 1.2 V supply voltage.

  2. An active feedback system to control synchrotron oscillations in the SLC Damping Rings

    International Nuclear Information System (INIS)

    Corredoura, P.L.; Pellegrin, J.L.; Schwarz, H.D.; Sheppard, J.C.

    1989-03-01

    Initially the SLC Damping Rings accomplished Robinson instability damping by operating the RF accelerating cavities slightly detuned. In order to be able to run the cavities tuned and achieve damping for Robinson instability and synchrotron oscillations at injection an active feedback system has been developed. This paper describes the theoretical basis for the feedback system and the development of the hardware. Extensive measurements of the loop response including stored beam were performed. Overall performance of the system is also reported. 3 refs., 6 figs

  3. An FPGA-Integrated Time-to-Digital Converter Based on a Ring Oscillator for Programmable Delay Line Resolution Measurement

    Directory of Open Access Journals (Sweden)

    Chao Chen

    2014-01-01

    Full Text Available We describe the architecture of a time-to-digital converter (TDC, specially intended to measure the delay resolution of a programmable delay line (PDL. The configuration, which consists of a ring oscillator, a frequency divider (FD, and a period measurement circuit (PMC, is implemented in a field programmable gate array (FPGA device. The ring oscillator realized in loop containing a PDL and a look-up table (LUT generates periodic oscillatory pulses. The FD amplifies the oscillatory period from nanosecond range to microsecond range. The time-to-digital conversion is based on counting the number of clock cycles between two consecutive pulses of the FD by the PMC. Experiments have been conducted to verify the performance of the TDC. The achieved relative errors for four PDLs are within 0.50%–1.21% and the TDC has an equivalent resolution of about 0.4 ps.

  4. Synchronisation and desynchronisation of self-modulation oscillations in a ring chip laser under the action of a periodic signal and noise

    International Nuclear Information System (INIS)

    Dudetskiy, V Yu; Lariontsev, E G; Chekina, S N

    2014-01-01

    The effect of pump noise on the synchronisation of selfmodulation oscillations in a solid-state ring laser with periodic pump modulation is studied numerically and experimentally. It is found that, in contrast to desynchronisation that usually occurs under action of noise in the case of 1/1 synchronisation of self-oscillations by a periodic signal, the effect of noise on 1/2 synchronisation may be positive, namely, at a sufficiently low intensity, pump noise is favourable for synchronisation of self-oscillations, for narrowing of their spectrum, and for increasing the signal-to-noise ratio. (lasers)

  5. Conditions and Linear Stability Analysis at the Transition to Synchronization of Three Coupled Phase Oscillators in a Ring

    Science.gov (United States)

    El-Nashar, Hassan F.

    2017-06-01

    We consider a system of three nonidentical coupled phase oscillators in a ring topology. We explore the conditions that must be satisfied in order to obtain the phases at the transition to a synchrony state. These conditions lead to the correct mathematical expressions of phases that aid to find a simple analytic formula for critical coupling when the oscillators transit to a synchronization state having a common frequency value. The finding of a simple expression for the critical coupling allows us to perform a linear stability analysis at the transition to the synchronization stage. The obtained analytic forms of the eigenvalues show that the three coupled phase oscillators with periodic boundary conditions transit to a synchrony state when a saddle-node bifurcation occurs.

  6. Complex dynamics analysis of impulsively coupled Duffing oscillators with ring structure

    International Nuclear Information System (INIS)

    Jiang Hai-Bo; Zhang Li-Ping; Yu Jian-Jiang

    2015-01-01

    Impulsively coupled systems are high-dimensional non-smooth systems that can exhibit rich and complex dynamics. This paper studies the complex dynamics of a non-smooth system which is unidirectionally impulsively coupled by three Duffing oscillators in a ring structure. By constructing a proper Poincaré map of the non-smooth system, an analytical expression of the Jacobian matrix of Poincaré map is given. Two-parameter Hopf bifurcation sets are obtained by combining the shooting method and the Runge–Kutta method. When the period is fixed and the coupling strength changes, the system undergoes stable, periodic, quasi-periodic, and hyper-chaotic solutions, etc. Floquet theory is used to study the stability of the periodic solutions of the system and their bifurcations. (paper)

  7. MATHEMATICAL MODEL OF WHEELSET OSCILLATIONS WITH INDEPENDENT WHEEL ROTATION IN THE HORIZONTAL PLANE

    Directory of Open Access Journals (Sweden)

    S. V. Myamlin

    2016-08-01

    Full Text Available Purpose. The work is devoted to the study of horizontal oscillation and the assessment of the motion stability of a single wheelset with independent wheel rotation, and to the comparison of stability indicators of the typical wheelset and the wheelset with independent wheel rotation. This is connected with the necessity to increase traffic speed of rolling stock, improve road safety and comfort of passengers. Methodology. To achieve this purpose we used the methods of mathematical simulation of railway rolling stock dynamics, as well as the linear algebra methods to assess the stability of solutions of the linear homogeneous differential equations. Findings. To solve the set task the design model of a single wheelset with independent wheel rotation was created. The wheelset is not a single solid body; each of the wheelset axles has a surplus degree of freedom. Thus, we obtained the system with 4 degrees of freedom. The design model allowed to obtain the system of linear homogeneous differential equations describing the oscillations of the represented wheelset in a horizontal plane on a straight track section. On the basis of the computer modeling were calculated the eigenvalues of the differential equation system coefficients and the asymptotic stability analysis of the wheelset motion with independent wheel rotation. The increment and the frequency of fluctuations were compared with similar indicators for the standard wheelset. The authors also discussed non-oscillatory forms of the wheelset motion and the issues of wheelset self-centering on the track. Originality. The result of the work is the mathematical model of the sinuous movement of a single wheelset, in two-dimensional formulation, with independent wheel rotation and the estimate of the dynamic indices during its motion on a straight track section without any irregularities. There were also proposed the ways to ensure the self-centering on the track of the wheelset with independent

  8. A voltage-controlled ring oscillator using InP full enhancement-mode HEMT logic

    Energy Technology Data Exchange (ETDEWEB)

    Du Rui; Dai Yang; Chen Yanling; Yang Fuhua, E-mail: ddrr@semi.ac.c [Research Center of Semiconductor Integration, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2009-03-15

    A voltage-controlled ring oscillator (VCO) based on a full enhancement-mode InAlAs/InGaAs/InP high electron mobility transistor (HEMT) logic is proposed. An enhancement-mode HEMT (E-HEMT) is fabricated, whose threshold is demonstrated to be 10 mV. The model of the E-HEMT is established and used in the SPICE simulation of the VCO. The result proves that the full E-HEMT logic technology can be applied to the VCO. And compared with the HEMT DCFL technology, the complexity of our fabrication process is reduced and the reliability is improved.

  9. Automatic Oscillating Turret.

    Science.gov (United States)

    1981-03-01

    Final Report: February 1978 ZAUTOMATIC OSCILLATING TURRET SYSTEM September 1980 * 6. PERFORMING 01G. REPORT NUMBER .J7. AUTHOR(S) S. CONTRACT OR GRANT...o....e.... *24 APPENDIX P-4 OSCILLATING BUMPER TURRET ...................... 25 A. DESCRIPTION 1. Turret Controls ...Other criteria requirements were: 1. Turret controls inside cab. 2. Automatic oscillation with fixed elevation to range from 20* below the horizontal to

  10. A multiple-pass ring oscillator based dual-loop phase-locked loop

    International Nuclear Information System (INIS)

    Chen Danfeng; Ren Junyan; Deng Jingjing; Li Wei; Li Ning

    2009-01-01

    A dual-loop phase-locked loop (PLL) for wideband operation is proposed. The dual-loop architecture combines a coarse-tuning loop with a fine-tuning one, enabling a wide tuning range and low voltage-controlled oscillator (VCO) gain without poisoning phase noise and reference spur suppression performance. An analysis of the phase noise and reference spur of the dual-loop PLL is emphasized. A novel multiple-pass ring VCO is designed for the dual-loop application. It utilizes both voltage-control and current-control simultaneously in the delay cell. The PLL is fabricated in Jazz 0.18-μm RF CMOS technology. The measured tuning range is from 4.2 to 5.9 GHz. It achieves a low phase noise of -99 dBc/Hz - 1 MHz offset from a 5.5 GHz carrier.

  11. A multiple-pass ring oscillator based dual-loop phase-locked loop

    Energy Technology Data Exchange (ETDEWEB)

    Chen Danfeng; Ren Junyan; Deng Jingjing; Li Wei; Li Ning, E-mail: dfchen@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2009-10-15

    A dual-loop phase-locked loop (PLL) for wideband operation is proposed. The dual-loop architecture combines a coarse-tuning loop with a fine-tuning one, enabling a wide tuning range and low voltage-controlled oscillator (VCO) gain without poisoning phase noise and reference spur suppression performance. An analysis of the phase noise and reference spur of the dual-loop PLL is emphasized. A novel multiple-pass ring VCO is designed for the dual-loop application. It utilizes both voltage-control and current-control simultaneously in the delay cell. The PLL is fabricated in Jazz 0.18-{mu}m RF CMOS technology. The measured tuning range is from 4.2 to 5.9 GHz. It achieves a low phase noise of -99 dBc/Hz - 1 MHz offset from a 5.5 GHz carrier.

  12. Threshold Criteria for Incipient Grain Motion with Turbulent Fluctuations on a Horizontal Bed

    International Nuclear Information System (INIS)

    Wan, M.W.H.M.

    2015-01-01

    The effect of turbulent fluctuations on the threshold criteria for incipient grain motion over a wide range of sediment size is investigated. In this work, attention is paid to the comparison of the critical Shields parameter θ_c profile obtained when the near-bed fluid forces induced sediment motion are oscillating-grid turbulence and a single idealised eddy of vortex ring. For experimental work, near-spherical monodisperse sediments were used throughout with relative densities of 1.2 and 2.5 and mean diameters d ranging between 80 and 1087 μm. The measured values of θ_c on a horizontal bed α = 0 (hence denoted as θ_c_0), were compared to the θ_c_0 profiles obtained by grid turbulence and vortex ring experiments. Although different in magnitude, the θ_c_0 profiles were comparable, that is the θ_c_0 were seen to increase monotonically for hydraulically smooth bed forms and to be approximately constant for hydraulically rough bed forms. However the limit of hydraulically smooth region was found to vary between the oscillating-grid turbulence experiments, where wider smooth region was found when the turbulent fluctuations used to calculate θ_c_0 is not the near-bed velocity. (author)

  13. Imprint of the Atlantic multidecadal oscillation on tree-ring widths in northeastern Asia since 1568.

    Directory of Open Access Journals (Sweden)

    Xiaochun Wang

    Full Text Available We present a new tree-ring reconstruction of the Atlantic Multidecadal Oscillation (AMO spanning 1568-2007 CE from northeast Asia. Comparison of the instrumental AMO index, an existing tree-ring based AMO reconstruction, and this new record show strongly similar annual to multidecadal patterns of variation over the last 440 years. Warm phases of the AMO are related to increases in growth of Scots pine trees and moisture availability in northeast China and central eastern Siberia. Multi-tape method (MTM and cross-wavelet analyses indicate that robust multidecadal (∼64-128 years variability is present throughout the new proxy record. Our results have important implications concerning the influence of North Atlantic sea surface temperatures on East Asian climate, and provide support for the possibility of an AMO signature on global multidecadal climate variability.

  14. Damping rates of the SRRC storage ring

    International Nuclear Information System (INIS)

    Hsu, K.T.; Kuo, C.C.; Lau, W.K.; Weng, W.T.

    1995-01-01

    The SRRC storage ring is a low emittance synchrotron radiation machine with nominal operation energy 1.3 GeV. The design damping time due to synchrotron radiation is 10.7, 14.4, 8.7 ms for the horizontal, vertical and longitudinal plane, respectively. The authors measured the real machine damping time as a function of bunch current, chromaticity, etc. To damp the transverse beam instability, especially in the vertical plane, they need to increase chromaticity to large positive value. The damping rates are much larger than the design values. Landau damping contribution in the longitudinal plane is quite large, especially in the multibunch mode. The estimated synchrotron tune spread from the Landau damping is in agreement with the measured coherent longitudinal coupled bunch oscillation amplitude

  15. Magnetic moment of single layer graphene rings

    Science.gov (United States)

    Margulis, V. A.; Karpunin, V. V.; Mironova, K. I.

    2018-01-01

    Magnetic moment of single layer graphene rings is investigated. An analytical expression for the magnetic moment as a function of the magnetic field flux through the one-dimensional quantum rings is obtained. This expression has the oscillation character. The oscillation period is equal to one flux quanta.

  16. Global coupling and decoupling of the APS storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Y.C.; Liu, J.; Teng, L.C.

    1993-07-01

    This paper describes a study of controlling the coupling between the horizontal and the vertical betatron oscillations in the 7-GeV Advanced Photon Source (APS) storage ring. First, we investigate the strengthening of coupling using two families of skew quadrupoles. Twenty skew quadrupoles are arranged in the 40 sectors of the storage ring and powered in such a way so as to generate both quadrature components of the required 21st harmonic. The numerical results from tracking a single particle are presented for the various configurations of skew quadrupoles. Second, we describe the global decoupling procedure to minimize the unwanted coupling effects. These are mainly due to the random roll errors of normal quadruples. It is shown that even with the rather large rms roll error of 2 mrad, the coupling effects can be compensated for with 20 skew quadrupoles each having maximum strength one order of magnitude lower than the typical normal quadrupole strength.

  17. Sol-gel zinc oxide humidity sensors integrated with a ring oscillator circuit on-a-chip.

    Science.gov (United States)

    Yang, Ming-Zhi; Dai, Ching-Liang; Wu, Chyan-Chyi

    2014-10-28

    The study develops an integrated humidity microsensor fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The integrated humidity sensor consists of a humidity sensor and a ring oscillator circuit on-a-chip. The humidity sensor is composed of a sensitive film and branch interdigitated electrodes. The sensitive film is zinc oxide prepared by sol-gel method. After completion of the CMOS process, the sensor requires a post-process to remove the sacrificial oxide layer and to coat the zinc oxide film on the interdigitated electrodes. The capacitance of the sensor changes when the sensitive film adsorbs water vapor. The circuit is used to convert the capacitance of the humidity sensor into the oscillation frequency output. Experimental results show that the output frequency of the sensor changes from 84.3 to 73.4 MHz at 30 °C as the humidity increases 40 to 90%RH.

  18. Synchronization states and multistability in a ring of periodic oscillators: Experimentally variable coupling delays

    Science.gov (United States)

    Williams, Caitlin R. S.; Sorrentino, Francesco; Murphy, Thomas E.; Roy, Rajarshi

    2013-12-01

    We experimentally study the complex dynamics of a unidirectionally coupled ring of four identical optoelectronic oscillators. The coupling between these systems is time-delayed in the experiment and can be varied over a wide range of delays. We observe that as the coupling delay is varied, the system may show different synchronization states, including complete isochronal synchrony, cluster synchrony, and two splay-phase states. We analyze the stability of these solutions through a master stability function approach, which we show can be effectively applied to all the different states observed in the experiment. Our analysis supports the experimentally observed multistability in the system.

  19. Remote synchronization of amplitudes across an experimental ring of non-linear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it, E-mail: lminati@istituto-besta.it [Center for Mind/Brain Science, University of Trento, 38123 Mattarello TN, Italy and Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy)

    2015-12-15

    In this paper, the emergence of remote synchronization in a ring of 32 unidirectionally coupled non-linear oscillators is reported. Each oscillator consists of 3 negative voltage gain stages connected in a loop to which two integrators are superimposed and receives input from its preceding neighbour via a “mixing” stage whose gains form the main system control parameters. Collective behaviour of the network is investigated numerically and experimentally, based on a custom-designed circuit board featuring 32 field-programmable analog arrays. A diverse set of synchronization patterns is observed depending on the control parameters. While phase synchronization ensues globally, albeit imperfectly, for certain control parameter values, amplitudes delineate subsets of non-adjacent but preferentially synchronized nodes; this cannot be trivially explained by synchronization paths along sequences of structurally connected nodes and is therefore interpreted as representing a form of remote synchronization. Complex topology of functional synchronization thus emerges from underlying elementary structural connectivity. In addition to the Kuramoto order parameter and cross-correlation coefficient, other synchronization measures are considered, and preliminary findings suggest that generalized synchronization may identify functional relationships across nodes otherwise not visible. Further work elucidating the mechanism underlying this observation of remote synchronization is necessary, to support which experimental data and board design materials have been made freely downloadable.

  20. Injection envelope matching in storage rings

    International Nuclear Information System (INIS)

    Minty, M.G.; Spence, W.L.

    1995-05-01

    The shape and size of the transverse phase space injected into a storage ring can be deduced from turn-by-turn measurements of the transient behavior of the beam envelope in the ring. Envelope oscillations at 2 x the β-tron frequency indicate the presence of a β-mismatch, while envelope oscillations at the β-tron frequency are the signature of a dispersion function mismatch. Experiments in injection optimization using synchrotron radiation imaging of the beam and a fast-gated camera at the SLC damping rings are reported

  1. Compensation of oscillation coupling induced by solenoids

    International Nuclear Information System (INIS)

    Zelinskij, A.Yu.; Karnaukhov, I.M.; Shcherbakov, A.A.

    1988-01-01

    Methods for construction of various schemes of oscillation coupling compensation, induced by solenoids in charged particle storage rings, are described. Peculiarities of magnetic structure, enabling to localize oscillation coupling in wide energy range are discussed. Results of calculation of compensation schemes for design of NR-2000 storage ring spin rotation are presented

  2. Sol-Gel Zinc Oxide Humidity Sensors Integrated with a Ring Oscillator Circuit On-a-Chip

    Directory of Open Access Journals (Sweden)

    Ming-Zhi Yang

    2014-10-01

    Full Text Available The study develops an integrated humidity microsensor fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS process. The integrated humidity sensor consists of a humidity sensor and a ring oscillator circuit on-a-chip. The humidity sensor is composed of a sensitive film and branch interdigitated electrodes. The sensitive film is zinc oxide prepared by sol-gel method. After completion of the CMOS process, the sensor requires a post-process to remove the sacrificial oxide layer and to coat the zinc oxide film on the interdigitated electrodes. The capacitance of the sensor changes when the sensitive film adsorbs water vapor. The circuit is used to convert the capacitance of the humidity sensor into the oscillation frequency output. Experimental results show that the output frequency of the sensor changes from 84.3 to 73.4 MHz at 30 °C as the humidity increases 40 to 90%RH.

  3. Nuclear component horizontal seismic restraint

    International Nuclear Information System (INIS)

    Snyder, G.J.

    1988-01-01

    In a nuclear reactor having a reactor vessel, a reactor guard vessel, a thermal insulation shell and a horizontal seismic restraint, a restraint is described comprising: a. a first ring on the wall of the reactor vessel; b. a second ring on the wall of the reactor guard vessel in alignment with the first ring; c. a first block attached to the second ring proximate the first ring so as to provide a predetermined clearance between the first block and the first ring which is reduced to zero during thermal expansion; d. motion limit means extending through an aperture in the thermal insulation shell in alignment with the second ring and the first block; the e. a second block attached to the motion limit means proximate the second ring and in alignment the first block so as to provide a predetermined clearance between the second block and the second ring which is reduced to zero during thermal expansion

  4. Possibility of persistent voltage observation in a system of asymmetric superconducting rings

    International Nuclear Information System (INIS)

    Burlakov, A.A.; Gurtovoi, V.L.; Ilin, A.I.; Nikulov, A.V.; Tulin, V.A.

    2012-01-01

    The possibility of observing persistent voltage in superconducting rings of different arm widths is experimentally investigated. It was previously found that switching of the arms between superconducting and normal states by an AC current induces DC voltage oscillation in the magnetic field with a period corresponding to the flux quantum inside the ring. We used systems with a large number of asymmetric rings connected in series to investigate the possibility of observing this quantum phenomenon near the superconducting transition, where thermal fluctuations lead to switching of ring segments without an external influence and the persistent current is much smaller than in the superconducting state. -- Highlights: ► A possibility to observe the persistent voltage is investigated experimentally. ► The persistent voltage is a DC voltage observed at thermodynamic equilibrium. ► It oscillates in magnetic field like the persistent current in superconducting ring. ► The period of the oscillations corresponds to the flux quantum inside the ring. ► The quantum oscillations of the DC voltage were observed on asymmetric rings.

  5. Thermal performance of horizontal closed-loop oscillating heat-pipe with check valves

    International Nuclear Information System (INIS)

    Rittidech, S.; Pipatpaiboon, N.; Thongdaeng, S.

    2010-01-01

    This research investigated the thermal performance of various horizontal closed-loop oscillating heat-pipe systems with check valves (HCLOHPs/CVs). Numerous test systems were constructed using copper capillary tubes with assorted inner diameters, evaporator lengths, and check valves. The test systems were evaluated under normal operating conditions using ethanol, R123, and distilled water as working fluids. The system's evaporator sections were heated by hot water from a hot bath, and the heat was removed from the condenser sections by cold water from a cool bath. The adiabatic sections were well insulated with foam insulators. The heat-transfer performance of the various systems was evaluated in terms of the rate of heat transferred to the cold water at the condenser. The results showed that the heat-transfer performance of an HCLOHP/CV system could be improved by decreasing the evaporator length. The highest performance of all tested systems was obtained when the maximum number of system check valves was 2. The maximum heat flux occurred with a 2 mm inner diameter tube, and R123 was determined to be the most suitable working fluid

  6. Plasma properties of quasi-one-dimensional ring

    CERN Document Server

    Shmelev, G M

    2001-01-01

    The plasma properties of the quasi-one-dimensional ring in the threshold cases of low and high frequencies, corresponding to the plasma oscillations and dielectric relaxation are studied within the frames of the classical approach. The plasma oscillations spectrum and the electron dielectric relaxation frequency in the quasi-one-dimensional ring are calculated. The plasmons spectrum equidistance is identified. It is shown , that in contrast to the three-dimensional case there takes place the dielectric relaxation dispersion, wherefrom there follows the possibility of studying the carriers distribution in the quasi-one-dimensional rings through the method of the dielectric relaxation spectroscopy

  7. Embedding the dynamics of a single delay system into a feed-forward ring.

    Science.gov (United States)

    Klinshov, Vladimir; Shchapin, Dmitry; Yanchuk, Serhiy; Wolfrum, Matthias; D'Huys, Otti; Nekorkin, Vladimir

    2017-10-01

    We investigate the relation between the dynamics of a single oscillator with delayed self-feedback and a feed-forward ring of such oscillators, where each unit is coupled to its next neighbor in the same way as in the self-feedback case. We show that periodic solutions of the delayed oscillator give rise to families of rotating waves with different wave numbers in the corresponding ring. In particular, if for the single oscillator the periodic solution is resonant to the delay, it can be embedded into a ring with instantaneous couplings. We discover several cases where the stability of a periodic solution for the single unit can be related to the stability of the corresponding rotating wave in the ring. As a specific example, we demonstrate how the complex bifurcation scenario of simultaneously emerging multijittering solutions can be transferred from a single oscillator with delayed pulse feedback to multijittering rotating waves in a sufficiently large ring of oscillators with instantaneous pulse coupling. Finally, we present an experimental realization of this dynamical phenomenon in a system of coupled electronic circuits of FitzHugh-Nagumo type.

  8. Quantum oscillation and the Aharonov-Bohm effect in a multiply connected normal-conductor loop

    Science.gov (United States)

    Takai, Daisuke; Ohta, Kuniichi

    1994-12-01

    The magnetostatic and electrostatic Aharonov-Bohm (AB) effects in multiply connected normal-conductor rings are studied. A previously developed model of a single mesoscopic ring is generalized to include an arbitrary number of rings, and the oscillatory behavior of the total transmission coefficients for the serially connected N (N is equal to integer) rings are derived as a function of the magnetic flux threading each ring and as a function of the electrostatic potential applied to the rings. It is shown that quantum oscillation of multiple rings exhibits greater variety of behavior than in periodic superlattices. We investigate the influence of the scattering at a junction and the number of atoms in the ring in both magnetostatic and electrostatic oscillation of multiring systems. For the electrostatic AB effects, when scattering occurs at the junctions between the connecting wire and the ring, the conductance in the AB oscillation is modified to an N-1 peaked shape. It is shown that this oscillatory behavior is greatly influenced by the number of atoms in the ring and is controlled by the electrostatic potential or magnetic flux that is applied to the ring. We discuss the behavior of the quantum oscillations upon varying the number of connected rings and the number of minibands.

  9. Turn-by-Turn and Bunch-by-Bunch Transverse Profiles of a Single Bunch in a Full Ring

    International Nuclear Information System (INIS)

    Kraus, R.; Fisher, A.S.

    2005-01-01

    The apparatus described in this paper can image the evolution of the transverse profile of a single bunch, isolated from a full PEP-II ring of 1500 bunches. Using this apparatus there are two methods of single bunch imaging; bunch-by-bunch beam profiling can image every bunch in the ring a single bunch at a time with the images of sequential bunches being in order, allowing one to see variations in beam size along a train. Turn-by-turn beam profiling images a single bunch on each successive turn it makes around the ring. This method will be useful in determining the effect that an injected bunch has on a stable bunch as the oscillations of the injected bunch damp out. Turn-by-turn imaging of the synchrotron light uses a system of lenses and mirrors to image many turns of both the major and minor axis of a single bunch across the photocathode of a gateable camera. The bunch-by-bunch method is simpler: because of a focusing mirror used in porting the light from the ring, the synchrotron light from the orbiting electrons becomes an image at a certain distance from the mirror; and since the camera does not use a lens, the photocathode is set exactly at this image distance. Bunch-by-bunch profiling has shown that in the Low Energy Ring (LER) horizontal bunch size decreases along a train. Turn-by-turn profiling has been able to image 100 turns of a single bunch on one exposure of the camera. The turn-by-turn setup has also been able to image 50 turns of the minor axis showing part of the damping process of an oscillating injected charge during a LER fill. The goal is to image the damping of oscillations of injected charge for 100 turns of both the major and minor axis throughout the damping process during trickle injection. With some changes to the apparatus this goal is within reach and will make turn-by-turn imaging a very useful tool in beam diagnostics

  10. Low-noise sub-harmonic injection locked multiloop ring oscillator

    Science.gov (United States)

    Weilin, Xu; Di, Wu; Xueming, Wei; Baolin, Wei; Jihai, Duan; Fadi, Gui

    2016-09-01

    A three-stage differential voltage-controlled ring oscillator is presented for wide-tuning and low-phase noise requirement of clock and data recovery circuit in ultra wideband (UWB) wireless body area network. To improve the performance of phase noise of delay cell with coarse and fine frequency tuning, injection locked technology together with pseudo differential architecture are adopted. In addition, a multiloop is employed for frequency boosting. Two RVCOs, the standard RVCO without the IL block and the proposed IL RVCO, were fabricated in SMIC 0.18 μm 1P6M Salicide CMOS process. The proposed IL RVCO exhibits a measured phase noise of -112.37 dBc/Hz at 1 MHz offset from the center frequency of 1 GHz, while dissipating a current of 8 mA excluding the buffer from a 1.8-V supply voltage. It shows a 16.07 dB phase noise improvement at 1 MHz offset compared to the standard topology. Project supported by the National Natural Science Foundation of China (No. 61264001), the Guangxi Natural Science Foundation (Nos. 2013GXNSFAA019333, 2015GXNSFAA139301, 2014GXNSFAA118386), the Graduate Education Innovation Program of GUET (No. GDYCSZ201457), the Project of Guangxi Education Department (No. LD14066B) and the High-Level-Innovation Team and Outstanding Scholar Project of Guangxi Higher Education Institutes.

  11. Two-family compensation of linear horizontal/vertical coupling

    International Nuclear Information System (INIS)

    Peterson, J.

    1991-10-01

    Many existing circular accelerators have been able to adequately compensate their horizontal/vertical coupling by one or two families of skew-quadrupole corrector magnets. For example, the HERA proton storage ring at DESY has used just two skew quadrupoles correctors, the SPS at CERN can operate with just one skew quadrupole corrector, and the Tevatron at Fermilab with two families of skew quadrupoles. At first sight just two corrector families seem unlikely to be enough, since there are four independent horizontal/vertical coupling coefficients in the 4 x 4 transfer from one point to any other in the ring. Thus, for the general case four families of correctors would seem to be necessary. It will be shown that the adequacy of two-family correction for storage rings in a consequence of operating near the diagonal of the tune diagram

  12. Reversible decay of ring dark solitons

    International Nuclear Information System (INIS)

    Toikka, L A; Suominen, K-A

    2014-01-01

    We show how boundary effects can cause a Bose–Einstein condensate to periodically oscillate between a (circular) array of quantized vortex–antivortex pairs and a (ring) dark soliton. If the boundary is restrictive enough, the ring dark soliton becomes long-lived. (paper)

  13. Global coupling and decoupling of the APS storage ring

    International Nuclear Information System (INIS)

    Chae, Yong-Chul; Liu, Jianyang; Teng, L.C.

    1995-01-01

    This Paper describes a study of controlling the coupling between the horizontal and the vertical betatron oscillations in the APS storage ring. First, we investigate the strengthening of coupling using two families of skew quadrupoles. Using smooth approximation, we obtained the formulae to estimate the coupling ratio defined as the ratio of the vertical and horizontal emittances or, for a single particle, the ratio of the maximum values of the Courant Snyder invariants. Since we knew that the coupling is mostly enhanced by the 21st harmonic content of skew quadrupole distribution, we carried out the harmonic analysis in order to find the optimum arrangement of the skew quadrupoles. The numerical results from tracking a single particle are presented for the various configurations of skew quadrupoles. Second, we describe the global decoupling procedure to minimize the unwanted coupling effects. These are mainly due to the random roll errors of normal quadrupoles. It is shown that even with the rather large rms roll error of 2 mrad we can reduce the Coupling from 70 percent to 10 percent with a skew quadrupole strength which is one order of magnitude lower than the typical normal quadrupole strength

  14. Harmonic and Anharmonic Behaviour of a Simple Oscillator

    Science.gov (United States)

    O'Shea, Michael J.

    2009-01-01

    We consider a simple oscillator that exhibits harmonic and anharmonic regimes and analyse its behaviour over the complete range of possible amplitudes. The oscillator consists of a mass "m" fixed at the midpoint of a horizontal rope. For zero initial rope tension and small amplitude the period of oscillation, tau, varies as tau is approximately…

  15. Pooled versus separate tree-ring δD measurements, and implications for reconstruction of the Arctic Oscillation in northwestern China.

    Science.gov (United States)

    Liu, Xiaohong; An, Wenling; Treydte, Kerstin; Wang, Wenzhi; Xu, Guobao; Zeng, Xiaomin; Wu, Guoju; Wang, Bo; Zhang, Xuanwen

    2015-04-01

    Stable hydrogen isotope ratios (δD) in tree rings are an attractive but still rarely explored terrestrial archive of past climatic information. Because the preparation of the cellulose nitrate for δD measurements requires more wood and a longer preparation time than preparation techniques for other isotopes in cellulose (δ18O or δ13C), it is challenging to obtain high-resolution records, especially for slow-growing trees at high elevations and in boreal regions. Here, we tested whether annually pooled samples of Qinghai spruce (Picea crassifolia Kom.) trees from northwestern China provided results similar to those derived as the mean of individual measurements of the same trees and whether the resulting chronologies recorded useful climate information. Inter-tree variability of δD was higher than that of measured ring width for the same trees. We found higher and significant coherence between pooled and mean isotope chronologies than that among the individual series. It showed a logarithmic relationship between ring mass and δD; however, accounting for the influence of ring mass on δD values only slightly improved the strength of climatic signals in the pooled records. Tree-ring δD was significantly positively correlated with the mean, maximum, and minimum temperatures during the previous winter and with maximum temperature during the current August, and significantly negatively correlated with precipitation in the previous November to January and the current July. The winter climate signal seems to dominate tree-ring δD through the influence of large-scale atmospheric circulation patterns, i.e. the Arctic Oscillation. These results will facilitate reconstruction of winter atmospheric circulation patterns over northwestern China based on a regional tree-ring δD networks. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Coherent oscillations of a ring of relativistic particles

    International Nuclear Information System (INIS)

    Hofmann, I.

    1976-07-01

    The effect of ring curvature on the coherent perturbations of a ring of relativistic particles is studied within the framework of the linearized Vlasov equation. Finite curvature is shown to have a minor effect on the dynamics of the 'negative mass' mode; the 'transverse' mode in radial direction, however, is found to be coupled with a simultaneous longitudinal density modulation which modifies the dispersion relation. In the limit of small mode frequency (ω/Ω [de

  17. Control of ring lasers by means of coupled cavities

    DEFF Research Database (Denmark)

    Buchhave, Preben; Abitan, Haim; Tidemand-Lichtenberg, Peter

    2000-01-01

    Variable phase coupling to an external ring is used to control a unidirectional ring laser. The observed behavior of the coupled rings is explained theoretically. We have found experimentally that by quickly changing the phase of the feedback from the external ring it is possible to Q......-switch the ring laser. Also, at certain values of the phase of the feedback in the external ring, instabilities in the total system occur and oscillations arise in the ring laser....

  18. New approach for determination of the influence of long-range order and selected ring oscillations on IR spectra in zeolites

    Science.gov (United States)

    Mikuła, Andrzej; Król, Magdalena; Mozgawa, Włodzimierz; Koleżyński, Andrzej

    2018-04-01

    Vibrational spectroscopy can be considered as one of the most important methods used for structural characterization of various porous aluminosilicate materials, including zeolites. On the other hand, vibrational spectra of zeolites are still difficult to interpret, particularly in the pseudolattice region, where bands related to ring oscillations can be observed. Using combination of theoretical and computational approach, a detailed analysis of these regions of spectra is possible; such analysis should be, however, carried out employing models with different level of complexity and simultaneously the same theory level. In this work, an attempt was made to identify ring oscillations in vibrational spectra of selected zeolite structures. A series of ab initio calculations focused on S4R, S6R, and as a novelty, 5-1 isolated clusters, as well as periodic siliceous frameworks built from those building units (ferrierite (FER), mordenite (MOR) and heulandite (HEU) type) have been carried out. Due to the hierarchical structure of zeolite frameworks it can be expected that the total envelope of the zeolite spectra should be with good accuracy a sum of the spectra of structural elements that build each zeolite framework. Based on the results of HF calculations, normal vibrations have been visualized and detailed analysis of pseudolattice range of resulting theoretical spectra have been carried out. Obtained results have been applied for interpretation of experimental spectra of selected zeolites.

  19. Chimera and modulated drift states in a ring of nonlocally coupled oscillators with heterogeneous phase lags

    Science.gov (United States)

    Choe, Chol-Ung; Kim, Ryong-Son; Ri, Ji-Song

    2017-09-01

    We consider a ring of phase oscillators with nonlocal coupling strength and heterogeneous phase lags. We analyze the effects of heterogeneity in the phase lags on the existence and stability of a variety of steady states. A nonlocal coupling with heterogeneous phase lags that allows the system to be solved analytically is suggested and the stability of solutions along the Ott-Antonsen invariant manifold is explored. We present a complete bifurcation diagram for stationary patterns including the uniform drift and modulated drift states as well as chimera state, which reveals that the stable modulated drift state and a continuum of metastable drift states could occur due to the heterogeneity of the phase lags. We verify our theoretical results using the direct numerical simulations of the model system.

  20. Synchrotron oscillation effects on an rf-solenoid spin resonance

    Science.gov (United States)

    Benati, P.; Chiladze, D.; Dietrich, J.; Gaisser, M.; Gebel, R.; Guidoboni, G.; Hejny, V.; Kacharava, A.; Kamerdzhiev, V.; Kulessa, P.; Lehrach, A.; Lenisa, P.; Lorentz, B.; Maier, R.; Mchedlishvili, D.; Morse, W. M.; Öllers, D.; Pesce, A.; Polyanskiy, A.; Prasuhn, D.; Rathmann, F.; Semertzidis, Y. K.; Stephenson, E. J.; Stockhorst, H.; Ströher, H.; Talman, R.; Valdau, Yu.; Weidemann, Ch.; Wüstner, P.

    2012-12-01

    New measurements are reported for the time dependence of the vertical polarization of a 0.97GeV/c deuteron beam circulating in a storage ring and perturbed by an rf solenoid. The storage ring is the cooler synchrotron (COSY) located at the Forschungszentrum Jülich. The beam polarization was measured continuously using a 1.5 cm thick carbon target located at the edge of the circulating deuteron beam and the scintillators of the EDDA detector. An rf solenoid mounted on the ring was used to generate fields at and near the frequency of the 1-Gγ spin resonance. Measurements were made of the vertical beam polarization as a function of time with the operation of the rf solenoid in either fixed or continuously variable frequency mode. Using rf-solenoid strengths as large as 2.66×10-5revolutions/turn, slow oscillations (˜1Hz) were observed in the vertical beam polarization. When the circulating beam was continuously electron cooled, these oscillations completely reversed the polarization and showed no sign of diminishing in amplitude. But for the uncooled beam, the oscillation amplitude was damped to nearly zero within a few seconds. A simple spin-tracking model without the details of the COSY ring lattice was successful in reproducing these oscillations and demonstrating the sensitivity of the damping to the magnitude of the synchrotron motion of the beam particles. The model demonstrates that the characteristic features of measurements made in the presence of large synchrotron oscillations are distinct from the features of such measurements when made off resonance. These data were collected in preparation for a study of the spin coherence time, a beam property that needs to become long to enable a search for an electric dipole moment using a storage ring.

  1. Ring rolling of AW5083 large rings for the external cylinder of CMS

    CERN Multimedia

    S. Sgobba / EST

    2001-01-01

    Picture 1: The forged cylinder is engaged in the ring rolling plant. Picture 2: Vertical rolls allow for the reduction in the axial direction. Rolling is carried out at approx. 400 degrees C. Horizontal rolls (not shown) allow for the reduction in the radial direction. Picture 3: Handling of the ring, rolled at the internal diameter of approx. 7m, and transfer to the quenching both. All pictures have been taken during the visit of Mr. Sgobba at Dembiermont, Mobeuge (Bruxelles).

  2. A review of methods for experimentally determining linear optics in storage rings

    International Nuclear Information System (INIS)

    Safranek, J.

    1995-01-01

    In order to maximize the brightness and provide sufficient dynamic aperture in synchrotron radiation storage rings, one must understand and control the linear optics. Control of the horizontal beta function and dispersion is important for minimizing the horizontal beam size. Control of the skew gradient distribution is important for minimizing the vertical size. In this paper, various methods for experimentally determining the optics in a storage ring will be reviewed. Recent work at the National Synchrotron Light Source X-Ray Ring will be presented as well as work done at laboratories worldwide

  3. Does the sun ring

    International Nuclear Information System (INIS)

    Isaak, G.R.

    1978-01-01

    The work of various groups, which have been investigating the possibility of measuring the periodicities of solar oscillations in an attempt to test theoretical models of the sun, is reported. In particular the observation of small velocity oscillations of the surface layers of the sun that permits the measurement of the sound waves (or phonons) in the solar atmosphere, is discussed. Oscillations with periods of 2.65 h, 58 and 40 min and amplitudes of 2.7, 0.8 and 0.7 ms -1 respectively are reported. Support for a periodicity at about 2.65 h from a number of other groups using other measuring techniques are considered. It is felt that the most probable interpretation of the observed solar oscillations is that the sun is a resonator which is ringing. (UK)

  4. Ring cavity for a Raman capillary waveguide amplifier

    Science.gov (United States)

    Kurnit, N.A.

    1981-01-27

    A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.

  5. Ring cavity for a Raman capillary waveguide amplifir

    Science.gov (United States)

    Kurnit, N.A.

    1981-01-27

    A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.

  6. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  7. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: Phase, amplitude, and clustering effects

    Energy Technology Data Exchange (ETDEWEB)

    Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it [MR-Lab, Center for Mind/Brain Science, University of Trento, Italy and Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy)

    2014-12-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.

  8. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: Phase, amplitude, and clustering effects

    International Nuclear Information System (INIS)

    Minati, Ludovico

    2014-01-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties

  9. An electron undulating ring for VLSI lithography

    International Nuclear Information System (INIS)

    Tomimasu, T.; Mikado, T.; Noguchi, T.; Sugiyama, S.; Yamazaki, T.

    1985-01-01

    The development of the ETL storage ring ''TERAS'' as an undulating ring has been continued to achieve a wide area exposure of synchrotron radiation (SR) in VLSI lithography. Stable vertical and horizontal undulating motions of stored beams are demonstrated around a horizontal design orbit of TERAS, using two small steering magnets of which one is used for vertical undulating and another for horizontal one. Each steering magnet is inserted into one of the periodic configulation of guide field elements. As one of useful applications of undulaing electron beams, a vertically wide exposure of SR has been demonstrated in the SR lithography. The maximum vertical deviation from the design orbit nCcurs near the steering magnet. The maximum vertical tilt angle of the undulating beam near the nodes is about + or - 2mrad for a steering magnetic field of 50 gauss. Another proposal is for hith-intensity, uniform and wide exposure of SR from a wiggler installed in TERAS, using vertical and horizontal undulating motions of stored beams. A 1.4 m long permanent magnet wiggler has been installed for this purpose in this April

  10. Periodic rotation noise induced by the crosstalk between two beat-frequency signals in multi-oscillator ring laser gyros

    International Nuclear Information System (INIS)

    Lu, Guangfeng; Wang, Zhiguo; Fan, Zhenfang; Luo, Hui

    2014-01-01

    Periodic rotation noise in the outputs of multi-oscillator ring laser gyros (MRLGs) is investigated in this paper for the first time. It is proved theoretically and experimentally that noise is induced by the crosstalk between two beat-frequency signals, which are combined from the left and right circularly polarized counter-propagating beams in MRLGs. Theoretical analysis and experimental results also indicate that the fundamental frequency of this noise is equal to the frequency difference between the two beat-frequency signals and the amplitude of the fundamental component is proportional to the crosstalk ratio between the two beat-frequency signals. Further, the amplitude of the nth-order component is proportional to the nth power of the crosstalk ratio. (paper)

  11. Characteristics of Buoyancy Driven Natural Ventilation through Horizontal Openings

    DEFF Research Database (Denmark)

    Li, Zhigang

    through horizontal openings. Two cases of full-scale measurements of buoyancy driven natural ventilation through horizontal openings are performed: one horizontal opening and one horizontal opening combined with one vertical opening. For the case of one horizontal opening, the measurements are made....... Computational fluid dynamics (CFD) are used to study these two air flow cases. The air flow rate and air flow pattern are predicted and compared with the full-scale measurements. The measurement data are used to compare two CFD models: standard k- ε model and large eddy simulation (LES) model. The cases...... transient, unstable and complex, and the air flow rates oscillate with time. Correlations between the Froude number Fr and the opening ratio L/D are obtained, which is reasonable agreement with Epstein's formula derived from brine-water measurements, but the obtained Fr values show considerable deviations...

  12. Flux-quantization effects in disordered normal metal rings and superconducting networks

    International Nuclear Information System (INIS)

    Li, Qiming.

    1989-01-01

    The effects of the magnetic flux on the properties of disordered normal metal rings and bond or site diluted two-dimensional superconducting networks are investigated theoretically, with an emphasis on the quantum coherence of the electrons and the localization nature in the disordered systems. The conductance of disordered metal rings in magnetic field is obtained via the Landauer's formula through calculations of the localization length L c . The important role of the ensemble averaging and the self-averaging to obtain the half-flux-quantum h/2e conductance oscillation is demonstrated unambiguously in both rings of a strictly one-dimensional geometry and rings with a finite width. The amplitude of the localization length oscillation is found to follow a universal relation for all the numerical data: Δ(L c /L) = α(L c /L) 2 . L is the radius of the ring. The expected universal conductance fluctuations are observed for L c /L ∼ 1. For L c > L, much larger oscillation amplitudes are obtained. In the case of two-dimensional site or bond percolation superconducting networks, the nature of the eigenstates and the effects on the superconducting-to-normal phase boundary is examined by finite-size transfer matrix calculations within the mean-field Ginzburg-Landau theory of second order phase transitions

  13. A numerical study of the quantum oscillations in multiple dangling rings

    International Nuclear Information System (INIS)

    Gu, B.Y.; Basu, C.

    1994-12-01

    We present the quantum mechanical calculations on magnetoconductance of the quantum waveguide topology containing multiply connected dangling mesoscopic rings with the transfer matrix approach. The profiles of the conductance as functions of the Fermi wave number of electrons and of the magnetic flux depend on the number of rings as also on the geometric configuration of the system. The conductance spectrum of this system for disordered lengths in the ring circumferences, dangling links, ballistic leads connecting consecutive dangling rings and disordered magnetic flux is examined in details. We find that there exist two kinds of mini-bands, one originating from the eigenstates of the rings, i.e. the intrinsic mini-bands, and the extra mini-bands. Some of these extra minibands are associated with the dangling links connecting the rings to the main quantum wire, while others are from the standing wave modes associated with the ballistic leads connecting adjacent dangling rings. These different kinds of mini-bands have completely different properties and responds differently to the geometric parameter fluctuations. Unlike the system of potential scatterers, this system of geometric scatterers shows complete band formations at all energies even for finite number of scatterers present. There is a preferential decay of the energy states, depending upon the type of disorder introduced. By controlling the geometric parameters, the conductance band structure of such a model can be artificially tailored and thus may guide the design of better mesoscopic switching devices. (author). 19 refs, 7 figs

  14. Compensation of longitudinal coupled-bunch instability in the advanced photon source storage ring

    International Nuclear Information System (INIS)

    Harkay, K.C.; Nassiri, A.; Song, J.J.; Kang, Y.W.; Kustom, R.L.

    1997-01-01

    A longitudinal couple-bunch (CB) instability was encountered in the 7-GeV storage ring. This instability was found to depend on the bunch fill pattern as well as on the beam intensity. The beam spectrum exhibited a coupled-bunch signature, which could be reproduced by an analytical model. The oscillations were also observed on a horizontal photon monitor. The beam fluctuations exhibited two periodicities, which were found to be correlated with the rf cavity temperatures. This correlation is consistent with the measured temperature dependence of the higher-order mode (HOM) frequencies. The HOM impedance drives the beam when brought into resonance with the CB mode by the temperature variation. Increasing the inlet cavity water temperature suppressed the instability. The experimental results are compared to an analytical model which characterizes the fill-pattern dependence. Studies to identify the offending HOMs are also presented

  15. Electronic properties of superlattices on quantum rings.

    Science.gov (United States)

    da Costa, D R; Chaves, A; Ferreira, W P; Farias, G A; Ferreira, R

    2017-04-26

    We present a theoretical study of the one-electron states of a semiconductor-made quantum ring (QR) containing a series of piecewise-constant wells and barriers distributed along the ring circumference. The single quantum well and the superlattice cases are considered in detail. We also investigate how such confining potentials affect the Aharonov-Bohm like oscillations of the energy spectrum and current in the presence of a magnetic field. The model is simple enough so as to allow obtaining various analytical or quasi-analytical results. We show that the well-in-a-ring structure presents enhanced localization features, as well as specific geometrical resonances in its above-barrier spectrum. We stress that the superlattice-in-a-ring structure allows giving a physical meaning to the often used but usually artificial Born-von-Karman periodic conditions, and discuss in detail the formation of energy minibands and minigaps for the circumferential motion, as well as several properties of the superlattice eigenstates in the presence of the magnetic field. We obtain that the Aharonov-Bohm oscillations of below-barrier miniband states are reinforced, owing to the important tunnel coupling between neighbour wells of the superlattice, which permits the electron to move in the ring. Additionally, we analysis a superlattice-like structure made of a regular distribution of ionized impurities placed around the QR, a system that may implement the superlattice in a ring idea. Finally, we consider several random disorder models, in order to study roughness disorder and to tackle the robustness of some results against deviations from the ideally nanostructured ring system.

  16. Response of APS storage ring basemat to ambient vibration

    International Nuclear Information System (INIS)

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.

    1992-08-01

    The storage ring of the Advanced Photon Source (APS) facility at Argonne is very sensitive to vibration. Large vibration amplitudes would result in degraded machine performance. Because the storage ring assembly is supported on the storage ring basemat, the dynamics of the basemat are critical to successful operation. Before construction began, a survey of site ground vibration indicated that the site was acceptable from a vibration standpoint. When construction of the linear accelerator (Linac) floor slab and shielding walls was completed, dynamic-response measurements were conducted. The slab/wall system showed attenuation of soilborne vibrations in the horizontal directions, but an amplification (approximately a factor of 1.5) of vertical vibration at a frequency of 7.7 Hz. Vibration response of the slab/wall system at all other frequencies showed attenuation of soilborne vibrations. Dynamic-response measurements were also conducted on an incomplete section of the storage ring basemat. Although this section was not prototypical, results were similar to those of the Linac floor in the horizontal direction, showing large damping and attenuation of horizontal soilborne vibrations. While the basemat followed the soil vibration in the vertical direction, no large amplification was observed. However, measured vertical amplitudes on the basemat were a function of location, indicating a modal response. A series of vibration response measurements was conducted on a completed section of the storage ring basemat/tunnel adjacent and to the west of the Early Assembly Area (EAA) on May 21, 1992, and is the subject of this report

  17. Bistable Chimera Attractors on a Triangular Network of Oscillator Populations

    DEFF Research Database (Denmark)

    Martens, Erik Andreas

    2010-01-01

    . This triangular network is the simplest discretization of a continuous ring of oscillators. Yet it displays an unexpectedly different behavior: in contrast to the lone stable chimera observed in continuous rings of oscillators, we find that this system exhibits two coexisting stable chimeras. Both chimeras are......, as usual, born through a saddle-node bifurcation. As the coupling becomes increasingly local in nature they lose stability through a Hopf bifurcation, giving rise to breathing chimeras, which in turn get destroyed through a homoclinic bifurcation. Remarkably, one of the chimeras reemerges by a reversal...

  18. Entanglement of higher-derivative oscillators in holographic systems

    Energy Technology Data Exchange (ETDEWEB)

    Dimov, Hristo, E-mail: h_dimov@phys.uni-sofia.bg [Department of Physics, Sofia University, 5 J. Bourchier Blvd., 1164 Sofia (Bulgaria); Mladenov, Stefan, E-mail: smladenov@phys.uni-sofia.bg [Department of Physics, Sofia University, 5 J. Bourchier Blvd., 1164 Sofia (Bulgaria); Rashkov, Radoslav C., E-mail: rash@phys.uni-sofia.bg [Department of Physics, Sofia University, 5 J. Bourchier Blvd., 1164 Sofia (Bulgaria); Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstr. 8–10, 1040 Vienna (Austria); Vetsov, Tsvetan, E-mail: vetsov@phys.uni-sofia.bg [Department of Physics, Sofia University, 5 J. Bourchier Blvd., 1164 Sofia (Bulgaria)

    2017-05-15

    We study the quantum entanglement of coupled Pais–Uhlenbeck oscillators using the formalism of thermo-field dynamics. The entanglement entropy is computed for the specific cases of two and a ring of N coupled Pais–Uhlenbeck oscillators of fourth order. It is shown that the entanglement entropy depends on the temperatures, frequencies and coupling parameters of the different degrees of freedom corresponding to harmonic oscillators. We also make remarks on the appearance of instabilities of higher-derivative oscillators in the context of AdS/CFT correspondence. Finally, we advert to the information geometry theory by calculating the Fisher information metric for the considered system of coupled oscillators.

  19. Structural control of metamaterial oscillator strength and electric field enhancement at terahertz frequencies

    DEFF Research Database (Denmark)

    Keiser, G. R.; Seren, H. R.; Strikwerda, Andrew C.

    2014-01-01

    The design of artificial nonlinear materials requires control over internal resonant charge densities and local electric field distributions. We present a MM design with a structurally controllable oscillator strength and local electric field enhancement at terahertz frequencies. The MM consists...... of a split ring resonator (SRR) array stacked above an array of closed conducting rings. An in-plane, lateral shift of a half unit cell between the SRR and closed ring arrays results in an increase of the MM oscillator strength by a factor of 4 and a 40% change in the amplitude of the resonant electric field...

  20. Super ACO FEL oscillation at 300 nm

    CERN Document Server

    Nutarelli, D; Renault, E; Nahon, L; Couprie, Marie Emmanuelle

    2000-01-01

    Some recent improvements, involving both the optical cavity mirrors and the positron beam dynamics in the storage ring, have allowed us to achieve a laser oscillation at 300 nm on the Super ACO Storage Ring FEL. The Super ACO storage ring is operated at 800 MeV which is the nominal energy for the usual synchrotron radiation users, and the highest energy for a storage ring FEL. The lasing at 300 nm could be kept during 2 h per injection, with a stored current ranging between 30 and 60 mA. The FEL characteristics are presented here. The longitudinal stability and the FEL optics behaviour are also discussed.

  1. A new omnidirectional shear horizontal wave transducer using face-shear (d24) piezoelectric ring array.

    Science.gov (United States)

    Miao, Hongchen; Huan, Qiang; Wang, Qiangzhong; Li, Faxin

    2017-02-01

    The non-dispersive fundamental shear horizontal (SH 0 ) wave in plate-like structures is of practical importance in non-destructive testing (NDT) and structural health monitoring (SHM). Theoretically, an omnidirectional SH 0 transducer phased array system can be used to inspect defects in a large plate in the similar manner to the phased array transducers used in medical B-scan ultrasonics. However, very few omnidirectional SH 0 transducers have been proposed so far. In this work, an omnidirectional SH 0 wave piezoelectric transducer (OSH-PT) was proposed, which consists of a ring array of twelve face-shear (d 24 ) trapezoidal PZT elements. Each PZT element can produce face-shear deformation under applied voltage, resulting in circumferential shear deformation in the OSH-PT and omnidirectional SH 0 waves in the hosting plate. Both finite element simulations and experiments were conducted to examine the performance of the proposed OSH-PT. Experimental testing shows that the OSH-PT exhibits good omnidirectional properties, no matter it is used as a SH 0 wave transmitter or a SH 0 wave receiver. This work may greatly promote the applications of SH 0 waves in NDT and SHM. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Irregular Aharonov–Bohm effect for interacting electrons in a ZnO quantum ring

    International Nuclear Information System (INIS)

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk

    2017-01-01

    The electronic states and optical transitions of a ZnO quantum ring containing few interacting electrons in an applied magnetic field are found to be very different from those in a conventional semiconductor system, such as a GaAs ring. The strong Zeeman interaction and the Coulomb interaction of the ZnO system, two important characteristics of the electron system in ZnO, exert a profound influence on the electron states and on the optical properties of the ring. In particular, our results indicate that the Aharonov–Bohm (AB) effect in a ZnO quantum ring strongly depends on the electron number. In fact, for two electrons in the ZnO ring, the AB oscillations become aperiodic, while for three electrons (interacting) the AB oscillations completely disappear. Therefore, unlike in conventional quantum ring topology, here the AB effect (and the resulting persistent current) can be controlled by varying the electron number. (paper)

  3. Oscillating acoustic streaming jet

    International Nuclear Information System (INIS)

    Moudjed, Brahim; Botton, Valery; Henry, Daniel; Millet, Severine; Ben Hadid, Hamda; Garandet, Jean-Paul

    2014-01-01

    The present paper provides the first experimental investigation of an oscillating acoustic streaming jet. The observations are performed in the far field of a 2 MHz circular plane ultrasound transducer introduced in a rectangular cavity filled with water. Measurements are made by Particle Image Velocimetry (PIV) in horizontal and vertical planes near the end of the cavity. Oscillations of the jet appear in this zone, for a sufficiently high Reynolds number, as an intermittent phenomenon on an otherwise straight jet fluctuating in intensity. The observed perturbation pattern is similar to that of former theoretical studies. This intermittently oscillatory behavior is the first step to the transition to turbulence. (authors)

  4. The study on pressure oscillation and heat transfer characteristics of oscillating capillary tube heat pipe

    International Nuclear Information System (INIS)

    Kim, Jong Soo; Bui, Ngoc Hung; Jung, Hyun Seok; Lee, Wook Hyun

    2003-01-01

    In the present study, the characteristics of pressure oscillation and heat transfer performance in an oscillating capillary tube heat pipe were experimentally investigated with respect to the heat flux, the charging ratio of working fluid, and the inclination angle to the horizontal orientation. The experimental results showed that the frequency of pressure oscillation was between 0.1 Hz and 1.5 Hz at the charging ratio of 40 vol.%. The saturation pressure of working fluid in the oscillating capillary tube heat pipe increased as the heat flux was increased. Also, as the charging ratio of working fluid was increased, the amplitude of pressure oscillation increased. When the pressure waves were symmetric sinusoidal waves at the charging ratios of 40 vol.% and 60 vol.%, the heat transfer performance was improved. At the charging ratios of 20 vol.% and 80 vol.%, the waveforms of pressure oscillation were more complicated, and the heat transfer performance reduced. At the charging ratio of 40 vol.%, the heat transfer performance of the OCHP was at the best when the inclination angle was 90 .deg., the pressure wave was a sinusoidal waveform, the pressure difference was at the least, the oscillation amplitude was at the least, and the frequency of pressure oscillation was the highest

  5. Beam-beam effects in high energy e+e- storage rings: resonant amplification of vertical dimensions for flat beams

    International Nuclear Information System (INIS)

    Bambade, P.

    1984-06-01

    In this thesis, we present a phenomenological study of the beam-beam effect in e + e - storage rings. We are in particular interested in the blow-up of the vertical dimension observed in this kind of accelerator. A detailed analysis of the electromagnetic field generated by the very flat bunches stored, and seen by the counter-rotating particles shows that two-dimensional non-linear resonances, which couple vertical and horizontal betatron oscillations, play a very important role. Moreover, the ''weak beam-strong beam'' approximation holds rather well in the case of very flat bunches. Perturbative analysis enables us to predict the effects from the strongest coupling resonance: 20sub(x)-20sub(y) = integer. We find that mainly the tails of the vertical distribution are affected, and we give a criterion concerning the optimal distance to this resonance in the case of a storage ring such as LEP. Finally, the results and in particular the validity of the single resonance approximation are checked through a numerical simulation [fr

  6. First integral method for an oscillator system

    Directory of Open Access Journals (Sweden)

    Xiaoqian Gong

    2013-04-01

    Full Text Available In this article, we consider the nonlinear Duffing-van der Pol-type oscillator system by means of the first integral method. This system has physical relevance as a model in certain flow-induced structural vibration problems, which includes the van der Pol oscillator and the damped Duffing oscillator etc as particular cases. Firstly, we apply the Division Theorem for two variables in the complex domain, which is based on the ring theory of commutative algebra, to explore a quasi-polynomial first integral to an equivalent autonomous system. Then, through solving an algebraic system we derive the first integral of the Duffing-van der Pol-type oscillator system under certain parametric condition.

  7. Lattice Upgrade Plan for Crab Crossing at the KEKB Rings

    CERN Document Server

    Morita, Akio; Hosoyama, K; Koiso, Haruyo; Kubo, T; Masuzawa, Mika; Ohmi, Kazuhito; Oide, Katsunobu; Sugahara, Ryuhei; Yoshida, Masato

    2005-01-01

    We plan to install two superconducting crab cavities into the rings at Janyary, 2006. In our plan, we will install one crab cavity per one ring into the NIKKO straight section where the cryogenic infrastructure is already operated for the superconducting accelerating cavities. In order to obtain the correct crabbing angle at the interaction point(IP), we have to enlarge the horizontal beta function(200m for HER) and have to adjust the horizontal phase advance between the IP and the cavity installation point. In this paper, we will report the lattice modified for the crab crossing and the study results about the single beam dynamics.

  8. Seismic fragility capacity of equipment--horizontal shaft pump test

    International Nuclear Information System (INIS)

    Iijima, T.; Abe, H.; Suzuki, K.

    2005-01-01

    The current seismic fragility capacity of horizontal shaft pump is 1.6 x 9.8 m/s 2 (1.6 g), which was decided from previous vibration tests and we believe that it must have sufficient margin. The purpose of fragility capacity test is to obtain realistic seismic fragility capacity of horizontal shaft pump by vibration tests. Reactor Building Closed Cooling Water (RCW) Pump was tested as a typical horizontal shaft pump, and then bearings and liner rings were tested as important parts to evaluate critical acceleration and dispersion. Regarding RCW pump test, no damage was found, though maximum input acceleration level was 6 x 9.8 m/s 2 (6 g). Some kinds of bearings and liner rings were tested on the element test. Input load was based on seismic motion which was same with the RCW pump test, and maximum load was equivalent to over 20 times of design seismic acceleration. There was not significant damage that caused emergency stop of pump but degradation of surface roughness was found on some kinds of bearings. It would cause reduction of pump life, but such damage on bearings occurred under large seismic load condition that was equivalent to over 10 to 20 g force. Test results show that realistic fragility capacity of horizontal shaft pump would be at least four times as higher as current value which has been used for our seismic PSA. (authors)

  9. Lamb shift of energy levels in quantum rings

    International Nuclear Information System (INIS)

    Kryuchkyan, G Yu; Kyriienko, O; Shelykh, I A

    2015-01-01

    We study the vacuum radiative corrections to energy levels of a confined electron in quantum rings. The calculations are provided for the Lamb shift of energy levels in a low-momentum region of virtual photons and for both one-dimensional and two-dimensional quantum rings. We show that contrary to the well known case of a hydrogen atom the value of the Lamb shift increases with the magnetic momentum quantum number m. We also investigate the dependence of the Lamb shift on magnetic flux piercing the ring and demonstrate a presence of magnetic-flux-dependent oscillations. For a one-dimensional ring the value of the shift strongly depends on the radius of the ring. It is small for semiconductor rings but can attain measurable quantities in natural organic ring-shape molecules, such as benzene, cycloalcanes and porphyrins. (paper)

  10. Controllable Continuous evolution of electronic states in a single quantum ring

    OpenAIRE

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk; Laroze, David

    2017-01-01

    Intense terahertz laser field is shown to have a profound effect on the electronic and optical properties of quantum rings, where the isotropic and anisotropic quantum rings can now be treated on equal footing. We have demonstrated that in isotropic quantum rings the laser field creates irregular AB oscillations that are usually expected in anisotropic rings. Further, we have shown for the first time that intense laser fields can restore the {\\it isotropic} physical properties in anisotropic ...

  11. Electron beam depolarization in a damping ring

    International Nuclear Information System (INIS)

    Minty, M.

    1993-04-01

    Depolarization of a polarized electron beam injected into a damping ring is analyzed by extending calculations conventionally applied to proton synchrotrons. Synchrotron radiation in an electron ring gives rise to both polarizing and depolarizing effects. In a damping ring, the beam is stored for a time much less than the time for self polarization. Spin flip radiation may therefore be neglected. Synchrotron radiation without spin flips, however, must be considered as the resonance strength depends on the vertical betatron oscillation amplitude which changes as the electron beam is radiation damped. An expression for the beam polarization at extraction is derived which takes into account radiation damping. The results are applied to the electron ring at the Stanford Linear Collider and are compared with numerical matrix formalisms

  12. Measurement of spin motions in a storage ring outside the stable polarization direction

    International Nuclear Information System (INIS)

    Akchurin, N.; Badano, L.; Bravar, A.; Istituto Nazionale di Fisica Nucleare, Legnaro

    1993-06-01

    Polarized, stored beams are becoming a more and more important tool in nuclear and high energy physics. In order to measure the beam polarization in a storage ring the polarization vector of the stored beams has to aim, revolution for revolution, over a period of seconds to minutes, into the same, so-called ''stable'' direction. In this paper measurements at the Indiana University cooler ring (IUCF) are described in which for the first time in a storage ring oscillations of the polarization vector around this stable direction have been measured. The existence and the dynamics of such oscillations are, for instance, important for a new proposed technique for polarizing stored hadron beams

  13. Measurement of spin motions in a storage ring outside the stable polarization direction

    International Nuclear Information System (INIS)

    Akchurin, N.; McPherson, J.; Olchowski, F.; Onel, Y.; Badano, L.; Conte, M.; Bravar, A.; Penzo, A.; Hall, J.; Kreiser, H.

    1993-01-01

    Polarized, stored beams are becoming a more and more important tool in nuclear and high energy physics. In order to measure the beam polarization in a storage ring the polarization vector of the stored beam has to aim, revolution for revolution, over a period of seconds to minutes, into the same, so-called open-quote stableclose quotes, direction. In this paper measurements at the Indiana University Cooler Ring (IUCF) are described in which for the first time in a storage ring oscillations of the polarization vector around this stable direction have been measured. The existence and the dynamics of such oscillations are, for instance, important for a new proposed technique for polarizing stored hadron beams

  14. Present status of beam position stabilization at photon factory storage ring

    International Nuclear Information System (INIS)

    Nakamura, Norio

    1990-01-01

    Stabilization of photon beam position became a major issue in the operation of the storage rings dedicated as synchrotron radiation source. At the Photon Factory storage ring (PF ring), the orbit movement appeared remarkably when the low-emittance operation started. This orbit movement became a serious problem to synchrotron radiation users because the photon beam to drift with a large amplitude. The horizontal and vertical orbit feedback systems were constructed and developed in order to suppress the orbit movement globally. As a result, the horizontal and vertical orbit movements were reduced by a factor of five and ten, respectively. In addition, another type of feedback system using a local bump was constructed. In the test operation, this system could remove the fast photon beam motion as well as the slow photon beam drift for a beamline. (author)

  15. Current density waves in open mesoscopic rings driven by time-periodic magnetic fluxes

    International Nuclear Information System (INIS)

    Yan Conghua; Wei Lianfu

    2010-01-01

    Quantum coherent transport through open mesoscopic Aharonov-Bohm rings (driven by static fluxes) have been studied extensively. Here, by using quantum waveguide theory and the Floquet theorem we investigate the quantum transport of electrons along an open mesoscopic ring threaded by a time-periodic magnetic flux. We predicate that current density waves could be excited along such an open ring. As a consequence, a net current could be generated along the lead with only one reservoir, if the lead additionally connects to such a normal-metal loop driven by the time-dependent flux. These phenomena could be explained by photon-assisted processes, due to the interaction between the transported electrons and the applied oscillating external fields. We also discuss how the time-average currents (along the ring and the lead) depend on the amplitude and frequency of the applied oscillating fluxes.

  16. Transient chaos in a globally coupled system of nearly conservative Hamiltonian Duffing oscillators

    International Nuclear Information System (INIS)

    Sabarathinam, S.; Thamilmaran, K.

    2015-01-01

    Highlights: •We have examined transient chaos in globally coupled oscillators. •We analyze transient chaos using new techniques. •We give experimental confirmation of transient chaos. -- Abstract: In this work, transient chaos in a ring and globally coupled system of nearly conservative Hamiltonian Duffing oscillators is reported. The networks are formed by coupling of three, four and six Duffing oscillators. The nearly conservative Hamiltonian nature of the coupled system is proved by stability analysis. The transient phenomenon is confirmed through various numerical investigations such as recurrence analysis, 0–1 test and Finite Time Lyapunov Exponents. Further, the effect of damping and the average transient lifetime of three, four and six coupled schemes for randomly generated initial conditions have been analyzed. The experimental confirmation of transient chaos in an illustrative system of three ringly coupled Duffing oscillators is also presented

  17. The positron accumulator ring for the APS

    International Nuclear Information System (INIS)

    Crosbie, E.A.

    1989-01-01

    The Positron Accumulator Ring (PAR) is designed to accumulate and damp positrons from the 450-MeV linac during the 0.5-s cycle time of the injector synchrotron for the APS 7-GeV storage ring. During 0.4 s of each synchrotron cycle, up to 24 linac pulses are injected into the horizontal phase space of the PAR at a 60-Hz rate. Each injected pulse occupies about 1.3 of the circumference of the accumulator ring. After 0.1 s for longitudinal damping, the single accumulated bunch is transferred to one of the 353-MHz buckets of the injector synchrotron RF system. The bunch is accelerated to 7 GeV and transferred to the storage ring, while the PAR accumulates the next bunch of positrons. 2 refs., 3 figs., 2 tabs

  18. The positron accumulator ring for the APS

    International Nuclear Information System (INIS)

    Crosbie, E.A.

    1989-01-01

    The Positron Accumulator Ring (PAR) is designed to accumulate and damp positrons from the 450-MeV linac during the 0.5-s cycle time of the injector synchrotron for the APS 7-GeV storage ring. During 0.4 s of each synchrotron cycle, up to 24 linac pulses are injected into the horizontal phase space of the PAR at a 60-Hz rate. Each injected pulse occupies about 1/3 of the circumference of the accumulator ring. After 0.1 s for longitudinal damping, the single accumulated bunch is transferred to one of the 353-MHz buckets of the injector synchrotron RF system. The bunch is accelerated to 7 GeV and transferred to the storage ring, while the PAR accumulates the next bunch of positrons. 2 refs., 3 figs., 2 tabs

  19. Electron density enhancement in a quasi isochronous storage ring

    International Nuclear Information System (INIS)

    Pellegrini, C.; Robin, D.

    1991-01-01

    The six dimensional phase-space density of an electron beam in a storage ring is determined by the emission of synchrotron radiation, and by the transverse and longitudinal focusing forces determining the particle trajectories. In the simplest case of uncoupled horizontal, vertical and longitudinal motion, the phase space volume occupied by the beam can be characterized by the product of its three projections on the single degree of freedom planes, the horizontal, vertical, and longitudinal emittances. To minimize the beam phase space volume the authors can minimize the transverse and longitudinal emittances. In the case of transverse emittances this problem is very important for synchrotron radiation sources, and has been studied by several authors. A method to minimize the longitudinal emittance, and produce electron bunches with a short pulse length, small energy spread and large peak current has been proposed and discussed recently by C. Pellegrini and D. Robin. This method uses a ring in which the revolution period is weakly dependent on the particle energy, Quasi Isochronous Ring (QIR), in other words a ring with a momentum compaction nearly zero. In this paper they will extend the previous analysis of the conditions for stable single particle motion in such a ring, and give simple criteria for the estimate of the energy spread and phase acceptance of a QIR

  20. Oscillation damping of chiral string loops

    International Nuclear Information System (INIS)

    Babichev, Eugeny; Dokuchaev, Vyacheslav

    2002-01-01

    Chiral cosmic string loops tend to the stationary (vorton) configuration due to energy loss into gravitational and electromagnetic radiation. We describe the asymptotic behavior of near stationary chiral loops and their fading to vortons. General limits on the gravitational and electromagnetic energy losses by near stationary chiral loops are found. For these loops we estimate the oscillation damping time. We present solvable examples of gravitational radiation energy loss by some chiral loop configurations. The analytical dependence of string energy with time is found in the case of the chiral ring with small amplitude radial oscillations

  1. Transport properties of mesoscopic graphene rings

    International Nuclear Information System (INIS)

    Xu, N.; Ding, J.W.; Wang, B.L.; Shi, D.N.; Sun, H.Q.

    2012-01-01

    Based on a recursive Green's function method, we investigate the conductance of mesoscopic graphene rings in the presence of disorder, in the limit of phase coherent transport. Two models of disorder are considered: edge disorder and surface disorder. Our simulations show that the conductance decreases exponentially with the edge disorder and the surface disorder. In the presence of flux, a clear Aharonov-Bohm conductance oscillation with the period Φ 0 (Φ 0 =h/e) is observed. The edge disorder and the surface disorder have no effect on the period of AB oscillation. The amplitudes of AB oscillations vary with gate voltage and flux, which is consistent with the previous results. Additionally, ballistic rectification and negative differential resistance are observed in I-V curves, with on/off characteristic.

  2. 3-D numerical simulations of coronal loops oscillations

    Directory of Open Access Journals (Sweden)

    M. Selwa

    2009-10-01

    Full Text Available We present numerical results of 3-D MHD model of a dipole active region field containing a loop with a higher density than its surroundings. We study different ways of excitation of vertical kink oscillations by velocity perturbation: as an initial condition, and as an impulsive excitation with a pulse of a given position, duration, and amplitude. These properties are varied in the parametric studies. We find that the amplitude of vertical kink oscillations is significantly amplified in comparison to horizontal kink oscillations for exciters located centrally (symmetrically below the loop, but not if the exciter is located a significant distance to the side of the loop. This explains why the pure vertical kink mode is so rarely observed in comparison to the horizontally polarized one. We discuss the role of curved magnetic field lines and the pulse overlapping at one of the loop's footpoints in 3-D active regions (AR's on the excitation and the damping of slow standing waves. We find that footpoint excitation becomes more efficient in 3-D curved loops than in 2-D curved arcades and that slow waves can be excited within an interval of time that is comparable to the observed one wave-period due to the combined effect of the pulse inside and outside the loop. Additionally, we study the effect of AR topology on the excitation and trapping of loop oscillations. We find that a perturbation acting directly on a single loop excites oscillations, but results in an increased leakage compared to excitation of oscillations in an AR field by an external source.

  3. 3-D numerical simulations of coronal loops oscillations

    Directory of Open Access Journals (Sweden)

    M. Selwa

    2009-10-01

    Full Text Available We present numerical results of 3-D MHD model of a dipole active region field containing a loop with a higher density than its surroundings. We study different ways of excitation of vertical kink oscillations by velocity perturbation: as an initial condition, and as an impulsive excitation with a pulse of a given position, duration, and amplitude. These properties are varied in the parametric studies. We find that the amplitude of vertical kink oscillations is significantly amplified in comparison to horizontal kink oscillations for exciters located centrally (symmetrically below the loop, but not if the exciter is located a significant distance to the side of the loop. This explains why the pure vertical kink mode is so rarely observed in comparison to the horizontally polarized one. We discuss the role of curved magnetic field lines and the pulse overlapping at one of the loop's footpoints in 3-D active regions (AR's on the excitation and the damping of slow standing waves. We find that footpoint excitation becomes more efficient in 3-D curved loops than in 2-D curved arcades and that slow waves can be excited within an interval of time that is comparable to the observed one wave-period due to the combined effect of the pulse inside and outside the loop. Additionally, we study the effect of AR topology on the excitation and trapping of loop oscillations. We find that a perturbation acting directly on a single loop excites oscillations, but results in an increased leakage compared to excitation of oscillations in an AR field by an external source.

  4. Limits to the observation of coherent oscillations in a SQUID ring

    International Nuclear Information System (INIS)

    Diggins, J.

    1995-01-01

    Using the quantum mechanical, lumped component model of a SQUID ring we compute the onset of tunnelling and macroscopic superposition behaviour in the parameter space of the ring. In addition, we make a quantitative estimate of the stability required in the environmental flux to sustain a superposition state. Both these features are of crucial importance to the realisation of experiments aimed at revealing such behaviour. (orig.)

  5. Designing a ring-VCO for RFID transponders in 0.18 μm CMOS process.

    Science.gov (United States)

    Jalil, Jubayer; Reaz, Mamun Bin Ibne; Bhuiyan, Mohammad Arif Sobhan; Rahman, Labonnah Farzana; Chang, Tae Gyu

    2014-01-01

    In radio frequency identification (RFID) systems, performance degradation of phase locked loops (PLLs) mainly occurs due to high phase noise of voltage-controlled oscillators (VCOs). This paper proposes a low power, low phase noise ring-VCO developed for 2.42 GHz operated active RFID transponders compatible with IEEE 802.11 b/g, Bluetooth, and Zigbee protocols. For ease of integration and implementation of the module in tiny die area, a novel pseudodifferential delay cell based 3-stage ring oscillator has been introduced to fabricate the ring-VCO. In CMOS technology, 0.18 μm process is adopted for designing the circuit with 1.5 V power supply. The postlayout simulated results show that the proposed oscillator works in the tuning range of 0.5-2.54 GHz and dissipates 2.47 mW of power. It exhibits a phase noise of -126.62 dBc/Hz at 25 MHz offset from 2.42 GHz carrier frequency.

  6. Oxygen isotopes in tree rings are a good proxy for Amazon precipitation and El Niño-Southern Oscillation variability

    Science.gov (United States)

    Brienen, Roel J. W.; Helle, Gerd; Pons, Thijs L.; Guyot, Jean-Loup; Gloor, Manuel

    2012-10-01

    We present a unique proxy for the reconstruction of variation in precipitation over the Amazon: oxygen isotope ratios in annual rings in tropical cedar (Cedrela odorata). A century-long record from northern Bolivia shows that tree rings preserve the signal of oxygen isotopes in precipitation during the wet season, with weaker influences of temperature and vapor pressure. Tree ring δ18O correlates strongly with δ18O in precipitation from distant stations in the center and west of the basin, and with Andean ice core δ18O showing that the signal is coherent over large areas. The signal correlates most strongly with basin-wide precipitation and Amazon river discharge. We attribute the strength of this (negative) correlation mainly to the cumulative rainout processes of oxygen isotopes (Rayleigh distillation) in air parcels during westward transport across the basin. We further find a clear signature of the El Niño-Southern Oscillation (ENSO) in the record, with strong ENSO influences over recent decades, but weaker influence from 1925 to 1975 indicating decadal scale variation in the controls on the hydrological cycle. The record exhibits a significant increase in δ18O over the 20th century consistent with increases in Andean δ18O ice core and lake records, which we tentatively attribute to increased water vapor transport into the basin. Taking these data together, our record reveals a fresh path to diagnose and improve our understanding of variation and trends of the hydrological cycle of the world's largest river catchment.

  7. Amplitude death and spatiotemporal bifurcations in nonlocally delay-coupled oscillators

    International Nuclear Information System (INIS)

    Guo, Yuxiao; Niu, Ben

    2015-01-01

    Amplitude death and spatiotemporal oscillations are remarkable patterns in coupled systems. We consider a ring of n identical oscillators with distance-dependent couplings and time delay. The amplitude death region is the intersection of three stable regions. Employing the method of multiple scales and normal form theory, the stability and criticality of spatiotemporal oscillations are determined. Around the amplitude death boundary there exist one branch of synchronized oscillations, n − 3 branches of co-existing phase-locked oscillations, n branches of mirror-reflecting oscillations, n branches of standing-wave oscillations, one branch of quasiperiodic oscillations and two branches of co-existing synchronized oscillations. It is proved that amplitude death is robust to small inhomogeneity of couplings, and the stability of synchronized or phase-locked oscillations inherits that of the individual decoupled oscillator. For the arbitrary form of coupling functions, some general results are also obtained for the thermodynamic limit. Finally, two examples are given to support the main results. (paper)

  8. Controllable continuous evolution of electronic states in a single quantum ring

    Science.gov (United States)

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk; Laroze, David

    2018-02-01

    An intense terahertz laser field is shown to have a profound effect on the electronic and optical properties of quantum rings where the isotropic and anisotropic quantum rings can now be treated on equal footing. We have demonstrated that in isotropic quantum rings the laser field creates unusual Aharonov-Bohm oscillations that are usually expected in anisotropic rings. Furthermore, we have shown that intense laser fields can restore the isotropic physical properties in anisotropic quantum rings. In principle, all types of anisotropies (structural, effective masses, defects, etc.) can evolve as in isotropic rings in our present approach. Most importantly, we have found a continuous evolution of the energy spectra and intraband optical characteristics of structurally anisotropic quantum rings to those of isotropic rings in a controlled manner with the help of a laser field.

  9. Adaptive Injection-locking Oscillator Array for RF Spectrum Analysis

    International Nuclear Information System (INIS)

    Leung, Daniel

    2011-01-01

    A highly parallel radio frequency receiver using an array of injection-locking oscillators for on-chip, rapid estimation of signal amplitudes and frequencies is considered. The oscillators are tuned to different natural frequencies, and variable gain amplifiers are used to provide negative feedback to adapt the locking band-width with the input signal to yield a combined measure of input signal amplitude and frequency detuning. To further this effort, an array of 16 two-stage differential ring oscillators and 16 Gilbert-cell mixers is designed for 40-400 MHz operation. The injection-locking oscillator array is assembled on a custom printed-circuit board. Control and calibration is achieved by on-board microcontroller.

  10. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    International Nuclear Information System (INIS)

    Prabhu Gaunkar, N.; Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C.; Bulu, I.; Ganesan, K.; Song, Y. Q.

    2015-01-01

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors

  11. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu Gaunkar, N., E-mail: neelampg@iastate.edu; Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C. [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Bulu, I.; Ganesan, K.; Song, Y. Q. [Schlumberger-Doll Research, Cambridge, Massachusetts 02139 (United States)

    2015-05-07

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors.

  12. Vortex Ring Interaction with a Heated Screen

    Science.gov (United States)

    Smith, Jason; Krueger, Paul S.

    2008-11-01

    Previous examinations of vortex rings impinging on porous screens has shown the reformation of the vortex ring with a lower velocity after passing through the screen, the creation of secondary vortices, and mixing. A heated screen could, in principle, alter the vortex-screen interaction by changing the local liquid viscosity and density. In the present investigation, a mechanical piston-cylinder vortex ring generator was used to create vortex rings in an aqueous sucrose solution. The rings impinged on a screen of horizontal wires that were heated using electrical current. The flow was visualized with food color and video imaging. Tests with and without heat were conducted at a piston stroke-to-jet diameter ratio of 4 and a jet Reynolds number (Re) of 1000. The vortex rings slowed after passing through the screen, but in tests with heat, they maintained a higher fraction of their before-screen velocity due to reduction in fluid viscosity near the wires. In addition, small ``fingers'' that developed on the front of the vortex rings as they passed through the screen exhibited positive buoyancy effects in the heated case.

  13. Challenges in Switching SiC MOSFET without Ringing

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig

    2014-01-01

    Switching SiC MOSFET without ringing in high frequency applications is important for meeting the EMI (ElectroMagnetic Interference) standard. Achieving a clean switching waveform of SiC MOSFET without additional components is becoming a challenge. In this paper, the switching oscillation mechanis...

  14. Fast cooling of bunches in compton storage rings*

    CERN Document Server

    Bulyak, E; Zimmermann, F

    2011-01-01

    We propose an enhancement of laser radiative cooling by utilizing laser pulses of small spatial and temporal dimensions, which interact only with a fraction of an electron bunch circulating in a storage ring. We studied the dynamics of such electron bunch when laser photons scatter off the electrons at a collision point placed in a section with nonzero dispersion. In this case of ‘asymmetric cooling’, the stationary energy spread is much smaller than under conditions of regular scattering where the laser spot size is larger than the electron beam; and the synchrotron oscillations are damped faster. Coherent oscillations of large amplitude may be damped within one synchrotron period, so that this method can support the rapid successive injection of many bunches in longitudinal phase space for stacking purposes. Results of extensive simulations are presented for the performance optimization of Compton gamma-ray sources and damping rings.

  15. High Isolation Dual-Polarized Patch Antenna with Hybrid Ring Feeding

    Directory of Open Access Journals (Sweden)

    Xian-Jing Lin

    2017-01-01

    Full Text Available This paper presents a hybrid ring feeding dual-polarized patch antenna with high isolation in a wide working band. The proposed antenna consists of a circular radiating patch printed on the upper horizontal substrate, two pairs of Γ shaped strips printed on two vertical substrates, and a hybrid ring feeding network printed on the lower two horizontal substrates. The proposed antenna adopts Γ shape strips coupled feeding structure to achieve a wide operating band. Furthermore, a hybrid ring feeding structure with high isolation in a wide bandwidth, which is firstly proposed, is applied as feeding network. When one port is excited, the feeding network can realize twice the power cancellation. Thus, high ports isolation characteristics can be obtained. A prototype of the proposed antenna is fabricated and measured. Measured results show that the 10 dB reflection coefficient bandwidths of the two ports are both about 38.7%, with port isolation higher than 40 dB through most of the band, and the cross-polarizations are below −24 dB.

  16. Dynamic magnetoconductance fluctuations and oscillations in mesoscopic wires and rings

    DEFF Research Database (Denmark)

    Liu, D. Z.; Hu, Ben Yu-Kuang; Stafford, C. A.

    1994-01-01

    Using a finite-frequency recursive Green's-function technique, we calculate the dynamic magnetoconductance fluctuations and oscillations in disordered mesoscopic normal-metal systems, incorporating interparticle Coulomb interactions within a self-consistent potential method. In a disorderd metal ...

  17. Effective tuning of electron charge and spin distribution in a dot-ring nanostructure at the ZnO interface

    Science.gov (United States)

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk

    2018-05-01

    Electronic states and the Aharonov-Bohm effect in ZnO quantum dot-ring nanostructures containing few interacting electrons reveal several unique features. We have shown here that in contrast to the dot-rings made of conventional semiconductors, such as InAs or GaAs, the dot-rings in ZnO heterojunctions demonstrate several unique characteristics due to the unusual properties of quantum dots and rings in ZnO. In particular the energy spectra of the ZnO dot-ring and the Aharnov-Bohm oscillations are strongly dependant on the electron number in the dot or in the ring. Therefore even small changes of the confinement potential, sizes of the dot-ring or the magnetic field can drastically change the energy spectra and the behavior of Aharonov-Bohm oscillations in the system. Due to this interesting phenomena it is possible to effectively control with high accuracy the electron charge and spin distribution inside the dot-ring structure. This controlling can be achieved either by changing the magnetic field or the confinement potentials.

  18. Beam separation for p-anti p collisions in a single ring in the multibunch mode

    International Nuclear Information System (INIS)

    Berley, D.; Garren, A.A.; Month, M.

    1978-01-01

    A discussion is given of proton-antiproton colliding beam operation in storage rings. Some means of separating the beams at points where no experiment is being performed seems to be an important feature for a p-anti p colliding beam ring. By exciting a betatron oscillation in some appropriate, localized region, one could create a specific collision point while at the same time cause the p and anti p beams to oscillate in opposition so that their orbits meet at only a small number of points, roughly given by twice the tune, 2ν

  19. Equivariant bifurcation in a coupled complex-valued neural network rings

    International Nuclear Information System (INIS)

    Zhang, Chunrui; Sui, Zhenzhang; Li, Hongpeng

    2017-01-01

    Highlights: • Complex value Hopfield-type network with Z4 × Z2 symmetry is discussed. • The spatio-temporal patterns of bifurcating periodic oscillations are obtained. • The oscillations can be in phase or anti-phase depending on the parameters and delay. - Abstract: Network with interacting loops and time delays are common in physiological systems. In the past few years, the dynamic behaviors of coupled interacting loops neural networks have been widely studied due to their extensive applications in classification of pattern recognition, signal processing, image processing, engineering optimization and animal locomotion, and other areas, see the references therein. In a large amount of applications, complex signals often occur and the complex-valued recurrent neural networks are preferable. In this paper, we study a complex value Hopfield-type network that consists of a pair of one-way rings each with four neurons and two-way coupling between each ring. We discuss the spatio-temporal patterns of bifurcating periodic oscillations by using the symmetric bifurcation theory of delay differential equations combined with representation theory of Lie groups. The existence of multiple branches of bifurcating periodic solution is obtained. We also found that the spatio-temporal patterns of bifurcating periodic oscillations alternate according to the change of the propagation time delay in the coupling, i.e., different ranges of delays correspond to different patterns of neural network oscillators. The oscillations of corresponding neurons in the two loops can be in phase or anti-phase depending on the parameters and delay. Some numerical simulations support our analysis results.

  20. The phase slip factor of the electrostatic cryogenic storage ring CSR

    Science.gov (United States)

    Grieser, Manfred; von Hahn, Robert; Vogel, Stephen; Wolf, Andreas

    2017-07-01

    To determine the momentum spread of an ion beam from the measured revolution frequency distribution, the knowledge of the phase slip factor of the storage ring is necessary. The slip factor was measured for various working points of the cryogenic storage ring CSR at MPI for Nuclear Physics, Heidelberg and was compared with simulations. The predicted functional relationship of the slip factor and the horizontal tune depends on the different islands of stability, which has been experimentally verified. This behavior of the slip factor is in clear contrast to that of magnetic storage rings.

  1. SXLS storage ring design

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    X-ray lithography has emerged as a strong candidate to meet the demands of ever finer linewidths on integrated circuits, particularly for linewidths less than .25 microns. Proximity printing X-ray lithography makes use of soft X-rays to shadow print an image of a mask onto a semiconductor wafer to produce integrated circuits. To generate the required X-rays in sufficient quantities to make commercial production viable, electron storage rings have been proposed as the soft X-ray sources. Existing storage rings have been used to do the initial development work and the success of these efforts has led the lithographers to request that new rings be constructed that are dedicated to X-ray lithography. As a result of a series of workshops held at BNL [10.3] which were attended by both semiconductor and accelerator scientists, the following set of zeroth order specifications' on the light and electron beam of a storage ring for X-ray lithography were developed: critical wavelength of light: λ c = 6 to 10 angstroms, white light power: P = 0.25 to 2.5 watts/mrad, horizontal collection angle per port: θ = 10 to 50 mrad, electron beam sizes: σ x ∼ σ y y ' < 1 mrad

  2. Temperature And Wind Velocity Oscillations Along a Gentle Slope During Sea-Breeze Events

    Science.gov (United States)

    Bastin, Sophie; Drobinski, Philippe

    2005-03-01

    The flow structure on a gentle slope at Vallon d’Ol in the northern suburbs of Marseille in southern France has been documented by means of surface wind and temperature measurements collected from 7 June to 14 July 2001 during the ESCOMPTE experiment. The analysis of the time series reveals temperature and wind speed oscillations during several nights (about 60--90 min oscillation period) and several days (about 120-180 min oscillation period) during the whole observing period. Oscillating katabatic winds have been reported in the literature from theoretical, experimental and numerical studies. In the present study, the dynamics of the observed oscillating katabatic winds are in good agreement with the theory.In contrast to katabatic winds, no daytime observations of oscillating anabatic upslope flows have ever been published to our knowledge, probably because of temperature inversion break-up that inhibits upslope winds. The present paper shows that cold air advection by a sea breeze generates a mesoscale horizontal temperature gradient, and hence baroclinicity in the atmosphere, which then allows low-frequency oscillations, similar to a katabatic flow. An expression for the oscillation period is derived that accounts for the contribution of the sea-breeze induced mesoscale horizontal temperature gradient. The theoretical prediction of the oscillation period is compared to the measurements, and good agreement is found. The statistical analysis of the wind flow at Vallon d’Ol shows a dominant north-easterly to easterly flow pattern for nighttime oscillations and a dominant south-westerly flow pattern for daytime oscillations. These results are consistent with published numerical simulation results that show that the air drains off the mountain along the maximum slope direction, which in the studied case is oriented south-west to north-east.

  3. Interdecadal modulation of the relationship between ENSO, IPO and precipitation: insights from tree rings in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, Ingo [School of Resources, Environment and Society, Australian National University, Canberra, ACT (Australia); Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Climate Dynamics and Landscape Evolution, Potsdam (Germany); Weidner, Kathrin [Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Climate Dynamics and Landscape Evolution, Potsdam (Germany); Forschungszentrum Juelich GmbH, Institute for Chemistry and Dynamics of the Geosphere, Juelich (Germany); Helle, Gerhard [Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Climate Dynamics and Landscape Evolution, Potsdam (Germany); Vos, Heinz [Forschungszentrum Juelich GmbH, Institute for Chemistry and Dynamics of the Geosphere, Juelich (Germany); Lindesay, Janette; Banks, John C.G. [School of Resources, Environment and Society, Australian National University, Canberra, ACT (Australia)

    2009-07-15

    Australian climate-proxy reconstructions based on tree rings from tropical and subtropical forests have not been achieved so far due to the rarity of species producing anatomically distinct annual growth rings. Our study identifies the Australian Red Cedar (Toona ciliata) as one of the most promising tree species for tree-ring research in Australasia because this species exhibits distinct annual tree rings, a prerequisite for high quality tropical dendroclimatology. Based on these preliminary studies, we were able, for the first time in subtropical and tropical Australia, to develop a statistically robust, precisely dated and annually resolved chronology back to AD1854. We show that the variability in ring widths of T. ciliata is mainly dependent on annual precipitation. The developed proxy data series contains both high- and low-frequency climate signals which can be associated with the El Nino Southern Oscillation (ENSO) and the Interdecadal Pacific Oscillation (IPO). A comparison of different data sets (Brisbane precipitation, tree rings, coral luminescence record from the Great Barrier Reef, ENSO and IPO) revealed non-stationary correlation patterns throughout the twentieth century but little instability between the new tree-ring chronology and Brisbane precipitation. (orig.)

  4. Damping coherent phase oscillations by means of path-length modulation

    International Nuclear Information System (INIS)

    Rees, J.R.

    1978-06-01

    Multi-bunch storage rings and synchrotrons are typically plagued by a tendency for the bunches to indulge in unstable coherent phase oscillations engendered by their electromagnetic interactions with the vacuum chamber. In many machines feedback systems have been used successfully to damp these oscillations using a signal proportional to the coherent phase motion or the concomitant energy motion to control an auxiliary longitudinal electric field. The purpose of this note is to describe an alternative feedback system which, using the same kind of a signal, modulates the path length of the orbit of the reference particle (the synchronous particle in the absence of coherent phase oscillations) in such a way as to damp coherent oscillations. 2 refs., 1 fig

  5. Normal form analysis of linear beam dynamics in a coupled storage ring

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Woodley, Mark D.

    2004-01-01

    The techniques of normal form analysis, well known in the literature, can be used to provide a straightforward characterization of linear betatron dynamics in a coupled lattice. Here, we consider both the beam distribution and the betatron oscillations in a storage ring. We find that the beta functions for uncoupled motion generalize in a simple way to the coupled case. Defined in the way that we propose, the beta functions remain well behaved (positive and finite) under all circumstances, and have essentially the same physical significance for the beam size and betatron oscillation amplitude as in the uncoupled case. Application of this analysis to the online modeling of the PEP-II rings is also discussed

  6. Oscillations of a spring-magnet system damped by a conductive plate

    Science.gov (United States)

    Ladera, C. L.; Donoso, G.

    2013-09-01

    We study the motion of a spring-magnet system that oscillates with very low frequencies above a circular horizontal non-magnetizable conductive plate. The magnet oscillations couple with the plate via the Foucault currents induced therein. We develop a simple theoretical model for this magneto-mechanical oscillator, a model that leads to the equation of a damped harmonic oscillator, whose weak attenuation constant depends upon the system parameters, e.g. the electrical conductivity of the constituent material of the plate and its thickness. We present a set of validating experiments, the results of which are predicted with good accuracy by our analytical model. Additional experiments can be performed with this oscillating system or its variants. This oscillator is simple and low-cost, easy to assemble, and can be used in experiments or project works in physics teaching laboratories at the undergraduate level.

  7. Oscillations of a spring–magnet system damped by a conductive plate

    International Nuclear Information System (INIS)

    Ladera, C L; Donoso, G

    2013-01-01

    We study the motion of a spring–magnet system that oscillates with very low frequencies above a circular horizontal non-magnetizable conductive plate. The magnet oscillations couple with the plate via the Foucault currents induced therein. We develop a simple theoretical model for this magneto-mechanical oscillator, a model that leads to the equation of a damped harmonic oscillator, whose weak attenuation constant depends upon the system parameters, e.g. the electrical conductivity of the constituent material of the plate and its thickness. We present a set of validating experiments, the results of which are predicted with good accuracy by our analytical model. Additional experiments can be performed with this oscillating system or its variants. This oscillator is simple and low-cost, easy to assemble, and can be used in experiments or project works in physics teaching laboratories at the undergraduate level. (paper)

  8. Oscillatory persistent currents in self-assembled quantum rings.

    Science.gov (United States)

    Kleemans, N A J M; Bominaar-Silkens, I M A; Fomin, V M; Gladilin, V N; Granados, D; Taboada, A G; García, J M; Offermans, P; Zeitler, U; Christianen, P C M; Maan, J C; Devreese, J T; Koenraad, P M

    2007-10-05

    We report the direct measurement of the persistent current carried by a single electron by means of magnetization experiments on self-assembled InAs/GaAs quantum rings. We measured the first Aharonov-Bohm oscillation at a field of 14 T, in perfect agreement with our model based on the structural properties determined by cross-sectional scanning tunneling microscopy measurements. The observed oscillation magnitude of the magnetic moment per electron is remarkably large for the topology of our nanostructures, which are singly connected and exhibit a pronounced shape asymmetry.

  9. An experimental study of gravity-driven countercurrent two-phase flow in horizontal and inclined channels

    International Nuclear Information System (INIS)

    Lillibridge, K.H.; Ghiaasiaan, S.M.; Abdel-Khalik, S.I.

    1994-01-01

    Countercurrent two-phase flow in horizontal and inclined channels, connecting a sealed liquid-filled reservoir to the atmosphere, is experimentally studied. This type of gravity-driven countercurrent two-phase flow can occur during the operation of passive safety coolant injection systems of advanced reactors. It can also occur in the pressurizer surge line of pressurized water reactors during severe accidents when the hot leg becomes voided. Four distinct flow regimes are identified: (a) stratified countercurrent, which mainly occurs when the channel is horizontal; (b) intermittent stratified-slug; (c) oscillating, which occurs when the angle of inclination is ≥30 deg; and (d) annular countercurrent. The characteristics of each regime and their sensitivity to important geometric parameters are examined. The superficial velocities in the stratified countercurrent and oscillating regimes are empirically correlated

  10. Numerical modeling of a pitch oscillating S809 airfoil dynamic stall in 2D with application to a horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Gharali, K.; Johnson, D.A. [Waterloo Univ., ON (Canada). Dept. of Mechanical and Mechatronics Engineering, Wind Energy Group

    2010-07-01

    Natural wind can sometimes have a strong wind shear that causes the Dynamic Stall (DS) phenomena which may result in dynamic loads and varying lift coefficients. The DS phenomena cannot be prevented in horizontal axis wind turbines (HAWTs). Therefore, it is necessary to study the unsteady aerodynamics in order to modify common wind turbine rotor designs. This paper reported on a study that investigated the dynamic flow fields around an oscillating 2D S809 airfoil, representing the aerodynamic characteristics of HAWT airfoils for dynamic stall conditions. A computational fluid dynamic (CFD) flow solver package with Fluent was used with different turbulence models, notably the Spalart-Allmaras and Detached Eddy Simulation (DES) methods. A sliding mesh is commonly used in numerical methods for simulating an oscillating foil, but sliding meshes suffer from mesh generation complexity and increased computational time. In this study, instead of a sinusoidally pitching airfoil, the direction of the far-field flow was changed according to a user-defined function in the software to simulate a proper angle of attack for the boundary conditions in each time step. This strategy helped to decrease processing time. The simulation results were in good agreement with experimental data and the Beddoes-Leishman model results. The DES method for unsteady 2D flow was not recommended. It was concluded that the Fluent package is time efficient, reliable and economic for the wind turbine industry. 17 refs., 3 figs.

  11. PT -symmetric dimer of coupled nonlinear oscillators

    Indian Academy of Sciences (India)

    We provide a systematic analysis of a prototypical nonlinear oscillator ... recently, a number of nonlinear variants have been explored, like split-ring resonator chain .... Note that these solutions are valid for any value of ǫ (and hence δ) including ǫ ..... [16] M Abramowitz and I A Stegun, Handbook of mathematical functions ...

  12. Beam loading in high-energy storage rings

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1974-06-01

    The analysis of beam loading in the RF systems of high-energy storage rings (for example, the PEP e/sup /minus//e/sup +/ ring) is complicated by the fact that the time, T/sub b/, between the passage of successive bunches is comparable to the cavity filling time, T/sub b/. In this paper, beam loading expressions are first summarized for the usual case in which T/sub b/ /much lt/ T/sub f/. The theory of phase oscillations in the heavily-beam-loaded case is considered, and the dependence of the synchrotron frequency and damping constant for the oscillations on beam current and cavity tuning is calculated. Expressions for beam loading are then derived which are valid for any value of the ratio T/sub b//T/sub f/. It is shown that, for the proposed PEP e/sup /minus//e/sup +/ ring parameters, the klystron power required is increased by about 3% over that calculated using the standard beam loading expressions. Finally, the analysis is extended to take into account the additional losses associated with the excitation of higher-order cavity modes. A rough numerical estimate is made of the loss enhancement to be expected for PEP RF system. It is concluded that this loss enhancement might be substantial unless appropriate measures are taken in the design and tuning of the accelerating structure

  13. Graphene rings in magnetic fields: Aharonov–Bohm effect and valley splitting

    International Nuclear Information System (INIS)

    Wurm, J; Wimmer, M; Richter, K; Baranger, H U

    2010-01-01

    We study the conductance of mesoscopic graphene rings in the presence of a perpendicular magnetic field by means of numerical calculations based on a tight-binding model. First, we consider the magnetoconductance of such rings and observe the Aharonov–Bohm effect. We investigate different regimes of the magnetic flux up to the quantum Hall regime, where the Aharonov–Bohm oscillations are suppressed. Results for both clean (ballistic) and disordered (diffusive) rings are presented. Second, we study rings with smooth mass boundary that are weakly coupled to leads. We show that the valley degeneracy of the eigenstates in closed graphene rings can be lifted by a small magnetic flux, and that this lifting can be observed in the transport properties of the system

  14. Transverse coupling impedance of the storage ring at the European Synchrotron Radiation Facility

    Directory of Open Access Journals (Sweden)

    T. F. Günzel

    2006-11-01

    Full Text Available The vertical and horizontal impedance budgets of the European Synchrotron Radiation Facility (ESRF storage ring are calculated by element-by-element wake potential calculation. Resistive wall wakes are calculated analytically; the short range geometrical wakes are calculated by a 3D electromagnetic field solver. The effect of the quadrupolar wakes due to the flatness of most ESRF vacuum chambers is included in the model. It can well explain the sensitivity of the horizontal single bunch threshold on vacuum chamber changes, in particular, in low-gap sections of the ESRF storage ring. The values of the current thresholds on the transverse planes could be predicted correctly by the model within a factor of 2.

  15. Small slot waveguide rings for on-chip quantum optical circuits.

    Science.gov (United States)

    Rotenberg, Nir; Türschmann, Pierre; Haakh, Harald R; Martin-Cano, Diego; Götzinger, Stephan; Sandoghdar, Vahid

    2017-03-06

    Nanophotonic interfaces between single emitters and light promise to enable new quantum optical technologies. Here, we use a combination of finite element simulations and analytic quantum theory to investigate the interaction of various quantum emitters with slot-waveguide rings. We predict that for rings with radii as small as 1.44 μm, with a Q-factor of 27,900, near-unity emitter-waveguide coupling efficiencies and emission enhancements on the order of 1300 can be achieved. By tuning the ring geometry or introducing losses, we show that realistic emitter-ring systems can be made to be either weakly or strongly coupled, so that we can observe Rabi oscillations in the decay dynamics even for micron-sized rings. Moreover, we demonstrate that slot waveguide rings can be used to directionally couple emission, again with near-unity efficiency. Our results pave the way for integrated solid-state quantum circuits involving various emitters.

  16. Coherence resonance and stochastic resonance in directionally coupled rings

    Science.gov (United States)

    Werner, Johannes Peter; Benner, Hartmut; Florio, Brendan James; Stemler, Thomas

    2011-11-01

    In coupled systems, symmetry plays an important role for the collective dynamics. We investigate the dynamical response to noise with and without weak periodic modulation for two classes of ring systems. Each ring system consists of unidirectionally coupled bistable elements but in one class, the number of elements is even while in the other class the number is odd. Consequently, the rings without forcing show at a certain coupling strength, either ordering (similar to anti-ferromagnetic chains) or auto-oscillations. Analysing the bifurcations and fixed points of the two ring classes enables us to explain the dynamical response measured to noise and weak modulation. Moreover, by analysing a simplified model, we demonstrate that the response is universal for systems having a directional component in their stochastic dynamics in phase space around the origin.

  17. The Aharonov-Bohm effect in a side-gated graphene ring

    International Nuclear Information System (INIS)

    Huefner, Magdalena; Molitor, Francoise; Jacobsen, Arnhild; Pioda, Alessandro; Stampfer, Christoph; Ensslin, Klaus; Ihn, Thomas

    2010-01-01

    We investigate the magnetoresistance of a side-gated ring structure etched out of single-layer graphene. We observe Aharonov-Bohm oscillations with about 5% visibility. We are able to change the relative phases of the wave functions in the interfering paths and induce phase jumps of π in the Aharonov-Bohm oscillations by changing the voltage applied to the side gate or the back gate. The observed data can be interpreted within existing models for 'dirty metals'.

  18. Chimera states in an ensemble of linearly locally coupled bistable oscillators

    Science.gov (United States)

    Shchapin, D. S.; Dmitrichev, A. S.; Nekorkin, V. I.

    2017-11-01

    Chimera states in a system with linear local connections have been studied. The system is a ring ensemble of analog bistable self-excited oscillators with a resistive coupling. It has been shown that the existence of chimera states is not due to the nonidentity of oscillators and noise, which is always present in real experiments, but is due to the nonlinear dynamics of the system on invariant tori with various dimensions.

  19. Linearity of bulk-controlled inverter ring VCO in weak and strong inversion

    DEFF Research Database (Denmark)

    Wismar, Ulrik Sørensen; Wisland, D.; Andreani, Pietro

    2007-01-01

    In this paper linearity of frequency modulation in voltage controlled inverter ring oscillators for non feedback sigma delta converter applications is studied. The linearity is studied through theoretical models of the oscillator operating at supply voltages above and below the threshold voltage......, process variations and temperature variations have also been simulated to indicate the advantages of having the soft rail bias transistor in the VCO....

  20. Oscillatory persistent currents in self-assembled quantum rings

    NARCIS (Netherlands)

    Kleemans, N.A.J.M.; Bominaar-Silkens, I.M.A.; Fomin, V.; Gladilin, V.N.; Granados, D.; Taboada, A.G.; Garcia, J.M.; Offermans, P.; Zeitler, U.; Christianen, P.C.M.; Maan, J.C.; Devreese, J.T.; Koenraad, P.M.

    2007-01-01

    We report the direct measurement of the persistent current carried by a single electron by means of magnetization experiments on self-assembled InAs/GaAs quantum rings. We measured the first Aharonov-Bohm oscillation at a field of 14 T, in perfect agreement with our model based on the structural

  1. Profiling Saturn's rings by radio occultation

    International Nuclear Information System (INIS)

    Marouf, E.A.; Tyler, G.L.; Rosen, P.A.

    1986-01-01

    The development of reconstruction algorithms that correct for diffraction effects in radio occultation measurements is described. The reciprocal Fresnel transform relationship between the complex amplitude of the observed coherent signal and the complex microwave transmittance of the rings is derived using the Huygens-Fresnel formulation of the diffraction problem. The effects of the finite data segment width, the uncertainties in the Fresnel scale, systematic phase errors in the kernel of the inverse transform, reference oscillator instabilities, and random noise measurements on the resolution of the reconstructed transmittance are analyzed. Examples of reconstructed opacity profiles for some regions of Saturn's rings derived by applying the reconstruction theory to Voyager 1 at Saturn data are presented. 35 references

  2. Analysis of parasitic oscillations in 42 GHz gyrotron beam tunnel

    Science.gov (United States)

    Kumar, N.; Singh, U.; Singh, T. P.; Sinha, A. K.

    2011-02-01

    Parasitic oscillation excitation analysis has been carried out for the 42 GHz gyrotron beam tunnel. This article presents a systematic approach for the analysis of parasitic oscillation excitation. The electron trajectory code EGUN has been used for the estimation of the electron beam parameters in the beam tunnel. The electromagnetic simulation code CST-MS has been used for the eigenmode and Q value analysis. The analysis of the parasitic oscillations has been performed for the symmetric TE modes and the first three cavity side copper rings. Four different approaches- the Q value study, the mode maxima-electron beam radius mismatching, the electron cyclotron frequency-mode excitation frequency mismatching and the backward wave interaction analysis- have been used for the parasitic oscillation analysis.

  3. Design of a 4.8-m ring for inverse Compton scattering x-ray source

    Directory of Open Access Journals (Sweden)

    H. S. Xu

    2014-07-01

    Full Text Available In this paper we present the design of a 50 MeV compact electron storage ring with 4.8-meter circumference for the Tsinghua Thomson scattering x-ray source. The ring consists of four dipole magnets with properly adjusted bending radii and edge angles for both horizontal and vertical focusing, and a pair of quadrupole magnets used to adjust the horizontal damping partition number. We find that the dynamic aperture of compact storage rings depends essentially on the intrinsic nonlinearity of the dipole magnets with small bending radius. Hamiltonian dynamics is found to agree well with results from numerical particle tracking. We develop a self-consistent method to estimate the equilibrium beam parameters in the presence of the intrabeam scattering, synchrotron radiation damping, quantum excitation, and residual gas scattering. We also optimize the rf parameters for achieving a maximum x-ray flux.

  4. Optimal control of quantum rings by terahertz laser pulses.

    Science.gov (United States)

    Räsänen, E; Castro, A; Werschnik, J; Rubio, A; Gross, E K U

    2007-04-13

    Complete control of single-electron states in a two-dimensional semiconductor quantum-ring model is established, opening a path into coherent laser-driven single-gate qubits. The control scheme is developed in the framework of optimal-control theory for laser pulses of two-component polarization. In terms of pulse lengths and target-state occupations, the scheme is shown to be superior to conventional control methods that exploit Rabi oscillations generated by uniform circularly polarized pulses. Current-carrying states in a quantum ring can be used to manipulate a two-level subsystem at the ring center. Combining our results, we propose a realistic approach to construct a laser-driven single-gate qubit that has switching times in the terahertz regime.

  5. Ion shaking in the 200 MeV XLS-ring

    International Nuclear Information System (INIS)

    Bozoki, E.; Kramer, S.L.

    1992-01-01

    It has been shown that ions, trapped inside the beam's potential, can be removed by the clearing electrodes when the amplitude of the ion oscillation is increased by vertically shaking the ions. We will report on a similar experiment in the 200 Mev XLS ring. The design of the ion clearing system for the ring and the first results obtained, were already reported. In the present series of experiments, RF voltage was applied on a pair of vertical strip-lines. The frequency was scanned in the range of the ion (from H 2 to CO 2 ) bounce frequencies in the ring (1--10 MHz). The response of the beam size, vertical betatron tune and lifetime was studied

  6. Longitudinal instability studies at the SURF II storage ring at NIST

    International Nuclear Information System (INIS)

    Harkay, K.C.; Sereno, N.S.

    1998-01-01

    Measurements of the longitudinal instability observed in the storage ring at the Synchrotrons Ultraviolet Radiation Facility (SURF II) at the National Institute of Standards and Technology (NET) were performed to understand the mechanism driving the instability. The instability, studied in depth by Ralcowsky and others, manifests itself in broad resonance features in the horizontal and vertical motion spectrum of the synchrotrons light from DC to a few kHz. Also observed are multiple synchrotrons harmonics that modulate the revolution harmonics; these are characteristic of longitudinal phase oscillations. These spectral features of the motion are found to be correlated with the periodic lengthening and shortening of the bunch length on time scales from approximately0.1 ms to 20 ms, depending on machine and radio-frequency (rf) system parameters. In this report, the growth rate of the instability is determined from measurements using an rf pickup electrode. The measured growth rates are compared to computed growth rates from an analytical model. Recommendations are made regarding options to control or mitigate the instability. In light of upgrade plans for SURF III, a few comments are presented about the beam lifetime

  7. Bunch coalescing in the Fermilab Main Ring

    International Nuclear Information System (INIS)

    Wildman, D.; Martin, P.; Meisner, K.; Miller, H.W.

    1987-01-01

    A new RF system has been installed in the Fermilab Main Ring to coalesce up to 13 individual bunches of protons or antiprotons into a single high-intensity bunch. The coalescing process consists of adiabatically reducing the h=1113 Main Ring RF voltage from 1 MV to less than 1 kV, capturing the debunched beam in a linearized h=53 and h=106 bucket, rotating for a quarter of a synchrotron oscillation period, and then recapturing the beam in a single h=1113 bucket. The new system is described and the results of recent coalescing experiments are compared with computer-generated particle tracking simulations

  8. Bunch length measurements in the SLC damping ring

    International Nuclear Information System (INIS)

    Decker, F.J.; Limberg, T.; Minty, M.; Ross, M.

    1993-05-01

    The synchrotron light of the SLC damping ring was used to measure the bunch length with a streak camera at different times in the damping cycle. There are bunch length oscillations after injection, different equilibrium length during the cycle due to rf manipulations to avoid microwave instability oscillations, and just before extraction there is a longitudinal phase space rotation (bunch muncher) to shorten the bunch length. Measurements under these different conditions are presented and compared with BPM pulse height signals. Calibration and adjustment issues and the connection of the streak camera to the SLC control system are also discussed

  9. Low energy current accumulator for high-energy proton rings

    International Nuclear Information System (INIS)

    Month, M.

    1977-01-01

    Building current in high-energy p-p colliding beam machines is most appropriately done in a low-energy (small circumference) current accumulator. Three significant factors favor such a procedure: First, large rings tend to be susceptible to unstable longitudinal density oscillations. These can be avoided by pumping up the beam in the accumulator. When the current stack is injected into the storage ring, potentially harmful instability is essentially neutralized. Second, high-field magnets characteristic of future high energy proton rings are designed with superconducting coils within the iron magnetic shield. This means coil construction and placement errors propagate rapidly within the beam aperture. An intermediate ''stacking ring'' allows the minimum use of the superconducting ring aperture. Finally, the coils are vulnerable to radiation heating and possible magnet quenching. By minimizing beam manipulaion in the superconducting environment and using only the central portion of the beam aperture, coil vulnerability can be put at a minimum

  10. Synchronization in chains of light-controlled oscillators

    International Nuclear Information System (INIS)

    Avila, G M RamIrez; Guisset, J L; Deneubourg, J L

    2005-01-01

    Using light-controlled oscillators (LCOs) and a mathematical model of them introduced in [1], we have analyzed a population of LCOs arranged in chains with nonperiodic (linear configuration) and periodic (ring configuration) boundary conditions in which we have solved numerically the corresponding equations for a broad interval of coupling strength values and for chains between 2 and 25 LCOs. We have considered three different situations, viz. identical LCOs, identical LCOs with simplifications (LCOs considered as integrate-and-fire (IF) oscillators), and finally nonidentical LCOs. We study synchronization under two criteria: the first takes into account the simultaneity of flashing events (phase difference criterion), and the second considers period-locking as a criterion for synchronization. For each case, we have identified regions of synchronization in the plane coupling strength versus number of oscillators. We observe different behaviors depending on the values of these variables

  11. The observation of the Aharonov-Bohm effect in suspended semiconductor ring interferometers

    Science.gov (United States)

    Pokhabov, D. A.; Pogosov, A. G.; Shevyrin, A. A.; Zhdanov, E. Yu; Bakarov, A. K.; Shklyaev, A. A.; Ishutkin, S. V.; Stepanenko, M. V.; Shesterikov, E. V.

    2018-02-01

    A suspended semiconductor quantum ring interferometer based on a GaAs/AlGaAs heterostructure with a two-dimensional electron gas (2DEG) is created and experimentally studied. The electron interference in suspended 2DEG is observed. The interference manifests itself as the Aharonov-Bohm oscillations of the interferometer magnetoresistance, clearly observed before as well as after suspension. The amplitude of the oscillations remains almost unchanged after suspension.

  12. Oscillations of quantum transport through double-AB rings with magnetic impurity

    International Nuclear Information System (INIS)

    Gao Yingfang; Liang, J-Q

    2006-01-01

    We have studied the effect of impurity scattering on the quantum transport through double AB rings in the presence of spin-flipper in the middle lead in terms of one-dimensional quantum waveguide theory. The electron interacts with the impurity through the exchange interaction leading to spin-flip scattering. Transmissions in the spin-flipped and non-spin-flipped channels are calculated explicitly. It is found that the overall transmission and the conductance are distorted due to the impurity scattering. The extent of distortion not only depends on the strength of the impurity potential but also on the impurity position. Moreover, the transmission probability and the conductance are modulated by the magnetic flux, the size of the ring and the impurity potential strength as well

  13. Electronic and excitonic properties of self-assembled semiconductor quantum rings

    NARCIS (Netherlands)

    Fomin, V.M.; Gladilin, V.N.; Devreese, J.T.; Blokland, J.H.; Christianen, P.C.M.; Maan, J.C.; Taboada, A.G.; Granados, D.; Garcia, J.M.; Kleemans, N.A.J.M.; Genuchten, van H.C.M.; Bozkurt, M.; Koenraad, P.M.; Wixforth, A.; Lorke, A.

    2009-01-01

    Theoretical analysis of the electron energy spectrum and the magnetization in a strained InxGa1-xAs/GaAs selfassembled quantum ring (SAQR) is performed using realistic parameters, determined from the cross-sectional scanning-tunneling microscopy characterization. The Aharonov-Bohm oscillations in

  14. Granular Segregation by an Oscillating Ratchet Mechanism

    International Nuclear Information System (INIS)

    Igarashi, A.; Horiuchi, Ch.

    2004-01-01

    We report on a method to segregate granular mixtures which consist of two kinds of particles by an oscillating ''ratchet'' mechanism. The segregation system has an asymmetrical sawtooth-shaped base which is vertically oscillating. Such a ratchet base produces a directional current of particles owing to its transport property. It is a counterintuitive and interesting phenomenon that a vertically vibrated base transports particles horizontally. This system is studied with numerical simulations, and it is found that we can apply such a system to segregation of mixtures of particles with different properties (radius or mass). Furthermore, we find out that an appropriate inclination of the ratchet-base makes the quality of segregation high. (author)

  15. Optical, UV, and EUV Oscillations of SS Cygni in Outburst

    Science.gov (United States)

    Mauche, Christopher W.

    2004-07-01

    I provide a review of observations in the optical, UV (HST), and EUV (EUVE and Chandra LETG) of the rapid periodic oscillations of nonmagnetic, disk-accreting, high mass-accretion rate cataclysmic variables (CVs), with particular emphasis on the dwarf nova SS Cyg in outburst. In addition, I drawn attention to a correlation, valid over nearly six orders of magnitude in frequency, between the frequencies of the quasi-periodic oscillations (QPOs) of white dwarf, neutron star, and black hole binaries. This correlation identifies the high frequency quasi-coherent oscillations (so-called ``dwarf nova oscillations'') of CVs with the kilohertz QPOs of low mass X-ray binaries (LMXBs), and the low frequency and low coherence QPOs of CVs with the horizontal branch oscillations (or the broad noise component identified as such) of LMXBs. Assuming that the same mechanisms produce the QPOs of white dwarf, neutron star, and black hole binaries, this correlation has important implications for QPO models.

  16. Fractional conductance oscillations in quantum rings: wave packet picture of transport in a few-electron system

    International Nuclear Information System (INIS)

    Chwiej, T; Szafran, B

    2013-01-01

    We study electron transfer across a two-terminal quantum ring using a time-dependent description of the scattering process. For the considered scattering event the quantum ring is initially charged with one or two electrons, with another electron incident to the ring from the input channel. We study the electron transfer probability (T) as a function of the external magnetic field. We determine the periodicity of T for a varied number of electrons confined within the ring. For that purpose we develop a method to describe the wave packet dynamics for a few electrons participating in the scattering process, taking into full account the electron–electron correlations. We find that electron transfer across the quantum ring initially charged by a single electron acquires a distinct periodicity of half of the magnetic flux quantum (Φ 0 /2), corresponding to the formation of a transient two-electron state inside the ring. In the case of a three-electron scattering problem with two electrons initially occupying the ring, a period of Φ 0 /3 for T is formed in the limit of thin channels. The effect of disorder present in the confinement potential of the ring is also discussed. (paper)

  17. Fractional conductance oscillations in quantum rings: wave packet picture of transport in a few-electron system.

    Science.gov (United States)

    Chwiej, T; Szafran, B

    2013-04-17

    We study electron transfer across a two-terminal quantum ring using a time-dependent description of the scattering process. For the considered scattering event the quantum ring is initially charged with one or two electrons, with another electron incident to the ring from the input channel. We study the electron transfer probability (T) as a function of the external magnetic field. We determine the periodicity of T for a varied number of electrons confined within the ring. For that purpose we develop a method to describe the wave packet dynamics for a few electrons participating in the scattering process, taking into full account the electron-electron correlations. We find that electron transfer across the quantum ring initially charged by a single electron acquires a distinct periodicity of half of the magnetic flux quantum (Φ0/2), corresponding to the formation of a transient two-electron state inside the ring. In the case of a three-electron scattering problem with two electrons initially occupying the ring, a period of Φ0/3 for T is formed in the limit of thin channels. The effect of disorder present in the confinement potential of the ring is also discussed.

  18. Synchronization and symmetry-breaking bifurcations in constructive networks of coupled chaotic oscillators

    International Nuclear Information System (INIS)

    Jiang Yu; Lozada-Cassou, M.; Vinet, A.

    2003-01-01

    The spatiotemporal dynamics of networks based on a ring of coupled oscillators with regular shortcuts beyond the nearest-neighbor couplings is studied by using master stability equations and numerical simulations. The generic criterion for dynamic synchronization has been extended to arbitrary network topologies with zero row-sum. The symmetry-breaking oscillation patterns that resulted from the Hopf bifurcation from synchronous states are analyzed by the symmetry group theory

  19. The beam slow extraction from a magnetic ring of Moscow meson facility

    International Nuclear Information System (INIS)

    Gusev, O.A.; Malitsky, N.D.; Severgin, Yu.P.; Titov, V.A.; Shukeilo, I.A.; Aseev, V.N.; Grachev, M.I.; Lobashev, V.M.; Ostroumov, P.N.; Ponomaryov, O.V.

    1990-01-01

    The beam slow extraction from the circular accelerators or stretcher rings is generally realized by the resonant excitation of betratron oscillations. A precise betatron frequency control is proved to be quite necessary for high-efficient slow ejection. The Coulomb field turns out to have a significant influence upon the slow extraction from the high-current medium energy proton storage rings. It prevents resonant excitation at a reasonable rate and reduces the ejection efficiency. The proton storage ring of Moscow meson facility is an example of a stretcher with a noticeable beam space charge. The detailed investigation of the resonant ejection, having been performed for our stretcher, resulted in the conclusion that extracted beam average current should be limited by the value of 50 mA, which is only 10% of the linac design current. The search for the alternative version to the resonant ejection made us to analyze in details and to develop an old-fashioned method, based on the radial betatron oscillation excitation while the beam is being gradually shifted onto the thin target. (author) 5 refs., 4 figs

  20. Optimum Energy Extraction from Coherent Vortex Rings Passing Tangentially Over Flexible Plates

    Science.gov (United States)

    Pirnia, Alireza; Browning, Emily A.; Peterson, Sean D.; Erath, Byron D.

    2017-11-01

    Coherent vortical structures can incite self-sustained oscillations in flexible membranes. This concept has recently gained interest for energy extraction from ambient environments. In this study the special case of a vortex ring passing tangentially over a cantilevered flexible plate is investigated. This problem is governed by the Kirchhoff-Love plate equation, which can be expressed in terms of a non-dimensional mass parameter of the plate, non-dimensional pressure loading induced by the vortex ring, and a Strouhal (St) number which expresses the duration of pressure loading relative to the period of plate oscillation. For a plate with a fixed mass parameter immersed in a fluid environment, the St number specifies the beam dynamics and the energy exchange process. The aim of this study is to identify the St number corresponding to maximum energy exchange between plates and vortex rings. The energy exchange process between the vortex ring and the plate is investigated over a range of 0.3 transfer is reported in each case and an empirical correlation is provided for predictive purposes. Supported by the National Science Foundation (NSF) under Grant No. CBET-1511761, and the Natural Sciences and Engineering Research Council of Canada (NSERC), under Grant No. 05778-2015.

  1. A FODO racetrack ring for nuSTORM: design and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Liu, A.; Bross, A.; Neuffer, D.

    2017-07-01

    The goal of nuSTORM is to provide well-defined neutrino beams for precise measurements of neutrino cross-sections and oscillations. The nuSTORM decay ring is a compact racetrack storage ring with a circumference of ~ 480 m that incorporates large aperture (60 cm diameter) magnets. There are many challenges in the design. In order to incorporate the Orbit Combination section (OCS), used for injecting the pion beam into the ring, a dispersion suppressor is needed adjacent to the OCS . Concurrently, in order to maximize the number of useful muon decays, strong bending dipoles are needed in the arcs to minimize the arc length. These dipoles create strong chromatic effects, which need to be corrected by nonlinear sextupole elements in the ring. In this paper, a FODO racetrack ring design and its optimization using sextupolar fields via both a Genetic Algorithm (GA) and a Simulated Annealing (SA) algorithm will be discussed.

  2. Simulations of Bunch Merging in a Beta Beam Decay Ring

    CERN Document Server

    Heinrich, Daniel Christopher; Chance, Antoine

    2011-01-01

    To further study neutrino oscillation properties a Beta Beam facility has been proposed. Beta decaying ions with high kinetic energy are stored in a storage ring ("Decay Ring") with straight sections to create pure focused (anti) electron neutrino beams. However to reach high sensitivity to neutrino oscillation parameters in the experiment the bunched beam intensity and duty cycle in the DR have to be optimized. The first CERN-based scenario, using 6He and 18Ne as neutrino sources, has been studied using a bunch merging RF scheme. Two RF cavities at different frequencies are used to capture newly injected bunches and then merge them into the stored bunches. It was shown that this scheme could satisfy the requirements on intensity and duty cycle set by the experiment. This merging scheme has now been revised with new simulation software providing new results for 6He and 18Ne. Furthermore bunch merging has been studied for the second CERN-based scenario using 8Li and 8B.

  3. Two-Element Tapered Slot Antenna Array for Terahertz Resonant Tunneling Diode Oscillators

    Directory of Open Access Journals (Sweden)

    Jianxiong Li

    2014-01-01

    Full Text Available Two-element tapered slot antenna (TSA array for terahertz (THz resonant tunneling diode (RTD oscillators is proposed in this paper. The proposed TSA array has the advantages of both the high directivity and high gain at the horizontal direction and hence can facilitate the horizontal communication between the RTD oscillators and other integrated circuit chips. A MIM (metal-insulator-metal stub with a T-shaped slot is used to reduce the mutual coupling between the TSA elements. The validity and feasibility of the proposed TSA array have been simulated and analyzed by the ANSYS/ANSOFT’s High Frequency Structure Simulator (HFSS. Detailed modeling approaches and theoretical analysis of the proposed TSA array have been fully addressed. The simulation results show that the mutual coupling between the TSA elements is reduced below −40 dB. Furthermore, at 500 GHz, the directivity, the gain, and the half power beam width (HPBW at the E-plane of the proposed TSA array are 12.18 dB, 13.09 dB, and 61°, respectively. The proposed analytical method and achieved performance are very promising for the antenna array integrated with the RTD oscillators at the THz frequency and could pave the way to the design of the THz antenna array for the RTD oscillators.

  4. Rotating Wigner molecules and spin-related behaviors in quantum rings

    International Nuclear Information System (INIS)

    Yang Ning; Zhu Jialin; Dai Zhensheng

    2008-01-01

    The trial wavefunctions for few-electron quantum rings are presented to describe the spin-dependent rotating Wigner molecule states. The wavefunctions are constructed from the single-particle orbits which contain two variational parameters to describe the shape and size dependence of electron localization in the ring-like confinement. They can explicitly show the size dependence of single-particle orbital occupation to give an understanding of the spin rules of ground states without magnetic fields. They can also correctly describe the spin and angular momentum transitions in magnetic fields. By examining the von Neumann entropy, it is demonstrated that the wavefunctions can illustrate the entanglement between electrons in quantum rings, including the AB oscillations as well as the spin and size dependence of the entropy. Such trial wavefunctions will be useful in investigating spin-related quantum behaviors of a few electrons in quantum rings

  5. Torsional oscillations of the sun

    International Nuclear Information System (INIS)

    Snodgrass, H.B.; Howard, R.; National Solar Observatory, Tucson, AZ)

    1985-01-01

    The sun's differential rotation has a cyclic pattern of change that is tightly correlated with the sunspot, or magnetic activity, cycle. This pattern can be described as a torsional oscillation, in which the solar rotation is periodically sped up or slowed down in certain zones of latitude while elsewhere the rotation remains essentially steady. The zones of anomalous rotation move on the sun in wavelike fashion, keeping pace with and flanking the zones of magnetic activity. It is uncertain whether this torsional oscillation is a globally coherent ringing of the sun or whether it is a local pattern caused by and causing local changes in the magnetic fields. In either case, it may be an important link in the connection between the rotation and the cycle that is widely believed to exist but is not yet understood. 46 references

  6. An Anti-Electromagnetic Attack PUF Based on a Configurable Ring Oscillator for Wireless Sensor Networks.

    Science.gov (United States)

    Lu, Zhaojun; Li, Dongfang; Liu, Hailong; Gong, Mingyang; Liu, Zhenglin

    2017-09-15

    Wireless sensor networks (WSNs) are an emerging technology employed in some crucial applications. However, limited resources and physical exposure to attackers make security a challenging issue for a WSN. Ring oscillator-based physical unclonable function (RO PUF) is a potential option to protect the security of sensor nodes because it is able to generate random responses efficiently for a key extraction mechanism, which prevents the non-volatile memory from storing secret keys. In order to deploy RO PUF in a WSN, hardware efficiency, randomness, uniqueness, and reliability should be taken into account. Besides, the resistance to electromagnetic (EM) analysis attack is important to guarantee the security of RO PUF itself. In this paper, we propose a novel architecture of configurable RO PUF based on exclusive-or (XOR) gates. First, it dramatically increases the hardware efficiency compared with other types of RO PUFs. Second, it mitigates the vulnerability to EM analysis attack by placing the adjacent RO arrays in accordance with the cosine wave and sine wave so that the frequency of each RO cannot be detected. We implement our proposal in XINLINX A-7 field programmable gate arrays (FPGAs) and conduct a set of experiments to evaluate the quality of the responses. The results show that responses pass the National Institute of Standards and Technology (NIST) statistical test and have good uniqueness and reliability under different environments. Therefore, the proposed configurable RO PUF is suitable to establish a key extraction mechanism in a WSN.

  7. The Field Radiated by a Ring Quasi-Array of an Infinite Number of Tangential or Radial Dipoles

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1953-01-01

    A homogeneous ring array of axial dipoles will radiate a vertically polarized field that concentrates to an increasing degree around the horizontal plane with increasing increment of the current phase per revolution. There is reason to believe that by using a corresponding antenna system with tan......A homogeneous ring array of axial dipoles will radiate a vertically polarized field that concentrates to an increasing degree around the horizontal plane with increasing increment of the current phase per revolution. There is reason to believe that by using a corresponding antenna system...... with tangential or radial dipoles, a field may be obtained that has a similar useful structure as the above-mentioned ring array, but which in contrast to the latter is essentially horizontally polarized. In this paper a systematic investigation has been made of the field from such an antenna system...... with tangential or radial dipoles. Recently it was stated in the literature that it is impossible to treat the general case where the increase of the current phase per revolution is arbitrarily large by using ordinary functions. The results obtained in this paper disprove this statement. A similar investigation...

  8. Measurement of the longitudinal parameters of an electron beam in a storage ring

    International Nuclear Information System (INIS)

    Krinsky, S.

    1989-01-01

    We discuss the determination of the longitudinal parameters of a bunched beam of electrons or positrons circulating in a storage ring. From the analysis of the beam current observed at a fixed azimuthal location, one can learn much about the longitudinal behavior. We present an elementary analysis of the time-dependence of the current. In particular, we discuss the determination of the average current, bunch length, synchrotron oscillation frequency, and the coherent synchrotron oscillation modes associated with longitudinal instabilities. A brief discussion is also given of the incoherent synchrotron oscillations, or Schottky noise. We review the electromagnetic field traveling with a charge in uniform motion, and introduce some of the most common devices used to detect this field: capacitive pick-up, stripline monitor, and DC beam current transformer. Our paper is organized as follows: We discuss the analysis of the time-dependence of the beam current. Then, the measurement of the current is considered. Finally, we describe some measurements of energy spread and bunch lengthening made recently at SLAC on the SLC damping ring. 12 refs., 6 figs

  9. Numerical simulation on quantum turbulence created by an oscillating object

    Energy Technology Data Exchange (ETDEWEB)

    Fujiyama, S; Tsubota, M [Department of Physics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka City, Osaka (Japan)], E-mail: fujiyama@sci.osaka-cu.ac.jp

    2009-02-01

    We have conducted a numerical simulation of vortex dynamics in superfluid {sup 4}He in the presence of an oscillating sphere. The experiment on a vibrating wire that measured the transition from laminar to turbulent flow is modelled in our simulations. The simulation exhibits the details of vortex growth by the oscillating sphere. Our result also shows that a more realistic modelling may change the destiny of the vortex rings detached from the sphere. We have evaluated the force driven by the sphere in the simulation and have confirmed the onset of the quantum turbulence.

  10. Tracking studies of insertion device effects on dynamic aperture in the APS storage ring

    International Nuclear Information System (INIS)

    Chae, Yong-chul; Crosbie, E.A.

    1993-01-01

    We studied the effects of an insertion device (ID) on the dynamic aperture in the 7-GeV Advanced Photon Source (APS) storage ring using the program RACETRACK. We found that the nonlinear effect of the ID is the dominant effect on the dynamic aperture reduction compared to the other multipole errors which exist in the otherwise ideal lattice. The previous study of dynamic aperture was based on the assumption that the effect of the fast oscillating terms in L. Smith's Hamiltonian is small, and hence can be neglected in the simulation. The remarkable agreement between the previous study and the current results using RACETRACK, including all effects of the fast oscillating terms, justified those assumptions at least for the APS ring

  11. Rationale of a quick adjustment method for crystal orientation in oscillation photography

    International Nuclear Information System (INIS)

    Suh, I.H.; Suh, J.M.; Ko, T.S.

    1988-01-01

    The rationale for a convenient crystal orientation method for oscillation photography is presented. The method involves the measurement of the deviations of reflection spots from the equator. These deviations are added or subtracted to give the horizontal and vertical arc corrections. (orig.)

  12. Enhanced spin wave propagation in magnonic rings by bias field modulation

    Science.gov (United States)

    Venkat, G.; Venkateswarlu, D.; Joshi, R. S.; Franchin, M.; Fangohr, H.; Anil Kumar, P. S.; Prabhakar, A.

    2018-05-01

    We simulate the spin wave (SW) dynamics in ring structures and obtain the ω - k dispersion relations corresponding to the output waveguide. Different bias field configurations affect the transfer of SW power from one arm of the structure to the other arm. To this end, we show that circular or radial bias fields are more suitable for energy transfer across the ring than the conventional horizontal bias field Hx. The SW dispersion shows that modes excited, when the bias field is along the ring radius, are almost 10 dB higher in power when compared to the modal power in the case of Hx. This is also corroborated by the SW energy density in the receiving stub.

  13. New characteristics of a single-bunch instability in the APS storage ring

    International Nuclear Information System (INIS)

    Wang, C.-X.; Harkay, K.

    2004-01-01

    In the Advanced Photon Source storage ring, a transverse single-bunch instability has long been observed that appears unique to this ring. Many of its features have been previously reported. New results have recently been obtained using beam centroid history measurements and analysis. These preliminary results provide more detailed information regarding the characteristics of this instability and could provide insight into the physics mechanism. A new transverse single-bunch instability has been observed for several years in the Advanced Photon Source storage ring. It exhibits two distinctive modes: steady-state, with stable centroid oscillations, and bursting, with periodic burst-like oscillations. At a certain threshold current, the beam starts a steady-state oscillation whose amplitude grows gradually with increasing current. When the current reaches a second threshold, the beam quickly transits into the bursting mode whose period and amplitude changes with increasing current. At even higher current, the beam can return to a steady-state oscillation. For a given machine condition, the entire sequence may not be observed before losing the beam. The physical mechanism of this instability is not clear yet. Many measurements have been taken to characterize this instability and the results were documented. Recently, more observations were made using Model-Independent Analysis of simultaneously recorded beam histories at hundreds of turn-by-turn beam position monitors (BPMs). Some of the findings are reported here. These results are far from systematic and complete, unfortunately, because of the difficulties in data acquisition and analysis caused by our faulty beam history system. Nonetheless, these new observations provide further information on the characteristics of this unsolved instability. Since it is unsolved, we will describe the phenomena only and keep speculation to a minimum.

  14. Feasibility of recording high frequency oscillations with tripolar concentric ring electrodes during pentylenetetrazole-induced seizures in rats.

    Science.gov (United States)

    Makeyev, Oleksandr; Liu, Xiang; Wang, Liling; Zhu, Zhenghan; Taveras, Aristides; Troiano, Derek; Medvedev, Andrei V; Besio, Walter G

    2012-01-01

    As epilepsy remains a refractory condition in about 30% of patients with complex partial seizures, electrical stimulation of the brain has recently shown potential for additive seizure control therapy. Previously, we applied noninvasive transcranial focal stimulation via novel tripolar concentric ring electrodes (TCREs) on the scalp of rats after inducing seizures with pentylenetetrazole (PTZ). We developed a close-loop system to detect seizures and automatically trigger the stimulation and evaluated its effect on the electrographic activity recorded by TCREs in rats. In our previous work the detectors of seizure onset were based on seizure-induced changes in signal power in the frequency range up to 100 Hz, while in this preliminary study we assess the feasibility of recording high frequency oscillations (HFOs) in the range up to 300 Hz noninvasively with scalp TCREs during PTZ-induced seizures. Grand average power spectral density estimate and generalized likelihood ratio tests were used to compare power of electrographic activity at different stages of seizure development in a group of rats (n= 8). The results suggest that TCREs have the ability to record HFOs from the scalp as well as that scalp-recorded HFOs can potentially be used as features for seizure onset detection.

  15. Internal flow of acoustically levitated drops undergoing sectorial oscillations

    International Nuclear Information System (INIS)

    Shen, C.L.; Xie, W.J.; Yan, Z.L.; Wei, B.

    2010-01-01

    We present the experimental observation and theoretical analysis of fluid flow in acoustically levitated water drop undergoing sectorial oscillations. The fluid always flows between the extended sections and the compressed sections. The magnitude of fluid velocity decreases from the equatorial fringe to the centre of levitated drop. The maximum fluid velocity is 60-160 mm/s and the Reynolds number of the oscillations is estimated to be 137-367. The internal flow of the drop is analyzed as potential flow, and the fluid velocity is found to be horizontal. In the equatorial plane, the calculated stream lines and velocity profiles agree well with the experimental observations.

  16. The injection system of the stretcher ring ELSA

    International Nuclear Information System (INIS)

    Dreist, A.

    1989-07-01

    For the stretcher ring ELSA in the framwork of this thesis an injection system has been concipated and constructed which should allow all projected operational modes of this stretcher ring, the stretcher, the post-acceleration, and the accumulation mode. The proof could be performed that the realized concept allows all these operational modes. Furthermore it could be shown that the injection shifted from the equilibrium orbit has no disadvantageous effects on a uniform extraction and by this on a high touching ratio. In fact it is even possible to apply the decay of the coherent betatron oscillations around the equilibrium orbit, caused by injection of the incident beam shifted from the equilibrium orbit, to diagnosis purposes: By reproduction of this damping process in a simulation model statements on nonlinearities present in the ring and by this statements on the actual phase-space structure are possible. It has so been shown that the concept presented in this thesis and realized for this thesis represents a suited injection system for the stretcher ring ELSA. (orig.) [de

  17. Parametric electroconvection in a weakly conducting fluid in a horizontal parallel-plate capacitor

    International Nuclear Information System (INIS)

    Kartavykh, N. N.; Smorodin, B. L.; Il’in, V. A.

    2015-01-01

    We study the flows of a nonuniformly heated weakly conducting fluid in an ac electric field of a horizontal parallel-plate capacitor. Analysis is carried out for fluids in which the charge formation is governed by electroconductive mechanism associated with the temperature dependence of the electrical conductivity of the medium. Periodic and chaotic regimes of fluid flow are investigated in the limiting case of instantaneous charge relaxation and for a finite relaxation time. Bifurcation diagrams and electroconvective regimes charts are constructed. The regions where fluid oscillations synchronize with the frequency of the external field are determined. Hysteretic transitions between electroconvection regimes are studied. The scenarios of transition to chaotic oscillations are analyzed. Depending on the natural frequency of electroconvective system and the external field frequency, the transition from periodic to chaotic oscillations can occur via quasiperiodicity, a subharmonic cascade, or intermittence

  18. Parametric electroconvection in a weakly conducting fluid in a horizontal parallel-plate capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Kartavykh, N. N.; Smorodin, B. L., E-mail: bsmorodin@yandex.ru; Il’in, V. A. [Perm State National Research University (Russian Federation)

    2015-07-15

    We study the flows of a nonuniformly heated weakly conducting fluid in an ac electric field of a horizontal parallel-plate capacitor. Analysis is carried out for fluids in which the charge formation is governed by electroconductive mechanism associated with the temperature dependence of the electrical conductivity of the medium. Periodic and chaotic regimes of fluid flow are investigated in the limiting case of instantaneous charge relaxation and for a finite relaxation time. Bifurcation diagrams and electroconvective regimes charts are constructed. The regions where fluid oscillations synchronize with the frequency of the external field are determined. Hysteretic transitions between electroconvection regimes are studied. The scenarios of transition to chaotic oscillations are analyzed. Depending on the natural frequency of electroconvective system and the external field frequency, the transition from periodic to chaotic oscillations can occur via quasiperiodicity, a subharmonic cascade, or intermittence.

  19. Radiation Resistance and Gain of Homogeneous Ring Quasi-Array

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1954-01-01

    In a previous paper homogeneous ring quasi-arrays of tangential or radial dipoles were introduced, i.e. systems of dipoles arranged equidistantly along a circle, the dipoles being oriented in tangential or radial directions and carrying currents with the same amplitude, but with a phase that incr......In a previous paper homogeneous ring quasi-arrays of tangential or radial dipoles were introduced, i.e. systems of dipoles arranged equidistantly along a circle, the dipoles being oriented in tangential or radial directions and carrying currents with the same amplitude, but with a phase...... that increases uniformly along the circle. Such quasi-arrays are azimuthally omnidirectional, and the radiated field will be mainly horizontally polarized and concentrated around the plane of the circle. In this paper expressions are obtained for the radiation resistance and the gain of homogeneous ring quasi...

  20. Conductance of closed and open long Aharonov-Bohm-Kondo rings

    Science.gov (United States)

    Shi, Zheng; Komijani, Yashar

    2017-02-01

    We calculate the finite temperature linear dc conductance of a generic single-impurity Anderson model containing an arbitrary number of Fermi liquid leads, and apply the formalism to closed and open long Aharonov-Bohm-Kondo (ABK) rings. We show that, as with the short ABK ring, there is a contribution to the conductance from the connected four-point Green's function of the conduction electrons. At sufficiently low temperatures this contribution can be eliminated, and the conductance can be expressed as a linear function of the T matrix of the screening channel. For closed rings we show that at temperatures high compared to the Kondo temperature, the conductance behaves differently for temperatures above and below vF/L , where vF is the Fermi velocity and L is the circumference of the ring. For open rings, when the ring arms have both a small transmission and a small reflection, we show from the microscopic model that the ring behaves like a two-path interferometer, and that the Kondo temperature is unaffected by details of the ring. Our findings confirm that ABK rings are potentially useful in the detection of the size of the Kondo screening cloud, the π /2 scattering phase shift from the Kondo singlet, and the suppression of Aharonov-Bohm oscillations due to inelastic scattering.

  1. Thermal transient analysis applied to horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Duong, A.N. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[ConocoPhillips Canada Resources Corp., Calgary, AB (Canada)

    2008-10-15

    Steam assisted gravity drainage (SAGD) is a thermal recovery process used to recover bitumen and heavy oil. This paper presented a newly developed model to estimate cooling time and formation thermal diffusivity by using a thermal transient analysis along the horizontal wellbore under a steam heating process. This radial conduction heating model provides information on the heat influx distribution along a horizontal wellbore or elongated steam chamber, and is therefore important for determining the effectiveness of the heating process in the start-up phase in SAGD. Net heat flux estimation in the target formation during start-up can be difficult to measure because of uncertainties regarding heat loss in the vertical section; steam quality along the horizontal segment; distribution of steam along the wellbore; operational conditions; and additional effects of convection heating. The newly presented model can be considered analogous to pressure transient analysis of a buildup after a constant pressure drawdown. The model is based on an assumption of an infinite-acting system. This paper also proposed a new concept of a heating ring to measure the heat storage in the heated bitumen at the time of testing. Field observations were used to demonstrate how the model can be used to save heat energy, conserve steam and enhance bitumen recovery. 18 refs., 14 figs., 2 appendices.

  2. A CPW-Fed Rectangular Ring Monopole Antenna for WLAN Applications

    Directory of Open Access Journals (Sweden)

    Sangjin Jo

    2014-01-01

    Full Text Available We present a simple coplanar waveguide- (CPW- fed rectangular ring monopole antenna designed for dual-band wireless local area network (WLAN applications. The antenna is based on a simple structure composed of a CPW feed line and a rectangular ring. Dual-band WLAN operation can be achieved by controlling the distance between the rectangular ring and the ground plane of the CPW feed line, as well as the horizontal vertical lengths of the rectangular ring. Simulated and measured data show that the antenna has a compact size of 21.4×59.4 mm2, an impedance bandwidths of 2.21–2.70 GHz and 5.04–6.03 GHz, and a reflection coefficient of less than −10 dB. The antenna also exhibits an almost omnidirectional radiation pattern. This simple compact antenna with favorable frequency characteristics therefore is attractive for applications in dual-band WLAN.

  3. Spin separation driven by quantum interference in ballistic rings

    International Nuclear Information System (INIS)

    Bellucci, S; Onorato, P

    2008-01-01

    We propose an all-electrical nanoscopic structure where a pure spin current is induced in the transverse probes attached to a quantum-coherent ballistic quasi-one-dimensional ring when conventional unpolarized charge current is injected through its longitudinal leads. The study is essentially based on the spin-orbit coupling (SOC) arising from the laterally confining electric field (β-SOC). This sets the basic difference with other works employing mesoscopic rings with the conventional Rashba SO term (α-SOC). The β-SOC ring generates oscillations of the predicted spin Hall current due to spin-sensitive quantum-interference effects caused by the difference in phase acquired by opposite spins states traveling clockwise and counterclockwise. We focus on single-channel transport and solve analytically the spin polarization of the current. We relate the presence of a polarized spin current with the peaks in the longitudinal conductance.

  4. Aharonov-Casher effect and quantum transport in graphene based nano rings: A self-consistent Born approximation

    Science.gov (United States)

    Ghaderzadeh, A.; Rahbari, S. H. Ebrahimnazhad; Phirouznia, A.

    2018-03-01

    In this study, Rashba coupling induced Aharonov-Casher effect in a graphene based nano ring is investigated theoretically. The graphene based nano ring is considered as a central device connected to semi-infinite graphene nano ribbons. In the presence of the Rashba spin-orbit interaction, two armchair shaped edge nano ribbons are considered as semi-infinite leads. The non-equilibrium Green's function approach is utilized to obtain the quantum transport characteristics of the system. The relaxation and dephasing mechanisms within the self-consistent Born approximation is scrutinized. The Lopez-Sancho method is also applied to obtain the self-energy of the leads. We unveil that the non-equilibrium current of the system possesses measurable Aharonov-Casher oscillations with respect to the Rashba coupling strength. In addition, we have observed the same oscillations in dilute impurity regimes in which amplitude of the oscillations is shown to be suppressed as a result of the relaxations.

  5. Quantum rings in magnetic fields and spin current generation.

    Science.gov (United States)

    Cini, Michele; Bellucci, Stefano

    2014-04-09

    We propose three different mechanisms for pumping spin-polarized currents in a ballistic circuit using a time-dependent magnetic field acting on an asymmetrically connected quantum ring at half filling. The first mechanism works thanks to a rotating magnetic field and produces an alternating current with a partial spin polarization. The second mechanism works by rotating the ring in a constant field; like the former case, it produces an alternating charge current, but the spin current is dc. Both methods do not require a spin-orbit interaction to achieve the polarized current, but the rotating ring could be used to measure the spin-orbit interaction in the ring using characteristic oscillations. On the other hand, the last mechanism that we propose depends on the spin-orbit interaction in an essential way, and requires a time-dependent magnetic field in the plane of the ring. This arrangement can be designed to pump a purely spin current. The absence of a charge current is demonstrated analytically. Moreover, a simple formula for the current is derived and compared with the numerical results.

  6. ON ESTIMATING INTERSTELLAR POLYCYCLIC AROMATIC HYDROCARBON ABUNDANCES WITH CALCULATED OSCILLATOR STRENGTHS

    International Nuclear Information System (INIS)

    Tan Xiaofeng; Bernstein, Lawrence; Cami, Jan; Salama, Farid

    2011-01-01

    Vibronic bands of polycyclic aromatic hydrocarbons (PAHs) in the UV/visible range are often used to estimate the abundances of PAHs in the interstellar medium by comparing laboratory-measured spectra with astronomical observations. We investigate the errors introduced by associating theoretical electronic oscillator strengths with individual vibronic bands when estimating the abundances of interstellar PAHs. The vibronic oscillator strengths of the 0-0 bands of nine PAHs with two to seven benzene rings, spanning in the 2800-6700 A spectral range, have been calculated using the Franck-Condon approximation and compared to their electronic oscillator strengths. It is found that the use of calculated electronic oscillator strengths rather than the more physically relevant vibronic oscillator strengths underestimates interstellar abundances of the nine PAHs under study, on average by a factor of about 2.4. It is recommended that vibronic oscillator strengths should be systematically used to analyze the vibronic spectra of specific PAHs and to estimate their abundances in the interstellar medium. An empirical correcting factor is suggested for the cases where the vibronic oscillator strengths are unknown for more realistic estimation of interstellar PAH abundances.

  7. Beam-beam dynamics during the injection process at the PEP-II B-Factory

    International Nuclear Information System (INIS)

    Chin, Yong Ho.

    1991-10-01

    This paper is concerned with beam-beam effects during the injection process at the proposed asymmetric SLAC/LBL/LLNL B-Factory based on PEP (PEP-2). For symmetric colliders, the primary source of the beam-beam effect is the head-on collision at the interaction point (IP), and this effect can be mitigated by separating the beams during the injection process. For an asymmetric collider, which intrinsically consists of two separate rings, the bunches not only collide at the IP but experience a long-range beam-beam force on the way into and out of the IP region. These collisions are called ''parasitic crossings (PC).'' The parasitic crossings emerge as a potential source of far stronger beam-beam impact during the injection process for the following reason. In the proposed injection scheme of the APIARY-6.3d design, the bunches are injected horizontally into the two rings with large horizontal offset of 8σ Ox sptm where σ Ox sptm is the nominal horizontal storage ring beam size at the end of the septum magnet. Then, the injected beam starts to travel around the ring oscillating horizontally. For the sake of discussion, let us assume that the beam in the other ring has already been fully stored. When the injected beam arrives at the 1st PC, where the two nominal orbits are separated horizontally by about 7.6 times the nominal horizontal beam size of the low energy ring, it may pass through the other beam far more closely than at the nominal separation distance, or it may even strike the other beam head-on

  8. Dynamics of a single particle in a horizontally shaken box

    OpenAIRE

    Drossel, Barbara; Prellberg, Thomas

    1997-01-01

    We study the dynamics of a particle in a horizontally and periodically shaken box as a function of the box parameters and the coefficient of restitution. For certain parameter values, the particle becomes regularly chattered at one of the walls, thereby loosing all its kinetic energy relative to that wall. The number of container oscillations between two chattering events depends in a fractal manner on the parameters of the system. In contrast to a vertically vibrated particle, for which chat...

  9. Design and jump phenomenon analysis of an eccentric ring energy harvester

    International Nuclear Information System (INIS)

    Wang, Yu-Jen; Chen, Chung-De

    2013-01-01

    This paper presents the development of a wheel-mounted eccentric ring energy harvester that is driven by centripetal and gravitational forces during wheel rotation. The natural frequency of the eccentric ring matches the wheel rotation frequency at any car speed because its character length is designed equal to the wheel radius. Consequently, the eccentric ring oscillates with a relatively large swing angle at the wheel speed to generate high levels of power. The nonlinear dynamic behavior of the eccentric ring is investigated to ensure that the proposed design produces steady swing angles, especially at high wheel speeds. Herein, the jump phenomenon of the dynamic motion of the eccentric ring is analyzed by using the Duffing equation and the linearization process. The discriminant value obtained from the analysis confirms that no jump phenomenon occurs at all wheel speeds if the eccentric ring is properly designed. In the experiment, the eccentric ring is integrated with magnets and a coil set to generate 318–442 μW at constant wheel speeds between 300 and 500 rpm. This shows that the proposed device is a potential power source for low-power wheel-mounted electronics, such as pressure sensors, accelerometers, and thermometers. (paper)

  10. Design and jump phenomenon analysis of an eccentric ring energy harvester

    Science.gov (United States)

    Wang, Yu-Jen; Chen, Chung-De

    2013-10-01

    This paper presents the development of a wheel-mounted eccentric ring energy harvester that is driven by centripetal and gravitational forces during wheel rotation. The natural frequency of the eccentric ring matches the wheel rotation frequency at any car speed because its character length is designed equal to the wheel radius. Consequently, the eccentric ring oscillates with a relatively large swing angle at the wheel speed to generate high levels of power. The nonlinear dynamic behavior of the eccentric ring is investigated to ensure that the proposed design produces steady swing angles, especially at high wheel speeds. Herein, the jump phenomenon of the dynamic motion of the eccentric ring is analyzed by using the Duffing equation and the linearization process. The discriminant value obtained from the analysis confirms that no jump phenomenon occurs at all wheel speeds if the eccentric ring is properly designed. In the experiment, the eccentric ring is integrated with magnets and a coil set to generate 318-442 μW at constant wheel speeds between 300 and 500 rpm. This shows that the proposed device is a potential power source for low-power wheel-mounted electronics, such as pressure sensors, accelerometers, and thermometers.

  11. Design and development of a bipolar power supply for APS storage ring correctors

    International Nuclear Information System (INIS)

    Kang, Y.G.

    1993-01-01

    The Advanced Photon Source (APS) requires a number of correction magnets. Basically, two different types of bipolar power supplies (BPS) will be used for all the correction magnets. One requires dc correction only, and the other requires dc and ac correction. For the storage ring horizontal/vertical (H/V) correctors, the BPS should be able to supply dc and ac current. This paper describes the design aspects and considerations for a bipolar power supply for the APS storage ring H/V correctors

  12. Quantum interference of ballistic carriers in one-dimensional semiconductor rings

    International Nuclear Information System (INIS)

    Bagraev, N.T.; Buravlev, A.D.; Klyachkin, L.E.; Malyarenko, A.M.; Ivanov, V.K.; Rykov, S.A.; Shelykh, I.A.

    2000-01-01

    Quantum interference of ballistic carriers has been studied for the first time, using one-dimensional rings formed by quantum wire pairs in self-assembled silicon quantum wells. Energy dependencies of the transmission coefficient is calculated as a function of the length and modulation of the quantum wire pairs separated by a unified drain-source system or the quantum point contacts. The quantum conductance is predicted to be increased by a factor of four using the unified drain-source system as a result of the quantum interference. Theoretical dependencies are revealed by the quantum conductance oscillations created by the deviations of both the drain-source voltage and external magnetic field inside the silicon one-dimensional rings. The results obtained put forward a basis to create the Aharonov-Bohm interferometer using the silicon one-dimensional ring [ru

  13. Nonannual tree rings in a climate-sensitive Prioria copaifera chronology in the Atrato River, Colombia.

    Science.gov (United States)

    Herrera-Ramirez, David; Andreu-Hayles, Laia; Del Valle, Jorge I; Santos, Guaciara M; Gonzalez, Paula L M

    2017-08-01

    In temperate climates, tree growth dormancy usually ensures the annual nature of tree rings, but in tropical environments, determination of annual periodicity can be more complex. The purposes of the work are as follows: (1) to generate a reliable tree-ring width chronology for Prioria copaifera Griseb. (Leguminoceae), a tropical tree species dwelling in the Atrato River floodplains, Colombia; (2) to assess the climate signal recorded by the tree-ring records; and (3) to validate the annual periodicity of the tree rings using independent methods. We used standard dendrochronological procedures to generate the P. copaifera tree-ring chronology. We used Pearson correlations to evaluate the relationship of the chronology with the meteorological records, climate regional indices, and gridded precipitation/sea surface temperature products. We also evaluated 24 high-precision 14 C measurements spread over a range of preselected tree rings, with assigned calendar years by dendrochronological techniques, before and after the bomb spike in order to validate the annual nature of the tree rings. The tree-ring width chronology was statistically reliable, and it correlated significantly with local records of annual and October-December (OND) streamflow and precipitation across the upper river watershed (positive), and OND temperature (negative). It was also significantly related to the Oceanic Niño Index, Pacific Decadal Oscillation, and the Southern Oscillation Index, as well as sea surface temperatures over the Caribbean and the Pacific region. However, 14 C high-precision measurements over the tree rings demonstrated offsets of up to 40 years that indicate that P. copaifera can produce more than one ring in certain years. Results derived from the strongest climate-growth relationship during the most recent years of the record suggest that the climatic signal reported may be due to the presence of annual rings in some of those trees in recent years. Our study alerts about

  14. The multimodal magnetoelectric effect in the ring-shaped magnetostrictive-piezoelectric bulk composites

    Science.gov (United States)

    Radchenko, G. S.; Filippov, D. A.; Laletin, V. M.

    2015-11-01

    The theoretical and experimental investigation of the direct magnetoelectric effect in the ring-type structures made of the bulk magnetostrictive-piezoelectric composites has been presented. The analytical expression for the magnetoelectric voltage coefficient has been obtained using the effective parameters method. The frequency dependence of this parameter is also analyzed. The dependence of the resonant frequency and the amplitude of this effect of the geometrical parameters of the ring for the first and second oscillation modes are presented. The experimental investigation of the direct magnetoelectric effect for the ring-type composite specimens consisting of the nickel ferrite spinel-PZT bulk composite is done. The obtained experimental data are in good agreement with the theoretical predictions.

  15. Electron ring design for HERA, including spin-matching

    International Nuclear Information System (INIS)

    Skuja, A.; Hand, L.; Steffen, K.; Barber, D.

    1984-01-01

    A. Skuja has been working in collaboration with Professor Lou Hand in obtaining an optics for the electron ring at HERA that satisfies the usual constraints of an electron storage ring, but in addition allows longitudinal polarization in the interaction region without depolarizing the electron beam completely. This collaboration effort grew out of their work on a possible electron ring at Fermilab. When this project was degraded in priority at Fermilab, they turned their attention to the HERA project at DESY. The HERA project will have an electron ring of about 30 GeV e - (or e + ) incident on 800 GeV protons. Recently it has been decided that the collisions should be head on (0 0 crossing), although all previous designs had a crossing angle of the 2 beams of 20 mrad. Professors Hand and Skuja implemented a complete program in the last year and a half that could fit the usual Turis parameters as well as the so called 12 spin-matching conditions of Chao and Yukoya for all possible machine elements including solenoids. The program has the possibility of fully coupling vertical and horizontal motion using the usual eigenvalue method

  16. Sensitivity Analysis for the CLIC Damping Ring Inductive Adder

    CERN Document Server

    Holma, Janne

    2012-01-01

    The CLIC study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings will produce, through synchrotron radiation, ultra-low emittance beam with high bunch charge, necessary for the luminosity performance of the collider. To limit the beam emittance blow-up due to oscillations, the pulse generators for the damping ring kickers must provide extremely flat, high-voltage pulses. The specifications for the extraction kickers of the CLIC damping rings are particularly demanding: the flattop of the output pulse must be 160 ns duration, 12.5 kV and 250 A, with a combined ripple and droop of not more than ±0.02 %. An inductive adder allows the use of different modulation techniques and is therefore a very promising approach to meeting the specifications. PSpice has been utilised to carry out a sensitivity analysis of the predicted output pulse to the value of both individual and groups of circuit compon...

  17. Extremum seeking x-ray position feedback using power line harmonic leakage as the perturbation

    Directory of Open Access Journals (Sweden)

    S. Zohar

    2016-09-01

    Full Text Available Small x-ray beam sizes necessary for probing nanoscale phenomena require exquisite stability to prevent data corruption by noise. One source of instability at synchrotron radiation x-ray beamlines is the slow detuning of x-ray optics to marginal alignment where the onset of clipping increases the beam’s susceptibility to higher frequency position oscillations. In this article, we show that a 1  μm amplitude horizontal x-ray beam oscillation driven by power line harmonic leakage into the electron storage ring can be used as perturbation for horizontal position extremum seeking feedback. Feedback performance is characterized by convergence to 1.5% away from maximum intensity at optimal alignment.

  18. Ring magnets for the synchrotron x-ray source at ANL

    International Nuclear Information System (INIS)

    Praeg, W.F.; Thompson, K.M.; Kim, S.H.

    1987-03-01

    The designs of the bending, focusing, and correction magnetic for the storage ring are described. The computer-optimized pole-tip contours of the dipole, quadrupole, and sextupole magnets and the construction and assembly techniques keep the field errors within the specified limits. Horizontal and vertical steering corrections are provided by separate magnets in addition to a steering capability included in the sextupole magnets

  19. Modified theoretical minimum emittance lattice for an electron storage ring with extreme-low emittance

    Directory of Open Access Journals (Sweden)

    Yi Jiao

    2011-05-01

    Full Text Available In the continuing efforts to reduce the beam emittance of an electron storage ring composed of theoretical minimum emittance (TME lattice, down to a level of several tens of picometers, nonlinear dynamics grows to be a great challenge to the performance of the storage ring because of the strong sextupoles needed to compensate for its large global natural chomaticities coupled with its small average dispersion function. To help in dealing with the challenge of nonlinear optimization, we propose a novel variation of theoretical minimum emittance (TME lattice, named as “modified-TME” lattice, with minimal emittance about 3 times of the exact theoretical minimum, while with more compact layout, lower phase advance per cell, smaller natural chromaticities, and more relaxed optical functions than that in a TME cell, by using horizontally defocusing quadrupole closer to the dipole or simply combined-function dipole with horizontally defocusing gradient. We present approximate scaling formulas to describe the relationships of the design parameters in a modified-TME cell. The applications of modified-TME lattice in the PEP-X storage ring design are illustrated and the proposed lattice appears a good candidate for synchrotron radiation light source with extremely low emittance.

  20. Longitudinal dynamics in storage rings

    International Nuclear Information System (INIS)

    Colton, E.P.

    1986-01-01

    The single-particle equations of motion are derived for charged particles in a storage ring. Longitudinal space charge is included in the potential assuming an infinitely conducting circular beam pipe with a distributed inductance. The framework uses Hamilton's equations with the canonical variables phi and W. The Twiss parameters for longitudinal motion are also defined for the small amplitude synchrotron oscillations. The space-charge Hamiltonian is calculated for both parabolic bunches and ''matched'' bunches. A brief analysis including second-harmonic rf contributions is also given. The final sections supply calculations of dynamical quantities and particle simulations with the space-charge effects neglected

  1. Plasmon-Induced Transparency Based on Triple Arc-Ring Resonators

    Directory of Open Access Journals (Sweden)

    Guang-Xi Dong

    2018-06-01

    Full Text Available This paper presents a plasmon-induced transparency (PIT using an easy-fabricating metamaterial composed of three pieces of metallic arc-rings on top of a dielectric substrate. The transmission of the transparent peak of 1.32 THz reaches approximately 93%. The utilization of the coupled Lorentzian oscillator model and the distribution of electromagnetic fields together explain the cause of the transparent peak. The simulation results further demonstrate that the bandwidth of the transmission peak can be narrowed by changing the sizes of the arc-rings. Moreover, an on/off effect based on the transparent peak is discussed by introducing photosensitive silicon into the air gaps of the suggested metamaterial structure.

  2. Method for determining damping properties of materials using a suspended mechanical oscillator

    Science.gov (United States)

    Biscans, S.; Gras, S.; Evans, M.; Fritschel, P.; Pezerat, C.; Picart, P.

    2018-06-01

    We present a new approach for characterizing the loss factor of materials, using a suspended mechanical oscillator. Compared to more standard techniques, this method offers freedom in terms of the size and shape of the tested samples. Using a finite element model and the vibration measurements, the loss factor is deduced from the oscillator's ring-down. In this way the loss factor can be estimated independently for shear and compression deformation of the sample over a range of frequencies. As a proof of concept, we present measurements for EPO-TEK 353ND epoxy samples.

  3. Damping the e-p instability in the SNS accumulator ring

    Science.gov (United States)

    Evans, N. J.; Deibele, C.; Aleksandrov, A.; Xie, Z.

    2018-03-01

    A broadband, digital damper system for both transverse planes developed for the SNS accumulator ring has recently damped the first indications of the broadband 50-150 MHz e-p instability in a 1.2 MW neutron production beam. This paper presents details of the design and operation of the SNS damper system as well as results of active damping of the e-p instability in the SNS ring showing a reduction in power of betatron oscillation over the 10-300 MHz band of up to 70%. The spectral content of the beam during operation, with and without the damper system is presented and performance of the damper system is evaluated.

  4. Charged-particle incoherent-motion damping in storage rings by means of dissipative elements

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Khejfets, S.A.

    1979-01-01

    In consecutive order a possibility of damping of beam incoherent oscillations in a storage ring was studied by means of an external dissipative system in a sufficient common case. It is shown, that a useful effect, as for the case of electron cooling, is one-particle effect of particle oscillations damping due to nonconservatism of its interaction with an external system. Each other mutual influence through the external system becomes significant with increasing beam density and results in the limitation to achievable damping decrements

  5. A multipole-expanded effective field theory for vortex ring-sound interactions

    Science.gov (United States)

    Garcia-Saenz, Sebastian; Mitsou, Ermis; Nicolis, Alberto

    2018-02-01

    The low-energy dynamics of a zero temperature superfluid or of the compressional modes of an ordinary fluid can be described by a simple effective theory for a scalar field — the superfluid `phase'. However, when vortex lines are present, to describe all interactions in a local fashion one has to switch to a magnetic-type dual two-form description, which comes with six degrees of freedom (in place of one) and an associated gauge redundancy, and is thus considerably more complicated. Here we show that, in the case of vortex rings and for bulk modes that are much longer than the typical ring size, one can perform a systematic multipole expansion of the effective action and recast it into the simpler scalar field language. In a sense, in the presence of vortex rings the non-single valuedness of the scalar can be hidden inside the rings, and thus out of the reach of the multipole expansion. As an application of our techniques, we compute by standard effective field theory methods the sound emitted by an oscillating vortex ring.

  6. Design and implementation of double oscillator time-to-digital converter using SFQ logic circuits

    International Nuclear Information System (INIS)

    Nishigai, T.; Ito, M.; Yoshikawa, N.; Fujimaki, A.; Terai, H.; Yorozu, S.

    2005-01-01

    We have designed, fabricated and tested a time-to-digital converter (TDC) using SFQ logic circuits. The proposed TDC consists of two sets of ring oscillators and binary counters, and a coincidence detector (CD), which detects the coincidence of the arrival of two SFQ pulses from two ring oscillators. The advantage of the proposed TDC is its simple circuit structure with wide measurement range. The time resolution of the proposed TDC is limited by the resolution of the CD, which is about 10 ps because it is made by an NDRO cell in this study. The circuits are implemented using NEC 2.5 kA/cm 2 Nb standard process and the CONNECT cell library. We have demonstrated the measurement of the propagation delay of a Josephson transmission line by the TDC with the time resolution of about 10 ps

  7. Molecular spectrum of laterally coupled quantum rings under intense terahertz radiation.

    Science.gov (United States)

    Baghramyan, Henrikh M; Barseghyan, Manuk G; Laroze, David

    2017-09-05

    We study the influence of intense THz laser radiation and electric field on molecular states of laterally coupled quantum rings. Laser radiation shows the capability to dissociate quantum ring molecule and add 2-fold degeneracy to the molecular states at the fixed value of the overlapping size between rings. It is shown that coupled to decoupled molecular states phase transition points form almost a straight line with a slope equal to two. In addition, the electric field direction dependent energy spectrum shows unexpected oscillations, demonstrating strong coupling between molecular states. Besides, intraband absorption is considered, showing both blue and redshifts in its spectrum. The obtained results can be useful for the controlling of degeneracy of the discrete energy spectrum of nanoscale structures and in the tunneling effects therein.

  8. The horizontal and vertical cervico-ocular reflexes of the rabbit.

    Science.gov (United States)

    Barmack, N H; Nastos, M A; Pettorossi, V E

    1981-11-16

    Horizontal and vertical cervico-ocular reflexes of the rabbit (HCOR, VCOR) were evoked by sinusoidal oscillation of the body about the vertical and longitudinal axes while the head was fixed. These reflexes were studied over a frequency range of 0.005-0.800 Hz and at stimulus amplitudes of +/- 10 degrees. When the body of the rabbit was rotated horizontally clockwise around the fixed head, clockwise conjugate eye movements were evoked. When the body was rotated about the longitudinal axis onto the right side, the right eye rotated down and the left eye rotated up. The mean gain of the HCOR (eye velocity/body velocity) rose from 0.21 and 0.005 Hz to 0.27 at 0.020 Hz and then declined to 0.06 at 0.3Hz. The gain of the VCOR was less than the gain of the HCOR by a factor of 2-3. The HCOR was measured separately and in combination with the horizontal vestibulo-ocular reflex (HVOR). These reflexes combine linearly. The relative movements of the first 3 cervical vertebrae during stimulation of the HCOR and VCOR were measured. For the HCOR, the largest angular displacement (74%) occurs between C1 and C2. For the VCOR, the largest relative angular displacement (45%) occurs between C2 and C3. Step horizontal clockwise rotation of the head and body (HVOR) evoked low velocity counterclockwise eye movements followed by fast clockwise (resetting) eye movements. Step horizontal clockwise rotation of the body about the fixed head (HCOR) evoked low velocity clockwise eye movements which were followed by fast clockwise eye movements. Step horizontal clockwise rotation of the head about the fixed body (HCOR + HVOR) evoked low velocity counterclockwise eye movements which were not interrupted by fast clockwise eye movements. These data provide further evidence for a linear combination of independent HCOR and HVOR signals.

  9. Temperature Sensor Using a Multiwavelength Erbium-Doped Fiber Ring Laser

    Directory of Open Access Journals (Sweden)

    Silvia Diaz

    2017-01-01

    Full Text Available A novel temperature sensor is presented based on a multiwavelength erbium-doped fiber ring laser. The laser is comprised of fiber Bragg grating reflectors as the oscillation wavelength selecting filters. The performance of the temperature sensor in terms of both wavelength and laser output power was investigated, as well as the application of this system for remote temperature measurements.

  10. The behavior of the planetary rings under the Kozai Mechanism

    Science.gov (United States)

    Sucerquia, M. A.; Ramírez, C. V.; Zuluaga, J. I.

    2017-07-01

    Rings are one of the main feature of almost all giant planets in the Solar System. Even though thousands of exoplanets have been discovered to date, no evidence of exoplanetary rings have been found despite the effort made in the development and enhancing of techniques and methods for direct or indirect detection. In the transit of a ringed planet, the dynamic of the ring itself could play a meaningful role due to the so called Kozai Mechanism (KM) acting on each particle of it. When some specific initial conditions of the ring are fulfilled (as a ring inclination greater than ˜ 39°), KM generates short periodic changes in the inclination and eccentricity of each particle, leading to a meaningful characteristic collective behavior of the ring: it changes its width, inclination and optical depth. These changes induce periodic variations on the eclipsed area of the parent star, generating slight changes in the observed transit signal. Under this mechanism, light curves depths and shapes oscillate according to the fluctuations of the ring. To show this effect we have performed numerical simulations of the dynamic of a system of particles to asses the ring inclination and width variations over time. We have calculated the expected variations in the transit depth and finally, we have estimated the effect on the light curve of a hypothetical ringed exoplanet affected by the KM. The detection of this effect could be used as an alternative method to detect/confirm exoplanetary rings, and also it could be considered as a way to explain anomalous light curves patterns of exoplanets, as the case of KIC 8462852 star.

  11. On Interactions of Oscillation Modes for a Weakly Non-Linear Undamped Elastic Beam with AN External Force

    Science.gov (United States)

    BOERTJENS, G. J.; VAN HORSSEN, W. T.

    2000-08-01

    In this paper an initial-boundary value problem for the vertical displacement of a weakly non-linear elastic beam with an harmonic excitation in the horizontal direction at the ends of the beam is studied. The initial-boundary value problem can be regarded as a simple model describing oscillations of flexible structures like suspension bridges or iced overhead transmission lines. Using a two-time-scales perturbation method an approximation of the solution of the initial-boundary value problem is constructed. Interactions between different oscillation modes of the beam are studied. It is shown that for certain external excitations, depending on the phase of an oscillation mode, the amplitude of specific oscillation modes changes.

  12. Reflector development for XUV free-electron laser oscillators

    International Nuclear Information System (INIS)

    Newnam, B.E.

    1992-01-01

    The potential for extending FEL oscillators into the extreme ultraviolet below 100 nm has stimulated new resonator mirror concepts and experimental studies of promising reflective materials. Degradation of mirror reflectance by oxide and carbonaceous contaminants can be controlled by proper vacuum environment plus in situ cleaning, and periodic surface renewal. Multifacet mirrors within ring resonators will provide the desired broad-band reflectance and limit beam-induced thermal distortion to a tolerable level. 27 refs

  13. Signals of R-parity violating supersymmetry in neutrino scattering at muon storage rings

    International Nuclear Information System (INIS)

    Datta, Anindya; Gandhi, Raj; Mukhopadhyaya, Biswarup; Mehta, Poonam

    2001-01-01

    Neutrino oscillation signals at muon storage rings can be faked by supersymmetric (SUSY) interactions in an R-parity violating scenario. We investigate the τ-appearance signals for both long-baseline and near-site experiments, and conclude that the latter is of great use in distinguishing between oscillation and SUSY effects. On the other hand, for a wide and phenomenologically consistent choice of parameters, SUSY can cause a manifold increase in the event rate for wrong-sign muons at a long-baseline setting, thereby providing us with signatures of new physics

  14. Ring artifacts removal from synchrotron CT image slices

    International Nuclear Information System (INIS)

    Wei Zhouping; Chapman, Dean; Wiebe, Sheldon

    2013-01-01

    Ring artifacts can occur in reconstructed images from x-ray Computerized Tomography (CT) as full or partial concentric rings superimposed on the scanned structures. Due to the data corruption by those ring artifacts in CT images, qualitative and quantitative analysis of these images are compromised. In this paper, we propose to correct the ring artifacts on the reconstructed synchrotron radiation (SR) CT image slices. The proposed correction procedure includes the following steps: (1). transform the reconstructed CT images into polar coordinates; (2) apply discrete two-dimensional (2D) wavelet transform to the polar image to decompose it into four image components: low pass band image component, as well as the components from horizontal, vertical and diagonal details bands; (3). apply 2D Fourier transform to the vertical details band image component only, since the ring artifacts become vertical lines in the polar coordinates; (4). apply Gaussian filtering in Fourier domain along the abscissa direction to suppress the vertical lines, since the information of the vertical lines in Fourier domain is completely condensed to that direction; (5). perform inverse Fourier transform to get the corrected vertical details band image component; (6). perform inverse wavelet transform to get the corrected polar image; (7). transform the corrected polar image back to Cartesian coordinates to get the CT image slice with reduced ring artifacts. This approach has been successfully used on CT data acquired from the Biomedical Imaging and Therapy (BMIT) beamline in Canadian Light Source (CLS), and the results show that the ring artifacts in original SR CT images have been effectively suppressed with all the structure information in the image preserved.

  15. Beta Beams for Precision Measurements of Neutrino Oscillation Parameters

    CERN Document Server

    Wildner, E; Hansen, C; De Melo Mendonca, T; Stora, T; Damjanovic, S; Payet, J; Chancé, A; Zorin, V; Izotov, I; Rasin, S; Sidorov, A; Skalyga, V; De Angelis, G; Prete, G; Cinausero, M; Kravchuk, V; Gramegna, F; Marchi, T; Collazuol, G; Mezzetto, M; Delbar, T; Loiselet, M; Keutgen, T; Mitrofanov, S; Burt, G; Dexter, A; Lamy, T; Latrasse, L; Marie-Jeanne, M; Sortais, P; Thuillier, T; Debray, F; Trophime, C; Hass, M; Hirsh, T; Berkovits, D; Stahl, A; Vardaci, E; Di Nitto, A; Brondi, A; La Rana, G; Moro, R; De Rosa, G; Palladino, V

    2012-01-01

    Neutrino oscillations have implications for the Standard Model of particle physics. The CERN Beta Beam has outstanding capabilities to contribute to precision measurements of the parameters governing neutrino oscillations. The FP7 collaboration EUROnu (2008-2012) is a design study that will review three facilities (Super-Beams, Beta Beams and Neutrino Factories) and perform a cost assessment that, coupled with the physics performance, will give means to the European research authorities to make decisions on future European neutrino oscillation facilities. ”Beta Beams” produce collimated pure electron (anti)neutrinos by accelerating beta active ions to high energies and having them decay in a storage ring. Using existing machines and infrastructure is an advantage for the cost evaluation; however, this choice is also constraining the Beta Beams. Recent work to make the Beta Beam facility a solid option will be described: production of Beta Beam isotopes, the 60 GHz pulsed ECR source development, integratio...

  16. Characterization and detection of thermoacoustic combustion oscillations based on statistical complexity and complex-network theory

    Science.gov (United States)

    Murayama, Shogo; Kinugawa, Hikaru; Tokuda, Isao T.; Gotoda, Hiroshi

    2018-02-01

    We present an experimental study on the characterization of dynamic behavior of flow velocity field during thermoacoustic combustion oscillations in a turbulent confined combustor from the viewpoints of statistical complexity and complex-network theory, involving detection of a precursor of thermoacoustic combustion oscillations. The multiscale complexity-entropy causality plane clearly shows the possible presence of two dynamics, noisy periodic oscillations and noisy chaos, in the shear layer regions (1) between the outer recirculation region in the dump plate and a recirculation flow in the wake of the centerbody and (2) between the outer recirculation region in the dump plate and a vortex breakdown bubble away from the centerbody. The vertex strength in the turbulence network and the community structure of the vorticity field can identify the vortical interactions during thermoacoustic combustion oscillations. Sequential horizontal visibility graph motifs are useful for capturing a precursor of themoacoustic combustion oscillations.

  17. New edge magnetoplasmon for a two-dimensional electron gas in a ring geometry

    International Nuclear Information System (INIS)

    Proetto, C.R.

    1992-09-01

    The dynamical response of a classical two-dimensional electron gas confined in a ring geometry under a perpendicular magnetic field is analysed. Within the hydrodynamical approach and in the strong magnetic field limit, a new set of antidot edge magnetoplasmons is obtained, corresponding to density oscillations circulating along the inner boundary of the ring and whose frequency increases with magnetic field. The associated self-induced distribution of densities and currents are presented, together with an analysis of the size dependence of these perimeter waves. (author). 15 refs, 4 figs

  18. Coupling-induced oscillations in nonhomogeneous, overdamped, bistable systems

    International Nuclear Information System (INIS)

    Hernandez, Mayra; In, Visarath; Longhini, Patrick; Palacios, Antonio; Bulsara, Adi; Kho, Andy

    2008-01-01

    Coupling-induced oscillations in a homogeneous network of overdamped bistable systems have been previously studied both theoretically and experimentally for a system of N (odd) elements, unidirectionally coupled in a ring topology. In this work, we extend the analysis of this system to include a network of nonhomogeneous elements with respect to the parameter that controls the topology of the potential function and the bistability of each element. In particular, we quantify the effects of the nonhomogeneity on the onset of oscillations and the response of the network to external (assumed to be constant and very small) perturbations, using our (recently developed) coupled core fluxgate magnetometer as a representative system. The potential applications of this work include signal detection and characterization for a large class of sensor systems

  19. Coupling-induced oscillations in nonhomogeneous, overdamped, bistable systems

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Mayra [Nonlinear Dynamical Systems Group, Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182 (United States)], E-mail: mayra.alina@yahoo.com; In, Visarath [Space and Naval Warfare Systems Center, Code 71730, 53560 Hull Street, San Diego, CA 92152-5001 (United States)], E-mail: visarath.in@navy.mil; Longhini, Patrick [Space and Naval Warfare Systems Center, Code 71730, 53560 Hull Street, San Diego, CA 92152-5001 (United States)], E-mail: longhini@navy.mil; Palacios, Antonio [Nonlinear Dynamical Systems Group, Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182 (United States)], E-mail: palacios@euler.sdsu.edu; Bulsara, Adi [Space and Naval Warfare Systems Center, Code 71730, 53560 Hull Street, San Diego, CA 92152-5001 (United States)], E-mail: bulsara@spawar.navy.mil; Kho, Andy [Space and Naval Warfare Systems Center, Code 71730, 53560 Hull Street, San Diego, CA 92152-5001 (United States)], E-mail: kho@spawar.navy.mil

    2008-06-09

    Coupling-induced oscillations in a homogeneous network of overdamped bistable systems have been previously studied both theoretically and experimentally for a system of N (odd) elements, unidirectionally coupled in a ring topology. In this work, we extend the analysis of this system to include a network of nonhomogeneous elements with respect to the parameter that controls the topology of the potential function and the bistability of each element. In particular, we quantify the effects of the nonhomogeneity on the onset of oscillations and the response of the network to external (assumed to be constant and very small) perturbations, using our (recently developed) coupled core fluxgate magnetometer as a representative system. The potential applications of this work include signal detection and characterization for a large class of sensor systems.

  20. Calibration of the Nonlinear Accelerator Model at the Diamond Storage Ring

    CERN Document Server

    Bartolini, Riccardo; Rowland, James; Martin, Ian; Schmidt, Frank

    2010-01-01

    The correct implementation of the nonlinear ring model is crucial to achieve the top performance of a synchrotron light source. Several dynamics quantities can be used to compare the real machine with the model and eventually to correct the accelerator. Most of these methods are based on the analysis of turn-by-turn data of excited betatron oscillations. We present the experimental results of the campaign of measurements carried out at the Diamond. A combination of Frequency Map Analysis (FMA) and detuning with momentum measurements has allowed a precise calibration of the nonlinear model capable of reproducing the nonlinear beam dynamics in the storage ring

  1. DIVERGENT HORIZONTAL SUB-SURFACE FLOWS WITHIN ACTIVE REGION 11158

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Kiran; Tripathy, S. C.; Hill, F., E-mail: kjain@nso.edu, E-mail: stripathy@nso.edu, E-mail: fhill@nso.edu [National Solar Observatory, 950 N Cherry Avenue, Tucson, AZ 85719 (United States)

    2015-07-20

    We measure the horizontal subsurface flow in a fast emerging active region (AR; NOAA 11158) using the ring-diagram technique and the Helioseismic and Magnetic Imager high spatial resolution Dopplergrams. This AR had a complex magnetic structure and displayed significant changes in morphology during its disk passage. Over a period of six days from 2011 February 11 to 16, the temporal variation in the magnitude of the total velocity is found to follow the trend of magnetic field strength. We further analyze regions of individual magnetic polarity within AR 11158 and find that the horizontal velocity components in these sub-regions have significant variation with time and depth. The leading and trailing polarity regions move faster than the mixed-polarity region. Furthermore, both zonal and meridional components have opposite signs for trailing and leading polarity regions at all depths showing divergent flows within the AR. We also find a sharp decrease in the magnitude of total horizontal velocity in deeper layers around major flares. It is suggested that the re-organization of magnetic fields during flares, combined with the sunspot rotation, decreases the magnitude of horizontal flows or that the flow kinetic energy has been converted into the energy released by flares. After the decline in flare activity and sunspot rotation, the flows tend to follow the pattern of magnetic activity. We also observe less variation in the velocity components near the surface but these tend to increase with depth, further demonstrating that the deeper layers are more affected by the topology of ARs.

  2. Diskoseismology: Probing accretion disks. I - Trapped adiabatic oscillations

    Science.gov (United States)

    Nowak, Michael A.; Wagoner, Robert V.

    1991-01-01

    The normal modes of acoustic oscillations within thin accretion disks which are terminated by an innermost stable orbit around a slowly rotating black hole or weakly magnetized compact neutron star are analyzed. The dominant relativistic effects which allow modes to be trapped within the inner region of the disk are approximated via a modified Newtonian potential. A general formalism is developed for investigating the adiabatic oscillations of arbitrary unperturbed disk models. The generic behavior is explored by way of an expansion of the Lagrangian displacement about the plane of symmetry and by assuming separable solutions with the same radial wavelength for the horizontal and vertical perturbations. The lowest eigenfrequencies and eigenfunctions of a particular set of radial and quadrupole modes which have minimum motion normal for the plane are obtained. These modes correspond to the standard dispersion relation of disk theory.

  3. Dynamical Friedel oscillations of a Fermi sea

    Science.gov (United States)

    Zhang, J. M.; Liu, Y.

    2018-02-01

    We study the scenario of quenching an interaction-free Fermi sea on a one-dimensional lattice ring by suddenly changing the potential of a site. From the point-of-view of the conventional Friedel oscillation, which is a static or equilibrium problem, it is of interest what temporal and spatial oscillations the local sudden quench will induce. Numerically, the primary observation is that for a generic site, the local particle density switches between two plateaus periodically in time. Making use of the proximity of the realistic model to an exactly solvable model and employing the Abel regularization to assign a definite value to a divergent series, we obtain an analytical formula for the heights of the plateaus, which turns out to be very accurate for sites not too close to the quench site. The unexpect relevance and the incredible accuracy of the Abel regularization are yet to be understood. Eventually, when the contribution of the defect mode is also taken into account, the plateaus for those sites close to or on the quench site can also be accurately predicted. We have also studied the infinite lattice case. In this case, ensuing the quench, the out-going wave fronts leave behind a stable density oscillation pattern. Because of some interesting single-particle property, this dynamically generated Friedel oscillation differs from its conventional static counterpart only by the defect mode.

  4. Analysis of white noise excited elasto-plastic oscillator of several degrees of freedom

    DEFF Research Database (Denmark)

    Randrup-Thomsen, Søren

    1997-01-01

    The response of the white noise excited multi-degree-of-freedom (MDOF) oscillator has been analyzed in order to describe the plastic displacements of the relative response. Three different types of structural systems have been considered. The first type is a shear-wall frame having elastic......-ideal plastic stiffness properties of the columns connecting the two top-most floors. The second type is a shear-wall frame having elastic-ideal plastic stiffness properties of all columns, while the third type is a single-degree-of-freedom (SDOF) oscillator excited by horizontal and vertical white noise ground...

  5. Chromaticity correction in the TRISTAN phase I main ring with two types of insertion

    International Nuclear Information System (INIS)

    Wu, Yingzhi; Egawa, Kazumi.

    1984-07-01

    The TRISTAN main ring now under construction has four insertions. Besides the normal modes in which the four insertions have the same optics, the TRISTAN main ring will be operated in somewhat more complicated configurations with insertions having different optics. This report will consider chromaticity corrections using six families of sextupoles for the TRISTAN main ring with two different insertion types; opposite insertions have the same optics. The strength of correcting sextupoles is determined mainly using the W-correction method. The program PATRICIA is used to track the trajectories of test particles over 800 turns. The results show that the correction scheme adopted allows adequately large amplitudes of betatron and synchrotron oscillations. (author)

  6. Mobility induces global synchronization of oscillators in periodic extended systems

    International Nuclear Information System (INIS)

    Peruani, Fernando; Nicola, Ernesto M; Morelli, Luis G

    2010-01-01

    We study the synchronization of locally coupled noisy phase oscillators that move diffusively in a one-dimensional ring. Together with the disordered and the globally synchronized states, the system also exhibits wave-like states displaying local order. We use a statistical description valid for a large number of oscillators to show that for any finite system there is a critical mobility above which all wave-like solutions become unstable. Through Langevin simulations, we show that the transition to global synchronization is mediated by a shift in the relative size of attractor basins associated with wave-like states. Mobility disrupts these states and paves the way for the system to attain global synchronization.

  7. Chromaticity correction in the TRISTAN phase I main ring version 11

    International Nuclear Information System (INIS)

    Wu, Yingzhi.

    1984-05-01

    This report deals with chromaticity correction in the TRISTAN phase I main ring version 11. The program PATRICIA is used to track the trajectories of test particles over 2000 turns. The results show that particles with transverse initial amplitudes of at least 11 σ in both planes and with a synchrotron oscillation amplitude of 7 σsub(e) remain stable. (author)

  8. Multiple Coulomb ordered strings of ions in a storage ring

    International Nuclear Information System (INIS)

    Hasse, Rainer W.

    2002-01-01

    We explain that the anomalous frequency shifts of very close masses measured in the high precision mass measurement experiments in the ESR storage ring result from the locking of Coulomb interacting strings of ions. Here two concentric strings which run horizontally close to each other for many revolutions are captured into a single string if their thermal clouds overlap. They give up their identity and lock into an average frequency

  9. Low-emittance Storage Rings

    CERN Document Server

    Wolski, Andrzej

    2014-01-01

    The effects of synchrotron radiation on particle motion in storage rings are discussed. In the absence of radiation, particle motion is symplectic, and the beam emittances are conserved. The inclusion of radiation effects in a classical approximation leads to emittance damping: expressions for the damping times are derived. Then, it is shown that quantum radiation effects lead to excitation of the beam emittances. General expressions for the equilibrium longitudinal and horizontal (natural) emittances are derived. The impact of lattice design on the natural emittance is discussed, with particular attention to the special cases of FODO-, achromat- and theoretical-minimum-emittance-style lattices. Finally, the effects of betatron coupling and vertical dispersion (generated by magnet alignment and lattice tuning errors) on the vertical emittance are considered.

  10. Low Horizontal Beta Function In Long Straights Of The NSLS-II Lattice

    International Nuclear Information System (INIS)

    Fanglei, L.; Bengtsson, J.; Guo, W.; Krinsky, S.; Li, Y.; Yang, L.

    2011-01-01

    The NSLS-II storage ring lattice is comprised of 30 DBA cells arranged in 15 superperiods. There are 15 long straight sections (9.3m) for injection, RF and insertion devices and 15 short straights (6.6m) for insertion devices. In the baseline lattice, the short straights have small horizontal and vertical beta functions but the long straights have large horizontal beta function optimized for injection. In this paper, we explore the possibility of maintaining three long straights with large horizontal beta function while providing the other 12 long straights with smaller horizontal beta function to optimize the brightness of insertion devices. Our study considers the possible linear lattice solutions as well as characterizing the nonlinear dynamics. Results are reported on optimization of dynamic aperture required for good injection efficiency and adequate Touschek lifetime. This paper discusses dynamic aperture optimization for the NSLS-II lattice with alternate high and low horizontal beta function in the long straights, which is proposed for the optimization of the brightness of insertion devices. The linear optics is optimized to meet the requirements of lattice function and source properties. Nonlinear optimization for a lattice with working point at (37.18, 16.2) is performed. Considering the realistic magnets errors and physical apertures, we calculate the frequency maps and plot the tune footprint. The results show that the lattice with high-low beta function has adequate dynamic aperture for good injection efficiency and sufficient Touschek lifetime.

  11. Measurement of Unsteady Aerodynamics Load on the Blade of Field Horizontal Axis Wind Turbine

    Science.gov (United States)

    Kamada, Yasunari; Maeda, Takao; Naito, Keita; Ouchi, Yuu; Kozawa, Masayoshi

    This paper describes an experimental field study of the rotor aerodynamics of wind turbines. The test wind turbine is a horizontal axis wind turbine, or: HAWT with a diameter of 10m. The pressure distributions on the rotating blade are measured with multi point pressure transducers. Sectional aerodynamic forces are analyzed from pressure distribution. Blade root moments are measured simultaneously by a pair of strain gauges. The inflow wind is measured by a three component sonic anemometer, the local inflow of the blade section are measured by a pair of 7 hole Pitot tubes. The relation between the aerodynamic moments on the blade root from pressure distribution and the mechanical moment from strain gauges is discussed. The aerodynamic moments are estimated from the sectional aerodynamic forces and show oscillation caused by local wind speed and direction change. The mechanical moment shows similar oscillation to the aerodynamic excepting the short period oscillation of the blade first mode frequency. The fluctuation of the sectional aerodynamic force triggers resonant blade oscillations. Where stall is present along the blade section, the blade's first mode frequency is dominant. Without stall, the rotating frequency is dominant in the blade root moment.

  12. Effect of sp3-hybridized defects on the oscillatory behavior of carbon nanotube oscillators

    International Nuclear Information System (INIS)

    Guo, Taiyu; Ding, Tony Weixi; Pei, Qing-Xiang; Zhang, Yong-Wei

    2011-01-01

    Using molecular dynamics simulations, we investigate the oscillatory behaviors of carbon nanotube oscillators containing sp 3 -hybridized defects formed by hydrogen chemisorption. It is found that the presence of these defects significantly affects the kinetic and potential energies of the nanotube systems, which in turn affects their oscillation periods and frequencies. We have also studied the oscillatory characteristics of the oscillators containing sp 3 -hybridized Stone-Wales defects. Our results show that it is possible to control the motion of the inner nanotube by introducing sp 3 -hybridized defects on the outer nanotube, which provides a potential way to tune the oscillatory behavior of nanotube oscillators. -- Highlights: → sp 3 -hybridized defects increase energy dissipation. → sp 3 -hybridized defects arranged in a row have stronger effect than that in a ring. → sp 3 -hybridized defects reduces the effect of SW defects.

  13. Laser reflectometry of submegahertz liquid meniscus ringing.

    Science.gov (United States)

    Farahi, R H; Passian, A; Jones, Y K; Tetard, L; Lereu, A L; Thundat, T G

    2009-10-15

    Optical techniques that permit nondestructive probing of interfacial dynamics of various media are of key importance in numerous applications such as ellipsometry, mirage effect, and all-optical switching. Characterization of the various phases of microjet droplet formation yields important information for volume control, uniformity, velocity, and rate. The ringing of the meniscus and the associated relaxation time that occurs after droplet breakoff affect subsequent drop formation and is an indicator of the physical properties of the fluid. Using laser reflectometry, we present an analysis of the meniscus oscillations in an orifice of a piezoelectric microjet.

  14. An extended range soft X-ray beam line for the 1 GeV storage ring Aladdin

    International Nuclear Information System (INIS)

    Hulbert, S.L.; Stott, J.P.; Brown, F.C.

    1983-01-01

    The design and implementation of a soft X-ray beam line on the new 1 GeV storage ring Aladdin in Stoughton, Wisconsin is discussed. The beam line consists of a long horizontally focussing collection mirror, an extended range (50-1500 eV) grasshopper monochromator, an ellipsoidal refocussing mirror, and a photoemission chamber. Also discussed are the factors considered in matching the monochromator to the storage ring, flux and performance expectations, and the results of a ray tracing analysis. (orig.)

  15. Experimental study of buoyancy driven natural ventilation through horizontal openings

    DEFF Research Database (Denmark)

    Heiselberg, Per; Li, Zhigang

    2007-01-01

    An experimental study of buoyancy driven natural ventilation through single-sided horizontal openings was performed in a full-scale laboratory test rig. Measurements were made for opening ratios L/D range from 0.027 to 4.455, where L and D are the length and the diameter of the opening......, respectively. The bidirectional air flow rate was measured using constant injection tracer gas technique. Smoke visualizations showed that the air flow patterns are highly transient, unstable and complex, and that air flow rates oscillate with time. Correlations between the Froude number Fr and the L/D ratio...

  16. Electromagnetic pulse-driven spin-dependent currents in semiconductor quantum rings.

    Science.gov (United States)

    Zhu, Zhen-Gang; Berakdar, Jamal

    2009-04-08

    We investigate the non-equilibrium charge and spin-dependent currents in a quantum ring with a Rashba spin-orbit interaction (SOI) driven by two asymmetric picosecond electromagnetic pulses. The equilibrium persistent charge and persistent spin-dependent currents are investigated as well. It is shown that the dynamical charge and the dynamical spin-dependent currents vary smoothly with a static external magnetic flux and the SOI provides a SU(2) effective flux that changes the phases of the dynamic charge and the dynamic spin-dependent currents. The period of the oscillation of the total charge current with the delay time between the pulses is larger in a quantum ring with a larger radius. The parameters of the pulse fields control to a certain extent the total charge and the total spin-dependent currents. The calculations are applicable to nanometre rings fabricated in heterojunctions of III-V and II-VI semiconductors containing several hundreds of electrons.

  17. The 8-GeV transfer line injection into main ring

    International Nuclear Information System (INIS)

    Yang, M.J.

    1995-06-01

    Included in this report are a brief review of the design lattice of the 8-GeV beam transfer line and the Main Ring, the recent measurements on the 8-GeV line lattice function as well as that of the Main Ring at 8-GeV. The injection matching is a very important part of the MR operation. Mismatches such as energy, timing, or position are easily corrected because they cause oscillations which are visible on the Turn-By-Turn (TBT) TV monitor display. Mis-matches due to beta and dispersion functions are detected only by using the Flying Wire or by doing measurements during beam study. A new method which makes use of the available data from TBT hardware was used to obtain the beam phase space ellipse. Data taken from Main Ring at injection gives the beta function needed for transfer matching from 8-GeV line. The result of this measurement is also presented here

  18. Direct focusing error correction with ring-wide TBT beam position data

    International Nuclear Information System (INIS)

    Yang, M.J.

    2011-01-01

    Turn-By-Turn (TBT) betatron oscillation data is a very powerful tool in studying machine optics. Hundreds and thousands of turns of free oscillations are taken in just few tens of milliseconds. With beam covering all positions and angles at every location TBT data can be used to diagnose focusing errors almost instantly. This paper describes a new approach that observes focusing error collectively over all available TBT data to find the optimized quadrupole strength, one location at a time. Example will be shown and other issues will be discussed. The procedure presented clearly has helped to reduce overall deviations significantly, with relative ease. Sextupoles, being a permanent feature of the ring, will need to be incorporated into the model. While cumulative effect from all sextupoles around the ring may be negligible on turn-to-turn basis it is not so in this transfer line analysis. It should be noted that this procedure is not limited to looking for quadrupole errors. By modifying the target of minimization it could in principle be used to look for skew quadrupole errors and sextupole errors as well.

  19. Controlling the optical field chaos in storage ring free-electron lasers

    International Nuclear Information System (INIS)

    Wang Wenjie

    1995-01-01

    The controlling of optical field chaos in a storage ring free-electron laser oscillator is discussed by using a phenomenal model. A novel method (which is called the 'beating method') of controlling chaos in a nonlinear dynamical system described by non-autonomous ordinary differential equations was developed. The result of theoretical analysis and numerical simulation shows that the optical field chaos in a storage ring free-electron laser oscillator can be suppressed and a periodic laser intensity can be obtained when a weak periodic control field is added to the optical cavity. The validity of this method of eliminating chaos is confirmed by the fact that the leading Lyapunov characteristic exponent of the system changes from a positive real number to a negative one. A further research is carried out, and it is found that only when the period of the control field equals to an integral multiple of that of the gain modulation in the optical cavity can the optical field chaos be suppressed. This means that the 'beating method' of controlling chaos is a kind of resonant method. A way to determine the 'best beating position' in the phase trajectory has also been obtained

  20. Baroclinic flows, transports, and kinematic properties in a cyclonic-anticyclonic-cyclonic ring triad in the Gulf of Mexico

    Science.gov (United States)

    Vidal, VíCtor M. V.; Vidal, Francisco V.; HernáNdez, Abel F.; Meza, Eustorgio; PéRez-Molero, José M.

    1994-04-01

    During October-November 1986 the baroclinic circulation of the central and western Gulf of Mexico was dominated by an anticyclonic ring that was being bisected by two north and south flanking cyclonic rings. The baroclinic circulation revealed a well-defined cyclonic-anticyclonic-cyclonic triad system. The anticyclone's collision against the western gulf continental slope at 22.5°N, 97°W originated the north and south flanking cyclonic rings. The weakening of the anticyclone's relative vorticity, during the collision, was compensated by along-shelf north (26 cm s-1) and south (58 cm s-1) jet currents and by the anticyclone's flanking water mass's gain of cyclonic vorticity from lateral shear contributed by east (56 cm s-1) and west (42 cm s-1) current jets with individual mass transports of ˜18 Sv. Within the 0-1000 and 0-500 dbar layers and across 96°W the magnitudes of the colliding westward transports were 17.80 and 8.59 Sv, respectively. These corresponding transports were 85 and 94% balanced by along-shelf jet currents north and south of the anticyclone's collision zone. This indicates that only minor amounts (energy from the upper to the deeper water layers. Our vertical transport estimates through the 1000-m-depth surface revealed a net vertical descending transport of 0.4 Sv for the ring triad system. This mass flux occurred primordially within the south central gulf region and most likely constituted a principal mechanism that propelled the gulf's deep horizontal circulation. The volume renewal time is ˜5 years for the ring triad system within 0-1000 dbar. The volume renewal time for the gulf's deep water layer (2000-3000 dbar), estimated as a function of its horizontal outflowing mass flux (1.96 Sv), is of the same order of magnitude and reveals that the deeper layer of the Gulf of Mexico is as well ventilated as its upper layer (0-1000 dbar). The ring triad's surface kinematic properties were derived from the sea surface baroclinic circulation field

  1. Parameter study of global and cluster synchronization in arrays of dry friction oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Marszal, Michał, E-mail: michal.marszal@p.lodz.pl; Stefański, Andrzej

    2017-04-18

    Highlights: • Synchronization properties in arrays of coupled dry friction oscillators are investigated. • Master stability function in form of two-oscillator probe is used for predicting synchronization thresholds. • Two network topologies are checked: open and closed nearest neighbor coupling. • Regions of complete and cluster synchronization are found in parameter space. - Abstract: We investigate synchronization thresholds in arrays of identical classic stick-slip dry friction oscillators connected in a nearest neighbor fashion in closed and open ring network. Friction force is modeled by smoothened Stribeck model. Arrays of different length are checked in two parameter space (i.e., coupling coefficient vs. excitation frequency) for complete synchronization as well as cluster synchronization. Synchronization thresholds obtained by brute force numerical integration are compared with possible synchronization regions using the concept called master stability function in the form of two-oscillator reference probe. The results show existence of both complete synchronization and cluster synchronization regions in the investigated systems and confirm that two-oscillator probe can be applied for prediction of synchronization thresholds in systems with stick-slip phenomenon.

  2. On the propagation and decay of North Brazil Current rings

    Science.gov (United States)

    Jochumsen, Kerstin; Rhein, Monika; Hüttl-Kabus, Sabine; BöNing, Claus W.

    2010-10-01

    Near the western boundary of the tropical North Atlantic, where the North Brazil Current (NBC) retroflects into the North Equatorial Countercurrent, large anticyclonic rings are shed. After separating from the retroflection region, the so-called NBC rings travel northwestward along the Brazilian coast, until they reach the island chain of the Lesser Antilles and disintegrate. These rings contribute substantially to the upper limb return flow of the Atlantic Meridional Overturning Circulation by carrying South Atlantic Water into the northern subtropical gyre. Their relevance for the northward transport of South Atlantic Water depends on the frequency of their generation as well as on their horizontal and vertical structure. The ring shedding and propagation and the complex interaction of the rings with the Lesser Antilles are investigated in the ? Family of Linked Atlantic Model Experiments (FLAME) model. The ring properties simulated in FLAME reach the upper limit of the observed rings in diameter and agree with recent observations on seasonal variability, which indicates a maximum shedding during the first half of the year. When the rings reach the shallow topography of the Lesser Antilles, they are trapped by the island triangle of St. Lucia, Barbados and Tobago and interact with the island chain. The model provides a resolution that is capable of resolving the complex topographic conditions at the islands and illuminates various possible fates for the water contained in the rings. It also reproduces laboratory experiments that indicate that both cyclones and anticyclones are formed after a ring passes through a topographic gap. Trajectories of artificial floats, which were inserted into the modeled velocity field, are used to investigate the pathways of the ring cores and their fate after they encounter the Lesser Antilles. The majority of the floats entered the Caribbean, while the northward Atlantic pathway was found to be of minor importance. No prominent

  3. The vibration measurements at the photon factory storage ring building

    International Nuclear Information System (INIS)

    Haga, K.; Nakayama, M.; Masuda, K.; Ishizaki, H.; Kura, M.; Meng, L.; Oku, Y.

    1999-01-01

    The Photon Factory is a 2.5 GeV electron storage ring and has been operating since 1982 as a dedicated SR source. At the Photon Factory, we have been pursuing the various sources of the beam instabilities which deteriorated the SR beam quality in the wide frequency range. Some of the sources were the vibrations of magnets and floor of the ring tunnel, temperature change of the cooling water and the elongation of the storage ring building roof due to sunshine that induced the diurnal motion of the SR beam axis. This article presents the results of the vibration measurements that have been performed at the Photon Factory storage ring building. (1) The vibrations of the ring tunnel floor and the experimental hall floor, comparing with the vibration of the ground surrounding the storage ring building, are same order in the 1 ∼ 5 Hz range, and 1/3 ∼ 1/5 in the 5 ∼ 100 Hz range, in the vertical and the horizontal direction. (2) The effects of the vibration arising from the operating eight air-conditioners can be seen in the Fourier spectrum of the vibration of the ring tunnel floor, experimental floor, Q-magnets and BPM vacuum duct. (3) The vibrations of the Q-magnet and girder at frequencies near their fundamental resonant frequencies have been amplified 100 limes in the lateral direction comparing to the floor vibration. (4) Correlation between the vibration of the BPM vacuum duct and the vibration of the electron beam motion is unknown for the lack of the precise data. (authors)

  4. Self-generation of dissipative solitons in magnonic quasicrystal active ring resonator

    International Nuclear Information System (INIS)

    Grishin, S. V.; Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Nikitov, S. A.

    2014-01-01

    Self-generation of dissipative solitons in the magnonic quasicrystal (MQC) active ring resonator is studied theoretically and experimentally. The developed magnonic crystal has quasiperiodic Fibonacci type structure. Frequency selectivity of the MQC together with the parametric three-wave decay of magnetostatic surface spin wave (MSSW) leads to the dissipative soliton self-generation. The transfer matrix method is used to describe MQC transmission responses. Besides, the model of MQC active ring resonator is suggested. The model includes three coupled differential equations describing the parametric decay of MSSW and two differential equations of linear oscillators describing the frequency selectivity of MQC. Numerical simulation results of dissipative soliton self-generation are in a fair agreement with experimental data

  5. Self-generation of dissipative solitons in magnonic quasicrystal active ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Grishin, S. V., E-mail: grishfam@sgu.ru; Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Science, Moscow 125009 (Russian Federation)

    2014-02-07

    Self-generation of dissipative solitons in the magnonic quasicrystal (MQC) active ring resonator is studied theoretically and experimentally. The developed magnonic crystal has quasiperiodic Fibonacci type structure. Frequency selectivity of the MQC together with the parametric three-wave decay of magnetostatic surface spin wave (MSSW) leads to the dissipative soliton self-generation. The transfer matrix method is used to describe MQC transmission responses. Besides, the model of MQC active ring resonator is suggested. The model includes three coupled differential equations describing the parametric decay of MSSW and two differential equations of linear oscillators describing the frequency selectivity of MQC. Numerical simulation results of dissipative soliton self-generation are in a fair agreement with experimental data.

  6. Electronic states of on- and off-center donors in quantum rings of finite width

    International Nuclear Information System (INIS)

    Lima, R.P.A.; Amado, M.

    2008-01-01

    The electronic states of a hydrogenic donor in two-dimensional quantum rings are calculated by taking into account the finite width of the potential well in the ring. In addition, a strong magnetic field is applied perpendicular to the quantum ring. Using the effective-mass approximation at the Γ valley, the radial Hamiltonian for the envelope-function is exactly diagonalized in the case of on-center donors. The corresponding energy levels for different angular momenta are studied as a function of the applied magnetic field. In the case of off-center donors, a perturbation approach is considered and its limitations are discussed. Finally, we calculate the absorption spectra and oscillator strength for different intraband transitions, specifically for on-center donors

  7. Regular and irregular patterns of self-localized excitation in arrays of coupled phase oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Wolfrum, Matthias; Omel' chenko, Oleh E. [Weierstrass Institute, Mohrenstrasse 39, Berlin 10117 (Germany); Sieber, Jan [College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter EX4 4QF (United Kingdom)

    2015-05-15

    We study a system of phase oscillators with nonlocal coupling in a ring that supports self-organized patterns of coherence and incoherence, called chimera states. Introducing a global feedback loop, connecting the phase lag to the order parameter, we can observe chimera states also for systems with a small number of oscillators. Numerical simulations show a huge variety of regular and irregular patterns composed of localized phase slipping events of single oscillators. Using methods of classical finite dimensional chaos and bifurcation theory, we can identify the emergence of chaotic chimera states as a result of transitions to chaos via period doubling cascades, torus breakup, and intermittency. We can explain the observed phenomena by a mechanism of self-modulated excitability in a discrete excitable medium.

  8. The Storage Ring Magnets of the Australian Synchrotron

    International Nuclear Information System (INIS)

    Barg, B.; Jackson, A.; LeBlanc, G.; Melbourne U.; Huttel, E.; Karlsruhe, Forschungszentrum; Tanabe, J.; SLAC

    2005-01-01

    A 3 GeV Synchrotron Radiation Source is being built in Melbourne, Australia. Commissioning is foreseen in 2006. The Storage ring has a circumference of 216 m and has a 14 fold DBA structure. For the storage ring the following magnets will be installed: 28 dipoles with a field of 1.3 T, and a gradient of 3.35 T/m; 56 quadrupoles with a gradient of 18 T/m and 28 with a gradient of 10 T/m; 56 sextupoles with a strength of B'' = 350 T/m and 42 with 150 T/m. The sextupoles are equipped with additional coils for horizontal and vertical steering and for a skew quadrupole. The pole profile was determined by scaling the pole profile of the SPEAR magnets [1] to the aperture of the ASP magnets. The magnets are to be supplied by Buckley Systems Ltd in Auckland, New Zealand

  9. Suppression criteria of parasitic mode oscillations in a gyrotron beam tunnel

    Science.gov (United States)

    Kumar, Nitin; Singh, Udaybir; Singh, T. P.; Sinha, A. K.

    2011-02-01

    This paper presents the design criteria of the parasitic mode oscillations suppression for a periodic, ceramic, and copper loaded gyrotron beam tunnel. In such a type of beam tunnel, the suppression of parasitic mode oscillations is an important design problem. A method of beam-wave coupling coefficient and its mathematical formulation are presented. The developed design criteria are used in the beam tunnel design of a 42 GHz gyrotron to be developed for the Indian TOKAMAK system. The role of the thickness and the radius of the beam tunnel copper rings to obtain the developed design criteria are also discussed. The commercially available electromagnetic code CST and the electron trajectory code EGUN are used for the simulations.

  10. Suppression criteria of parasitic mode oscillations in a gyrotron beam tunnel

    International Nuclear Information System (INIS)

    Kumar, Nitin; Singh, Udaybir; Sinha, A. K.; Singh, T. P.

    2011-01-01

    This paper presents the design criteria of the parasitic mode oscillations suppression for a periodic, ceramic, and copper loaded gyrotron beam tunnel. In such a type of beam tunnel, the suppression of parasitic mode oscillations is an important design problem. A method of beam-wave coupling coefficient and its mathematical formulation are presented. The developed design criteria are used in the beam tunnel design of a 42 GHz gyrotron to be developed for the Indian TOKAMAK system. The role of the thickness and the radius of the beam tunnel copper rings to obtain the developed design criteria are also discussed. The commercially available electromagnetic code CST and the electron trajectory code EGUN are used for the simulations.

  11. Space-charge effects in the Fermilab Main Ring at 8 GeV

    International Nuclear Information System (INIS)

    Mane, S.R.

    1989-03-01

    I use computer tracking to investigate the effects of space-charge on particle motion in the Fermilab Main Ring at p = 8 GeV/c. The results are found to agree with the Laslett tuneshift formula. Simple model cases are also studied to speed up the tracking. The effects of synchrotron oscillations, via tune modulation and dispersion, are included. 2 refs., 5 figs

  12. Experimental modelling of the dipole magnet for the electron storage ring DELSY

    CERN Document Server

    Meshkov, I N; Syresin, E M

    2003-01-01

    In the Joint Institute for Nuclear Research (Dubna) the project of Dubna Electron Synchrotron (DELSY) with an electron energy of 1.2 GeV is developed. The electron storage ring in the DELSY project is planned to be created on the basis of magnetic elements, which were used earlier in the storage ring AmPS (NIKHEF, Amsterdam). The optics of the ring is necessary to be changed, its perimeter to be reduced approximately in one and a half time, the energy of electrons to be increased. The paper is devoted to the development of a modified dipole magnet of the storage ring. The preliminary estimation of geometry of the magnet pole is carried out by means of computer modelling using two- and three- dimensional codes of the magnetic field calculation SUPERFISH and RADIA. The experimental stand for the measurements of the dipole magnetic field is described. As the result of calculational and experimental modelling for the dipole magnet, the geometry of its poles was estimated, providing in the horizontal aperture +- 3...

  13. Status of the maintenance for the KEK 12GEV-PS main ring and power supply

    International Nuclear Information System (INIS)

    Sato, Hikaru; Igarashi, Susumu; Marutsuka, Katsumi; Mikawa, Katsuhiko; Shirakata, Masashi; Sueno, Tsuyoshi; Tokuda, Noboru

    2004-01-01

    More than 30 years passed since the KEK 12GeV-PS construction, some of accelerator equipments are highly radiated, especially the injection and the extraction equipments. In recent years, the higher intensity beam has been required for such as the long baseline neutrino oscillation experiment and rare decay experiments. Then, the circumference of the maintenance work has become severe. Further, almost equipments of main ring and power supply have deteriorated. Status of the Maintenance for the KEK 12GeV-PS main ring and power supply are presented. (author)

  14. Effect of the long-term memory on the beam break-up instability of a single bunch in storage rings

    International Nuclear Information System (INIS)

    Pestrikov, D.V.

    2009-01-01

    We study modifications of the beam break-up instability of transverse coherent oscillations of a single bunch which occur in storage rings due to weak wakefields decaying longer than the revolution period of particles. The long-term part of the wake results in the eigenmode spectra of coherent oscillations. Both stable and unstable modes are found for coherent oscillations of a monochromatic bunch. The single turn wakefields result in the beam break-up coherent oscillations of the bunch. The found eigenmode spectrum does not contain a leading unstable mode. Despite the exponential increase in time of the eigenmodes, both self-consistent and the beam break-up parts of the coherent oscillations indicate similar and non-exponential time dependencies. The beam break-up behavior dominates, if the wake memory is weak.

  15. A anew determination of the B0anti B0 oscillation strength

    International Nuclear Information System (INIS)

    Albrecht, H.; Ehrlichmann, H.; Hamacher, T.; Krueger, A.; Nau, A.; Nippe, A.; Reidenbach, M.; Schaefer, M.; Schroeder, H.; Schulz, H.D.; Sefkow, F.; Wurth, R.; Appuhn, R.D.; Hast, C.; Herrera, G.; Kolanoski, H.; Lange, A.; Lindner, A.; Mankel, R.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Toepfer, D.; Walther, A.; Wegener, D.; Britton, D.I.; Charlesworth, C.E.K.; Edwards, K.W.; Kapitza, H.; Krieger, P.; Kutschke, R.; MacFarlane, D.B.; Orr, R.S.; Patel, P.M.; Prentice, J.D.; Seidel, S.C.; Tsipolitis, G.; Tzamariudaki, K.; Van de Water, R.G.; Yoon, T.S.; Ressling, D.; Schael, S.; Schubert, K.R.; Strahl, K.; Waldi, R.; Weseler, S.; Childers, R.; Darden, C.W.

    1992-01-01

    Using the ARGUS detector at the e + e - storage ring DORIS II at DESY, a study of B 0 anti B 0 oscillations has been performed using three different techniques. Besides the standard dilepton method, charge correlations between D * mesons and one or two leptons have also been investigated. The mixing parameter r is determined to be (20.6±7.0)%. (orig.)

  16. Measurement and correction of the working points during the energy ramp at the stretcher ring of ELSA

    International Nuclear Information System (INIS)

    Eberhartdt, Maren

    2010-12-01

    At the electron stretcher accelerator ELSA of Bonn University, an external beam is supplied to hadron physics experiments. In order to correct dynamic effects caused by eddy currents induced during the fast energy ramp, the transversal tunes have to be measured in situ with high precision. These measurements are based on the excitation of coherent oscillations generated by a pulsed kicker magnet. Horizontal oscillations were excited using one of the injection kicker magnets. Since its installation a newly designed kicker magnet enables measurements in the vertical plane as well. Oscillation frequencies are derived from a fast Fourier transform of the demodulated BPM signals, showing a well pronounced peak at the tune frequency. Using this technique, tune shifts were measured and corrected successfully. Measurement and correction of coherent longitudinal oscillations is feasible as well, utilizing a quite similar technique. Coherent oscillations are excited by a phase jump of the acceleration voltage using an electrical phase shifter in the reference RF signal path. (orig.)

  17. Correction of vertical dispersion and betatron coupling for the CLIC damping ring

    CERN Document Server

    Korostelev, M S

    2006-01-01

    The sensitivity of the CLIC damping ring to various kinds of alignment errors has been studied. Without any correction, fairly small vertical misalignments of the quadrupoles and, in particular, the sextupoles, introduce unacceptable distortions of the closed orbit as well as intolerable spurious vertical dispersion and coupling due to the strong focusing optics of the damping ring. A sophisticated beam-based correction scheme has been developed to bring the design target emittances and the dynamic aperture back to the ideal value. The correction using dipolar correctors and several skew quadrupole correctors allows a minimization of the closed-orbit distortion, the cross-talk between vertical and horizontal closed orbits, the residual vertical dispersion and the betatron coupling.

  18. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    International Nuclear Information System (INIS)

    BIGI, I.; BOLTON, T.; FORMAGGIO, J.; HARRIS, D.; MORFIN, J.; SPENTZOURIS, P.; YU, J.; KAYSER, B.; KING, B.J.; MCFARLAND, K.; PETROV, A.; SCHELLMAN, H.; VELASCO, M.; SHROCK, R.

    2000-01-01

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters

  19. THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS

    Energy Technology Data Exchange (ETDEWEB)

    BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.

    2000-05-11

    Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.

  20. Optical absorptions of an exciton in a quantum ring: Effect of the repulsive core

    International Nuclear Information System (INIS)

    Xie, Wenfang

    2013-01-01

    We study the optical absorptions of an exciton in a quantum ring. The quantum ring is described as a circular quantum dot with a repulsive core. The advantage of our methodology is that one can investigate the influence of the repulsive core by varying two parameters in the confinement potential. The linear, third-order nonlinear and total optical absorption coefficients have been examined with the change of the confinement potential. The results show that the optical absorptions are strongly affected by the repulsive core. Moreover, the repulsive core can influence the oscillation in the resonant peak of the absorption coefficients.

  1. Calibration of the nonlinear ring model at the Diamond Light Source

    CERN Document Server

    Bartolini, R; Rehm, G; Martin, I P S

    2011-01-01

    Nonlinear beam dynamics plays a crucial role in defining the performance of a storage ring. The beam lifetime, the injection efficiency, and the dynamic and momentum apertures available to the beam are optimized during the design phase by a proper optimization of the linear lattice and of the distribution of sextupole families. The correct implementation of the design model, especially the nonlinear part, is a nontrivial accelerator physics task. Several parameters of the nonlinear dynamics can be used to compare the real machine with the model and eventually to correct the accelerator. Most of these parameters are extracted from the analysis of turn-by-turn data after the excitation of betatron oscillations of the particles in the ring. We present the experimental results of the campaign of measurements carried out at the Diamond storage ring to characterize the nonlinear beam dynamics. A combination of frequency map analysis with the detuning with momentum measurements has allowed for a precise calibration ...

  2. Beta Beams: an accelerator based facility to explore Neutrino oscillation physics

    CERN Document Server

    Wildner, E; Hansen, C; De Melo Mendonca, T; Stora, T; Payet, J; Chance, A; Zorin, V; Izotov, I; Rasin, S; Sidorov, A; Skalyga, V; De Angelis, G; Prete, G; Cinausero, M; Kravchuk, VL; Gramegna, F; Marchi, T; Collazuol, G; De Rosa, G; Delbar, T; Loiselet, M; Keutgen, T; Mitrofanov, S; Lamy, T; Latrasse, L; Marie-Jeanne, M; Sortais, P; Thuillier, T; Debray, F; Trophime, C; Hass, M; Hirsh, T; Berkovits, D; Stahl, A

    2011-01-01

    The discovery that the neutrino changes flavor as it travels through space has implications for the Standard Model of particle physics (SM)[1]. To know the contribution of neutrinos to the SM, needs precise measurements of the parameters governing the neutrino oscillations. This will require a high intensity beam-based neutrino oscillation facility. The EURONu Design Study will review three currently accepted methods of realizing this facility (the so-called Super-Beams, Beta Beams and Neutrino Factories) and perform a cost assessment that, coupled with the physics performance, will give means to the European research authorities to make a decision on the layout and construction of the future European neutrino oscillation facility. ”Beta Beams” produce collimated pure electron neutrino and antineutrino beams by accelerating beta active ions to high energies and letting them decay in a race-track shaped storage ring. EURONu Beta Beams are based on CERNs infrastructure and the fact that some of the already ...

  3. SEISMOLOGY OF A LARGE SOLAR CORONAL LOOP FROM EUVI/STEREO OBSERVATIONS OF ITS TRANSVERSE OSCILLATION

    International Nuclear Information System (INIS)

    Verwichte, E.; Van Doorsselaere, T.; Foullon, C.; Nakariakov, V. M.; Aschwanden, M. J.

    2009-01-01

    The first analysis of a transverse loop oscillation observed by both Solar TErrestrial RElations Observatories (STEREO) spacecraft is presented, for an event on the 2007 June 27 as seen by the Extreme Ultraviolet Imager (EUVI). The three-dimensional loop geometry is determined using a three-dimensional reconstruction with a semicircular loop model, which allows for an accurate measurement of the loop length. The plane of wave polarization is found from comparison with a simulated loop model and shows that the oscillation is a fundamental horizontally polarized fast magnetoacoustic kink mode. The oscillation is characterized using an automated method and the results from both spacecraft are found to match closely. The oscillation period is 630 ± 30 s and the damping time is 1000 ± 300 s. Also, clear intensity variations associated with the transverse loop oscillations are reported for the first time. They are shown to be caused by the effect of line-of-sight integration. The Alfven speed and coronal magnetic field derived using coronal seismology are discussed. This study shows that EUVI/STEREO observations achieve an adequate accuracy for studying long-period, large-amplitude transverse loop oscillations.

  4. Pressure suppression pool hydrodynamic studies for horizontal vent exit of Indian PHWR containment

    International Nuclear Information System (INIS)

    Mohan, N.; Bajaj, S.S.; Saha, P.

    1994-01-01

    The standard Indian PHWR incorporates a pressure suppression type of containment system with a suppression pool.The design of KAPS (Kakrapar Atomic Power Station) suppression pool system adopts a modified system of downcomers having horizontal vents as compared to vertical vents of NAPS (Narora Atomic Power Station). Hydrodynamic studies for vertical vents have been reported earlier. This paper presents hydrodynamic studies for horizontal type vent system during LOCA. These studies include the phenomenon of vent clearing (where the water slug standing in downcomer initially is injected to wetwell due to rapid pressurization of drywell) followed by pool swell (elevation of pool water due to formation of bubbles due to air mass entering pool at the exit of horizontal vents from drywell). The analysis performed for vent clearing and pool swell is based on rigorous thermal hydraulic calculation consisting of conservation of air-steam mixture mass, momentum and thermal energy and mass of air. Horizontal vent of downcomer is modelled in such a way that during steam-air flow, variation of flow area due to oscillating water surface in downcomer could be considered. Calculation predicts that the vent gets cleared in about 1.0 second and the corresponding downward slug velocity in the downcomer is 4.61 m/sec. The maximum pool swell for a conservative lateral expansion is calculated to be 0.56 m. (author). 3 refs., 12 figs

  5. Low-Voltage, Low-Power, and Wide-Tuning-Range Ring-VCO for Frequency ΔΣ Modulator

    DEFF Research Database (Denmark)

    Tuan Vu, Cao; Wisland, Dag T.; Lande, Tor Sverre

    A low-voltage, low-power, and wide-tuning-range VCO which converts an analog input voltage to phase information for a frequency ΔΣ modulator is proposed in this paper. The VCO is based on a differential ring oscillator, which is improved with modified symmetric load and a positive feedback...

  6. Effect of fuel and nozzle geometry on the off-axis oscillation of needle in diesel injectors using high-speed X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Zhang, X.; Liu, J.; Wang, J.

    2016-01-01

    The diesel spray characteristics are strongly influenced by the flow dynamics inside the injector nozzle. Moreover, the off-axis oscillation of needle could lead to variation of orifice flow in the nozzle. In this paper, the needle oscillation was investigated using high-speed X-ray phase contrast imaging and quantitative image processing. The effects of fuel, injection pressure and nozzle geometry on the needle oscillation were analyzed. The results showed that the vertical and horizontal oscillation of needle was independent on the injection pressure. The maximum oscillation range of 14μ m was found. Biodiesel application slightly decreased the needle oscillation due to high viscosity. The needle oscillation range increased generally with increasing hole number. The larger needle oscillation in multi-hole injectors was dominated by the geometry problem or production issue at lower needle lift. In addition, the influence of needle oscillation on the spray morphology was also discussed.

  7. Effect of fuel and nozzle geometry on the off-axis oscillation of needle in diesel injectors using high-speed X-ray phase contrast imaging

    Science.gov (United States)

    Zhang, X.; Liu, J.; Wang, J.

    2016-05-01

    The diesel spray characteristics are strongly influenced by the flow dynamics inside the injector nozzle. Moreover, the off-axis oscillation of needle could lead to variation of orifice flow in the nozzle. In this paper, the needle oscillation was investigated using high-speed X-ray phase contrast imaging and quantitative image processing. The effects of fuel, injection pressure and nozzle geometry on the needle oscillation were analyzed. The results showed that the vertical and horizontal oscillation of needle was independent on the injection pressure. The maximum oscillation range of 14μ m was found. Biodiesel application slightly decreased the needle oscillation due to high viscosity. The needle oscillation range increased generally with increasing hole number. The larger needle oscillation in multi-hole injectors was dominated by the geometry problem or production issue at lower needle lift. In addition, the influence of needle oscillation on the spray morphology was also discussed.

  8. Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata

    Directory of Open Access Journals (Sweden)

    Wiltschko Wolfgang

    2009-10-01

    Full Text Available Abstract Background Zebra finches can be trained to use the geomagnetic field as a directional cue for short distance orientation. The physical mechanisms underlying the primary processes of magnetoreception are, however, largely unknown. Two hypotheses of how birds perceive magnetic information are mainly discussed, one dealing with modulation of radical pair processes in retinal structures, the other assuming that iron deposits in the upper beak of the birds are involved. Oscillating magnetic fields in the MHz range disturb radical pair mechanisms but do not affect magnetic particles. Thus, application of such oscillating fields in behavioral experiments can be used as a diagnostic tool to decide between the two alternatives. Methods In a setup that eliminates all directional cues except the geomagnetic field zebra finches were trained to search for food in the magnetic north/south axis. The birds were then tested for orientation performance in two magnetic conditions. In condition 1 the horizontal component of the geomagnetic field was shifted by 90 degrees using a helmholtz coil. In condition 2 a high frequently oscillating field (1.156 MHz was applied in addition to the shifted field. Another group of birds was trained to solve the orientation task, but with visual landmarks as directional cue. The birds were then tested for their orientation performance in the same magnetic conditions as applied for the first experiment. Results The zebra finches could be trained successfully to orient in the geomagnetic field for food search in the north/south axis. They were also well oriented in test condition 1, with the magnetic field shifted horizontally by 90 degrees. In contrast, when the oscillating field was added, the directional choices during food search were randomly distributed. Birds that were trained to visually guided orientation showed no difference of orientation performance in the two magnetic conditions. Conclusion The results

  9. Permanent cavity seal ring for a nuclear reactor containment arrangement

    International Nuclear Information System (INIS)

    Swidwa, K.J.; Salton, R.B.; Marshall, J.R.

    1990-01-01

    This patent describes a nuclear reactor containment arrangement. It comprises: a reactor pressure vessel which thermally expands and contracts during cyclic operation of the reactor, the vessel having a peripheral wall and a horizontally outwardly extending flange thereon; a containment wall having a shelf, the wall spaced from and surrounding the peripheral wall of the reactor pressure vessel defining an annular expansion gap therebetween, and an annular ring seal extending across the annular expansion gap to provide a water-tight seal therebetween

  10. Beam Optics for FCC-ee Collider Ring

    CERN Document Server

    Oide, Katsunobu; Aumon, S; Benedikt, M; Blondel, A; Bogomyagkov, A V; Boscolo, M; Burkhardt, H; Cai, Y; Doblhammer, A; Haerer, B; Holzer, B; Koop, I; Koratzinos, M; Jowett, John M; Levichev, E B; Medina, L; Ohmi, K; Papaphilippou, Y; Piminov, P A; Shatilov, D N; Sinyatkin, S V; Sullivan, M; Wenninger, J; Wienands, U; Zhou, D; Zimmermann, F

    2017-01-01

    A beam optics scheme has been designed [ 1 ] for the Future Circular Collider- e + e − (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [ 2 ] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system without additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So- called “tapering" of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [ 3 ] as clos...

  11. Design status of the 2.5 GeV National Synchrotron Light Source x-ray ring

    International Nuclear Information System (INIS)

    Krinsky, S.; Blumberg, L.; Bittner, J.; Galayda, J.; Heese, R.; Schuchman, J.C.; van Steenbergen, A.

    1979-01-01

    The present state of the design of the 2.5 GeV electron storage ring for the National Synchrotron Light Source is described. This ring will serve as a dedicated source of synchrotron radiation in the wavelength range 0.1 A to 30 A. While maintaining the basic high brigtness features of the eariler developed lattice structure, recent work resulted in a more economical magnet system, is simplified chromaticity corrections, and improved distribution of the X-ray beam lines. In addition, the adequacy of the dynamic aperture for stable betatron oscillations has been verified for a variety of betatron tunes

  12. Modeling Friction Performance of Drill String Torsional Oscillation Using Dynamic Friction Model

    Directory of Open Access Journals (Sweden)

    Xingming Wang

    2017-01-01

    Full Text Available Drill string torsional and longitudinal oscillation can significantly reduce axial drag in horizontal drilling. An improved theoretical model for the analysis of the frictional force was proposed based on microscopic contact deformation theory and a bristle model. The established model, an improved dynamic friction model established for drill strings in a wellbore, was used to determine the relationship of friction force changes and the drill string torsional vibration. The model results were in good agreement with the experimental data, verifying the accuracy of the established model. The analysis of the influence of drilling mud properties indicated that there is an approximately linear relationship between the axial friction force and dynamic shear and viscosity. The influence of drill string torsional oscillation on the axial friction force is discussed. The results indicated that the drill string transverse velocity is a prerequisite for reducing axial friction. In addition, low amplitude of torsional vibration speed can significantly reduce axial friction. Then, increasing the amplitude of transverse vibration speed, the effect of axial reduction is not significant. In addition, by involving general field drilling parameters, this model can accurately describe the friction behavior and quantitatively predict the frictional resistance in horizontal drilling.

  13. Imaging phase slip dynamics in micron-size superconducting rings

    Science.gov (United States)

    Polshyn, Hryhoriy; Naibert, Tyler R.; Budakian, Raffi

    2018-05-01

    We present a scanning probe technique for measuring the dynamics of individual fluxoid transitions in multiply connected superconducting structures. In these measurements, a small magnetic particle attached to the tip of a silicon cantilever is scanned over a micron-size superconducting ring fabricated from a thin aluminum film. We find that near the superconducting transition temperature of the aluminum, the dissipation and frequency of the cantilever changes significantly at particular locations where the tip-induced magnetic flux penetrating the ring causes the two lowest-energy fluxoid states to become nearly degenerate. In this regime, we show that changes in the cantilever frequency and dissipation are well-described by a stochastic resonance (SR) process, wherein small oscillations of the cantilever in the presence of thermally activated phase slips (TAPS) in the ring give rise to a dynamical force that modifies the mechanical properties of the cantilever. Using the SR model, we calculate the average fluctuation rate of the TAPS as a function of temperature over a 32-dB range in frequency, and we compare it to the Langer-Ambegaokar-McCumber-Halperin theory for TAPS in one-dimensional superconducting structures.

  14. 600-year reconstruction of the tri-pole Interdecadal Pacific Oscillation (TPI) using tree-ring chronologies and a single coral proxy from Indonesia, Australia and New Zealand.

    Science.gov (United States)

    Palmer, Jonathan; Cook, Edward; Turney, Chris; Cook, Benjamin; Fenwick, Pavla; Allen, Kathy; Baker, Patrick; Henley, Benjamin

    2017-04-01

    The development of the eastern Australia and New Zealand summer drought atlas (i.e. ANZDA; Palmer et al., 2015) highlighted the potential for exploring the reconstruction of the Henley et al. (2015) tripole Interdecadal Pacific Oscillation index (TPI). The approach taken was to use both the 1375 drought atlas scPDSI (self-calibrating Palmer Drought Severity Index) grid-points and the 176 tree-ring and single coral proxies to determine the strength and spatial expression of their relationship to TPI. An important concern was the potential geographic bias of the proxies relative to the TPI. To examine this concern more closely, each of three main TPI regions of sea surface temperatures were extracted and then correlated to the ANZDA scPDSI grid-points. Results showed a robust correlation field to each of the three poles although the closest "Tasman" pole was, as expected, the strongest. Next, the 177 proxies were used in regressions to calibrate/verify to the TPI over the period CE 1871-1975. The positive results provided confidence for the reconstruction "summer" TPI values extending back to CE 1410. The wavelet pattern of the reconstruction shows the ENSO (2-7 year) band frequency has increased during the 20th century while the longer (10-30 year) periodicities are scattered throughout the entire time interval. Finally, the different recognised phases of the IPO are compared to the two reconstructions (grid-points and TPI) and earlier periods discussed. References: Henley BJ, Gergis J, Karoly DJ, Power S, Kennedy J, Folland CK (2015) A Tripole Index for the Inter-decadal Pacific Oscillation. Climate Dynamics 45, 3077-3090. doi:10.1007/s00382-015-2525-1. Palmer J, Cook ER, Turney CSM, Allen K, Fenwick P, Cook BI, O'Donnell A, Lough J, Grierson P, Baker P (2016) Drought variability in the eastern Australia and New Zealand summer drought atlas (ANZDA, CE 1500-2012) modulated by the Interdecadal Pacific Oscillation. Environmental Research Letters 10, 1-12. doi:10.1088/1748-9326/10/12/124002.

  15. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-10-06

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  16. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  17. Elasto-plastic frame under horizontal and vertical Gaussian excitation

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Tarp-Johansen, Niels Jacob; Randrup-Thomsen, S.

    1999-01-01

    Taking geometric non-linearity into account anoscillator of the form as aportal frame with a rigid traverse and with ideal-elastic ideal-plasticclamped-in columns behaves under horizontalexcitation as an ideal-elastic hardening / softening-plastic oscilator given that the columns carry atension....../compression axial force. Assuming that the horizontal excitationof the traverse is Gaussian white noise, statistics related to the plastic displacement response are determinedby use of simulation based on the Slepian modelprocess method combined with envelope excursion properties. Besidesgiving physical insight...... the method givesgood approximations to results obtained by slow direct simulation of thetotal response. Moreover, the influence of a randomly varying axial column force isinvestigated by direct response simulation. This case corresponds to parametric excitation as generated by the vertical acceleration...

  18. Conductance maps of quantum rings due to a local potential perturbation.

    Science.gov (United States)

    Petrović, M D; Peeters, F M; Chaves, A; Farias, G A

    2013-12-11

    We performed a numerical simulation of the dynamics of a Gaussian shaped wavepacket inside a small sized quantum ring, smoothly connected to two leads and exposed to a perturbing potential of a biased atomic force microscope tip. Using the Landauer formalism, we calculated conductance maps of this system in the case of single and two subband transport. We explain the main features in the conductance maps as due to the AFM tip influence on the wavepacket phase and amplitude. In the presence of an external magnetic field, the tip modifies the ϕ0 periodic Aharonov-Bohm oscillation pattern into a ϕ0/2 periodic Al'tshuler-Aronov-Spivak oscillation pattern. Our results in the case of multiband transport suggest tip selectivity to higher subbands, making them more observable in the total conductance map.

  19. A simple way to characterize linear coupling in a storage ring

    International Nuclear Information System (INIS)

    Wolski, Andrzej

    2004-01-01

    The techniques of normal form analysis, well known in the literature, can be used to provide a straightforward characterization of linear betatron dynamics in a coupled lattice. Here, we consider both the beam distribution and the betatron oscillations in a storage ring, assuming that the beam emittances and betatron actions respectively are provided as parameters. We find that the beta functions for uncoupled motion generalize in a simple way to the coupled case. Defined in the way that we propose, the beta functions remain well behaved (positive and finite) under all circumstances, and have essentially the same physical significance for the beam size and betatron oscillations as in the uncoupled case. We discuss a technique for making direct measurements of the ratio of the coupled lattice functions at different points in the lattice

  20. Noise and Fano-Factor Control in AC-Driven Aharonov-Casher Ring

    Directory of Open Access Journals (Sweden)

    Zein W. A.

    2011-01-01

    Full Text Available The spin dependent current and Fano factor of Aharonov-Casher semiconducting ring is investigated under the effect of microwave, infrared, ultraviolet radiation and magnetic field. Both the average current and the transport noise (Fano factor characteristics are expressed in terms of the tunneling probability for the respective scattering channels. For spin transport induced by microwave and infrared radiation, a random oscillatory behavior of the Fano factor is observed. These oscillations are due to constructive and destructive spin interference effects. While for the case of ultraviolet radiation, the Fano factor becomes constant. This is due to that the oscillations has been washed out by phase averaging (i.e. ensemble dephasing over the spin transport channels. The present investigation is very important for quantum computing and information processing.

  1. Noise and Fano-factor Control in AC-Driven Aharonov-Casher Ring

    Directory of Open Access Journals (Sweden)

    Phillips A. H.

    2011-01-01

    Full Text Available The spin dependent current and Fano factor of Aharonov-Casher semiconducting ring is investigated under the effect of microwave, infrared, ultraviolet radiation and magnetic field. Both the average current and the transport noise (Fano factor characteristics are expressed in terms of the tunneling probability for the respective scattering channels. For spin transport induced by microwave and infrared radiation, a random oscillatory behavior of the Fano factor is observed. These oscillations are due to constructive and destructive spin interference effects. While for the case of ultraviolet radiation, the Fano factor becomes constant. This is due to that the oscillations has been washed out by phase averaging (i.e. ensemble dephasing over the spin transport channels. The present investigation is very important for quantum computing and information processing.

  2. Effect of interdiffusion and external magnetic field on electronic states and light absorption in Gaussian-shaped double quantum ring

    Science.gov (United States)

    Aziz-Aghchegala, V. L.; Mughnetsyan, V. N.; Kirakosyan, A. A.

    2018-02-01

    The effect of interdiffusion and magnetic field on confined states of electron and heavy hole as well as on interband absorption spectrum in a Ga1-xAlxAs/GaAs Gaussian-shaped double quantum ring are investigated. It is shown that both interdiffusion and magnetic field lead to the change of the charge carriers' quantum states arrangement by their energies. The oscillating behavior of the electron ground state energy as a function of magnetic field induction gradually disappears with the increase of diffusion parameter due to the enhanced tunneling of electron to the central region of the ring. For the heavy hole the ground state energy oscillations are not observable in the region of the values of magnetic field induction B = 0 - 10 T . For considered transitions both the magnetic field and the interdiffusion lead to a blue-shift of the absorption spectrum and to decreasing of the absorption intensity. The obtained results indicate on the opportunity of purposeful manipulation of energy states and absorption spectrum of a Gaussian-shaped double quantum ring by means of the post growth annealing and the external magnetic field.

  3. The kicker magnet system for TRISTAN Accumulation Ring injection

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Satoh, K.; Nakayama, H.

    1994-12-01

    The injection of electron beams to TRISTAN Accumulation Ring (AR) was started in November 1983 and the positron injection started in November 1985. For the injection of electron and positron beams to AR, the unique kicker system was developed. In the kicker power supply the charging to the main capacitor was done with the resonant charge system together with the auxiliary charging unit. The impedance matching circuit was added to the kicker magnet for getting the required current form with least reflecting oscillation. In this paper we report the performance of this kicker system. (author)

  4. New injection scheme using a pulsed quadrupole magnet in electron storage rings

    Directory of Open Access Journals (Sweden)

    Kentaro Harada

    2007-12-01

    Full Text Available We demonstrated a new injection scheme using a single pulsed quadrupole magnet (PQM with no pulsed local bump at the Photon Factory Advanced Ring (PF-AR in High Energy Accelerator Research Organization (KEK. The scheme employs the basic property of a quadrupole magnet, that the field at the center is zero, and nonzero elsewhere. The amplitude of coherent betatron oscillation of the injected beam is effectively reduced by the PQM; then, the injected beam is captured into the ring without largely affecting the already stored beam. In order to investigate the performance of the scheme with a real beam, we built the PQM providing a higher field gradient over 3  T/m and a shorter pulse width of 2.4  μs, which is twice the revolution period of the PF-AR. After the field measurements confirmed the PQM specifications, we installed it into the ring. Then, we conducted the experiment using a real beam and consequently succeeded in storing the beam current of more than 60 mA at the PF-AR. This is the first successful beam injection using a single PQM in electron storage rings.

  5. High intensity neutrino oscillation facilities in Europe

    CERN Document Server

    Edgecock, T.R.; Davenne, T.; Densham, C.; Fitton, M.; Kelliher, D.; Loveridge, P.; Machida, S.; Prior, C.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Wildner, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoni, S.; Hansen, C.; Benedetto, E.; Jensen, E.; Kosmicki, A.; Martini, M.; Osborne, J.; Prior, G.; Stora, T.; Melo-Mendonca, T.; Vlachoudis, V.; Waaijer, C.; Cupial, P.; Chancé, A.; Longhin, A.; Payet, J.; Zito, M.; Baussan, E.; Bobeth, C.; Bouquerel, E.; Dracos, M.; Gaudiot, G.; Lepers, B.; Osswald, F.; Poussot, P.; Vassilopoulos, N.; Wurtz, J.; Zeter, V.; Bielski, J.; Kozien, M.; Lacny, L.; Skoczen, B.; Szybinski, B.; Ustrzycka, A.; Wroblewski, A.; Marie-Jeanne, M.; Balint, P.; Fourel, C.; Giraud, J.; Jacob, J.; Lamy, T.; Latrasse, L.; Sortais, P.; Thuillier, T.; Mitrofanov, S.; Loiselet, M.; Keutgen, Th.; Delbar, Th.; Debray, F.; Trophine, C.; Veys, S.; Daversin, C.; Zorin, V.; Izotov, I.; Skalyga, V.; Burt, G.; Dexter, A.C.; Kravchuk, V.L.; Marchi, T.; Cinausero, M.; Gramegna, F.; De Angelis, G.; Prete, G.; Collazuol, G.; Laveder, M.; Mazzocco, M.; Mezzetto, M.; Signorini, C.; Vardaci, E.; Di Nitto, A.; Brondi, A.; La Rana, G.; Migliozzi, P.; Moro, R.; Palladino, V.; Gelli, N.; Berkovits, D.; Hass, M.; Hirsh, T.Y.; Schaumann, M.; Stahl, A.; Wehner, J.; Bross, A.; Kopp, J.; Neuffer, D.; Wands, R.; Bayes, R.; Laing, A.; Soler, P.; Agarwalla, S.K.; Cervera Villanueva, A.; Donini, A.; Ghosh, T.; Gómez Cadenas, J.J.; Hernández, P.; Martín-Albo, J.; Mena, O.; Burguet-Castell, J.; Agostino, L.; Buizza-Avanzini, M.; Marafini, M.; Patzak, T.; Tonazzo, A.; Duchesneau, D.; Mosca, L.; Bogomilov, M.; Karadzhov, Y.; Matev, R.; Tsenov, R.; Akhmedov, E.; Blennow, M.; Lindner, M.; Schwetz, T.; Fernández Martinez, E.; Maltoni, M.; Menéndez, J.; Giunti, C.; González García, M. C.; Salvado, J.; Coloma, P.; Huber, P.; Li, T.; López-Pavón, J.; Orme, C.; Pascoli, S.; Meloni, D.; Tang, J.; Winter, W.; Ohlsson, T.; Zhang, H.; Scotto-Lavina, L.; Terranova, F.; Bonesini, M.; Tortora, L.; Alekou, A.; Aslaninejad, M.; Bontoiu, C.; Kurup, A.; Jenner, L.J.; Long, K.; Pasternak, J.; Pozimski, J.; Back, J.J.; Harrison, P.; Beard, K.; Bogacz, A.; Berg, J.S.; Stratakis, D.; Witte, H.; Snopok, P.; Bliss, N.; Cordwell, M.; Moss, A.; Pattalwar, S.; Apollonio, M.

    2013-02-20

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fr\\'ejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of {\\mu}+ and {\\mu}- beams in a storage ring. The far detector in this case is a 100 kt Magnetised Iron Neutrino Detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fr\\'ejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the ph...

  6. Calibration of the nonlinear ring model at the Diamond Light Source

    Directory of Open Access Journals (Sweden)

    R. Bartolini

    2011-05-01

    Full Text Available Nonlinear beam dynamics plays a crucial role in defining the performance of a storage ring. The beam lifetime, the injection efficiency, and the dynamic and momentum apertures available to the beam are optimized during the design phase by a proper optimization of the linear lattice and of the distribution of sextupole families. The correct implementation of the design model, especially the nonlinear part, is a nontrivial accelerator physics task. Several parameters of the nonlinear dynamics can be used to compare the real machine with the model and eventually to correct the accelerator. Most of these parameters are extracted from the analysis of turn-by-turn data after the excitation of betatron oscillations of the particles in the ring. We present the experimental results of the campaign of measurements carried out at the Diamond storage ring to characterize the nonlinear beam dynamics. A combination of frequency map analysis with the detuning with momentum measurements has allowed for a precise calibration of the nonlinear model that can accurately reproduce the nonlinear beam dynamics in Diamond.

  7. ACCELERATORS: Beam based alignment of the SSRF storage ring

    Science.gov (United States)

    Zhang, Man-Zhou; Li, Hao-Hu; Jiang, Bo-Cheng; Liu, Gui-Min; Li, De-Ming

    2009-04-01

    There are 140 beam position monitors (BPMs) in the Shanghai Synchrotron Radiation Facility (SSRF) storage ring used for measuring the closed orbit. As the BPM pickup electrodes are assembled directly on the vacuum chamber, it is important to calibrate the electrical center offset of the BPM to an adjacent quadrupole magnetic center. A beam based alignment (BBA) method which varies individual quadrupole magnet strength and observes its effects on the orbit is used to measure the BPM offsets in both the horizontal and vertical planes. It is a completely automated technique with various data processing methods. There are several parameters such as the strength change of the correctors and the quadrupoles which should be chosen carefully in real measurement. After several rounds of BBA measurement and closed orbit correction, these offsets are set to an accuracy better than 10 μm. In this paper we present the method of beam based calibration of BPMs, the experimental results of the SSRF storage ring, and the error analysis.

  8. Ring Theory

    CERN Document Server

    Jara, Pascual; Torrecillas, Blas

    1988-01-01

    The papers in this proceedings volume are selected research papers in different areas of ring theory, including graded rings, differential operator rings, K-theory of noetherian rings, torsion theory, regular rings, cohomology of algebras, local cohomology of noncommutative rings. The book will be important for mathematicians active in research in ring theory.

  9. GPS survey in long baseline neutrino-oscillation measurement

    CERN Document Server

    Noumi, H; Inagaki, T; Hasegawa, T; Katoh, Y; Kohama, M; Kurodai, M; Kusano, E; Maruyama, T; Minakawa, M; Nakamura, K; Nishikawa, K; Sakuda, M; Suzuki, Y; Takasaki, M; Tanaka, K H; Yamanoi, Y; 10.1109/TNS.2004.836042

    2004-01-01

    We made a series of surveys to obtain neutrino beam line direction toward SuperKamiokande (SK) at a distance of 250 km for the long- baseline neutrino oscillation experiment at KEK. We found that the beam line is directed to SK within 0.03 mr and 0.09 mr (in sigma) in the horizontal and vertical directions, respectively. During beam operation, we monitored the muon distribution from secondary pions produced at the target and collected by a magnetic horn system. We found that the horn system functions like a lens of a point-to- parallel optics with magnification of approximately -100 and the focal length of 2.3 m. Namely, a small displacement of the primary beam position at the target is magnified about a factor -100 at the muon centroid, while the centroid position is almost stable against a change of the incident angle of the primary beam. Therefore, the muon centroid can be a useful monitor of the neutrino beam direction. We could determine the muon centroid within 6 mm and 12 mm in horizontal and vertical ...

  10. Phenylene ring dynamics in bisphenol-A-polysulfone by neutron scattering

    International Nuclear Information System (INIS)

    Arrese-Igor, S.; Arbe, A.; Alegria, A.; Colmenero, J.; Frick, B.

    2004-01-01

    We have investigated the dynamics of phenylene rings in a glassy polysulfone (bisphenol-A-polysulfone) by means of quasielastic neutron scattering. Nowadays it is well known that these molecular motions are directly connected with the mechanical properties of engineering thermoplastics in general. The particular system investigated by us has the advantage that by selective deuteration of the methyl groups, the neutron scattering measured is dominated by the incoherent contribution from the protons in the phenylene rings. In this way, the dynamics of such molecular groups can be experimentally isolated. Two different types of neutron spectrometers: time of flight and backscattering, were used in order to cover a wide dynamic range, which extends from microscopic (10 -13 s) to mesoscopic (10 -9 s) times. Moreover, neutron diffraction experiments with polarization analysis were also carried out in order to characterize the structural features of the sample investigated. Fast oscillations of increasing amplitude with temperature and π-flips are identified for phenylene rings motions. Due to the structural disorder characteristic of the amorphous state, both molecular motions display a broad distribution of relaxation times, which spreads over several orders of magnitude. Based on the results obtained, we propose a model for phenylene rings dynamics, which combines the two kinds of molecular motions identified. This model nicely describes the neutron scattering results in the whole dynamic range investigated

  11. The force analysis for superparamagnetic nanoparticles-based gene delivery in an oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiajia [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi Province 710049 (China); Shi, Zongqian, E-mail: zqshi@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi Province 710049 (China); Jia, Shenli [State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an, Shaanxi Province 710049 (China); Zhang, Pengbo [Department of Anesthesiology, Second Affiliated Hospital of Xi’an Jiaotong University School of Medicine, No.157 West 5 Road, Xi’an, Shaanxi Province 710004 (China)

    2017-04-01

    Due to the peculiar magnetic properties and the ability to function in cell-level biological interaction, superparamagnetic nanoparticles (SMNP) have been being the attractive carrier for gene delivery. The superparamagnetic nanoparticles with surface-bound gene vector can be attracted to the surface of cells by the Kelvin force provided by external magnetic field. In this article, the influence of the oscillating magnetic field on the characteristics of magnetofection is studied in terms of the magnetophoretic velocity. The magnetic field of a cylindrical permanent magnet is calculated by equivalent current source (ECS) method, and the Kelvin force is derived by using the effective moment method. The results show that the static magnetic field accelerates the sedimentation of the particles, and drives the particles inward towards the axis of the magnet. Based on the investigation of the magnetophoretic velocity of the particle under horizontally oscillating magnetic field, an oscillating velocity within the amplitude of the magnet oscillation is observed. Furthermore, simulation results indicate that the oscillating amplitude plays an important role in regulating the active region, where the particles may present oscillating motion. The analysis of the magnetophoretic velocity gives us an insight into the physical mechanism of the magnetofection. It's also helpful to the optimal design of the magnetofection system. - Highlights: • We compare the results of the ECS method and FEA method with the commercial software, Ansys. • We analyze the physic mechanism of the oscillating motion of the particles in the presence of an oscillating magnet. • We discuss the influence of the oscillating amplitude of the magnet on the behavior of the particle.

  12. Report of the eRHIC Ring-Ring Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer, E. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brennan, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palmer, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Parker, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Peggs, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Willeke, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-10-13

    This report evaluates the ring-ring option for eRHIC as a lower risk alternative to the linac-ring option. The reduced risk goes along with a reduced initial luminosity performance. However, a luminosity upgrade path is kept open. This upgrade path consists of two branches, with the ultimate upgrade being either a ring-ring or a linac-ring scheme. The linac-ring upgrade could be almost identical to the proposed linac-ring scheme, which is based on an ERL in the RHIC tunnel. This linac-ring version has been studied in great detail over the past ten years, and its significant risks are known. On the other hand, no detailed work on an ultimate performance ring-ring scenario has been performed yet, other than the development of a consistent parameter set. Pursuing the ring-ring upgrade path introduces high risks and requires significant design work that is beyond the scope of this report.

  13. Studies and calculations of transverse emittance growth in proton storage rings

    International Nuclear Information System (INIS)

    Mane, S.R.; Jackson, G.

    1989-01-01

    When high energy storage rings are used to collide beams of particles and antiparticles for high energy physics experiments, it is important to obtain as high an integrated luminosity as possible. Reduction of integrated luminosity can arise from several factors, in particular from growth of the transverse beam sizes (transverse emittances). We have studied the problem of transverse emittance growth in high energy storage rings caused by random dipole noise kicks to the beam. A theoretical formula for the emittance growth rate is derived, and agreement is obtained with experimental measurements where noise of known amplitude and power spectrum was deliberately injected into the Fermilab Tevatron, to kick the beam randomly. In the experiment, phase noise was introduced into the Tevatron rf system, and the measured dependence of horizontal emittance growth on phase noise amplitude is compared against the theoretically derived response. (orig.)

  14. Pneumatic oscillator circuits for timing and control of integrated microfluidics.

    Science.gov (United States)

    Duncan, Philip N; Nguyen, Transon V; Hui, Elliot E

    2013-11-05

    Frequency references are fundamental to most digital systems, providing the basis for process synchronization, timing of outputs, and waveform synthesis. Recently, there has been growing interest in digital logic systems that are constructed out of microfluidics rather than electronics, as a possible means toward fully integrated laboratory-on-a-chip systems that do not require any external control apparatus. However, the full realization of this goal has not been possible due to the lack of on-chip frequency references, thus requiring timing signals to be provided from off-chip. Although microfluidic oscillators have been demonstrated, there have been no reported efforts to characterize, model, or optimize timing accuracy, which is the fundamental metric of a clock. Here, we report pneumatic ring oscillator circuits built from microfluidic valves and channels. Further, we present a compressible-flow analysis that differs fundamentally from conventional circuit theory, and we show the utility of this physically based model for the optimization of oscillator stability. Finally, we leverage microfluidic clocks to demonstrate circuits for the generation of phase-shifted waveforms, self-driving peristaltic pumps, and frequency division. Thus, pneumatic oscillators can serve as on-chip frequency references for microfluidic digital logic circuits. On-chip clocks and pumps both constitute critical building blocks on the path toward achieving autonomous laboratory-on-a-chip devices.

  15. Injection seeded, diode pumped regenerative ring Nd:YAG amplifier for spaceborne laser ranging technology development

    Science.gov (United States)

    Coyle, D. Barry; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.

    1992-01-01

    A small, all solid state, regenerative ring amplifier designed as a prototype for space application is discussed. Novel features include dual side pumping of the Nd:YAG crystal and a triangular ring cavity design which minimizes the number of optical components and losses. The amplifier is relatively small (3 ns round trip time) even though standard optical elements are employed. The ring regeneratively amplifies a 100 ps single pulse by approximately 10(exp 5) at a repetition rate of 10 to 100 Hz. The amplifier is designed to be injection seeded with a pulsed, 100 ps laser diode at 1.06 microns, but another Nd:YAG laser system supplying higher pulse energies was employed for laboratory experiment. This system is a prototype laser oscillator for the Geoscience Laser Ranging System (GLRS) platform. Results on measurements of beam quality, astigmatism, and gain are given.

  16. Quasi-periodic Oscillations in Flares and Coronal Mass Ejections Associated with Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Takuya; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Qiu, Jiong, E-mail: takahasi@kusastro.kyoto-u.ac.jp [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States)

    2017-10-20

    We propose a mechanism for quasi-periodic oscillations of both coronal mass ejections (CMEs) and flare loops as related to magnetic reconnection in eruptive solar flares. We perform two-dimensional numerical MHD simulations of magnetic flux rope eruption, with three different values of the global Lundquist number. In the low Lundquist number run, no oscillatory behavior is found. In the moderate Lundquist number run, on the other hand, quasi-periodic oscillations are excited both at the bottom of the flux rope and at the flare loop top. In the high Lundquist number run, quasi-periodic oscillations are also excited; in the meanwhile, the dynamics become turbulent owing to the formation of multiple plasmoids in the reconnection current sheet. In high and moderate Lundquist number runs, thin reconnection jets collide with the flux rope bottom or flare loop top and dig them deeply. Steep oblique shocks are formed as termination shocks where reconnection jets are bent (rather than decelerated) in the horizontal direction, resulting in supersonic backflows. The structure becomes unstable, and quasi-periodic oscillations of supersonic backflows appear at locally confined high-beta regions at both the flux rope bottom and flare loop top. We compare the observational characteristics of quasi-periodic oscillations in erupting flux ropes, post-CME current sheets, flare ribbons, and light curves with corresponding dynamical structures found in our simulation.

  17. Stent fabric fatigue of grafts supported by Z-stents versus ringed stents: an in vitro buckling test.

    Science.gov (United States)

    Lin, Jing; Wang, Lu; Guidoin, Robert; Nutley, Mark; Song, Ge; Zhang, Ze; Du, Jia; Douville, Yvan

    2014-03-01

    Stent-grafts externally fitted with a Z-shaped stents were compared to devices fitted with ringed stents in an in vitro oscillating fatigue machine at 200 cycles per minute and a pressure of 360 mmHg for scheduled durations of up to 1 week. The devices fitted with Z-stents showed a considerably lower endurance limit to buckling compared to the controls. The contact between the apexes of adjacent Z-stents resulted in significant damage to the textile scaffolds and polyester fibers due to the sharp angle of the Z-stents. The ringed stents did not cause any fraying in the textile scaffolds.

  18. Feasibility of an XUV FEL Oscillator Driven by a SCRF Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H.; Freund, H. P.; Reinsch, M.

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) facility is currently under construction at Fermi National Accelerator Laboratory. Using a1-ms-long macropulse composed of up to 3000 micropulses, and with beam energies projected from 45 to 800 MeV, the possibility for an extreme ultraviolet (XUV) free-electron laser oscillator (FELO) with the higher energy is evaluated. We have used both GINGER with an oscillator module and the MEDUSA/OPC code to assess FELO saturation prospects at 120 nm, 40 nm, and 13.4 nm. The results support saturation at all of these wavelengths which are also shorter than the demonstrated shortest wavelength record of 176 nm from a storage-ring-based FELO. This indicates linac-driven FELOs can be extended into this XUV wavelength regime previously only reached with single-pass FEL configurations.

  19. Lifetime improvement and beam stabilization by longitudinal phase modulation at the DELTA electron storage ring; Lebensdauerverbesserung und Strahlstabilisierung durch longitudinale Phasenmodulation am Elektronenspreicherring DELTA

    Energy Technology Data Exchange (ETDEWEB)

    Fuersch, Jonathan

    2014-10-16

    In DELTA especially at high beam currents often the occurence of an instability of a longitudinal oscillation mode is observed. In the framework of the present thesis first with different procedure the cause of the longitudinal oscillation mode, which is especially strongly excited at high beam currents, is searched for. Thereby connections between the occurrence of this mode and parameters from the region of the storage-ring high-frequency system is observed. It is shown by comparison of different procedures, simulation calculations, and experimental pre-examinations, that especially by a phase modulation of the storage-ring high frequency an essential improvement of especially the longitudinal beam stability and the beam lifetime can be reached. For the durable and reliable improvement of these beam properties in the framework of the present thesis a system for the longitudinal phase modulation of the after-acceleration voltage in the cavity resonator of the DELTA storage ring is concipated, developed, constructed, taken in operation, and tested. Finally the results aimed hereby are presented and discussed.

  20. Heavy crude production from shallow formations: long horizontal wells versus horizontal fractures

    Energy Technology Data Exchange (ETDEWEB)

    Valko, P.; Economides, M. J. [Texas A and M Univ., TX (United States)

    1998-12-31

    The feasibility of producing heavy oil from shallow formations using either horizontal wells or short horizontal wells fractured horizontally is demonstrated. The problem of optimum proppant placement is solved in two steps. In step one, the finite productivity performance is considered in general terms showing that the performance is a function of two dimensionless parameters. Following derivation of optimum conditions, the solution is applied to the horizontal fracture consideration. The limiting factor is that to create an effective finite conductivity fracture, the dimensionless fracture conductivity must be on the order of unity, a fracture that is difficult to realize in higher permeability formations. The best candidates for the suggested configuration are shallow or moderate formations, or formations otherwise proven to accept horizontal fractures, and formations with low permeability/viscosity ratio. 7 refs., 2 tabs., 10 figs., 2 appendices.

  1. Magnetic measurements of the correction and adjustment magnets of the main ring

    International Nuclear Information System (INIS)

    Trbojevic, D.

    1986-07-01

    Correction magnets correct the field imperfections and alignment errors of the main quadrupole and bend magnets. For reducing and controlling chromaticity there are 186 sextupoles and 78 octupoles, while for suppressing various resonances there are 12 normal and 18 skew sextupoles and 24 normal and 19 skew quadrupoles. Beam positions are individually controlled by 108 horizontal and 108 skew dipoles. This report includes results of the all Main Ring correction and adjustment magnet harmonic measurements. The measurement principle and basic equations are described

  2. ASSOCIATIVE RINGS SOLVED AS LIE RINGS

    Directory of Open Access Journals (Sweden)

    M. B. Smirnov

    2011-01-01

    Full Text Available The paper has proved that an associative ring which is solvable of a n- class as a Lie ring has a nilpotent ideal of the nilpotent class not more than 3×10n–2  and a corresponding quotient ring satisfies an identity [[x1, x2, [x3, x4

  3. Effect of Footwear Modifications on Oscillations at the Achilles Tendon during Running on a Treadmill and Over Ground: A Cross-Sectional Study.

    Directory of Open Access Journals (Sweden)

    Ilka Meinert

    Full Text Available Achilles tendon injuries are known to commonly occur in runners. During running repeated impacts are transferred in axial direction along the lower leg, therefore possibly affecting the oscillation behavior of the Achilles tendon. The purpose of the present study was to explore the effects of different footwear modifications and different ground conditions (over ground versus treadmill on oscillations at the Achilles tendon.Oscillations were measured in 20 male runners using two tri-axial accelerometers. Participants ran in three different shoe types on a treadmill and over ground. Data analysis was limited to stance phase and performed in time and frequency space. Statistical comparison was conducted between oscillations in vertical and horizontal direction, between running shoes and between ground conditions (treadmill versus over ground running.Differences in the oscillation behavior could be detected between measurement directions with peak accelerations in the vertical being lower than those in the horizontal direction, p < 0.01. Peak accelerations occurred earlier at the distal accelerometer than at the proximal one, p < 0.01. Average normalized power differed between running shoes (p < 0.01 with harder damping material resulting in higher power values. Little to no power attenuation was found between the two accelerometers. Oscillation behavior of the Achilles tendon is not influenced by ground condition.Differences in shoe configurations may lead to variations in running technique and impact forces and therefore result in alterations of the vibration behavior at the Achilles tendon. The absence of power attenuation may have been caused by either a short distance between the two accelerometers or high stiffness of the tendon. High stiffness of the tendon will lead to complete transmission of the signal along the Achilles tendon and therefore no attenuation occurs.

  4. Operation of the PEP transverse beam feedback

    International Nuclear Information System (INIS)

    Olson, C.W.; Paterson, J.M.; Pellegrin, J.L.; Rees, J.R.

    1981-02-01

    The PEP Storage Ring has been equipped with a wide band beam feedback system capable of damping the vertical and horizontal motion of six bunches. The oscillation detection is done at a symmetry point on the Storage Ring and feedback is applied at the same location one orbital period later. The signal is synchronously gated and the system appears as twelve independent feedback loops, operating on the two coordinates of each of the six bunches. Two beam deflection electrodes are driven each by a low-Q push-pull amplifier which is tuned at the 72nd harmonic of the revolution frequency and suppressed-carrier modulation is generated by a sequence of the detected bunch oscillations. The design parameters are reviewed as well as the salient features of the hardware, and the impact of this system on the machine operation is evaluated in the light of experimental results

  5. Switchable dual-wavelength single-longitudinal-mode erbium fiber laser utilizing a dual-ring scheme with a saturable absorber

    Science.gov (United States)

    Yang, Zi-Qing; Huang, Tzu-Jung; Chang, Yao-Jen; Yeh, Chien-Hung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang

    2018-06-01

    In this work, we propose and demonstrate a switchable dual-wavelength erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) output. Here, a dual-ring (DR) structure with an unpumped EDF of 2 m is designed to achieve SLM oscillation. Five fiber Bragg gratings (FBGs) are applied in the laser cavity serving as the reflective element to generate different dual-wavelength outputs. In the measurement, six sets of generated dual-wavelengths with various mode-spacing (Δλ) can be achieved via the five FBGs. Additionally, the stability performance of the proposed EDF DR laser is also demonstrated.

  6. Non-exponential decoherence of radio-frequency resonance rotation of spin in storage rings

    Science.gov (United States)

    Saleev, A.; Nikolaev, N. N.; Rathmann, F.; Hinder, F.; Pretz, J.; Rosenthal, M.

    2017-08-01

    Precision experiments, such as the search for electric dipole moments of charged particles using radio-frequency spin rotators in storage rings, demand for maintaining the exact spin resonance condition for several thousand seconds. Synchrotron oscillations in the stored beam modulate the spin tune of off-central particles, moving it off the perfect resonance condition set for central particles on the reference orbit. Here, we report an analytic description of how synchrotron oscillations lead to non-exponential decoherence of the radio-frequency resonance driven up-down spin rotations. This non-exponential decoherence is shown to be accompanied by a nontrivial walk of the spin phase. We also comment on sensitivity of the decoherence rate to the harmonics of the radio-frequency spin rotator and a possibility to check predictions of decoherence-free magic energies.

  7. Theoretical aspects of some collective instabilities in high-energy particle storage rings

    International Nuclear Information System (INIS)

    Ruggiero, F.

    1986-01-01

    After an introduction to single-particle dynamics, based on a unified Hamiltonian treatment of betatron and synchrotron oscillations, we consider two examples of collective instabilities which can limit the performances of high-energy storage rings: the transverse mode coupling instability, due to wake fields, and the incoherent beam-beam instability. Special emphasis is placed on the localization of the interactions between particles and surrounding structures, such as the accelerating RF cavities. We derive an exact invariant for the linearized synchrotron motion and, starting from the Vlasov equation, we discuss the coherent synchro-betatron resonances caused by localized impedance. Under suitable assumptions, we show that the effect of the beam-beam kicks in electron-positron machines can be described by new diffusive terms in a ''renormalized'' Fokker-Planck equation and is therefore equivalent to an additional source of noise for the betatron oscillations. (orig.)

  8. Measurements of electron beam emittance in the Accelerator Test Facility damping ring operated in multibunch modes

    Directory of Open Access Journals (Sweden)

    Yosuke Honda

    2003-09-01

    Full Text Available We present the measurement results of electron beam emittance in the Accelerator Test Facility damping ring operated in multibunch modes. The measurements were carried out with an upgraded laser wire beam profile monitor. The monitor has now a vertical wire as well as a horizontal one and is able to make much faster measurements thanks to an increased effective laser power inside the cavity. The measured emittance shows no large bunch-to-bunch dependence in either the horizontal or vertical directions. The values of the vertical emittance are similar to those obtained in the single-bunch operation. The present results are an important step toward the realization of a high-energy linear collider.

  9. Quasi-decadal Oscillation in the CMIP5 and CMIP3 Climate Model Simulations: California Case

    Science.gov (United States)

    Wang, J.; Yin, H.; Reyes, E.; Chung, F. I.

    2014-12-01

    The ongoing three drought years in California are reminding us of two other historical long drought periods: 1987-1992 and 1928-1934. This kind of interannual variability is corresponding to the dominating 7-15 yr quasi-decadal oscillation in precipitation and streamflow in California. When using global climate model projections to assess the climate change impact on water resources planning in California, it is natural to ask if global climate models are able to reproduce the observed interannual variability like 7-15 yr quasi-decadal oscillation. Further spectral analysis to tree ring retrieved precipitation and historical precipitation record proves the existence of 7-15 yr quasi-decadal oscillation in California. But while implementing spectral analysis to all the CMIP5 and CMIP3 global climate model historical simulations using wavelet analysis approach, it was found that only two models in CMIP3 , CGCM 2.3.2a of MRI and NCAP PCM1.0, and only two models in CMIP5, MIROC5 and CESM1-WACCM, have statistically significant 7-15 yr quasi-decadal oscillations in California. More interesting, the existence of 7-15 yr quasi-decadal oscillation in the global climate model simulation is also sensitive to initial conditions. 12-13 yr quasi-decadal oscillation occurs in one ensemble run of CGCM 2.3.2a of MRI but does not exist in the other four ensemble runs.

  10. Mapping Ring Particle Cooling across Saturn's Rings with Cassini CIRS

    Science.gov (United States)

    Brooks, Shawn M.; Spilker, L. J.; Edgington, S. G.; Pilorz, S. H.; Deau, E.

    2010-10-01

    Previous studies have shown that the rings' thermal inertia, a measure of their response to changes in the thermal environment, varies from ring to ring. Thermal inertia can provide insight into the physical structure of Saturn's ring particles and their regoliths. Low thermal inertia and quick temperature responses are suggestive of ring particles that have more porous or fluffy regoliths or that are riddled with cracks. Solid, coherent particles can be expected to have higher thermal inertias (Ferrari et al. 2005). Cassini's Composite Infrared Spectrometer has recorded millions of spectra of Saturn's rings since its arrival at Saturn in 2004 (personal communication, M. Segura). CIRS records far infrared radiation between 10 and 600 cm-1 (16.7 and 1000 µm) at focal plane 1 (FP1), which has a field of view of 3.9 mrad. Thermal emission from Saturn's rings peaks in this wavelength range. FP1 spectra can be used to infer ring temperatures. By tracking how ring temperatures vary, we can determine the thermal inertia of the rings. In this work we focus on CIRS observations of the shadowed portion of Saturn's rings. The thermal budget of the rings is dominated by the solar radiation absorbed by its constituent particles. When ring particles enter Saturn's shadow this source of energy is abruptly cut off. As a result, ring particles cool as they traverse Saturn's shadow. From these shadow observations we can create cooling curves at specific locations across the rings. We will show that the rings' cooling curves and thus their thermal inertia vary not only from ring to ring, but by location within the individual rings. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

  11. Study of orbit stability in the SSRF storage ring

    International Nuclear Information System (INIS)

    Dai Zhimin; Liu Guimin; Huang Nan

    2003-01-01

    In this paper, analysis of the beam orbit stability and conceptual study of the dynamic orbit feedback in the SSRF storage ring are presented. It is shown that beam orbit position movement at the photon source points is smaller than the orbit stability requirements in horizontal plane, but exceeds the orbit stability requirements in vertical plane. A dynamic global orbit feedback system, which consists of 38 high-bandwidth air-coil correctors and 40 high-precise BPMs, is proposed to suppress the vertical beam orbit position movement. Numerical simulations show that this dynamic orbit feedback system can stabilize the vertical beam orbit position movement in the frequency range up to 100 Hz

  12. Effect of parameter mismatch on the dynamics of strongly coupled self sustained oscillators.

    Science.gov (United States)

    Chakrabarty, Nilaj; Jain, Aditya; Lal, Nijil; Das Gupta, Kantimay; Parmananda, Punit

    2017-01-01

    In this paper, we present an experimental setup and an associated mathematical model to study the synchronization of two self-sustained, strongly coupled, mechanical oscillators (metronomes). The effects of a small detuning in the internal parameters, namely, damping and frequency, have been studied. Our experimental system is a pair of spring wound mechanical metronomes; coupled by placing them on a common base, free to move along a horizontal direction. We designed a photodiode array based non-contact, non-magnetic position detection system driven by a microcontroller to record the instantaneous angular displacement of each oscillator and the small linear displacement of the base, coupling the two. In our system, the mass of the oscillating pendula forms a significant fraction of the total mass of the system, leading to strong coupling of the oscillators. We modified the internal mechanism of the spring-wound "clockwork" slightly, such that the natural frequency and the internal damping could be independently tuned. Stable synchronized and anti-synchronized states were observed as the difference in the parameters was varied in the experiments. The simulation results showed a rapid increase in the phase difference between the two oscillators beyond a certain threshold of parameter mismatch. Our simple model of the escapement mechanism did not reproduce a complete 180° out of phase state. However, the numerical simulations show that increased mismatch in parameters leads to a synchronized state with a large phase difference.

  13. Sensitivity to electronvolt-scale sterile neutrinos at a 3.8-GeV/c muon decay ring

    Energy Technology Data Exchange (ETDEWEB)

    Tunnell, Christopher D. [Univ. of Oxford (United Kingdom)

    2013-03-01

    The liquid-scintillator neutrino-detector (LSND) and mini booster neutrino experiment (MiniBooNE) experiments claim to observe the oscillation $\\bar{v}$μ → $\\bar{v}$e, which can only be explained by additional neutrinos and is a claim that must be further tested. This thesis proposes a new accelerator and experiment called neutrinos from stored muons ( STORM) to refute or confirm the oscillation these claims by studying the CPT-equivalent channel ve → vμ . A 3.8-GeV/c muon decay ring is proposed with neutrino detectors placed 20 m and 2000 m from the decay ring. The detector technology would be a magnetized iron sampling calorimeter, where the magnetic field is induced by a superconducting transmission line. In a frequentist study, the sensitivity of this experiment after 5 years would be >10σ . The range of the thesis discussion starts with the proton front-end design and ends with neutrino parameter estimation. After describing the phenomenology of sterile neutrinos, the facility and detector performance work is presented. Finally, the systematics are explained before the sensitivity and parameter-estimation works are explained

  14. Analysis of possibilities for a spin flip in high energy electron ring HERA

    International Nuclear Information System (INIS)

    Stres, S.; Pestotnik, R.

    2007-01-01

    In a high energy electron ring the spins of electrons become spontaneously polarized via the emission of spin-flip synchrotron radiation. By employing a radio frequency (RF) radial dipole field kicker, particle spin directions can be rotated slowly over many turns. A model which couples three dimensional spin motion and longitudinal particle motion was constructed to describe non-equilibrium spin dynamics in high energy electron storage rings. The effects of a stochastic synchrotron radiation on the orbital motion in the accelerator synchrotron plane and its influence on the spin motion are studied. The main contributions to the spin motion, the synchrotron oscillations and the stochastic synchrotron radiation, have different influence on the spin polarization reversal in different regions of the parameter space. The results indicate that polarization reversal might be obtained in high energy electron storage rings with a significant noise even with relatively small strengths of a perturbing magnetic field. The only experimental datum avaliable agrees with the model prediction, however further experimental data would be necessary to validate the model

  15. Horizontal wells in subsurface remediation

    International Nuclear Information System (INIS)

    Losonsky, G.; Beljin, M.S.

    1992-01-01

    This paper reports on horizontal wells which offer an effective alternative to vertical wells in various environmental remediation technologies. Hydrogeological advantages of horizontal wells over vertical wells include a larger zone of influence, greater screen length, higher specific capacity and lower groundwater screen entrance velocity. Because of these advantages, horizontal wells can reduce treatment time and costs of groundwater recovery (pump-and-treat), in situ groundwater aeration (sparging) and soil gas extraction (vacuum extraction). Horizontal wells are also more effective than vertical wells in landfill leachate collection (under-drains), bioremediation, and horizontal grout injection

  16. Quenching oscillating behaviors in fractional coupled Stuart-Landau oscillators

    Science.gov (United States)

    Sun, Zhongkui; Xiao, Rui; Yang, Xiaoli; Xu, Wei

    2018-03-01

    Oscillation quenching has been widely studied during the past several decades in fields ranging from natural sciences to engineering, but investigations have so far been restricted to oscillators with an integer-order derivative. Here, we report the first study of amplitude death (AD) in fractional coupled Stuart-Landau oscillators with partial and/or complete conjugate couplings to explore oscillation quenching patterns and dynamics. It has been found that the fractional-order derivative impacts the AD state crucially. The area of the AD state increases along with the decrease of the fractional-order derivative. Furthermore, by introducing and adjusting a limiting feedback factor in coupling links, the AD state can be well tamed in fractional coupled oscillators. Hence, it provides one an effective approach to analyze and control the oscillating behaviors in fractional coupled oscillators.

  17. Use of tree-ring chemistry to document historical ground-water contamination events

    Science.gov (United States)

    Vroblesky, Don A.; Yanosky, Thomas M.

    1990-01-01

    The annual growth rings of tulip trees (Liriodendron tulipifera L.) appear to preserve a chemical record of ground-water contamination at a landfill in Maryland. Zones of elevated iron and chlorine concentrations in growth rings from trees immediately downgradient from the landfill are closely correlated temporally with activities in the landfill expected to generate iron and chloride contamination in the ground water. Successively later iron peaks in trees increasingly distant from the landfill along the general direction of ground-water flow imply movement of iron-contaminated ground water away from the landfill. The historical velocity of iron movement (2 to 9 m/yr) and chloride movement (at least 40 m/yr) in ground water at the site was estimated from element-concentration trends of trees at successive distances from the landfill. The tree-ring-derived chloride-transport velocity approximates the known ground-water velocity (30 to 80 m/yr). A minimum horizontal hydraulic conductivity (0.01 to .02 cm/s) calculated from chloride velocity agrees well with values derived from aquifer tests (about 0.07 cm/s) and from ground-water modeling results (0.009 to 0.04 cm/s).

  18. First design for the optics of the decay ring for the beta-beams

    International Nuclear Information System (INIS)

    Chance, A.; Payet, J.

    2006-03-01

    The aim of the beta-beams is to produce pure electronic neutrino and anti-neutrino highly energetic beams, coming from beta radioactive disintegration decay of the 18 Ne 10+ and 6 He 2+ , directed to experiment situated in the Frejus tunnel. The high ion intensities are stored in a ring, until the ions decay. The losses due to the decay of the radioactive ions are compensated with regular injections. These should be done in presence of the circulating beam. The new ions are injected at a different energy from the stored beam energy, the design of the ring must enable this type of injection and accept the injected and stored beams. In this note, we will focus on the study of the design of such a ring at the first and second orders. We have reached the constraint on the dispersion in the injection section: a horizontal dispersion superior to 10 m with β x = 20 m. We have put sextupoles in the arcs to correct the chromaticity. In the same time, we have compensated the third order resonances to have a large enough dynamic aperture. So the decay ring accepts injected and stored beams. In a top-down approach, the high stored intensities impose to take into account the space charge effects. However, due to the merging, the beam blows up after each injection in the longitudinal space charge, which imposes to include a momentum collimation section in the decay ring

  19. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi [Brookhaven National Laboratory, Upton, Long Island, NY 11973 (United States); Huang, Xiaobiao, E-mail: xiahuang@slac.stanford.edu [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2016-08-21

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. The method has been successfully demonstrated on the NSLS-II storage ring.

  20. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, Xiaobiao [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-08-01

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. Furthermore, the fitting results are used for lattice correction. Our method has been successfully demonstrated on the NSLS-II storage ring.

  1. Oscillators and Eigenvalues

    DEFF Research Database (Denmark)

    Lindberg, Erik

    1997-01-01

    In order to obtain insight in the nature of nonlinear oscillators the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator are found and displayed as functions of time. A number of oscillators are studied including Dewey's oscillator (piecewise linear wit...... with negative resistance), Kennedy's Colpitts-oscillator (with and without chaos) and a new 4'th order oscillator with hyper-chaos....

  2. Polarized beams in high energy storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Montague, B W [European Organization for Nuclear Research, Geneva (Switzerland)

    1984-11-01

    In recent years there has been a considerable advance in understanding the spin motion of particles in storage rings and accelerators. The survey presented here outlines the early historical development in this field, describes the basic ideas governing the kinetics of polarized particles in electromagnetic fields and shows how these have evolved into the current description of polarized beam behaviour. Orbital motion of particles influences their spin precession, and depolarization of a beam can result from excitation of spin resonances by orbit errors and oscillations. Electrons and positrons are additionally influenced by the quantized character of synchrotron radiation, which not only provides a polarizing mechanism but also enhances depolarizing effects. Progress in the theoretical formulation of these phenomena has clarified the details of the physical processes and suggested improved methods of compensating spin resonances. Full use of polarized beams for high-energy physics with storage rings requires spin rotators to produce longitudinal polarization in the interaction regions. Variants of these schemes, dubbed Siberian snakes, provide a curious precession topology which can substantially reduce depolarization in the high-energy range. Efficient polarimetry is an essential requirement for implementing polarized beams, whose utility for physics can be enhanced by various methods of spin manipulation.

  3. Design, installation, and commissioning of the D0 overpass at the Fermilab main ring

    International Nuclear Information System (INIS)

    Gerig, R.; May, M.; Moore, C.; Ohnuma, S.; Pruss, S.; Turkot, F.

    1985-06-01

    In order to accommodate large detectors for anti pp studies at the Tevatron, the Main Ring has been modified to be non-planar. A 700 foot-long portion of the ring has been reworked to create an overpass which displaces the beam orbit upwards by 51 inches at the D0 long straight section. The overpass region follows the ''screw'' geometry proposed by T. Collins. A set of four vertically bending dipoles were inserted into the Main Ring lattice; they are powered on a separate bus and operate at twice the current and field level of a standard bend. To make space for these vertical bends, at each vertical bend point two of the four standard dipoles in a half-cell are removed and the other two are powered at twice the current and field level of the rest of the ring. The vertical bends also have a set of trim coils powered by a separate supply so that any difference in the horizontal and vertical bending strengths can be compensated. The D0 overpass was commissioned with beam in November-December 1984. The principal effect on beam dynamics - predicted and observed - is the introduction of momentum dispersion in the vertical dimension of peak value 1.9m. To preserve closed orbit quality during acceleration, the vertical bends must track the rest of the ring with a precision of better than 0.1%. The Main Ring-Tevatron complex has now been running the fixed-target program for four months; the impact of the D0 overpass on accelerator performance has been minimal

  4. Black rings

    International Nuclear Information System (INIS)

    Emparan, Roberto; Reall, Harvey S

    2006-01-01

    A black ring is a five-dimensional black hole with an event horizon of topology S 1 x S 2 . We provide an introduction to the description of black rings in general relativity and string theory. Novel aspects of the presentation include a new approach to constructing black ring coordinates and a critical review of black ring microscopics. (topical review)

  5. Localized chromaticity correction of low-beta insertions in storage rings

    International Nuclear Information System (INIS)

    Donald, M.; Helm, R.; Irwin, J.; Moshammer, H.; Sullivan, M.; Forest, E.; Robin, D.; Zholents, A.

    1993-01-01

    The correction of the chromaticity of low-beta insertions in the storage rings is usually made with sextupole lenses in the ring's arcs. When decreasing the beta functions at the insertion point (IP), this technique becomes fairly ineffective, since it fails to properly correct the higher order chromatic aberrations. Here the authors consider the approach where the chromatic effects of the quadrupole lenses generating low beta functions at the IP are corrected locally with two families of sextupoles, one family for each plane. Each family has two pairs of sextupoles which are located symmetrically on both sides of the IP. The sextupole-like aberrations of individual sextupoles are eliminated by utilizing optics forming a -I transformation between sextupoles in the pair. The optics also includes bending magnets which preserve equal dispersion functions at the two sextupoles in each pair. At sextupoles in one family, the vertical beta function is made large and the horizontal is made small. The situation is reversed in the sextupoles of the other family. The betatron phase advances from the IP to the sextupoles are chosen to eliminate a second order chromatic aberration. The application of the localized chromatic correction is demonstrated using as an example the lattice design for the Low Energy Ring of the SLAC/LBL/LLNL PEP-II B Factory

  6. Localized chromaticity correction of low-beta insertions in storage rings

    International Nuclear Information System (INIS)

    Donald, M.; Helm, R.; Irwin, J.; Moshammer, H.; Sullivan, M.; Forest, E.; Robin, D.; Zholents, A.

    1993-04-01

    The correction of the chromaticity of low-beta insertions in the storage rings is usually made with sextupole lenses in the ring's arcs. When decreasing the beta functions at the insertion point (IP), this technique becomes fairly ineffective, since it fails to properly correct the higher order chromatic aberrations. Here we consider the approach where the chromatic effects of the quadrupole lenses generating low beta functions at the IP are corrected locally with two families of sextupoles, one family for each plane. Each family has two pairs of sextupoles which are located symmetrically on both sides of the IP. The sextupole-like aberrations of individual sextupoles are eliminated by utilizing optics forming a -I transformation between sextupoles in the pair. The optics also includes bending magnets which preserve equal dispersion functions at the two sextupoles in each pair. At sextupoles in one family, the vertical beta function is made large and the horizontal is made small. The situation is reversed in the sextupoles of the other family. The betatron phase advances from the IP to the sextupoles are chosen to eliminate a second order chromatic aberration. The application of the localized chromatic correction is demonstrated using as an example the lattice design for the Low Energy Ring of the SLAC/LBL/LLNL PEP-II B Factory

  7. Variations in Ring Particle Cooling across Saturn's Rings with Cassini CIRS

    Science.gov (United States)

    Brooks, S. M.; Spilker, L. J.; Pilorz, S.; Edgington, S. G.; Déau, E.; Altobelli, N.

    2010-12-01

    Cassini's Composite Infrared Spectrometer has recorded over two million of spectra of Saturn's rings in the far infrared since arriving at Saturn in 2004. CIRS records far infrared radiation between 10 and 600 cm-1 ( 16.7 and 1000 μ {m} ) at focal plane 1 (FP1), which has a field of view of 3.9 mrad. Thermal emission from Saturn’s rings peaks in this wavelength range. Ring temperatures can be inferred from FP1 data. By tracking how ring temperatures vary, we can determine the thermal inertia of the rings. Previous studies have shown that the rings' thermal inertia, a measure of their response to changes in the thermal environment, varies from ring to ring. Thermal inertia can provide insight into the physical structure of Saturn's ring particles and their regoliths. Low thermal inertia and rapidly changing temperatures are suggestive of ring particles that have more porous or fluffy regoliths or that are riddled with cracks. Solid particles can be expected to have higher thermal inertias. Ferrari et al. (2005) fit thermal inertia values of 5218 {Jm)-2 {K}-1 {s}-1/2 to their B ring data and 6412 {Jm)-2 {K}-1 {s}-1/2 to their C ring data. In this work we focus on CIRS observations of the shadowed portion of Saturn's rings. The rings’ thermal budget is dominated by its absorption of solar radiation. As a result, ring particles abruptly cool as they traverse Saturn's shadow. From these shadow observations we can create cooling curves at specific locations across the rings. We will show that the rings' cooling curves and thus their thermal inertia vary not only from ring to ring, but by location within the individual rings. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

  8. A study of Solar-Enso correlation with southern Brazil tree ring index (1955- 1991)

    Science.gov (United States)

    Rigozo, N.; Nordemann, D.; Vieira, L.; Echer, E.

    The effects of solar activity and El Niño-Southern Oscillation on tree growth in Southern Brazil were studied by correlation analysis. Trees for this study were native Araucaria (Araucaria Angustifolia)from four locations in Rio Grande do Sul State, in Southern Brazil: Canela (29o18`S, 50o51`W, 790 m asl), Nova Petropolis (29o2`S, 51o10`W, 579 m asl), Sao Francisco de Paula (29o25`S, 50o24`W, 930 m asl) and Sao Martinho da Serra (29o30`S, 53o53`W, 484 m asl). From these four sites, an average tree ring Index for this region was derived, for the period 1955-1991. Linear correlations were made on annual and 10 year running averages of this tree ring Index, of sunspot number Rz and SOI. For annual averages, the correlation coefficients were low, and the multiple regression between tree ring and SOI and Rz indicates that 20% of the variance in tree rings was explained by solar activity and ENSO variability. However, when the 10 year running averages correlations were made, the coefficient correlations were much higher. A clear anticorrelation is observed between SOI and Index (r=-0.81) whereas Rz and Index show a positive correlation (r=0.67). The multiple regression of 10 year running averages indicates that 76% of the variance in tree ring INdex was explained by solar activity and ENSO. These results indicate that the effects of solar activity and ENSO on tree rings are better seen on long timescales.

  9. Active interlock system for high power insertion devices in the x-ray ring

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    In modern synchrotron radiation rings photon beams generated by high power insertion devices (IDs) may be sufficiently intense to cause severe thermal damage to the machine vacuum chamber if mis-steered. Thus when operating a storage ring with the IDs, great care must be exercised to prevent mis-steering of the electron beam orbit. At present, the X-ray ring operates with three IDs, namely two hybrid wigglers (HBW) at X-21 and X-25,a nd a 5-Tesla superconducting wiggler at X-17. All wigglers are located in low-beta straight sections. In the straight sections. In the straight sections, beam orbit may be deflected by as much as ±8 mrad without scraping the chamber wall. For various reasons it was not possible to design the X-ray ring vacuum chamber to be safe under all possible operating conditions, however, the chamber is safe for i < 7 mA, all horizontal beam deflection angles and for vertical angles < ± 2.5 mrad. To protect the machine vacuum chamber from damage due to mis-steered beams, and interlock system has been developed and installed. This system utilizes active beam position detectors which continuously monitor beam motion in each of the ID straight sections and logic circuitry which interrupts the RF and dumps the stored beam in the case of a fault

  10. Vertical and horizontal subsidiarity

    Directory of Open Access Journals (Sweden)

    Ivan V. Daniluk

    2016-02-01

    Full Text Available This article makes an attempt to analyze the principle of subsidiarity in its two main manifestations, namely vertical and horizontal, to outline the principles of relations between the state and regions within the vertical subsidiarity, and features a collaboration of the government and civil society within the horizontal subsidiarity. Scientists identify two types, or two levels of the subsidiarity principle: vertical subsidiarity and horizontal subsidiarity. First, vertical subsidiarity (or territorial concerning relations between the state and other levels of subnational government, such as regions and local authorities; second, horizontal subsidiarity (or functional concerns the relationship between state and citizen (and civil society. Vertical subsidiarity expressed in the context of the distribution of administrative responsibilities to the appropriate higher level lower levels relative to the state structure, ie giving more powers to local government. However, state intervention has subsidiary-lower action against local authorities in cases of insolvency last cope on their own, ie higher organisms intervene only if the duties are less authority is insufficient to achieve the goals. Horizontal subsidiarity is within the relationship between power and freedom, and is based on the assumption that the concern for the common good and the needs of common interest community, able to solve community members (as individuals and citizens’ associations and role of government, in accordance horizontal subsidiarity comes to attracting features subsidiarity assistance, programming, coordination and possibly control.

  11. Runoff variations in Lake Balkhash Basin, Central Asia, 1779-2015, inferred from tree rings

    Science.gov (United States)

    Panyushkina, Irina P.; Meko, D. M.; Macklin, M. G.; Toonen, W. H. J.; Mukhamadiev, N. S.; Konovalov, V. G.; Ashikbaev, N. Z.; Sagitov, A. O.

    2018-01-01

    Long highly-resolved proxies for runoff are in high demand for hydrological forecasts and water management in arid Central Asia. An accurate (R2 = 0.53) reconstruction of October-September discharge of the Ili River in Kazakhstan, 1779-2015, is developed from moisture-sensitive tree rings of spruce sampled in the Tian Shan Mountains. The fivefold extension of the gauged discharge record represents the variability of runoff in the Lake Balkhash Basin for the last 235 years. The reconstruction shows a 40 year long interval of low discharge preceded a recent high peak in the first decade of the 2000s followed by a decline to more recent levels of discharge not seen since the start of the gauged record. Most reconstructed flow extremes (± 2σ) occur outside the instrumental record (1936-2015) and predate the start of large dam construction (1969). Decadal variability of the Ili discharge corresponds well with hydrological records of other Eurasian internal drainages modeled with tree rings. Spectral analysis identifies variance peaks (highest near 42 year) consistent with main hemispheric oscillations of the Eurasian climatic system. Seasonal comparison of the Ili discharge with sea-level-pressure and geopotential height data suggests periods of high flow likely result from the increased contribution of snow to runoff associated with the interaction of Arctic air circulation with the Siberian High-Pressure System and North Atlantic Oscillation.

  12. Preliminary Design of an Inductive Adder for CLIC Damping Rings

    CERN Document Server

    Holma, J

    2011-01-01

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC damping rings will produce ultra-low emittance beam, with high bunch charge, necessary for the luminosity performance of the collider. To limit the beam emittance blow-up due to oscillations, the pulse power modulators for the damping rings kickers must provide extremely flat, high-voltage, pulses: specifications call for a 160 ns duration flattop of 12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 %. A solid-state modulator, the inductive adder, is a very promising approach to meeting the demanding specifications; this topology allows the use of both digital and analogue modulation. To effectively use modulation techniques to achieve such low ripple and droop requires an in-depth knowledge of the behaviour of the solid-state switching components and their gate drivers, as well as a good understanding of the overa...

  13. Pulse Power Modulator development for the CLIC Damping Ring Kickers

    CERN Document Server

    Holma, Janne

    2012-01-01

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity (10-34 – 10-35 cm-2s-1) and a nominal centre-of-mass energy of 3 TeV: CLIC would complement LHC physics in the multi-TeV range. The CLIC design relies on Pre-Damping Rings (PDR) and Damping Rings (DR) to achieve the very low emittance, through synchrotron radiation, needed for the luminosity requirements of CLIC. To limit the beam emittance blow-up due to oscillations, the pulse power modulators for the DR kickers must provide extremely flat, high-voltage pulses: the 2 GHz specification called for a 160 ns duration flat-top of 12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 %. In order to meet these demanding specifications, a combination of broadband impedance matching, optimized electrical circuit layout and advanced control techniques is required. A solid-state modulator, the inductive adder, is the most promising approach to meeting the demanding specifications...

  14. Simulations of Polarization Levels and Spin Tune Biases in High Energy Leptons Storage Rings

    Energy Technology Data Exchange (ETDEWEB)

    Gianfelice, E. [Fermilab

    2016-01-01

    The use of resonant depolarization has been suggested for precise beam energy measurements in the 100 km long Future Circular Collider e+e-. The principle behind resonant depolarization is that a vertically polarized beam excited through an oscillating horizontal magnetic field gets depolarized when the excitation frequency is in a given relationship with the beam energy. In this paper the possibility of self- polarized leptons at 45 GeV (Z resonance) and 80 GeV (WW in presence of quadrupole vertical misalignment is investigated.

  15. Alternative loop rings

    CERN Document Server

    Goodaire, EG; Polcino Milies, C

    1996-01-01

    For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri

  16. Primitivity and weak distributivity in near rings and matrix near rings

    International Nuclear Information System (INIS)

    Abbasi, S.J.

    1993-08-01

    This paper shows the structure of matrix near ring constructed over a weakly distributive and primative near ring. It is proved that a weakly distributive primitive near ring is a ring and the matrix near rings constructed over it is also a bag. (author). 14 refs

  17. Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-07-28

    Traditionally, the necessary and sufficient condition for any system to be oscillating is that its poles are located on the imaginary (jω) axis. In this paper, for the first time, we have shown that systems can oscillate with time-domain oscillating poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating resistance and triangular shape of FFT are also demonstrated with mathematical reasoning and simulation results to support the unusual and surprising characteristics. © 2009 IEEE.

  18. Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow

    International Nuclear Information System (INIS)

    Wu, Hao; Dong, Feng

    2014-01-01

    Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model

  19. Improved waterflooding efficiency by horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Popa, C. G. [Petroleum and Gas Univ., Ploesti (Romania); Clipea, M. [SNP Petrom SA, ICPT Campina (Romania)

    1998-12-31

    The influence of well pattern involving the use of horizontal wells on the overall efficiency of the waterflooding process was analyzed. Three different scenarios were examined: (1) a pattern of using two parallel horizontal wells, one for injection, the other for production, (2) a pattern of one horizontal well for water injection and several vertical wells for production, and (3) a pattern of using vertical wells for injection and one horizontal well for production. In each case, the waterflooding process was simulated using a two phase two dimensional numerical model. Results showed that the pressure loss along the horizontal section had a large influence on the sweep efficiency whether the horizontal well was used for injection or production. Overall, the most successful combination appeared to be using vertical wells for injection and horizontal wells for production. 4 refs., 1 tab., 15 figs.

  20. Nature's Autonomous Oscillators

    Science.gov (United States)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  1. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  2. Resolution of thermal striping issue downstream of a horizontal pipe elbow in stratified pipe flow

    International Nuclear Information System (INIS)

    Kuzay, T.M.; Kasza, K.E.

    1985-01-01

    A thermally stratified pipe flow produced by a thermal transient when passing through a horizontal elbow as a result of secondary flow gives rise to large thermal fluctuations on the inner curvature wall of the downstream piping. These fluctuations were measured in a specially instrumented horizontal pipe and elbow system on a test set-up using water in the Mixing Components Technology Facility (MCTF) at Argonne National Laboratory (ANL). This study is part of a larger program which is studying the influence of thermal buoyancy on general reactor component performance. This paper discusses the influence of pipe flow generated thermal oscillations on the thermal stresses induced in the pipe walls. The instrumentation was concentrated around the exit plane of the 90 0 sweep elbow, since prior tests had indicated that the largest thermal fluctuations would occur within about one hydraulic diameter downstream of the elbow exit. The thermocouples were located along the inner curvature of the piping and measured the near surface fluid temperature. The test matrix involved thermal downramps under turbulent flow conditions

  3. Interaction of ring dark solitons with ring impurities in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Xue Jukui

    2005-01-01

    The interaction of ring dark solitons/vortexes with the ring-shaped repulsive and attractive impurities in two-dimensional Bose-Einstein condensates is investigated numerically. Very rich interaction phenomena are obtained, i.e., not only the interaction between the ring soliton and the impurity, but also the interaction between vortexes and the impurity. The interaction characters, i.e., snaking of ring soliton, quasitrapping or reflection of ring soliton and vortexes by the impurity, strongly depend on initial ring soliton velocity, impurity strength, initial position of ring soliton and impurity. The numerical results also reveal that ring dark solitons/vortexes can be trapped and dragged by an adiabatically moving attractive ring impurity

  4. Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating

  5. How Many Muons Do We Need to Store in a Ring For Neutrino Cross-Section Measurements?

    International Nuclear Information System (INIS)

    Geer, Steve

    2011-01-01

    Analytical estimate of the number of muons that must decay in the straight section of a storage ring to produce a neutrino and anti-neutrino beam of sufficient intensity to facilitate cross-section measurements with a statistical precision of 1%. As we move into the era of precision long-baseline ν μ → ν e and (bar ν) μ → (bar ν) e measurements there is a growing need to precisely determine the ν e and (bar ν) e cross-sections in the relevant energy range, from a fraction of 1 GeV to a few GeV. This will require ν e and (bar ν) e beams with precisely known fluxes and spectra. One way to produce these beams is to use a storage ring with long straight sections in which muon decays (μ - → e - ν μ (bar ν) e if negative muons are stored, and ν + → e + ν e (bar ν) μ if positive muons are stored) produce the desired beam. The challenge is to capture enough muons in the ring to obtain useful neutrino and anti-neutrino fluxes. Early proposals to use a muon storage ring for neutrino oscillation experiments were based upon injecting 'high energy' charged pions into the ring which then decayed to create stored muons. These proposals were hampered by lack of sufficient intensity to pursue the physics. The Neutrino Factory proposal in 1997 was designed to fix this problem by using a Muon Collider class 'low energy' muon source to capture many more pions at low energy, allow them to decay in an external decay channel, manipulate their phase space to capture as many muons as possible within the acceptance of an accelerator, and then accelerate to the energy of choice before injecting into a specially designed ring with long straight sections. All this technology would do a wonderful job in fixing the intensity problem, but at a price that excludes this solution from being realized in the short term. The question that we are now faced with is whether the older, lower intensity 'parasitic' muon storage ring based on 'high energy' pion decays can, with

  6. Storage Rings

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Storage rings are circular machines that store particle beams at a constant energy. Beams are stored in rings without acceleration for a number of reasons (Tab. 1). Storage rings are used in high-energy, nuclear, atomic, and molecular physics, as well as for experiments in chemistry, material and life sciences. Parameters for storage rings such as particle species, energy, beam intensity, beam size, and store time vary widely depending on the application. The beam must be injected into a storage ring but may not be extracted (Fig. 1). Accelerator rings such as synchrotrons are used as storage rings before and after acceleration. Particles stored in rings include electrons and positrons; muons; protons and anti-protons; neutrons; light and heavy, positive and negative, atomic ions of various charge states; molecular and cluster ions, and neutral polar molecules. Spin polarized beams of electrons, positrons, and protons were stored. The kinetic energy of the stored particles ranges from 10 -6 eV to 3.5 x 10 12 eV (LHC, 7 x 10 12 eV planned), the number of stored particles from one (ESR) to 1015 (ISR). To store beam in rings requires bending (dipoles) and transverse focusing (quadrupoles). Higher order multipoles are used to correct chromatic aberrations, to suppress instabilities, and to compensate for nonlinear field errors of dipoles and quadrupoles. Magnetic multipole functions can be combined in magnets. Beams are stored bunched with radio frequency systems, and unbunched. The magnetic lattice and radio frequency system are designed to ensure the stability of transverse and longitudinal motion. New technologies allow for better storage rings. With strong focusing the beam pipe dimensions became much smaller than previously possible. For a given circumference superconducting magnets make higher energies possible, and superconducting radio frequency systems allow for efficient replenishment of synchrotron radiation losses of large current electron or positron beams

  7. Lead-position dependent regular oscillations and random fluctuations of conductance in graphene quantum dots

    International Nuclear Information System (INIS)

    Huang Liang; Yang Rui; Lai Yingcheng; Ferry, David K

    2013-01-01

    Quantum interference causes a wavefunction to have sensitive spatial dependence, and this has a significant effect on quantum transport. For example, in a quantum-dot system, the conductance can depend on the lead positions. We investigate, for graphene quantum dots, the conductance variations with the lead positions. Since for graphene the types of boundaries, e.g., zigzag and armchair, can fundamentally affect the quantum transport characteristics, we focus on rectangular graphene quantum dots, for which the effects of boundaries can be systematically studied. For both zigzag and armchair horizontal boundaries, we find that changing the positions of the leads can induce significant conductance variations. Depending on the Fermi energy, the variations can be either regular oscillations or random conductance fluctuations. We develop a physical theory to elucidate the origin of the conductance oscillation/fluctuation patterns. In particular, quantum interference leads to standing-wave-like-patterns in the quantum dot which, in the absence of leads, are regulated by the energy-band structure of the corresponding vertical graphene ribbon. The observed ‘coexistence’ of regular oscillations and random fluctuations in the conductance can be exploited for the development of graphene-based nanodevices. (paper)

  8. New modelling of transient well test and rate decline analysis for a horizontal well in a multiple-zone reservoir

    International Nuclear Information System (INIS)

    Nie, Ren-Shi; Guo, Jian-Chun; Jia, Yong-Lu; Zhu, Shui-Qiao; Rao, Zheng; Zhang, Chun-Guang

    2011-01-01

    The no-type curve with negative skin of a horizontal well has been found in the current research. Negative skin is very significant to transient well test and rate decline analysis. This paper first presents the negative skin problem where the type curves with negative skin of a horizontal well are oscillatory. In order to solve the problem, we propose a new model of transient well test and rate decline analysis for a horizontal well in a multiple-zone composite reservoir. A new dimensionless definition of r D is introduced in the dimensionless mathematical modelling under different boundaries. The model is solved using the Laplace transform and separation of variables techniques. In Laplace space, the solutions for both constant rate production and constant wellbore pressure production are expressed in a unified formula. We provide graphs and thorough analysis of the new standard type curves for both well test and rate decline analysis; the characteristics of type curves are the reflections of horizontal well production in a multiple-zone reservoir. An important contribution of our paper is that our model removed the oscillation in type curves and thus solved the negative skin problem. We also show that the characteristics of type curves depend heavily on the properties of different zones, skin factor, well length, formation thickness, etc. Our research can be applied to a real case study

  9. One dimension harmonic oscillator

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Franck.

    1977-01-01

    The importance of harmonic oscillator in classical and quantum physics, eigenvalues and eigenstates of hamiltonian operator are discussed. In complement are presented: study of some physical examples of harmonic oscillators; study of stationnary states in the /x> representation; Hermite polynomials; resolution of eigenvalue equation of harmonic oscillator by polynomial method; isotope harmonic oscillator with three dimensions; charged harmonic oscillator in uniform electric field; quasi classical coherent states of harmonic oscillator; eigenmodes of vibration of two coupled harmonic oscillators; vibration modus of a continuous physical system (application to radiation: photons); vibration modus of indefinite linear chain of coupled harmonic oscillators (phonons); one-dimensional harmonic oscillator in thermodynamic equilibrium at temperature T [fr

  10. Application of FEL technique for constructing high-intensity, monochromatic, polarized gamma-sources at storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E.L.; Schneidmiller, E.A.; Ulyanov, Yu.N. [Automatic Systems Corporation, Samara (Russian Federation)] [and others

    1995-12-31

    A possibility to construct high-intensity tunable monochromatic{gamma}-source at high energy storage rings is discussed. It is proposed to produce {gamma}-quanta by means of Compton backscattering of laser photons on electrons circulating in the storage. The laser light wavelength is chosen in such a way that after the scattering, the electron does not leave the separatrix. So as the probability of the scattering is rather small, energy oscillations are damped prior the next scattering. As a result, the proposed source can operate in {open_quotes}parasitic{close_quote} mode not interfering with the main mode of the storage ring operation. Analysis of parameters of existent storage rings (PETRA, ESRF, Spring-8, etc) shows that the laser light wavelength should be in infrared, {lambda}{approximately} 10 - 400 {mu}m, wavelength band. Installation at storage rings of tunable free-electron lasers with the peak and average output power {approximately} 10 MW and {approximately} 1 kW, respectively, will result in the intensity of the {gamma}-source up to {approximately} 10{sup 14}s{sup -1} with tunable {gamma}-quanta energy from several MeV up to several hundreds MeV. Such a {gamma}-source will reveal unique possibilities for precision investigations in nuclear physics.

  11. Reactor oscillator - I - III, Part I; Reaktorski oscilator - I-III, I Deo

    Energy Technology Data Exchange (ETDEWEB)

    Lolic, B [Institute of Nuclear Sciences Boris Kidric, Laboratorija za fiziku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    Project 'Reactor oscillator' covers the following activities: designing reactor oscillators for reactors RA and RB with detailed engineering drawings; constructing and mounting of the oscillator; designing and constructing the appropriate electronic equipment for the oscillator; measurements at the RA and RB reactors needed for completing the oscillator construction.

  12. Rings in drugs.

    Science.gov (United States)

    Taylor, Richard D; MacCoss, Malcolm; Lawson, Alastair D G

    2014-07-24

    We have analyzed the rings, ring systems, and frameworks in drugs listed in the FDA Orange Book to understand the frequency, timelines, molecular property space, and the application of these rings in different therapeutic areas and target classes. This analysis shows that there are only 351 ring systems and 1197 frameworks in drugs that came onto the market before 2013. Furthermore, on average six new ring systems enter drug space each year and approximately 28% of new drugs contain a new ring system. Moreover, it is very unusual for a drug to contain more than one new ring system and the majority of the most frequently used ring systems (83%) were first used in drugs developed prior to 1983. These observations give insight into the chemical novelty of drugs and potentially efficient ways to assess compound libraries and develop compounds from hit identification to lead optimization and beyond.

  13. A STATISTICAL STUDY OF TRANSVERSE OSCILLATIONS IN A QUIESCENT PROMINENCE

    Energy Technology Data Exchange (ETDEWEB)

    Hillier, A. [Kwasan and Hida Observatories, Kyoto University, Kyoto 607-8471 (Japan); Morton, R. J. [Mathematics and Information Science, Northumbria University, Pandon Building, Camden Street, Newcastle upon Tyne NE1 8ST (United Kingdom); Erdélyi, R., E-mail: andrew@kwasan.kyoto-u.ac.jp [Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2013-12-20

    The launch of the Hinode satellite has allowed for seeing-free observations at high-resolution and high-cadence making it well suited to study the dynamics of quiescent prominences. In recent years it has become clear that quiescent prominences support small-amplitude transverse oscillations, however, sample sizes are usually too small for general conclusions to be drawn. We remedy this by providing a statistical study of transverse oscillations in vertical prominence threads. Over a 4 hr period of observations it was possible to measure the properties of 3436 waves, finding periods from 50 to 6000 s with typical velocity amplitudes ranging between 0.2 and 23 km s{sup –1}. The large number of observed waves allows the determination of the frequency dependence of the wave properties and derivation of the velocity power spectrum for the transverse waves. For frequencies less than 7 mHz, the frequency dependence of the velocity power is consistent with the velocity power spectra generated from observations of the horizontal motions of magnetic elements in the photosphere, suggesting that the prominence transverse waves are driven by photospheric motions. However, at higher frequencies the two distributions significantly diverge, with relatively more power found at higher frequencies in the prominence oscillations. These results highlight that waves over a large frequency range are ubiquitous in prominences, and that a significant amount of the wave energy is found at higher frequency.

  14. A STATISTICAL STUDY OF TRANSVERSE OSCILLATIONS IN A QUIESCENT PROMINENCE

    International Nuclear Information System (INIS)

    Hillier, A.; Morton, R. J.; Erdélyi, R.

    2013-01-01

    The launch of the Hinode satellite has allowed for seeing-free observations at high-resolution and high-cadence making it well suited to study the dynamics of quiescent prominences. In recent years it has become clear that quiescent prominences support small-amplitude transverse oscillations, however, sample sizes are usually too small for general conclusions to be drawn. We remedy this by providing a statistical study of transverse oscillations in vertical prominence threads. Over a 4 hr period of observations it was possible to measure the properties of 3436 waves, finding periods from 50 to 6000 s with typical velocity amplitudes ranging between 0.2 and 23 km s –1 . The large number of observed waves allows the determination of the frequency dependence of the wave properties and derivation of the velocity power spectrum for the transverse waves. For frequencies less than 7 mHz, the frequency dependence of the velocity power is consistent with the velocity power spectra generated from observations of the horizontal motions of magnetic elements in the photosphere, suggesting that the prominence transverse waves are driven by photospheric motions. However, at higher frequencies the two distributions significantly diverge, with relatively more power found at higher frequencies in the prominence oscillations. These results highlight that waves over a large frequency range are ubiquitous in prominences, and that a significant amount of the wave energy is found at higher frequency

  15. Horizontal drilling assessment in Western Canada

    International Nuclear Information System (INIS)

    Catania, Peter; Wilson, Malcolm

    1999-01-01

    The first horizontal well was drilled in Saskatchewan in 1987. Since then, the number of horizontal wells drilled has escalated rapidly, averaging approximately 500 per year since 1993. When combined with horizontal wells drilled in Alberta, the major Canadian oil-producing province, the total number drilled in 1995 was 978. This total exceeds the National Energy Board (NEB) projected maximum of 816 wells per year. The NEB projections were based on a break-even point for the drilling of horizontal wells of a return of CDN $285,000 using a discount rate of 15%. This corresponded to a cumulative production from each individual well of some 11,000 m 3 . The introduction of a royalty-free production volume of 12,000 m 3 per horizontal well in Saskatchewan was instrumental in stimulating the rapid expansion in the use of horizontal wells and helping Canada to exceed the forecasted drilling level. Within Saskatchewan, daily production from 1964 active horizontal wells is in excess of 20,000 m 3 . Comparative analysis indicates that the average daily production per well has increased from approximately by 40% with the advent of horizontal wells. In total production terms, provincial production has increased from 11.7 million cubic metres in 1989 to 20.9 million m 3 in 1996. This represents an increase of almost 79% based primarily on the extensive use of horizontal wells. In 1996, horizontal wells produced 36% of the province's oil from 12% of the active wells. In the southeastern producing areas of Saskatchewan, the Williston Basin, declining oil-production has jumped 100%, with horizontal wells accounting for approximately 50% of total regional production. Pay zones in this areas, as in most of the province, tend to be relatively thin, with net pay frequently less that 5 m. The modest investment of some CDN $5 million in government research funding 10 years ago to stimulate the development of horizontal wells, combined with a favourable royalty structure, has been at

  16. Horizontal distribution of near-inertial waves in the western Gulf of Mexico: Eulerian vs Lagrangian.

    Science.gov (United States)

    Pallas Sanz, E.; García-Carrillo, P.; Garcia Gomez, B. I.; Lilly, J. M.; Perez-Brunius, P.

    2016-02-01

    The time-average horizontal distribution of the near-inertial waves (NIWs) on the western Gulf of Mexico (GoM) is investigated using horizontal velocity data obtained from Lagrangian trajectories of 200 surface drifters drogued at 50m and deployed between September 2008 and September 2012. Preliminary results suggest maximum time-averaged near-inertial circle radius of 2.6km located in the southern Campeche bay near [22N,95W]; implying an inertial velocity of about 0.14m/s. Similar conclusions are delineated using horizontal velocity data obtained from 21 moorings deployed in the western GoM during the same time period. Maximum near-inertial kinetic energy and clockwise spectral energy is found in the mooring LNK3500 located at 21.850N and 94.028W. Maximum inertial circles measured with mooring data, however, are of about 1.6km leading to inertial currents of 0.087m/s, approximately a 40% smaller. This discrepancy seems to be due to the different depth level of the measurements and the bandwidth used to extract the near-inertial oscillations from the total flow. The time-average horizontal distributions of wind work computed from Lagrangian and Eulerian data are compared and they are not consistent with the time-averaged NIW field. The differences are not well understood but we speculate they may be due to the different time scales of wind fluctuations in the northwestern GoM compared to those observed in the Bay of Campeche, together with the change of sign of the background vorticity in the region; being negative (anticyclonic) in the northern GoM and positive (cyclonic) in the Bay of Campeche.

  17. Investigation of ring-like runaway electron beams in the EAST tokamak

    International Nuclear Information System (INIS)

    Zhou, R J; Hu, L Q; Li, E Z; Xu, M; Zhong, G Q; Xu, L Q; Lin, S Y; Zhang, J Z

    2013-01-01

    In the EAST tokamak, asymmetrical ring-like runaway electron beams with energy more than 30 MeV and pitch angle about 0.1 were investigated. Those runaway beams carried about 46% of the plasma current and located around the q = 2 rational surface when m/n = 1/1 and m/n = 2/1 MHD modes existed in the plasma. Those runaway beams changed from a hollow to a filled structure during the slow oscillations in the discharge about every 0.2 s, which correlated with a large step-like jump in electron cyclotron emission (ECE) signals, a big spike-like perturbation in Mirnov signals and a large decrease in runaway energy. Between those slow oscillations with large magnitude, fast oscillations with small magnitude also existed about every 0.02 s, which correlated with a small step-like jump in ECE signals, a small spike-like perturbation in Mirnov signals, but no clear decrease in runaway energy and changes in the runaway beam structure. Resonant interactions occurred between runaway electrons and magnetohydrodynamic instabilities, which gave rise to fast pitch angle scattering processes of those resonant runaway electrons, and hence increased the synchrotron radiation. Theoretical calculations of the resonant interaction were given based on a test particle description. Synchrotron radiation of those resonant runaway electrons was increased by about 60% until the end of the resonant interaction. (paper)

  18. Calculating the flow of two-phase mixture in the ring space of pump-compressor tubing

    Energy Technology Data Exchange (ETDEWEB)

    Gurbanov, R S; Dadash-zade, M A

    1979-01-01

    A methodology is proposed for calculating tension deformation in pipelines manufactured from elastic material. This method takes into consideration the constructed pipeline weight with regard to both air and water suspension. A linear solution to these equations is found based on the assumption that the horizontal tube projection is equal to the tube length. A special test bench was constructed for measuring the actual gas content and pressure loss resulting from friction in components such as ejector-mixers, gas meters, separators, centrifugal pumps and gas air lines. The research results indicate that during very small expenditures of air in the ring space, small bubbles rise to the surface and cause gas charges. The air goes on to fill the ring area and, together with the mixture of bubbles, becomes non-opaque. Following this, the entire structure transfers over to a rachidal regime.

  19. Oscillator monitor

    International Nuclear Information System (INIS)

    McNeill, G.A.

    1981-01-01

    Present high-speed data acquisition systems in nuclear diagnostics use high-frequency oscillators to provide timing references for signals recorded on fast, traveling-wave oscilloscopes. An oscillator's sinusoidal wave shape is superimposed on the recorded signal with each cycle representing a fixed time increment. During data analysis the sinusoid is stripped from the signal, leaving a clean signal shape with known timing. Since all signal/time relationships are totally dependant upon working oscillators, these critical devices must have remote verification of proper operation. This manual presents the newly-developed oscillator monitor which will provide the required verification

  20. Differential susceptibility of horizontal and vertical swimming activity to cadmium exposure in a gammaridean amphipod (Gammarus lawrencianus)

    International Nuclear Information System (INIS)

    Wallace, W.G.; Estephan, A.

    2004-01-01

    In this study two indices of swimming behavior (horizontal and vertical swimming activity) in a gammaridean amphipod (Gammarus lawrencianus) were examined for their sensitivity to Cd exposure. G. lawrencianus were exposed for 72 h to a variety of Cd concentrations [background (∼12), 62, 125, 250 and 500 μg l -1 ] at 20 ppt. Subsequent to exposure, video surveillance of survivors held within grooved rings or clear boxes was used to assess horizontal swimming activity (percentage of time mobile) and vertical swimming activity (number of surfacings), respectively. Results show that control amphipods were quite active, being mobile ∼61% of the time, with horizontal swimming activity decreasing (P -1 . Vertical swimming activity in amphipods was also impacted by Cd exposure (P -1 ) and 62 μg l -1 (60 versus ∼26 surfacings, respectively), which is approximately four-fold lower than the estimated 72 h LC 50 (250 μg l -1 ) for G. lawrencianus. Based on fluid dynamic considerations, it is speculated that of the two behaviors, vertical swimming activity is more sensitive to Cd exposure because of the presumed greater energetic costs associated with producing enough thrust to attain the lift required to make a vertical ascent into the water

  1. Power oscillation damping controller

    DEFF Research Database (Denmark)

    2012-01-01

    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...

  2. Resolution of thermal striping issue downstream of a horizontal pipe elbow in stratified pipe flow. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kuzay, T.M.; Kasza, K.E.

    1985-01-01

    A thermally stratified pipe flow produced by a thermal transient when passing through a horizontal elbow as a result of secondary flow gives rise to large thermal fluctuations on the inner curvature wall of the downstream piping. These fluctuations were measured in a specially instrumented horizontal pipe and elbow system on a test set-up using water in the Mixing Components Technology Facility (MCTF) at Argonne National Laboratory (ANL). This study is part of a larger program which is studying the influence of thermal buoyancy on general reactor component performance. This paper discusses the influence of pipe flow generated thermal oscillations on the thermal stresses induced in the pipe walls. The instrumentation was concentrated around the exit plane of the 90/sup 0/ sweep elbow, since prior tests had indicated that the largest thermal fluctuations would occur within about one hydraulic diameter downstream of the elbow exit. The thermocouples were located along the inner curvature of the piping and measured the near surface fluid temperature. The test matrix involved thermal downramps under turbulent flow conditions.

  3. Oscillators - a simple introduction

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2013-01-01

    Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?......Oscillators are kernel components of electrical and electronic circuits. Discussion of history, mechanisms and design based on Barkhausens observation. Discussion of a Wien Bridge oscillator based on the question: Why does this circuit oscillate ?...

  4. White Ring; White ring

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, H.; Yuzawa, H. [Nikken Sekkei Ltd., Osaka (Japan)

    1998-01-05

    White Ring is a citizen`s gymnasium used for figure skating and short track speed skating games of 18th Winter Olympic Games in 1998. White Ring is composed of a main-arena and a sub-arena. For the main-arena with an area 41mtimes66m, an ice link can be made by disengaging the potable floor and by flowing brine in the bridged polystyrene pipes embedded in the concrete floor. Due to the fortunate groundwater in this site, well water is used for the outside air treatment energy in 63% during heating and in 35% during cooling. Ammonia is used as a cooling medium for refrigerating facility. For the heating of audience area in the large space, heat load from the outside is reduced by enhancing the heat insulation performance of the roof of arena. The audience seats are locally heated using heaters. For the White Ring, high quality environment is realized for games through various functions of the large-scale roof of the large space. Success of the big event was expected. 15 figs., 4 tabs.

  5. Blockage of spontaneous Ca2+ oscillation causes cell death in intraerythrocitic Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Masahiro Enomoto

    Full Text Available Malaria remains one of the world's most important infectious diseases and is responsible for enormous mortality and morbidity. Resistance to antimalarial drugs is a challenging problem in malaria control. Clinical malaria is associated with the proliferation and development of Plasmodium parasites in human erythrocytes. Especially, the development into the mature forms (trophozoite and schizont of Plasmodium falciparum (P. falciparum causes severe malaria symptoms due to a distinctive property, sequestration which is not shared by any other human malaria. Ca(2+ is well known to be a highly versatile intracellular messenger that regulates many different cellular processes. Cytosolic Ca(2+ increases evoked by extracellular stimuli are often observed in the form of oscillating Ca(2+ spikes (Ca(2+ oscillation in eukaryotic cells. However, in lower eukaryotic and plant cells the physiological roles and the molecular mechanisms of Ca(2+ oscillation are poorly understood. Here, we showed the observation of the inositol 1,4,5-trisphospate (IP(3-dependent spontaneous Ca(2+ oscillation in P. falciparum without any exogenous extracellular stimulation by using live cell fluorescence Ca(2+ imaging. Intraerythrocytic P. falciparum exhibited stage-specific Ca(2+ oscillations in ring form and trophozoite stages which were blocked by IP(3 receptor inhibitor, 2-aminoethyl diphenylborinate (2-APB. Analyses of parasitaemia and parasite size and electron micrograph of 2-APB-treated P. falciparum revealed that 2-APB severely obstructed the intraerythrocytic maturation, resulting in cell death of the parasites. Furthermore, we confirmed the similar lethal effect of 2-APB on the chloroquine-resistant strain of P. falciparum. To our best knowledge, we for the first time showed the existence of the spontaneous Ca(2+ oscillation in Plasmodium species and clearly demonstrated that IP(3-dependent spontaneous Ca(2+ oscillation in P. falciparum is critical for the development

  6. Token Ring Project

    Directory of Open Access Journals (Sweden)

    Adela Ionescu

    2007-01-01

    Full Text Available Ring topology is a simple configuration used to connect processes that communicate among themselves. A number of network standards such as token ring, token bus, and FDDI are based on the ring connectivity. This article will develop an implementation of a ring of processes that communicate among themselves via pipe links. The processes are nodes in the ring. Each process reads from its standard input and writes in its standard output. N-1 process redirects the its standard output to a standard input of the process through a pipe. When the ring-structure is designed, the project can be extended to simulate networks or to implement algorithms for mutual exclusion

  7. Semi-algebraic function rings and reflectors of partially ordered rings

    CERN Document Server

    Schwartz, Niels

    1999-01-01

    The book lays algebraic foundations for real geometry through a systematic investigation of partially ordered rings of semi-algebraic functions. Real spectra serve as primary geometric objects, the maps between them are determined by rings of functions associated with the spectra. The many different possible choices for these rings of functions are studied via reflections of partially ordered rings. Readers should feel comfortable using basic algebraic and categorical concepts. As motivational background some familiarity with real geometry will be helpful. The book aims at researchers and graduate students with an interest in real algebra and geometry, ordered algebraic structures, topology and rings of continuous functions.

  8. A linearization time-domain CMOS smart temperature sensor using a curvature compensation oscillator.

    Science.gov (United States)

    Chen, Chun-Chi; Chen, Hao-Wen

    2013-08-28

    This paper presents an area-efficient time-domain CMOS smart temperature sensor using a curvature compensation oscillator for linearity enhancement with a -40 to 120 °C temperature range operability. The inverter-based smart temperature sensors can substantially reduce the cost and circuit complexity of integrated temperature sensors. However, a large curvature exists on the temperature-to-time transfer curve of the inverter-based delay line and results in poor linearity of the sensor output. For cost reduction and error improvement, a temperature-to-pulse generator composed of a ring oscillator and a time amplifier was used to generate a thermal sensing pulse with a sufficient width proportional to the absolute temperature (PTAT). Then, a simple but effective on-chip curvature compensation oscillator is proposed to simultaneously count and compensate the PTAT pulse with curvature for linearization. With such a simple structure, the proposed sensor possesses an extremely small area of 0.07 mm2 in a TSMC 0.35-mm CMOS 2P4M digital process. By using an oscillator-based scheme design, the proposed sensor achieves a fine resolution of 0.045 °C without significantly increasing the circuit area. With the curvature compensation, the inaccuracy of -1.2 to 0.2 °C is achieved in an operation range of -40 to 120 °C after two-point calibration for 14 packaged chips. The power consumption is measured as 23 mW at a sample rate of 10 samples/s.

  9. Rotating ring-ring electrode theory and experiment

    NARCIS (Netherlands)

    Kuiken, H.K.; Bakkers, E.P.A.M.; Ligthart, H.; Kellyb, J.J.

    2000-01-01

    A model is presented for the rotating ring-ring electrode. Although the electrode is defined by four characteristic lengths, it is shown that the collection efficiency depends on only two dimensionless parameters. A simple relationship between these and the corresponding parameters for the rotating

  10. Mainstreams of horizontal gene exchange in enterobacteria: consideration of the outbreak of enterohemorrhagic E. coli O104:H4 in Germany in 2011.

    Directory of Open Access Journals (Sweden)

    Oliver Bezuidt

    Full Text Available BACKGROUND: Escherichia coli O104:H4 caused a severe outbreak in Europe in 2011. The strain TY-2482 sequenced from this outbreak allowed the discovery of its closest relatives but failed to resolve ways in which it originated and evolved. On account of the previous statement, may we expect similar upcoming outbreaks to occur recurrently or spontaneously in the future? The inability to answer these questions shows limitations of the current comparative and evolutionary genomics methods. PRINCIPAL FINDINGS: The study revealed oscillations of gene exchange in enterobacteria, which originated from marine γ-Proteobacteria. These mobile genetic elements have become recombination hotspots and effective 'vehicles' ensuring a wide distribution of successful combinations of fitness and virulence genes among enterobacteria. Two remarkable peculiarities of the strain TY-2482 and its relatives were observed: i retaining the genetic primitiveness by these strains as they somehow avoided the main fluxes of horizontal gene transfer which effectively penetrated other enetrobacteria; ii acquisition of antibiotic resistance genes in a plasmid genomic island of β-Proteobacteria origin which ontologically is unrelated to the predominant genomic islands of enterobacteria. CONCLUSIONS: Oscillations of horizontal gene exchange activity were reported which result from a counterbalance between the acquired resistance of bacteria towards existing mobile vectors and the generation of new vectors in the environmental microflora. We hypothesized that TY-2482 may originate from a genetically primitive lineage of E. coli that has evolved in confined geographical areas and brought by human migration or cattle trade onto an intersection of several independent streams of horizontal gene exchange. Development of a system for monitoring the new and most active gene exchange events was proposed.

  11. The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow

    Directory of Open Access Journals (Sweden)

    Weihang Kong

    2016-08-01

    Full Text Available Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM. Firstly, using the finite element method (FEM, the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results.

  12. The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow.

    Science.gov (United States)

    Kong, Weihang; Kong, Lingfu; Li, Lei; Liu, Xingbin; Xie, Ronghua; Li, Jun; Tang, Haitao

    2016-08-24

    Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP) for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM). Firstly, using the finite element method (FEM), the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results.

  13. Restoration of oscillation in network of oscillators in presence of direct and indirect interactions

    Energy Technology Data Exchange (ETDEWEB)

    Majhi, Soumen; Bera, Bidesh K. [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India); Bhowmick, Sourav K. [Department of Electronics, Asutosh College, Kolkata-700026 (India); Ghosh, Dibakar, E-mail: diba.ghosh@gmail.com [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India)

    2016-10-23

    The suppression of oscillations in coupled systems may lead to several unwanted situations, which requires a suitable treatment to overcome the suppression. In this paper, we show that the environmental coupling in the presence of direct interaction, which can suppress oscillation even in a network of identical oscillators, can be modified by introducing a feedback factor in the coupling scheme in order to restore the oscillation. We inspect how the introduction of the feedback factor helps to resurrect oscillation from various kinds of death states. We numerically verify the resurrection of oscillations for two paradigmatic limit cycle systems, namely Landau–Stuart and Van der Pol oscillators and also in generic chaotic Lorenz oscillator. We also study the effect of parameter mismatch in the process of restoring oscillation for coupled oscillators. - Highlights: • Amplitude death is observed using direct and indirect coupling. • Revival of oscillation using feedback parameter is discussed. • Restoration of oscillation is observed in limit cycle and chaotic systems.

  14. Topological ring currents in the "empty" ring of benzo-annelated perylenes.

    Science.gov (United States)

    Dickens, Timothy K; Mallion, Roger B

    2011-01-27

    Cyclic conjugation in benzo-annelated perylenes is examined by means of the topological π-electron ring currents calculated for each of their constituent rings, in a study that is an exact analogy of a recent investigation by Gutman et al. based on energy-effect values for the corresponding rings in each of these structures. "Classical" approaches, such as Kekulé structures, Clar "sextet" formulas, and circuits of conjugation, predict that the central ring in perylene is "empty" and thus contributes negligibly to cyclic conjugation. However, conclusions from the present calculations of topological ring currents agree remarkably with those arising from the earlier study involving energy-effect values in that, contrary to what would be predicted from the classical approaches, rings annelated in an angular fashion relative to the central ring of these perylene structures materially increase the extent of that ring's involvement in cyclic conjugation. It is suggested that such close quantitative agreement between the predictions of these two superficially very different indices (energy effect and topological ring current) might be due to the fact that, ultimately, both depend, albeit in ostensibly quite different ways, only on an adjacency matrix that contains information about the carbon-carbon connectivity of the conjugated system in question.

  15. Monsoon oscillations regulate fertility of the Red Sea

    KAUST Repository

    Raitsos, Dionysios E.

    2015-02-16

    Tropical ocean ecosystems are predicted to become warmer, more saline, and less fertile in a future Earth. The Red Sea, one of the warmest and most saline environments in the world, may afford insights into the function of the tropical ocean ecosystem in a changing planet. We show that the concentration of chlorophyll and the duration of the phytoplankton growing season in the Red Sea are controlled by the strength of the winter Arabian monsoon (through horizontal advection of fertile waters from the Indian Ocean). Furthermore, and contrary to expectation, in the last decade (1998-2010) the winter Red Sea phytoplankton biomass has increased by 75% during prolonged positive phases of the Multivariate El Niño-Southern Oscillation Index. A new mechanism is reported, revealing the synergy of monsoon and climate in regulating Red Sea greenness. © 2015 The Authors.

  16. Monsoon oscillations regulate fertility of the Red Sea

    KAUST Repository

    Raitsos, Dionysios E.; Yi, Xing; Platt, Trevor; Racault, Marie-Fanny; Brewin, Robert J. W.; Pradhan, Yaswant; Papadopoulos, Vassilis P.; Sathyendranath, Shubha; Hoteit, Ibrahim

    2015-01-01

    Tropical ocean ecosystems are predicted to become warmer, more saline, and less fertile in a future Earth. The Red Sea, one of the warmest and most saline environments in the world, may afford insights into the function of the tropical ocean ecosystem in a changing planet. We show that the concentration of chlorophyll and the duration of the phytoplankton growing season in the Red Sea are controlled by the strength of the winter Arabian monsoon (through horizontal advection of fertile waters from the Indian Ocean). Furthermore, and contrary to expectation, in the last decade (1998-2010) the winter Red Sea phytoplankton biomass has increased by 75% during prolonged positive phases of the Multivariate El Niño-Southern Oscillation Index. A new mechanism is reported, revealing the synergy of monsoon and climate in regulating Red Sea greenness. © 2015 The Authors.

  17. Low Frequency Quasi-periodic Oscillations in the High-eccentric LMXB Cir X-1: Extending the WK Correlation for Z Sources

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Qingcui; Chen, Li [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Belloni, T. M. [INAF-Osservatorio Astronomico di Brera, Via E, Bianchi 46, I-23807 Merate (Italy); Qu, Jinlu, E-mail: buqc@mail.bnu.edu.cn, E-mail: tomaso.belloni@brera.inaf.it, E-mail: chenli@bnu.edu.cn, E-mail: qujl@ihep.ac.cn [Laboratory for Particle Astrophysics, CAS, Beijing 100049 (China)

    2017-06-01

    Using archival Rossi X-ray Timing Explorer ( RXTE ) data, we studied the low-frequency quasi-periodic oscillations (LFQPOs) in the neutron star low-mass X-ray binary (LMXB) Cir X-1 and examined their contribution to frequency–frequency correlations for Z sources. We also studied the orbital phase effects on the LFQPO properties and found them to be phase independent. Comparing LFQPO frequencies in different classes of LMXBs, we found that systems that show both Z and atoll states form a common track with atoll/BH sources in the so-called WK correlation, while persistent Z systems are offset by a factor of about two. We found that neither source luminosity nor mass accretion rate is related to the shift of persistent Z systems. We discuss the possibility of a misidentification of fundamental frequency for horizontal branch oscillations from persistent Z systems and interpreted the oscillations in terms of models based on relativistic precession.

  18. Horizontal Accelerator

    Data.gov (United States)

    Federal Laboratory Consortium — The Horizontal Accelerator (HA) Facility is a versatile research tool available for use on projects requiring simulation of the crash environment. The HA Facility is...

  19. PEP-X: An Ultimate Storage Ring Based on Fourth-Order Geometric Achromats

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai; Bane, Karl; Hettel, Robert; Nosochkov, Yuri; Wang, Min-Huey; /SLAC

    2012-04-06

    We have designed an 'ultimate' storage ring for the PEP-X light source that achieves the diffraction limited emittances (at 1.5 {angstrom}) of 12 pm-rad in both horizontal and vertical planes with a 4.5-GeV beam. These emittances include the contribution of intrabeam scattering at a nominal current of 200 mA in 3300 bunches. This quality beam in conjunction with a conventional 4-m undulator in a straight section can generate synchrotron radiation having a spectral brightness above 10{sup 22} [photons/s/mm{sup 2}/mrad{sup 2}/0.1% BW] at a 10 keV photon energy. The high coherence at the diffraction limit makes PEP-X competitive with 4th generation light sources based on an energy recovery linac. In addition, the beam lifetime is several hours and the dynamic aperture is large enough to allow off-axis injection. The alignment and stability tolerances, though challenging, are achievable. A ring with all these properties is only possible because of several major advances in mitigating the effects of nonlinear resonances.

  20. Advances in orbit drift correction in the advanced photon source storage ring

    International Nuclear Information System (INIS)

    Emery, L.; Borland, M.

    1997-01-01

    The Advanced Photon Source storage ring is required to provide X-ray beams of high positional stability, specified as 17 μm rms in the horizontal plane and 4.4 μm rms in the vertical plane. The author reports on the difficult task of stabilizing the slow drift component of the orbit motion down to a few microns rms using workstation-based orbit correction. There are two aspects to consider separately the correction algorithm and the configuration of the beam position monitors (BPMs) and correctors. Three notable features of the correction algorithm are: low-pass digital filtering of BPM readbacks; open-quotes despikingclose quotes of the filtered orbit to desensitize the orbit correction to spurious BPM readbacks without having to change the correction matrix; and BPM intensity-dependent offset compensation. The BPM/corrector configuration includes all of the working BPMs but only a small set of correctors distributed around the ring. Thus only those orbit modes that are most likely to be representative of real beam drift are handled by the correction algorithm

  1. Kayser-Fleischer Rings

    Science.gov (United States)

    ... Support Contacts Lab Tracker/Copper Calculator Stories Programs & Research ... About Everything you need to know about Wilson Disease Kayser-Fleischer Rings Definition Kayser-Fleischer Ring: Clinical sign. Brownish-yellow ring visible around the corneo- ...

  2. Oscillations of void lattices

    International Nuclear Information System (INIS)

    Akhiezer, A.I.; Davydov, L.N.; Spol'nik, Z.A.

    1976-01-01

    Oscillations of a nonideal crystal are studied, in which macroscopic defects (pores) form a hyperlattice. It is shown that alongside with acoustic and optical phonons (relative to the hyperlattice), in such a crystal oscillations of the third type are possible which are a hydridization of sound oscillations of atoms and surface oscillations of a pore. Oscillation spectra of all three types were obtained

  3. Planetary Rings

    Science.gov (United States)

    Nicholson, P. D.

    2001-11-01

    A revolution in the studies in planetary rings studies occurred in the period 1977--1981, with the serendipitous discovery of the narrow, dark rings of Uranus, the first Voyager images of the tenuous jovian ring system, and the many spectacular images returned during the twin Voyager flybys of Saturn. In subsequent years, ground-based stellar occultations, HST observations, and the Voyager flybys of Uranus (1986) and Neptune (1989), as well as a handful of Galileo images, provided much additional information. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. Perhaps most puzzling is Saturn's multi-stranded, clumpy F ring, which continues to defy a simple explanation 20 years after it was first glimpsed in grainy images taken by Pioneer 11. Voyager and HST images reveal a complex, probably chaotic, dynamical interaction between unseen parent bodies within this ring and its two shepherd satellites, Pandora and Prometheus. The work described here reflects contributions by Joe Burns, Jeff Cuzzi, Luke Dones, Dick French, Peter Goldreich, Colleen McGhee, Carolyn Porco, Mark Showalter, and Bruno Sicardy, as well as those of the author. This research has been supported by NASA's Planetary Geology and Geophysics program and the

  4. Determination and Verification of the main Dynamic Characteristics of a Spatially Large Structure Using the Basic Records Combination Method

    Directory of Open Access Journals (Sweden)

    Patricia Murzea

    2013-09-01

    Full Text Available The aim of the paper is to present some methodological aspects regarding the determination of the vibration eigenmodes of a spatially large, symmetric structure and afterwards to show the obtained results for a spectral analysis of the ground motion in the horizontal plane, corresponding to steady state micro-tremors. The recorded velocigrams concern the rigid body motion of the main ring of the structure (translation along different horizontal directions and rotation with respect to the vertical symmetry axis as well as ovalization oscillations (mainly second order ovalization. The necessary data for the analysis was obtained through an efficient technique of combining basic records gathered with the help of data acquisition systems, on site, using three different schemes for the placement of the recording sensors.

  5. Measurement and correction of the working points during the energy ramp at the stretcher ring of ELSA; Messung und Korrektur der Arbeitspunkte waehrend der Energierampe am Stretcherring von ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Eberhartdt, Maren

    2010-12-15

    At the electron stretcher accelerator ELSA of Bonn University, an external beam is supplied to hadron physics experiments. In order to correct dynamic effects caused by eddy currents induced during the fast energy ramp, the transversal tunes have to be measured in situ with high precision. These measurements are based on the excitation of coherent oscillations generated by a pulsed kicker magnet. Horizontal oscillations were excited using one of the injection kicker magnets. Since its installation a newly designed kicker magnet enables measurements in the vertical plane as well. Oscillation frequencies are derived from a fast Fourier transform of the demodulated BPM signals, showing a well pronounced peak at the tune frequency. Using this technique, tune shifts were measured and corrected successfully. Measurement and correction of coherent longitudinal oscillations is feasible as well, utilizing a quite similar technique. Coherent oscillations are excited by a phase jump of the acceleration voltage using an electrical phase shifter in the reference RF signal path. (orig.)

  6. rf Wien filter in an electric dipole moment storage ring: The “partially frozen spin” effect

    Directory of Open Access Journals (Sweden)

    William M. Morse

    2013-11-01

    Full Text Available An rf Wien filter (WF can be used in a storage ring to measure a particle’s electric dipole moment (EDM. If the WF frequency equals the spin precession frequency without WF, and the oscillating WF fields are chosen so that the corresponding transverse Lorentz force equals zero, then a large source of systematic errors is canceled but the EDM signal is not. This effect, discovered by simulation, can be called the “partially frozen spin” effect.

  7. Non-linear transverse dynamics for storage rings with applications to the low-energy antiproton ring (LEAR) at CERN

    International Nuclear Information System (INIS)

    Bengtsson, J.

    1988-01-01

    A tensor equation has been used to derive the equations of motion for the curvilinear coordinate system customarily used for particle accelerators. A Hamiltonian formalism, expanded to third order in the canonical variables, has also been developed to describe the transverse motion in an accelerator. Time-dependent perturbation theory has been applied and computerized using a computer-algebra system. In particular, the perturbations due to magnetic sextupoles have been calculated to second power in the sextupole strength. The frequency spectra for the horizontal and the vertical betatron motion close to a single resonance have been calculated using time-independent perturbation theory. It has been shown that information about excited resonances and the type of driving field can be derived from the spectra. In particular, it is possible to obtain the amplitude and the phase of a given resonance. The results have been used to study the perturbations in the Low Energy Antiproton Ring (LEAR) at CERN. (orig.)

  8. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  9. Self-oscillation in spin torque oscillator stabilized by field-like torque

    International Nuclear Information System (INIS)

    Taniguchi, Tomohiro; Tsunegi, Sumito; Kubota, Hitoshi; Imamura, Hiroshi

    2014-01-01

    The effect of the field-like torque on the self-oscillation of the magnetization in spin torque oscillator with a perpendicularly magnetized free layer was studied theoretically. A stable self-oscillation at zero field is excited for negative β while the magnetization dynamics stops for β = 0 or β > 0, where β is the ratio between the spin torque and the field-like torque. The reason why only the negative β induces the self-oscillation was explained from the view point of the energy balance between the spin torque and the damping. The oscillation power and frequency for various β were also studied by numerical simulation

  10. Polarized wiggler for NSLS x-ray ring design considerations

    International Nuclear Information System (INIS)

    Friedman, A.; Krinsky, S.; Blum, E.

    1992-03-01

    We examine the properties of an elliptically polarized wiggler that will generate circularly polarized photons with energy spectrum of 3--12 KeV. The vertical wiggler magnetic field is produced by permanent magnets while the horizontal wiggler field is generated by electric coils capable of AC excitation. The radiation parameters of the wiggler are presented, including photon flux, circular and linear polarization and spectrum. These parameters are compared to the synchrotron radiation from a bending magnet. Numerical values are calculated for radiation from the wiggler and bending magnet for the NSLS X-ray ring parameters. A conceptual design for such a wiggler is discussed and several different alternatives are analyzed. We consider AC excitation of the wiggler to produce the time modulation of the elliptic polarization, and also to produce time modulated linearly polarized radiation

  11. Preparation for electron ring - plasma ring merging experiments in RECE-MERGE

    International Nuclear Information System (INIS)

    Taggart, D.; Sekiguchi, A.; Fleischmann, H.H.

    1986-01-01

    The formation of a mixed-CT using relativistic electron rings and gun-produced plasma rings by MERGE-ing them axially is simulated. This process is similar to the axial stacking of relativistic electron rings in RECE-Christa. The results of their first plasm production experiment are reported here. After study of the gun-produced plasma's properties is completed, the gun will be mounted at the downstream end of the vacuum tank and the source of relativistic electron rings will be at the upstream end. The two rings, formed at opposite ends of the tank, will be translated axially and merged

  12. Lattice design for an ILC damping ring with 3 km circumference

    International Nuclear Information System (INIS)

    Wolski, Andrzej

    2004-01-01

    We describe a simple lattice that meets the specifications for the damping times and horizontal and longitudinal emittances for the International Linear Collider (ILC) damping rings. The circumference of a little over 3 km leads to a bunch spacing of around 3 ns, which will require advances in kicker technology for injection and extraction. We present the lattice design, and initial results of studies of the acceptance and collective effects. With the high bunch charge and close spacing, the ion and electron cloud effects are expected to be severe; however, the simple structure of the lattice allows for easy variation of the circumference and bunch spacing, which may make it useful for future investigations

  13. Multichannel heterodyne radiometers with fast-scanning backward-wave oscillators for ECE measurement on HT-7 tokamak

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Poznyak, V.I.; Ploskirev, G.; Kalupin, D.; Wan, Y.X.; Xie, J.K.; Luo, J.R.; Li, J.G.; Gao, X.; Wan, B.N.; Zhang, X.D.; Wang, K.J.; Kuang, G.L.

    2001-01-01

    Two sets of fast-scanning heterodyne radiometer receiver systems employing backward-wave oscillators (BWOs) in 78-118 and 118-178 GHz were developed and installed for electron cyclotron emission (ECE) measurements on HT-7 superconducting tokamak. The double sideband (DSB) radiometer in 78-118 GHz measures 16 ECE frequency points with a scanning time period of 0.65 ms. The other radiometer in 118-178 GHz consists of one independent channel of DSB heterodyne receiver with intermediate frequency (IF) of 100-500 MHz and two channels of single sideband (SSB) heterodyne receiver that are sensitive to upper sideband and lower sideband individually; the IF frequency of the SSB channels are 1.5 GHz around the local oscillator frequencies with 1 GHz bandwidth. By employing a novel design, this unique radiometer measures 3 ECE frequency points at each of the 16 local oscillator frequency points in 118-178 GHz, and the full band can be swept in 0.65 ms period, thus the radiometer measures 48 ECE frequency points in 0.65 ms in principle. Each of the local oscillators' frequency points can be preset by program to meet specific physics interests. Horizontal view of ECE was installed to measure electron temperature profiles; vertically viewing optics along a perpendicular chord was also installed to study nonthermal ECE spectra. Preliminary measurement results were presented during ohmic and pellet injection plasmas

  14. Photochemistry in Saturn’s Ring-Shadowed Atmosphere: Modulation of Hydrocarbons and Aerosols

    Science.gov (United States)

    Edgington, Scott G.; Atreya, Sushil K.; Wilson, Eric H.; Baines, Kevin H.; West, Robert A.; Bjoraker, Gordon L.; Fletcher, Leigh N.; Momary, Tom

    2015-11-01

    Cassini has been orbiting Saturn for over eleven years now. During this epoch, the ring shadow has moved from covering much of the northern hemisphere (the solar inclination was 24 degrees) to covering a large swath south of the equator and it continues to move southward. At Saturn Orbit Insertion in 2004, the projection of the A-ring onto Saturn reached as far as 40N along the central meridian (52N at the terminator). At its maximum extent, the ring shadow can reach as far as 48N/S (58N/S at the terminator). The net effect is that the intensity of both ultraviolet and visible sunlight penetrating through the rings to any particular latitude will vary depending on both Saturn’s axis relative to the Sun and the optical thickness of each ring system. In essence, the rings act like semi-transparent venetian blinds.Our previous work, examined the variation of the solar flux as a function of solar inclination, i.e. for each 7.25-year season at Saturn. Here, we report on the impact of the oscillating ring shadow on the photolysis and production rates of hydrocarbons (acetylene, ethane, propane, and benzene) and phosphine in Saturn’s stratosphere and upper troposphere. The impact of these production and loss rates on the abundance of long-lived photochemical products leading to haze formation are explored. Similarly, we assess their impact on phosphine abundance, a disequilibrium species whose presence in the upper troposphere can be used as a tracer of convective processes in the deeper atmosphere.We will also present our ongoing analysis of Cassini’s datasets that provide an estimate of the evolving haze content of the northern hemisphere and we will begin to assess the implications for dynamical mixing. In particular, we will examine how the now famous hexagonal jet stream acts like a barrier to transport, isolating Saturn’s north polar region from outside transport of photochemically-generated molecules and haze.The research described in this paper was carried

  15. RANS study of unsteady flow around a profile blade : application to stall of horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Belkheir, N. [Khemis Miliana Univ., Ain Defla (Algeria); Dizene, R. [Univ. des Sciences et de la Technologie Houari Boumediene, Algiers (Algeria). Laboratoire de Mecanique Avancee; Khelladi, S.; Massouh, F.; Dobrev, I. [Arts et Metiers Paris Tech., Paris (France)

    2010-07-01

    The shape of an airfoil is designed to achieve the best aerodynamic performance. An aerofoil section undergoes dynamic stall when subjected to any form of unsteady angle of pitch. The study of a horizontal-axis wind turbine (HAWT) under wind operating conditions is complex because it is subject to instantaneous speed and wind direction variation. When turbine blades are driven into a dynamic stall, the lift coefficient drops suddenly resulting in a degradation in aerodynamic performance. This study presented steady and unsteady wind load predictions over an oscillating S809 airfoil tested in a subsonic wind tunnel. A model of sinusoidal pitch oscillations was used. The values for the angles of attack in steady state ranged from -20 to +40 degrees. The model considered 3 frequencies and 2 amplitudes. The two-dimensional numerical model simulated the instantaneous change of wind direction with respect to the turbine blade. Results were compared with data measurements of S809 aerofoil. Reasonable deviations were obtained between the predicted and experimental results for pitch oscillations. The URANS approach was used to predict the stall while the software FLUENT was used for the numerical solution. It was concluded that the behaviour of the unsteady flow in the wind farm must be considered in order to obtain an accurate estimate of the wind turbine aerodynamic load. 12 refs., 5 figs.

  16. Horizontal drilling under Lake Erie

    Energy Technology Data Exchange (ETDEWEB)

    Meller, R.

    2001-07-01

    Drilling oil wells under Lake Erie calls for horizontal drilling wells to be drilled from shore out into the pay-zone under the lake. The nature and characteristics of horizontal wells as compared to vertical wells are explored. Considerations that have to be taken into account in drilling horizontal wells are explained (the degree of curvature, drilling fluid quality, geosteering in the pay-zone, steering instrumentation, measurements while drilling (MWD), logging while drilling (LWD)). The concept and reasons for extended reach wells are outlined, along with characteristic features of multilateral wells.

  17. Suppression and revival of oscillation in indirectly coupled limit cycle oscillators

    International Nuclear Information System (INIS)

    Sharma, P.R.; Kamal, N.K.; Verma, U.K.; Suresh, K.; Thamilmaran, K.; Shrimali, M.D.

    2016-01-01

    Highlights: • The phenomena of suppression and revival of oscillations are studied in indirectly coupled nonlinear oscillators. • The decay parameter and a feedback factor play a crucial role in emergent dynamical behavior of oscillators. • The critical curves for different dynamical regions are obtained analytically using linear stability analysis. • Electronic circuit experiments demonstrate these emergent dynamical states. - Abstract: We study the phenomena of suppression and revival of oscillations in a system of limit cycle oscillators coupled indirectly via a dynamic local environment. The dynamics of the environment is assumed to decay exponentially with time. We show that for appropriate coupling strength, the decay parameter of the environment plays a crucial role in the emergent dynamics such as amplitude death (AD) and oscillation death (OD). We also show that introducing a feedback factor in the diffusion term revives the oscillations in this system. The critical curves for the regions of different emergent states as a function of coupling strength, decay parameter of the environment and feedback factor in the coupling are obtained analytically using linear stability analysis. These results are found to be consistent with the numerics and are also observed experimentally.

  18. Ring faults and ring dikes around the Orientale basin on the Moon.

    Science.gov (United States)

    Andrews-Hanna, Jeffrey C; Head, James W; Johnson, Brandon; Keane, James T; Kiefer, Walter S; McGovern, Patrick J; Neumann, Gregory A; Wieczorek, Mark A; Zuber, Maria T

    2018-08-01

    The Orientale basin is the youngest and best-preserved multiring impact basin on the Moon, having experienced only modest modification by subsequent impacts and volcanism. Orientale is often treated as the type example of a multiring basin, with three prominent rings outside of the inner depression: the Inner Rook Montes, the Outer Rook Montes, and the Cordillera. Here we use gravity data from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission to reveal the subsurface structure of Orientale and its ring system. Gradients of the gravity data reveal a continuous ring dike intruded into the Outer Rook along the plane of the fault associated with the ring scarp. The volume of this ring dike is ~18 times greater than the volume of all extrusive mare deposits associated with the basin. The gravity gradient signature of the Cordillera ring indicates an offset along the fault across a shallow density interface, interpreted to be the base of the low-density ejecta blanket. Both gravity gradients and crustal thickness models indicate that the edge of the central cavity is shifted inward relative to the equivalent Inner Rook ring at the surface. Models of the deep basin structure show inflections along the crust-mantle interface at both the Outer Rook and Cordillera rings, indicating that the basin ring faults extend from the surface to at least the base of the crust. Fault dips range from 13-22° for the Cordillera fault in the northeastern quadrant, to 90° for the Outer Rook in the northwestern quadrant. The fault dips for both outer rings are lowest in the northeast, possibly due to the effects of either the direction of projectile motion or regional gradients in pre-impact crustal thickness. Similar ring dikes and ring faults are observed around the majority of lunar basins.

  19. Groups, rings, modules

    CERN Document Server

    Auslander, Maurice

    2014-01-01

    This classic monograph is geared toward advanced undergraduates and graduate students. The treatment presupposes some familiarity with sets, groups, rings, and vector spaces. The four-part approach begins with examinations of sets and maps, monoids and groups, categories, and rings. The second part explores unique factorization domains, general module theory, semisimple rings and modules, and Artinian rings. Part three's topics include localization and tensor products, principal ideal domains, and applications of fundamental theorem. The fourth and final part covers algebraic field extensions

  20. Saturn's Rings Edge-on

    Science.gov (United States)

    1995-01-01

    In one of nature's most dramatic examples of 'now-you see-them, now-you-don't', NASA's Hubble Space Telescope captured Saturn on May 22, 1995 as the planet's magnificent ring system turned edge-on. This ring-plane crossing occurs approximately every 15 years when the Earth passes through Saturn's ring plane.For comparison, the top picture was taken by Hubble on December 1, 1994 and shows the rings in a more familiar configuration for Earth observers.The bottom picture was taken shortly before the ring plane crossing. The rings do not disappear completely because the edge of the rings reflects sunlight. The dark band across the middle of Saturn is the shadow of the rings cast on the planet (the Sun is almost 3 degrees above the ring plane.) The bright stripe directly above the ring shadow is caused by sunlight reflected off the rings onto Saturn's atmosphere. Two of Saturn's icy moons are visible as tiny starlike objects in or near the ring plane. They are, from left to right, Tethys (slightly above the ring plane) and Dione.This observation will be used to determine the time of ring-plane crossing and the thickness of the main rings and to search for as yet undiscovered satellites. Knowledge of the exact time of ring-plane crossing will lead to an improved determination of the rate at which Saturn 'wobbles' about its axis (polar precession).Both pictures were taken with Hubble's Wide Field Planetary Camera 2. The top image was taken in visible light. Saturn's disk appears different in the bottom image because a narrowband filter (which only lets through light that is not absorbed by methane gas in Saturn's atmosphere) was used to reduce the bright glare of the planet. Though Saturn is approximately 900 million miles away, Hubble can see details as small as 450 miles across.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and

  1. The Rotating Ring-Ring Electrode. Theory and Experiment

    NARCIS (Netherlands)

    Kuiken, H.K.; Bakkers, E.P.A.M.; Ligthart, H.; Kelly, J.J.

    2000-01-01

    A model is presented for the rotating ring-ring electrode. Although the electrode is defined by four characteristic lengths, it is shown that the collection efficiency depends on only two dimensionless parameters. A simple relationship between these and the corresponding parameters for the rotating

  2. Penetrating particles in horizontal air showers

    International Nuclear Information System (INIS)

    Wohlenberg, J.; Boehm, E.

    1975-01-01

    Particle density and arrival time of muons has been measured in Horizontal Air Showers. 5,600 showers have been recorded in 7,800 hours. Using stringent selection criteria 155 showers have been found horizontal (zenith angle larger 70 0 ) in the size range 4.1 > lg N > 5.5. The muons observed in these showers can be explained by purely electromagnetic origin of horizontal showers. (orig.) [de

  3. The Oscillator Principle of Nature

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2012-01-01

    Oscillators are found on all levels in Nature. The general oscillator concept is defined and investigated. Oscillators may synchronize into fractal patterns. Apparently oscillators are the basic principle in Nature. The concepts of zero and infinite are discussed. Electronic manmade oscillators...

  4. Wear Analysis of Top Piston Ring to Reduce Top Ring Reversal Bore Wear

    Directory of Open Access Journals (Sweden)

    P. Ilanthirayan

    2017-12-01

    Full Text Available The piston rings are the most important part in engine which controls the lubricating oil consumption and blowby of the gases. The lubricating film of oil is provided to seal of gases towards crankcase and also to give smooth friction free translatory motion between rings and liner. Of the three rings present top ring is more crucial as it does the main work of restricting gases downwards the crankcase. Boundary lubrication is present at the Top dead centre (TDC and Bottom dead centre (BDC of the liner surface. In addition to this, top ring is exposed to high temperature gases which makes the oil present near the top ring to get evaporated and decreasing its viscosity, making metal-metal contact most of the time. Due to this at TDC, excess wear happens on the liner which is termed as Top ring reversal bore wear. The wear rate depends upon many parameters such as lubrication condition, viscosity index, contact type, normal forces acting on ring, geometry of ring face, surface roughness, material property. The present work explores the wear depth for different geometries of barrel ring using Finite Element model with the help of Archard wear law and the same is validated through experimentation. The study reveals that Asymmetric barrel rings have less contact pressure which in turn reduces the wear at Top dead centre.

  5. PREFACE: Special section on vortex rings Special section on vortex rings

    Science.gov (United States)

    Fukumoto, Yasuhide

    2009-10-01

    This special section of Fluid Dynamics Research includes five articles on vortex rings in both classical and quantum fluids. The leading scientists of the field describe the trends in and the state-of-the-art development of experiments, theories and numerical simulations of vortex rings. The year 2008 was the 150th anniversary of 'vortex motion' since Hermann von Helmholtz opened up this field. In 1858, Helmholtz published a paper in Crelle's Journal which put forward the concept of 'vorticity' and made the first analysis of vortex motion. Fluid mechanics before that was limited to irrotational motion. In the absence of vorticity, the motion of an incompressible homogeneous fluid is virtually equivalent to a rigid-body motion in the sense that the fluid motion is determined once the boundary configuration is specified. Helmholtz proved, among other things, that, without viscosity, a vortex line is frozen into the fluid. This Helmholtz's law immediately implies the preservation of knots and links of vortex lines and its implication is enormous. One of the major trends of fluid mechanics since the latter half of the 20th century is to clarify the topological meaning of Helmholtz's law and to exploit it to develop theoretical and numerical methods to find the solutions of the Euler equations and to develop experimental techniques to gain an insight into fluid motion. Vortex rings are prominent coherent structures in a variety of fluid motions from the microscopic scale, through human and mesoscale to astrophysical scales, and have attracted people's interest. The late professor Philip G Saffman (1981) emphasized the significance of studies on vortex rings. One particular motion exemplifies the whole range of problems of vortex motion and is also a commonly known phenomenon, namely the vortex ring or smoke ring. Vortex rings are easily produced by dropping drops of one liquid into another, or by puffing fluid out of a hole, or by exhaling smoke if one has the skill

  6. Prediction of regular wave loads on a fixed offshore oscillating water column-wave energy converter using CFD

    Directory of Open Access Journals (Sweden)

    Ahmed Elhanafi

    2016-12-01

    Full Text Available In this paper, hydrodynamic wave loads on an offshore stationary–floating oscillating water column (OWC are investigated via a 2D and 3D computational fluid dynamics (CFD modeling based on the RANS equations and the VOF surface capturing scheme. The CFD model is validated against previous experiments for nonlinear regular wave interactions with a surface-piercing stationary barge. Following the validation stage, the numerical model is modified to consider the pneumatic damping effect, and an extensive campaign of numerical tests is carried out to study the wave–OWC interactions for different wave periods, wave heights and pneumatic damping factors. It is found that the horizontal wave force is usually larger than the vertical one. Also, there a direct relationship between the pneumatic and hydrodynamic vertical forces with a maximum vertical force almost at the device natural frequency, whereas the pneumatic damping has a little effect on the horizontal force. Additionally, simulating the turbine damping with an orifice plate induces higher vertical loads than utilizing a slot opening. Furthermore, 3D modeling significantly escalates and declines the predicted hydrodynamic vertical and horizontal wave loads, respectively.

  7. Shimming techniques for the ultraprecise muon g-2 storage ring at the AGS

    International Nuclear Information System (INIS)

    Danby, G.T.; Jackson, J.W.

    1993-01-01

    Major components are in an advanced state of construction for a 7 meter radius 0.1 PPM precision storage ring. Detailed techniques are planned for static shimming of the assembly to at least 10 PPM magnetic field uniformity prior to the use of field correction coils. An air gap behind each ultra-pure iron pole piece strongly decouples the aperture field shape from the properties of the 1,006 iron yoke. Iron wedges whose thickness varies across the width of the poles with slope of ∼ 1/60 are used to eliminate the gradient produced by the C-magnet shape required for open access for the decay electron counter on the inside radius of the storage ring magnet. These wedges are 10 cm in azimuthal length and can be radially adjusted for short wavelength field adjustments. A horizontal motion of 50 μm effectively adjusts the 10 cm half-gap aperture by 1 μm (or 10 PPM). This and other techniques to adjust dipole, quadrupole, sextuple, etc. multipoles will be described

  8. Feasibility of maintaining in-plane polarization for a storage ring EDM search

    Science.gov (United States)

    Stephenson, Edward; Storage Ring EDM Collaboration

    2014-09-01

    A search for an electric dipole moment (EDM) on charged particles using a storage ring requires beam polarization lifetimes approaching 1000 s for in-plane polarization. A feasibility study using beam bunching and sextupole field adjustment is underway with a 0.97-GeV/c vector-polarized deuteron beam at COSY. The polarimeter consists of a thick carbon target positioned at the edge of the beam and the EDDA scintillation detectors. The DAQ system assigns a clock time to each polarimeter event. Once calibrated against the RF-cavity, the clock time is used to select events associated with a maximal sideways polarization (precessing at 120 kHz). With this tool, the in-plane polarization magnitude is tracked versus time. Electron cooling reduces the depolarization from finite emittance and second-order momentum spread acting through synchrotron oscillations. Further lifetime improvement to the level of hundreds of seconds is achieved by adjusting sextupole fields located in the COSY ring arcs at places of large transverse beta functions and dispersion. The dependence of the reciprocal of the lifetime on sextupole field strength is nearly linear, permitting an easy location of the best field values. These typically occur near loci of zero chromaticity. A search for an electric dipole moment (EDM) on charged particles using a storage ring requires beam polarization lifetimes approaching 1000 s for in-plane polarization. A feasibility study using beam bunching and sextupole field adjustment is underway with a 0.97-GeV/c vector-polarized deuteron beam at COSY. The polarimeter consists of a thick carbon target positioned at the edge of the beam and the EDDA scintillation detectors. The DAQ system assigns a clock time to each polarimeter event. Once calibrated against the RF-cavity, the clock time is used to select events associated with a maximal sideways polarization (precessing at 120 kHz). With this tool, the in-plane polarization magnitude is tracked versus time. Electron

  9. Vortex rings

    CERN Document Server

    Akhmetov, D G

    2009-01-01

    This text on vortex rings covers their theoretical foundation, systematic investigations, and practical applications such as the extinction of fires at gushing oil wells. It pays special attention to the formation and motion of turbulent vortex rings.

  10. Chimera states in bipartite networks of FitzHugh-Nagumo oscillators

    Science.gov (United States)

    Wu, Zhi-Min; Cheng, Hong-Yan; Feng, Yuee; Li, Hai-Hong; Dai, Qiong-Lin; Yang, Jun-Zhong

    2018-04-01

    Chimera states consisting of spatially coherent and incoherent domains have been observed in different topologies such as rings, spheres, and complex networks. In this paper, we investigate bipartite networks of nonlocally coupled FitzHugh-Nagumo (FHN) oscillators in which the units are allocated evenly to two layers, and FHN units interact with each other only when they are in different layers. We report the existence of chimera states in bipartite networks. Owing to the interplay between chimera states in the two layers, many types of chimera states such as in-phase chimera states, antiphase chimera states, and out-of-phase chimera states are classified. Stability diagrams of several typical chimera states in the coupling strength-coupling radius plane, which show strong multistability of chimera states, are explored.

  11. Measurements of natural frequency and damping constant of single steam bubble oscillating in water

    International Nuclear Information System (INIS)

    Morioka, Mikio

    1983-01-01

    The natural frequency fsub(n) and damping constant delta of a bubble in liquid have been determined by observing the resonance of the bubble to forced oscillation. The bubble was retained under a rigid plate horizontal disk, and the oscillation was applied by underwater speaker. The applied frequency f was kept constant while letting the bubble increase its volume and vary its radius R. Bubble resonance was detected by observing wrinkles appearing on the bubble due to surface waves. Resonance curves relating the amplitude of bubble radius variation to the intensity of applied oscillation is derived theoretically. Good agreement was seen between the data obtained from experiment and the theoretically derived resonance curves at test to the validity of the method proposed of determining fsub(n) and delta from bubble resonance. The values of delta and of the resonant bubble radius R 0 of large steam bubbles (8.5mm< R<11.5mm) in water were determined at f=270, 290 and 358 Hz. The results support the assumption that for large bubbles the value of fsub(n) is little influenced by the exchange of mass between liquid and gaseous phases through evaporation and condensation accompanying bubble pressure oscillation. On the other hand, delta is found to be one order of magnitude higher than calculated for steam bubbles without taking into evaporation and condensation the interphase exchange of mass. The effect brought on delta by the interphase mass exchange can be taken into account by adding a new constant deltasub(ph) to the terms constituting the total damping constant. (author)

  12. Horizontal violence in Nursing

    Directory of Open Access Journals (Sweden)

    Tsimoulaki Evangelia

    2017-01-01

    Full Text Available One’s effort to clarify the definition of horizontal labour violence is of great importance, due to the variety of definitions that are mentioned in the worldwide scientific literature. Furthermore, the reference of multiple forms of such violence herein the nurse professional group is challenging, as well. Another fact of great importance is that, any form of professional violence (horizontal violence, horizontal mobbing in the work place environment can be possibly escalated and include even physical abuse (Bullying, besides the psychological and emotional impact for the victim. The definitions of Horizontal violence, Mobbing and Bullying, include a repeated negative behaviour emanating from at least one “predator” towards at least one “victim”, with work status differences and the existence or lack of physical abuse (Bullying. Horizontal violence is a hostile, aggressive and harmful behaviour which is either overt or concealed and is pointed from an individual to another individual of the same working rank and causes intense emotional pain at the victim. The manifestations vary from humiliating tasks assignment or the victim’s efforts undermining to clearly aggressive behaviors (criticism, intimidation, sarcasm etc.. The reason behind this phenomenon is multifactorial extended not only towards the working environment but also to the personal characteristics of the “predator” as well as the possible “victim”. The researchers emphasize the high incidence of the phenomenon, as well as the cost that is induced by the violent behaviors to both the health professionals and the hospital. Finally, they point out the paradox of the presence of violence inside a system that is designed to promote health.

  13. FUZZY RINGS AND ITS PROPERTIES

    Directory of Open Access Journals (Sweden)

    Karyati Karyati

    2017-01-01

      One of algebraic structure that involves a binary operation is a group that is defined  an un empty set (classical with an associative binary operation, it has identity elements and each element has an inverse. In the structure of the group known as the term subgroup, normal subgroup, subgroup and factor group homomorphism and its properties. Classical algebraic structure is developed to algebraic structure fuzzy by the researchers as an example semi group fuzzy and fuzzy group after fuzzy sets is introduced by L. A. Zadeh at 1965. It is inspired of writing about semi group fuzzy and group of fuzzy, a research on the algebraic structure of the ring is held with reviewing ring fuzzy, ideal ring fuzzy, homomorphism ring fuzzy and quotient ring fuzzy with its properties. The results of this study are obtained fuzzy properties of the ring, ring ideal properties fuzzy, properties of fuzzy ring homomorphism and properties of fuzzy quotient ring by utilizing a subset of a subset level  and strong level  as well as image and pre-image homomorphism fuzzy ring.   Keywords: fuzzy ring, subset level, homomorphism fuzzy ring, fuzzy quotient ring

  14. Horizontal steam generator thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Ubra, O. [SKODA Praha Company, Prague (Czechoslovakia); Doubek, M. [Czech Technical Univ., Prague (Czechoslovakia)

    1995-09-01

    Horizontal steam generators are typical components of nuclear power plants with pressure water reactor type VVER. Thermal-hydraulic behavior of horizontal steam generators is very different from the vertical U-tube steam generator, which has been extensively studied for several years. To contribute to the understanding of the horizontal steam generator thermal-hydraulics a computer program for 3-D steady state analysis of the PGV-1000 steam generator has been developed. By means of this computer program, a detailed thermal-hydraulic and thermodynamic study of the horizontal steam generator PGV-1000 has been carried out and a set of important steam generator characteristics has been obtained. The 3-D distribution of the void fraction and 3-D level profile as functions of load and secondary side pressure have been investigated and secondary side volumes and masses as functions of load and pressure have been evaluated. Some of the interesting results of calculations are presented in the paper.

  15. Horizontal and vertical winds and temperatures in the equatorial thermosphere: measurements from Natal, Brazil during August-September 1982

    International Nuclear Information System (INIS)

    Biondi, M.A.

    1985-01-01

    Fabry-Perot interferometer measurements of Doppler shifts and widths of the 630.0 nm nightglow line have been used to determine the neutral winds and temperatures in the equatorial thermosphere over Natal, Brazil during August-September 1982. During this period, in the early night (2130 U.T.) the average value of the horizontal wind vector was 95 m s -1 at 100 0 azimuth, and the temperature varied from a low of 950 K during geomagnetically quiet conditions to a high of approx. 1400 K during a storm (6 September). The meridional winds were small, -1 , and the eastward zonal winds reached a maximum value 1-3 h after sunset, in qualitative agreement with TGCM predictions. On 26 August, an observed persistent convergence in the horizontal meridional flow was accompanied by a downward vertical velocity and an increase in the thermospheric temperature measured overhead. Oscillations with periods of 40-45 min in both the zonal and vertical wind velocities were observed during the geomagnetic storm of 6 September, suggesting gravity wave modulation of the equatorial thermospheric flow. (author)

  16. Study of the Local Horizon. (Spanish Title: Estudio del Horizonte Local.) Estudo do Horizonte Local

    Science.gov (United States)

    Ros, Rosa M.

    2009-12-01

    The study of the horizon is fundamental to easy the first observations of the students at any education center. A simple model, to be developed in each center, allows to easy the study and comprehension of the rudiments of astronomy. The constructed model is presented in turn as a simple equatorial clock, other models (horizontal and vertical) may be constructed starting from it. El estudio del horizonte es fundamental para poder facilitar las primeras observaciones de los alumnos en un centro educativo. Un simple modelo, que debe realizarse para cada centro, nos permite facilitar el estudio y la comprensión de los primeros rudimentos astronómicos. El modelo construido se presenta a su vez como un sencillo modelo de reloj ecuatorial y a partir de él se pueden construir otros modelos (horizontal y vertical). O estudo do horizonte é fundamental para facilitar as primeiras observações dos alunos num centro educativo. Um modelo simples, que deve ser feito para cada centro, permite facilitar o estudo e a compreensão dos primeiros rudimentos astronômicos. O modelo construído apresenta-se, por sua vez, como um modelo simples de relógio equatorial e a partir dele pode-se construir outros modelos (horizontal e vertical)

  17. Polarization Insensitivity in Double-Split Ring and Triple-Split Ring Terahertz Resonators

    International Nuclear Information System (INIS)

    Wu Qian-Nan; Lan Feng; Tang Xiao-Pin; Yang Zi-Qiang

    2015-01-01

    A modified double-split ring resonator and a modified triple-split ring resonator, which offer polarization-insensitive performance, are investigated, designed and fabricated. By displacing the two gaps of the conventional double-split ring resonator away from the center, the second resonant frequency for the 0° polarized wave and the resonant frequency for the 90° polarized wave become increasingly close to each other until they are finally identical. Theoretical and experimental results show that the modified double-split ring resonator and the modified triple-split ring resonator are insensitive to different polarized waves and show strong resonant frequency dips near 433 and 444 GHz, respectively. The results of this work suggest new opportunities for the investigation and design of polarization-dependent terahertz devices based on split ring resonators. (paper)

  18. Fundamental (f) oscillations in a magnetically coupled solar interior-atmosphere system - An analytical approach

    Science.gov (United States)

    Pintér, Balázs; Erdélyi, R.

    2018-01-01

    Solar fundamental (f) acoustic mode oscillations are investigated analytically in a magnetohydrodynamic (MHD) model. The model consists of three layers in planar geometry, representing the solar interior, the magnetic atmosphere, and a transitional layer sandwiched between them. Since we focus on the fundamental mode here, we assume the plasma is incompressible. A horizontal, canopy-like, magnetic field is introduced to the atmosphere, in which degenerated slow MHD waves can exist. The global (f-mode) oscillations can couple to local atmospheric Alfvén waves, resulting, e.g., in a frequency shift of the oscillations. The dispersion relation of the global oscillation mode is derived, and is solved analytically for the thin-transitional layer approximation and for the weak-field approximation. Analytical formulae are also provided for the frequency shifts due to the presence of a thin transitional layer and a weak atmospheric magnetic field. The analytical results generally indicate that, compared to the fundamental value (ω =√{ gk }), the mode frequency is reduced by the presence of an atmosphere by a few per cent. A thin transitional layer reduces the eigen-frequencies further by about an additional hundred microhertz. Finally, a weak atmospheric magnetic field can slightly, by a few percent, increase the frequency of the eigen-mode. Stronger magnetic fields, however, can increase the f-mode frequency by even up to ten per cent, which cannot be seen in observed data. The presence of a magnetic atmosphere in the three-layer model also introduces non-permitted propagation windows in the frequency spectrum; here, f-mode oscillations cannot exist with certain values of the harmonic degree. The eigen-frequencies can be sensitive to the background physical parameters, such as an atmospheric density scale-height or the rate of the plasma density drop at the photosphere. Such information, if ever observed with high-resolution instrumentation and inverted, could help to

  19. Are the North Atlantic oscillation and the southern oscillation related in any time-scale?

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, R.; Ribera, P.; Hernandez, E. [Universidad Complutense de Madrid (Spain). Facultad de Ciencias Fisicas; Gimenoo, L. [Fac. Ciencias, Univ. Vigo, Ourense (Spain)

    2000-02-01

    The north Atlantic oscillation (NAO) and the southern oscillation (SO) are compared from the standpoint of a possible common temporal scale of oscillation. To do this a cross-spectrum of the temporal series of NAO and SO indices was determined, finding a significant common oscillation of 6-8 years. To assure this finding, both series were decomposed in their main oscillations using singular spectrum analysis (SSA). Resulting reconstructed series of 6-8 years' oscillation were then cross-correlated without and with pre-whitened, the latter being significant. The main conclusion is a possible relationship between a common oscillation of 6-8 years that represents about 20% of the SO variance and about 25% of the NAO variance. (orig.)

  20. Inverted oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C [Physics Department, Anadolu University, Eskisehir (Turkey); Kilic, A [Physics Department, Anadolu University, Eskisehir (Turkey); Coruh, A [Physics Department, Sakarya University, Sakarya (Turkey)

    2006-07-15

    The inverted harmonic oscillator problem is investigated quantum mechanically. The exact wavefunction for the confined inverted oscillator is obtained and it is shown that the associated energy eigenvalues are discrete, and the energy is given as a linear function of the quantum number n.

  1. Reactor oscillator - Proposal of the organisation for oscillator operation; Reaktorski oscilator - Predlog organizacije rada na oscilatoru

    Energy Technology Data Exchange (ETDEWEB)

    Lolic, B; Loloc, B [Institute of Nuclear Sciences Boris Kidric, Laboratorija za fiziku reaktora, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    The organizational structure for operating the reactor with the reactor oscillator describes the duties of the reactor operators; staff responsible for operating the oscillator who are responsible for measurements, preparation of the samples and further treatment of the obtained results.

  2. Effects of Rashba spin–orbit coupling and a magnetic field on a polygonal quantum ring

    International Nuclear Information System (INIS)

    Tang, Han-Zhao; Zhai, Li-Xue; Shen, Man; Liu, Jian-Jun

    2014-01-01

    Using standard quantum network method, we analytically investigate the effect of Rashba spin–orbit coupling (RSOC) and a magnetic field on the spin transport properties of a polygonal quantum ring. Using Landauer–Büttiker formula, we have found that the polarization direction and phase of transmitted electrons can be controlled by both the magnetic field and RSOC. A device to generate a spin-polarized conductance in a polygon with an arbitrary number of sides is discussed. This device would permit precise control of spin and selectively provide spin filtering for either spin up or spin down simply by interchanging the source and drain. - Highlights: • Spin conductance of polygon with RSOC and magnetic field is calculated analytically. • We show how the RSOC and a magnetic field control the phase of electron in polygon. • The AB oscillation and shape-dependent conductance are studied in a polygonal ring. • Our model can provide spin filtering simply by interchanging the source and drain

  3. Experimental demonstration of revival of oscillations from death in coupled nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, D. V., E-mail: skumarusnld@gmail.com [School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram 695016 (India); Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401 (India); Suresh, K. [Department of Physics, Anjalai Ammal-Engineering College, Kovilvenni 614 403, Tamilnadu (India); Centre for Nonlinear Dynamics, Bharathidasan University, Trichy 620024, Tamilnadu (India); Chandrasekar, V. K. [Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401 (India); Zou, Wei [School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074 (China); Centre for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074 (China); Dana, Syamal K. [CSIR-Indian Institute of Chemical Biology, Kolkata 700032 (India); Kathamuthu, Thamilmaran [Centre for Nonlinear Dynamics, Bharathidasan University, Trichy 620024, Tamilnadu (India); Kurths, Jürgen [Potsdam Institute for Climate Impact Research, Telegrafenberg, Potsdam D-14415 (Germany); Institute of Physics, Humboldt University Berlin, Berlin D-12489 (Germany); Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen AB24 3FX (United Kingdom); Department of Control Theory, Nizhny Novgorod State University, Gagarin Avenue 23, 606950 Nizhny Novgorod (Russian Federation)

    2016-04-15

    We experimentally demonstrate that a processing delay, a finite response time, in the coupling can revoke the stability of the stable steady states, thereby facilitating the revival of oscillations in the same parameter space where the coupled oscillators suffered the quenching of oscillation. This phenomenon of reviving of oscillations is demonstrated using two different prototype electronic circuits. Further, the analytical critical curves corroborate that the spread of the parameter space with stable steady state is diminished continuously by increasing the processing delay. Finally, the death state is completely wiped off above a threshold value by switching the stability of the stable steady state to retrieve sustained oscillations in the same parameter space. The underlying dynamical mechanism responsible for the decrease in the spread of the stable steady states and the eventual reviving of oscillation as a function of the processing delay is explained using analytical results.

  4. Stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  5. Physics of quantum rings

    International Nuclear Information System (INIS)

    Fomin, Vladimir M.

    2014-01-01

    Presents the new class of materials of quantum rings. Provides an elemental basis for low-cost high-performance devices promising for electronics, optoelectronics, spintronics and quantum information processing. Explains the physical properties of quantum rings to cover a gap in scientific literature. Presents the application of most advanced nanoengineering and nanocharacterization techniques. This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is possible on the basis of modern characterization methods of nanostructures, such as Scanning Tunneling Microscopy. A high level of complexity is demonstrated to be needed for a dedicated theoretical model to adequately represent the specific features of quantum rings. The findings presented in this book contribute to develop low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings.

  6. Effects of grit roughness and pitch oscillations on the S814 airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Janiszewska, J.M.; Ramsay, R.R.; Hoffmann, M.J.; Gregorek, G.M. [Ohio State Univ., Columbus, OH (United States)

    1996-07-01

    Horizontal-axis wind turbine rotors experience unsteady aerodynamics when the rotor is yawed, when rotor blades pass through the support tower wake, and when the wind is gusting. An understanding of this unsteady behavior is necessary to assist in the design of new rotor airfoils. The rotors also experience performance degradation due to surface roughness. These surface irregularities are due to the accumulation of insect debris, ice, and/or the aging process. Wind tunnel studies that examine both the steady and unsteady behavior of airfoils can help define pertinent flow phenomena, and the resultant data can also be used to validate analytical computer codes. An S814 airfoil model was tested in The Ohio State University Aeronautical and Astronautical Research Laboratory (OSU/AARL) 3 X 5 subsonic wind tunnel (3 X 5) under steady flow with both stationary model conditions and pitch oscillations. To study the extent of performance loss due to surface roughness, a leading edge grit roughness pattern (LEGR) was used to simulate leading edge contamination. After baseline cases were completed, the LEGR was applied for both steady state and model pitch oscillation cases. The Reynolds numbers for steady state conditions were 0.75, 1, 1.25 and 1.5 million, while the angle of attack ranged from -20{degrees} to +40{degrees}. While the model underwent pitch oscillations, data were acquired at Reynolds numbers of 0.75, 1, 1.25, and 1.5 million, at frequencies of 0.6, 1.2, and 1.8 Hz. Two sine wave forcing functions {+-}5.5{degrees} and {+-}10{degrees}, were used; at mean angles of attack of 8{degrees}, 14{degrees}, and 20{degrees}. For purposes herein, any reference to unsteady conditions means the model was in pitch oscillation.

  7. Effects of grit roughness and pitch oscillations on the S801 airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Ramsay, R.R.; Hoffman, M.J.; Gregorek, G.M. [Ohio State Univ., Columbus, OH (United States)

    1996-01-01

    Horizontal axis wind turbine rotors experience unsteady aerodynamics due to wind shear when the rotor is yawed, when rotor blades pass through the support tower wake, and when the wind is gusting. An understanding of this unsteady behavior is necessary to assist in the calculation of rotor performance and loads. The rotors also experience performance degradation due to surface roughness. These surface irregularities are due to the accumulation of insect debris, ice, and the aging process. Wind tunnel studies that examine both the steady and unsteady behavior of airfoils can help define pertinent flow phenomena, and the resultant data can be used to validate analytical computer codes. A S801 airfoil model was tested in The Ohio State University Aeronautical and Astronautical Research Laboratory (OSU/AARL) 3x5 subsonic wind tunnel (3x5) under steady flow and stationary model conditions, as well as with the model undergoing pitch oscillations. To study the possible extent of performance loss due to surface roughness, a standard grit pattern (LEGR) was used to simulate leading edge contamination. After baseline cases were completed, the LEGR was applied for both steady state and model pitch oscillation cases. The Reynolds numbers used for steady state conditions were 0.75, 1, 1.25, and 1.5 million, while the angle of attack ranged from -20{degrees} to +40{degrees}. With the model undergoing pitch oscillations, data were acquired at Reynolds numbers of 0.75, 1, 1.25, and 1.4 million, at frequencies of 0.6, 1.2, and 1.8 Hz. Two sine wave forcing functions were used, {plus_minus} 5.5 {degrees}and {plus_minus} 10{degrees}, at mean angles of attack of 8{degrees} 14{degrees} and 20{degrees} For purposes herein, any reference to unsteady conditions means that the airfoil model was in pitch oscillation about the quarter chord.

  8. Effects of grit roughness and pitch oscillations on the S815 airfoil

    Energy Technology Data Exchange (ETDEWEB)

    Reuss Ramsay, R.; Hoffman, M.J.; Gregorek, G.M. [Ohio State Univ., Columbus, OH (United States)

    1996-07-01

    Horizontal axis wind turbine rotors experience unsteady aerodynamics due to wind shear when the rotor is yawed, when rotor blades pass through the support tower wake, and when the wind is gusting. An understanding of this unsteady behavior is necessary to assist in the calculation of rotor performance and loads. The rotors also experience performance degradation due to surface roughness. These surface irregularities are cause by the accumulation of insect debris, ice, and the aging process. Wind tunnel studies that examine both the steady and unsteady behavior of airfoils can help define pertinent flow phenomena, and the resultant data can be used to validate analytical computer codes. A S815 airfoil model was tested in The Ohio State University Aeronautical and Astronautical Research Laboratory (OSU/AARL) 3 x 5 subsonic wind tunnel (3 x 5) under steady flow and stationary model conditions, as well as with the model undergoing pitch oscillations. To study the possible extent of performance loss due to surface roughness, a standard grit pattern (LEGR) was used to simulate leading edge contamination. After baseline cases were completed, the LEGR was applied for both steady state and model pitch oscillation cases. The Reynolds numbers used for steady state conditions were 0.75, 1, 1.25, and 1.4 million, while the angle of attack ranged from {minus}20{degree} to +40{degree}. With the model undergoing pitch oscillations, data were acquired at Reynolds numbers of 0.75, 1, 1.25, and 1.4 million, at frequencies of 0.6, 1.2, and 1.8 Hz. Two sine wave forcing functions were used; {+-}5.5{degree} and {+-}10{degree}, at mean angles of attack of 8{degree}, 14{degree}, and 20{degree}. For purposes herein, any reference to unsteady conditions means that the model was in pitch oscillation about the quarter chord.

  9. How does the blue-ringed octopus (Hapalochlaena lunulata) flash its blue rings?

    Science.gov (United States)

    Mäthger, Lydia M; Bell, George R R; Kuzirian, Alan M; Allen, Justine J; Hanlon, Roger T

    2012-11-01

    The blue-ringed octopus (Hapalochlaena lunulata), one of the world's most venomous animals, has long captivated and endangered a large audience: children playing at the beach, divers turning over rocks, and biologists researching neurotoxins. These small animals spend much of their time in hiding, showing effective camouflage patterns. When disturbed, the octopus will flash around 60 iridescent blue rings and, when strongly harassed, bite and deliver a neurotoxin that can kill a human. Here, we describe the flashing mechanism and optical properties of these rings. The rings contain physiologically inert multilayer reflectors, arranged to reflect blue-green light in a broad viewing direction. Dark pigmented chromatophores are found beneath and around each ring to enhance contrast. No chromatophores are above the ring; this is unusual for cephalopods, which typically use chromatophores to cover or spectrally modify iridescence. The fast flashes are achieved using muscles under direct neural control. The ring is hidden by contraction of muscles above the iridophores; relaxation of these muscles and contraction of muscles outside the ring expose the iridescence. This mechanism of producing iridescent signals has not previously been reported in cephalopods and we suggest that it is an exceptionally effective way to create a fast and conspicuous warning display.

  10. Integrating Horizontal Gene Transfer and Common Descent to Depict Evolution and Contrast It with “Common Design”1

    Science.gov (United States)

    GUILLERMO PAZ-Y-MIÑO-C; ESPINOSA, AVELINA

    2016-01-01

    Horizontal gene transfer (HGT) and common descent interact in space and time. Because events of HGT co-occur with phylogenetic evolution, it is difficult to depict evolutionary patterns graphically. Tree-like representations of life’s diversification are useful, but they ignore the significance of HGT in evolutionary history, particularly of unicellular organisms, ancestors of multicellular life. Here we integrate the reticulated-tree model, ring of life, symbiogenesis whole-organism model, and eliminative pattern pluralism to represent evolution. Using Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2), a bifunctional enzyme in the glycolytic pathway of amoeba, we illustrate how EhADH2 could be the product of both horizontally acquired features from ancestral prokaryotes (i.e. aldehyde dehydrogenase [ALDH] and alcohol dehydrogenase [ADH]), and subsequent functional integration of these enzymes into EhADH2, which is now inherited by amoeba via common descent. Natural selection has driven the evolution of EhADH2 active sites, which require specific amino acids (cysteine 252 in the ALDH domain; histidine 754 in the ADH domain), iron- and NAD+ as cofactors, and the substrates acetyl-CoA for ALDH and acetaldehyde for ADH. Alternative views invoking “common design” (i.e. the non-naturalistic emergence of major taxa independent from ancestry) to explain the interaction between horizontal and vertical evolution are unfounded. PMID:20021546

  11. α-Skew π-McCoy Rings

    Directory of Open Access Journals (Sweden)

    Areej M. Abduldaim

    2013-01-01

    Full Text Available As a generalization of α-skew McCoy rings, we introduce the concept of α-skew π-McCoy rings, and we study the relationships with another two new generalizations, α-skew π1-McCoy rings and α-skew π2-McCoy rings, observing the relations with α-skew McCoy rings, π-McCoy rings, α-skew Armendariz rings, π-regular rings, and other kinds of rings. Also, we investigate conditions such that α-skew π1-McCoy rings imply α-skew π-McCoy rings and α-skew π2-McCoy rings. We show that in the case where R is a nonreduced ring, if R is 2-primal, then R is an α-skew π-McCoy ring. And, let R be a weak (α,δ-compatible ring; if R is an α-skew π1-McCoy ring, then R is α-skew π2-McCoy.

  12. Phenylene ring dynamics in phenoxy and the effect of intramolecular linkages on the dynamics of some engineering thermoplastics below the glass transition temperature

    International Nuclear Information System (INIS)

    Arrese-Igor, Silvia; Arbe, Arantxa; Alegria, Angel; Colmenero, Juan; Frick, Bernhard

    2007-01-01

    We have investigated the dynamics of phenylene rings in the engineering thermoplastic bisphenol-A poly(hydroxyether)--phenoxy--below its glass transition temperature by means of neutron scattering techniques. A relatively wide dynamic range has been covered thanks to the combination of two different types of neutron spectrometers, time of flight and backscattering. Partially deuterated samples have been used in order to isolate the phenylene ring dynamics. The resulting neutron scattering signal of phenoxy has been described by a model that considers π flips and oscillation motions for phenylene rings. The associated time scales are broadly distributed with mean activation energies equal to 0.41 and 0.21 eV, respectively. Finally, a comparative study with the literature shows that the dielectric and mechanical γ relaxation in phenoxy exhibit good correlation with the characteristic times of the aliphatic chain published elsewhere and with the characteristic times observed for the motion of phenylene rings by neutron scattering. These findings are discussed in a more general framework that considers, in addition, previous results on other polymers, which also contain the bisphenol-A unit

  13. Time-dependent wave packet simulations of transport through Aharanov-Bohm rings with an embedded quantum dot.

    Science.gov (United States)

    Kreisbeck, C; Kramer, T; Molina, R A

    2017-04-20

    We have performed time-dependent wave packet simulations of realistic Aharonov-Bohm (AB) devices with a quantum dot embedded in one of the arms of the interferometer. The AB ring can function as a measurement device for the intrinsic transmission phase through the quantum dot, however, care has to be taken in analyzing the influence of scattering processes in the junctions of the interferometer arms. We consider a harmonic quantum dot and show how the Darwin-Fock spectrum emerges as a unique pattern in the interference fringes of the AB oscillations.

  14. Synchrony-induced modes of oscillation of a neural field model

    Science.gov (United States)

    Esnaola-Acebes, Jose M.; Roxin, Alex; Avitabile, Daniele; Montbrió, Ernest

    2017-11-01

    We investigate the modes of oscillation of heterogeneous ring networks of quadratic integrate-and-fire (QIF) neurons with nonlocal, space-dependent coupling. Perturbations of the equilibrium state with a particular wave number produce transient standing waves with a specific temporal frequency, analogously to those in a tense string. In the neuronal network, the equilibrium corresponds to a spatially homogeneous, asynchronous state. Perturbations of this state excite the network's oscillatory modes, which reflect the interplay of episodes of synchronous spiking with the excitatory-inhibitory spatial interactions. In the thermodynamic limit, an exact low-dimensional neural field model describing the macroscopic dynamics of the network is derived. This allows us to obtain formulas for the Turing eigenvalues of the spatially homogeneous state and hence to obtain its stability boundary. We find that the frequency of each Turing mode depends on the corresponding Fourier coefficient of the synaptic pattern of connectivity. The decay rate instead is identical for all oscillation modes as a consequence of the heterogeneity-induced desynchronization of the neurons. Finally, we numerically compute the spectrum of spatially inhomogeneous solutions branching from the Turing bifurcation, showing that similar oscillatory modes operate in neural bump states and are maintained away from onset.

  15. VUV optical ring resonator for Duke storage ring free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H.; Litvinenko, V.N.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)] [and others

    1995-12-31

    The conceptual design of the multifaceted-mirror ring resonator for Duke storage ring VUV FEL is presented. The expected performance of the OK-4 FEL with ring resonator is described. We discuss in this paper our plans to study reflectivity of VUV mirrors and their resistivity to soft X-ray spontaneous radiation from OK-4 undulator.

  16. Chromospheric oscillations

    NARCIS (Netherlands)

    Lites, B.W.; Rutten, R.J.; Thomas, J.H.

    1995-01-01

    We show results from SO/Sacramento Peak data to discuss three issues: (i)--the spatial occurrence of chromospheric 3--min oscillations; (ii)--the validity of Ca II H&K line-center Doppler Shift measurements; (iii)--the signi ?cance of oscillation power and phase at frequencies above 10 mHz.

  17. Nonstationary oscillation of gyrotron backward wave oscillators with cylindrical interaction structure

    International Nuclear Information System (INIS)

    Chen, Shih-Hung; Chen, Liu

    2013-01-01

    The nonstationary oscillation of the gyrotron backward wave oscillator (gyro-BWO) with cylindrical interaction structure was studied utilizing both steady-state analyses and time-dependent simulations. Comparisons of the numerical results reveal that the gyro-BWO becomes nonstationary when the trailing field structure completely forms due to the dephasing energetic electrons. The backward propagation of radiated waves with a lower resonant frequency from the trailing field structure interferes with the main internal feedback loop, thereby inducing the nonstationary oscillation of the gyro-BWO. The nonstationary gyro-BWO exhibits the same spectral pattern of modulated oscillations with a constant frequency separation between the central frequency and sidebands throughout the whole system. The frequency separation is found to be scaled with the square root of the maximum field amplitude, thus further demonstrating that the nonstationary oscillation of the gyro-BWO is associated with the beam-wave resonance detuning

  18. Calculation of electrodynamical characteristics and choice of accelerating structure for storage ring

    International Nuclear Information System (INIS)

    Karnaukhov, I.M.; Popkov, Yu.P.; Telegin, Yu.N.; Trushkin, N.A.; Dajkovskij, A.G.; Zakamskaya, L.T.; Ryabov, A.D.

    1989-01-01

    Comparative analysis of several types of accelerating structures at standing E 010 wave is conducted on the basis of numerical calculations performed with the use of the PRUD-0 and PRUD programs. Dispersion dependences of electromagnetic field distribution, quality and coupling impedance are calculated both for axially symmetric and axially asymmetric modes of oscillations in structures with 699.3 MHz operating frequency. It is shown that structure with a cell the form of which is optimized with respect to shunt resistance on the main mode possesses the numerical spurious impedance in higher modes. This is the main factor when choosing accelerating structure for storage ring with multi-bunch operation conditions. 12 refs.; 3 figs.; 3 tabs

  19. Exact-exchange spin-density functional theory of Wigner localization and phase transitions in quantum rings.

    Science.gov (United States)

    Arnold, Thorsten; Siegmund, Marc; Pankratov, Oleg

    2011-08-24

    We apply exact-exchange spin-density functional theory in the Krieger-Li-Iafrate approximation to interacting electrons in quantum rings of different widths. The rings are threaded by a magnetic flux that induces a persistent current. A weak space and spin symmetry breaking potential is introduced to allow for localized solutions. As the electron-electron interaction strength described by the dimensionless parameter r(S) is increased, we observe-at a fixed spin magnetic moment-the subsequent transition of both spin sub-systems from the Fermi liquid to the Wigner crystal state. A dramatic signature of Wigner crystallization is that the persistent current drops sharply with increasing r(S). We observe simultaneously the emergence of pronounced oscillations in the spin-resolved densities and in the electron localization functions indicating a spatial electron localization showing ferrimagnetic order after both spin sub-systems have undergone the Wigner crystallization. The critical r(S)(c) at the transition point is substantially smaller than in a fully spin-polarized system and decreases further with decreasing ring width. Relaxing the constraint of a fixed spin magnetic moment, we find that on increasing r(S) the stable phase changes from an unpolarized Fermi liquid to an antiferromagnetic Wigner crystal and finally to a fully polarized Fermi liquid. © 2011 IOP Publishing Ltd

  20. Interaction Region Design for a Ring-Ring LHeC

    CERN Document Server

    Thompson, L N S; Bernard, N R; Fitterer, M; Holzer, B; Klein, M; Kostka, P

    2011-01-01

    tively low energy and moderately high intensity provides high luminosity TeV-scale e-p collisions at one of the LHC interaction points, running simultaneously with existing experiments. Two designs are studied; an electron ring situated in the LHC tunnel, and an electron linac. The focus of this paper is on the ring design. Designing an e-p machine presents interesting accelerator physics and design challenges, particularly when considering the interaction region. These include coupled optics, beam separation and unconventional mini-beta focusing schemes. Designs are constrained by an array of interdependent factors, including beam-beam interaction, detector dimensions and acceptance, luminosity and synchrotron radiation. Methods of addressing these complex issues are discussed. The current designs for the LHeC Ring-Ring interaction region and long straight section are presented and discussed, in the context of the project goals and design challenges encountered. Future developments and work are also discusse...

  1. Oscillation Baselining and Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-27

    PNNL developed a new tool for oscillation analysis and baselining. This tool has been developed under a new DOE Grid Modernization Laboratory Consortium (GMLC) Project (GM0072 - “Suite of open-source applications and models for advanced synchrophasor analysis”) and it is based on the open platform for PMU analysis. The Oscillation Baselining and Analysis Tool (OBAT) performs the oscillation analysis and identifies modes of oscillations (frequency, damping, energy, and shape). The tool also does oscillation event baselining (fining correlation between oscillations characteristics and system operating conditions).

  2. Confinement of nonneutral spheroidal plasmas in multi-ring electrode traps

    International Nuclear Information System (INIS)

    Mohri, Akihiro; Yuyama, Tetsumori; Michishita, Toshinori; Higaki, Hiroyuki; Tanaka, Hitoshi; Yamazawa, Yohei; Aoyagi, Masayuki

    1998-01-01

    A nonneutral spheroidal plasma can be settled in a rigid rotor equilibrium inside a closed conducting cell independently of induced image charges on the cell wall if the electrostatic potential distribution on the wall surface is set equal to the sum of the external hyperbolic potential (r 2 -2z 2 ) and the self-potential produced by the plasma. A confinement system equipped with a train of properly biased ring electrodes can approximately generate any axisymmetric potential, including the above field. Experiments on confinement of electron spheroids in such a system showed that the confinement time became the longest when the condition to diminish the image charge effects was satisfied. The observed frequency of the centre-of-mass harmonic oscillation of the plasma in this configuration was in good agreement with the estimated one. (author)

  3. A fast VUV light pulser for testing ring-imaging Cerenkov counters

    International Nuclear Information System (INIS)

    Margulies, S.; Ozelis, J.

    1986-01-01

    A simple, fast, VUV light pulser for testing a TMAE-based, time-projection-chamber-type photon detector for a ring-imaging Cerenkov counter is described. The pulser consists of an automobile spark plug fired in a controlled atmosphere by a relaxation oscillator. The resulting VUV spectrum, spark-current pulse, and light pulse were investigated for hydrogen, xenon, krypton, and nitrogen fills. The best pulse (3.5 ns FWHM) was obtained with hydrogen at 60 kPa absolute pressure. Xenon was, generally, unsuitable because it continued to emit light for more than a microsecond after excitation. With krypton and nitrogen, no light was emitted in the wavelength region of interest except for a series of sharp lines attributable to the electrodes

  4. HORIZONTAL WELL DRILL-IN FLUIDS

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1998-12-01

    Full Text Available Main objective of horizontal driling is to place a drain-hole for a long distance within the pay zone to enhance productivity or injectivity. In drilling horizontal wells, more serious problems appear than in drilling vertical wells. These problems are: poor hole cleaning, excessive torque and drag, hole filling, pipe stucking, wellbore instability, loss of circulation, formation damage, poor cement job, and difficulties at logging jobs. From that reason, successful drilling and production of horizontal well depends largely on the fluid used during drilling and completion phases. Several new fluids, that fulfill some or all of required properties (hole cleaning, cutting suspension, good lubrication, and relative low formation damage, are presented in this paper.

  5. Uniquely Strongly Clean Group Rings

    Institute of Scientific and Technical Information of China (English)

    WANG XIU-LAN

    2012-01-01

    A ring R is called clean if every element is the sum of an idempotent and a unit,and R is called uniquely strongly clean (USC for short) if every element is uniquely the sum of an idempotent and a unit that commute.In this article,some conditions on a ring R and a group G such that RG is clean are given.It is also shown that if G is a locally finite group,then the group ring RG is USC if and only if R is USC,and G is a 2-group.The left uniquely exchange group ring,as a middle ring of the uniquely clean ring and the USC ring,does not possess this property,and so does the uniquely exchange group ring.

  6. Productivity and injectivity of horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Khalid

    2000-03-06

    One of the key issues addressed was pressure drop in long horizontal wells and its influence on well performance. Very little information is available in the literature on flow in pipes with influx through pipe walls. Virtually all of this work has been in small diameter pipes and with single-phase flow. In order to address this problem new experimental data on flow in horizontal and near horizontal wells have been obtained. Experiments were conducted at an industrial facility on typical 6 1/8 ID, 100 feet long horizontal well model. The new data along with available information in the literature have been used to develop new correlations and mechanistic models. Thus it is now possible to predict, within reasonable accuracy, the effect of influx through the well on pressure drop in the well.

  7. Influence of ring growth rate on damage development in hot ring rolling

    NARCIS (Netherlands)

    Wang, C.; Geijselaers, H. J.M.; Omerspahic, E.; Recina, V.; van den Boogaard, A. H.

    2015-01-01

    As an incremental forming process of bulk metal, ring rolling provides a cost effective process route to manufacture seamless rings. In the production of hot rolled rings, defects such as porosity can sometimes be found in high alloyed steel, manufactured from ingots having macro-segregation. For

  8. Neutrino oscillations in matter

    International Nuclear Information System (INIS)

    Mikheyev, S.P.; Smirnov, A.Yu.

    1986-01-01

    In this paper we describe united formalism of ν-oscillations for different regimes, which is immediate generalization of vacuum oscillations theory. Adequate graphical representation of this formalism is given. We summarize main properties of ν-oscillations for different density distributions. (orig./BBOE)

  9. Nonadiabatic generation of spin currents in a quantum ring with Rashba and Dresselhaus spin-orbit interactions

    International Nuclear Information System (INIS)

    Niţa, Marian; Ostahie, Bogdan; Marinescu, D C; Manolescu, Andrei; Gudmundsson, Vidar

    2012-01-01

    When subjected to a linearly polarized terahertz pulse, a mesoscopic ring endowed with spin-orbit interaction (SOI) of the Rashba-Dresselhaus type exhibits non-uniform azimuthal charge and spin distributions. Both types of SOI couplings are considered linear in the electron momentum. Our results are obtained within a formalism based on the equation of motion satisfied by the density operator which is solved numerically for different values of the angle φ, the angle determining the polarization direction of the laser pulse. Solutions thus obtained are later employed in determining the time-dependent charge and spin currents, whose values are calculated in the stationary limit. Both these currents exhibit an oscillatory behavior complicated in the case of the spin current by a beating pattern. We explain this occurrence on account of the two spin-orbit interactions which force the electron spin to oscillate between the two spin quantization axes corresponding to Rashba and Dresselhaus interactions. The oscillation frequencies are explained using the single particle spectrum.

  10. Ring rotational speed trend analysis by FEM approach in a Ring Rolling process

    Science.gov (United States)

    Allegri, G.; Giorleo, L.; Ceretti, E.

    2018-05-01

    Ring Rolling is an advanced local incremental forming technology to fabricate directly precise seamless ring-shape parts with various dimensions and materials. In this process two different deformations occur in order to reduce the width and the height of a preform hollow ring; as results a diameter expansion is obtained. In order to guarantee a uniform deformation, the preform is forced toward the Driver Roll whose aim is to transmit the rotation to the ring. The ring rotational speed selection is fundamental because the higher is the speed the higher will be the axial symmetry of the deformation process. However, it is important to underline that the rotational speed will affect not only the final ring geometry but also the loads and energy needed to produce it. Despite this importance in industrial environment, usually, a constant value for the Driver Roll angular velocity is set so to result in a decreasing trend law for the ring rotational speed. The main risk due to this approach is not fulfilling the axial symmetric constrain (due to the diameter expansion) and to generate a high localized ring section deformation. In order to improve the knowledge about this topic in the present paper three different ring rotational speed trends (constant, linearly increasing and linearly decreasing) were investigated by FEM approach. Results were compared in terms of geometrical and dimensional analysis, loads and energies required.

  11. Mechanical improvement of metal reinforcement rings for a finite ring-shaped superconducting bulk

    Science.gov (United States)

    Huang, Chen-Guang; Zhou, You-He

    2018-03-01

    As a key technique, reinforcement of type-II superconducting bulks with metal rings can efficiently improve their mechanical properties to enhance the maximum trapped field. In this paper, we study the magnetostrictive and fracture behaviors of a finite superconducting ring bulk reinforced by three typical reinforcing structures composed of metal rings during the magnetizing process by means of the minimization of magnetic energy and the finite element method. After a field-dependent critical current density is adopted, the magnetostriction, pinning-induced stress, and crack tip stress intensity factor are calculated considering the demagnetization effects. The results show that the mechanical properties of the ring bulk are strongly dependent on the reinforcing structure and the material and geometrical parameters of the metal rings. Introducing the metal ring can significantly reduce the hoop stress, and the reduction effect by internal reinforcement is much improved relative to external reinforcement. By comparison, bilateral reinforcement seems to be the best candidate structure. Only when the metal rings have particular Young's modulus and radial thickness will they contribute to improve the mechanical properties the most. In addition, if an edge crack is pre-existing in the ring bulk, the presence of metal rings can effectively avoid crack propagation since it reduces the crack tip stress intensity factor by nearly one order of magnitude.

  12. Ring correlations in random networks.

    Science.gov (United States)

    Sadjadi, Mahdi; Thorpe, M F

    2016-12-01

    We examine the correlations between rings in random network glasses in two dimensions as a function of their separation. Initially, we use the topological separation (measured by the number of intervening rings), but this leads to pseudo-long-range correlations due to a lack of topological charge neutrality in the shells surrounding a central ring. This effect is associated with the noncircular nature of the shells. It is, therefore, necessary to use the geometrical distance between ring centers. Hence we find a generalization of the Aboav-Weaire law out to larger distances, with the correlations between rings decaying away when two rings are more than about three rings apart.

  13. Alpha - Skew Pi - Armendariz Rings

    Directory of Open Access Journals (Sweden)

    Areej M Abduldaim

    2018-03-01

    Full Text Available In this article we introduce a new concept called Alpha-skew Pi-Armendariz rings (Alpha - S Pi - ARas a generalization of the notion of Alpha-skew Armendariz rings.Another important goal behind studying this class of rings is to employ it in order to design a modern algorithm of an identification scheme according to the evolution of using modern algebra in the applications of the field of cryptography.We investigate general properties of this concept and give examples for illustration. Furthermore, this paperstudy the relationship between this concept and some previous notions related to Alpha-skew Armendariz rings. It clearly presents that every weak Alpha-skew Armendariz ring is Alpha-skew Pi-Armendariz (Alpha-S Pi-AR. Also, thisarticle showsthat the concepts of Alpha-skew Armendariz rings and Alpha-skew Pi- Armendariz rings are equivalent in case R is 2-primal and semiprime ring.Moreover, this paper proves for a semicommutative Alpha-compatible ringR that if R[x;Alpha] is nil-Armendariz, thenR is an Alpha-S Pi-AR. In addition, if R is an Alpha - S Pi -AR, 2-primal and semiprime ring, then N(R[x;Alpha]=N(R[x;Alpha]. Finally, we look forwardthat Alpha-skew Pi-Armendariz rings (Alpha-S Pi-ARbe more effect (due to their properties in the field of cryptography than Pi-Armendariz rings, weak Armendariz rings and others.For these properties and characterizations of the introduced concept Alpha-S Pi-AR, we aspire to design a novel algorithm of an identification scheme.

  14. The colpitts oscillator family

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, A.

    A tutorial study of the Colpitts oscillator family defined as all oscillators based on a nonlinear amplifier and a three- terminal linear resonance circuit with one coil and two capacitors. The original patents are investigated. The eigenvalues of the linearized Jacobian for oscillators based...

  15. High intensity neutrino oscillation facilities in Europe

    Directory of Open Access Journals (Sweden)

    T. R. Edgecock

    2013-02-01

    Full Text Available The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ^{+} and μ^{-} beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular ^{6}He and ^{18}Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.

  16. Rules for Phase Shifts of Quantum Oscillations in Topological Nodal-Line Semimetals

    Science.gov (United States)

    Li, Cequn; Wang, C. M.; Wan, Bo; Wan, Xiangang; Lu, Hai-Zhou; Xie, X. C.

    2018-04-01

    Nodal-line semimetals are topological semimetals in which band touchings form nodal lines or rings. Around a loop that encloses a nodal line, an electron can accumulate a nontrivial π Berry phase, so the phase shift in the Shubnikov-de Haas (SdH) oscillation may give a transport signature for the nodal-line semimetals. However, different experiments have reported contradictory phase shifts, in particular, in the WHM nodal-line semimetals (W =Zr /Hf , H =Si /Ge , M =S /Se /Te ). For a generic model of nodal-line semimetals, we present a systematic calculation for the SdH oscillation of resistivity under a magnetic field normal to the nodal-line plane. From the analytical result of the resistivity, we extract general rules to determine the phase shifts for arbitrary cases and apply them to ZrSiS and Cu3 PdN systems. Depending on the magnetic field directions, carrier types, and cross sections of the Fermi surface, the phase shift shows rich results, quite different from those for normal electrons and Weyl fermions. Our results may help explore transport signatures of topological nodal-line semimetals and can be generalized to other topological phases of matter.

  17. Spin power and efficiency in an Aharnov-Bohm ring with an embedded magnetic impurity quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi; Guo, Yong, E-mail: guoy66@tsinghua.edu.cn [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Zheng, Jun [College of New Energy, Bohai University, Jinzhou 121013 (China); Chi, Feng [School of Physical Science and Technology, Inner Mongolia University, Huhehaote 010023 (China)

    2015-05-11

    Spin thermoelectric effects in an Aharnov-Bohm ring with a magnetic impurity quantum dot (QD) are theoretically investigated by using the nonequilibrium Green's function method. It is found that due to the exchange coupling between the impurity and the electrons in QD, spin output power, and efficiency can be significant and be further modulated by the gate voltage. The spin thermoelectric effect can be modulated effectively by adjusting the Rashba spin-orbit interaction (RSOI) and the magnetic flux. The spin power and efficiency show zigzag oscillations, and thus spin thermoelectric effect can be switched by adjusting the magnetic flux phase factor and RSOI ones. In addition, the spin efficiency can be significantly enhanced by the coexistence of the RSOI and the magnetic flux, and the maximal value of normalized spin efficiency η{sub max}/η{sub C} = 0.35 is obtained. Our results show that such a QD ring device may be used as a manipulative spin thermoelectric generator.

  18. Performance of horizontal versus vertical vapor extraction wells

    International Nuclear Information System (INIS)

    Birdsell, K.H.; Roseberg, N.D.; Edlund, K.M.

    1994-06-01

    Vapor extraction wells used for site remediation of volatile organic chemicals in the vadose zone are typically vertical wells. Over the past few years, there has been an increased interest in horizontal wells for environmental remediation. Despite the interest and potential benefits of horizontal wells, there has been little study of the relative performance of horizontal and vertical vapor extraction wells. This study uses numerical simulations to investigate the relative performance of horizontal versus vertical vapor extraction wells under a variety of conditions. The most significant conclusion that can be drawn from this study is that in a homogeneous medium, a single, horizontal vapor extraction well outperforms a single, vertical vapor extraction well (with surface capping) only for long, linear plumes. Guidelines are presented regarding the use of horizontal wells

  19. Photochemistry in Saturn's Ring-Shadowed Atmosphere: Modulation of Hydrocarbons and Observations of Dust Content

    Science.gov (United States)

    Edgington, S. G.; Atreya, S. K.; Wilson, E. H.; Baines, K. H.; West, R. A.; Bjoraker, G. L.; Fletcher, L. N.; Momary, T.

    2016-12-01

    Cassini has been orbiting Saturn for over twelve years now. During this epoch, the ring shadow has moved from covering much of the northern hemisphere with solar inclination of 24 degrees to covering a large swath south of the equator and it continues to move southward. At Saturn Orbit Insertion in 2004, the projection of the A-ring onto Saturn reached as far as 40N along the central meridian (52N at the terminator). At its maximum extent, the ring shadow can reach as far as 48N/S (58N/S at the terminator). The net effect is that the intensity of both ultraviolet and visible sunlight penetrating through the rings to any particular latitude will vary depending on both Saturn's axis relative to the Sun and the optical thickness of each ring system. In essence, the rings act like semi-transparent venetian blinds.Previous work examined the variation of the solar flux as a function of solar inclination, i.e. for each 7.25-year season at Saturn. Here, we report on the impact of the oscillating ring shadow on the photolysis and production rates of hydrocarbons (acetylene, ethane, propane, and benzene) and phosphine in Saturn's stratosphere and upper troposphere. The impact of these production and loss rates on the abundance of long-lived photochemical products leading to haze formation are explored. We assess their impact on phosphine abundance, a disequilibrium species whose presence in the upper troposphere can be used as a tracer of convective processes in the deeper atmosphere.We will also present our ongoing analysis of Cassini's CIRS, UVIS, and VIMS datasets that provide an estimate of the evolving haze content of the northern hemisphere and we will begin to assess the implications for dynamical mixing. In particular, we will examine how the now famous hexagonal jet stream acts like a barrier to transport, isolating Saturn's north polar region from outside transport of photochemically-generated molecules and haze.The research described in this paper was carried out

  20. Plasma-ring, fast-opening switch

    International Nuclear Information System (INIS)

    Hartman, C.W.; Eddleman, J.; Hammer, J.H.

    1986-01-01

    The authors discuss a fast-opening switch concept based on magnetically confined plasma rings, PROS (for Plasma Ring Opening Switch). In PROS, the plasma ring, confined by Bθ /sub and B/poloidal /sub fields of a compact torus, provide a low mass, localized conduction path between coaxial electrodes. To operate the switch, driver current is passed across the electrodes through the ring, storing inductive energy in external inductance and between the electrodes on the driver side of the ring. The ring is accelerated away from the driver by the field of the driver current and passes over a load gap transferring the current to the load. The authors distinguish two configurations in PROS, straight PROS where the electrodes are coaxial cylinders, and cone PROS with conical electrodes. In straight PROS ring acceleration takes place during the inductive store period as in foil switches, but with the localized ring providing the current path. Increased performance is predicted for the cone PROS (see figure) which employs compression of the ring in the cone during the inductive store period. Here, the B/θ /sub field of the driver forces the ring towards the apex of the cone but the force is in near balance with the opposing component of the radial equilibrium force of the ring along the cone. As a result, the ring undergoes a slow, quasistatic compression limited only by resistive decay of the ring field. Slow compression allows inductive storage with low-power drivers (homopoloar, magneto cumulative generators, high C-low V capacitor banks, etc.). Near the apex of the cone, near peak compression, the ring is allowed to enter a straight coaxial section where, because of low-mass, it rapidly accelerates to high velocity and crosses the load gap