WorldWideScience

Sample records for ring lattice design

  1. A Low-Energy Ring Lattice Design

    International Nuclear Information System (INIS)

    Cai, Yunhai

    2002-01-01

    The PEP-N project at SLAC [1] consists of a Very Low-Energy small electron Ring (VLER) that will collide with the low-energy 3.1 GeV positron beam (LER) of PEP-II, producing center-of-mass energies between the 1.1 GeV and the J/ψ. The beams will collide head-on and will be separated in the detector magnetic field which is part of the Interaction Region [2]. The IP β functions were chosen such as to optimize both luminosity and beam-beam tune shifts, while keeping the LER tune shifts small. This paper describes the lattice design of the VLER for the ''baseline'' at 500 MeV

  2. Lattice design for the CEPC double ring scheme

    Science.gov (United States)

    Wang, Yiwei; Su, Feng; Bai, Sha; Zhang, Yuan; Bian, Tianjian; Wang, Dou; Yu, Chenghui; Gao, Jie

    2018-01-01

    A future Circular Electron Positron Collider (CEPC) has been proposed by China with the main goal of studying the Higgs boson. Its baseline design, chosen on the basis of its performance, is a double ring scheme; an alternative design is a partial double ring scheme which reduces the budget while maintaining an adequate performance. This paper will present the collider ring lattice design for the double ring scheme. The CEPC will also work as a W and a Z factory. For the W and Z modes, except in the RF region, compatible lattices were obtained by scaling down the magnet strength with energy.

  3. Design of a lattice for JAERI storage ring (JSR)

    International Nuclear Information System (INIS)

    Harada, Shunji; Yokomizo, Hideaki; Yanagida, Kenichi

    1990-08-01

    The new 8GeV synchrotron radiation facility (SPring-8) is planned to be constructed in Japan, and our institute (JAERI) are involved in this project with RIKEN. A compact electron storage ring JSR has been constructed in JAERI in order to study various kind of accelerator technologies, to test some devices such as the insertion devices and the beam monitors, and to train young researchers. The ring size is limited by the available space of a linac building, so that the circumference of JSR becomes 20.546 m. However, even in this small ring, one straight section with the length of ∼1.5 m, where the dispersion is free, is provided for the insertion device study. JSR takes Chasman-Green lattice with a superperiodicity of three. JSR is possible not only to suppress the dispersion but also to leave it on the long straight section. An electron beam from a linac is accepted into JSR in any operating modes. (author)

  4. Design of the WNR proton storage ring lattice

    International Nuclear Information System (INIS)

    Cooper, R.K.; Lawrence, G.P.

    1977-01-01

    The Weapons Neutron Research Facility, now approaching operational status, is a pulsed neutron time-of-flight facility utilizing bursts of 800 MeV protons from the LAMPF linac. The protons strike a heavy metal target and produce a broad energy spectrum of neutrons via spallation reactions. Ideally the width of the proton pulse should approach a delta function in order to achieve good neutron energy resolution. Practically, the shortest pulse that can be employed in the facility is that produced by a single LAMPF micropulse, which, at design current, contains approximately 5 x 10 8 protons. With the addition of a storage ring capable of accumulating many micropulses, this intensity can be increased, as can the repetition rate. Moreover, by storing an unbunched beam, a low repetition rate, very intense proton burst can be generated. This latter mode of usage allows neutron time-of-flight studies using large neutron targets, for which pulse lengths of the order of several hundred nanoseconds are suitable. The primary goals of the ring are reported: (i) to increase the intensity of the burst to 10 11 protons while retaining a short pulse length; (ii) to increase the repetition rate of the bursts by at least a factor of six; and (iii) to store as many particles as possible, uniformly distributed around the ring

  5. Lattices for antiproton rings

    International Nuclear Information System (INIS)

    Autin, B.

    1984-01-01

    After a description of the constraints imposed by the cooling of Antiprotons on the lattice of the rings, the reasons which motivate the shape and the structure of these machines are surveyed. Linear and non-linear beam optics properties are treated with a special amplification to the Antiproton Accumulator. (orig.)

  6. Lattice design for an ILC damping ring with 3 km circumference

    International Nuclear Information System (INIS)

    Wolski, Andrzej

    2004-01-01

    We describe a simple lattice that meets the specifications for the damping times and horizontal and longitudinal emittances for the International Linear Collider (ILC) damping rings. The circumference of a little over 3 km leads to a bunch spacing of around 3 ns, which will require advances in kicker technology for injection and extraction. We present the lattice design, and initial results of studies of the acceptance and collective effects. With the high bunch charge and close spacing, the ion and electron cloud effects are expected to be severe; however, the simple structure of the lattice allows for easy variation of the circumference and bunch spacing, which may make it useful for future investigations

  7. Design study on a high brilliance lattice of the PF storage ring

    International Nuclear Information System (INIS)

    Katoh, M.; Araki, A.; Kobayashi, Y.; Hori, Y.

    1994-01-01

    A high brilliance lattice of the PF storage ring is proposed. A small beam emittance of 27 nm-rad (about one fifth of the present value) can be achieved by doubling the number of the quadrupoles in the FODO cells. This emittance reduction will result in ten times brighter synchrotron light from the existing insertion devices. The problems incidental to the low emittance lattice, the small dynamic aperture and the short Touschek lifetime, will be discussed. (author)

  8. Tinkering at the main-ring lattice

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, S.

    1982-08-23

    To improve production of usable antiprotons using the proton beam from the main ring and the lossless injection of cooled antiprotons into the main ring, modifications of the main ring lattice are recommended.

  9. Lattice design of HISTRAP: Heavy ion storage ring for atomic physics

    International Nuclear Information System (INIS)

    Lee, I.Y.; Martin, J.A.; McGrory, J.B.; Milner, W.T.; Olsen, D.K.; Young, G.R.

    1987-01-01

    HISTRAP, a Heavy-Ion Storage Ring for Atomic Physics, is a proposed 46.8-m-circumference synchrotron-cooling-storage ring optimized to accelerate, cool, decelerate, and store beams of highly charged very-heavy ions at energies appropriate for advanced atomic physics research. This four-fold symmetrical ring has a maximum bending power of 2 Tm. It has achromatic bends and uses quadrupole triplets for focusing

  10. Apiary B Factory lattice design

    International Nuclear Information System (INIS)

    Donald, M.H.R.; Garren, A.A.

    1991-04-01

    The Apiary B Factory is a proposed high-intensity electron-positron collider. This paper will present the lattice design for this facility, which envisions two rings with unequal energies in the PEP tunnel. The design has many interesting optical and geometrical features due to the needs to conform to the existing tunnel, and to achieve the necessary emittances, damping times and vacuum. Existing hardware is used to a maximum extent. 8 figs. 1 tab

  11. Interaction of crystalline beams with a storage ring lattice

    International Nuclear Information System (INIS)

    Hofmann, I.; Struckmeier, J.

    1989-01-01

    We present the results of numerical calculations for beams in realistic storage ring lattices under conditions, where crystalline order could be expected, at least in principle. In particular we discuss the effect of space charge, envelope instabilities, bending magnets and of cooling strength. Our conclusions on the lattice design require high symmetry and a small betatron tune. For three-dimensional ordering we find in addition that typically an e-folding of cooling is necessary after each bending section. The formation of order in a one- dimensional chain puts no restriction on the lattice, and a fraction of an e-folding of cooling once per revolution has been found sufficient. (orig.)

  12. Design of a compact polarizing beam splitter based on a photonic crystal ring resonator with a triangular lattice.

    Science.gov (United States)

    Yu, Tianbao; Huang, Jiehui; Liu, Nianhua; Yang, Jianyi; Liao, Qinghua; Jiang, Xiaoqing

    2010-04-10

    We propose and simulate a new kind of compact polarizing beam splitter (PBS) based on a photonic crystal ring resonator (PCRR) with complete photonic bandgaps. The two polarized states are separated far enough by resonant and nonresonant coupling between the waveguide modes and the microring modes. Some defect holes are utilized to control the beam propagation. The simulated results obtained by the finite-difference time-domain method show that high transmission (over 95%) is obtained and the polarization separation is realized with a length as short as 3.1 microm. The design of the proposed PBS can be flexible, thanks to the advantages of PCRRs.

  13. Damping ring designs and issues

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Decking, Winfried

    2003-01-01

    The luminosity performance of a future linear collider (LC) will depend critically on the performance of the damping rings. The design luminosities of the current LC proposals require rings with very short damping times, large acceptance, low equilibrium emittance and high beam intensity. We discuss the design strategies for lattices achieving the goals of dynamical stability, examine the challenges for alignment and coupling correction, and consider a variety of collective effects that threaten to limit beam quality. We put the design goals in context by referring to the experience of operating facilities, and outline the further research and development that is needed

  14. A design of a quasi-isochronous storage ring

    International Nuclear Information System (INIS)

    Lee, S.Y.; Trbojevic, D.

    1993-07-01

    Isochronous electron storage rings may offer advantages for future high luminosity meson factories. A Quasi-isochronous lattice based on the design principle of flexible γτ lattice is studied. The emittance and chromatic properties of such a lattice are studied. Applications of this design techniques for electron storage rings will be discussed

  15. Design of low energy ring(s)

    CERN Document Server

    Lachaize, Antoine

    During the last two years, several upgrades of the initial baseline scenario were studied with the aim of increasing the average intensity of ion beams in the accelerator chain of the Beta Beam complex. This is the reason why the Rapid Cycling Synchrotron (RCS) specifications were reconsidered many times [1], [2], [3].General considerations on the optical design were presented at the Beta Beam Task Meetings held at CERN and at Saclay in 2005 [4]. More detailed beam optics studies were performed during the next months. Lattices, RF system parameters, multi-turn injection scheme, fast extraction, closed orbit correction and chromaticity correction systems were proposed for different versions of the RCS [5], [6], [7].Finally, the RCS specifications have stabilized in November 2006 after the fourth Beta Beam Task Meeting when it was decided to fix the maximum magnetic rigidity of ion beams to 14.47 T.m (3.5 GeV equivalent proton energy) and to adopt a ring physical radius of 40 m in order to facilitate injectio...

  16. Low emittance lattices for electron storage rings revisited

    International Nuclear Information System (INIS)

    Trbojevic, D.; Courant, E.

    1994-01-01

    Conditions for the lowest possible emittance of the lattice for electron storage rings are obtained by a simplified analytical approach. Examples of electron storage lattices with minimum emittances are presented. A simple graphical presentation in the normalized dispersion space (Floquet's transformation) is used to illustrate the conditions and results

  17. A compact electron storage ring design

    International Nuclear Information System (INIS)

    Swenson, C.A.

    1992-01-01

    Electron storage rings are sources of synchrotron radiation in the soft and hard parts of the x-ray spectrum. X-ray lithography is an ideal candidate technology for the production of microelectronic devices with sizes between 0.3-0.5 microns. Industrial x-ray lithography requires the x-ray source, which is the electron storage ring, to be as compact and reliable as possible. In this thesis the author reviews and develops the basic physical principles governing the design of compact electron synchrotrons for x-ray lithography. He explores the various aspects of lattice design for this application. He argues that the optimal storage ring design consists of a four fold symmetric cell lattice with two quadrupole families and 90 degrees zero gradient dipole magnets. It is demonstrated that radiation requirements for lithography and the use of zero gradient magnetic dipole fields constrains the lattice to four or more dipole magnets. The author develops a lattice design for x-ray lithography following this logic. He then develops a dipole magnet design for a machine using this lattice. Particle tracking data is integrated into the magnet design and used to optimize the end coil configurations of the magnets. The author then reviews the magnet's physical construction and measurement. He develops a cryogenic Hall probe mapping apparatus for this magnet and measure its excitation curves

  18. Comparing the results of lattice and off-lattice simulations for the melt of nonconcatenated rings

    International Nuclear Information System (INIS)

    Halverson, Jonathan D; Kremer, Kurt; Grosberg, Alexander Y

    2013-01-01

    To study the conformational properties of unknotted and nonconcatenated ring polymers in the melt, we present a detailed qualitative and quantitative comparison of simulation data obtained by molecular dynamics simulation using an off-lattice bead-spring model and by Monte Carlo simulation using a lattice model. We observe excellent, and sometimes even unexpectedly good, agreement between the off-lattice and lattice results for many quantities measured including the gyration radii of the ring polymers, gyration radii of their subchains, contact probabilities, surface characteristics, number of contacts between subchains, and the static structure factors of the rings and their subchains. These results are, in part, put in contrast to Moore curves, and the open, linear polymer counterparts. While our analysis is extensive, our understanding of the ring melt conformations is still rather preliminary. (paper)

  19. Quantum Waveguide Properties of Bethe Lattices with a Ring

    International Nuclear Information System (INIS)

    Zhi-Ping, Lin; Zhi-Lin, Hou; You-Yan, Liu

    2008-01-01

    Based on waveguide theory we investigate electronic transport properties of Bethe lattices with a mesoscopic ring threaded by a magnetic flux. The generalized eigen-function method (GEM) is used to calculate the transmission and reflection coefficients up to the fifth generation of Bethe lattices. The relationships among the transmission coefficient T, magnetic flux φ and wave vector kl are investigated in detail. The numerical results are shown by the three-dimensional plots and contour maps. Some resonant-transmission features and the symmetry of the transmission coefficient T to flux φ are observed and discussed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. Lattice Upgrade Plan for Crab Crossing at the KEKB Rings

    CERN Document Server

    Morita, Akio; Hosoyama, K; Koiso, Haruyo; Kubo, T; Masuzawa, Mika; Ohmi, Kazuhito; Oide, Katsunobu; Sugahara, Ryuhei; Yoshida, Masato

    2005-01-01

    We plan to install two superconducting crab cavities into the rings at Janyary, 2006. In our plan, we will install one crab cavity per one ring into the NIKKO straight section where the cryogenic infrastructure is already operated for the superconducting accelerating cavities. In order to obtain the correct crabbing angle at the interaction point(IP), we have to enlarge the horizontal beta function(200m for HER) and have to adjust the horizontal phase advance between the IP and the cavity installation point. In this paper, we will report the lattice modified for the crab crossing and the study results about the single beam dynamics.

  1. Accumulator ring lattice for the national spallation neutron source

    International Nuclear Information System (INIS)

    Gardner, C.J.; Lee, Y.Y.; Luccio, A.U.

    1997-01-01

    The Accumulator Ring for the proposed National Spallation Neutron Source (NSNS) is to accept a 1.03 millisecond beam pulse from a 1 GeV Proton Linac at a repetition rate of 60 Hz. For each beam pulse, 10 14 protons are to be accumulated via charge-exchange injection. A 295 nanosecond gap in the beam, maintained by an rf system, will allow for extraction to an external target for the production of neutrons by spallation. This paper describes the four-fold symmetric lattice that has been chosen for the ring. The lattice contains four long dispersion-free straight sections to accomodate injection, extraction, rf cavities, and beam scraping respectively. The four-fold symmetry allows for easy adjustment of the tunes and flexibility in the placement of correction elements, and ensures that potentially dangerous betatron structure resonances are avoided

  2. Study of a ''relaxed'' ALS storage ring lattice

    International Nuclear Information System (INIS)

    Keller, R.; Forest, E.; Nishimura, H.; Zisman, M.S.

    1990-06-01

    The lattice of the Advanced Light Source (ALS) 1--1.9 GeV electron storage ring was reexamined, introducing an additional family of focusing quadrupoles and looking for a working point with larger dynamic aperture. In the first part of this study, the ideal lattice was investigated to confirm the anticipated behavior, and indeed conditions with increased dynamic aperture were found. In the second part, realistic magnet errors and an undulator in one of the straight sections were taken into account. Under these conditions the dynamic aperture could not be significantly improved over the nominal configuration. Further studies included investigation of the Touschek momentum acceptance of the lattice. In this case too, no net benefit was obtained from the additional quadrupoles. 6 refs., 5 figs. , 2 tabs

  3. Low energy ring lattice of the PEP-II asymmetric B-Factory

    International Nuclear Information System (INIS)

    Cai, Y.; Donald, M.; Helm, R.; Irwin, J.; Nosochkov, Y.; Ritson, D.M.; Yan, Y.

    1995-01-01

    Developing a lattice that contains a very low beta value at the interaction point (IP) and has adequate dynamic aperture is one of the major challenges in designing the PEP-II asymmetric B-factory. For the Low Energy Ring (LER) the authors have studied several different chromatic correction schemes since the conceptual design report (CDR). Based on these studies, a hybrid solution with local and semi-local chromatic sextupoles has been selected as the new baseline lattice to replace the local scheme in the CDR. The new design simplifies the interaction region (IR) and reduces the number of sextupoles in the arcs. Arc sextupoles are paired at π phase difference and are not interleaved. In this paper the authors describe the baseline lattice with the emphasis on the lattice changes made since the CDR

  4. Modified theoretical minimum emittance lattice for an electron storage ring with extreme-low emittance

    Directory of Open Access Journals (Sweden)

    Yi Jiao

    2011-05-01

    Full Text Available In the continuing efforts to reduce the beam emittance of an electron storage ring composed of theoretical minimum emittance (TME lattice, down to a level of several tens of picometers, nonlinear dynamics grows to be a great challenge to the performance of the storage ring because of the strong sextupoles needed to compensate for its large global natural chomaticities coupled with its small average dispersion function. To help in dealing with the challenge of nonlinear optimization, we propose a novel variation of theoretical minimum emittance (TME lattice, named as “modified-TME” lattice, with minimal emittance about 3 times of the exact theoretical minimum, while with more compact layout, lower phase advance per cell, smaller natural chromaticities, and more relaxed optical functions than that in a TME cell, by using horizontally defocusing quadrupole closer to the dipole or simply combined-function dipole with horizontally defocusing gradient. We present approximate scaling formulas to describe the relationships of the design parameters in a modified-TME cell. The applications of modified-TME lattice in the PEP-X storage ring design are illustrated and the proposed lattice appears a good candidate for synchrotron radiation light source with extremely low emittance.

  5. Global analysis of all linear stable settings of a storage ring lattice

    Directory of Open Access Journals (Sweden)

    David S Robin

    2008-02-01

    Full Text Available The traditional process of designing and tuning the magnetic lattice of a particle storage ring lattice to produce certain desired properties is not straightforward. Often solutions are found through trial and error and it is not clear that the solutions are close to optimal. This can be a very unsatisfying process. In this paper we take a step back and look at the general stability limits of the lattice. We employ a technique we call GLASS (GLobal scan of All Stable Settings that allows us to rapidly scan and find all possible stable modes and then characterize their associated properties. In this paper we illustrate how the GLASS technique gives a global and comprehensive vision of the capabilities of the lattice. In a sense, GLASS functions as a lattice observatory clearly displaying all possibilities. The power of the GLASS technique is that it is fast and comprehensive. There is no fitting involved. It gives the lattice designer clear guidance as to where to look for interesting operational points. We demonstrate the technique by applying it to two existing storage ring lattices—the triple bend achromat of the Advanced Light Source and the double bend achromat of CAMD. We show that, using GLASS, we have uncovered many interesting and in some cases previously unknown stability regions.

  6. Constrained multi-objective optimization of storage ring lattices

    Science.gov (United States)

    Husain, Riyasat; Ghodke, A. D.

    2018-03-01

    The storage ring lattice optimization is a class of constrained multi-objective optimization problem, where in addition to low beam emittance, a large dynamic aperture for good injection efficiency and improved beam lifetime are also desirable. The convergence and computation times are of great concern for the optimization algorithms, as various objectives are to be optimized and a number of accelerator parameters to be varied over a large span with several constraints. In this paper, a study of storage ring lattice optimization using differential evolution is presented. The optimization results are compared with two most widely used optimization techniques in accelerators-genetic algorithm and particle swarm optimization. It is found that the differential evolution produces a better Pareto optimal front in reasonable computation time between two conflicting objectives-beam emittance and dispersion function in the straight section. The differential evolution was used, extensively, for the optimization of linear and nonlinear lattices of Indus-2 for exploring various operational modes within the magnet power supply capabilities.

  7. SXLS storage ring design

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    X-ray lithography has emerged as a strong candidate to meet the demands of ever finer linewidths on integrated circuits, particularly for linewidths less than .25 microns. Proximity printing X-ray lithography makes use of soft X-rays to shadow print an image of a mask onto a semiconductor wafer to produce integrated circuits. To generate the required X-rays in sufficient quantities to make commercial production viable, electron storage rings have been proposed as the soft X-ray sources. Existing storage rings have been used to do the initial development work and the success of these efforts has led the lithographers to request that new rings be constructed that are dedicated to X-ray lithography. As a result of a series of workshops held at BNL [10.3] which were attended by both semiconductor and accelerator scientists, the following set of zeroth order specifications' on the light and electron beam of a storage ring for X-ray lithography were developed: critical wavelength of light: λ c = 6 to 10 angstroms, white light power: P = 0.25 to 2.5 watts/mrad, horizontal collection angle per port: θ = 10 to 50 mrad, electron beam sizes: σ x ∼ σ y y ' < 1 mrad

  8. Lattice Design in High-energy Particle Accelerators

    CERN Document Server

    Holzer, B.J.

    2014-01-01

    This lecture gives an introduction into the design of high-energy storage ring lattices. Applying the formalism that has been established in transverse be am optics, the basic principles of the development of a magnet lattice are explained and the characteristics of the resulting magnet structure are discussed. The periodic assembly of a storage ring cell with its boundary conditions concerning stability and scaling of the beam optics parameters is addressed as well as special lattice insertions such as drifts, mini beta sections, dispersion suppressors, etc. In addition to the exact calculations that are indispensable for a rigorous treatment of the matter, scaling rules are shown and simple rules of thumb are included that enable the lattice designer to do the first estimates and get the basic numbers ‘ on the back of an envelope.

  9. Lattice design in high-energy particle accelerators

    CERN Document Server

    Holzer, B J

    2006-01-01

    This lecture introduces storage-ring lattice desing. Applying the formalism that has been established in transverse beam optics, the basic principles of the development of a magnet lattice are explained and the characteristics of the resulting magnet structure are discussed. The periodic assembly of a storage ring cell with its boundary conditions concerning stability and scaling of the beam optics parameters is addressed as well as special lattice structures: drifts, mini beta insertions, dispersion suppressors, etc. In addition to the exact calculations indispensable for a rigorous treatment of the matter, scaling rules are shown and simple rules of thumb are included that enable the lattice designer to do the first estimates and get the basic numbers ‘on the back of an envelope’.

  10. Preliminary design considerations for the stage 1 PEP lattice

    International Nuclear Information System (INIS)

    Helm, R.H.; Lee, M.J.

    1974-07-01

    A general description of the proposed PEP e + e - storage ring is discussed in the paper. We discuss the lattice and its operating characteristics in more detail, show how the design luminosity operative regions may be met and outline the limits of the operative regions of the beam parameters in several modes of operation. 18 refs., 16 figs., 1 tab

  11. A Dynamic Momentum Compaction Factor Lattice for Improvements to Stochastic Cooling in Storage Rings

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, David Nicholas [Massachusetts U., Amherst

    1996-01-01

    A dynamic momentum compaction factor, also referred to as a dynamic $\\Delta \\gamma \\tau$, lattice for the FNAL Antiproton Source Debuncher Storage Ring is studied, both theoretically and experimentally, for the purpose of improving stochastic precooling, and hence, improving the global antiproton production and stacking performance. A dynamic $\\Delta \\gamma \\tau$ lattice is proposed due to the competing requirements inherent within the Debuncher storage ring upon $\\gamma \\tau$· Specifically, the Debuncher storage ring performs two disparate functions, $(i)$ accepting and debunching a large number of $\\overline{p}$s/pulse at the outset of the production cycle, which would perform ideally with a large value of $\\gamma\\tau$, and $(ii)$ subsequently employing stochastic cooling throughout the remainder of the $\\overline{p}$ production cycle for improved transfer and stacking efficiency into the Accumulator, for which a small value $\\gamma \\tau$ is ideal in order to reduce the diffusive heating caused by the mixing factor. In the initial design of the Debuncher optical lattice, an intermediate value of $\\gamma \\tau$ was chosen as a compromise between the two functional requirements. The goal of the thesis is to improve stochastic precooling by changing $\\gamma \\tau$ between two desired values during each p production cycle. In particular, the dynamic $\\Delta \\gamma \\tau$ lattice accomplishes a reduction in $\\gamma \\tau$, and hence the mixing factor, through an uniform increase to the dispersion throughout the arc sections of the storage ring. Experimental measurements of cooling rates and system performance parameters, with the implementation of the dynamic $\\Delta \\gamma \\tau$ lattice, are in agreement with theoretical predictions based upon a detailed integration of the stochastic cooling Fokker Planck equations. Based upon the consistency between theory and experiment, predictions of cooling rates are presented for future operational

  12. Effect of the sextupole distribution on the momentum aperture in the small cooling ring lattice at Fermilab

    International Nuclear Information System (INIS)

    Month, M.; Wiedemann, H.

    1978-01-01

    In the process of cooling and accumulating antiprotons for use in p-anti p collisions, rings must be designed with a large usable momentum aperture, on the order of 3% or larger. Since long straight sections and dispersionless regions are generally required, the sextupole field correction system for ''chromatic aberration'' is an important aspect of the overall lattice design. The Fermilab small cooling ring, whose purpose is to demonstrate the feasibility of cooling and accumulating protons (and antiprotons) with electrons, is a particularly simple system. This lattice is used to show the sensitivity of the momentum aperture to the sextupole correction system distribution

  13. Design studies for the electron storage ring EUTERPE

    International Nuclear Information System (INIS)

    Xi Boling.

    1995-01-01

    The 400 MeV electron storage ring EUTERPE is under construction at Eindhoven University of Technology. The ring is to be used as an experimental tool for accelerator physics studies and synchroton radiation applications. The main task of the current research work is the electron optical design of the ring. Lattice design is a basis for machine design as a whole. Design aspects regarding the basic lattice, based on single particle dynamics, include determination of the equilibrium beam size and bunch length, design of achromatic bending sections, selection of tune values, correction of chromaticity, and minimization of the natural emittance in the ring. The basic lattice designed for the EUTERPE ring has a high flexibility so that different electron optical modes can be realized easily. In low energy storage rings with a high beam current, collective effects can cause a significant change in the bunch length, the transverse emittance and the beam lifetime. In order to ensure a good optical performance for the ring, the choice of suitable parameters concerning the vacuum and RF system are essential as far as collective effects are concerned. An estimation of the collective effects in the ring is given. The injector for EUTERPE is a 75 MeV racetrack microtron which is injected from a 10 MeV linac. In order to get sufficient beam current in the ring, a special procedure of continuous injection with an adjustable locally shifted closed orbit has been presented. Details of the injection procedure and numerical simulations are given. (orig./HSI)

  14. Design studies for the electron storage ring EUTERPE

    Energy Technology Data Exchange (ETDEWEB)

    Boling, Xi

    1995-05-18

    The 400 MeV electron storage ring EUTERPE is under construction at Eindhoven University of Technology. The ring is to be used as an experimental tool for accelerator physics studies and synchroton radiation applications. The main task of the current research work is the electron optical design of the ring. Lattice design is a basis for machine design as a whole. Design aspects regarding the basic lattice, based on single particle dynamics, include determination of the equilibrium beam size and bunch length, design of achromatic bending sections, selection of tune values, correction of chromaticity, and minimization of the natural emittance in the ring. The basic lattice designed for the EUTERPE ring has a high flexibility so that different electron optical modes can be realized easily. In low energy storage rings with a high beam current, collective effects can cause a significant change in the bunch length, the transverse emittance and the beam lifetime. In order to ensure a good optical performance for the ring, the choice of suitable parameters concerning the vacuum and RF system are essential as far as collective effects are concerned. An estimation of the collective effects in the ring is given. The injector for EUTERPE is a 75 MeV racetrack microtron which is injected from a 10 MeV linac. In order to get sufficient beam current in the ring, a special procedure of continuous injection with an adjustable locally shifted closed orbit has been presented. Details of the injection procedure and numerical simulations are given. (orig./HSI).

  15. Dispersion of guided modes in two-dimensional split ring lattices

    DEFF Research Database (Denmark)

    Hansen, Per Lunnemann; Koenderink, A. Femius

    2014-01-01

    . This method takes into account all retarded electrodynamic interactions as well as radiation damping self-consistently. As illustration, we analyze the dispersion of plasmon nanorod lattices, and of 2D split ring resonator lattices. Plasmon nanorod lattices support transverse and longitudinal in...

  16. Storage ring lattice calibration using resonant spin depolarization

    Directory of Open Access Journals (Sweden)

    K. P. Wootton

    2013-07-01

    Full Text Available This paper presents measurements of the GeV-scale electron beam energy for the storage rings at the synchrotron light source facilities Australian Synchrotron (AS and SPEAR3 at SLAC. Resonant spin depolarization was employed in the beam energy measurement, since it is presently the highest precision technique and an uncertainty of order 10^{-6} was achieved at SPEAR3 and AS. Using the resonant depolarization technique, the beam energy was measured at various rf frequencies to measure the linear momentum compaction factor. This measured linear momentum compaction factor was used to evaluate models of the beam trajectory through combined-function bending magnets. The main bending magnets of both lattices are rectangular, horizontally defocusing gradient bending magnets. Four modeling approaches are compared for the beam trajectory through the bending magnet: a circular trajectory, linear and nonlinear hyperbolic cosine trajectories, and numerical evaluation of the trajectory through the measured magnetic field map. Within the uncertainty of the measurement the momentum compaction factor is shown to agree with the numerical model of the trajectory within the bending magnet, and disagree with the hyperbolic cosine approximation.

  17. Design of the SPEAR 3 magnet lattice

    International Nuclear Information System (INIS)

    Corbett, J.; Limborg, C.; Nosochkov, Y.; Safranek, J.

    1998-01-01

    The SPEAR 3 Upgrade Project seeks to replace the present 160 nm-rad FODO lattice with an 18 nm-rad double bend achromat (DBA) lattice. The new lattice must conform to the layout of the SPEAR racetrack tunnel and service the existing photon beamlines. Working within these constraints, the authors designed a lattice with 18 achromatic cells and 3 GeV beam energy. This paper reports on design of the main DBA cells, design of the matching cells leading into the 6.5 m racetrack straights, and simulation of the dynamic aperture. The new lattice has gradient dipoles, conventional quadrupoles, and provides horizontal dynamic aperture to ± 20 mm with conservative magnetic multipole errors

  18. A lattice with larger momentum compaction for the NLC main damping rings

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Raubenheimer, Tor O.; Woodley, Mark; Wu, Juhao

    2004-01-01

    Previous lattice designs for the Next Linear Collider Main Damping Rings [1] have met the specifications for equilibrium emittance, damping rate and dynamic aperture. Concerns about the effects of the damping wiggler on the beam dynamics [2] led to the aim of reducing the total length of the wiggler to a minimum consistent with the required damping rate, so high-field dipoles were used to provide a significant energy loss in the arcs. However, recent work has shown that the wiggler effects may not be as bad as previously feared. Furthermore, other studies have suggested the need for an increased momentum compaction (by roughly a factor of four) to raise the thresholds of various collective effects. We have therefore developed a new lattice design in which we increase the momentum compaction by reducing the field strength in the arc dipoles, compensating the loss in damping rate by increasing the length of the wiggler. The new lattice again meets the specifications for emittance, damping rate and dynamic aperture, while having the benefit of significantly higher thresholds for a number of instabilities

  19. Design of the muon collider lattice: Present status

    International Nuclear Information System (INIS)

    Garren, A.; Courant, E.; Gallardo, J.

    1996-05-01

    The last component of a muon collider facility, as presently envisioned, is a colliding-beam storage ring. Design studies on various problems for this ring have been in progress over the past year. In this paper we discuss the current status of the design. The projected muon currents require very low beta values at the IP, β* = 3 mm, in order to achieve the design luminosity of L = 10 35 cm -2 s -1 . The beta values in the final-focus quadrupoles are roughly 400 km. To cancel the corresponding chromaticities, sextupole schemes for local correction have been included in the optics of the experimental insertion. The hour-glass effect constraints the bunch length to be comparable too. To obtain such short bunches with reasonable rf voltage requires a very small value of the momentum compaction a, which can be obtained by using flexible momentum compaction (FMC) modules in the arcs. A preliminary design of a complete collider ring has now been made; it uses an experimental insertion and arc modules as well as a utility insertion. The layout of this ring is shown schematically, and its parameters are summarized. Though some engineering features are unrealistic, and the beam performance needs some improvement, we believe that this study can serve as the basis for a workable collider design. The remaining sections of the paper will describe the lattice, show beam behaviour, and discuss future design studies

  20. Fermilab Recycler Ring: Technical design report. Revision 1.1

    International Nuclear Information System (INIS)

    Jackson, G.

    1996-07-01

    This report describes the technical design of the Fermilab Recycler Ring. The purpose of the Recycler is to augment the luminosity increase anticipated from the implementation of the Fermi III upgrade project, which has as its main component the Fermilab Main Injector construction project. The Recycler is a fixed 8 GeV kinetic energy storage ring. It is located in the Main Injector tunnel directly above the Main Injector beamline, near the ceiling. The construction schedule calls for the installation of the Recycler ring before the installation shutdown of the Main Injector. This aggressive construction schedule is made possible by the exclusive use of permanent magnets in the ring lattice, removing the need for expensive conventional iron/copper magnet construction along with the related power supplies, cooling water system, and electrical safety systems. The location, operating energy, and mode of construction are chosen to minimize operational impacts on both Fermilab's ongoing High Energy Physics program and the Main Injector construction project

  1. Recycler ring conceptual design study

    International Nuclear Information System (INIS)

    Jackson, G.

    1995-01-01

    The Tevatron Collider provides the highest center of mass energy collisions in the world. To fully exploit this unique tool, Fermilab is committed to a program of accelerator upgrades for the purpose of increasing the Collider luminosity. Over the past 7 years the luminosity has been increased from a peak of 1.6x10 30 cm -2 sec -1 in 1989 to over 3x10 31 cm -2 sec -1 during 1995. The Main Injector will supply a larger flux of protons for antiproton production and more intense proton bunches for use in the Collider, and this is expected to increase the peak luminosity to close to 1x10 32 cm -2 sec -1 . Further increases in luminosity will require additional upgrades to the Fermilab accelerator complex. This report documents the design of a new fixed-energy storage ring to be placed in the Main Injector tunnel which will provide an initial factor of 2 increase to 2x10 32 cm -2 sec -1 , and ultimately provide the basis for an additional order of magnitude luminosity increase up to 1x10 33 cm -2 sec -1

  2. SNS accumulator ring design and space charge considerations

    Energy Technology Data Exchange (ETDEWEB)

    Weng, W.T.

    1998-08-01

    The goal of the proposed Spallation Neutron Source (SNS) is to provide a short pulse proton beam of about 0.5 {micro}s with average beam power of 1 MW. To achieve such purpose, a proton storage ring operated at 60 Hz with 1 {times} 10{sup 14} protons per pulse at 1 GeV is required. The Accumulator Ring (AR) receives 1 msec long H{sup {minus}} beam bunches of 28 mA from a 1 GeV linac. Scope and design performance goals of the AR are presented. About 1,200 turns of charge exchange injection is needed to accumulate 1 mA in the ring. After a brief description of the lattice design and machine performance parameters, space charge related issues, such as: tune shifts, stopband corrections, halo generatino and beam collimation etc. is discussed.

  3. SNS ACCUMULATOR RING DESIGN AND SPACE CHARGE CONSIDERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    WENG,W.T.

    1998-05-04

    The goal of the proposed Spallation Neutron Source (SNS) is to provide a short pulse proton beam of about 0.5{micro}s with average beam power of 1MW. To achieve such purpose, a proton storage ring operated at 60Hz with 1 x 10{sup 14} protons per pulse at 1GeV is required. The Accumulator Ring (AR) receives 1msec long H{sup {minus}} beam bunches of 28mA from a 1GeV linac. Scope and design performance goals of the AR are presented. About 1,200 turns of charge exchange injection is needed to accumulate 1mA in the ring. After a brief description of the lattice design and machine performance parameters, space charge related issues, such as: tune shifts, stopband corrections, halo generation and beam collimation etc. is discussed.

  4. SNS accumulator ring design and space charge considerations

    International Nuclear Information System (INIS)

    Weng, W.T.

    1998-01-01

    The goal of the proposed Spallation Neutron Source (SNS) is to provide a short pulse proton beam of about 0.5micros with average beam power of 1MW. To achieve such purpose, a proton storage ring operated at 60Hz with 1 x 10 14 protons per pulse at 1GeV is required. The Accumulator Ring (AR) receives 1msec long H - beam bunches of 28mA from a 1GeV linac. Scope and design performance goals of the AR are presented. About 1,200 turns of charge exchange injection is needed to accumulate 1mA in the ring. After a brief description of the lattice design and machine performance parameters, space charge related issues, such as: tune shifts, stopband corrections, halo generation and beam collimation etc. is discussed

  5. 'Aharonov-Bohm antiferromagnetism' and compensation points in the lattice of quantum rings

    International Nuclear Information System (INIS)

    Meleshenko, Peter A.; Klinskikh, Alexander F.

    2011-01-01

    We investigate the magnetic properties of the lattice of non-interacting quantum rings using the 2D rotator model. The exact analytic expressions for the free energy as well as for the magnetization and magnetic susceptibility are found and analyzed. It is shown that such a system can be considered as a system with antiferromagnetic-like properties. We have shown also that all observable quantities in this case (free energy, entropy, magnetization) are periodic functions of the magnetic flux through the ring's area (as well known, such a behavior is typical for the Aharonov-Bohm effect). For the lattice of quantum rings with two different geometric parameters we investigate the ordinary compensation points ('temperature compensation points', i.e. points at which the magnetization vanishes at fixed values of the magnetic field strength). It is shown that the positions of compensation points in the temperature scale are very sensitive to small changes in the magnetic field strength. - Highlights: → The lattice of quantum rings as a system with antiferromagnetic-like properties. → In considered system the 'temperature compensation points' take place. → The 'temperature compensation points' positions depend on the Aharonov-Bohm flux.

  6. AGILE, a tool for interactive lattice design

    CERN Document Server

    Bryant, P J

    2000-01-01

    AGILE is a program that works in the IBM-PC, MS-Windows environment and is dedicated to the interactive design of alternating-gradient lattices for synchrotrons and transfer lines. The program was originally intended as a teaching tool, but has been used mostly for professional design work and is subject to continuous development. It contains original algorithms for coupling, scattering and eddy currents, and some slightly unusual algorithms for off-axis orbits and space charge. There are also additional features such as engineering design aids, calculators for relativistic and synchrotron radiation parameters, expert routines for optimising slow extraction, fitting and matching, and the internal storage of constants for over 1000 stable and quasi-stable charged particles. The program is object-oriented and fully integrated into the Windows environment - it is not a shell. Apart from office work, AGILE is ideal for home use, design workshops and when travelling. It is particularly suited to practical problems...

  7. Fuel lattice design using heuristics and new strategies

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J. J.; Castillo M, J. A.; Torres V, M.; Perusquia del Cueto, R. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Pelta, D. A. [ETS Ingenieria Informatica y Telecomunicaciones, Universidad de Granada, Daniel Saucedo Aranda s/n, 18071 Granada (Spain); Campos S, Y., E-mail: juanjose.ortiz@inin.gob.m [IPN, Escuela Superior de Fisica y Matematicas, Unidad Profesional Adolfo Lopez Mateos, Edif. 9, 07738 Mexico D. F. (Mexico)

    2010-10-15

    This work show some results of the fuel lattice design in BWRs when some allocation pin rod rules are not taking into account. Heuristics techniques like Path Re linking and Greedy to design fuel lattices were used. The scope of this work is to search about how do classical rules in design fuel lattices affect the heuristics techniques results and the fuel lattice quality. The fuel lattices quality is measured by Power Peaking Factor and Infinite Multiplication Factor at the beginning of the fuel lattice life. CASMO-4 code to calculate these parameters was used. The analyzed rules are the following: pin rods with lowest uranium enrichment are only allocated in the fuel lattice corner, and pin rods with gadolinium cannot allocated in the fuel lattice edge. Fuel lattices with and without gadolinium in the main diagonal were studied. Some fuel lattices were simulated in an equilibrium cycle fuel reload, using Simulate-3 to verify their performance. So, the effective multiplication factor and thermal limits can be verified. The obtained results show a good performance in some fuel lattices designed, even thought, the knowing rules were not implemented. A fuel lattice performance and fuel lattice design characteristics analysis was made. To the realized tests, a dell workstation was used, under Li nux platform. (Author)

  8. Fuel lattice design using heuristics and new strategies

    International Nuclear Information System (INIS)

    Ortiz S, J. J.; Castillo M, J. A.; Torres V, M.; Perusquia del Cueto, R.; Pelta, D. A.; Campos S, Y.

    2010-10-01

    This work show some results of the fuel lattice design in BWRs when some allocation pin rod rules are not taking into account. Heuristics techniques like Path Re linking and Greedy to design fuel lattices were used. The scope of this work is to search about how do classical rules in design fuel lattices affect the heuristics techniques results and the fuel lattice quality. The fuel lattices quality is measured by Power Peaking Factor and Infinite Multiplication Factor at the beginning of the fuel lattice life. CASMO-4 code to calculate these parameters was used. The analyzed rules are the following: pin rods with lowest uranium enrichment are only allocated in the fuel lattice corner, and pin rods with gadolinium cannot allocated in the fuel lattice edge. Fuel lattices with and without gadolinium in the main diagonal were studied. Some fuel lattices were simulated in an equilibrium cycle fuel reload, using Simulate-3 to verify their performance. So, the effective multiplication factor and thermal limits can be verified. The obtained results show a good performance in some fuel lattices designed, even thought, the knowing rules were not implemented. A fuel lattice performance and fuel lattice design characteristics analysis was made. To the realized tests, a dell workstation was used, under Li nux platform. (Author)

  9. Cooperative ring exchange and quantum melting of vortex lattices in atomic Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Ghosh, Tarun Kanti; Baskaran, G.

    2004-01-01

    Cooperative ring exchange is suggested as a mechanism of quantum melting of vortex lattices in a rapidly rotating quasi-two-dimensional atomic Bose-Einstein condensate (BEC). Using an approach pioneered by Kivelson et al. [Phys. Rev. Lett. 56, 873 (1986)] for the fractional quantized Hall effect, we calculate the condition for quantum melting instability by considering large-correlated ring exchanges in a two-dimensional Wigner crystal of vortices in a strong 'pseudomagnetic field' generated by the background superfluid Bose particles. BEC may be profitably used to address issues of quantum melting of a pristine Wigner solid devoid of complications of real solids

  10. A study for lattice comparison for PLS 2 GeV storage ring

    International Nuclear Information System (INIS)

    Yoon, M.

    1991-01-01

    TBA and DBA lattices are compared for 1.5-2.5 GeV synchrotron light source, with particular attention to the PLS 2 GeV electron storage ring currently being developed in Pohang, Korea. For the comparison study, the optimum electron energy was chosen to be 2 GeV and the circumference of the ring is less than 280.56 m, the natural beam emittance no greater than 13 nm. Results from various linear and nonlinear optics comparison studies are presented

  11. APS-U LATTICE DESIGN FOR OFF-AXIS ACCUMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yipeng; Borland, M.; Lindberg, R.; Sajaev, V.

    2017-06-25

    A 67-pm hybrid-seven-bend achromat (H7BA) lattice is being proposed for a future Advanced Photon Source (APS) multi-bend-achromat (MBA) upgrade project. This lattice design pushes for smaller emittance and requires use of a swap-out (on-axis) injection scheme due to limited dynamic acceptance. Alternate lattice design work has also been performed for the APS upgrade to achieve better beam dynamics performance than the nominal APS MBA lattice, in order to allow off-axis accumulation. Two such alternate H7BA lattice designs, which target a still-low emittance of 90 pm, are discussed in detail in this paper. Although the single-particle-dynamics performance is good, simulations of collective effects indicate that surprising difficulty would be expected accumulating high single-bunch charge in this lattice. The brightness of the 90-pm lattice is also a factor of two lower than the 67-pm H7BA lattice.

  12. BEAM-LOSS DRIVEN DESIGN OPTIMIZATION FOR THE SPALLATION NEUTRON SOURCE (SNS) RING.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.; BEEBE-WANG,J.; BLASKIEWICZ,M.; CAMERON,P.; DANBY,G.; GARDNER,C.J.; JACKSON,J.; LEE,Y.Y.; LUDEWIG,H.; MALITSKY,N.; RAPARIA,D.; TSOUPAS,N.; WENG,W.T.; ZHANG,S.Y.

    1999-03-29

    This paper summarizes three-stage design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.).

  13. Beam-Loss Driven Design Optimization for the Spallation Neutron Source (SNS) Ring

    International Nuclear Information System (INIS)

    Wei, J.

    1999-01-01

    This paper summarizes three-state design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.)

  14. Accumulator ring design for the NSNS project

    International Nuclear Information System (INIS)

    Weng, W.T.; Alessi, J.; Beebe-Wang, J.

    1997-01-01

    The goal of the proposed National Spallation Neutron Source (NSNS) is to provide a short pulse proton beam of about 0.5 μs with average beam power of 1 MW. To achieve such purpose, a proton storage ring operated at 60 Hz with 1 x 10 14 protons per pulse at 1 GeV is required. The Accumulator Ring (AR) receives 1 msec long H - beam bunches of 28 mA from a 1 GeV linac. Scope and design performance goals of the AR are presented, other possible technological choices and design options considered, but not adopted, are also briefly reviewed

  15. First Considerations on Beam Optics and Lattice Design for the Future Hadron-Hadron Collider FCC

    CERN Document Server

    Alemany Fernandez, R

    2014-01-01

    The present document explains the steps carried out in order to make the first design of the Future Hadron-Hadron Collider (FCC-hh) following the base line parameters that can be found in [1]. Two lattice layouts are presented, a ring collider with 12 arcs and 12 straight sections, four of them designed as interaction points, and a racetrack like collider with two arcs and two straight sections, each of them equipped with two interaction points. The lattice design presented in the paper is modular allowing the same modules be used for both layouts. The present document addresses as well the beta star reach at the interaction points.

  16. Design of Hierarchical Ring Networks Using Branch-and-Price

    DEFF Research Database (Denmark)

    Thomadsen, Tommy; Stidsen, Thomas K.

    2004-01-01

    -ring is designed connecting the metro-rings, minimizing fixed link establishment costs of the federal-ring. A branch-and-price algorithm is presented for the design of the bottom layer and it is suggested that existing methods are used for the design of the federal-ring. Computational results are given...

  17. A review on the lattice design of large hadron colliders

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1987-01-01

    The conceptual evolution of the accelerator lattice design is discussed. Indicated are aspects of IR design. We emphasize the cancellation of stop-band width in the cluster design. The case of symmetric vs antisymmetric design is also discussed. The SSC lattice is used as an example. 9 refs

  18. Optics design of Intrabeam Scattering dominated damping rings

    CERN Document Server

    Antoniou, Fanouria; Papaphilippou, Ioannis

    A e+/e- linear collider, the Compact Linear Collider (CLIC) is under design at CERN, aiming to explore the terascale particle physics regime. The collider has been optimized at 3 TeV center of mass energy and targets a luminosity of 1034 cm-2 s-1. In order to achieve this high luminosity, high intensity bunches with ultra low emittances, in all three planes, are required. The generation of ultra low emittance is achieved in the Damping Rings (DR) complex of the collider. The large input beam emittances, especially the ones coming from the positron source, and the requirement of ultra low emittance production in a fast repetition time of 20 ms, imply that the beam damping is done in two stages. Thus, a main-damping ring (DR) and a predamping ring (PDR) are needed, for each particle species. The high bunch brightness gives rise to several collective effects, with Intra-beam scattering (IBS) being the main limitation to the ultra-low emittance. This thesis elaborates the lattice design and non-linear optimizatio...

  19. Quantum phase transition of Bose-Einstein condensates on a nonlinear ring lattice

    International Nuclear Information System (INIS)

    Zhou Zhengwei; Zhang Shaoliang; Zhou Xiangfa; Guo Guangcan; Zhou Xingxiang; Pu Han

    2011-01-01

    We study the phase transitions in a one-dimensional Bose-Einstein condensate on a ring whose atomic scattering length is modulated periodically along the ring. By using a modified Bogoliubov method to treat such a nonlinear lattice in the mean-field approximation, we find that the phase transitions are of different orders when the modulation period is 2 and greater than 2. We further perform a full quantum mechanical treatment based on the time-evolving block decimation algorithm which confirms the mean-field results and reveals interesting quantum behavior of the system. Our studies yield important knowledge of competing mechanisms behind the phase transitions and the quantum nature of this system.

  20. Design of a minimum emittance nBA lattice

    Science.gov (United States)

    Lee, S. Y.

    1998-04-01

    An attempt to design a minimum emittance n-bend achromat (nBA) lattice has been made. One distinct feature is that dipoles with two different lengths were used. As a multiple bend achromat, five bend achromat lattices with six superperiod were designed. The obtained emittace is three times larger than the theoretical minimum. Tunes were chosen to avoid third order resonances. In order to correct first and second order chromaticities, eight family sextupoles were placed. The obtained emittance of five bend achromat lattices is almost equal to the minimum emittance of five bend achromat lattice consisting of dipoles with equal length.

  1. Magnet design for a low-emittance storage ring

    International Nuclear Information System (INIS)

    Johansson, Martin; Anderberg, Bengt; Lindgren, Lars-Johan

    2014-01-01

    The magnet design of the MAX IV 3 GeV storage ring replaces the conventional support girder + discrete magnets scheme of previous third-generation light sources with a compact integrated design having several consecutive magnet elements precision-machined out of a common solid iron block. The MAX IV 3 GeV storage ring, currently under construction, pursues the goal of low electron beam emittance by using a multi-bend achromat magnet lattice, which is realised by having several consecutive magnet elements precision-machined out of a common solid iron block, 2.3–3.4 m long. With this magnet design solution, instead of having 1320 individual magnets, the MAX IV 3 GeV storage ring is built up using 140 integrated ‘magnet block’ units, containing all these magnet elements. Major features of this magnet block design are compactness, vibration stability and that the alignment of magnet elements within each unit is given by the mechanical accuracy of the CNC machining rather than individual field measurement and adjustment. This article presents practical engineering details of implementing this magnet design solution, and mechanical + magnetic field measurement results from the magnet production series. At the time of writing (spring 2014), the production series, which is totally outsourced to industry, is roughly half way through, with mechanical/magnetic QA conforming to specifications. It is the conclusion of the authors that the MAX IV magnet block concept, which has sometimes been described as new or innovative, is from a manufacturing point of view simply a collection of known mature production methods and measurement procedures, which can be executed at fixed cost with a low level of risk

  2. Magnet design for a low-emittance storage ring

    Science.gov (United States)

    Johansson, Martin; Anderberg, Bengt; Lindgren, Lars-Johan

    2014-01-01

    The MAX IV 3 GeV storage ring, currently under construction, pursues the goal of low electron beam emittance by using a multi-bend achromat magnet lattice, which is realised by having several consecutive magnet elements precision-machined out of a common solid iron block, 2.3–3.4 m long. With this magnet design solution, instead of having 1320 individual magnets, the MAX IV 3 GeV storage ring is built up using 140 integrated ‘magnet block’ units, containing all these magnet elements. Major features of this magnet block design are compactness, vibration stability and that the alignment of magnet elements within each unit is given by the mechanical accuracy of the CNC machining rather than individual field measurement and adjustment. This article presents practical engineering details of implementing this magnet design solution, and mechanical + magnetic field measurement results from the magnet production series. At the time of writing (spring 2014), the production series, which is totally outsourced to industry, is roughly half way through, with mechanical/magnetic QA conforming to specifications. It is the conclusion of the authors that the MAX IV magnet block concept, which has sometimes been described as new or innovative, is from a manufacturing point of view simply a collection of known mature production methods and measurement procedures, which can be executed at fixed cost with a low level of risk. PMID:25177980

  3. Magnet Lattice Design for the Transmission of Power Using Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Marley, Daniel; /North Carolina State U. /SLAC

    2012-08-24

    As the amount of electricity generated by renewable energy sources continues to increase, the current method of power transmission will not serve as an adequate method for transmitting power over very long distances. A new method for transmitting power is proposed using particle beams in a storage ring. Particle beams offer an incredibly energy efficient alternative to transmission lines in transmitting power over very long distances. A thorough investigation of the magnet lattice design for this storage ring is presented. The design demonstrates the ability to design a ring with stable orbits over a 381.733 km circumference. Double bend achromats and FODO cells are implemented to achieve appropriate {beta} functions and dispersion functions for 9-11 GeV electron beams.

  4. Quantum Operator Design for Lattice Baryon Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lichtl, Adam [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2006-09-07

    A previously-proposed method of constructing spatially-extended gauge-invariant three-quark operators for use in Monte Carlo lattice QCD calculations is tested, and a methodology for using these operators to extract the energies of a large number of baryon states is developed. This work is part of a long-term project undertaken by the Lattice Hadron Physics Collaboration to carry out a first-principles calculation of the low-lying spectrum of QCD. The operators are assemblages of smeared and gauge-covariantly-displaced quark fields having a definite flavor structure. The importance of using smeared fields is dramatically demonstrated. It is found that quark field smearing greatly reduces the couplings to the unwanted high-lying short-wavelength modes, while gauge field smearing drastically reduces the statistical noise in the extended operators.

  5. Design of a quasi-isochronous storage ring for THz light source

    International Nuclear Information System (INIS)

    Zhu Jiapeng; Xu Hongliang; Feng Guangyao; Lan Jieqin

    2012-01-01

    A quasi-isochronous storage ring is designed by manipulating lattice parameters to introduce a negative dispersion function to the dispersion section. This quasi-isochronous storage ring is designed for a THz synchrotron radiation source. The simulation of the optics function and beam emittance shows its feasibility, and the tracing result of particles indicates that the designed ring has a good particle dynamic aperture. In addition, a three-dimensional model of the vacuum chamber used for photon radiation in the quasi-isochronous mode is also designed. The eigenmodes of the chamber are simulated, and characteristic parameters such as quality factor, power loss and characteristic impedance are also calculated. The result shows that the vacuum chamber has little effect on the circulating beam. (authors)

  6. Design of Piston Ring Friction Tester Apparatus

    DEFF Research Database (Denmark)

    Klit, Peder

    2006-01-01

    One of the major prerequisites for calculating piston ring friction is a good description of the tribological situation. Piston rings operate in three different lubrication regimes and the theoretical models should be capable to describe this. A very important condition for describing the frictio......One of the major prerequisites for calculating piston ring friction is a good description of the tribological situation. Piston rings operate in three different lubrication regimes and the theoretical models should be capable to describe this. A very important condition for describing...... the frictional behavior of a piston ring correctly is knowledge about the amount of lubricant present. For piston rings the external load may be established by measuring the pressure distribution, i.e. the pressure drop in the piston ring package. Speed and temperature may also be established. The amount...... available is reflected in the friction absorbed in the bearing. The following properties will be measured: Oil fillm thickness - along liner (axial variation), oil film thickness - along piston ring (circumferential variation), piston tilt, temperature of piston rings and liner, pressure at piston lands...

  7. elegantRingAnalysis An Interface for High-Throughput Analysis of Storage Ring Lattices Using elegant

    CERN Document Server

    Borland, Michael

    2005-01-01

    The code {\\tt elegant} is widely used for simulation of linacs for drivers for free-electron lasers. Less well known is that elegant is also a very capable code for simulation of storage rings. In this paper, we show a newly-developed graphical user interface that allows the user to easily take advantage of these capabilities. The interface is designed for use on a Linux cluster, providing very high throughput. It can also be used on a single computer. Among the features it gives access to are basic calculations (Twiss parameters, radiation integrals), phase-space tracking, nonlinear dispersion, dynamic aperture (on- and off-momentum), frequency map analysis, and collective effects (IBS, bunch-lengthening). Using a cluster, it is easy to get highly detailed dynamic aperture and frequency map results in a surprisingly short time.

  8. Interaction Region Design for a Ring-Ring LHeC

    CERN Document Server

    Thompson, L N S; Bernard, N R; Fitterer, M; Holzer, B; Klein, M; Kostka, P

    2011-01-01

    tively low energy and moderately high intensity provides high luminosity TeV-scale e-p collisions at one of the LHC interaction points, running simultaneously with existing experiments. Two designs are studied; an electron ring situated in the LHC tunnel, and an electron linac. The focus of this paper is on the ring design. Designing an e-p machine presents interesting accelerator physics and design challenges, particularly when considering the interaction region. These include coupled optics, beam separation and unconventional mini-beta focusing schemes. Designs are constrained by an array of interdependent factors, including beam-beam interaction, detector dimensions and acceptance, luminosity and synchrotron radiation. Methods of addressing these complex issues are discussed. The current designs for the LHeC Ring-Ring interaction region and long straight section are presented and discussed, in the context of the project goals and design challenges encountered. Future developments and work are also discusse...

  9. An isochronous lattice design for a 50 on 50 GeV muon collider

    International Nuclear Information System (INIS)

    Johnstone, C.; Drozhdin, A.; Mokhov, N.; Wan, W.; Garren, A.

    1998-01-01

    Using local chromatic correction techniques, a lattice for a 50 on 5-GeV muon collider has been developed which can serve as a broad-band (broad momentum acceptance) or a high-resolution (narrow momentum acceptance) Higgs factory. To reach design luminosities of 13 32 and 10 31 cm -2 s -1 , a short bunch length, minimal ring circumference and a β* of 4 cm and 13 cm must be realized in the broad-band and high-resolution machines, respectively. In the broad-band machine, local chromatic correction of the Interaction Region is required to provide adequate momentum acceptance. However, local chromatic correction conflicts with demands for extreme compactness and isochronicity, making the lattice design challenging

  10. Radiation safety design for SSRL storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Khater, Hesham [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)]. E-mail: khater1@llnl.gov; Liu, James [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Fasso, Alberto [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Prinz, Alyssa [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Rokni, Sayed [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2006-12-15

    In 2003, the Stanford Synchrotron Radiation Laboratory (SSRL) had upgraded its storage ring to a 3rd generation storage ring (SPEAR3). SPEAR3 is deigned to operate at 500-mA stored beam current and 3-GeV energy. The 234-m circumference SPEAR3 ring utilizes 60-cm-thick concrete lateral walls, 30-cm-thick concrete roof, as well as 60- or 90-cm-thick concrete ratchet walls. A total of 3.5x10{sup 15}e{sup -}/y will be injected into the ring with an injection power of 4W and an injection efficiency of 75%. Normal beam losses occur due to both injection and stored beam operations in the total of 20 low loss as well as 3 high loss limiting apertures. During the 6-min injection period, an instantaneous power loss of 0.05W occurs at each low loss aperture. When averaged over the operational year, the loss of both the injection and the stored beams is equivalent to an average loss of 2mW at each low loss aperture. On the other hand, the average losses in the high loss apertures are 16mW for the injection septum, 47mW for the beam abort dump, and 13mW for the ring stoppers. The shielding requirements for losses in the new ring were based on a generic approach that used both FLUKA Monte Carlo particle generation and transport code and empirical computer codes and formulae.

  11. Lattice design of beam transport system of FELI

    International Nuclear Information System (INIS)

    Miyauchi, Y.; Koga, A.; Morii, Y.; Sato, S.; Keishi, T.; Tomimasu, T.

    1994-01-01

    A plan of lasing wide range FEL (Free Electron Laser) is in progress at FELI. For this purpose, an S-band linac accelerator system of four output energy levels is under construction. This paper describes the lattice design of its beam transport (BT) system. (author)

  12. Fundamental Design Principles of Linear Collider Damping Rings, with an Application to CLIC

    CERN Document Server

    Potier, J P

    2000-01-01

    Damping Rings for Linear Colliders have to produce very small normalised emittances at a high repetition rate. A previous paper presented analytical expressions for the equilibrium emittance of an arc cell as a function of the deflection angle per dipole. In addition, an expression for the lattice parameters providing the minimum emittance, and a strategy to stay close to this, were proposed. This analytical approach is extended to the detailed design of Damping Rings, taking into account the straight sections and the damping wigglers. Complete rings, including wiggler and injection insections, were modelled with the MAD [1] program, and their performance was found to be in good agreement with the analytical calculation. With such an approach it is shown that a Damping Ring corresponding to the Compact Linear Collider (CLIC) parameters at 0.5 and 1 TeV centre-of-mass energy, and tunable for two different sets of emittance and injection repetition rate, can be designed using the same ring layout.

  13. Design and high order optimization of the ATF2 lattices

    CERN Document Server

    Marin, E; Woodley, M; Kubo, K; Okugi, T; Tauchi, T; Urakawa, J; Tomas, R

    2013-01-01

    The next generation of future linear colliders (LC) demands nano-meter beam sizes at the interaction point (IP) in order to reach the required luminosity. The final focus system (FFS) of a LC is meant to deliver such small beam sizes. The Accelerator Test Facility (ATF) aims to test the feasibility of the new local chromaticity correction scheme which the future LCs are based on. To this end the ATF2 nominal and ultra-low beta* lattices are design to vertically focus the beam at the IP to 37nm and 23nm, respectively if error-free lattices are considered. However simulations show that the measured field errors of the ATF2 magnets preclude to reach the mentioned spot sizes. This paper describes the optimization of high order aberrations of the ATF2 lattices in order to minimize the detrimental effect of the measured multipole components for both ATF2 lattices. Specifically three solutions are studied, the replacement of the last focusing quadrupole (QF1FF), insertion of octupole magnets and optics modification....

  14. Seco-B-Ring Steroidal Dienynes with Aromatic D Ring: Design, Synthesis and Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Marcin Szybinski

    2017-10-01

    Full Text Available Continuing our structure-activity studies on the vitamin D analogs with the altered intercyclic seco-B-ring fragment, we designed compounds possessing dienyne system conjugated with the benzene D ring. Analysis of the literature data and the docking experiments seemed to indicate that the target compounds could mimic the ligands with a good affinity to the vitamin D receptor (VDR. Multi-step synthesis of the C/D-ring building block of the tetralone structure was achieved and its enol triflate was coupled with the known A-ring fragments, possessing conjugated enyne moiety, using Sonogashira protocol. The structures of the final products were confirmed by NMR, UV and mass spectroscopy. Their binding affinities for the full-length human VDR were determined and it was established that compound substituted at C-2 with exomethylene group showed significant binding to the receptor. This analog was also able to induce monocytic differentiation of HL-60 cells.

  15. Conceptual design of a moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C.; Carlson, G.A.; Ashworth, C.P.

    1986-01-01

    A design of a prototype moving-ring reactor was completed, and a development plan for a pilot reactor is outlined. The fusion fuel is confined in current-carrying rings of magnetically field-reversed plasma (''compact toroids''). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three ''burn stations.'' Separator coils and a slight axial guide field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for one-third of the total burn time at each station. Deuterium-tritium- 3 He ice pellets refuel the rings at a rate that maintains constant radiated power. The fusion power per ring is approx. =105.5 MW. The burn time to reach a fusion energy gain of Q = 30 is 5.9 s

  16. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Kafka, Gene [Illinois Inst. of Technology, Chicago, IL (United States)

    2015-05-01

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  17. Rational assembly of nanoparticle superlattices with designed lattice symmetries

    Science.gov (United States)

    Gang, Oleg; Lu, Fang; Tagawa, Miho

    2017-09-05

    A method for lattice design via multivalent linkers (LDML) is disclosed that introduces a rationally designed symmetry of connections between particles in order to achieve control over the morphology of their assembly. The method affords the inclusion of different programmable interactions within one linker that allow an assembly of different types of particles. The designed symmetry of connections is preferably provided utilizing DNA encoding. The linkers may include fabricated "patchy" particles, DNA scaffold constructs and Y-shaped DNA linkers, anisotropic particles, which are preferably functionalized with DNA, multimeric protein-DNA complexes, and particles with finite numbers of DNA linkers.

  18. ACCELERATOR PHYSICS CHALLENGES IN THE DESIGN OF MULTI-BEND-ACHROMAT-BASED STORAGE RINGS

    Energy Technology Data Exchange (ETDEWEB)

    Borland, M.; Hettel, R.; Leemann, S. C.; Robin, D. S.

    2017-06-01

    With the recent success in commissioning of MAX IV, the multi-bend achromat (MBA) lattice has begun to deliver on its promise to usher in a new generation of higher-brightness synchrotron light sources. In this paper, we begin by reviewing the challenges, recent success, and lessons learned of the MAX-IV project. Drawing on these lessons, we then describe the physics challenges in even more ambitious rings and how these can be met. In addition, we touch on engineering issues and choices that are tightly linked with the physics design.

  19. Lattice design for a high-power infrared FEL

    International Nuclear Information System (INIS)

    Douglas, D.R.

    1997-01-01

    A 1 kW infrared FEL, funded by the U.S. Navy, is being built at Jefferson Lab. It will be driven by a compact energy-recovering CW superconducting radio-frequency (SRF)-based linear accelerator. Stringent phase space requirements at the wiggler, low beam energy, and high beam current subject the design to numerous constraints. This report addresses these issues and presents a design solution for an accelerator transport lattice meeting the requirements imposed by physical phenomena and operational necessities

  20. Design of the Zero Gradient Synchrotron Booster-II lattice

    International Nuclear Information System (INIS)

    Crosbie, E.A.; Foss, M.H.; Khoe, T.K.; Simpson, J.D.

    1975-01-01

    A 500 MeV booster was designed at the Argonne National Laboratory to increase the beam intensity from the Zero Gradient Synchrotron (ZGS). Many turns of H - ions from the 50 MeV linac will be injected into the booster and stripped to H + so that the ring will contain the maximum useful charge in each booster pulse. Several booster pulses will be injected into the ZGS to form one ZGS pulse. This machine is now under construction. (auth)

  1. Injector Design for a Model Electron Ring at the University of Maryland

    Science.gov (United States)

    Godlove, T.; Bernal, S.; Deng, J. J.; Li, Y.; Reiser, M.; Wang, J. G.; Zou, Y.

    1997-05-01

    A model electron recirculator is being developed at the University of Maryland. It employs a 10-keV, space-charge-dominated beam injected into a 1.8-m radius ring equipped with a strong-focusing lattice based on printed-circuit quadrupoles and dipoles. The motivation and general features are described in separate papers. Here we describe the design for injecting a single-turn bunch into the ring. The system includes a low-emittance e-gun, matching section, pulsed dipole and Panofsky quadrupole. The dipole at the injection point must deflect the beam -10^circ during entry and +10^circ after entry, with about 25 ns transition time. The Panofsky quadrupole must be off during entry and on for subsequent laps, with a similar rise time.

  2. Design of delay insensitive circuits using multi-ring structures

    DEFF Research Database (Denmark)

    Sparsø, Jens; Staunstrup, Jørgen; Dantzer-Sørensen, Michael

    1992-01-01

    The design and VLSI implementation of a delay insensitive circuit that computes the inner product of two vec·tors is described. The circuit is based on an iterative serial-parallel multiplication algorithm. The design is based on a data flow approach using pipelines and rings that are combined...

  3. Design of the SLC damping ring to linac transport lines

    International Nuclear Information System (INIS)

    Fieguth, T.H.; Murray, J.J.

    1983-07-01

    The first and second order optics for the damping ring to linac transport line are designed to preserve the damped transverse emittance while simultaneously compressing the bunch length of the beam to that length required for reinjection into the linac. This design, including provisions for future control of beam polarization, is described

  4. Design Issues of the Pre-Compression Rings of Iter

    Science.gov (United States)

    Knaster, J.; Baker, W.; Bettinali, L.; Jong, C.; Mallick, K.; Nardi, C.; Rajainmaki, H.; Rossi, P.; Semeraro, L.

    2010-04-01

    The pre-compression system is the keystone of ITER. A centripetal force of ˜30 MN will be applied at cryogenic conditions on top and bottom of each TF coil. It will prevent the `breathing effect' caused by the bursting forces occurring during plasma operation that would affect the machine design life of 30000 cycles. Different alternatives have been studied throughout the years. There are two major design requirements limiting the engineering possibilities: 1) the limited available space and 2) the need to hamper eddy currents flowing in the structures. Six unidirectionally wound glass-fibre composite rings (˜5 m diameter and ˜300 mm cross section) are the final design choice. The rings will withstand the maximum hoop stresses machine operation. The present paper summarizes the pre-compression ring R&D carried out during several years. In particular, we will address the composite choice and mechanical characterization, assessment of creep or stress relaxation phenomena, sub-sized rings testing and the optimal ring fabrication processes that have led to the present final design.

  5. Conceptual design of a moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1983-01-01

    A design of a prototype Moving-Ring Reactor has been completed. The fusion fuel is confined in current-carrying rings of magnetically field-reversed plasma (''compact toroids''). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three ''burn stations''. Separator coils and a slight axial guide-field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for one third of the total burn time at each station. D-T- 3 He ice pellets refuel the rings at a rate which maintains constant radiated power. The first wall and tritium breeding blanket designs make credible use of helium cooling, SiC and Li 2 O to minimize structural radioactivity. ''Hands-on'' maintenance is possible on all reactor components outside the blanket. The first wall and blanket are designed to shut the reactor down passively in the event of a loss-of-coolant or loss-of-flow accident. Helium removes heat from the first wall, blanket and shield, and is used in a closed-cycle gas turbine to produce electricity. Energy residing in the plasma ring at the end of the burn is recovered via magnetic expansion. Electrostatic direct conversion is not used in this design. The reactor produces a constant net power of 99 MW(e). (author)

  6. Reconfigurable lattice mesh designs for programmable photonic processors.

    Science.gov (United States)

    Pérez, Daniel; Gasulla, Ivana; Capmany, José; Soref, Richard A

    2016-05-30

    We propose and analyse two novel mesh design geometries for the implementation of tunable optical cores in programmable photonic processors. These geometries are the hexagonal and the triangular lattice. They are compared here to a previously proposed square mesh topology in terms of a series of figures of merit that account for metrics that are relevant to on-chip integration of the mesh. We find that that the hexagonal mesh is the most suitable option of the three considered for the implementation of the reconfigurable optical core in the programmable processor.

  7. Design status of the 2.5 GeV National Synchrotron Light Source x-ray ring

    International Nuclear Information System (INIS)

    Krinsky, S.; Blumberg, L.; Bittner, J.; Galayda, J.; Heese, R.; Schuchman, J.C.; van Steenbergen, A.

    1979-01-01

    The present state of the design of the 2.5 GeV electron storage ring for the National Synchrotron Light Source is described. This ring will serve as a dedicated source of synchrotron radiation in the wavelength range 0.1 A to 30 A. While maintaining the basic high brigtness features of the eariler developed lattice structure, recent work resulted in a more economical magnet system, is simplified chromaticity corrections, and improved distribution of the X-ray beam lines. In addition, the adequacy of the dynamic aperture for stable betatron oscillations has been verified for a variety of betatron tunes

  8. Design for a practical, low-emittance damping ring

    International Nuclear Information System (INIS)

    Krejcik, P.

    1988-01-01

    The luminosity requirements for future high-energy linear colliders calls for very low emittances in the two beams. These low emittances can be achieved with damping rings, but, in order to reach the design goal of a factor 10 improvement over present day machines, great care must be taken in their design. This paper emphasizes the need to address simultaneously all of the factors which limit the operational emittance in the ring. Particularly since in standard designs there is a conflict between different design parameters which makes it difficult to extrapolate such designs to very low emittances. The approach chosen here is to resolve such conflicts by separating their design solutions. Wigglers are used predominantly in zero-dispersion regions to achieve the desired damping rate, whereas in the arcs high dispersion insertions are made in regions of zero curvature to allow for easier chromaticity control

  9. The short circumference damping ring design for the ILC

    CERN Document Server

    Korostelev, Maxim S; Kuriki, Masao; Kuroda, Shigeru; Naito, Takashi; Ross, Marc; Urakawa, Junji; Zimmermann, Frank

    2005-01-01

    The ILC damping ring tentative design is driven by the operational scenario of the main linac, the beam-dynamics demand of producing a stable and high-quality beam, the injection/extraction scheme and the kicker performance. In this paper, a short circumference damping ring design based on TME cells is described. The ring accommodates injection kickers which provide a flat top of 280 nsec and a 60 nsec rise and fall time and very fast strip-line kickers for beam extraction with a 2 nsec rise and fall time for 3-MHz operation. The potential impact of collective effects and the possible degradation of the dynamic aperture by nonlinear-wiggler fields are estimated.

  10. Progress on the Design of the Storage Ring Vacuum System for the Advanced Photon Source Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Stillwell, B.; Billett, B.; Brajuskovic, B.; Carter, J.; Kirkus, E.; Lale, M.; Lerch, J.; Noonan, J.; O' Neill, M.; Rocke, B.; Suthar, K.; Walters, D.; Wiemerslage, G.; Zientek, J.

    2017-06-20

    Recent work on the design of the storage ring vacuum system for the Advanced Photon Source Upgrade project (APS-U) includes: revising the vacuum system design to accommodate a new lattice with reverse bend magnets, modifying the designs of vacuum chambers in the FODO sections for more intense incident synchrotron radiation power, modifying the design of rf-shielding bellows liners for better performance and reliability, modifying photon absorber designs to make better use of available space, and integrated planning of components needed in the injection, extraction and rf cavity straight sections. An overview of progress in these areas is presented.

  11. Lattice Design for a High-Power Infrared FEL

    Science.gov (United States)

    Douglas, D. R.

    1997-05-01

    A 1 kW infrared FEL, funded by the U.S. Navy, is under construction at Jefferson Lab. This device will be driven by a compact, 42 MeV, 5 mA, energy-recovering, CW SRF-based linear accelerator to produce light in the 3-6.6 μm range. The machine concept comprises a 10 MeV injector, a linac based on a single high-gradient Jefferson Lab accelerator cryomodule, a wiggler and optical cavity, and an energy-recovery recirculation arc. Energy recovery limits cost and technical risk by reducing the RF power requirements in the driver accelerator. Following deceleration to 10 MeV, the beam is dumped. Stringent phase space requirements at the wiggler, low beam energy, and high beam current subject the accelerator lattice to numerous constraints. Principal considerations include: transport and delivery to the FEL of a high-quality, high-current beam; the impact of coherent synchrotron radiation (CSR) during beam recirculation transport; beam optics aberration control, to provide low-loss energy-recovery transport of a 5% relative momentum spread, high-current beam; attention to possible beam breakup (BBU) instabilities in the recirculating accelerator; and longitudinal phase space management during beam transport, to optimize RF drive system control during energy recovery and FEL operation. The presentation will address the design process and design solution for an accelerator transport lattice that meets the requirements imposed by these physical phenomena and operational necessities.

  12. Six-dimensional modeling of coherent bunch instabilities and related freedback systems in storage rings with power-series maps for the lattice

    International Nuclear Information System (INIS)

    Bengtsson, J.; Briggs, D.; Meddahi, M.

    1994-06-01

    The authors have developed 6-dimensional phase-space code that tracks macroparticles for the study of coherent bunch instabilities and related feedback systems. The model is based on power-series maps to represent the lattice, and allows for straightforward inclusion of effects such as amplitude dependent tune shift, chromaticity, synchrotron oscillations, and synchrotron radiation. It simulates long range wake fields such as resistive-wall effects as well as the higher order modes in cavities. The model has served to study the dynamics relevant to the transverse feedback system currently being commissioned for the Advanced Light Source (ALS). Current work integrates earlier versions into a modular system that includes models for transverse and longitudinal feedback systems. It is designed to provide a modular approach to the dynamics and diagnostics, allowing a user to modify the model of a storage ring at run-time without recompilation

  13. Using simulation to aid trial design: Ring-vaccination trials.

    Directory of Open Access Journals (Sweden)

    Matt David Thomas Hitchings

    2017-03-01

    Full Text Available The 2014-6 West African Ebola epidemic highlights the need for rigorous, rapid clinical trial methods for vaccines. A challenge for trial design is making sample size calculations based on incidence within the trial, total vaccine effect, and intracluster correlation, when these parameters are uncertain in the presence of indirect effects of vaccination.We present a stochastic, compartmental model for a ring vaccination trial. After identification of an index case, a ring of contacts is recruited and either vaccinated immediately or after 21 days. The primary outcome of the trial is total vaccine effect, counting cases only from a pre-specified window in which the immediate arm is assumed to be fully protected and the delayed arm is not protected. Simulation results are used to calculate necessary sample size and estimated vaccine effect. Under baseline assumptions about vaccine properties, monthly incidence in unvaccinated rings and trial design, a standard sample-size calculation neglecting dynamic effects estimated that 7,100 participants would be needed to achieve 80% power to detect a difference in attack rate between arms, while incorporating dynamic considerations in the model increased the estimate to 8,900. This approach replaces assumptions about parameters at the ring level with assumptions about disease dynamics and vaccine characteristics at the individual level, so within this framework we were able to describe the sensitivity of the trial power and estimated effect to various parameters. We found that both of these quantities are sensitive to properties of the vaccine, to setting-specific parameters over which investigators have little control, and to parameters that are determined by the study design.Incorporating simulation into the trial design process can improve robustness of sample size calculations. For this specific trial design, vaccine effectiveness depends on properties of the ring vaccination design and on the

  14. Double Ring Antenna Design for MIMO Application in Mobile Terminals

    DEFF Research Database (Denmark)

    Zhao, Kun; Zhang, Shuai; Ying, Zhinong

    2015-01-01

    In this paper, We present a MIMO bezel antenna design composed by a seamless double metal ring structure. The MIMO antenna mainly operates in the loop mode and can cover the majority of globe cellular bands. Good efficiencies (>-4dB) and a low envelope correlation coefficient (<0.5) are achieved,...

  15. Calibration Device Designed for proof ring used in SCC Experiment

    Science.gov (United States)

    Hu, X. Y.; Kang, Z. Y.; Yu, Y. L.

    2017-11-01

    In this paper, a calibration device for proof ring used in SCC (Stress Corrosion Cracking) experiment was designed. A compact size loading device was developed to replace traditional force standard machine or a long screw nut. The deformation of the proof ring was measured by a CCD (Charge-Coupled Device) during the calibration instead of digital caliper or a dial gauge. The calibration device was verified at laboratory that the precision of force loading is ±0.1% and the precision of deformation measurement is ±0.002mm.

  16. Conceptual Design of ILC Damping Ring Wiggler Straight Vacuum System

    International Nuclear Information System (INIS)

    Marks, S.; Kennedy, K.; Plate, D.; Schlueter, R.D.; Zisman, M.

    2007-01-01

    The positron and electron damping rings for the International Linear Collider will contain long straight sections consisting of twenty wiggler/quadrupole pairs. The wigglers will be based upon the CESR superconducting design. There are a number of challenges associated with the design of the wiggler straight vacuum system, in particular, the absorption of photon power generated by the wigglers. This paper will present the overall conceptual design of the wiggler straight vacuum system developed for the ILC Reference Design Report. Particular emphasis will be placed on photon power load calculations and the absorber design

  17. Status of the MEIC ion collider ring design

    International Nuclear Information System (INIS)

    Morozov, Vasiliy; Derbenev, Yaroslav; Harwood, Leigh; Hutton, Andrew; Lin, Fanglei; Pilat, Fulvia; Zhang, Yuhong; Cai, Yunhai; Nosochkov, Y. M.; Sullivan, Michael; Wang, M.-H.; Wienands, Uli; Gerity, James; Mann, Thomas; McIntyre, Peter; Pogue, Nathaniel; Sattarov, Akhdiyor

    2015-09-01

    We present an update on the design of the ion collider ring of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The design is based on the use of super-ferric magnets. It provides the necessary momentum range of 8 to 100 GeV/c for protons and ions, matches the electron collider ring design using PEP-II components, fits readily on the JLab site, offers a straightforward path for a future full-energy upgrade by replacing the magnets with higher-field ones in the same tunnel, and is more cost effective than using presently available current-dominated super-conducting magnets. We describe complete ion collider optics including an independently-designed modular detector region.

  18. Status of the MEIC ion collider ring design

    International Nuclear Information System (INIS)

    Morozov, V. S.; Derbenev, Ya. S.; Harwood, L.; Hutton, A.; Lin, F.; Pilat, F.; Zhang, Y.; Cai, Y.; Nosochkov, Y. M.; Sullivan, M.; Wang, M-H; Wienands, U.; Gerity, J.; Mann, T.; McIntyre, P.; Pogue, N. J.; Satttarov, A.

    2015-01-01

    We present an update on the design of the ion collider ring of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab. The design is based on the use of super-ferric magnets. It provides the necessary momentum range of 8 to 100 GeV/c for protons and ions, matches the electron collider ring design using PEP-II components, fits readily on the JLab site, offers a straightforward path for a future full-energy upgrade by replacing the magnets with higher-field ones in the same tunnel, and is more cost effective than using presently available current-dominated superconducting magnets. We describe complete ion collider optics including an independently-designed modular detector region.

  19. Inherent secure communications using lattice based waveform design

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, Matthew Owen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    The wireless communications channel is innately insecure due to the broadcast nature of the electromagnetic medium. Many techniques have been developed and implemented in order to combat insecurities and ensure the privacy of transmitted messages. Traditional methods include encrypting the data via cryptographic methods, hiding the data in the noise floor as in wideband communications, or nulling the signal in the spatial direction of the adversary using array processing techniques. This work analyzes the design of signaling constellations, i.e. modulation formats, to combat eavesdroppers from correctly decoding transmitted messages. It has been shown that in certain channel models the ability of an adversary to decode the transmitted messages can be degraded by a clever signaling constellation based on lattice theory. This work attempts to optimize certain lattice parameters in order to maximize the security of the data transmission. These techniques are of interest because they are orthogonal to, and can be used in conjunction with, traditional security techniques to create a more secure communication channel.

  20. Some remarks on the design of HIF current multiplication rings

    International Nuclear Information System (INIS)

    Reich, K.H.

    1983-12-01

    The conceptual design of heavy ion fusion drivers has now reached a state, where the overall approach has become fairly clear. One design features an RF linac plus current and beam multiplication rings. The present remarks concern the assignment of multiturn injection, beam storage and bunching to an optimized number of rings and transport lines, as well as some criteria for their designs. The main parameter constraints are discussed, showing how they can be met, although there is little flexibility at the present stage of understanding and technology. A shortened version of this report is scheduled for presentation at the ''INS International Symposium on Heavy Ion Accelerators and Their Application to Inertial Fusion'' Tokyo, January 23-27 1984. (author)

  1. Design of Chern insulating phases in honeycomb lattices

    Science.gov (United States)

    Pickett, Warren E.; Lee, Kwan-Woo; Pentcheva, Rossitza

    2018-06-01

    The search for robust examples of the magnetic version of topological insulators, referred to as quantum anomalous Hall insulators or simply Chern insulators, so far lacks success. Our groups have explored two distinct possibilities based on multiorbital 3d oxide honeycomb lattices. Each has a Chern insulating phase near the ground state, but materials parameters were not appropriate to produce a viable Chern insulator. Further exploration of one of these classes, by substituting open shell 3d with 4d and 5d counterparts, has led to realistic prediction of Chern insulating ground states. Here we recount the design process, discussing the many energy scales that are active in participating (or resisting) the desired Chern insulator phase.

  2. Electron ring design for HERA, including spin-matching

    International Nuclear Information System (INIS)

    Skuja, A.; Hand, L.; Steffen, K.; Barber, D.

    1984-01-01

    A. Skuja has been working in collaboration with Professor Lou Hand in obtaining an optics for the electron ring at HERA that satisfies the usual constraints of an electron storage ring, but in addition allows longitudinal polarization in the interaction region without depolarizing the electron beam completely. This collaboration effort grew out of their work on a possible electron ring at Fermilab. When this project was degraded in priority at Fermilab, they turned their attention to the HERA project at DESY. The HERA project will have an electron ring of about 30 GeV e - (or e + ) incident on 800 GeV protons. Recently it has been decided that the collisions should be head on (0 0 crossing), although all previous designs had a crossing angle of the 2 beams of 20 mrad. Professors Hand and Skuja implemented a complete program in the last year and a half that could fit the usual Turis parameters as well as the so called 12 spin-matching conditions of Chao and Yukoya for all possible machine elements including solenoids. The program has the possibility of fully coupling vertical and horizontal motion using the usual eigenvalue method

  3. Optimal design for crosstalk analysis in 12-core 5-LP mode homogeneous multicore fiber for different lattice structure

    Science.gov (United States)

    Kumar, Dablu; Ranjan, Rakesh

    2018-03-01

    12-Core 5-LP mode homogeneous multicore fibers have been proposed for analysis of inter-core crosstalk and dispersion, with four different lattice structures (circular, 2-ring, square lattice, and triangular lattice) having cladding diameter of 200 μm and a fixed cladding thickness of 35 μm. The core-to-core crosstalk impact has been studied numerically with respect to bending radius, core pitch, transmission distance, wavelength, and core diameter for all 5-LP modes. In anticipation of further reduction in crosstalk levels, the trench-assisted cores have been incorporated for all respective designs. Ultra-low crosstalk (-138 dB/100 km) has been achieved through the triangular lattice arrangement, with trench depth Δ2 = -1.40% for fundamental (LP01) mode. It has been noted that the impact of mode polarization on crosstalk behavior is minor, with difference in crosstalk levels between two polarized spatial modes as ≤0.2 dB. Moreover, the optimized cladding diameter has been obtained for all 5-LP modes for a target value of crosstalk of -50 dB/100 km, with all the core arrangements. The dispersion characteristic has also been analyzed with respect to wavelength, which is nearly 2.5 ps/nm km at operating wavelength 1550 nm. The relative core multiplicity factor (RCMF) for the proposed design is obtained as 64.

  4. The physics design of the Australian synchrotron storage ring

    International Nuclear Information System (INIS)

    Boldeman, J.W.; Einfeld, D.

    2004-01-01

    This paper describes the physics design of the Australian Synchrotron Storage Ring--Boomerang, which is currently under construction on a site adjacent to Monash University in Melbourne, Victoria. It also includes brief historical notes on the development of the proposal, some background material on the Australian synchrotron research community and preliminary information on possible research programs on the new facility. The facility itself is now in the early stages of construction under the leadership of Seaborne and Jackson

  5. Lattice design of 3 GeV synchrotron for JAERI-KEK joint project

    Energy Technology Data Exchange (ETDEWEB)

    Noda, F. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    This paper summarizes the Lattice of 3 GeV proton synchrotron for JAERI-KEK joint project. This 3 GeV ring provides 3 GeV proton beam for neutron science, muon science, exotic nuclear science facility and 50 GeV ring. The output beam power of this ring is 1 MW with 25 Hz operation. This beam power is a few times higher than that of the existing accelerators. To achieve this goal, it is important to cure an uncontrolled beam loss. A power of uncontrolled beam loss must be smaller than 1 W/m for hands-on maintenance. This uncontrolled beam loss is caused by beam injection, space-charge force, extraction and some known or unknown instability. The precise painting system, adequate aperture of ring and extraction line, and secure collimation systems are essential issues of this 3 GeV ring. (author)

  6. The PEP-II Project: Low-Energy Ring Design and Project Status

    International Nuclear Information System (INIS)

    Zisman, Michael S.

    2006-01-01

    We describe the present status of the PEP-II project. The project comprises four major systems: Injector, High-Energy Ring (HER), Low-Energy Ring (LER), and Interaction Region (IR). We focus in detail on the design of the LER, as its parameters and requirements are most closely related to those required for the Beijing Tau-Charm Factory rings. The PEP-II LER is a high-current, 3.1-GeV positron ring mounted above the 9-GeV HER. The LER uses a wiggler located in one of its six straight sections to provide emittance control and additional damping. We describe the rather complicated IR, which must transport the LER beam into the plane of the HER, focus it to a common beam size, and separate the beams after the head-on collisions. Both permanent magnet and conventional electromagnets are used in this area. The LER lattice has now adopted a simplified non-interleaved sextupole correction scheme that has reduced the required number of sextupoles substantially. We describe the LER vacuum system, one of the most challenging subsystems in PEP-II. It employs several technologies. In the arcs, aluminum extrusions and titanium sublimation pumps are employed; the straight sections use stainless steel chambers with lumped ion pumps. In the wiggler area, an extended copper photon dump with nonevaporable getter (NEG) pumps is employed to handle the very large synchrotron radiation power. The design of the room-temperature RF system, the bunch-by-bunch longitudinal and transverse feedback systems, and some of the special diagnostics will be described briefly. The PEP-II project remains on schedule to begin commissioning of the HER in April 1997, followed by the LER a year later

  7. Fuel lattice design in a boiling water reactor using a knowledge-based automation system

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Wu-Hsiung, E-mail: wstong@iner.gov.tw; Lee, Tien-Tso; Kuo, Weng-Sheng; Yaur, Shung-Jung

    2015-11-15

    Highlights: • An automation system was developed for the fuel lattice radial design of BWRs. • An enrichment group peaking equalizing method is applied to optimize the design. • Several heuristic rules and restrictions are incorporated to facilitate the design. • The CPU time for the system to design a 10x10 lattice was less than 1.2 h. • The beginning-of-life LPF was improved from 1.319 to 1.272 for one of the cases. - Abstract: A knowledge-based fuel lattice design automation system for BWRs is developed and applied to the design of 10 × 10 fuel lattices. The knowledge implemented in this fuel lattice design automation system includes the determination of gadolinium fuel pin location, the determination of fuel pin enrichment and enrichment distribution. The optimization process starts by determining the gadolinium distribution based on the pin power distribution of a flat enrichment lattice and some heuristic rules. Next, a pin power distribution flattening and an enrichment grouping process are introduced to determine the enrichment of each fuel pin enrichment type and the initial enrichment distribution of a fuel lattice design. Finally, enrichment group peaking equalizing processes are performed to achieve lower lattice peaking. Several fuel lattice design constraints are also incorporated in the automation system such that the system can accomplish a design which meets the requirements of practical use. Depending on the axial position of the lattice, a different method is applied in the design of the fuel lattice. Two typical fuel lattices with U{sup 235} enrichment of 4.471% and 4.386% were taken as references. Application of the method demonstrates that improved lattice designs can be achieved through the enrichment grouping and the enrichment group peaking equalizing method. It takes about 11 min and 1 h 11 min of CPU time for the automation system to accomplish two design cases on an HP-8000 workstation, including the execution of CASMO-4

  8. Fuel lattice design in a boiling water reactor using a knowledge-based automation system

    International Nuclear Information System (INIS)

    Tung, Wu-Hsiung; Lee, Tien-Tso; Kuo, Weng-Sheng; Yaur, Shung-Jung

    2015-01-01

    Highlights: • An automation system was developed for the fuel lattice radial design of BWRs. • An enrichment group peaking equalizing method is applied to optimize the design. • Several heuristic rules and restrictions are incorporated to facilitate the design. • The CPU time for the system to design a 10x10 lattice was less than 1.2 h. • The beginning-of-life LPF was improved from 1.319 to 1.272 for one of the cases. - Abstract: A knowledge-based fuel lattice design automation system for BWRs is developed and applied to the design of 10 × 10 fuel lattices. The knowledge implemented in this fuel lattice design automation system includes the determination of gadolinium fuel pin location, the determination of fuel pin enrichment and enrichment distribution. The optimization process starts by determining the gadolinium distribution based on the pin power distribution of a flat enrichment lattice and some heuristic rules. Next, a pin power distribution flattening and an enrichment grouping process are introduced to determine the enrichment of each fuel pin enrichment type and the initial enrichment distribution of a fuel lattice design. Finally, enrichment group peaking equalizing processes are performed to achieve lower lattice peaking. Several fuel lattice design constraints are also incorporated in the automation system such that the system can accomplish a design which meets the requirements of practical use. Depending on the axial position of the lattice, a different method is applied in the design of the fuel lattice. Two typical fuel lattices with U"2"3"5 enrichment of 4.471% and 4.386% were taken as references. Application of the method demonstrates that improved lattice designs can be achieved through the enrichment grouping and the enrichment group peaking equalizing method. It takes about 11 min and 1 h 11 min of CPU time for the automation system to accomplish two design cases on an HP-8000 workstation, including the execution of CASMO-4 lattice

  9. Optics Design and Performance of an Ultra-Low Emittance Damping Ring for the Compact Linear Collider

    CERN Document Server

    Korostelev, M S

    2006-01-01

    A high-energy (0.5-3.0 TeV centre of mass) electron-positron Compact Linear Collider (CLIC) is being studied at CERN as a new physics facility. The design study has been optimized for 3 TeV centre-of-mass energy. Intense bunches injected into the main linac must have unprecedentedly small emittances to achieve the design luminosity 1035cm-2s-1 required for the physics experiments. The positron and electron bunch trains will be provided by the CLIC injection complex. This thesis describes an optics design and performance of a positron damping ring developed for producing such ultra-low emittance beam. The linear optics of the CLIC damping ring is optimized by taking into account the combined action of radiation damping, quantum excitation and intrabeam scattering. The required beam emittance is obtained by using a TME (Theoretical Minimum Emittance) lattice with compact arcs and short period wiggler magnets located in dispersionfree regions. The damping ring beam energy is chosen as 2.42 GeV. The lattice featu...

  10. Square lattice honeycomb tri-carbide fuels for 50 to 250 KN variable thrust NTP design

    International Nuclear Information System (INIS)

    Anghaie, Samim; Knight, Travis; Gouw, Reza; Furman, Eric

    2001-01-01

    Ultrahigh temperature solid solution of tri-carbide fuels are used to design an ultracompact nuclear thermal rocket generating 950 seconds of specific impulse with scalable thrust level in range of 50 to 250 kilo Newtons. Solid solutions of tri-carbide nuclear fuels such as uranium-zirconium-niobium carbide. UZrNbC, are processed to contain certain mixing ratio between uranium carbide and two stabilizing carbides. Zirconium or niobium in the tri-carbide could be replaced by tantalum or hafnium to provide higher chemical stability in hot hydrogen environment or to provide different nuclear design characteristics. Recent studies have demonstrated the chemical compatibility of tri-carbide fuels with hydrogen propellant for a few to tens of hours of operation at temperatures ranging from 2800 K to 3300 K, respectively. Fuel elements are fabricated from thin tri-carbide wafers that are grooved and locked into a square-lattice honeycomb (SLHC) shape. The hockey puck shaped SLHC fuel elements are stacked up in a grooved graphite tube to form a SLHC fuel assembly. A total of 18 fuel assemblies are arranged circumferentially to form two concentric rings of fuel assemblies with zirconium hydride filling the space between assemblies. For 50 to 250 kilo Newtons thrust operations, the reactor diameter and length including reflectors are 57 cm and 60 cm, respectively. Results of the nuclear design and thermal fluid analyses of the SLHC nuclear thermal propulsion system are presented

  11. Designing lattice structures with maximal nearest-neighbor entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Navarro-Munoz, J C; Lopez-Sandoval, R [Instituto Potosino de Investigacion CientIfica y Tecnologica, Camino a la presa San Jose 2055, 78216 San Luis Potosi (Mexico); Garcia, M E [Theoretische Physik, FB 18, Universitaet Kassel and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Str.40, 34132 Kassel (Germany)

    2009-08-07

    In this paper, we study the numerical optimization of nearest-neighbor concurrence of bipartite one- and two-dimensional lattices, as well as non-bipartite two-dimensional lattices. These systems are described in the framework of a tight-binding Hamiltonian while the optimization of concurrence was performed using genetic algorithms. Our results show that the concurrence of the optimized lattice structures is considerably higher than that of non-optimized systems. In the case of one-dimensional chains, the concurrence increases dramatically when the system begins to dimerize, i.e., it undergoes a structural phase transition (Peierls distortion). This result is consistent with the idea that entanglement is maximal or shows a singularity near quantum phase transitions. Moreover, the optimization of concurrence in two-dimensional bipartite and non-bipartite lattices is achieved when the structures break into smaller subsystems, which are arranged in geometrically distinguishable configurations.

  12. Moving ring field-reversed mirror blanket design considerations

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Cheng, E.T.; Creedon, L.; Kessel, C.; Norman, J.; Schultz, K.R.

    1981-01-01

    A blanket design for the Moving Ring Field-Reversed Mirror Reactor (MRFRM) is presented in this paper. The design emphasis is placed on minimizing the induced radioactivities in the first-wall, blanket and shield. To this end, aluminum-alloy was selected as the reference structural material, giving dose rates two weeks after shutdown that are 3 to 4 orders of magnitude lower than comparable steel structures. The aluminum first-wall is water-cooled and thermally insulated from the high temperature SiC-clad Li 2 O tritium breeding zone. A local tritium breeding ratio of 1.05 was obtained for the design. The tritium is extracted from the Li 2 O by the use of a small dry helium purge stream through the SiC tubes. About 1 ppM hydrogen is added to the helium purge stream to enhance the tritium recovery rate. Helium at 28 atmospheres pressure is circulated through the blanket and shield, with an outlet temperature of 850 0 C, which is coupled with an existing small size closed-cycle gas turbine (CCGT) power conversion system. The spatial and temporal variations of the first-wall temperature caused by the translational movement of the plasma rings along the axis of the cylindrical reactor were evaluated. The after-heat cooling problems of the first-wall were also considered

  13. The design of the Spectrometer Ring at the HIAF

    Science.gov (United States)

    Wu, B.; Yang, J. C.; Xia, J. W.; Yan, X. L.; Hu, X. J.; Mao, L. J.; Sheng, L. N.; Wu, J. X.; Yin, D. Y.; Chai, W. P.; Shen, G. D.; Ge, W. W.; Wang, G.; Zhao, H.; Ruan, S.; Ma, X. W.; Wang, M.; Litvinov, S.; Wen, W. Q.; Chen, X. C.; Chen, R. J.; Tang, M. T.; Wu, W.; Luo, C.; Zhao, T. C.; Shi, C. F.; Fu, X.; Liu, J.; Liang, L.

    2018-02-01

    The Spectrometer Ring (SRing) is an essential part of the High Intensity heavy-ion Accelerator Facility project (HIAF) in China. It is designed as a multi-functional experimental storage ring, which will be able to operate in three ion optical operation modes. The SRing will be used as a time-of-flight mass spectrometer for short-lived, especially neutron-rich nuclei. It will also be used to collect and cool Rare Isotope Beams (RIBs) or highly-charged stable ion beams for nuclear and atomic physics experiments. The design magnetic rigidity is in the range 1.5 to 15 Tm. The beam cooling system consists of stochastic cooling and electron cooling devices. With a help of an electron cooler, stored ions will be decelerated to a minimum energy of 30 MeV/u by RF cavities. The extraction system of the SRing will allow cooled ion beams to be extracted to an external target for further ion manipulations or reaction experiments. The general ion optics design and technical requirements of SRing subsystems are presented and discussed in this paper.

  14. Experience with split transition lattices at RHIC

    International Nuclear Information System (INIS)

    Montag, C.; Tepikian, S.; Blaskiewicz, M.; Brennan, J.M.

    2010-01-01

    During the acceleration process, heavy ion beams in RHIC cross the transition energy. When RHIC was colliding deuterons and gold ions during Run-8, lattices with different integer tunes were used for the two rings. This resulted in the two rings crossing transition at different times, which proved beneficial for the 'Yellow' ring, the RF system of which is slaved to the 'Blue' ring. For the symmetric gold-gold run in FY2010, lattices with different transition energies but equal tunes were implemented. We report the optics design concept as well as operational experience with this configuration.

  15. National synchrotron light source VUV storage ring

    International Nuclear Information System (INIS)

    Blumberg, L.; Bittner, J.; Galayda, J.; Heese, R.; Krinsky, S.; Schuchman, J.; van Steenbergen, A.

    1979-01-01

    A 700 MeV electron storage ring designed for synchrotron radiation applications is described. Lattice and stability calculations are presented and the vacuum, correction and injection systems are discussed

  16. Adjoint Parameter Sensitivity Analysis for the Hydrodynamic Lattice Boltzmann Method with Applications to Design Optimization

    DEFF Research Database (Denmark)

    Pingen, Georg; Evgrafov, Anton; Maute, Kurt

    2009-01-01

    We present an adjoint parameter sensitivity analysis formulation and solution strategy for the lattice Boltzmann method (LBM). The focus is on design optimization applications, in particular topology optimization. The lattice Boltzmann method is briefly described with an in-depth discussion...

  17. Theory and design aspects of the 1 GeV proton compressor ring for pulsed beams of spallation neutrons and muons

    International Nuclear Information System (INIS)

    Rees, G.H.

    1988-05-01

    In the present paper, an outline design is presented for a 50 Hz, 1 GeV proton compressor ring of Japanese Hadron Project. The design aims are to provide two pulses of 1 GeV protons with an average current of 200 μA, one pulse with the time duration of 20 ns and the other of 100 - 200 ns. Very important aspects of magnet lattice, injection scheme, bunch compression process, beam instabilities are discussed. (author)

  18. A coaxial ring-sidearm power extraction design

    International Nuclear Information System (INIS)

    Ben-Menahem, S.; Yu, D.

    1996-01-01

    We report a successful klystron power extraction design, in which a TEM coaxial mode is transmitted into TE10 mode of a WR90 rectangular waveguide at 11.42 GHz, with very little TEM reflection and almost vanishing asymmetric (TEM → TE11, or monopole to dipole) reflectance. Our coupler consists of a ring (disk) around the coaxial waveguide, and a coax-WR90 sidearm junction. The methods used in the design are numerical simulation, performed on the MAFIA3 T3 time- domain module and on the High Frequency Structure Simulator, and analytical treatment to guide the numerical runs. The demerit parameters (dipole reflectance and TEM reflection) can be reduced as much as desired (to zero in principle), the only limitation being computer run time and memory. Results are accurate to a few percent

  19. Optical Lattice Design Assisted by Non-Hermitian Hamiltonians

    International Nuclear Information System (INIS)

    Rodríguez-Lara, B M

    2016-01-01

    A brief introduction to non-Hermitian arrays of coupled waveguides is presented. The PT-symmetric dimer is revisited for the sake of clarity. It belongs to the class of photonic lattices with underlying SO(2,1) symmetry that have been shown to provide all-optical conversion from phase to amplitude. (paper)

  20. A Design Report of the Baseline for PEP-X: an Ultra-Low Emittance Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Bane, Karl; Bertsche, Kirk; Cai, Yunhai; Chao, Alex; Corbett, Willian; Fox, John; Hettel, Robert; Huang, Xiaobiao; Huang, Zhirong; Ng, Cho-Kuen; Nosochkov, Yuri; Novokhatski, Sasha; Radedeau, Thomas; Raubenheimer, Tor; Rivetta, Claudio; Safranek, James; Seeman, John; Stohr, Joachim; Stupakov, Gennady; Wang, Lanfa; Wang, Min-Huey; /SLAC

    2010-06-02

    Over the past year, we have worked out a baseline design for PEP-X, as an ultra-low emittance storage ring that could reside in the existing 2.2-km PEPII tunnel. The design features a hybrid lattice with double bend achromat (DBA) cells in two arcs and theoretical minimum emittance (TME) cells in the remaining four arcs. Damping wigglers are used to reduce the horizontal emittance to 86 pm-rad at zero current for a 4.5 GeV electron beam. At a design current of 1.5 A, the horizontal emittance increases, due to intrabeam scattering, to 164 pm-rad when the vertical emittance is maintained at a diffraction limited 8 pm-rad. The baseline design will produce photon beams achieving a brightness of 10{sup 22} (ph/s/mm{sup 2}/mrad{sup 2}/0.1% BW) at 10 keV in a 3.5-m conventional planar undulator. Our study shows that an optimized lattice has adequate dynamic aperture, while accommodating a conventional off-axis injection system. In this report, we present the results of study, including the lattice properties, nonlinear dynamics, intra-beam scattering and Touschek lifetime, RF system, and collective instabilities. Finally, we discuss the possibility of partial lasing at soft X-ray wavelengths using a long undulator in a straight section.

  1. Holographic Fabrication of Designed Functional Defect Lines in Photonic Crystal Lattice Using a Spatial Light Modulator

    Directory of Open Access Journals (Sweden)

    Jeffrey Lutkenhaus

    2016-04-01

    Full Text Available We report the holographic fabrication of designed defect lines in photonic crystal lattices through phase engineering using a spatial light modulator (SLM. The diffracted beams from the SLM not only carry the defect’s content but also the defect related phase-shifting information. The phase-shifting induced lattice shifting in photonic lattices around the defects in three-beam interference is less than the one produced by five-beam interference due to the alternating shifting in lattice in three beam interference. By designing the defect line at a 45 degree orientation and using three-beam interference, the defect orientation can be aligned with the background photonic lattice, and the shifting is only in one side of the defect line, in agreement with the theory. Finally, a new design for the integration of functional defect lines in a background phase pattern reduces the relative phase shift of the defect and utilizes the different diffraction efficiency between the defect line and background phase pattern. We demonstrate that the desired and functional defect lattice can be registered into the background lattice through the direct imaging of designed phase patterns.

  2. Polarized wiggler for NSLS x-ray ring design considerations

    International Nuclear Information System (INIS)

    Friedman, A.; Krinsky, S.; Blum, E.

    1992-03-01

    We examine the properties of an elliptically polarized wiggler that will generate circularly polarized photons with energy spectrum of 3--12 KeV. The vertical wiggler magnetic field is produced by permanent magnets while the horizontal wiggler field is generated by electric coils capable of AC excitation. The radiation parameters of the wiggler are presented, including photon flux, circular and linear polarization and spectrum. These parameters are compared to the synchrotron radiation from a bending magnet. Numerical values are calculated for radiation from the wiggler and bending magnet for the NSLS X-ray ring parameters. A conceptual design for such a wiggler is discussed and several different alternatives are analyzed. We consider AC excitation of the wiggler to produce the time modulation of the elliptic polarization, and also to produce time modulated linearly polarized radiation

  3. Development and verification of a reciprocating test rig designed for investigation of piston ring tribology

    DEFF Research Database (Denmark)

    Pedersen, Michael Torben; Imran, Tajammal; Klit, Peder

    2009-01-01

    This paper describes the development and verification of a reciprocating test rig, which was designed to study the piston ring tribology. A crank mechanism is used to generate a reciprocating motion for a moving plate, which acts as the liner. A stationary block acting as the ring package is loaded......, which is suitable for the study of piston ring tribology....

  4. Designing machines for lattice physics and algorithm investigation

    International Nuclear Information System (INIS)

    Fischler, M.; Atac, R.; Cook, A.

    1989-10-01

    Special-purpose computers are appropriate tools for the study of lattice gauge theory. While these machines deliver considerable processing power, it is also important to be able to program complex physics ideas and investigate algorithms on them. We examine features that facilitate coding of physics problems, and flexibility in algorithms. Appropriate balances among power, memory, communications and I/O capabilities are presented. 10 refs

  5. From lattice Hamiltonians to tunable band structures by lithographic design

    Science.gov (United States)

    Tadjine, Athmane; Allan, Guy; Delerue, Christophe

    2016-08-01

    Recently, new materials exhibiting exotic band structures characterized by Dirac cones, nontrivial flat bands, and band crossing points have been proposed on the basis of effective two-dimensional lattice Hamiltonians. Here, we show using atomistic tight-binding calculations that these theoretical predictions could be experimentally realized in the conduction band of superlattices nanolithographed in III-V and II-VI semiconductor ultrathin films. The lithographed patterns consist of periodic lattices of etched cylindrical holes that form potential barriers for the electrons in the quantum well. In the case of honeycomb lattices, the conduction minibands of the resulting artificial graphene host several Dirac cones and nontrivial flat bands. Similar features, but organized in different ways, in energy or in k -space are found in kagome, distorted honeycomb, and Lieb superlattices. Dirac cones extending over tens of meV could be obtained in superlattices with reasonable sizes of the lithographic patterns, for instance in InAs/AlSb heterostructures. Bilayer artificial graphene could be also realized by lithography of a double quantum-well heterostructure. These new materials should be interesting for the experimental exploration of Dirac-based quantum systems, for both fundamental and applied physics.

  6. The linear lattice design of an advanced VUV/SXR photon source for Daresbury

    International Nuclear Information System (INIS)

    Clarke, J.A.; Corlett, J.N.; Poole, M.W.; Smith, S.L.; Suller, V.P.; Welbourne, L.A.

    1992-01-01

    The linear lattice design of an advanced synchrotron radiation source in the VUV/SXR region, optimised to produce undulator radiation with high brilliance over the range 5-1000 eV, is discussed. The photon source is based on a 10 cell double bend achromat which will operate over the range 0.5-1.2 GeV. The linear lattice properties over the total available working region are presented for this structure. It is demonstrated that the circular lattice can be extended to a racetrack configuration by the inclusion of two long matched straights with free lengths of over 15 m each. (author) 8 refs.; 5 figs.; 1 tab

  7. Ring Irrigation System (RIS design through customer preference representation

    Directory of Open Access Journals (Sweden)

    Ridwan Infandra I.Z.

    2018-01-01

    Full Text Available In agricultural field, irrigation is one of the most interesting considerations affecting the rate of plant growth and development. Micro-irrigation as the dripping or sprinkle method is one of the irrigation types that applies the small amount of water for fulfilling the humidity requirement. The most important factors affecting the demand of water for plants are soil conditions and effect of climatic factors. With less human labour required, to improve the irrigation method from the recent days, analyzing water used or water permeation automatically through the soil moisture has been raised as the interesting topic. Proposed in this research is the ring irrigation system (RIS which is introduced as an alternative channel for emitters that drip water directly onto the soil at the plant’s root zone where the soil conditions before and after watering can be quickly detected by the sensors. This RIS can be used for the potted plant, green house, or other small farm fields. Product design and development (PDD is applied in this research for assisting the designer to understand and create the RIS prototype properly according to the customer’s requirements where the suggested functions obtained will be added and tested.

  8. CORRECTION SYSTEMS UPGRADE FOR THE SNS RING

    International Nuclear Information System (INIS)

    PAPAPHILIPPOU, Y.; GARDNER, C.J.; LEE, Y.Y.; WEI, J.

    2001-01-01

    In view of the changes in the design of the SNS ring from the original FODO lattice [l] to the 220m hybrid lattice [2] and finally 1.3GeV compatible 248m ring [3], complementary studies have been undertaken, in order to upgrade its correction packages. We review the evolution of the correction systems and present the accelerator physics studies for the adopted schemes and powering plan

  9. Fusion component design for the moving-ring field-reversed mirror reactor

    International Nuclear Information System (INIS)

    Carlson, G.A.

    1981-01-01

    This partial report on the reactor design contains sections on the following: (1) burner section magnet system design, (2) plasma ring energy recovery, (3) vacuum system, (4) cryogenic system, (5) tritium flows and inventories, and (6) reactor design and layout

  10. Storage ring at HIE-ISOLDE Technical design report

    NARCIS (Netherlands)

    Grieser, M.; Litvinov, Yu. A.; Raabe, R.; Blaum, K.; Blumenfeld, Y.; Butler, P. A.; Wenander, F.; Woods, P. J.; Aliotta, M.; Andreyev, A.; Artemyev, A.; Atanasov, D.; Aumann, T.; Balabanski, D.; Barzakh, A.; Batist, L.; Bernardes, A. -P.; Bernhardt, D.; Billowes, J.; Bishop, S.; Borge, M.; Borzov, I.; Boston, A. J.; Brandau, C.; Catford, W.; Catherall, R.; Cederkall, J.; Cullen, D.; Davinson, T.; Dillmann, I.; Dimopoulou, C.; Dracoulis, G.; Duellmann, Ch. E.; Egelhof, P.; Estrade, A.; Fischer, D.; Flanagan, K.; Fraile, L.; Fraser, M. A.; Freeman, S. J.; Geissel, H.; Gerl, J.; Greenlees, P.; Grisenti, R. E.; Habs, D.; von Hahn, R.; Hagmann, S.; Hausmann, M.; He, J. J.; Heil, M.; Huyse, M.; Jenkins, D.; Jokinen, A.; Jonson, B.; Joss, D. T.; Kadi, Y.; Kalantar-Nayestanaki, N.; Kay, B. P.; Kiselev, O.; Kluge, H. -J.; Kowalska, M.; Kozhuharov, C.; Kreim, S.; Kroell, T.; Kurcewicz, J.; Labiche, M.; Lemmon, R. C.; Lestinsky, M.; Lotay, G.; Ma, X. W.; Marta, M.; Meng, J.; Muecher, D.; Mukha, I.; Mueller, A.; Murphy, A. St J.; Neyens, G.; Nilsson, T.; Nociforo, C.; Noertershaeuser, W.; Page, R. D.; Pasini, M.; Petridis, N.; Pietralla, N.; Pfuetzner, M.; Podolyak, Z.; Regan, P.; Reed, M. W.; Reifarth, R.; Reiter, P.; Repnow, R.; Riisager, K.; Rubio, B.; Sanjari, M. S.; Savin, D. W.; Scheidenberger, C.; Schippers, S.; Schneider, D.; Schuch, R.; Schwalm, D.; Schweikhard, L.; Shubina, D.; Siesling, E.; Simon, H.; Simpson, J.; Smith, J.; Sonnabend, K.; Steck, M.; Stora, T.; Stoehlker, T.; Sun, B.; Surzhykov, A.; Suzaki, F.; Tarasov, O.; Trotsenko, S.; Tu, X. L.; Van Duppen, P.; Volpe, C.; Voulot, D.; Walker, P. M.; Wildner, E.; Winckler, N.; Winters, D. F. A.; Wolf, A.; Xu, H. S.; Yakushev, A.; Yamaguchi, T.; Yuan, Y. J.; Zhang, Y. H.; Zuber, K.; Bosch, F.M.

    We propose to install a storage ring at an ISOL-type radioactive beam facility for the first time. Specifically, we intend to setup the heavy-ion, low-energy ring TSR at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored secondary beams

  11. Conceptual design of a linac-stretcher ring to obtain a 2-gev continuous electron beam

    International Nuclear Information System (INIS)

    Cho, Y.; Holt, R.J.; Jackson, H.E.; Khoe, T.K.; Mavrogenes, G.S.

    1981-01-01

    In order to obtain a high duty factor, >100 /mu/A 2-Gev electron beam, a linac-stretcher ring system was designed. The system is an attractive option because it draws heavily on the existing accelerator technology. The linac-stretcher ring consists of a 2-Gev SLAC-type pulsed linac which injects into a storage ring. In between linac pulses, the stored electron beam is to extract resonantly. This design differs from those discussed recently in several important respects. The storage ring includes an rf system whose purpose is to control the beam orbit and rate of extraction from the ring. With an rf system in the ring, the injection scheme consists of a few turns of synchronous transfers of beam between the linac and storage ring. 4 refs

  12. Collector ring project at FAIR

    International Nuclear Information System (INIS)

    Dolinskii, A; Blell, U; Dimopoulou, C; Gorda, O; Leibrock, H; Litvinov, S; Laier, U; Schurig, I; Weinrich, U; Berkaev, D; Koop, I; Starostenko, A; Shatunov, P

    2015-01-01

    The collector ring is a dedicated ring for fast cooling of ions coming from separators at the FAIR project. To accommodate optimal technical solutions, a structure of a magnet lattice was recently reviewed and modified. Consequently, more appropriate technical solutions for the main magnets could be adopted. A general layout and design of the present machine is shown. The demanding extraction schemes have been detailed and open design issues were completed. (paper)

  13. Flat-Passband 3 × 3 Interleaving Filter Designed With Optical Directional Couplers in Lattice Structure

    Science.gov (United States)

    Wang, Qi Jie; Zhang, Ying; Soh, Yeng Chai

    2005-12-01

    This paper presents a novel lattice optical delay-line circuit using 3 × 3 directional couplers to implement three-port optical interleaving filters. It is shown that the proposed circuit can deliver three channels of 2pi/3 phase-shifted interleaving transmission spectra if the coupling ratios of the last two directional couplers are selected appropriately. The other performance requirements of an optical interleaver can be achieved by designing the remaining part of the lattice circuit. A recursive synthesis design algorithm is developed to calculate the design parameters of the lattice circuit that will yield the desired filter response. As illustrative examples, interleavers with maximally flat-top passband transmission and with given transmission performance on passband ripples and passband bandwidth, respectively, are designed to verify the effectiveness of the proposed design scheme.

  14. Conceptual design of elliptical cavities for intensity and position sensitive beam measurements in storage rings

    International Nuclear Information System (INIS)

    Sanjari, M S; Chen, X; Hülsmann, P; Litvinov, Yu A; Nolden, F; Piotrowski, J; Steck, M; Stöhlker, Th

    2015-01-01

    Position sensitive beam monitors are indispensable for the beam diagnostics in storage rings. Apart from their applications in the measurements of beam parameters, they can be used in non-destructive in-ring decay studies of radioactive ion beams as well as enhancing precision in the isochronous mass measurement technique. In this work, we introduce a novel approach based on cavities with elliptical cross-section, in order to compensate the limitations of known designs for the application in ion storage rings. The design is aimed primarily for future heavy ion storage rings of the FAIR project. The conceptual design is discussed together with simulation results. (paper)

  15. Design and construction of electrostatic separators for TRISTAN Main Ring

    International Nuclear Information System (INIS)

    Shintake, Tsumoru; Suetsugu, Yusuke; Mori, Kenji; Sato, Masayuki; Higo, Toshiyasu.

    1989-03-01

    Sixteen electrostatic separators have been installed in TRISTAN Main Ring for separating the electron and positron beams. The maximum designed voltage is 240 kV across a gap of 8 cm between 4.6 or 3.2 m long titanium electrodes. Special care was taken to secure the passage of the wall current produced by the passing bunched beam and also to reduce irradiation of the synchrotron radiation onto the ceramic parts, so that no H.V. breakdown will occur. Even if one of them breaks down, it will result in total beam loss. In order to make the H.V. sparking rate as low as possible, the chemical cleaning process was studied carefully. The process was focused on removing the contamination such as machining oil, sander emery on the metal surfaces. The field distributions were studied by the computer simulation code DENKAI, and the shapes of the electrodes and ceramics were optimized, taking into account the limit of Kilpatrick Criterion. Every one of the H.V.-bushings and ceramic supports were tested by applying H.V. up to 150 kV, and assembled into the chamber in a clean room. The power of the parasitic mode was pulled out through the H.V.-bushing and damped by ferrite microwave absorbers inside the shield box. It was estimated that the maximum power of the electrode heating is less than 25 W and temperature rise is less than 50degC. With this much temperature rise, no significant deterioration of vacuum pressure is expected. The direct electrode cooling became unnecessary, and the structure of the separator became very simple. The separators showed excellent H.V. properties, i.e., no H.V. spark was observed over two days for 16 separators at 240 kV without the beams circulating the ring. With the beams of 9 mA, neither beam loss nor sparks were observed at the separation voltage of 200 kV. The vacuum pressure rose by only twice as high as the base pressure. The rise was not much different from that of the neighborhood, and enough for the beam operation. (author)

  16. Method of Measuring the Coupled Lattice Functions at the Interaction Point in e sup + e sup - Storage Rings

    CERN Document Server

    Cai, Y

    2003-01-01

    We have investigate a method of measuring the complete lattice functions including the coupling parameters at any azimuthal position in a periodic an symplectic system. In particular, the method is applied to measure the lattice functions at the interaction point where the beams collide. It has been demonstrate that a complete set of lattice functions can be accurately measured with two adjacent beam position monitors and the known transformation matrix between them. As a by-product, the method also automatically measures the complete one-turn matrix.

  17. Low emittance lattice optimization using a multi-objective evolutionary algorithm

    International Nuclear Information System (INIS)

    Gao Weiwei; Wang Lin; Li Weimin; He Duohui

    2011-01-01

    A low emittance lattice design and optimization procedure are systematically studied with a non-dominated sorting-based multi-objective evolutionary algorithm which not only globally searches the low emittance lattice, but also optimizes some beam quantities such as betatron tunes, momentum compaction factor and dispersion function simultaneously. In this paper the detailed algorithm and lattice design procedure are presented. The Hefei light source upgrade project storage ring lattice, with fixed magnet layout, is designed to illustrate this optimization procedure. (authors)

  18. The e+-e- storage ring PETRA: design and present status

    International Nuclear Information System (INIS)

    Voss, G.A.

    1977-01-01

    The author briefly describes the 19 GeV storage ring PETRA being constructed at Hamburg. The lattice of the machine and its optics are described and also the magnet installation. Other sections deal with the vacuum chamber, the radiofrequency system, beam injection and the cmputer control system. The PETRA proposal was submitted in November 1974, the project authorised in October 1975 and the completion of the machine is planned for autumn 1978. (B.D.)

  19. Optical NOR logic gate design on square lattice photonic crystal platform

    Energy Technology Data Exchange (ETDEWEB)

    D’souza, Nirmala Maria, E-mail: nirmala@cukerala.ac.in; Mathew, Vincent, E-mail: vincent@cukerala.ac.in [Department of Physics, Central University of Kerala, Kasaragod, Kerala-671 314 (India)

    2016-05-06

    We numerically demonstrate a new configuration of all-optical NOR logic gate with square lattice photonic crystal (PhC) waveguide using finite difference time domain (FDTD) method. The logic operations are based on interference effect of optical waves. We have determined the operating frequency range by calculating the band structure for a perfectly periodic PhC using plane wave expansion (PWE) method. Response time of this logic gate is 1.98 ps and it can be operated with speed about 513 GB/s. The proposed device consists of four linear waveguides and a square ring resonator waveguides on PhC platform.

  20. Testing of advanced technique for linear lattice and closed orbit correction by modeling its application for iota ring at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, A. [Fermilab

    2016-10-09

    Many modern and most future accelerators rely on precise configuration of lattice and trajectory. The Integrable Optics Test Accelerator (IOTA) at Fermilab that is coming to final stages of construction will be used to test advanced approaches of control over particles dynamics. Various experiments planned at IOTA require high flexibility of lattice configuration as well as high precision of lattice and closed orbit control. Dense element placement does not allow to have ideal configuration of diagnostics and correctors for all planned experiments. To overcome this limitations advanced method of lattice an beneficial for other machines. Developed algorithm is based on LOCO approach, extended with various sets of other experimental data, such as dispersion, BPM BPM phase advances, beam shape information from synchrotron light monitors, responses of closed orbit bumps to variations of focusing elements and other. Extensive modeling of corrections for a big number of random seed errors is used to illustrate benefits from developed approach.

  1. ISABELLE lattice

    International Nuclear Information System (INIS)

    Smith, L.

    1975-01-01

    An analysis is given of a number of variants of the basic lattice of the planned ISABELLE storage rings. The variants were formed by removing cells from the normal part of the lattice and juggling the lengths of magnets, cells, and insertions in order to maintain a rational relation of circumference to that of the AGS and approximately the same dispersion. Special insertions, correction windings, and the working line with nonlinear resonances are discussed

  2. The Cornell field-reversed ion ring experiment FIREX: experimental design and first results

    Energy Technology Data Exchange (ETDEWEB)

    Podulka, W J; Greenly, J B; Anderson, D E; Glidden, S C; Hammer, D A; Omelchenko, Yu A; Sudan, R N [Cornell Univ., Ithaca, NY (United States). Laboratory of Plasma Studies

    1997-12-31

    The goal of FIREX (Field-reversed Ion Ring EXperiment) is to produce a fully field-reversed ring with 1 MeV protons. Such a ring requires about (2-3) x 10{sup 17} protons, or 30-50 mC of charge. This charge is to be injected as an annular proton beam through a suitable magnetic cusp configuration to produce a compact ring. The critical design issues for the ion beam accelerator are described. First experimental results of ion diode operation indicate that the design is capable of producing the required beam parameters. (author). 4 figs., 4 refs.

  3. The Cornell field-reversed ion ring experiment FIREX: experimental design and first results

    International Nuclear Information System (INIS)

    Podulka, W.J.; Greenly, J.B.; Anderson, D.E.; Glidden, S.C.; Hammer, D.A.; Omelchenko, Yu.A.; Sudan, R.N.

    1996-01-01

    The goal of FIREX (Field-reversed Ion Ring EXperiment) is to produce a fully field-reversed ring with 1 MeV protons. Such a ring requires about (2-3) x 10 17 protons, or 30-50 mC of charge. This charge is to be injected as an annular proton beam through a suitable magnetic cusp configuration to produce a compact ring. The critical design issues for the ion beam accelerator are described. First experimental results of ion diode operation indicate that the design is capable of producing the required beam parameters. (author). 4 figs., 4 refs

  4. Detailed design of a lattice composite fuselage structure by a mixed optimization method

    Science.gov (United States)

    Liu, D.; Lohse-Busch, H.; Toropov, V.; Hühne, C.; Armani, U.

    2016-10-01

    In this article, a procedure for designing a lattice fuselage barrel is developed. It comprises three stages: first, topology optimization of an aircraft fuselage barrel is performed with respect to weight and structural performance to obtain the conceptual design. The interpretation of the optimal result is given to demonstrate the development of this new lattice airframe concept for the fuselage barrel. Subsequently, parametric optimization of the lattice aircraft fuselage barrel is carried out using genetic algorithms on metamodels generated with genetic programming from a 101-point optimal Latin hypercube design of experiments. The optimal design is achieved in terms of weight savings subject to stability, global stiffness and strain requirements, and then verified by the fine mesh finite element simulation of the lattice fuselage barrel. Finally, a practical design of the composite skin complying with the aircraft industry lay-up rules is presented. It is concluded that the mixed optimization method, combining topology optimization with the global metamodel-based approach, allows the problem to be solved with sufficient accuracy and provides the designers with a wealth of information on the structural behaviour of the novel anisogrid composite fuselage design.

  5. Modeling and Design Guidelines for P⁺ Guard Rings in Lightly Doped CMOS Substrates

    DEFF Research Database (Denmark)

    Shen, Ming; Mikkelsen, Jan H.; Zhang, Ke

    2013-01-01

    of ${rm P}^{+}$ guard rings in terms of S-parameters, which is useful for substrate noise mitigation in mixed-signal system-on-chips. Validation of the model has been done by both electromagnetic simulation and experimental results from guard rings implemented using a standard 0.18-$mu{rm m}$ CMOS process....... In addition, design guidelines have been drawn for minimizing the guard ring size while maintaining the noise suppression performance....

  6. Parameters and design optimization of the ring piezoelectric ceramic transformer

    Directory of Open Access Journals (Sweden)

    Jiří Erhart

    2015-09-01

    Full Text Available Main aim of the presented paper is the theoretical analysis and experimental verification of the transformation parameters for the new type of nonhomogeneously poled ring transformer. The input part is poled in the thickness direction and output part in the radial direction. Two transformer geometries are studied — the input part is at inner ring segment, or it is at the outer ring segment. The optimum electrode size aspect ratios have been found experimentally as d1∕D≈0.60−0.65 for the ring with aspect ratio d∕D=0.2. The fundamental as well as higher overtone resonances were studied for the transformation ratio, the optimum resistive load, efficiency and no-load transformation ratio. Higher overtones have better transformation parameters compared to the fundamental resonance. The new type ring transformer exhibits very high transformation ratios up to 200 under no-load and up to 13.4 under a high efficiency of 97% at the optimum load conditions of 10 kΩ. Strong electric field gradient at the output circuit is applicable for the electrical discharge generation.

  7. Phononic band gap design in honeycomb lattice with combinations of auxetic and conventional core

    International Nuclear Information System (INIS)

    Mukherjee, Sushovan; Gopalakrishnan, S; Fabrizio Scarpa

    2016-01-01

    We present a novel design of a honeycomb lattice geometry that uses a seamless combination of conventional and auxetic cores, i.e. elements showing positive and negative Poisson’s ratio. The design is aimed at tuning and improving the band structure of periodic cellular structures. The proposed cellular configurations show a significantly wide band gap at much lower frequencies compared to their pure counterparts, while still retaining their major dynamic features. Different topologies involving both auxetic inclusions in a conventional lattice and conversely hexagonal cellular inclusions in auxetic butterfly lattices are presented. For all these cases the impact of the varying degree of auxeticity on the band structure is evaluated. The proposed cellular designs may offer significant advantages in tuning high-frequency bandgap behaviour, which is relevant to phononics applications. The configurations shown in this paper may be made iso-volumetric and iso-weight to a given regular hexagonal topology, making possible to adapt the hybrid lattices to existing sandwich structures with fixed dimensions and weights. This work also features a comparative study of the wave speeds corresponding to different configurations vis-a vis those of a regular honeycomb to highlight the superior behaviour of the combined hybrid lattice. (paper)

  8. Computational tools and lattice design for the PEP-II B-Factory

    International Nuclear Information System (INIS)

    Cai Yunhai; Irwin, John; Nosochkov, Yuri; Yan, Yiton

    1997-01-01

    Several accelerator codes were used to design the PEP-II lattices, ranging from matrix-based codes, such as MAD and DIMAD, to symplectic-integrator codes, such as TRACY and DESPOT. In addition to element-by-element tracking, we constructed maps to determine aberration strengths. Furthermore, we have developed a fast and reliable method (nPB tracking) to track particles with a one-turn map. This new technique allows us to evaluate performance of the lattices on the entire tune-plane. Recently, we designed and implemented an object-oriented code in C++ called LEGO which integrates and expands upon TRACY and DESPOT

  9. Photonic crystal ring resonator-based four-channel dense wavelength division multiplexing demultiplexer on silicon on insulator platform: design and analysis

    Science.gov (United States)

    Sreenivasulu, Tupakula; Bhowmick, Kaustav; Samad, Shafeek A.; Yadunath, Thamerassery Illam R.; Badrinarayana, Tarimala; Hegde, Gopalkrishna; Srinivas, Talabattula

    2018-04-01

    A micro/nanofabrication feasible compact photonic crystal (PC) ring-resonator-based channel drop filter has been designed and analyzed for operation in C and L bands of communication window. The four-channel demultiplexer consists of ring resonators of holes in two-dimensional PC slab. The proposed assembly design of dense wavelength division multiplexing setup is shown to achieve optimal quality factor, without altering the lattice parameters or resonator size or inclusion of scattering holes. Transmission characteristics are analyzed using the three-dimensional finite-difference time-domain simulation approach. The radiation loss of the ring resonator was minimized by forced cancelation of radiation fields by fine-tuning the air holes inside the ring resonator. An average cross talk of -34 dB has been achieved between the adjacent channels maintaining an average quality factor of 5000. Demultiplexing is achieved by engineering only the air holes inside the ring, which makes it a simple and tolerant design from the fabrication perspective. Also, the device footprint of 500 μm2 on silicon on insulator platform makes it easy to fabricate the device using e-beam lithography technique.

  10. Calculation Of A Lattice Physics Parameter For SBWR Fuel Bundle Design

    International Nuclear Information System (INIS)

    Sardjono, Y.

    1996-01-01

    The maximum power peaking factor for Nuclear Power Plant SBWR type is 1.5. The precision for that calculation is related with the result of unit cell analysis each rod in the fuel bundles. This analysis consist of lattice eigenvalue, lattice average diffusion cross section as well as relative power peaking factor in the fuel rod for each fuel bundles. The calculation by using TGBLA computer code which is based on the transport and 168 group diffusion theory. From this calculation can be concluded that the maximum relative power peaking factor is 1.304 and lower than design limit

  11. A FODO racetrack ring for nuSTORM: design and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Liu, A.; Bross, A.; Neuffer, D.

    2017-07-01

    The goal of nuSTORM is to provide well-defined neutrino beams for precise measurements of neutrino cross-sections and oscillations. The nuSTORM decay ring is a compact racetrack storage ring with a circumference of ~ 480 m that incorporates large aperture (60 cm diameter) magnets. There are many challenges in the design. In order to incorporate the Orbit Combination section (OCS), used for injecting the pion beam into the ring, a dispersion suppressor is needed adjacent to the OCS . Concurrently, in order to maximize the number of useful muon decays, strong bending dipoles are needed in the arcs to minimize the arc length. These dipoles create strong chromatic effects, which need to be corrected by nonlinear sextupole elements in the ring. In this paper, a FODO racetrack ring design and its optimization using sextupolar fields via both a Genetic Algorithm (GA) and a Simulated Annealing (SA) algorithm will be discussed.

  12. Efficient Offline Waveform Design Using Quincunx/Hexagonal Time-Frequency Lattices

    Directory of Open Access Journals (Sweden)

    Raouia Ayadi

    2017-01-01

    Full Text Available Conventional orthogonal frequency division multiplexing (OFDM may turn to be inappropriate for future wireless cellular systems services, because of extreme natural and artificial impairments they are expected to generate. Natural impairments result from higher Doppler and delay spreads, while artificial impairments result from multisource transmissions and synchronization relaxation for closed-loop signaling overhead reduction. These severe impairments induce a dramatic loss in orthogonality between subcarriers and OFDM symbols and lead to a strong increase in intercarrier interference (ICI and intersymbol interference (ISI. To fight against these impairments, we propose here an optimization of the transmit/receive waveforms for filter-bank multicarrier (FBMC systems, with hexagonal time-frequency (TF lattices, operating over severe doubly dispersive channels. For this, we exploit the Ping-pong Optimized Pulse Shaping (POPS paradigm, recently applied to rectangular TF lattices, to design waveforms maximizing the signal-to-interference-plus-noise ratio (SINR for hexagonal TF lattices. We show that FBMC, with hexagonal lattices, offers a strong improvement in SINR with respect to conventional OFDM and an improvement of around 1 dB with respect to POPS-FBMC, with rectangular lattices. Furthermore, we show that hexagonal POPS-FBMC brings more robustness to frequency synchronization errors and offers a 10 dB reduction in out-of-band (OOB emissions, with respect to rectangular POPS-FBMC.

  13. First results for a FCC-hh ring optics design

    CERN Document Server

    Chance, Antoine; Payet, Jacques; Alemany Fernandez, Reyes; Holzer, Bernhard; Schulte, Daniel

    2015-01-01

    The first order considerations of the optics for the FCC-hh ring are presented. The arc cell is generated taking into account some general considerations like the whole circumference, maximum gradients and lengths of the elements in the cell. The integration of the insertion regions started. Three types of Dispersion Suppressors (DIS) are studied. The sensitivity of the arc parameters to these layout considerations is studied in more detail. An alternative layout is shown as well.

  14. Systematic design of 3D auxetic lattice materials with programmable Poisson's ratio for finite strains

    Science.gov (United States)

    Wang, Fengwen

    2018-05-01

    This paper presents a systematic approach for designing 3D auxetic lattice materials, which exhibit constant negative Poisson's ratios over large strain intervals. A unit cell model mimicking tensile tests is established and based on the proposed model, the secant Poisson's ratio is defined as the negative ratio between the lateral and the longitudinal engineering strains. The optimization problem for designing a material unit cell with a target Poisson's ratio is formulated to minimize the average lateral engineering stresses under the prescribed deformations. Numerical results demonstrate that 3D auxetic lattice materials with constant Poisson's ratios can be achieved by the proposed optimization formulation and that two sets of material architectures are obtained by imposing different symmetry on the unit cell. Moreover, inspired by the topology-optimized material architecture, a subsequent shape optimization is proposed by parametrizing material architectures using super-ellipsoids. By designing two geometrical parameters, simple optimized material microstructures with different target Poisson's ratios are obtained. By interpolating these two parameters as polynomial functions of Poisson's ratios, material architectures for any Poisson's ratio in the interval of ν ∈ [ - 0.78 , 0.00 ] are explicitly presented. Numerical evaluations show that interpolated auxetic lattice materials exhibit constant Poisson's ratios in the target strain interval of [0.00, 0.20] and that 3D auxetic lattice material architectures with programmable Poisson's ratio are achievable.

  15. Storage Rings

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Storage rings are circular machines that store particle beams at a constant energy. Beams are stored in rings without acceleration for a number of reasons (Tab. 1). Storage rings are used in high-energy, nuclear, atomic, and molecular physics, as well as for experiments in chemistry, material and life sciences. Parameters for storage rings such as particle species, energy, beam intensity, beam size, and store time vary widely depending on the application. The beam must be injected into a storage ring but may not be extracted (Fig. 1). Accelerator rings such as synchrotrons are used as storage rings before and after acceleration. Particles stored in rings include electrons and positrons; muons; protons and anti-protons; neutrons; light and heavy, positive and negative, atomic ions of various charge states; molecular and cluster ions, and neutral polar molecules. Spin polarized beams of electrons, positrons, and protons were stored. The kinetic energy of the stored particles ranges from 10 -6 eV to 3.5 x 10 12 eV (LHC, 7 x 10 12 eV planned), the number of stored particles from one (ESR) to 1015 (ISR). To store beam in rings requires bending (dipoles) and transverse focusing (quadrupoles). Higher order multipoles are used to correct chromatic aberrations, to suppress instabilities, and to compensate for nonlinear field errors of dipoles and quadrupoles. Magnetic multipole functions can be combined in magnets. Beams are stored bunched with radio frequency systems, and unbunched. The magnetic lattice and radio frequency system are designed to ensure the stability of transverse and longitudinal motion. New technologies allow for better storage rings. With strong focusing the beam pipe dimensions became much smaller than previously possible. For a given circumference superconducting magnets make higher energies possible, and superconducting radio frequency systems allow for efficient replenishment of synchrotron radiation losses of large current electron or positron beams

  16. Design and implementation of a fiber optic link for a token ring local area network

    OpenAIRE

    Doran, Thomas J.

    1992-01-01

    Approved for public release; distribution is unlimited This thesis described the design and implementation of a fiber optic link for a token ring local area network (LAN). It features the use of fiber optic channels as the transmission medium between a computer system and a wiring concentrator to convert a physical ring design into a star-wired configuration. The LAN was controlled by the TMS380 LAN Adapter chipset, which provided all diagnostic and network management features to include...

  17. Dual-Band Split-Ring Antenna Design for WLAN Applications

    OpenAIRE

    BAŞARAN, S. Cumhur; ERDEMLİ, Yunus E.

    2014-01-01

    A dual-band microstrip antenna based on split-ring elements is introduced for WLAN (2.4/5.2 GHz) applications. The proposed split-ring antenna (SRA) has a compact novel design which provides about 2% impedance-bandwidth without a need for additional matching network. Analysis and design of the proposed microstrip antenna is carried out by means of full-wave simulators based on the finite-element method.

  18. Cabling design of booster and storage ring construction progress of TPS

    International Nuclear Information System (INIS)

    Wong, Y.-S.; Liu, K.-B.; Liu, C.-Y.; Wang, B.-S.

    2017-01-01

    The 2012 Taiwan Photon Source (TPS) cable construction project started after 10 months to complete the cable laying and installation of power supply. The circumference of the booster ring (BR) is 496.8 m, whereas that of the storage ring (SR) is 518.4 m. Beam current is set to 500 mA at 3.3 GeV. The paper on grounding systems discusses the design of the ground wire (< 0.2 Ω) with low impedance, power supply of the accelerator and cabling tray. The flow and size of the ground current are carefully evaluated to avoid grounded current from flowing everywhere, which causes interference problems. In the design of the TPS, special shielding will be established to isolate the effects of electromagnetic interference on the magnet and ground current. Booster ring dipoles are connected by a series of 54-magnet bending dipole; the cable size of its stranded wire measures 250 mm"2, with a total length of 5000 m. Booster ring and storage ring quadrupoles have 150 magnets; the cable size of their stranded wire is 250 mm"2, with a total length of 17000 m. Storage ring dipole consists of 48 magnets; the cable size of its stranded wire is 325 mm"2, with a total length of 6000 m. This study discusses the power supply cabling design of the storage ring and booster ring construction progress of TPS. The sections of this paper are divided into discussions of the construction of the control and instrument area, cabling layout of booster ring and storage ring, as well as the installation and commission machine. This study also discusses the use of a high-impedance meter to determine the effect of cabling insulation and TPS power supply machine on energy transfer to ensure the use of safe and correct magnet.

  19. Design and jump phenomenon analysis of an eccentric ring energy harvester

    International Nuclear Information System (INIS)

    Wang, Yu-Jen; Chen, Chung-De

    2013-01-01

    This paper presents the development of a wheel-mounted eccentric ring energy harvester that is driven by centripetal and gravitational forces during wheel rotation. The natural frequency of the eccentric ring matches the wheel rotation frequency at any car speed because its character length is designed equal to the wheel radius. Consequently, the eccentric ring oscillates with a relatively large swing angle at the wheel speed to generate high levels of power. The nonlinear dynamic behavior of the eccentric ring is investigated to ensure that the proposed design produces steady swing angles, especially at high wheel speeds. Herein, the jump phenomenon of the dynamic motion of the eccentric ring is analyzed by using the Duffing equation and the linearization process. The discriminant value obtained from the analysis confirms that no jump phenomenon occurs at all wheel speeds if the eccentric ring is properly designed. In the experiment, the eccentric ring is integrated with magnets and a coil set to generate 318–442 μW at constant wheel speeds between 300 and 500 rpm. This shows that the proposed device is a potential power source for low-power wheel-mounted electronics, such as pressure sensors, accelerometers, and thermometers. (paper)

  20. Design and jump phenomenon analysis of an eccentric ring energy harvester

    Science.gov (United States)

    Wang, Yu-Jen; Chen, Chung-De

    2013-10-01

    This paper presents the development of a wheel-mounted eccentric ring energy harvester that is driven by centripetal and gravitational forces during wheel rotation. The natural frequency of the eccentric ring matches the wheel rotation frequency at any car speed because its character length is designed equal to the wheel radius. Consequently, the eccentric ring oscillates with a relatively large swing angle at the wheel speed to generate high levels of power. The nonlinear dynamic behavior of the eccentric ring is investigated to ensure that the proposed design produces steady swing angles, especially at high wheel speeds. Herein, the jump phenomenon of the dynamic motion of the eccentric ring is analyzed by using the Duffing equation and the linearization process. The discriminant value obtained from the analysis confirms that no jump phenomenon occurs at all wheel speeds if the eccentric ring is properly designed. In the experiment, the eccentric ring is integrated with magnets and a coil set to generate 318-442 μW at constant wheel speeds between 300 and 500 rpm. This shows that the proposed device is a potential power source for low-power wheel-mounted electronics, such as pressure sensors, accelerometers, and thermometers.

  1. Automatic fuel lattice design in a boiling water reactor using a particle swarm optimization algorithm and local search

    International Nuclear Information System (INIS)

    Lin Chaung; Lin, Tung-Hsien

    2012-01-01

    Highlights: ► The automatic procedure was developed to design the radial enrichment and gadolinia (Gd) distribution of fuel lattice. ► The method is based on a particle swarm optimization algorithm and local search. ► The design goal were to achieve the minimum local peaking factor. ► The number of fuel pins with Gd and Gd concentration are fixed to reduce search complexity. ► In this study, three axial sections are design and lattice performance is calculated using CASMO-4. - Abstract: The axial section of fuel assembly in a boiling water reactor (BWR) consists of five or six different distributions; this requires a radial lattice design. In this study, an automatic procedure based on a particle swarm optimization (PSO) algorithm and local search was developed to design the radial enrichment and gadolinia (Gd) distribution of the fuel lattice. The design goals were to achieve the minimum local peaking factor (LPF), and to come as close as possible to the specified target average enrichment and target infinite multiplication factor (k ∞ ), in which the number of fuel pins with Gd and Gd concentration are fixed. In this study, three axial sections are designed, and lattice performance is calculated using CASMO-4. Finally, the neutron cross section library of the designed lattice is established by CMSLINK; the core status during depletion, such as thermal limits, cold shutdown margin and cycle length, are then calculated using SIMULATE-3 in order to confirm that the lattice design satisfies the design requirements.

  2. Preliminary Design of an Inductive Adder for CLIC Damping Rings

    CERN Document Server

    Holma, J

    2011-01-01

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC damping rings will produce ultra-low emittance beam, with high bunch charge, necessary for the luminosity performance of the collider. To limit the beam emittance blow-up due to oscillations, the pulse power modulators for the damping rings kickers must provide extremely flat, high-voltage, pulses: specifications call for a 160 ns duration flattop of 12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 %. A solid-state modulator, the inductive adder, is a very promising approach to meeting the demanding specifications; this topology allows the use of both digital and analogue modulation. To effectively use modulation techniques to achieve such low ripple and droop requires an in-depth knowledge of the behaviour of the solid-state switching components and their gate drivers, as well as a good understanding of the overa...

  3. Design, modeling and testing of integrated ring extractor for high resolution electrohydrodynamic (EHD) 3D printing

    International Nuclear Information System (INIS)

    Han, Yiwei; Dong, Jingyan

    2017-01-01

    This paper presents an integrated ring extractor design in electrohydrodynamic (EHD) printing, which can overcome the standoff height limitation in the EHD printing process, and improve printing capability for 3D structures. Standoff height in the EHD printing will affect printing processes and limit the height of the printed structure when the ground electrode is placed under the substrate. In this work, we designed and integrated a ring electrode with the printing nozzle to achieve a self-working printer head, which can start and maintain the printing process without the involvement of the substrate. We applied a FEA method to model the electric field potential distribution and strength to direct the ring extractor design, which provides a similar printing capability with the system using substrate as the ground electrode. We verified the ring electrode design by experiments, and those results from the experiments demonstrated a good match with results from the FEA simulation. We have characterized the printing processes using the integrated ring extractor, and successfully applied this newly designed ring extractor to print polycaprolactone (PCL) 3D structures. (paper)

  4. Design, installation, and commissioning of the D0 overpass at the Fermilab main ring

    International Nuclear Information System (INIS)

    Gerig, R.; May, M.; Moore, C.; Ohnuma, S.; Pruss, S.; Turkot, F.

    1985-06-01

    In order to accommodate large detectors for anti pp studies at the Tevatron, the Main Ring has been modified to be non-planar. A 700 foot-long portion of the ring has been reworked to create an overpass which displaces the beam orbit upwards by 51 inches at the D0 long straight section. The overpass region follows the ''screw'' geometry proposed by T. Collins. A set of four vertically bending dipoles were inserted into the Main Ring lattice; they are powered on a separate bus and operate at twice the current and field level of a standard bend. To make space for these vertical bends, at each vertical bend point two of the four standard dipoles in a half-cell are removed and the other two are powered at twice the current and field level of the rest of the ring. The vertical bends also have a set of trim coils powered by a separate supply so that any difference in the horizontal and vertical bending strengths can be compensated. The D0 overpass was commissioned with beam in November-December 1984. The principal effect on beam dynamics - predicted and observed - is the introduction of momentum dispersion in the vertical dimension of peak value 1.9m. To preserve closed orbit quality during acceleration, the vertical bends must track the rest of the ring with a precision of better than 0.1%. The Main Ring-Tevatron complex has now been running the fixed-target program for four months; the impact of the D0 overpass on accelerator performance has been minimal

  5. Design of a polynomial ring based symmetric homomorphic encryption scheme

    Directory of Open Access Journals (Sweden)

    Smaranika Dasgupta

    2016-09-01

    Full Text Available Security of data, especially in clouds, has become immensely essential for present-day applications. Fully homomorphic encryption (FHE is a great way to secure data which is used and manipulated by untrusted applications or systems. In this paper, we propose a symmetric FHE scheme based on polynomial over ring of integers. This scheme is somewhat homomorphic due to accumulation of noise after few operations, which is made fully homomorphic using a refresh procedure. After certain amount of homomorphic computations, large ciphertexts are refreshed for proper decryption. The hardness of the scheme is based on the difficulty of factorizing large integers. Also, it requires polynomial addition which is computationally cost effective. Experimental results are shown to support our claim.

  6. Computational tools and lattice design for the PEP-II B-Factory

    International Nuclear Information System (INIS)

    Cai, Y.; Irwin, J.; Nosochkov, Y.; Yan, Y.

    1997-01-01

    Several accelerator codes were used to design the PEP-II lattices, ranging from matrix-based codes, such as MAD and DIMAD, to symplectic-integrator codes, such as TRACY and DESPOT. In addition to element-by-element tracking, we constructed maps to determine aberration strengths. Furthermore, we have developed a fast and reliable method (nPB tracking) to track particles with a one-turn map. This new technique allows us to evaluate performance of the lattices on the entire tune-plane. Recently, we designed and implemented an object-oriented code in C++ called LEGO which integrates and expands upon TRACY and DESPOT. copyright 1997 American Institute of Physics

  7. Numerically-based ducted propeller design using vortex lattice lifting line theory

    OpenAIRE

    Stubblefield, John M.

    2008-01-01

    CIVINS (Civilian Institutions) Thesis document This thesis used vortex lattice lifting line theory to model an axisymmetrical-ducted propeller with no gap between the duct and the propeller. The theory required to model the duct and its interaction with the propeller were discussed and implemented in Open-source Propeller Design and Analysis Program (OpenProp). Two routines for determining the optimum circulation distribution were considered, and a method based on calculus of variation...

  8. Lattice Designs in Standard and Simple Implicit Multi-linear Regression

    OpenAIRE

    Wooten, Rebecca D.

    2016-01-01

    Statisticians generally use ordinary least squares to minimize the random error in a subject response with respect to independent explanatory variable. However, Wooten shows illustrates how ordinary least squares can be used to minimize the random error in the system without defining a subject response. Using lattice design Wooten shows that non-response analysis is a superior alternative rotation of the pyramidal relationship between random variables and parameter estimates in multi-linear r...

  9. Design summary of the magnet support structures for the proton storage ring injection line upgrade

    International Nuclear Information System (INIS)

    Bernardin, J.D.; Ledford, J.E.; Smith, B.G.

    1997-05-01

    This report summarizes the technical engineering and design issues associated with the Proton Storage Ring (PSR) Injection Line upgrade of the Los Alamos Neutron Science Center (LANSCE). The main focus is on the engineering design calculations of several magnet support structures. The general procedure based upon a set number of design criteria is outlined, followed by a case-by-case summary of the engineering design analyses, reutilization or fabrication callouts and design safety factors

  10. Ring design of the Prague synchrotron for cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Molodozhentsev, A.; Makoveev, V.; Minashkin, V.; Shevtsov, V.; Sidorov, G. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Prokesh, K.; Sedlak, J.; Kuzmiak, M. [``Oncology 2000`` Foundation, Prague (Czech Republic)

    1998-04-01

    The paper presents main elements of a dedicated proton synchrotron for hadron therapy. The beam parameters for active scanning of tumours are discussed. The output energy of the beam should be variable in the range 60-220 MeV. The average current of the proton beam is equal to 10 nA. The repetition rate of the accelerator is chosen of 1 Hz to get a spill time for slow extraction of about 500 ms. The timing cycle of the accelerator including the quasi-adiabatic capture process and acceleration is described. The RF gymnastics is utilized to prepare the unbunched beam for slow extraction. The magnetic elements of the ring, compact RF and VCO systems are presented in the paper. The maximum magnet field of the dipole magnet should be 1.2 T and the maximum magnetic field on the pole of the quadrupole lenses should be less than 1 T. The resonator should work on the first harmonic with a frequency from 1.298 MHz till 4.804 MHz. The length of the resonator should be less than 1 m. The maximum voltage on the accelerator gap should be about 2 kV. (orig.) 5 refs.

  11. Ionization cooling ring for muons

    Directory of Open Access Journals (Sweden)

    R. Palmer

    2005-06-01

    Full Text Available Practical ionization cooling rings could lead to lower cost or improved performance in neutrino factory or muon collider designs. The ring modeled here uses realistic three-dimensional fields. The performance of the ring compares favorably with the linear cooling channel used in the second U.S. Neutrino Factory Study. The normalized 6D emittance of an ideal ring is decreased by a factor of approximately 240, compared with a factor of only 15 for the linear channel. We also examine such real-world effects as windows on the absorbers and rf cavities and leaving empty lattice cells for injection and extraction. For realistic conditions the ring decreases the normalized 6D emittance by a factor of 49.

  12. Design of the compressor/stretcher ring of the Japanese Hadron Project

    International Nuclear Information System (INIS)

    Ohmori, C.; Noda, A.; Kimiya, Y.; Kihara, M.; Yamane, I.

    1991-01-01

    A possibility of adopting a racetrack-type design for the compressor/stretcher ring of the Japanese Hadron Project is described. This design has two long straight sections to enable to inject the H - beam and to produce a high β point for the slow extraction. (author)

  13. Design of the compressor/stretcher ring of the Japanese Hadron Project

    International Nuclear Information System (INIS)

    Ohmori, C.; Noda, A.; Kamiya, Y.; Kihara, M.; Yamane, I.

    1991-02-01

    A possibility of adopting a racetrack-type design for the compressor/stretcher ring of the Japanese Hadron Project is described. This design has two long straight sections to enable to inject the H - beam and to produce a high β point for the slow extraction. (author)

  14. Focusing behavior of the fractal vector optical fields designed by fractal lattice growth model.

    Science.gov (United States)

    Gao, Xu-Zhen; Pan, Yue; Zhao, Meng-Dan; Zhang, Guan-Lin; Zhang, Yu; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2018-01-22

    We introduce a general fractal lattice growth model, significantly expanding the application scope of the fractal in the realm of optics. This model can be applied to construct various kinds of fractal "lattices" and then to achieve the design of a great diversity of fractal vector optical fields (F-VOFs) combinating with various "bases". We also experimentally generate the F-VOFs and explore their universal focusing behaviors. Multiple focal spots can be flexibly enginnered, and the optical tweezers experiment validates the simulated tight focusing fields, which means that this model allows the diversity of the focal patterns to flexibly trap and manipulate micrometer-sized particles. Furthermore, the recovery performance of the F-VOFs is also studied when the input fields and spatial frequency spectrum are obstructed, and the results confirm the robustness of the F-VOFs in both focusing and imaging processes, which is very useful in information transmission.

  15. Design for ANL 7 GeV storage ring vacuum system

    International Nuclear Information System (INIS)

    Wehrle, R.B.; Nielsen, R.W.

    1988-01-01

    The 7-GeV Advanced Photon Source (APS) design includes a storage ring having a 1060-m circumference with the capability of accommodating 34 insertion devices (ID) and their associated photon beam lines. An additional 35 photon lines can be provided from bending magnets. The vacuum system for the storage ring is designed to maintain a beam-on operating pressure of 1n Torr or less to achieve a positron beam lifetime of approximately 20 hours. The vacuum system and it's current developmental status are described

  16. Design parameters for a small storage ring optimized as an x-ray lithography source

    International Nuclear Information System (INIS)

    Grobman, W.D.

    1983-01-01

    This paper examines the design parameters for a ''compact storage ring'' which is matched well to x-ray lithographic requirements, but is as small as possible. This calculation uses a model of a lithographic system which obtains its input parameters from a technology of mask, resist and beam line based on the IBM program at the Brookhaven National Laboratory vacuum ultraviolet electron storage ring. Based on this lithographic system, we model exposure throughput as a function of storage ring parameters to understand which storage ring designs provide adequate but not excessive soft x-ray flux in the lithographically important region. Our scan of storage ring sources will cover a wide range of energies and magnetic fields, to permit consideration of superconducting as well as more standard strong- or weak-focusing designs. Furthermore, we will show that the results of the calculations presented here can be scaled in a simple way to cover a wide range of x-ray lithography system assumptions

  17. Novel Design of Recursive Differentiator Based on Lattice Wave Digital Filter

    Directory of Open Access Journals (Sweden)

    R. Barsainya

    2017-04-01

    Full Text Available In this paper, a novel design of third and fifth order differentiator based on lattice wave digital filter (LWDF, established on optimizing L_1-error approximation function using cuckoo search algorithm (CSA is proposed. We present a novel realization of minimum multiplier differentiator using LWD structure leading to requirement of optimizing only N coefficients for Nth order differentiator. The gamma coefficients of lattice wave digital differentiator (LWDD are computed by minimizing the L_1-norm fitness function leading to a flat response. The superiority of the proposed LWDD is evident by comparing it with other differentiators mentioned in the literature. The magnitude response of the designed LWDD is found to be of high accuracy with flat response in a wide frequency range. The simulation and statistical results validates that the designed minimum multiplier LWDD circumvents the existing one in terms of minimum absolute magnitude error, mean relative error (dB and efficient structural realization, thereby making the proposed LWDD a promising approach to digital differentiator design.

  18. First design for the optics of the decay ring for the beta-beams

    International Nuclear Information System (INIS)

    Chance, A.; Payet, J.

    2006-03-01

    The aim of the beta-beams is to produce pure electronic neutrino and anti-neutrino highly energetic beams, coming from beta radioactive disintegration decay of the 18 Ne 10+ and 6 He 2+ , directed to experiment situated in the Frejus tunnel. The high ion intensities are stored in a ring, until the ions decay. The losses due to the decay of the radioactive ions are compensated with regular injections. These should be done in presence of the circulating beam. The new ions are injected at a different energy from the stored beam energy, the design of the ring must enable this type of injection and accept the injected and stored beams. In this note, we will focus on the study of the design of such a ring at the first and second orders. We have reached the constraint on the dispersion in the injection section: a horizontal dispersion superior to 10 m with β x = 20 m. We have put sextupoles in the arcs to correct the chromaticity. In the same time, we have compensated the third order resonances to have a large enough dynamic aperture. So the decay ring accepts injected and stored beams. In a top-down approach, the high stored intensities impose to take into account the space charge effects. However, due to the merging, the beam blows up after each injection in the longitudinal space charge, which imposes to include a momentum collimation section in the decay ring

  19. Conceptual design of a linac-stretcher ring to obtain a 2-GeV continuous electron beam

    International Nuclear Information System (INIS)

    Cho, Y.; Holt, R.J.; Jackson, H.E.; Khoe, T.K.; Mavrogenes, G.S.

    1981-01-01

    In order to obtain a high duty factor, > 100 μA 2-GeV electron beam, we have designed a linac-stretcher ring system. The system is an attractive option because it draws heavily on the existing accelerator technology. The linac-stretcher ring consists of a 2-GeV SLAC-type pulsed linac which injects into a storage ring. In between linac pulses, the stored electron beam is to extract resonantly. This design differs from those discussed recently in several important respects. The storage ring includes an RF system whose purpose is to control the beam orbit and rate of extraction from the ring. With an RF system in the ring, the injection scheme consists of a few turns of synchronous transfers of beam between the linac and storage ring

  20. Augmented Reality som wearable. Et design for visuel læring i sygeplejerskeuddannelsens anatomiundervisning

    DEFF Research Database (Denmark)

    Buhl, Mie; Rahn, Annette

    2015-01-01

    Artiklen omhandler design og implementering af Augmented Reality (AR) i form af en wearable i sygeplejerskeuddannelsens anatomiundervisning, mere specifikt undervisning i lungeanatomi og respiration, med fokus på potentialer for visuel læring. Projektet undersøger, hvordan en udviklet AR...

  1. Design of a ring resonator-based optical beam forming network for phased array receive antennas

    NARCIS (Netherlands)

    van 't Klooster, J.W.J.R.; Roeloffzen, C.G.H.; Meijerink, Arjan; Zhuang, L.; Marpaung, D.A.I.; van Etten, Wim; Heideman, Rene; Leinse, Arne; Schippers, H.; Verpoorte, J.; Wintels, M.

    2008-01-01

    A novel squint-free ring resonator-based optical beam forming network (OBFN) for phased array antennas (PAA) is proposed. It is intended to provide broadband connectivity to airborne platforms via geostationary satellites. In this paper, we present the design of the OBFN and its control system. Our

  2. A Virtual Tool for Minimum Cost Design of a Wind Turbine Tower with Ring Stiffeners

    Directory of Open Access Journals (Sweden)

    Fatih Karpat

    2013-07-01

    Full Text Available Currently, renewable energy resources are becoming more important to reduce greenhouse gas emissions and increase energy efficiency. Researchers have focused on all components of wind turbines to increase reliability and minimize cost. In this paper, a procedure including a cost analysis method and a particle swarm optimization algorithm has been presented to efficiently design low cost steel wind turbine towers. A virtual tool is developed in MATLAB for the cost optimization of wind turbine steel towers with ring stiffeners using a particle swarm optimization algorithm. A wind turbine tower optimization problem in the literature is solved using the developed computer program. In the optimization procedure the optimization results match very well with the optimization results obtained previously. The wall thickness of the shell segments and the dimensions of the ring stiffeners are selected as the design variables, and the limits of the local buckling for the flat ring stiffeners, the local shell buckling limit, the panel ring buckling limit and the limitation of the frequency are considered the design constraints. Numerical examples are presented to understand the impacts of the design variables on the total cost of the wind turbine tower.

  3. Design of a dual linear polarization antenna using split ring resonators at X-band

    Science.gov (United States)

    Ahmed, Sadiq; Chandra, Madhukar

    2017-11-01

    Dual linear polarization microstrip antenna configurations are very suitable for high-performance satellites, wireless communication and radar applications. This paper presents a new method to improve the co-cross polarization discrimination (XPD) for dual linear polarized microstrip antennas at 10 GHz. For this, three various configurations of a dual linear polarization antenna utilizing metamaterial unit cells are shown. In the first layout, the microstrip patch antenna is loaded with two pairs of spiral ring resonators, in the second model, a split ring resonator is placed between two microstrip feed lines, and in the third design, a complementary split ring resonators are etched in the ground plane. This work has two primary goals: the first is related to the addition of metamaterial unit cells to the antenna structure which permits compensation for an asymmetric current distribution flow on the microstrip antenna and thus yields a symmetrical current distribution on it. This compensation leads to an important enhancement in the XPD in comparison to a conventional dual linear polarized microstrip patch antenna. The simulation reveals an improvement of 7.9, 8.8, and 4 dB in the E and H planes for the three designs, respectively, in the XPD as compared to the conventional dual linear polarized patch antenna. The second objective of this paper is to present the characteristics and performances of the designs of the spiral ring resonator (S-RR), split ring resonator (SRR), and complementary split ring resonator (CSRR) metamaterial unit cells. The simulations are evaluated using the commercial full-wave simulator, Ansoft High-Frequency Structure Simulator (HFSS).

  4. Fatigue design of a mechanically biocompatible lattice for a proof-of-concept femoral stem.

    Science.gov (United States)

    Arabnejad Khanoki, Sajad; Pasini, Damiano

    2013-06-01

    A methodology is proposed to design a spatially periodic microarchitectured material for a two-dimensional femoral implant under walking gait conditions. The material is composed of a graded lattice with controlled property distribution that minimizes concurrently bone resorption and interface failure. The periodic microstructure of the material is designed for fatigue fracture caused by cyclic loadings on the hip joint as a result of walking. The bulk material of the lattice is Ti6AL4V and its microstructure is assumed free of defects. The Soderberg diagram is used for the fatigue design under multiaxial loadings. Two cell topologies, square and Kagome, are chosen to obtain optimized property gradients for a two-dimensional implant. Asymptotic homogenization (AH) theory is used to address the multiscale mechanics of the implant as well as to capture the stress and strain distribution at both the macro and the microscale. The microstress distribution found with AH is also compared with that obtained from a detailed finite element analysis. For the maximum value of the von Mises stress, we observe a deviation of 18.6% in unit cells close to the implant boundary, where the AH assumption of spatial periodicity of the fluctuating fields ceases to hold. In the second part of the paper, the metrics of bone resorption and interface shear stress are used to benchmark the graded cellular implant with existing prostheses made of fully dense titanium implant. The results show that the amount of initial postoperative bone loss for square and Kagome lattice implants decreases, respectively, by 53.8% and 58%. In addition, the maximum shear interface failure at the distal end is significantly reduced by about 79%. A set of proof-of-concepts of planar implants have been fabricated via Electron Beam Melting (EBM) to demonstrate the manufacturability of Ti6AL4V into graded lattices with alternative cell size. Optical microscopy has been used to measure the morphological parameters

  5. Design and development of a bipolar power supply for APS storage ring correctors

    International Nuclear Information System (INIS)

    Kang, Y.G.

    1993-01-01

    The Advanced Photon Source (APS) requires a number of correction magnets. Basically, two different types of bipolar power supplies (BPS) will be used for all the correction magnets. One requires dc correction only, and the other requires dc and ac correction. For the storage ring horizontal/vertical (H/V) correctors, the BPS should be able to supply dc and ac current. This paper describes the design aspects and considerations for a bipolar power supply for the APS storage ring H/V correctors

  6. Design of a 4.8-m ring for inverse Compton scattering x-ray source

    Directory of Open Access Journals (Sweden)

    H. S. Xu

    2014-07-01

    Full Text Available In this paper we present the design of a 50 MeV compact electron storage ring with 4.8-meter circumference for the Tsinghua Thomson scattering x-ray source. The ring consists of four dipole magnets with properly adjusted bending radii and edge angles for both horizontal and vertical focusing, and a pair of quadrupole magnets used to adjust the horizontal damping partition number. We find that the dynamic aperture of compact storage rings depends essentially on the intrinsic nonlinearity of the dipole magnets with small bending radius. Hamiltonian dynamics is found to agree well with results from numerical particle tracking. We develop a self-consistent method to estimate the equilibrium beam parameters in the presence of the intrabeam scattering, synchrotron radiation damping, quantum excitation, and residual gas scattering. We also optimize the rf parameters for achieving a maximum x-ray flux.

  7. Nuclear design analysis of square-lattice honeycomb space nuclear rocket engine

    International Nuclear Information System (INIS)

    Widargo, Reza; Anghaie, Samim

    1999-01-01

    The square-lattice honeycomb reactor is designed based on a cylindrical core that is determined to have critical diameter and length of 0.50 m and 0.50 c, respectively. A 0.10-cm thick radial graphite reflector, in addition to a 0.20-m thick axial graphite reflector are used to reduce neutron leakage from the reactor. The core is fueled with solid solution of 93% enriched (U, Zr, Nb)C, which is one of several ternary uranium carbides that are considered for this concept. The fuel is to be fabricated as 2 mm grooved (U, Zr, Nb)C wafers. The fuel wafers are used to form square-lattice honeycomb fuel assemblies, 0.10 m in length with 30% cross-sectional flow area. Five fuel assemblies are stacked up axially to form the reactor core. Based on the 30% void fraction, the width of the square flow channel is about 1.3 mm. The hydrogen propellant is passed through these flow channels and removes the heat from the reactor core. To perform nuclear design analysis, a series of neutron transport and diffusion codes are used. The preliminary results are obtained using a simple four-group cross-section model. To optimize the nuclear design, the fuel densities are varied for each assembly. Tantalum, hafnium and tungsten are considered and used as a replacement for niobium in fuel material to provide water submersion sub-criticality for the reactor. Axial and radial neutron flux and power density distributions are calculated for the core. Results of the neutronic analysis indicate that the core has a relatively fast spectrum. From the results of the thermal hydraulic analyses, eight axial temperature zones are chosen for the calculation of group average cross-sections. An iterative process is conducted to couple the neutronic calculations with the thermal hydraulics calculations. Results of the nuclear design analysis indicate that a compact core can be designed based on ternary uranium carbide square-lattice honeycomb fuel. This design provides a relatively high thrust to weight

  8. Storage ring design of the 8 GeV synchrotron radiation facility (SPring-8)

    International Nuclear Information System (INIS)

    Hara, M.; Bc, S.H.; Motonaga, S.

    1990-01-01

    In Japan, RIKEN (Institute of Physical and Chemical Research) and JAERI (Japan Atomic Energy Research Institute) have organized a joint design team and started a design study for an 8 GeV synchrotron radiation X-ray source. This paper outlines the status of the design study for the 8 GeV highly brilliant synchrotron radiation X-ray source ring named Super Photon Ring (SPring-8). The facility consists of a main storage ring, a full-energy injector booster synchrotron and a pre-injector 1 GeV linac. The injector linac and synchrotron are laid outside the storage ring because to permit the use of the linac and synchrotron not only as an injector but also as an electron or positron beam source. The purpose of the facility is to provide stable photon beams with high brilliance in the X-ray region. The energy of the stored electrons (positrons) is fixed at 8 GeV to fulfill the required condition using conventional type insertion devices. (N.K.)

  9. Lattice design of medium energy beam transport line for n spallation neutron source

    International Nuclear Information System (INIS)

    Dhingra, Rinky; Kulkarni, Nita S.; Kumar, Vinit

    2015-01-01

    A 1 GeV H - injector linac is being designed at RRCAT for the proposed Indian Spallation Neutron Source (ISNS). The front-end of the injector linac will consist of Radiofrequency Quadrupole (RFQ) linac, which will accelerate the H - beam from 50 keV to 3 MeV. The beam will be further accelerated in superconducting Single Spoke Resonators (SSRs). A Medium Energy Beam Transport (MEBT) line will be used to transport the beam from the exit of RFQ to the input of SSR. The main purpose of MEBT is to carry out beam matching from RFQ to SSR, and beam chopping. In this paper, we describe the optimization criteria for the lattice design of MEBT. The optimized lattice element parameters are presented for zero and full (15 mA) current case. Beam dynamics studies have been carried out using an envelope tracing code Trace-3D. Required beam deflection angle due to the chopper housed inside the MEBT for beam chopping has also been estimated. (author)

  10. A 1.5 GeV high brilliance synchrotron light source with combined function lattice

    International Nuclear Information System (INIS)

    Eriksson, M.; Lindgren, L.J.; Andersson, Aa.; Roejsel, P.; Werin, S.

    1988-01-01

    A 1.5 GeV synchrotron light source with a combined function lattice is studied. The light source will offer X-ray radiation with λc=1.0 angstrom from a superconducting wiggler and high brilliance VUV-radiation from undulators. The magnet lattice, magnet design and ring performance is discussed. (authors)

  11. Design of all-optical flip-flop by using optical bistability in passive micro-rings

    International Nuclear Information System (INIS)

    Karimi, M.; Abolfazli, M. J.; Rouholamini Nejad, H.; Bahrampour, A.

    2007-01-01

    In this paper at first, Optical bistability in the micro ring resonators in the presence of Kerr and two-photon absorption effects is studied and also, attenuation in micro rings with these nonlinear effects is calculated. An all-optical R-S flip-flop is designed by using optical bistability. Conditions for SET and RESET signals are calculated and their dependences on the optical parameters of micro rings are investigated.

  12. Vacuum system design for the PEP-II B Factory High-Energy Ring

    International Nuclear Information System (INIS)

    Perkins, C.; Bostic, D.; Daly, E.

    1994-06-01

    The design of the vacuum system for the PEP-II B Factory High-Energy Ring is reviewed. The thermal design and vacuum requirements are particularly challenging in PEP-II due to high stored beam currents up to 3.0 amps in 1658 bunches. The vacuum chambers for the HER arcs are fabricated by electron beam welding extruded copper sections up to 6 m long. Design of these chambers and the vacuum PumPing configuration is described with results from vacuum and thermal analyses

  13. Design of the 1.8 Tesla wiggler for the DAΦNE Main Rings

    International Nuclear Information System (INIS)

    Sanelli, C.; Hsieh, H.

    1992-01-01

    The electromagnetic and mechanical design of the eight wiggler magnets for DAΦNE Main Rings is described. The wigglers have a large 1.8 Tesla flat top magnetic field, 64 cm period and 4 cm gap. The magnetic 3-D calculations, the electromagnetic design and the adopted mechanical solutions, with particular attention to the vacuum chamber problems are described. A full scale prototype (5 full poles and two half pole) will be constructed in order to verify the accuracy of magnetic calculations, the end pole design and the multipole content. (author) 4 figs.; 1 tab

  14. Beam dynamics in Compton ring gamma sources

    Directory of Open Access Journals (Sweden)

    Eugene Bulyak

    2006-09-01

    Full Text Available Electron storage rings of GeV energy with laser pulse stacking cavities are promising intense sources of polarized hard photons which, via pair production, can be used to generate polarized positron beams. In this paper, the dynamics of electron bunches circulating in a storage ring and interacting with high-power laser pulses is studied both analytically and by simulation. Both the common features and the differences in the behavior of bunches interacting with an extremely high power laser pulse and with a moderate pulse are discussed. Also considerations on particular lattice designs for Compton gamma rings are presented.

  15. Use of the Halbach perturbation theory for the multipole design of the ALS storage ring sextupole

    Energy Technology Data Exchange (ETDEWEB)

    Marks, S. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    The Advanced Light Source (ALS) storage ring sextupole is a unique multi-purpose magnet. It is designed to operate in the primary or sextupole mode and in three auxiliary trim modes: horizontal steering, vertical steering, and skew quadrupole. Klaus Halbach developed a perturbation theory for iron-dominated magnets which provides the basis for this design. Many magnet designers, certainly those who have been exposed to Klaus, are familiar with this theory and have used it for such things as evaluating the effect of assembly alignment errors. The ALS sextupole design process was somewhat novel in its use of the perturbation theory to design essential features of the magnet. In particular, the steering and skew quadrupole functions are produced by violating sextupole symmetry and are thus perturbations of the normal sextupole excitation. The magnet was designed such that all four modes are decoupled and can be excited independently. This paper discusses the use of Halbach`s perturbation theory to design the trim functions and to evaluate the primary asymmetry in the sextupole mode, namely, a gap in the return yoke to accommodate the vacuum chamber. Prototype testing verified all operating modes of the magnet and confirmed the expected performance from calculations based upon the Halbach perturbation theory. A total of 48 sextupole magnets of this design are now installed and operating successfully in the ALS storage ring.

  16. Design for a second-generation proton storage ring at LAMPF

    International Nuclear Information System (INIS)

    Colton, E.P.

    1988-01-01

    A conceptual design is presented for a second-generation proton storage ring complex at LAMPF. The facility would consist of two stacked racetrack-shaped machines. These machines would deliver a 1.2-mA beam of 1.6-GeV protons at 48 Hz. The pulse length would be 1.75 μsec which represents a time compression of 570. 1 ref., 8 figs., 1 tab

  17. Overall design concepts for the APS storage ring machine protection system

    International Nuclear Information System (INIS)

    Lumpkin, A.; Fuja, R.; Votaw, A.; Wang, X.; Shu, D.; Stepp, J.; Arnold, N.; Nawrocki, G.; Decker, G.; Chung, Y.

    1995-01-01

    The basic design and status of the machine protection system for the Advanced Photon Source (APS) storage ring are discussed. The machine is passively safe to the bending magnet sources, but the high power of the insertion devices requires missteering conditions to be identified and the beam aborted in less than one millisecond. The basic aspects of waterflow, temperature, beam position, etc. monitoring are addressed. Initial commissioning of subsystems and sensors is statused

  18. GLAD: a generic lattice debugger

    International Nuclear Information System (INIS)

    Lee, M.J.

    1992-01-01

    Today, numerous simulation and analysis codes exist for the design, commission, and operation of accelerator beam lines. There is a need to develop a common user interface and database link to run these codes interactively. This paper will describe a proposed system, GLAD (Generic LAttice Debugger), to fulfill this need. Specifically, GLAD can be used to find errors in beam lines during commissioning, control beam parameters during operation, and design beam line optics and error correction systems for the next generation of linear accelerators and storage rings. (author)

  19. Electrical crosstalk in front-illuminated photodiode array with different guard ring designs for medical CT applications

    International Nuclear Information System (INIS)

    Ji Fan; Juntunen, Mikko; Hietanen, Iiro

    2009-01-01

    This paper presents electrical crosstalk studies on front-illuminated photodiode arrays for medical computed tomography (CT) applications. Crosstalk is an important factor to the system noise and image quality. The electrical crosstalk depends on silicon substrate properties and photodiode structures. The photodiode samples employed in this paper are planar processed on high-resistivity n-type silicon substrate, resulting in a p+/n-/n+ diode structure. Two types of guard ring structures are designed and applied to the same geometry of two-dimensional photodiode arrays. One structure is an n guard ring in the gap area between pixels, and the other structure is an additional p+ guard ring around each pixel together with the n guard ring. A 10 μm light spot with wavelength of 525 nm is used to scan across the surface of the photodiode array in the electrical crosstalk measurements. The electrical currents of two neighbor pixels are measured and the results are compared between two guard ring designs. The design with the p+ guard ring structure gives better electrical crosstalk suppression. Moreover, the measurement results show much smaller influence on surrounding pixels with the p+ guard ring structure in the case of disconnected pixel. Besides the electrical crosstalk, the light sensitivity within the gap area is also discussed between two guard ring designs.

  20. Design and performance analysis of delay insensitive multi-ring structures

    DEFF Research Database (Denmark)

    Sparsø, Jens; Staunstrup, Jørgen

    1993-01-01

    A set of simple design and performance analysis techniques that have been successfully used to design a number of nontrivial delay insensitive circuits is described. Examples are building blocks for digital filters and a vector multiplier using a serial-parallel multiply and accumulate algorithm....... The vector multiplier circuit has been laid out, submitted for fabrication and successfully tested. Throughout the analysis elements from this design are used to illustrate the design and performance analysis techniques. The design technique is based on a data flow approach using pipelines and rings...... that are composed into larger multiring structures by joining and forking of signals. By limiting to this class of structures, it is possible, even for complex designs, to analyze the performance and establish an understanding of the bottlenecks....

  1. Design and construction of an Offner spectrometer based on geometrical analysis of ring fields.

    Science.gov (United States)

    Kim, Seo Hyun; Kong, Hong Jin; Lee, Jong Ung; Lee, Jun Ho; Lee, Jai Hoon

    2014-08-01

    A method to obtain an aberration-corrected Offner spectrometer without ray obstruction is proposed. A new, more efficient spectrometer optics design is suggested in order to increase its spectral resolution. The derivation of a new ring equation to eliminate ray obstruction is based on geometrical analysis of the ring fields for various numerical apertures. The analytical design applying this equation was demonstrated using the optical design software Code V in order to manufacture a spectrometer working in wavelengths of 900-1700 nm. The simulation results show that the new concept offers an analytical initial design taking the least time of calculation. The simulated spectrometer exhibited a modulation transfer function over 80% at Nyquist frequency, root-mean-square spot diameters under 8.6 μm, and a spectral resolution of 3.2 nm. The final design and its realization of a high resolution Offner spectrometer was demonstrated based on the simulation result. The equation and analytical design procedure shown here can be applied to most Offner systems regardless of the wavelength range.

  2. New design of a triplexer using ring resonator integrated with directional coupler based on photonic crystals

    Science.gov (United States)

    Wu, Yaw-Dong; Shih, Tien-Tsorng; Lee, Jian-Jang

    2009-11-01

    In this paper, we proposed the design of directional coupler integrated with ring resonator based on two-dimensional photonic crystals (2D PCs) to develop a triplexer filter. It can be widely used as the fiber access network element for multiplexer-demultiplexer wavelength selective in fiber-to-the-home (FTTH) communication systems. The directional coupler is chosen to separate the wavelengths of 1490nm and 1310nm. The ring resonator separates the wavelength of 1550nm. The transmission efficiency is larger than 90%. Besides, the total size of propose triplexer is only 19μm×12μm. We present simulation results using the finite-difference time-domain (FDTD) method for the proposed structure.

  3. Design of the Injection and extraction system and related machine protection for the Clic Damping Rings

    CERN Document Server

    Apsimon, Robert; Barnes, Mike; Borburgh, Jan; Goddard, Brennan; Papaphilippou, Yannis; Uythoven, Jan

    2014-01-01

    Linear machines such as CLIC have relatively low rates of collision between bunches compared to their circular counterparts. In order to achieve the required luminosity, a very small spot size is envisaged at the interaction point, thus a low emittance beam is needed. Damping rings are essential for producing the low emittances needed for the CLIC main beam. It is crucial that the beams are injected and extracted from the damping rings in a stable and repeatable fashion to minimise emittance blow-up and beam jitter at the interaction point; both of these effects will deteriorate the luminosity at the interaction point. In this paper, the parameters and constraints of the injection and extraction systems are considered and the design of these systems is optimised within this parameter space. Related machine protection is considered in order to prevent damage from potential failure modes of the injection and extraction systems.

  4. Low-emittance Storage Rings

    CERN Document Server

    Wolski, Andrzej

    2014-01-01

    The effects of synchrotron radiation on particle motion in storage rings are discussed. In the absence of radiation, particle motion is symplectic, and the beam emittances are conserved. The inclusion of radiation effects in a classical approximation leads to emittance damping: expressions for the damping times are derived. Then, it is shown that quantum radiation effects lead to excitation of the beam emittances. General expressions for the equilibrium longitudinal and horizontal (natural) emittances are derived. The impact of lattice design on the natural emittance is discussed, with particular attention to the special cases of FODO-, achromat- and theoretical-minimum-emittance-style lattices. Finally, the effects of betatron coupling and vertical dispersion (generated by magnet alignment and lattice tuning errors) on the vertical emittance are considered.

  5. An improved ultra-wideband bandpass filter design using split ring resonator with coupled microstrip line

    Science.gov (United States)

    Umeshkumar, Dubey Suhmita; Kumar, Manish

    2018-04-01

    This paper incorporates an improved design of Ultra Wideband Bandpass filter by using split ring resonators (SRR) along with the coupled microstrip lines. The use of split ring resonators and shunt step impedance open circuit stub enhances the stability due to transmission zeroes at the ends. The designing of filter and simulation of parameters is carried out using Ansoft's HFSS 13.0 software on RT/Duroid 6002 as a substrate with dielectric constant of 2.94. The design utilizes a frequency band from 22GHz to 29GHz. This band is reserved for Automotive Radar system and sensors as per FCC specifications. The proposed design demonstrates insertion loss less than 0.6dB and return loss better than 12dB at mid frequency i.e. 24.4GHz. The reflection coefficient shows high stability of about 12.47dB at mid frequency. The fractional bandwidth of the proposed filter is about 28.7% and size of filter design is small due to thickness of 0.127mm.

  6. Designed defects in 2D antidot lattices for quantum information processing

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Flindt, Christian; Mortensen, Niels Asger

    2008-01-01

    We propose a new physical implementation of spin qubits for quantum information processing, namely defect states in antidot lattices defined in the two-dimensional electron gas (2DEG) at a semiconductor heterostructure. Calculations of the band structure of a periodic antidot lattice are presented...

  7. Conceptual Design Report. Antiproton - Proton Collider Upgrade 20 GeV Rings. Technical Components and Civil Construction May, 1988

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-05-01

    This report contains a description of the design and cost estimate of two new 20 GeV rings which will be required to support the upgrade of the Fermilab Collider with a luminosity goal of 5x10 31 cm-2s-1. The new rings include an antiproton post-accumulator, denoted the Antiproton Super Booster (ASB), and a proton post-booster, denoted the Proton Super Booster (PSB). The siting of the rings is shown in Figure I-1. Both rings are capable of operation at 20 GeV, eliminating the need for ever again injecting beam into the Main Ring below transition, and significantly enhancing Main Ring performance. The Antiproton Super Booster is designed to accept and accumulate up to 4x1012 antiprotons from the existing Antiproton Accumulator, and deliver them to the Main Ring at 20 GeV for acceleration and injection into the Collider. It is also designed to accept diluted antiprotons from the Main Ring at 20 GeV for recooling. The PSB accepts 8.9 GeV protons from the existing Booster and accelerates them to 20 GeV for injection into the Main Ring. The PSB is designed to operate at 5 Hz. The siting shown in Figure I-1 has the attractive feature that it removes all Main Ring injection hardware from the AO straight section, opening the possibility of installing a third proton-antiproton interaction region in the Tevatron Collider.

  8. Final Design and Experimental Validation of the Thermal Performance of the LHC Lattice Cryostats

    International Nuclear Information System (INIS)

    Bourcey, N.; Capatina, O.; Parma, V.; Poncet, A.; Rohmig, P.; Serio, L.; Skoczen, B.; Tock, J.-P.; Williams, L. R.

    2004-01-01

    The recent commissioning and operation of the LHC String 2 have given a first experimental validation of the global thermal performance of the LHC lattice cryostat at nominal cryogenic conditions. The cryostat designed to minimize the heat inleak from ambient temperature, houses under vacuum and thermally protects the cold mass, which contains the LHC twin-aperture superconducting magnets operating at 1.9 K in superfluid helium. Mechanical components linking the cold mass to the vacuum vessel, such as support posts and insulation vacuum barriers are designed with efficient thermalisations for heat interception to minimise heat conduction. Heat inleak by radiation is reduced by employing multilayer insulation (MLI) wrapped around the cold mass and around an aluminium thermal shield cooled to about 60 K.Measurements of the total helium vaporization rate in String 2 gives, after substraction of supplementary heat loads and end effects, an estimate of the total thermal load to a standard LHC cell (107 m) including two Short Straight Sections and six dipole cryomagnets. Temperature sensors installed at critical locations provide a temperature mapping which allows validation of the calculated and estimated thermal performance of the cryostat components, including efficiency of the heat interceptions

  9. Final Design and Experimental Validation of the Thermal Performance of the LHC Lattice Cryostats

    Science.gov (United States)

    Bourcey, N.; Capatina, O.; Parma, V.; Poncet, A.; Rohmig, P.; Serio, L.; Skoczen, B.; Tock, J.-P.; Williams, L. R.

    2004-06-01

    The recent commissioning and operation of the LHC String 2 have given a first experimental validation of the global thermal performance of the LHC lattice cryostat at nominal cryogenic conditions. The cryostat designed to minimize the heat inleak from ambient temperature, houses under vacuum and thermally protects the cold mass, which contains the LHC twin-aperture superconducting magnets operating at 1.9 K in superfluid helium. Mechanical components linking the cold mass to the vacuum vessel, such as support posts and insulation vacuum barriers are designed with efficient thermalisations for heat interception to minimise heat conduction. Heat inleak by radiation is reduced by employing multilayer insulation (MLI) wrapped around the cold mass and around an aluminium thermal shield cooled to about 60 K. Measurements of the total helium vaporization rate in String 2 gives, after substraction of supplementary heat loads and end effects, an estimate of the total thermal load to a standard LHC cell (107 m) including two Short Straight Sections and six dipole cryomagnets. Temperature sensors installed at critical locations provide a temperature mapping which allows validation of the calculated and estimated thermal performance of the cryostat components, including efficiency of the heat interceptions.

  10. Aerodynamic Modeling of Transonic Aircraft Using Vortex Lattice Coupled with Transonic Small Disturbance for Conceptual Design

    Science.gov (United States)

    Chaparro, Daniel; Fujiwara, Gustavo E. C.; Ting, Eric; Nguyen, Nhan

    2016-01-01

    The need to rapidly scan large design spaces during conceptual design calls for computationally inexpensive tools such as the vortex lattice method (VLM). Although some VLM tools, such as Vorview have been extended to model fully-supersonic flow, VLM solutions are typically limited to inviscid, subcritical flow regimes. Many transport aircraft operate at transonic speeds, which limits the applicability of VLM for such applications. This paper presents a novel approach to correct three-dimensional VLM through coupling of two-dimensional transonic small disturbance (TSD) solutions along the span of an aircraft wing in order to accurately predict transonic aerodynamic loading and wave drag for transport aircraft. The approach is extended to predict flow separation and capture the attenuation of aerodynamic forces due to boundary layer viscosity by coupling the TSD solver with an integral boundary layer (IBL) model. The modeling framework is applied to the NASA General Transport Model (GTM) integrated with a novel control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF).

  11. A hybrid finite element analysis and evolutionary computation method for the design of lightweight lattice components with optimized strut diameter

    DEFF Research Database (Denmark)

    Salonitis, Konstantinos; Chantzis, Dimitrios; Kappatos, Vasileios

    2017-01-01

    approaches or with the use of topology optimization methodologies. An optimization approach utilizing multipurpose optimization algorithms has not been proposed yet. This paper presents a novel user-friendly method for the design optimization of lattice components towards weight minimization, which combines...... finite element analysis and evolutionary computation. The proposed method utilizes the cell homogenization technique in order to reduce the computational cost of the finite element analysis and a genetic algorithm in order to search for the most lightweight lattice configuration. A bracket consisting...

  12. The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings.

    Science.gov (United States)

    Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao

    2018-03-30

    3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting's surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control.

  13. The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings

    Science.gov (United States)

    Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao

    2018-01-01

    3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting’s surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control. PMID:29601543

  14. The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings

    Directory of Open Access Journals (Sweden)

    Haolong Shangguan

    2018-03-01

    Full Text Available 3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting’s surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control.

  15. Analysis and design of lattice materials for large cord and curvature variations in skin panels of morphing wings

    International Nuclear Information System (INIS)

    Vigliotti, Andrea; Pasini, Damiano

    2015-01-01

    In the past few decades, several concepts for morphing wings have been proposed with the aim of improving the structural and aerodynamic performance of conventional aircraft wings. One of the most interesting challenges in the design of a morphing wing is represented by the skin, which needs to meet specific deformation requirements. In particular when morphing involves changes of cord or curvature, the skin is required to undergo large recoverable deformation in the actuation direction, while maintaining the desired shape and strength in the others. One promising material concept that can meet these specifications is represented by lattice materials. This paper examines the use of alternative planar lattices in the embodiment of a skin panel for cord and camber morphing of an aircraft wing. We use a structural homogenization scheme capable of capturing large geometric nonlinearity, to examine the structural performance of lattice skin concepts, as well as to tune their mechanical properties in desired directions. (technical note)

  16. Damping rings for CLIC

    CERN Document Server

    Jowett, John M; Zimmermann, Frank; Owen, H

    2001-01-01

    The Compact Linear Colider (CLIC) is designed to operate at 3 TeV centre-of-mass energy with a total luminosity of 10^35 cm^-2 s^-1. The overall system design leads to extremely demanding requirements on the bunch trains injected into the main libac at frequency of 100 Hz. In particular, the emittances of the intense bunches have to be about an order of magnitude smaller than presently achieved. We describe our approach to finding a damping ring design capable of meeting these requirements. Besides lattice design, emittance and damping rate considerations, a number of scattering and instability effects have to be incorporated into the optimisation of parameters. Among these, intra-bem scattering and the electron cloud effect are two of the most significant.

  17. Lattice topology dictates photon statistics.

    Science.gov (United States)

    Kondakci, H Esat; Abouraddy, Ayman F; Saleh, Bahaa E A

    2017-08-21

    Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice is endowed with chiral symmetry. In such lattices, eigenmode pairs come in skew-symmetric pairs with oppositely signed eigenvalues. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity while the same quantities are insensitive to the parity of a linear lattice. For a ring lattice, adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a lattice exhibiting chiral symmetry, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice thereby producing super-thermal photon statistics, while an odd-sited lattice is incommensurate with such an arrangement and the statistics become sub-thermal.

  18. SKEW QUADRUPOLE FOCUSING LATTICES AND APPLICATIONS

    International Nuclear Information System (INIS)

    Parker, B.

    2001-01-01

    In this paper we revisit using skew quadrupole fields in place of traditional normal upright quadrupole fields to make beam focusing structures. We illustrate by example skew lattice decoupling, dispersion suppression and chromatic correction using the neutrino factory Study-II muon storage ring design. Ongoing BNL investigation of flat coil magnet structures that allow building a very compact muon storage ring arc and other flat coil configurations that might bring significant magnet cost reduction to a VLHC motivate our study of skew focusing

  19. Liquid ring vacuum pumps, compressors and systems conventional and hermetic design

    CERN Document Server

    Bannwarth, Helmut

    2006-01-01

    Based on the very successful German editions, this English version has been thoroughly updated and revised to reflect the developments of the last years and the latest innovations in the field.Throughout, the author makes excellent use of real-life examples and highly praised didactics to disseminate his expert knowledge needed by vacuum technology users and engineers in their daily work at industrial plants, as consultants or in design offices. He covers in detail the most modern liquid ring pumps, with chapters dedicated to maintenance, explosion prevention and general procedures for saf

  20. Global Optimization of Damping Ring Designs Using a Multi-Objective Evolutionary Algorithm

    CERN Document Server

    Emery, Louis

    2005-01-01

    Several damping ring designs for the International Linear Collider have been proposed recently. Some of the specifications, such as circumference and bunch train, are not fixed yet. Designers must make a choice anyway, select a geometry type (dog-bone or circular), an arc cell type (TME or FODO), and optimize linear and nonlinear part of the optics. The design process include straightforward steps (usually the linear optics), and some steps not so straightforward (when nonlinear optics optimization is affected by the linear optics). A first attempt at automating this process for the linear optics is reported. We first recognize that the optics is defined by just a few primary parameters (e.g., phase advance per cell) that determine the rest (e.g., quadrupole strength). In addition to the exact specification of circumference, equilibrium emittance and damping time there are some other quantities which could be optimized that may conflict with each other. A multiobjective genetic optimizer solves this problem b...

  1. Value engineering on the designed operator work tools for brick and rings wells production

    Science.gov (United States)

    Ayu Bidiawati J., R.; Muchtiar, Yesmizarti; Wariza, Ragil Okta

    2017-06-01

    Operator working tools in making brick and ring wells were designed and made, and the value engineering was calculated to identify and develop the function of these tools in obtaining the balance between cost, reliability and appearance. This study focused on the value of functional components of the tools and attempted to increase the difference between the costs incurred by the generated values. The purpose of this study was to determine the alternatives of tools design and to determine the performance of each alternative. The technique was developed using FAST method that consisted of five stages: information, creative, analytical, development and presentation stage. The results of the analysis concluded that the designed tools have higher value and better function description. There were four alternative draft improvements for operator working tools. The best alternative was determined based on the rank by using matrix evaluation. Best performance was obtained by the alternative II, amounting to 98.92 with a value of 0.77.

  2. Automatic local beam steering systems for NSLS x-ray storage ring: Design and implementation

    International Nuclear Information System (INIS)

    Singh, O.V.; Nawrocky, R.; Flannigan, J.

    1991-01-01

    Recently, two local automatic steering systems, controlled by microprocessors, have been installed and commissioned in the NSLS X- Ray storage ring. In each system, the position of the electron beam is stabilized at two locations by four independent servo systems. This paper describes three aspects of the local feedback program: design; commissioning; and limitation. The system design is explained by identifying major elements such as beam position detectors, signal processors, compensation amplifiers, ratio amplifiers, trim equalizers and microprocessor feedback controllers. System commissioning involves steps such as matching trim compensation, determination of local orbit bumps, measurement of open loop responses and design of servo circuits. Several limitations of performance are also discussed. 7 refs., 2 figs

  3. A practical optimization procedure for radial BWR fuel lattice design using tabu search with a multiobjective function

    International Nuclear Information System (INIS)

    Francois, J.L.; Martin-del-Campo, C.; Francois, R.; Morales, L.B.

    2003-01-01

    An optimization procedure based on the tabu search (TS) method was developed for the design of radial enrichment and gadolinia distributions for boiling water reactor (BWR) fuel lattices. The procedure was coded in a computing system in which the optimization code uses the tabu search method to select potential solutions and the HELIOS code to evaluate them. The goal of the procedure is to search for an optimal fuel utilization, looking for a lattice with minimum average enrichment, with minimum deviation of reactivity targets and with a local power peaking factor (PPF) lower than a limit value. Time-dependent-depletion (TDD) effects were considered in the optimization process. The additive utility function method was used to convert the multiobjective optimization problem into a single objective problem. A strategy to reduce the computing time employed by the optimization was developed and is explained in this paper. An example is presented for a 10x10 fuel lattice with 10 different fuel compositions. The main contribution of this study is the development of a practical TDD optimization procedure for BWR fuel lattice design, using TS with a multiobjective function, and a strategy to economize computing time

  4. Design analysis of a self-acting spiral-groove ring seal for counter-rotating shafts. [o ring seals

    Science.gov (United States)

    Dirusso, E.

    1983-01-01

    A self-acting spiral groove inter-shaft ring seal of nominal 16.33 cm (6.43 in.) diameter for sealing fan bleed air between counter rotating shafts in advanced turbofan engines was analyzed. The analysis focused on the lift force characteristics of the spiral grooves. A NASA Lewis developed computer program for predicting the performance of gas lubricated face seals was used to optimize the spiral groove geometry to produce maximum lift force. Load capacity curves (lift force as function of film thickness) were generated for four advanced turbofan engine operating conditions at relative seal speeds ranging from 17,850 to 29,800 rpm, sealed air pressures from 6 to 42 N/sq cm (9 to 60 psi) absolute and temperatures from 95 to 327 C (203 to 620 F). The relative seal sliding speed range was 152 to 255 m/sec (500 to 836 ft/sec). The analysis showed that the spiral grooves are capable of producing sufficient lift force such that the ring seal will operate in a noncontacting mode over the operating range of typical advanced turbofan engines.

  5. Design of a power amplifier for the LAMPF proton storage ring transverse damper system

    International Nuclear Information System (INIS)

    Lunsford, J.S.

    1981-01-01

    A power amplifier has been designed to drive the 50-Ω stripline deflection structures in the transverse active damper of the Los Alamos 800-MeV Proton Storage Ring (PSR). The unit will provide 600-V peak-to-peak with a dc-to-100-MHz bandwidth. Other important characteristics include < 40-ns delay time, 50-dB voltage gain, and 4-ns risetime with < 5% overshoot and ringing. Because of the current-drive properties of the amplifier, two amplifiers could be combined to provide over 1000-V peak-to-peak into 50 Ω, with very little bandwidth degradation. Components in the power amplifier that represent new designs are a 20-tube distributed-amplifier output stage; a driver stage, using VMOS FET and bipolar transistors; a high-voltage probe, with good dc stability and 150-MHz bandwidth; a transient suppressor circuit, using PIN diodes to protect the transistorized drivers from tube arcing; a nonlinear amplifier to compensate for the nonlinear characteristics of the distributed amplifier; and a first-fail indicator circuit to aid in locating the prime causes of equipment failures

  6. Dynamic apeerture in damping rings with realistic wigglers

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai; /SLAC

    2005-05-04

    The International Linear Collider based on superconducting RF cavities requires the damping rings to have extremely small equilibrium emittance, huge circumference, fast damping time, and large acceptance. To achieve all of these requirements is a very challenging task. In this paper, we will present a systematic approach to designing the damping rings using simple cells and non-interlaced sextupoles. The designs of the damping rings with various circumferences and shapes, including dogbone, are presented. To model realistic wigglers, we have developed a new hybrid symplectic integrator for faster and accurate evaluation of dynamic aperture of the lattices.

  7. Optimization of preparation method for ketoprofen-loaded microspheres consisting polymeric blends using simplex lattice mixture design

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sanjoy Kumar, E-mail: sanjoydasju@gmail.com; Khanam, Jasmina; Nanda, Arunabha

    2016-12-01

    In the present investigation, simplex lattice mixture design was applied for formulation development and optimization of a controlled release dosage form of ketoprofen microspheres consisting polymers like ethylcellulose and Eudragit{sup ®}RL 100; when those were formed by oil-in-oil emulsion solvent evaporation method. The investigation was carried out to observe the effects of polymer amount, stirring speed and emulsifier concentration (% w/w) on percentage yield, average particle size, drug entrapment efficiency and in vitro drug release in 8 h from the microspheres. Analysis of variance (ANOVA) was used to estimate the significance of the models. Based on the desirability function approach numerical optimization was carried out. Optimized formulation (KTF-O) showed close match between actual and predicted responses with desirability factor 0.811. No adverse reaction between drug and polymers were observed on the basis of Fourier transform infrared (FTIR) spectroscopy and Differential scanning calorimetric (DSC) analysis. Scanning electron microscopy (SEM) was carried out to show discreteness of microspheres (149.2 ± 1.25 μm) and their surface conditions during pre and post dissolution operations. The drug release pattern from KTF-O was best explained by Korsmeyer-Peppas and Higuchi models. The batch of optimized microspheres were found with maximum entrapment (~ 90%), minimum loss (~ 10%) and prolonged drug release for 8 h (91.25%) which may be considered as favourable criteria of controlled release dosage form. - Graphical abstract: Optimization of preparation method for ketoprofen-loaded microspheres consisting polymeric blends using simplex lattice mixture design. - Highlights: • Simplex lattice design was used to optimize ketoprofen-loaded microspheres. • Polymeric blend (Ethylcellulose and Eudragit® RL 100) was used. • Microspheres were prepared by oil-in-oil emulsion solvent evaporation method. • Optimized formulation depicted favourable

  8. Design and Analysis of an all-fiber MZI Interleaver Based on Fiber Ring Resonator

    Directory of Open Access Journals (Sweden)

    Pu Huilan

    2015-01-01

    Full Text Available An all-fiber Mach-Zehnder interferometer (MZI interleaver using one planar 3×3 fiber coupler, one 2×2 fiber coupler and one 8-shaped fiber ring resonator is developed by the new configuration. Based on its structure, the output spectrum expression is established and described by using the principle of fiber transmission and the matrix transfer function. The results of numerical simulation indicate that when the length difference of interference arms and the coupling coefficients of the couplers are some certain values, it obtains a uniform flat-top passband and similar to rectangular output spectrum. Compared with the traditional MZI interleaver, the isolation in stopband and the rolloff in transition band are strengthen, the 25dB stopband bandwidth and 0.5dB passband bandwidth are simultaneously remarkably improved. Compared with the asymmetrical ring resonator MZI interleaver, the influence of transmission loss on extinction ratio can be effectively reduced. The device has a certain ability to resist the deviation, which reduces the difficulties in fabricating it. The experiment results agree with the theoretical analysis well. The interleaver designed by the proposed approach has favorable performance, which has the potential application value in optical fiber communication system.

  9. Design and construction of the Donner 280-crystal positron ring for dynamic transverse section emission imaging

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Banchero, P.G.; Cahoon, J.L.; Huesman, R.H.; Vuletich, T.; Budinger, T.F.

    1977-09-01

    The design and construction of a medical imaging system for the rapid, accurate, three-dimensional imaging of positron-labeled compounds in the human body are described. Our medical research goals include quantifying blood flow and metabolism in human heart muscle and brain. The system consists of a large gantry containing lead shielding and a ring of 280 NaI(Tl) detectors that completely encircles the patient; 280 photomultiplier tubes, preamplifiers and timing discriminators; circuits that determine whenever a crystal has detected a gamma ray in time coincidence (i.e., within 12 nsec) of any of the opposing 105 crystals and determine the addresses of the crystals involved; 120K words of 12 bit memory for the simultaneous acquisition of data from eight portions of the cardiac cycle; and a hardwired image reconstructor capable of filtering and backprojecting data from 140 views to form a 210 x 210 computed transverse section image in less than 2 sec

  10. A structural design of the multi-ringed seismic support for PCPV

    International Nuclear Information System (INIS)

    Muto, Kiyoshi; Ujiie, Koji.

    1979-01-01

    This report describes the multi-ringed cylindrical support newly developed as the supporting structure for a Prestressed Concrete Pressure Vessel. This support is composed of several thin cylinders of concentric circles, which are made of reinforced concrete or steel reinforced concrete. The characteristics of the support is such that it can allow two contradictory conditions to occur. That is, it can follow smoothly the radial displacement of PCPV induced by inner pressure, inner heat and etc. At the same time, it has enough rigidity to bear the earthquake forces from PCPV and to transmit them to the ground with certainty. The shape, characteristics and structural design of the support are described hereunder. (author)

  11. Design and construction of the Donner 280-crystal positron ring for dynamic transverse section emission imaging

    Energy Technology Data Exchange (ETDEWEB)

    Derenzo, S.E.; Banchero, P.G.; Cahoon, J.L.; Huesman, R.H.; Vuletich, T.; Budinger, T.F.

    1977-09-01

    The design and construction of a medical imaging system for the rapid, accurate, three-dimensional imaging of positron-labeled compounds in the human body are described. Our medical research goals include quantifying blood flow and metabolism in human heart muscle and brain. The system consists of a large gantry containing lead shielding and a ring of 280 NaI(Tl) detectors that completely encircles the patient; 280 photomultiplier tubes, preamplifiers and timing discriminators; circuits that determine whenever a crystal has detected a gamma ray in time coincidence (i.e., within 12 nsec) of any of the opposing 105 crystals and determine the addresses of the crystals involved; 120K words of 12 bit memory for the simultaneous acquisition of data from eight portions of the cardiac cycle; and a hardwired image reconstructor capable of filtering and backprojecting data from 140 views to form a 210 x 210 computed transverse section image in less than 2 sec.

  12. Lattice design and beam optics calculations for the new large-scale electron-positron collider FCC-ee

    CERN Document Server

    Haerer, Bastian; Prof. Dr. Schmidt, Ruediger; Dr. Holzer, Bernhard

    Following the recommendations of the European Strategy Group for High Energy Physics, CERN launched the Future Circular Collider Study (FCC) to investigate the feasibility of large-scale circular colliders for future high energy physics research. This thesis presents the considerations taken into account during the design process of the magnetic lattice in the arc sections of the electron-positron version FCC-ee. The machine is foreseen to operate at four different centre-of-mass energies in the range of 90 to 350 GeV. Different beam parameters need to be achieved for every energy, which requires a flexible lattice design in the arc sections. Therefore methods to tune the horizontal beam emittance without re-positioning machine components are implemented. In combination with damping and excitation wigglers a precise adjustment of the emittance can be achieved. A very first estimation of the vertical emittance arising from lattice imperfections is performed. Special emphasis is put on the optimisation of the ...

  13. SSC lattice database and graphical interface

    International Nuclear Information System (INIS)

    Trahern, C.G.; Zhou, J.

    1991-11-01

    When completed the Superconducting Super Collider will be the world's largest accelerator complex. In order to build this system on schedule, the use of database technologies will be essential. In this paper we discuss one of the database efforts underway at the SSC, the lattice database. The SSC lattice database provides a centralized source for the design of each major component of the accelerator complex. This includes the two collider rings, the High Energy Booster, Medium Energy Booster, Low Energy Booster, and the LINAC as well as transfer and test beam lines. These designs have been created using a menagerie of programs such as SYNCH, DIMAD, MAD, TRANSPORT, MAGIC, TRACE3D AND TEAPOT. However, once a design has been completed, it is entered into a uniform database schema in the database system. In this paper we discuss the reasons for creating the lattice database and its implementation via the commercial database system SYBASE. Each lattice in the lattice database is composed of a set of tables whose data structure can describe any of the SSC accelerator lattices. In order to allow the user community access to the databases, a programmatic interface known as dbsf (for database to several formats) has been written. Dbsf creates ascii input files appropriate to the above mentioned accelerator design programs. In addition it has a binary dataset output using the Self Describing Standard data discipline provided with the Integrated Scientific Tool Kit software tools. Finally we discuss the graphical interfaces to the lattice database. The primary interface, known as OZ, is a simulation environment as well as a database browser

  14. Trade-off between positive and negative design of protein stability: from lattice models to real proteins.

    Directory of Open Access Journals (Sweden)

    Orly Noivirt-Brik

    2009-12-01

    Full Text Available Two different strategies for stabilizing proteins are (i positive design in which the native state is stabilized and (ii negative design in which competing non-native conformations are destabilized. Here, the circumstances under which one strategy might be favored over the other are explored in the case of lattice models of proteins and then generalized and discussed with regard to real proteins. The balance between positive and negative design of proteins is found to be determined by their average "contact-frequency", a property that corresponds to the fraction of states in the conformational ensemble of the sequence in which a pair of residues is in contact. Lattice model proteins with a high average contact-frequency are found to use negative design more than model proteins with a low average contact-frequency. A mathematical derivation of this result indicates that it is general and likely to hold also for real proteins. Comparison of the results of correlated mutation analysis for real proteins with typical contact-frequencies to those of proteins likely to have high contact-frequencies (such as disordered proteins and proteins that are dependent on chaperonins for their folding indicates that the latter tend to have stronger interactions between residues that are not in contact in their native conformation. Hence, our work indicates that negative design is employed when insufficient stabilization is achieved via positive design owing to high contact-frequencies.

  15. Determination of the linear aperture of the SSC [Superconducting Supercollider] clustered lattice used for the conceptual design report

    International Nuclear Information System (INIS)

    Dell, G.F.

    1986-01-01

    A study is made of the linear aperture for the clustered lattice used for the SSC Conceptual Design Report. Random multipole errors are included in all magnetic elements including the insertion dipoles and quadrupoles. Based on the concept of smear, the linear aperture is equal to the dynamic aperture in the range -0.1 ≤ ΔP/P ≤ 0.03%. Strong coupling for ΔP/P > 0% produces large smears. A variation of the smear parameter that is insensitive to coupling is proposed. A comparison is made with results reported in the SSC Conceptual Design Report

  16. Prestressed Ring Beam in the Church of St. Peter’s and Paul’s in Bodzanow, Design and Realization

    Science.gov (United States)

    Szydlowski, Rafal; Labuzek, Barbara; Turcza, Monika

    2017-10-01

    The present trend in architecture is designing thin. slender and spacious architectural forms. It has become the reason for searching for new solutions and finding new ways of use of the existing construction ones. Recently, the first time in Poland, the post-tensioning has been used in realization of church building. In the Church of St. Peter’s and Paul’s in Bodzanow (near Cracow) was designed circumferential ring beam post-tensioned with 4 unbounded tendons to transfer peripheral tensile forces from the roof. Thanks to the use of a prestressed ring beam hidden in the wall, large cross-section of roof girders was possible to be avoided, as well as a massive reinforced concrete ring or additional steel tie-rods. The paper presents the applied solutions in details with the theoretical calculated results as well as the results of prestressing measured in site during tensioning of tendons. Based on presented results some conclusions have been drawn.

  17. Stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  18. Design and characterization of a novel toroidal split-ring resonator

    International Nuclear Information System (INIS)

    Bobowski, J. S.; Nakahara, Hiroko

    2016-01-01

    The design and characterization of a novel toroidal split-ring resonator (SRR) are described in detail. In conventional cylindrical SRRs, there is a large magnetic flux within the bore of the resonator. However, there also exists a non-negligible magnetic flux in the free space surrounding the resonator. The energy losses associated with this radiated power diminish the resonator’s quality factor. In the toroidal SRR, on the other hand, the magnetic field lines are strongly confined within the bore of the resonator resulting in high intrinsic quality factors and stable resonance frequencies without requiring additional electromagnetic shielding. This paper describes the design and construction of a toroidal SRR as well as an experimental investigation of its cw response in the frequency-domain and its time-domain response to a rf pulse. Additionally, the dependence of the toroidal SRR’s resonant frequency and quality factor on the strength of inductive coupling to external circuits is investigated both theoretically and experimentally

  19. Design considerations for a feedback system to control self-bunching in ion-storage rings

    International Nuclear Information System (INIS)

    Ziemann, V.

    2001-02-01

    We discuss the feasibility of a feedback system to cure self-bunching of the electron-cooled coasting ion-beam in CELSIUS. Such a system may also aid stable operation of accumulator rings for future spallation neutron sources or heavy ion rings used for inertial fusion energy production

  20. The design of the optical components and gas control systems of the CERN Omega Ring Imaging Cerenkov Detector

    International Nuclear Information System (INIS)

    Apsimon, R.J.; Cowell, J.; Flower, P.S.

    1985-06-01

    A large Ring Imaging Cerenkov Detector (RICH) has been commissioned for use at the CERN Omega Spectrometer. The general design of the device is discussed, and the dependence of the attainable spatial resolution and range of particle identification on its optical parameters is illustrated. The construction and performance of the major optical components and gas systems of the detector are also described. (author)

  1. Design and synthesis of fused polycycles via Diels-Alder reaction and ring-rearrangement metathesis as key steps.

    Science.gov (United States)

    Kotha, Sambasivarao; Ravikumar, Ongolu

    2015-01-01

    Atom efficient processes such as the Diels-Alder reaction (DA) and the ring-rearrangement metathesis (RRM) have been used to design new polycycles. In this regard, ruthenium alkylidene catalysts are effective in realizing the RRM of bis-norbornene derivatives prepared by DA reaction and Grignard addition. Here, fused polycycles are assembled which are difficult to produce by conventional synthetic routes.

  2. Design and optimization of the lattice of the superconducting synchrotron SIS300 for slow extraction

    Energy Technology Data Exchange (ETDEWEB)

    Saa Hernandez, Angela

    2011-10-15

    The superconducting synchrotron SIS300 is planned to be built at the new Facility for Antiproton and Ion Research (FAIR), at GSI-Darmstadt. SIS300 will be a versatile machine, which by means of a low-energy stretcher-mode or a high-energy ramped-mode will provide slowly extracted heavy ion beams towards the experimental areas. To reach the required maximum field of 4.5 T, cos({theta}) magnets are necessary. Thus, SIS300 will become the first superconducting synchrotron worldwide with cos({theta}) magnets providing resonant slow extraction. Since SIS300 will be installed in the same tunnel as the SIS100 synchrotron, the dipole layout of SIS300 cannot be freely chosen. Thus, a standard lattice cannot be applied. A redesign of the SIS300 lattice accepting compromises concerning the positions and phase advances between the optical elements has been proposed. Using the analytical model of the slow extraction, firstly proposed by Kobayashi, and the analytical description of the resonance driving modes, a multiobjective optimization algorithm has been developed for the optimization of the lattice under the given boundary conditions. The final goal of the lattice optimization is a higher efficiency of the slow extraction. The results are evaluated by means of tracking simulations performed with the code Elegant. The field quality in superconducting cos({theta}) magnets is determined by the positions of the superconducting cable and the static and time-dependent effects of the current in the cable. Furthermore, the fast ramp rates of 1 T/s in the dipoles, which are fifty times faster than in any other superconducting cos({theta}) magnet, together with the fact that the aperture is smaller than in conventional accelerator magnets, makes it extremely difficult to obtain a high-quality magnetic field. The unavoidable field errors affect the beam dynamics and worsen the slow extraction efficiency. Therefore, the field errors in the SIS300 dipoles have been estimated, and their

  3. Design and optimization of the lattice of the superconducting synchrotron SIS300 for slow extraction

    International Nuclear Information System (INIS)

    Saa Hernandez, Angela

    2011-10-01

    The superconducting synchrotron SIS300 is planned to be built at the new Facility for Antiproton and Ion Research (FAIR), at GSI-Darmstadt. SIS300 will be a versatile machine, which by means of a low-energy stretcher-mode or a high-energy ramped-mode will provide slowly extracted heavy ion beams towards the experimental areas. To reach the required maximum field of 4.5 T, cos(θ) magnets are necessary. Thus, SIS300 will become the first superconducting synchrotron worldwide with cos(θ) magnets providing resonant slow extraction. Since SIS300 will be installed in the same tunnel as the SIS100 synchrotron, the dipole layout of SIS300 cannot be freely chosen. Thus, a standard lattice cannot be applied. A redesign of the SIS300 lattice accepting compromises concerning the positions and phase advances between the optical elements has been proposed. Using the analytical model of the slow extraction, firstly proposed by Kobayashi, and the analytical description of the resonance driving modes, a multiobjective optimization algorithm has been developed for the optimization of the lattice under the given boundary conditions. The final goal of the lattice optimization is a higher efficiency of the slow extraction. The results are evaluated by means of tracking simulations performed with the code Elegant. The field quality in superconducting cos(θ) magnets is determined by the positions of the superconducting cable and the static and time-dependent effects of the current in the cable. Furthermore, the fast ramp rates of 1 T/s in the dipoles, which are fifty times faster than in any other superconducting cos(θ) magnet, together with the fact that the aperture is smaller than in conventional accelerator magnets, makes it extremely difficult to obtain a high-quality magnetic field. The unavoidable field errors affect the beam dynamics and worsen the slow extraction efficiency. Therefore, the field errors in the SIS300 dipoles have been estimated, and their effects have been

  4. Experience with IBS-suppression lattice in RHIC

    International Nuclear Information System (INIS)

    Litvinenko, V.N.; Luo, Y.; Ptitsyn, V.; Satogata, T.; Tepikian, S.; Bai, M.; Bruno, D.; Cameron, P.; Connolly, R.; Della Penna, A.; Drees, A.; Fedotov, A.; Ganetis, G.; Hoff, L.; Louie, W.; Malitsky, N.; Marr, G.; Marusic, A.; Montag, C.; Pilat, F.; Roser, T.; Trbojevic, D.; Tsoupas, N.

    2008-01-01

    An intra-beam scattering (IBS) is the limiting factor of the luminosity lifetime for RHIC operating with heavy ions. In order to suppress the IBS we designed and implemented new lattice with higher betatron tunes. This lattice had been developed during last three years and had been used for gold ions in yellow ring of the RHIC during d-Au part of the RHIC Run-8. The use of this lattice allowed both significant increases in the luminosity lifetime and the luminosity levels via reduction of beta-stars in the IPS. In this paper we report on the development, the tests and the performance of IBS-suppression lattice in RHIC, including the resulting increases in the peak and the average luminosity. We also report on our plans for future steps with the IBS suppression

  5. Lattice QCD

    International Nuclear Information System (INIS)

    Hasenfratz, P.

    1983-01-01

    The author presents a general introduction to lattice gauge theories and discusses non-perturbative methods in the gauge sector. He then shows how the lattice works in obtaining the string tension in SU(2). Lattice QCD at finite physical temperature is discussed. Universality tests in SU(2) lattice QCD are presented. SU(3) pure gauge theory is briefly dealt with. Finally, fermions on the lattice are considered. (Auth.)

  6. Design, synthesis and structure-activity relationships studies on the D ring of the natural product triptolide.

    Science.gov (United States)

    Xu, Hongtao; Tang, Huanyu; Feng, Huijin; Li, Yuanchao

    2014-02-01

    Triptolide is a diterpene triepoxide natural product isolated from Tripterygium wilfordii Hook F, a traditional Chinese medicinal herb. Triptolide has previously been shown to possess antitumor, anti-inflammatory, immunosuppressive, and antifertility activities. Earlier reports suggested that the five-membered unsaturated lactone ring (D ring) is essential for potent cytotoxicity, however, to the best of our knowledge, systematic structure-activity relationship studies have not yet been reported. Here, four types of D ring-modified triptolide analogues were designed, synthesized and evaluated against human ovarian (SKOV-3) and prostate (PC-3) carcinoma cell lines. The results suggest that the D ring is essential to potency, however it can be modified, for example to C18 hydrogen bond acceptor and/or donor furan ring analogues, without complete loss of cytotoxic activity. Interestingly, evaluation of the key series of C19 analogues showed that this site is exquisitely sensitive to polarity. Together, these results will guide further optimization of this natural product lead compound for the development of potent and potentially clinically useful triptolide analogues. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Design and development of a ring cathode electron gun as an evaporation source

    Energy Technology Data Exchange (ETDEWEB)

    Poyner, G T [Craswell Scientific Ltd., Cheltenham (UK)

    1976-11-01

    The RG2 ring cathode gun is a simple application of electron beam heating. The gun described was developed to provide a relatively inexpensive source for evaporating a range of metals and oxides which were otherwise difficult or impossible to evaporate by conventional resistance heating. Following several stages of improvement the gun was progressively reduced in size and the 'optics', or focusing, improved so that in its existing state an area of approximately 2mm diameter is heated. It was decided to limit the accelerating voltage as far as possible to minimize the practical problems associated with its operation and also the manufacture of the power supply. As development proceeded it became apparent that the relatively low accelerating voltage chosen improved the flexibility of the gun. Two versions are manufactured, the first, equipped with a six position rotary hearth, and the second, utilising a single hearth, is intended to be used as one of a pair. The latter design was reduced in size even further in order to minimize the distance between two adjacent guns.

  8. The design and development of a ring cathode electron gun as an evaporation source

    International Nuclear Information System (INIS)

    Poyner, G.T.

    1976-01-01

    The RG2 ring cathode gun is a simple application of electron beam heating. The gun described was developed to provide a relatively inexpensive source for evaporating a range of metals and oxides which were otherwise difficult or impossible to evaporate by conventional resistance heating. Following several stages of improvement the gun was progressively reduced in size and the 'optics', or focusing, improved so that in its existing state an area of approximately 2mm diameter is heated. It was decided to limit the accelerating voltage as far as possible to minimize the practical problems associated with its operation and also the manufacture of the power supply. As development proceeded it became apparent that the relatively low accelerating voltage chosen improved the flexibility of the gun. Two versions are manufactured, the first, equipped with a six position rotary hearth, and the second, utilising a single hearth, is intended to be used as one of a pair. The latter design was reduced in size even further in order to minimize the distance between two adjacent guns. (author)

  9. First multi-bend achromat lattice consideration

    Energy Technology Data Exchange (ETDEWEB)

    Einfeld, Dieter, E-mail: dieter.einfeld@maxlab.lu.se [Lund University, PO Box 118, Lund SE-221 00 (Sweden); Plesko, Mark [COSYLAB, Teslova ulica 30, Ljubljana SI-1000 (Slovakia); Schaper, Joachim [HAWK University of Applied Sciences and Arts, Hohnsen 4, D-31134 Hildesheim (Germany)

    2014-08-27

    The first proposed lattice for a ‘diffraction-limited light source’ is reported. This approach has now more or less been used for the MAX IV project. By the beginning of 1990, three third-generation synchrotron light sources had been successfully commissioned in Grenoble, Berkeley and Trieste (ESRF, ALS and ELETTRA). Each of these new machines reached their target specifications without any significant problems. In parallel, already at that time discussions were underway regarding the next generation, the ‘diffraction-limited light source (DLSR)’, which featured sub-nm rad electron beam emittance, photon beam brilliance exceeding 10{sup 22} and the potential to emit coherent radiation. Also, at about that time, a first design for a 3 GeV DLSR was developed, based on a modified multiple-bend achromat (MBA) design leading to a lattice with normalized emittance of ∊{sub x} = 0.5 nm rad. The novel feature of the MBA lattice was the use of seven vertically focusing bend magnets with different bending angles throughout the achromat cell to keep the radiation integrals and resulting beam emittance low. The baseline design called for a 400 m ring circumference with 12 straight sections of 6 m length. The dynamic aperture behaviour of the DLSR lattice was estimated to produce > 5 h beam lifetime at 100 mA stored beam current.

  10. Preliminary Design Study of a Pre-booster Damping Ring for the FCC e+e− Injector

    CERN Document Server

    Etisken, O; Papaphilippou, Y

    2017-01-01

    The aim of the FCC e+e− lepton collider is to collide particles in the energy range 40–175 GeV. The FCC e+e− injector complex needs to produce and transport high-intensity e+e− beams at a fast repetition rate of about 0.1 Hz to top up the collider at its collision energy. A basic parameter set exists for all collider energies, assuming a 10 GeV linac operating with a large number of bunches accumulating in the existing SPS, which serves as pre-accelerator and damping ring before the bunches are transferred to the high-energy booster. The purpose of this study is to provide the conceptual design of an alternative damping and accelerator ring, replacing the SPS in the current scheme. This ring will have an injection energy of around 6 GeV and an extraction energy of around 20 GeV. Apart from establishing the basic ring parameters, the final study will include the optics design and layout, and single particle linear and non-linear dynamics optimization, including magnetic and alignment error tolerances. ...

  11. Design and optimization of the large span dry-coal-shed latticed shell in Liyuan of Henan province

    Directory of Open Access Journals (Sweden)

    Du Wenfeng

    2017-01-01

    Full Text Available The design and optimization about the large span dry-coal-shed latticed shell in Liyuan of Henan province were studied. On the basis of the structural scheme of double-layer cylindrical reticulated shell, the optimization scheme of the folding double-layer cylindrical reticulated shell was proposed. Through the analysis of a plurality of calculation models, the optimal geometric parameters were obtained after discussing the influence of different slopes of folding lines and shell thickness on the structural bearing capacity and the amount of steel. The research results show that in the case of the same amount of steel, the ultimate bearing capacity of the double-layer folding cylindrical reticulated shell whose folding line slope is 9% and the shell thickness is about 4.4m can be increased 27.3% compared with the original design scheme.

  12. Ring Theory

    CERN Document Server

    Jara, Pascual; Torrecillas, Blas

    1988-01-01

    The papers in this proceedings volume are selected research papers in different areas of ring theory, including graded rings, differential operator rings, K-theory of noetherian rings, torsion theory, regular rings, cohomology of algebras, local cohomology of noncommutative rings. The book will be important for mathematicians active in research in ring theory.

  13. Design of 8-ft-Diameter Barrel Test Article Attachment Rings for Shell Buckling Knockdown Factor Project

    Science.gov (United States)

    Lovejoy, Andrew E.; Hilburger, Mark W.

    2010-01-01

    The Shell Buckling Knockdown Factor (SBKF) project includes the testing of sub-scale cylinders to validate new shell buckling knockdown factors for use in the design of the Ares-I and Ares-V launch vehicles. Test article cylinders represent various barrel segments of the Ares-I and Ares-V vehicles, and also include checkout test articles. Testing will be conducted at Marshall Space Flight Center (MSFC) for test articles having an eight-foot diameter outer mold line (OML) and having lengths that range from three to ten feet long. Both ends of the test articles will be connected to the test apparatus using attachment rings. Three multiple-piece and one single-piece design for the attachment rings were developed and analyzed. The single-piece design was chosen and will be fabricated from either steel or aluminum (Al) depending on the required safety factors (SF) for test hardware. This report summarizes the design and analysis of these attachment ring concepts.

  14. Unimodular lattices in dimensions 14 and 15 over the Eisenstein integers

    Science.gov (United States)

    Abdukhalikov, Kanat; Scharlau, Rudolf

    2009-03-01

    All indecomposable unimodular hermitian lattices in dimensions 14 and 15 over the ring of integers in mathbb{Q}(sqrt{-3}) are determined. Precisely one lattice in dimension 14 and two lattices in dimension 15 have minimal norm 3.

  15. Qualification of the WIMS lattice code, for the design, operation and accident analysis of nuclear reactors

    International Nuclear Information System (INIS)

    Lerner, A.M.

    1996-01-01

    A basic problem in nuclear reactor physics in that of the description of the neutron population behaviour in the multiplicative medium of a nuclear fuel. Due to the magnitude of the physical problem involved and the present degree of technological evolution regarding computing resources, of increasing complexity and possibilities, the calculation programs or codes have turned to be a basic auxiliary tool in reactor physics. In order to analyze the global problem, several aspects should be taken into consideration. The first aspect to be considered is that of the availability of the necessary nuclear data. The second one is the existence of a variety of methods and models to perform the calculations. The final phase for this kind of analysis is the qualification of the computing programs to be used, i.e. the verification of the validity domain of its nuclear data and the models involved. The last one is an essential phase, and in order to carry it on great variety of calculations are required, that will check the different aspects contained in the code. We here analyze the most important physical processes that take place in a nuclear reactor cell, and we consider the qualification of the lattice code WIMS, that calculates the neutronic parameters associated with such processes. Particular emphasis has been put in the application to natural uranium fuelled reactor, heavy water cooled and moderated, as the Argentinean power reactors now in operation. A wide set of experiments has been chosen: a.-Fresh fuel in zero-power experimental facilities and power reactors; b.-Irradiated fuel in both types of facilities; c.-Benchmark (prototype) experiments with loss of coolant. From the whole analysis it was concluded that for the research reactors, as well as for the heavy water moderated power reactors presently operating in our country, or those that could operate in a near future, the lattice code WIMS is reliable and produces results within the experimental values and

  16. A lattice with no transition and large dynamic aperture

    International Nuclear Information System (INIS)

    Guignard, G.

    1989-01-01

    In the case of a one-ring high-energy scheme for an advanced hadron facility, beam losses can be reduced if the ring lattice accomodates the beam from injection to maximum energy without crossing the transition. Since there is no synchrotron booster in such a scheme and the injection energy is relatively low, this requirement implies a negative compaction factor and an imaginary transition energy. This can be achieved by making the horizontal dispersion negative in some regions of the arcs so that the average value taken in the dipoles is globally also negative. Such a modulation of the dispersion may result in an increasing difficulty to obtain a large enough dynamic aperture in the presence of sextupoles. A careful optimization is therefore necessary and the possibility of modifying the linear lattice in order to include the requirements associated with chromaticity adjustments has to be studied. This paper summarizes the work done along this line and based on previous searches for a race track lattice that can be used in a hadron facility main ring. It describes an alternative lattice design, which tends to minimize the effects of the nonlinear aberrations introduced by sextupoles and to achieve a large dynamic aperture, keeping the betatron amplitudes as low as possible. 7 refs., 6 figs., 1 tab

  17. Ring accelerators

    International Nuclear Information System (INIS)

    Gisler, G.; Faehl, R.

    1983-01-01

    We present two-dimensional simulations in (r-z) and r-theta) cylinderical geometries of imploding-liner-driven accelerators of rings of charged particles. We address issues of azimuthal and longitudinal stability of the rings. We discuss self-trapping designs in which beam injection and extraction is aided by means of external cusp fields. Our simulations are done with the 2-1/2-D particle-in-cell plasma simulation code CLINER, which combines collisionless, electromagnetic PIC capabilities with a quasi-MHD finite element package

  18. Optimization design of high power ultrasonic circular ring radiator in coupled vibration.

    Science.gov (United States)

    Xu, Long; Lin, Shuyu; Hu, Wenxu

    2011-10-01

    This paper presents a new high power ultrasonic (HPU) radiator, which consists of a transducer, an ultrasonic horn, and a metal circular ring. Both the transducer and horn in longitudinal vibrations are used to drive a metal circular ring in a radial-axial coupled vibration. This coupled vibration cannot only generate ultrasound in both the radial and axial directions, but also focus the ultrasound inside the circular ring. Except for the radial-axial coupled vibration mode, the third longitudinal harmonic vibration mode with relative large vibration amplitude is also detected, which can be used as another operation mode. Overall, the HPU with these two vibration modes should have good potential to be applied in liquid processing, such as sonochemistry, ultrasonic cleaning, and Chinese herbal medicine extraction. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Design and synthesis of fused polycycles via Diels–Alder reaction and ring-rearrangement metathesis as key steps

    Directory of Open Access Journals (Sweden)

    Sambasivarao Kotha

    2015-07-01

    Full Text Available Atom efficient processes such as the Diels–Alder reaction (DA and the ring-rearrangement metathesis (RRM have been used to design new polycycles. In this regard, ruthenium alkylidene catalysts are effective in realizing the RRM of bis-norbornene derivatives prepared by DA reaction and Grignard addition. Here, fused polycycles are assembled which are difficult to produce by conventional synthetic routes.

  20. Workshop on compact storage ring technology: applications to lithography

    International Nuclear Information System (INIS)

    1986-01-01

    Project planning in the area of x-ray lithography is discussed. Three technologies that are emphasized are the light source, the lithographic technology, and masking technology. The needs of the semiconductor industry in the lithography area during the next decade are discussed, particularly as regards large scale production of high density dynamic random access memory devices. Storage ring parameters and an overall exposure tool for x-ray lithography are addressed. Competition in this area of technology from Germany and Japan is discussed briefly. The design of a storage ring is considered, including lattice design, magnets, and beam injection systems

  1. Study of possible energy upgrade for the ALS and modeling of the ''Real Lattice'' for the diagnosis of lattice problems

    International Nuclear Information System (INIS)

    Meddahi, M.; Bengtsson, J.

    1993-05-01

    We have studied change of expected performance of the Advanced Light Source storage ring at LBL for the (design) nominal and maximum energy of 1.5 and 1.9 GeV respectively. Furthermore, we have also studied a possible increase to 2.3 GeV by modeling the change of dynamical aperture caused by saturation of the magnets. Independently, we have also modeled the beam's trajectory at injection. Comparison with bpm data from early storage ring commissioning led to the diagnosis of a major lattice error due to a short in a quadrupole, which was rectified leading to stored beam of 60 turns

  2. Proceedings of the SLAC/KEK ATF lattice workshop

    International Nuclear Information System (INIS)

    Urakawa, Junji

    1993-04-01

    The SLAC/KEK ATF Lattice Workshop was held on December 8-11, 1992 at KEK, National Laboratory for High Energy Physics. The purpose of this workshop is to critically review the ATF lattice design for any possible improvements, and also to bring SLAC colleagues up to date on recent progress at KEK. At KEK studies on intense multi-bunch beam acceleration and emittance reduction have been actively pursued, evolving into the ATF project since 1990. In 1991 we have launched a large scale reconstruction of the experimental hall. This is to build the shielded housing for the 1.54 GeV injector linac and the test damping ring. Our plan is to begin construction of the linac in March 1993. Some results from the discussions during the Workshop have been already incorporated in the revised ATF lattice design. (J.P.N.)

  3. Design and synthesis of novel bis-annulated caged polycycles via ring-closing metathesis: pushpakenediol

    Directory of Open Access Journals (Sweden)

    Sambasivarao Kotha

    2014-11-01

    Full Text Available Intricate caged molecular frameworks are assembled by an atom economical process via a Diels–Alder (DA reaction, a Claisen rearrangement, a ring-closing metathesis (RCM and an alkenyl Grignard addition. The introduction of olefinic moieties in the pentacycloundecane (PCUD framework at appropriate positions followed by RCM led to the formation of novel heptacyclic cage systems.

  4. A novel stress isolation guard-ring design for the improvement of a three-axis piezoresistive accelerometer

    International Nuclear Information System (INIS)

    Hsieh, Hsieh-Shen; Chang, Heng-Chung; Hu, Chih-Fan; Cheng, Chao-Lin; Fang, Weileun

    2011-01-01

    This study designs and implements a stress isolation guard-ring structure to improve the performances of the existing single proof-mass three-axis piezoresistive accelerometer. Thus, the environment disturbances, such as temperature variation and force/deflection transmittance, for a packaged three-axis piezoresistive accelerometer are significantly reduced. In application, the three-axis piezoresistive accelerometer has been fabricated using the bulk micromachining process on the SOI wafer. Experimental results show that the out-of-plane deformation of the suspended spring mass on the packaged accelerometer is reduced from 0.72 to 0.10 µm at a 150 °C temperature elevation. The temperature coefficient of zero-g offset for the presented sensor is reduced, and the temperature-induced sensitivity variation is minimized as well. Measurements also demonstrate that the guard-ring design successfully reduces the false signals induced by the force and displacement transmittance disturbances for one order of magnitude. Moreover, the three-axis acceleration sensing for the presented accelerometer with guard ring has also been demonstrated with sensitivities of 0.12–0.17 mV V −1 g −1 and nonlinearity < 1.02%.

  5. On the design of a miniature haptic ring for cutaneous force feedback using shape memory alloy actuators

    Science.gov (United States)

    Hwang, Donghyun; Lee, Jaemin; Kim, Keehoon

    2017-10-01

    This paper proposes a miniature haptic ring that can display touch/pressure and shearing force to the user’s fingerpad. For practical use and wider application of the device, it is developed with the aim of achieving high wearability and mobility/portability as well as cutaneous force feedback functionality. A main body of the device is designed as a ring-shaped lightweight structure with a simple driving mechanism, and thin shape memory alloy (SMA) wires having high energy density are applied as actuating elements. Also, based on a band-type wireless control unit including a wireless data communication module, the whole device could be realized as a wearable mobile haptic device system. These features enable the device to take diverse advantages on functional performances and to provide users with significant usability. In this work, the proposed miniature haptic ring is systematically designed, and its working performances are experimentally evaluated with a fabricated functional prototype. The experimental results obviously demonstrate that the proposed device exhibits higher force-to-weight ratio than conventional finger-wearable haptic devices for cutaneous force feedback. Also, it is investigated that operational performances of the device are strongly influenced by electro-thermomechanical behaviors of the SMA actuator. In addition to the experiments for performance evaluation, we conduct a preliminary user test to assess practical feasibility and usability based on user’s qualitative feedback.

  6. Tema 2: Augmented Reality som wearable. Et design for visuel læring i sygeplejerskeuddannelsens anatomiundervisning

    Directory of Open Access Journals (Sweden)

    Mie Buhl

    2015-12-01

    Projektet undersøger, hvordan en udviklet AR-applikation, der via iPad og et tag, der bæres af en person, kan anvendes til at forstå forholdet mellem den fysiske krops lunge og billedet af en lunge. Dette gennemføres gennem udvikling og afprøvning af et didaktisk design. Undersøgelsen trækker på en Design Based Research (DBR-tilgang og inddrager viden om AR og wearables og Inquiry Based Science Education (IBSE samt visuel læring og visuelle fagkulturer inden for medicin. Designafprøvningerne viser, at wearables optimerer visuel læring, men også at små justeringer af AR-teknologi mellem første og anden iteration flytter studerendes læringsfokus fra fagindhold til metakommunikation om medieringsformer. Artiklen konkluderer, at kombinationen mellem wearable og IBSE kan understøtte visuel læring til gavn for et helhedssyn på anatomiundervisning og patientpleje.

  7. Tema 2: Augmented Reality som wearable. Et design for visuel læring i sygeplejerskeuddannelsens anatomiundervisning

    Directory of Open Access Journals (Sweden)

    Mie Buhl

    2016-01-01

    Projektet undersøger, hvordan en udviklet AR-applikation, der via iPad og et tag, der bæres af en person, kan anvendes til at forstå forholdet mellem den fysiske krops lunge og billedet af en lunge. Dette gennemføres gennem udvikling og afprøvning af et didaktisk design. Undersøgelsen trækker på en Design Based Research (DBR-tilgang og inddrager viden om AR og wearables og Inquiry Based Science Education (IBSE samt visuel læring og visuelle fagkulturer inden for medicin. Designafprøvningerne viser, at wearables optimerer visuel læring, men også at små justeringer af AR-teknologi mellem første og anden iteration flytter studerendes læringsfokus fra fagindhold til metakommunikation om medieringsformer. Artiklen konkluderer, at kombinationen mellem wearable og IBSE kan understøtte visuel læring til gavn for et helhedssyn på anatomiundervisning og patientpleje.

  8. Planar Microstrip Ring Resonators for Microwave-Based Gas Sensing: Design Aspects and Initial Transducers for Humidity and Ammonia Sensing.

    Science.gov (United States)

    Bogner, Andreas; Steiner, Carsten; Walter, Stefanie; Kita, Jaroslaw; Hagen, Gunter; Moos, Ralf

    2017-10-24

    A planar microstrip ring resonator structure on alumina was developed using the commercial FEM software COMSOL. Design parameters were evaluated, eventually leading to an optimized design of a miniaturized microwave gas sensor. The sensor was covered with a zeolite film. The device was successfully operated at around 8.5 GHz at room temperature as a humidity sensor. In the next step, an additional planar heater will be included on the reverse side of the resonator structure to allow for testing of gas-sensitive materials under sensor conditions.

  9. Revision of Booster to Storage Ring Transport Line Design and Injection Scheme for Top-Up Operation at NSRRC

    CERN Document Server

    Wang, Min-Huey; Chen, Jenny; Chen June Rong; Hsu, Kuo-Tung; Kuo, Chin-Cheng; Luo, Gwo-Huei

    2005-01-01

    In order to help the operation of constant current, the optics of booster to storage ring transport line (BTS) design is reinvestigated. The initial twiss parameters are derived by measurement. The optics of the transport line is readjusted according to the measured initial beam parameters. The design of pulse width of the injection kicker is also changed from 1.2μsecond to 2.0μsecond. The injection scheme is reviewed and the effects of the kicker error on both injected beam and stored beam are investigated and shown in this report.

  10. LILA: the Long Island Lattice Analogue

    International Nuclear Information System (INIS)

    Niederer, J.; Morris, B.

    1982-01-01

    LILA is a BNL adventure to create a particle orbit and tracking program ensemble for large storage ring accelerator design and also controls operation. The accelerator physics parts are based largely on the PATRICIA program of H. Weidemann, as enhanced by S. Kheifets in a later version with multipole effects. We have emphasized the data base aspects of the tracking problem, as modern storage rings contain thousands of distinct lattice items, each with perhaps up to fifty parameters of its own. We have also introduced the general and flexible program structures long familiar to high energy physics event analysis, by which an event is reconstructed in steps from points into lines, projections into tracks, tracks to vertices and the like. Thus, LILA is a modern amalgam of the original PATRICIA, a relational data base and memory management mechanism, and a number of enhancements for treating nonlinear forces

  11. Design and Optimisation Strategies of Nonlinear Dynamics for Diffraction Limited Synchrotron Light Source

    CERN Document Server

    Bartolini, R.

    2016-01-01

    This paper introduces the most recent achievements in the control of nonlinear dynamics in electron synchrotron light sources, with special attention to diffraction limited storage rings. Guidelines for the design and optimization of the magnetic lattice are reviewed and discussed.

  12. Ring-shaped inductive sensor design and application to pressure sensing

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Myoung Gyu; Baek, Seong Ki; Park, Young Woo [Dept. of Mechatronics Engineering, Chungnam National University, Daejeon (Korea, Republic of); Kim, Sun Young [Samsung Electro-Mechanics, Busan (Korea, Republic of)

    2015-10-15

    Inductive sensors are versatile and economical devices that are widely used to measure a wide variety of physical variables, such as displacement, force, and pressure. In this paper, we propose a simple inductive sensor consisting of a thin partial ring and a coil set. The self-inductance of the sensor was estimated using magnetic circuit analysis and validated through finite element analysis (FEA). The natural frequency of the ring was estimated using Castigliano's theorem and the method of equivalent mass. The estimation was validated through experiments and FEA. A prototype sensor with a signal processing circuit is built and applied to noninvasively sense the pressure inside a flexible tube. The obtained sensor outputs show quadratic behavior with respect to the pressure. When fitted to a quadratic equation, the least-square measurement error was less than 2%. The results confirm the feasibility of pressure sensing using the proposed inductive sensor.

  13. Design and implementation of optical switches based on nonlinear plasmonic ring resonators: Circular, square and octagon

    Science.gov (United States)

    Ghadrdan, Majid; Mansouri-Birjandi, Mohammad Ali

    2018-05-01

    In this paper, all-optical plasmonic switches (AOPS) based on various configurations of circular, square and octagon nonlinear plasmonic ring resonators (NPRR) were proposed and numerically investigated. Each of these configurations consisted of two metal-insulator-metal (MIM) waveguides coupled to each other by a ring resonator (RR). Nonlinear Kerr effect was used to show switching performance of the proposed NPRR. The result showed that the octagon switch structure had lower threshold power and higher transmission ratio than square and circular switch structures. The octagon switch structure had a low threshold power equal to 7.77 MW/cm2 and the high transmission ratio of approximately 0.6. Therefore, the octagon switch structure was an appropriate candidate to be applied in optical integration circuits as an AOPS.

  14. Ring-shaped inductive sensor design and application to pressure sensing

    International Nuclear Information System (INIS)

    Noh, Myoung Gyu; Baek, Seong Ki; Park, Young Woo; Kim, Sun Young

    2015-01-01

    Inductive sensors are versatile and economical devices that are widely used to measure a wide variety of physical variables, such as displacement, force, and pressure. In this paper, we propose a simple inductive sensor consisting of a thin partial ring and a coil set. The self-inductance of the sensor was estimated using magnetic circuit analysis and validated through finite element analysis (FEA). The natural frequency of the ring was estimated using Castigliano's theorem and the method of equivalent mass. The estimation was validated through experiments and FEA. A prototype sensor with a signal processing circuit is built and applied to noninvasively sense the pressure inside a flexible tube. The obtained sensor outputs show quadratic behavior with respect to the pressure. When fitted to a quadratic equation, the least-square measurement error was less than 2%. The results confirm the feasibility of pressure sensing using the proposed inductive sensor

  15. Experience with a high-brightness storage ring: the NSLS 750 MeV vuv ring

    International Nuclear Information System (INIS)

    Galayda, J.

    1984-01-01

    The NSLS vuv ring is the first implementation of the proposals of R. Chasman and G.K. Green for a synchrotron radiation source with enhanced brightness: its lattice is a series of achromatic bends with two zero-gradient dipoles each, giving small damped emittance; and these bends are connected by straight sections with zero dispersion to accommodate wigglers and undulators without degrading the radiation damping properties of the ring. The virtues of the Chasman-Green lattice, its small betatron and synchrotron emittances, may be understood with some generality; e.g. the electron γm 0 c 2 energy and the number of achromatic bends M sets a lower limit on the betatron emittance of e/sub x/ > 7.7 x 10 -13 γ 2 /M meter-radians. There is strong interest in extrapolation of this type of lattice to 6 GeV and to 32 achromatic bends. The subject of this report is the progress toward achieving performance in the vuv ring limited by the radiation damping parameters optimized in its design. 14 refs., 4 figs., 1 tab

  16. Computing the writhe on lattices

    International Nuclear Information System (INIS)

    Laing, C; Sumners, D W

    2006-01-01

    Given a polygonal closed curve on a lattice or space group, we describe a method for computing the writhe of the curve as the average of weighted projected writhing numbers of the polygon in a few directions. These directions are determined by the lattice geometry, the weights are determined by areas of regions on the unit 2-sphere, and the regions are formed by the tangent indicatrix to the polygonal curve. We give a new formula for the writhe of polygons on the face centred cubic lattice and prove that the writhe of polygons on the body centred cubic lattice, the hexagonal simple lattice, and the diamond space group is always a rational number, and discuss applications to ring polymers

  17. A modeling GUI for accelerator physics of the storage ring at SSRF

    International Nuclear Information System (INIS)

    Chen Guangling; Tian Shunqiang; Liu Guimin; Jiang Bocheng

    2009-01-01

    In this paper, we report a MATLAB-based GUI tool, bodgui, which integrates functions of lattice editor, linear match, and nonlinear optimization, and visualized tracking functions for beam optics design. A user can switch his/her design procedures one to another. Flexibilities are provided for adjusting or optimizing the lattice settings in commissioning or operation of the accelerators. The algorithm of the linear match and nonlinear optimization, and the GUI windows including the main functions and running status, are presented. The SSRF storage ring was employed as a test lattice. Several optics modes designed and optimized by the GUI tools were used for commissioning the storage ring. Functions of bodgui tool are machine-independent, and it can be well applied to modern light sources being built in other parts of the world. (authors)

  18. Designing a ring-VCO for RFID transponders in 0.18 μm CMOS process.

    Science.gov (United States)

    Jalil, Jubayer; Reaz, Mamun Bin Ibne; Bhuiyan, Mohammad Arif Sobhan; Rahman, Labonnah Farzana; Chang, Tae Gyu

    2014-01-01

    In radio frequency identification (RFID) systems, performance degradation of phase locked loops (PLLs) mainly occurs due to high phase noise of voltage-controlled oscillators (VCOs). This paper proposes a low power, low phase noise ring-VCO developed for 2.42 GHz operated active RFID transponders compatible with IEEE 802.11 b/g, Bluetooth, and Zigbee protocols. For ease of integration and implementation of the module in tiny die area, a novel pseudodifferential delay cell based 3-stage ring oscillator has been introduced to fabricate the ring-VCO. In CMOS technology, 0.18 μm process is adopted for designing the circuit with 1.5 V power supply. The postlayout simulated results show that the proposed oscillator works in the tuning range of 0.5-2.54 GHz and dissipates 2.47 mW of power. It exhibits a phase noise of -126.62 dBc/Hz at 25 MHz offset from 2.42 GHz carrier frequency.

  19. Design and simulation of fast pulsed kicker/bumper units for the positron accumulator ring at APS

    International Nuclear Information System (INIS)

    Wang, Ju; Volk, G.J.

    1991-01-01

    In the design of fast pulsed kicker/burner units for a positron accumulator ring (PAR) at APS, different pulse forming networks (PFN) are considered and different structures for the magnet are studied and simulated. Three fast pulsed kicker/bumper magnets are required in PAR for the beam injection and/or extraction at 450 MeV. These magnets have the same design because they have identical specifications and are expected to produce identical magnetic fields. Each kicker/bumper magnet is required to generate a magnetic field of 0.06 T with rise-time of 80 ns, a flat-top of 80 ns and a fall-time of 80 ns. This paper describes some design considerations and computer simulation results of different designs

  20. Design of Injection and Extraction Systems with Optimisation of Lattice and Layout for the CERN PS2 Synchrotron

    CERN Document Server

    Bartmann, W

    2009-01-01

    The CERN Proton Synchrotron PS2 is one of the foreseen accelerators for the LHC injector upgrade. This upgrade aims first at increasing the instantaneous luminosity of LHC and second at providing a reliable beam for the CERN accelerator complex. From this aspect, the main characteristics of the PS2 are high reliability for high intensity beams. The goal of this thesis was the design of the machine’s lattice and injection/extraction systems meeting the constraints coming mainly from the LHC beam type but also from beam requirements of experiments at PS2 and the SPS. In the design, the given energy range together with filling schemes for different beam types and RF cogging were first used to define the circumference of the machine. Estimates on the space requirements of injection/extraction systems were made in order to divide the total machine length between arc and long straight section. Existing tunnels for transfer lines together with the minimisation of the total transfer line length favoured a race trac...

  1. Design concept for a 100 GeV e+e- storage ring (LEP)

    International Nuclear Information System (INIS)

    Bennett, J.R.J.; Carne, A.; Gray, D.A.; Harold, M.R.; Klemperer, S.; Maidment, J.R.M.; Rees, G.H.; Wheldon, A.; Richter, B.; Suzuki, T.

    1977-01-01

    This report presents the conclusions of a Study Group, set up early in 1976 at CERN, to examine the feasibility of constructing a large electron-positron storage ring (LEP). The assumed centre-of-mass energy of 200 GeV and luminosity of about 10 32 cm -2 sec -1 would meet the experimental-physics requirements considered by a parallel Study Group. The machine would have an average radius of about 8 km and provide eight experimental-physics insertions with 10 m of free space either side of the crossing points. (Auth.)

  2. Progress on low emittance tuning for the CLIC Damping Rings

    CERN Document Server

    Alabau-Gonzalvo, J; Papaphilippou, Y

    2014-01-01

    In the frame of the CLIC main Damping Ring a study on the sensitivity of the lattice to different sources of misalignment is presented. The minimum equilibrium emittance is simulated and analytically estimated under dipole and quadrupole rolls, and quadrupole and sextupole vertical offsets. The result of this study establishes alignment tolerances to preserve the vertical emittance below the design value (1 pmrad). Non-linear dynamics studies have been done to determine the dynamic aperture in the presence of misalignments.

  3. Skew harmonics suppression in electromagnets with application to the Advanced Light Source (ALS) storage ring corrector magnet design

    International Nuclear Information System (INIS)

    Schlueter, R.; Halbach, K.

    1993-09-01

    An analytical expression for prediction of skew harmonics in an iron core combined function regular/skew dipole magnet due to arbitrarily positioned electromagnet coils is developed. A structured approach is presented for the suppression of an arbitrary number of harmonic components to arbitrarily low values. Application of the analytical harmonic strength calculations coupled to the structured harmonic suppression approach is presented in the context of the design of the ALS storage ring corrector magnets, where quadrupole, sextupole, and octupole skew harmonics were reduced to less than 1.0% of the skew dipole at the beam aperture radius r = 3.0 cm

  4. Design of all-optical memory cell using EIT and lasing without inversion phenomena in optical micro ring resonators

    Science.gov (United States)

    Pasyar, N.; Yadipour, R.; Baghban, H.

    2017-07-01

    The proposed design of the optical memory unit cell contains dual micro ring resonators in which the effect of lasing without inversion (LWI) in three-level nano particles doped over the optical resonators or integrators as the gain segment is used for loss compensation. Also, an on/off phase shifter based on electromagnetically induced transparency (EIT) in three-level quantum dots (QDs) has been used for data reading at requested time. Device minimizing for integrated purposes and high speed data storage are the main advantages of the optical integrator based memory.

  5. Void lattices

    International Nuclear Information System (INIS)

    Chadderton, L.T.; Johnson, E.; Wohlenberg, T.

    1976-01-01

    Void lattices in metals apparently owe their stability to elastically anisotropic interactions. An ordered array of voids on the anion sublattice in fluorite does not fit so neatly into this scheme of things. Crowdions may play a part in the formation of the void lattice, and stability may derive from other sources. (Auth.)

  6. Lattice fermions

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.

    1995-12-01

    The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if Γ/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs

  7. Lattice fermions

    Energy Technology Data Exchange (ETDEWEB)

    Randjbar-Daemi, S

    1995-12-01

    The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if {Gamma}/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs.

  8. NuFact muon storage ring: study of a triangle design based on solenoid focusing decay straights

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Service Accelerateurs, Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier / CNRS-IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble (France)]|[Commissariat a l' Energie Atomique, CEA, 31-33, rue de la Federation (Paris 15e), BP 510, 75752 Paris Cedex 15 (France); Reesy, G. [Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX (United Kingdom)

    2006-06-15

    Properties of acceptance and beam transmission in a triangle design of the neutrino factory muon decay ring, with decay straights based on solenoidal focusing, are reported.The muon storage ring in the neutrino factory, NuFact, is located at the high energy end of the muon acceleration chain. It delivers the {mu}{sup +}/{mu}{sup -} decay neutrinos to physics detectors. The design of concern here, is a triangle geometry 20 GeV storage ring, upgradable to 50 GeV, (the parameters are given), which features two decay straight sections, each one aiming at a distant detector. The third straight section of the ring is devoted to tuning, collimation and RF. A particularity of the proposed design, is in its being based on solenoid focusing decay straights, which has the virtue of minimizing the betatron amplitudes, compared to equivalent quadrupole focusing. The solenoidal focusing ensures the requested ratio, for the r.m.s. divergences of the 20 GeV muon and the neutrino beam, of 0.1 for an assumed muon normalized r.m.s. emittance of 4800 {pi} mm mr (3 {pi} cm, total). The goal of the present work is to show the viability of this design, in particular as concerns the impact of the solenoid focusing on machine behavior. It addresses the questions of residual coupling, machine acceptance, and concludes with a computation of beam transmission over 1000 turns. The paper has the following structure: 1. Introduction; 2. Working hypothesis; 3. Building-up ray-tracing data; 3.1. Arcs; 3.2. Solenoid straight; 3.3. Tuning/Collimation/RF straight; 3.4. Full ring; 3.4.1. Beam envelopes; 3.4.2. Closed orbits; 3.4.3. Momentum dispersion; 3.5 Large amplitude tracking, preliminary tests; 4. Tracking, linear machine; 4.1. Large amplitude tracking; 4.1.1. 2-D horizontal initial conditions; 4.1.2. 2-D vertical initial conditions; 4.1.3. 4-D + {delta}p/p initial conditions; 4.2. Transmission, 4-D + {delta}p/p, no sextupoles; 4.2.1. {epsilon}{sub x} {epsilon}{sub z} = 3 {pi} cm (norm.), {delta

  9. NuFact muon storage ring: study of a triangle design based on solenoid focusing decay straights

    International Nuclear Information System (INIS)

    Meot, F.; Reesy, G.

    2006-06-01

    Properties of acceptance and beam transmission in a triangle design of the neutrino factory muon decay ring, with decay straights based on solenoidal focusing, are reported.The muon storage ring in the neutrino factory, NuFact, is located at the high energy end of the muon acceleration chain. It delivers the μ + /μ - decay neutrinos to physics detectors. The design of concern here, is a triangle geometry 20 GeV storage ring, upgradable to 50 GeV, (the parameters are given), which features two decay straight sections, each one aiming at a distant detector. The third straight section of the ring is devoted to tuning, collimation and RF. A particularity of the proposed design, is in its being based on solenoid focusing decay straights, which has the virtue of minimizing the betatron amplitudes, compared to equivalent quadrupole focusing. The solenoidal focusing ensures the requested ratio, for the r.m.s. divergences of the 20 GeV muon and the neutrino beam, of 0.1 for an assumed muon normalized r.m.s. emittance of 4800 π mm mr (3 π cm, total). The goal of the present work is to show the viability of this design, in particular as concerns the impact of the solenoid focusing on machine behavior. It addresses the questions of residual coupling, machine acceptance, and concludes with a computation of beam transmission over 1000 turns. The paper has the following structure: 1. Introduction; 2. Working hypothesis; 3. Building-up ray-tracing data; 3.1. Arcs; 3.2. Solenoid straight; 3.3. Tuning/Collimation/RF straight; 3.4. Full ring; 3.4.1. Beam envelopes; 3.4.2. Closed orbits; 3.4.3. Momentum dispersion; 3.5 Large amplitude tracking, preliminary tests; 4. Tracking, linear machine; 4.1. Large amplitude tracking; 4.1.1. 2-D horizontal initial conditions; 4.1.2. 2-D vertical initial conditions; 4.1.3. 4-D + δp/p initial conditions; 4.2. Transmission, 4-D + δp/p, no sextupoles; 4.2.1. ε x ε z = 3 π cm (norm.), δp/p = ±1%; 4.2.2. ε x ε z = 6 π cm (norm.), δp/p ±4

  10. A low-emittance lattice for SPEAR

    International Nuclear Information System (INIS)

    Safranek, J.; Wiedemann, H.

    1992-01-01

    The design and implementation of a low emittance lattice for the SPEAR storage ring including measurements of the performance of the lattice are presented (J. Safranek, Ph. D. thesis, Stanford University, 1991). The low emittance lattice is designed to optimize the performance of SPEAR as a synchrotron radiation source while keeping SPEAR hardware changes at a minimum. The horizontal emittance of the electron beam in the low emittance lattice is reduced by a factor of 4 from the previous lattice. This reduces the typical horizontal source size and divergence of the photon beams by a factor of 2 each and increases the photon beam brightness. At 3 GeV the horizontal emittance is 129 π nm rad, which makes the low emittance lattice the lowest emittance, runnning synchroton radiation source in the world in the 1.5 to 4.0 GeV energy range for the emittance scaled to 3 GeV. The measured vertical emittance was reduced to half that typically seen at SPEAR in the past. The brightness of the photon beams was further incrased by reducing β y at the insertion devices to 1.1 m and reducing the energy dispersion at the insertion devices by more than a factor of 2 on average. The horizontal despersion at the rf cavities was reduced by a factor of nearly 4 which gives much less problems with synchrobetatron resonances. The dynamic and physical apertures of the lattice are large, giving long beam lifetimes and easy injection of electrons. The measurements of the linear optics and intensity dependent phenomena gave resonable agreement with the design . The overall performance of the machine was very good. Injection rates of 10 to 20 mA/min and larger were achieved routinely, and 100 mA total current was stored. Repeated ramping of stored beam from the injection energy of 2.3 GeV to the running energy of 3.0 GeV was achieved with very little beam loss. This low emittance configuration is expected to be the operating configuration for SPEAR starting in January 1992. (orig.)

  11. Lattice strings

    International Nuclear Information System (INIS)

    Thorn, C.B.

    1988-01-01

    The possibility of studying non-perturbative effects in string theory using a world sheet lattice is discussed. The light-cone lattice string model of Giles and Thorn is studied numerically to assess the accuracy of ''coarse lattice'' approximations. For free strings a 5 by 15 lattice seems sufficient to obtain better than 10% accuracy for the bosonic string tachyon mass squared. In addition a crude lattice model simulating string like interactions is studied to find out how easily a coarse lattice calculation can pick out effects such as bound states which would qualitatively alter the spectrum of the free theory. The role of the critical dimension in obtaining a finite continuum limit is discussed. Instead of the ''gaussian'' lattice model one could use one of the vertex models, whose continuum limit is the same as a gaussian model on a torus of any radius. Indeed, any critical 2 dimensional statistical system will have a stringy continuum limit in the absence of string interactions. 8 refs., 1 fig. , 9 tabs

  12. The LSU Electron Storage Ring, the first commercially-built storage ring

    International Nuclear Information System (INIS)

    Sah, R.

    1990-01-01

    The Brobeck Division of Maxwell Laboratories, Inc., is building the first industrially-produced storage ring. It will be located at Louisiana State University (LSU) at the Center for Advanced Microstructures and Devices (CAMD) in Baton Rouge. The purpose of this electron storage ring is to provide intense beams of x-rays to advance the state-of-the-art in lithography and to permit research in a broad area. This facility consists of a 1.2 GeV, 400 mA electron storage ring with a 200 MeV linac injector. The magnet lattice is a Chasman-Green design (double-bend achromat), and the ring circumference is 55.2 meters. There are four 3.0 meter, dispersion-free straight sections, one for injection, one for the 500 MHz RF cavity, and two for possible future insertion devices. The storge ring construction project is in the detailed-design stage, and many systems are in the initial stages of fabrication. 4 figs., 1 tab

  13. Racetrack lattices for the TRIUMF KAON factory

    International Nuclear Information System (INIS)

    Servranckx, R.V.; Craddock, M.K.

    1989-05-01

    Separated-function racetrack lattices have been developed for the KAON Factory accelerators that have more flexibility than the old circular lattices. The arcs of the large rings have a regular FODO structure with a superimposed six-fold symmetric modulation of the betafunction in order to raise γ t to infinity. In the small rings, γ t is kept high enough by choosing a sufficiently large phase advance in the arcs. Straight sections with zero dispersion are provided for rf cavities and fast injection and extraction, and with controlled dispersion for H - injection and slow extraction. The ion-optical properties of the lattices and the results from tracking studies are discussed

  14. On rings generating supernilpotent and special atoms | France ...

    African Journals Online (AJOL)

    We study prime rings which generate supernilpotent (respectively special) atoms, that is, atoms of the lattice of all supernilpotent (respectively special) radicals. A prime ring A is called a **-ring if the smallest special class containing A is closed under semiprime homomorphic images of A. A semiprime ring A whose every ...

  15. Design and commissioning of the photon monitors and optical transport lines for the advanced photon source positron accumulator ring

    International Nuclear Information System (INIS)

    Berg, W.; Yang, B.; Lumpkin, A.; Jones, J.

    1996-01-01

    Two photon monitors have been designed and installed in the positron accumulator ring (PAR) of the Advanced Photon Source. The photon monitors characterize the beam's transverse profile, bunch length, emittance, and energy spread in a nonintrusive manner. An optical transport line delivers synchrotron light from the PAR out of a high radiation environment. Both charge-coupled device and fast-gated, intensified cameras are used to measure the transverse beam profile (0.11 - 1 mm for damped beam) with a resolution of 0.06 mm. A streak camera (θ τ =I ps) is used to measure the bunch length which is in the range of 0.3-1 ns. The design of the various transport components and commissioning results of the photon monitors will be discussed

  16. Guide to the Main Ring DO overpass

    International Nuclear Information System (INIS)

    Turkot, F.

    1985-01-01

    The DO overpass is a modification of the beam orbit in Main Ring in order to better accommodate a Tevatron collider detector at DO. The orbit is moved up approx. 51 inches over most of the long straight section at DO, thus making the Main Ring the world's first non-planar proton synchrotron. A similar overpass, but with four times the displacement, is planned for the CDF detector at the BO straight section. The nominal separation between the beam orbit in the Main Ring and the orbit in the Tevatron is 25.5 inches. Early in the design study of a detector that would utilize the Tevatron is a anti pp collider, it was apparent that a larger separation at the detector was highly desirable. In 1981, Tom Collins proposed a specific lattice geometry in the Main Ring for achieving larger separation, called ''the screw beam''. His proposal has served as the basis for the design of both the BO and DO overpasses. The main purpose of this report is to describe in some detail the implementation of the DO overpass. Topics to be covered include: (a) geometry of the overpass orbit, (b) the new hardware in the tunnel, (c) the power supply system, (d) the control facility, (e) accelerator beam dynamics ramifications, and (f) commissioning experience. A secondary purpose is to provide a fairly complete ''bibliography'' to the sources of information on the overpass. 17 refs., 17 figs

  17. Technical design study. BESSY VSR. Variable pulse length Storage Ring. Upgrade of BESSY II

    International Nuclear Information System (INIS)

    2015-06-01

    BESSY-VSR is a novel approach to create in the Storage Ring BESSY II long and short photon pulses simultaneously for all beam lines through a pair of superconducting bunch compression cavities. Pulse-picking schemes will allow each individual user to freely switch between high average flux for X-ray spectroscopy, microscopy and scattering and picosecond pulses up to 500 MHz repetition rate for dynamic studies. Thus BESSY-VSR preserves the present average brilliance of BESSY II and adds the new capability of user accessible picosecond pulses at high repetition rate. In addition, high intensities for THz radiation with intrinsic synchronization of THz and X-ray pulses can be extracted from BESSY-VSR. For the scientific challenges of quantum materials for energy, future information technologies and basic energy science BESSY-VSR is the multi-user Synchrotron Radiation facility that allows with the flexible switching between high repetition rate for picosecond dynamics and high average brightness to move classical 3rd generation Synchrotron Radiation science from the observation of static properties and their quantum mechanical description towards the function and the control of materials properties, technologically relevant switching processes and chemical dynamics and kinetics on the picosecond time scale. Strategic relevance of BESSY-VSR for science with photons BESSY-VSR creates for the highly productive Synchrotron Radiation community a uniquely attractive multi user storage ring adding the soft X-ray picosecond dynamics at MHz repetition rate. In particular investigations on reversible dynamics and switching in molecular systems and materials are accessible in a non destructive way. The investigations with X-rays from BESSY-VSR are highly complementary and compatible to dynamic studies conducted by users with optical lasers at their home universities and laboratories. Technologically, the employed superconducting bunch compression cavities in BESSY-VSR are a

  18. Technical design study. BESSY VSR. Variable pulse length Storage Ring. Upgrade of BESSY II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    BESSY-VSR is a novel approach to create in the Storage Ring BESSY II long and short photon pulses simultaneously for all beam lines through a pair of superconducting bunch compression cavities. Pulse-picking schemes will allow each individual user to freely switch between high average flux for X-ray spectroscopy, microscopy and scattering and picosecond pulses up to 500 MHz repetition rate for dynamic studies. Thus BESSY-VSR preserves the present average brilliance of BESSY II and adds the new capability of user accessible picosecond pulses at high repetition rate. In addition, high intensities for THz radiation with intrinsic synchronization of THz and X-ray pulses can be extracted from BESSY-VSR. For the scientific challenges of quantum materials for energy, future information technologies and basic energy science BESSY-VSR is the multi-user Synchrotron Radiation facility that allows with the flexible switching between high repetition rate for picosecond dynamics and high average brightness to move classical 3rd generation Synchrotron Radiation science from the observation of static properties and their quantum mechanical description towards the function and the control of materials properties, technologically relevant switching processes and chemical dynamics and kinetics on the picosecond time scale. Strategic relevance of BESSY-VSR for science with photons BESSY-VSR creates for the highly productive Synchrotron Radiation community a uniquely attractive multi user storage ring adding the soft X-ray picosecond dynamics at MHz repetition rate. In particular investigations on reversible dynamics and switching in molecular systems and materials are accessible in a non destructive way. The investigations with X-rays from BESSY-VSR are highly complementary and compatible to dynamic studies conducted by users with optical lasers at their home universities and laboratories. Technologically, the employed superconducting bunch compression cavities in BESSY-VSR are a

  19. Storage-ring FEL for the vuv

    International Nuclear Information System (INIS)

    Peterson, J.M.; Bisognano, J.J.; Garren, A.A.; Halbach, K.; Kim, K.J.; Sah, R.C.

    1984-09-01

    A free-electron laser for the vuv operating in a storage ring requires an electron beam of high density and low energy spread and a short wavelength, narrow-gap undulator. These conditions tend to produce longitudinal and transverse beam instabilities, excessive beam growth through multiple intrabeam scattering, and a short gas-scattering lifetime. Passing the beam only occasionally through the undulator in a by-pass straight section, as proposed by Murphy and Pellegrini, allows operation in a high-gain, single-pass mode and a long gas-scattering lifetime. Several storage ring designs have been considered to see how best to satisfy the several requirements. Each features a by-pass, a low-emittance lattice, and built-in wigglers for enhanced damping to counteract the intra-beam scattering. 15 references, 3 figures, 2 tables

  20. Design and synthesis of polycyclic sulfones via Diels-Alder reaction and ring-rearrangement metathesis as key steps.

    Science.gov (United States)

    Kotha, Sambasivarao; Gunta, Rama

    2015-01-01

    Here, we describe a new and simple synthetic strategy to various polycyclic sulfones via Diels-Alder reaction and ring-rearrangement metathesis (RRM) as the key steps. This approach delivers tri- and tetracyclic sulfones with six (n = 1), seven (n = 2) or eight-membered (n = 3) fused-ring systems containing trans-ring junctions unlike the conventional all cis-ring junctions generally obtained during the RRM sequence. Interestingly the starting materials used are simple and commercially available.

  1. Design and use of a folded four-ring double-tuned birdcage coil for rat brain sodium imaging at 9.4 T.

    Science.gov (United States)

    Ha, YongHyun; Choi, Chang-Hoon; Worthoff, Wieland A; Shymanskaya, Aliaksandra; Schöneck, Michael; Willuweit, Antje; Felder, Jörg; Shah, N Jon

    2018-01-01

    A folded four-ring quadrature birdcage coil was designed and constructed with a double-tune configuration of an outer high-pass coil for 1 H (400 MHz) and inner low-pass coil for 23 Na (105.72 MHz at 9.4 T). The coil was evaluated on the bench and in the scanner, comparing its performance with that of single-tuned coils and a large four-ring coil. All coils were tuned and matched and the isolation between two quadrature ports was found to be better than -13.7 dB for 1 H and -27 dB for 23 Na. Signal-to-noise ratios (SNRs) were calculated and 23 Na flip angle maps were acquired. 23 Na SNR of the folded four-ring reached ∼93% of that obtained with the single-tuned coil. A set of in vivo 1 H and 23 Na axial images to cover the whole rat brain were obtained. The performance of the folded four-ring coil and its benefit for 23 Na imaging experiments have been demonstrated. This proposed four-ring coil could avoid length restrictions, e.g. the shoulders, by folding the outer rings vertically. This facilitates the construction of double-tuned four-ring birdcage coils just to fit the head, leading to higher filling factors and better SNR. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Design and use of a folded four-ring double-tuned birdcage coil for rat brain sodium imaging at 9.4 T

    Science.gov (United States)

    Ha, YongHyun; Choi, Chang-Hoon; Worthoff, Wieland A.; Shymanskaya, Aliaksandra; Schöneck, Michael; Willuweit, Antje; Felder, Jörg; Shah, N. Jon

    2018-01-01

    A folded four-ring quadrature birdcage coil was designed and constructed with a double-tune configuration of an outer high-pass coil for 1H (400 MHz) and inner low-pass coil for 23Na (105.72 MHz at 9.4 T). The coil was evaluated on the bench and in the scanner, comparing its performance with that of single-tuned coils and a large four-ring coil. All coils were tuned and matched and the isolation between two quadrature ports was found to be better than -13.7 dB for 1H and -27 dB for 23Na. Signal-to-noise ratios (SNRs) were calculated and 23Na flip angle maps were acquired. 23Na SNR of the folded four-ring reached ∼93% of that obtained with the single-tuned coil. A set of in vivo1H and 23Na axial images to cover the whole rat brain were obtained. The performance of the folded four-ring coil and its benefit for 23Na imaging experiments have been demonstrated. This proposed four-ring coil could avoid length restrictions, e.g. the shoulders, by folding the outer rings vertically. This facilitates the construction of double-tuned four-ring birdcage coils just to fit the head, leading to higher filling factors and better SNR.

  3. Black rings

    International Nuclear Information System (INIS)

    Emparan, Roberto; Reall, Harvey S

    2006-01-01

    A black ring is a five-dimensional black hole with an event horizon of topology S 1 x S 2 . We provide an introduction to the description of black rings in general relativity and string theory. Novel aspects of the presentation include a new approach to constructing black ring coordinates and a critical review of black ring microscopics. (topical review)

  4. Yrkesforberedelse eller fagopplæring med fagbrev? Med design og håndverk som kontekst

    Directory of Open Access Journals (Sweden)

    Bjørn Magne Aakre

    2013-09-01

    Full Text Available Artikkelen drøfter forholdet mellom yrkesforberedelse og fagopplæring med utgangspunkt i den kombinerte studieretningen formgivingsfag som ble innført i Norge i 1994. I 2006 ble den delt i et programfag under studiespesialiserende fag, og et nytt yrkesfaglig program med betegnelse design og håndverk. Hvilke interesser lå til grunn for endringene, hvor dyptgripende ble de og hvilke overveieleser kan en gjøre i ettertid om forholdet mellom yrkesforberedelse og fagopplæring? Artikkelen søker å svare på spørsmålene ut fra relevante dokumenter og to kvantitative undersøkelser med elever og lærere som informanter. Artikkelen konkluderer med at innholdet forble nokså likt, antall elever ble halvert og at frafallet økte. Det konkluderes videre med at mange forhold bidrar til å legitimere et fag og dets innhold som henholdsvis skolefag, vitenskapsfag eller yrkesfag. Legitimeringen preges ofte av motstridende motiver og interesser, og sjelden bare faglige begrunnelser.

  5. Optical properties of two-dimensional magnetoelectric point scattering lattices

    DEFF Research Database (Denmark)

    Hansen, Per Lunnemann; Sersic, Ivana; Koenderink, A. Femius

    2013-01-01

    of split ring resonators and provide a quantitative comparison of measured and calculated transmission spectra at normal incidence as a function of lattice density, showing excellent agreement. We further show angle-dependent transmission calculations for circularly polarized light and compare...... with the angle-dependent response of a single split ring resonator, revealing the importance of cross coupling between electric dipoles and magnetic dipoles for quantifying the pseudochiral response under oblique incidence of split ring lattices....

  6. Development of Design Technology on Thermal-Hydraulic Performance in Tight-Lattice Rod Bundles: I-Master Plan and Executive Summary

    Science.gov (United States)

    Ohnuki, Akira; Kureta, Masatoshi; Yoshida, Hiroyuki; Tamai, Hidesada; Liu, Wei; Misawa, Takeharu; Takase, Kazuyuki; Akimoto, Hajime

    R&D project to investigate thermal-hydraulic performance in tight-lattice rod bundles for Innovative Water Reactor for Flexible Fuel Cycle has been progressed at Japan Atomic Energy Agency in collaboration with power utilities, reactor vendors and universities since 2002. In this series-study, we will summarize the R&D achievements using large-scale test facility (37-rod bundle with full-height and full-pressure), model experiments and advanced numerical simulation technology. This first paper described the master plan for the development of design technology and showed an executive summary for this project up to FY2005. The thermal-hydraulic characteristics in the tight-lattice configuration were investigated and the feasibility was confirmed based on the experiments. We have developed the design technology including 3-D numerical simulation one to evaluate the effects of geometry/scale on the thermal-hydraulic behaviors.

  7. Lattices for the TRIUMF KAON factory

    International Nuclear Information System (INIS)

    Servranckx, R.V.; Craddock, M.K.

    1989-09-01

    Separated-function racetrack lattices have been developed for the KAON Factory accelerators that have more flexibility than the old circular lattices. The arcs of the large rings have a regular FODO structure with a superimposed six-fold symmetric modulation of the betafunction in order to raise γ t to infinity. Straight sections with zero dispersion are provided for rf cavities and fast injection and extraction, and with controlled dispersion for H - injection and slow extraction. For the small rings, sixfold symmetric circular lattices with high γ t are retained. In the Accumulator lattice, a straight section with double waist and controlled η function allows for H - injection and phase-space painting. The ion-optical properties of the lattices and the results from tracking studies are discussed

  8. White Ring; White ring

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, H.; Yuzawa, H. [Nikken Sekkei Ltd., Osaka (Japan)

    1998-01-05

    White Ring is a citizen`s gymnasium used for figure skating and short track speed skating games of 18th Winter Olympic Games in 1998. White Ring is composed of a main-arena and a sub-arena. For the main-arena with an area 41mtimes66m, an ice link can be made by disengaging the potable floor and by flowing brine in the bridged polystyrene pipes embedded in the concrete floor. Due to the fortunate groundwater in this site, well water is used for the outside air treatment energy in 63% during heating and in 35% during cooling. Ammonia is used as a cooling medium for refrigerating facility. For the heating of audience area in the large space, heat load from the outside is reduced by enhancing the heat insulation performance of the roof of arena. The audience seats are locally heated using heaters. For the White Ring, high quality environment is realized for games through various functions of the large-scale roof of the large space. Success of the big event was expected. 15 figs., 4 tabs.

  9. Token ring technology report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. This report provides an overview of the IBM Token-Ring technology and products built by IBM and compatible vendors. It consists of two sections: 1. A summary of the design trade-offs for the IBM Token-Ring. 2. A summary of the products of the major token-ring compatible vendors broken down by adapters and components, wiring systems, testing, and new chip technology.

  10. Multiple-bunch-length operating mode design for a storage ring using hybrid low alpha and harmonic cavity method

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Weiwei, E-mail: gaomqr@mail.ustc.edu.cn [College of Mathematics and Physics, Fujian University of Technology, Fuzhou 350118 (China); Wang, Lin; Li, Heting [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China)

    2017-03-11

    In this paper we design a simultaneous three bunch length operating mode at the HLS-II (Hefei Light Source II) storage ring by installing two harmonic cavities and minimizing the momentum compaction factor. The short bunches (2.6 mm) presented in this work will meet the requirement of coherent millimeter-wave and sub-THz radiation experiments, while the long bunches (20 mm) will efficiently increase the total beam current. Therefore, this multiple-bunch-length operating mode allows present synchrotron users and coherent millimeter-wave users (or sub THz users) to carry out their experiments simultaneously. Since the relatively low energy characteristic of HLS-II we achieve the multiple-bunch-length operating mode without multicell superconducting RF cavities, which is technically feasible.

  11. Design and construction of the front-end electronics data acquisition for the SLD CRID [Cherenkov Ring Imaging Detector

    International Nuclear Information System (INIS)

    Hoeflich, J.; McShurley, D.; Marshall, D.; Oxoby, G.; Shapiro, S.; Stiles, P.; Spencer, E.

    1990-10-01

    We describe the front-end electronics for the Cherenkov Ring Imaging Detector (CRID) of the SLD at the Stanford Linear Accelerator Center. The design philosophy and implementation are discussed with emphasis on the low-noise hybrid amplifiers, signal processing and data acquisition electronics. The system receives signals from a highly efficient single-photo electron detector. These signals are shaped and amplified before being stored in an analog memory and processed by a digitizing system. The data from several ADCs are multiplexed and transmitted via fiber optics to the SLD FASTBUS system. We highlight the technologies used, as well as the space, power dissipation, and environmental constraints imposed on the system. 16 refs., 10 figs

  12. Design of S-Band Phased Array Antenna with High Isolation Using Broadside Coupled Split Ring Resonator

    Directory of Open Access Journals (Sweden)

    Sungyoun Hwang

    2018-04-01

    Full Text Available In this paper, a method of designing a Vivaldi type phased array antenna (PAA which operates at S-band (2.8–3.3 GHz is presented. The presented antenna uses broadside coupled split ring resonators (BC-SRRs for high isolation, wide field of view, and good active S-parameter characteristics. As an example, we design a 1 × 8 array antenna with various BC-SRR structures using theory and EM simulations. The antenna is fabricated and measured to verify the design. With the BC-SRR implemented between the two radiating elements, the isolation is shown to be enhanced by 6 dB, up to 23 dB. The scan angle is shown to be within ±53° based on a −10 dB active reflection coefficient. The operation of the scan angle is possible within ±60° with a little larger reflection coefficient (−7 dB to −8 dB. The proposed design with BC-SRRs is expected to be useful for PAA applications.

  13. Supersymmetric lattices

    International Nuclear Information System (INIS)

    Catterall, Simon

    2013-01-01

    Discretization of supersymmetric theories is an old problem in lattice field theory. It has resisted solution until quite recently when new ideas drawn from orbifold constructions and topological field theory have been brought to bear on the question. The result has been the creation of a new class of lattice gauge theory in which the lattice action is invariant under one or more supersymmetries. The resultant theories are local and free of doublers and in the case of Yang-Mills theories also possess exact gauge invariance. In principle they form the basis for a truly non-perturbative definition of the continuum supersymmetric field theory. In this talk these ideas are reviewed with particular emphasis being placed on N = 4 super Yang-Mills theory.

  14. Development of a fuzzy logic method to build objective functions in optimization problems: application to BWR fuel lattice design

    International Nuclear Information System (INIS)

    Martin-del-Campo, C.; Francois, J.L.; Barragan, A.M.; Palomera, M.A.

    2005-01-01

    In this paper we develop a methodology based on the use of the Fuzzy Logic technique to build multi-objective functions to be used in optimization processes applied to in-core nuclear fuel management. As an example, we selected the problem of determining optimal radial fuel enrichment and gadolinia distributions in a typical 'Boiling Water Reactor (BWR)' fuel lattice. The methodology is based on the use of the mathematical capability of Fuzzy Logic to model nonlinear functions of arbitrary complexity. The utility of Fuzzy Logic is to map an input space into an output space, and the primary mechanism for doing this is a list of if-then statements called rules. The rules refer to variables and adjectives that describe those variables and, the Fuzzy Logic technique interprets the values in the input vectors and, based on the set of rules assigns values to the output vector. The methodology was developed for the radial optimization of a BWR lattice where the optimization algorithm employed is Tabu Search. The global objective is to find the optimal distribution of enrichments and burnable poison concentrations in a 10*10 BWR lattice. In order to do that, a fuzzy control inference system was developed using the Fuzzy Logic Toolbox of Matlab and it has been linked to the Tabu Search optimization process. Results show that Tabu Search combined with Fuzzy Logic performs very well, obtaining lattices with optimal fuel utilization. (authors)

  15. Optimizing Floating Guard Ring Designs for FASPAX N-in-P Silicon Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Kyung-Wook [Argonne; Bradford, Robert [Argonne; Lipton, Ronald [Fermilab; Deptuch, Gregory [Fermilab; Fahim, Farah [Fermilab; Madden, Tim [Argonne; Zimmerman, Tom [Fermilab

    2016-10-06

    FASPAX (Fermi-Argonne Semiconducting Pixel Array X-ray detector) is being developed as a fast integrating area detector with wide dynamic range for time resolved applications at the upgraded Advanced Photon Source (APS.) A burst mode detector with intended $\\mbox{13 $MHz$}$ image rate, FASPAX will also incorporate a novel integration circuit to achieve wide dynamic range, from single photon sensitivity to $10^{\\text{5}}$ x-rays/pixel/pulse. To achieve these ambitious goals, a novel silicon sensor design is required. This paper will detail early design of the FASPAX sensor. Results from TCAD optimization studies, and characterization of prototype sensors will be presented.

  16. CLEARING MAGNET DESIGN FOR APS-U

    Energy Technology Data Exchange (ETDEWEB)

    Abliz, M.; Grimmer, J.; Jaski, Y.; Westferro, F.; Ramanathan, M.

    2017-06-25

    The Advanced Photon Source is in the process of developing an upgrade (APS-U) of the storage ring. The upgrade will be converting the current double bend achromat (DBA) lattice to a multi-bend achromat (MBA) lattice. In addition, the storage ring will be operated at 6 GeV and 200 mA with regular swap-out injection to keep the stored beam current constant [1]. The swap-out injection will take place with beamline shutters open. For radiation safety to ensure that no electrons can exit the storage ring, a passive method of protecting the beamline and containing the electrons inside the storage ring is proposed. A clearing magnet will be located in all beamline front ends inside the storage ring tunnel. This article will discuss the features and design of the clearing magnet scheme for APS-U.

  17. Virtual private network design : a proof of the tree routing conjecture on ring networks

    NARCIS (Netherlands)

    Hurkens, C.A.J.; Keijsper, J.C.M.; Stougie, L.

    2007-01-01

    A basic question in virtual private network (VPN) design is if the symmetric version of the problem always has an optimal solution which is a tree network. An affirmative answer would imply that the symmetric VPN problem is solvable in polynomial time. We give an affirmative answer in case the

  18. Virtual private network design: a proof of the tree routing conjecture on ring networks

    NARCIS (Netherlands)

    C.A.J. Hurkens (Cor); J.C.M. Keijsper; L. Stougie (Leen)

    2005-01-01

    htmlabstractA basic question in Virtual Private Network (VPN) design is if the symmetric version of the problem always has an optimal solution which is a tree network. An affirmative answer would imply that the symmetric VPN problem is solvable in polynomial time. We give an affirmative answer in

  19. Token Ring Project

    Directory of Open Access Journals (Sweden)

    Adela Ionescu

    2007-01-01

    Full Text Available Ring topology is a simple configuration used to connect processes that communicate among themselves. A number of network standards such as token ring, token bus, and FDDI are based on the ring connectivity. This article will develop an implementation of a ring of processes that communicate among themselves via pipe links. The processes are nodes in the ring. Each process reads from its standard input and writes in its standard output. N-1 process redirects the its standard output to a standard input of the process through a pipe. When the ring-structure is designed, the project can be extended to simulate networks or to implement algorithms for mutual exclusion

  20. A model of ATL ground motion for storage rings

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Walker, Nicholas J.

    2003-01-01

    Low emittance electron storage rings, such as those used in third generation light sources or linear collider damping rings, rely for their performance on highly stable alignment of the lattice components. Even if all vibration and environmental noise sources could be suppressed, diffusive ground motion will lead to orbit drift and emittance growth. Understanding such motion is important for predicting the performance of a planned accelerator and designing a correction system. A description (known as the ATL model) of ground motion over relatively long time scales has been developed and has become the standard for studies of the long straight beamlines in linear colliders. Here, we show how the model may be developed to include beamlines of any geometry. We apply the model to the NLC and TESLA damping rings, to compare their relative stability under different conditions

  1. Window frame or ''superferric'' magnet design for low B(<3T) heavy ion storage ring study

    International Nuclear Information System (INIS)

    Danby, G.; DeVito, B.; Jackson, J.; Keohane, G.; Lee, Y.; Phillips, R.; Plate, S.; Repata, L.; Skaritka, J.; Smith, L.

    1985-01-01

    Double magnets share common laminations without magnetic coupling. Single layer coils of rectangular conductor are dry wound on extruded bore tubes. Magnet construction requires no molding or prestress. Absence of superconducting (SC) magnetization fields in the aperture results in very large dynamic range. The coil is wound continuously across the modplane to give unusually large dynamic aperture. Above approx.2.2 T saturation is corrected by simple sextupole windings with no inductive coupling to the dipole. Ultrastable design requires no internal quench protection. A quadrupole pair of novel design gives excellent field quality to B > 2 T without corrections, with no SC magnetization. Experience shows magnets are accurate enough for the assembly to take place at its final location. No training is required. Test procedures (measurements with search coils or with the beam) and cooldown properties are discussed. 2 refs., 8 figs., 1 tab

  2. Vortex rings

    CERN Document Server

    Akhmetov, D G

    2009-01-01

    This text on vortex rings covers their theoretical foundation, systematic investigations, and practical applications such as the extinction of fires at gushing oil wells. It pays special attention to the formation and motion of turbulent vortex rings.

  3. Lattice overview

    International Nuclear Information System (INIS)

    Creutz, M.

    1984-01-01

    After reviewing some recent developments in supercomputer access, the author discusses a few areas where perturbation theory and lattice gauge simulations make contact. The author concludes with a brief discussion of a deterministic dynamics for the Ising model. This may be useful for numerical studies of nonequilibrium phenomena. 13 references

  4. Physics and design issues of asymmetric storage ring colliders as B-factories

    International Nuclear Information System (INIS)

    Chattopadhyay, S.

    1989-08-01

    This paper concentrates on generic R ampersand D and design issues of asymmetric colliders via a specific example, namely a 9 GeV x 3 GeV collider based on PEP at SLAC. An asymmetric e + -e - collider at the Y(4s) and with sufficiently high luminosity (10 33 -10 34 cm -2 s -1 ) offers the possibility of studying mixing, rare decays, and CP violation in the B bar B meson system, as well as ''beautiful'' tau-charm physics, and has certain qualitative advantages from detection and machine design points of view. These include: the energy constraint; clean environment (∼25% B + B - , B 0 bar B 0 ); large cross section (1 nb); vertex reconstruction (from the time development of space-time separated B and bar B decays due to moving center-of-mass); reduced backgrounds; greatest sensitivity to CP violation in B → CP eigenstate; the possibility of using higher collision frequencies, up to 100 MHz, in a head-on colliding mode using magnetic separation. It is estimated that for B → ΨK s , an asymmetric collider has an advantage equivalent to a factor of five in luminosity relative to a symmetric one. There are, however, questions with regard to the physics of the asymmetric beam-beam coulomb interaction that may limit the intrinsic luminosity and the possibility of realizing the small beam pipes necessary to determine the vertices. 16 refs., 2 figs

  5. Design and finite element simulation of vacuum systems for insertion devices in Indus-2 storage ring

    International Nuclear Information System (INIS)

    Yadav, D.P.; Bais, Vijay; Sridhar, R.; Dhimole, Vivek K.; Nitesh, Suthar; Rawal, B.R.; Chogaonkar, Swati

    2015-01-01

    Indus-2 is a 2.5 GeV, 300 mA, Synchrotron Radiation Source (SRS) located at Raja Ramanna Centre for Advanced Technology, Indore. As part of insertion device (ID) development programme two new devices namely, APPLE-2 (Advanced Planar Polarized Light Emitter) type Undulator (also known as U-3 Undulator) and 5 Tesla superconducting wavelength shifter (SWLS) are being developed. APPLE-2 will generate variably polarized synchrotron radiation (SR) required for carrying out magnetic circular dichroism (MCD) and magnetic linear dichroism (MLD) experiments and SWLS will generate synchrotron radiation (SR) with critical photon energy of about 20.8 keV for Energy Dispersive XRD beam line. This paper describes design details and finite element analysis results of various simulations carried out for the vacuum systems of these IDs

  6. Calculation of the quadrupole magnet strengths in the PEP lattice for SCORE

    International Nuclear Information System (INIS)

    King, A.S.; Lee, M.J.

    1978-03-01

    The code, QUADS, which determines the step size in making configuration changes and calculates the field strengths of the 11 main ring quadrupole magnet families at each configuration has been completed. This code has been designed to have minimum computation time while keeping the necessary features for making future modifications of the beam lattice. It is being incorporated into SCORE, the program for the strength computation of the ring elements. The purpose of this note is to describe the method used in this calculation. 4 figs

  7. Beam position monitors for the high brightness lattice

    International Nuclear Information System (INIS)

    Ring, T.

    1985-06-01

    Engineering developments associated with the high brightness lattice and the projected change in machine operating parameters will inherently affect the diagnostics systems and devices installed at present in the storage ring. This is particularly true of the beam position monitoring (BPI) system. The new sixteen unit cell lattice with its higher betatron tune values and the limited space available in the redesigned machine straights for fitting standard BPI vessels forces a fundamental re-evaluation of the beam position monitor system. The design aims for the new system are based on accepting the space limitations imposed while still providing the monitor points required to give good radial and vertical closed orbit plots. The locations of BPI's in the redesigned machine straights is illustrated. A description of the new BPI assemblies and their calibration is given. The BPI's use capacitance button type pick-ups; their response is described. (U.K.)

  8. Identifying Lattice, Orbit, And BPM Errors in PEP-II

    International Nuclear Information System (INIS)

    Decker, F.-J.; SLAC

    2005-01-01

    The PEP-II B-Factory is delivering peak luminosities of up to 9.2 · 10 33 1/cm 2 · l/s. This is very impressive especially considering our poor understanding of the lattice, absolute orbit and beam position monitor system (BPM). A few simple MATLAB programs were written to get lattice information, like betatron functions in a coupled machine (four all together) and the two dispersions, from the current machine and compare it the design. Big orbit deviations in the Low Energy Ring (LER) could be explained not by bad BPMs (only 3), but by many strong correctors (one corrector to fix four BPMs on average). Additionally these programs helped to uncover a sign error in the third order correction of the BPM system. Further analysis of the current information of the BPMs (sum of all buttons) indicates that there might be still more problematic BPMs

  9. Design of the 150 kW, 46-62 MHz power amplifier for the TRIUMF KAON factory booster ring

    International Nuclear Information System (INIS)

    Kwiatkowski, S.; Enegren, T.; Poirier, R.L.

    1988-06-01

    The rf amplifiers for the KAON Factory booster ring must be capable of reactively compensating (detuning) for the injected/extracted beam load as well as providing the beam power and the cavity losses. In order to insure the stability of the rf system under heavy transient and steady state beam loading conditions it is necessary to equip the power amplifiers with fast rf feedback with sufficient gain and bandwidth to reduce the apparent Q of the rf amplifier system as seen by the beam and the other feedback loops. The maximum gain and bandwidth of such a feedback loop is limited by the propagation delay around the feedback path. To minimize the propagation delay a 2.4 kW two stage solid state driver will be used to drive the cathode of the Eimac Y567B tetrode to give an overall propagation delay less than 30 nS. The design features of the rf amplifier to meet the above conditions will be described and test results reported. (Author) (7 refs., 7 figs.)

  10. Applications of the second-order achromat concept to the design of particle accelerators

    International Nuclear Information System (INIS)

    Brown, K.L.; Servranckx, R.V.

    1985-05-01

    A property of the second-order achromat, whereby dipole and sextupole families may be inserted into a lattice for chromatic corrections without introducing second-order geometrical (on momentum) optical distortions, has been incorporated in several new particle accelerator designs. These include the SLC at SLAC, LEP at CERN, the EROS pulse stretcher ring at Saskatoon, the CEBAF ring at SURA, and the MIT ring

  11. Design considerations for a digital feedback system to control self-bunching in ion-storage rings

    Directory of Open Access Journals (Sweden)

    V. Ziemann

    2001-04-01

    Full Text Available We discuss the feasibility of a digital feedback system to cure self-bunching of the electron-cooled coasting ion beam in ion-storage rings such as CELSIUS [S. Holm, A. Johansson, S. Kullander, and D. Reistad, Phys. Scr. 34, 513–532 (1986]. Such a system is based on a fast digital filter that acts as a tunable artificial wake potential. It may also aid stable operation of accumulator rings for future spallation neutron sources or heavy ion rings used for inertial fusion energy production.

  12. Design and optical characterization of high-Q guided-resonance modes in the slot-graphite photonic crystal lattice.

    Science.gov (United States)

    Martínez, Luis Javier; Huang, Ningfeng; Ma, Jing; Lin, Chenxi; Jaquay, Eric; Povinelli, Michelle L

    2013-12-16

    A new photonic crystal structure is generated by using a regular graphite lattice as the base and adding a slot in the center of each unit cell to enhance field confinement. The theoretical Q factor in an ideal structure is over 4 × 10(5). The structure was fabricated on a silicon-on-insulator wafer and optically characterized by transmission spectroscopy. The resonance wavelength and quality factor were measured as a function of slot height. The measured trends show good agreement with simulation.

  13. Lattice QCD on fine lattices

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Stefan [DESY (Germany). Neumann Inst. for Computing

    2016-11-01

    These configurations are currently in use in many on-going projects carried out by researchers throughout Europe. In particular this data will serve as an essential input into the computation of the coupling constant of QCD, where some of the simulations are still on-going. But also projects computing the masses of hadrons and investigating their structure are underway as well as activities in the physics of heavy quarks. As this initial project of gauge field generation has been successful, it is worthwhile to extend the currently available ensembles with further points in parameter space. These will allow to further study and control systematic effects like the ones introduced by the finite volume, the non-physical quark masses and the finite lattice spacing. In particular certain compromises have still been made in the region where pion masses and lattice spacing are both small. This is because physical pion masses require larger lattices to keep the effects of the finite volume under control. At light pion masses, a precise control of the continuum extrapolation is therefore difficult, but certainly a main goal of future simulations. To reach this goal, algorithmic developments as well as faster hardware will be needed.

  14. Sextupole correction for a ring with large chromaticity and the influence of magnetic errors on its parameters

    International Nuclear Information System (INIS)

    Kamiya, Y.; Katoh, M.; Honjo, I.

    1987-01-01

    A future ring with a low emittance and large circumference, specifically dedicated to a synchrotron light source, will have a large chromaticity, so that it is important to employ a sophisticated sextupole correction as well as the design of linear lattice to obtain the stable beam. The authors tried a method of sextupole correction for a lattice with a large chromaticity and small dispersion function. In such a lattice the sextupole magnets are obliged to become large in strength to compensate the chromaticity. Then the nonlinear effects of the sextupole magnets will become more serious than their chromatic effects. Furthermore, a ring with strong quadrupole magnets to get a very small emittance and with strong sextupole magnets to compensate the generated chromaticity will be very sensitive to their magnetic errors. The authors also present simple formulae to evaluate the effects on the beam parameters. The details will appear in a KEK Report

  15. Effects of the cellulose, xylan and lignin constituents on biomass pyrolysis characteristics and bio-oil composition using the Simplex Lattice Mixture Design method

    International Nuclear Information System (INIS)

    Fan, Yongsheng; Cai, Yixi; Li, Xiaohua; Jiao, Lihua; Xia, Jisheng; Deng, Xiuli

    2017-01-01

    Highlights: • Simplex Lattice Mixture Design was firstly applied to study biomass pyrolysis process. • Interactions between the constituents had effects on the biomass pyrolysis behavior. • Biomass pyrolysis behavior can be predicted based on the ratios of three constituents. • Bio-oil composition was affected by the constituents and their pyrolysis products. - Abstract: In order to clarify the relationships between biomass pyrolysis mechanism and its main constituents. The effects of main constituents on biomass pyrolysis characteristics were firstly determined by thermo-gravimetric analysis based on the Simplex Lattice Mixture Design to investigate that whether the prediction of the pyrolysis behavior of a certain lignocellulosic biomass is possible when its main constituent contents are known. The results showed that there are constituent interactions in the pyrolysis process, which can be intuitively reflected through the change laws of kinetics parameters. The mathematical models for calculating kinetics values were established, and the models were proved to be valid for predicting lignocellulosic biomass pyrolysis behavior. In addition, the effects of biomass constituents on bio-oil compositions were explored by subsequent vacuum pyrolysis experiments. The xylan pyrolysis had a certain inhibitory effect on the pyrolysis of cellulose, and the pyrolysis products of lignin might promote the further decomposition of sugars from cellulose pyrolysis, while the interaction between xylan and lignin had a little effect on the bio-oil composition.

  16. Optimal fold symmetry of LH2 rings on a photosynthetic membrane.

    Science.gov (United States)

    Cleary, Liam; Chen, Hang; Chuang, Chern; Silbey, Robert J; Cao, Jianshu

    2013-05-21

    An intriguing observation of photosynthetic light-harvesting systems is the N-fold symmetry of light-harvesting complex 2 (LH2) of purple bacteria. We calculate the optimal rotational configuration of N-fold rings on a hexagonal lattice and establish two related mechanisms for the promotion of maximum excitation energy transfer (EET). (i) For certain fold numbers, there exist optimal basis cells with rotational symmetry, extendable to the entire lattice for the global optimization of the EET network. (ii) The type of basis cell can reduce or remove the frustration of EET rates across the photosynthetic network. We find that the existence of a basis cell and its type are directly related to the number of matching points S between the fold symmetry and the hexagonal lattice. The two complementary mechanisms provide selection criteria for the fold number and identify groups of consecutive numbers. Remarkably, one such group consists of the naturally occurring 8-, 9-, and 10-fold rings. By considering the inter-ring distance and EET rate, we demonstrate that this group can achieve minimal rotational sensitivity in addition to an optimal packing density, achieving robust and efficient EET. This corroborates our findings i and ii and, through their direct relation to S, suggests the design principle of matching the internal symmetry with the lattice order.

  17. Space charge and magnet error simulations for the SNS accumulator ring

    International Nuclear Information System (INIS)

    Beebe-Wang, J.; Fedotov, A.V.; Wei, J.; Machida, S.

    2000-01-01

    The effects of space charge forces and magnet errors in the beam of the Spallation Neutron Source (SNS) accumulator ring are investigated. In this paper, the focus is on the emittance growth and halo/tail formation in the beam due to space charge with and without magnet errors. The beam properties of different particle distributions resulting from various injection painting schemes are investigated. Different working points in the design of SNS accumulator ring lattice are compared. The simulations in close-to-resonance condition in the presence of space charge and magnet errors are presented. (author)

  18. Modified Design of Pin-on-Ring Tribometer for Hip Joint Prostheses Measurement; Case Study on Salat Activity

    Directory of Open Access Journals (Sweden)

    Muhammad Khafidh

    2015-02-01

    Full Text Available Total hip replacement (THR is one of the most successful orthopedic surgical procedures for replacing a broken hip joint. In THR, wear may occur at the articulating surface of the acetabular cup and the femoral head. In Indonesia, the country with the largest Muslim population in the world, most of the inhabitants do salat (praying every day. THR users are banned from doing salat for fear it will damage the hip joint prostheses. The previous wear calculation methods on the hip joint prostheses use the gravimetric, coordinate measuring machine (CMM, profiler, and geometric method. The disadvantages of the previous methods are that the geometry of the wear patch and the wear volume are only known at the end of the experiment, so they cannot be used to calculate the specific wear rate values in real time. So far, in every modeling of the hip joint prostheses, the values of the specific wear rate are assumed to be constant. This paper reports on the design modification of a pin-on-ring tribometer that is used to measure the wear volumes in hip joint prostheses. The result shows that modifications of the femoral head holder, reciprocating motion, elastic joint, and extra displacement transducer is needed to get the specific wear rate value. The calculation method to find the delta volume that is the value of displacement less than the displacement minimum (δmin is based on a graph, while the calculation method to find the delta volume that is the value of displacement that is more than the displacement minimum (δmin is based on an equation. In the salat test protocol, the longest test time was during the sujud (prostration motion, which took 1034.17 minutes in the experiment.

  19. Concepts for a low emittance-high capacity storage ring for the Diamond Light Source

    CERN Document Server

    Bartolini, Riccardo; Evans, Gwyndaf; Sawhney, Kawal; Zegenhagen, Joerg

    2017-01-01

    The Diamond Light Source is investigating several paths for a possible machine upgrade to Diamond II. The exercise is driven by a joint assessment of the science capabilities opened by a very low emittance ring and the machine design that will underpin them. The consultation is made on a beamline-by-beamline basis and has highlighted a significant preference for lattices that combine both a low emittance and large capacity for IDs.

  20. Storage ring group summary

    International Nuclear Information System (INIS)

    King, N.M.

    1980-01-01

    The Storage Ring Group set out to identify and pursue salient problems in accelerator physics for heavy ion fusion, divorced from any particular reference design concept. However, it became apparent that some basic parameter framework was required to correlate the different study topics. As the Workshop progressed, ring parameters were modified and updated. Consequently, the accompanying papers on individual topics will be found to refer to slightly varied parameters, according to the stage at which the different problems were tackled

  1. Area of Lattice Polygons

    Science.gov (United States)

    Scott, Paul

    2006-01-01

    A lattice is a (rectangular) grid of points, usually pictured as occurring at the intersections of two orthogonal sets of parallel, equally spaced lines. Polygons that have lattice points as vertices are called lattice polygons. It is clear that lattice polygons come in various shapes and sizes. A very small lattice triangle may cover just 3…

  2. A Study on Fatigue Design Automation of Plug- and Ring-type Gas-welded Joints of STS301L Taking Welded Residual Stress into Account

    International Nuclear Information System (INIS)

    Baek, Seung yeb; Yun, Ki Ho

    2010-01-01

    This paper presents a fatigue design method for plug- and ring-type gas-welded joints, which takes into account the effects of welding residual stress. To develop this method, we simulated the gas-welding process by performing nonlinear finite element analysis (FEA) To validate the FEA results, numerically calculated residual stresses in the gas welds were then compared with experimental results obtained by the hole-drilling method. To evaluate the fatigue strength of plug- and ring-type gas-welded joints influenced by welding residual stresses, the use of stress amplitude (σ a )R, which includes the welding residual stress in gas welds, is proposed (σ a )R on the basis of a modified Goodman equation that includes the residual stress effects. Using the stress amplitude (σ a )R at the hot spot point of gas weld, the relations obtained as the fatigue test results for plug and ring type gas welded joints having various dimensions and shapes were systematically rearranged to obtain the (σ a )R-N f relationship. It was found that more systematic and accurate evaluation of the fatigue strength of plug- and ring-type gas-welded joints can be achieved by using (σ a )R

  3. Lattice Study for the Taiwan Photon Source

    CERN Document Server

    Kuo, Chin-Cheng; Chen Chien Te; Luo, Gwo-Huei; Tsai, Hung-Jen; Wang, Min-Huey

    2005-01-01

    The feasibility study for the new 3.0~3.3 GeV Taiwan synchrotron light source, dubbed Taiwan Photon Source, was initiated in July, 2004. The goal is to construct a high performance light source with extremely bright X-ray in complementary to the existing 1.5 GeV light source in Taiwan. The ring circumference is 518.4 m and a 24-cell DBA lattice structure is chosen. The natural emittance with distributed dispersion is less than 2 nm-rad. A large booster ring of 499.2 m sharing the storage ring tunnel will be adopted.

  4. Achromatic lattice comparison for light sources

    International Nuclear Information System (INIS)

    Kramer, S.L.; Crosbie, E.A.; Cho, Y.

    1988-01-01

    The next generation of synchrotron light sources are being designed to support a large number of undulators and require long dispersion-free insertion regions. With less demand for radiation from the dipole magnets, the storage ring cost per undulator beam can be reduced by decreasing the number of dipole magnets and increasing the number of dispersion free straight sections. The two simplest achromatic lattices are the Chasman-Green or double-bend achromatic (DBA) and the three-bend achromat (TBA). The DBA in its simplest form consists of a single horizontally-focussing quadrupole between the two dipole magnets. Since this quadrupole strength is fixed by the achromatic condition, the natural emittance (/var epsilon//sub n/) may vary as the beta functions in the insertion region (IR) are varied. The expanded Chasman-Green (also DBA) uses multiple quadrupoles in the dispersive section to provide emittance control independent of the beta functions in the IR. Although this provides flexibility in the ID beta functions, the horizontal phase advance is constrained to /phi/ /approx equal/ 180/degree/ between approximately the centers of the dipole magnets. If small /var epsilon//sub n/ is required, the horizontal phase advance between the dipoles will be near one and the lattice properties will be dominated by this systematic resonance. The TBA lattice places a third dipole between the DBA dipoles, eliminating the 180/degree/ horizontal phase advance constraint. However, the requirement of small /var epsilon//sub n/ limits the range of tune, since /mu//sub x/ /approx equal/ 1.29 in the dipoles alone for /var epsilon//sub n/ near its minimum value. The minimum emittance is five times smaller for the TBA than for the DBA with the same number of periods and, therefore, its phase advance can be relaxed more than the DBA for the same natural emittance. 5 refs., 4 figs., 1 tab

  5. Achromatic lattice comparison for light sources

    International Nuclear Information System (INIS)

    Kramer, S.L.; Crosbie, E.A.; Cho, Y.

    1988-01-01

    This paper reports on the next generation of synchrotron light sources designed to support a large number of undulators and require long dispersion-free insertion regions. With less demand for radiation from the dipole magnets, the storage ring cost per undulator beam can be reduced by decreasing the number of dipole magnets and increasing the number of dispersion-free straight sections. The two simplest achromatic lattices are the Chasman-Green or double-bend achromatic (DBA) and the three-bend achromat (TBA). The DBA in its simplest form consists of a single horizontally-focussing quadrupole between the two dipole magnets. Since this quadrupole strength is fixed by the achromatic condition, the natural emittance (σ n ) may vary as the beta functions in the insertion region (IR) are varied. The expanded Chasman-Green (also DBA) uses multiple quadrupoles in the dispersive section to provide emittance control independent of the beta functions in the IR. Although this provides flexibility in the ID beta functions, the horizontal phase advance is constrained to φ ≅ 180 degrees between approximately the centers of the dipole magnets. If small σ n is required, the horizontal phase advance between the dipoles will be near one and the lattice properties will be dominated by this systematic resonance. The TBA lattice places a third dipole between the DBA dipoles, eliminating the 180 degrees horizontal phase advance constraint. However, the requirement of small σ n limits the range of tune, since μ x ≅ 1.29 in the dipoles alone for σ n near its minimum value. The minimum emittance is five times smaller for the TBA than for the DBA with the same number of periods and, therefore, its phase advance can be relaxed more than the DBA for the same natural emittance

  6. Study of the OCS6 Lattice Using Frequency Maps

    International Nuclear Information System (INIS)

    Reichel, Ina

    2007-01-01

    Frequency maps are employed to study the baseline damping ring lattice. The study is aimed at understanding the reduced dynamic aperture in the lattice with four short straight sections compared to the one with eight short straight sections. Measures to increase the dynamic aperture based on results of this study are suggested

  7. A Ring-shaped photodiode designed for use in a reflectance pulse oximetry sensor in wireless health monitoring applications

    DEFF Research Database (Denmark)

    Duun, Sune; Haahr, Rasmus Grønbek; Birkelund, Karen

    2010-01-01

    We report a photodiode for use in a reflectance pulse oximeter for use in autonomous and low-power homecare applications. The novelty of the reflectance pulse oximeter is a large ring shaped backside silicon pn photodiode. The ring-shaped photodiode gives optimal gathering of light and thereby...... enable very low light-emitting diode (LED) driving currents for the pulse oximeter. The photodiode also have a two layer SiO2/SiN interference filter yielding 98% transmission at the measuring wavelengths, 660 nm and 940 nm, and suppressing other wavelengths down to 50% transmission. The photodiode has...

  8. Magnetic ring for stripping enhancement

    International Nuclear Information System (INIS)

    Selph, F.

    1992-10-01

    A ring designed to recycle ions through a stripping medium offers the possibility for increasing output of the desired charge state by up to 4x. This could be a very important component of a Radioactive Nuclear Beam Facility. In order for such a ring to work effectively it must satisfy certain design conditions. These include achromaticity at the stripper, a dispersed region for an extraction magnet, and a number of first and higher order optics constraints which are necessary to insure that the beam emittance is not degraded unduly by the ring. An example is given of a candidate design of a stripping ring

  9. Double acting stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1986-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  10. Overview of arc design options: Deliverable D2.1

    CERN Document Server

    Chance, Antoine

    2016-01-01

    This document describes the collider layouts to be taken into account for further detailed studies. The optimization of the arc cell lattice and the choice made on the dispersion suppressor are explained. The arc lattice is detailed with the procedures to tune the collider ring and to correct the chromaticity. The correction schemes of the orbit, of the dynamic aperture and of the spurious dispersion are detailed. Finally, the properties of the arc design at the injection energy are shown.

  11. Design and project status of the National Synchrotron Light Source; storage rings (2.5 GeV, 0.7 GeV) for the generation of bright synchrotron radiation sources

    International Nuclear Information System (INIS)

    van Steenbergen, A.

    1980-01-01

    Two high intensity storage rings are being constructed at Brookhaven National Laboratory for the generation of intense fluxes of synchrotron radiation in the vuv wavelength region (700 MeV ring, lambda/sub c/ = 31.5 A) and in the x-ray wavelength region (2.5 GeV ring, lambda/sub c/ = 2.5 A). A description is given of the facility, the main features of the storage rings are presented and the basic parameters are enumerated. High field superconducting wigglers, to lower the short wavelength cutoff in the x-ray ring, and undulators, for flux enhancement or a free electron laser experiment will be incorporated and parameters are given here. Special design aspects to optimize the electron storage rings as dedicated synchrotron radiation sources will be emphasized and the status of the project will be given

  12. Design, fabrication and characterization of multi-guard-ring furnished p+n-n+ silicon strip detectors for future HEP experiments

    Science.gov (United States)

    Lalwani, Kavita; Jain, Geetika; Dalal, Ranjeet; Ranjan, Kirti; Bhardwaj, Ashutosh

    2016-07-01

    Si detectors, in various configurations (strips and pixels), have been playing a key role in High Energy Physics (HEP) experiments due to their excellent vertexing and high precision tracking information. In future HEP experiments like upgrade of the Compact Muon Solenoid experiment (CMS) at the Large Hadron Collider (LHC), CERN and the proposed International Linear Collider (ILC), the Si tracking detectors will be operated in a very harsh radiation environment, which leads to both surface and bulk damage in Si detectors which in turn changes their electrical properties, i.e. change in the full depletion voltage, increase in the leakage current and decrease in the charge collection efficiency. In order to achieve the long term durability of Si-detectors in future HEP experiments, it is required to operate these detectors at very high reverse biases, beyond the full depletion voltage, thus requiring higher detector breakdown voltage. Delhi University (DU) is involved in the design, fabrication and characterization of multi-guard-ring furnished ac-coupled, single sided, p+n-n+ Si strip detectors for future HEP experiments. The design has been optimized using a two-dimensional numerical device simulation program (TCAD-Silvaco). The Si strip detectors are fabricated with eight-layers mask process using the planar fabrication technology by Bharat Electronic Lab (BEL), India. Further an electrical characterization set-up is established at DU to ensure the quality performance of fabricated Si strip detectors and test structures. In this work measurement results on non irradiated Si Strip detectors and test structures with multi-guard-rings using Current Voltage (IV) and Capacitance Voltage (CV) characterization set-ups are discussed. The effect of various design parameters, for example guard-ring spacing, number of guard-rings and metal overhang on breakdown voltage of test structures have been studied.

  13. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas - part 1: design and performance analysis

    NARCIS (Netherlands)

    Meijerink, Arjan; Roeloffzen, C.G.H.; Meijerink, Roland; Zhuang, L.; Marpaung, D.A.I.; Bentum, Marinus Jan; Burla, M.; Verpoorte, Jaco; Jorna, Pieter; Huizinga, Adriaan; van Etten, Wim

    2010-01-01

    A novel optical beamformer concept is introduced that can be used for seamless control of the reception angle in broadband wireless receivers employing a large phased array antenna (PAA). The core of this beamformer is an optical beamforming network (OBFN), using ring resonator-based broadband

  14. ring system

    African Journals Online (AJOL)

    1,3,2-DIAZABORACYCLOALKANE. RING SYSTEM. Negussie Retta" and Robert H. Neilson. 'Department of Chemistry, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia. Department of Chemistry, Texas Christian University.

  15. Planetary Rings

    Science.gov (United States)

    Nicholson, P. D.

    2001-11-01

    A revolution in the studies in planetary rings studies occurred in the period 1977--1981, with the serendipitous discovery of the narrow, dark rings of Uranus, the first Voyager images of the tenuous jovian ring system, and the many spectacular images returned during the twin Voyager flybys of Saturn. In subsequent years, ground-based stellar occultations, HST observations, and the Voyager flybys of Uranus (1986) and Neptune (1989), as well as a handful of Galileo images, provided much additional information. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. Perhaps most puzzling is Saturn's multi-stranded, clumpy F ring, which continues to defy a simple explanation 20 years after it was first glimpsed in grainy images taken by Pioneer 11. Voyager and HST images reveal a complex, probably chaotic, dynamical interaction between unseen parent bodies within this ring and its two shepherd satellites, Pandora and Prometheus. The work described here reflects contributions by Joe Burns, Jeff Cuzzi, Luke Dones, Dick French, Peter Goldreich, Colleen McGhee, Carolyn Porco, Mark Showalter, and Bruno Sicardy, as well as those of the author. This research has been supported by NASA's Planetary Geology and Geophysics program and the

  16. Lattice Wigner equation

    Science.gov (United States)

    Solórzano, S.; Mendoza, M.; Succi, S.; Herrmann, H. J.

    2018-01-01

    We present a numerical scheme to solve the Wigner equation, based on a lattice discretization of momentum space. The moments of the Wigner function are recovered exactly, up to the desired order given by the number of discrete momenta retained in the discretization, which also determines the accuracy of the method. The Wigner equation is equipped with an additional collision operator, designed in such a way as to ensure numerical stability without affecting the evolution of the relevant moments of the Wigner function. The lattice Wigner scheme is validated for the case of quantum harmonic and anharmonic potentials, showing good agreement with theoretical results. It is further applied to the study of the transport properties of one- and two-dimensional open quantum systems with potential barriers. Finally, the computational viability of the scheme for the case of three-dimensional open systems is also illustrated.

  17. LATTICE: an interactive lattice computer code

    International Nuclear Information System (INIS)

    Staples, J.

    1976-10-01

    LATTICE is a computer code which enables an interactive user to calculate the functions of a synchrotron lattice. This program satisfies the requirements at LBL for a simple interactive lattice program by borrowing ideas from both TRANSPORT and SYNCH. A fitting routine is included

  18. Design and characterization of 16-mode PANDA polarization-maintaining few-mode ring-core fiber for spatial division multiplexing

    Science.gov (United States)

    Cao, Yuan; Zhao, Yongli; Yu, Xiaosong; Han, Jiawei; Zhang, Jie

    2017-11-01

    A PANDA polarization-maintaining few-mode ring-core fiber (PM-FM-RCF) structure with two air holes around the ring core is proposed. The relative mode multiplicity factor (RMMF) is defined to evaluate the spatial efficiency of the designed PM-FM-RCF. The performance analysis and comparison of the proposed PANDA PM-FM-RCFs considering three different types of step-index profiles are detailed. Through modal characteristic analysis and numerical simulation, the PM-FM-RCF with a lower refractive index difference (Δnoi=1.5%) between the ring core and the inner central circle can support up to 16 polarization modes with large RMMF at C-band, which shows the optimum modal properties compared with the PM-FM-RCF with higher Δnoi. All the supported polarization modes are effectively separated from their adjacent polarization modes with effective refractive index differences (Δn) larger than 10-4, which also show relatively small chromatic dispersion (-20 to 25 ps/nm/km), low attenuation (<1.4 dB/km), and small bending radius (˜8 mm) over the C-band. The designed PM-FM-RCF can be compatible with standard single-mode fibers and applied in multiple-input multiple-output-free spatial division multiplexing optical networks for short-reach optical interconnection.

  19. Design of a proteus lattice representative of a burnt and fresh fuel interface at power conditions in light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hursin, M.; Perret, G. [Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland)

    2012-07-01

    The research program LIFE (Large-scale Irradiated Fuel Experiment) between PSI and Swissnuclear has been started in 2006 to study the interaction between large sets of burnt and fresh fuel pins in conditions representative of power light water reactors. Reactor physics parameters such as flux ratios and reaction rate distributions ({sup 235}U and {sup 238}U fissions and {sup 238}U capture) are calculated to estimate an appropriate arrangement of burnt and fresh fuel pins within the central element of the test zone of the zero-power research reactor PROTEUS. The arrangement should minimize the number of burnt fuel pins to ease fuel handling and reduce costs, whilst guaranteeing that the neutron spectrum in both burnt and fresh fuel regions and at their interface is representative of a large uniform array of burnt and fresh pins in the same moderation conditions. First results are encouraging, showing that the burnt/fresh fuel interface is well represented with a 6 x 6 bundle of burnt pins. The second part of the project involves the use of TSUNAMI, CASMO-4E and DAKOTA to perform parametric and optimization studies on the PROTEUS lattice by varying its pitch (P) and fraction of D{sub 2}O in moderator (F{sub D2O}) to be as representative as possible of a power light water reactor core at hot full power conditions at beginning of cycle (BOC). The parameters P and F{sub D2O} that best represent a PWR at BOC are 1.36 cm and 5% respectively. (authors)

  20. Ligand design for site-selective metal coordination: synthesis of transition-metal complexes with η{sup 6}-coordination of the central ring of anthracene

    Energy Technology Data Exchange (ETDEWEB)

    Karslyan, Eduard E.; Borissova, Alexandra O.; Perekalin, Dmitry S. [Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow (Russian Federation)

    2017-05-08

    A polycyclic aromatic ligand for site-selective metal coordination was designed by using DFT calculations. The computational prediction was confirmed by experiments: 2,3,6,7-tetramethoxy-9,10-dimethylanthracene initially reacts with [(C{sub 5}H{sub 5})Ru(MeCN){sub 3}]BF{sub 4} to give the kinetic product with a [(C{sub 5}H{sub 5})Ru]{sup +} fragment coordinated at the terminal ring, which is then transformed into the thermodynamic product with coordination through the central ring. These isomeric complexes have markedly different UV/Vis spectra, which was explained by analysis of the frontier orbitals. At the same time, the calculations suggest that electrostatic interactions are mainly responsible for the site selectivity of the coordination. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Design report for an annular fuel element for accommodation of a carbide test bundle on the ring position of the KNK II/2 test zone

    International Nuclear Information System (INIS)

    Haefner, H.E.

    1982-03-01

    This report describes an annular oxide element with Mark II rods for accommodation of a 19-pin carbide test bundle on position 201 in the test zone of the second core of KNK II as well as its behavior during the period of operation. The ring element comprises within a driver wrapper in three rows of pins 102 fuel pins of 7.6 mm diameter and six structural rods for fixing the spark eroded spacers. The report deals with the ring element with its individual components fuel rod, bundle, wrappers, head and foot and describes methods, criteria and results concerning the design. The carbide test bundle to be accommodated by the annular carrier element will be treated in a separate report. The loadability of the annular element with its components is demonstrated by generally valid standards for strength criteria

  2. Calibration of the nonlinear ring model at the Diamond Light Source

    CERN Document Server

    Bartolini, R; Rehm, G; Martin, I P S

    2011-01-01

    Nonlinear beam dynamics plays a crucial role in defining the performance of a storage ring. The beam lifetime, the injection efficiency, and the dynamic and momentum apertures available to the beam are optimized during the design phase by a proper optimization of the linear lattice and of the distribution of sextupole families. The correct implementation of the design model, especially the nonlinear part, is a nontrivial accelerator physics task. Several parameters of the nonlinear dynamics can be used to compare the real machine with the model and eventually to correct the accelerator. Most of these parameters are extracted from the analysis of turn-by-turn data after the excitation of betatron oscillations of the particles in the ring. We present the experimental results of the campaign of measurements carried out at the Diamond storage ring to characterize the nonlinear beam dynamics. A combination of frequency map analysis with the detuning with momentum measurements has allowed for a precise calibration ...

  3. Design, Construction, and Analysis of an Ultra-Low Expansion Quartz Resonant Cavity Passive Ring Resonator Laser Gyroscope.

    Science.gov (United States)

    1982-03-01

    Gyroscopes .... ....... 2 1.2 Sagnac’s Interferometer ....... ........ . . 4 1.3 Harress ’ Ring Interferometer ....... ...... 5 1.4 Michelson & Gale...graduate student, Harress , performed an experi- ment in which he attempted to measure the dispersion properties of glass. Figure 1.3 shows Harress ...8217 experiment. The results from his experiment did not agree-with data obtained from other methods, and Harress did not live long enough to find the discrepancy

  4. Operation of a five-pole superconducting wiggler in the DCI positron ring and design of the beamline

    International Nuclear Information System (INIS)

    Bazin, C.; Dubuisson, J.M.; Labeque, A.; Level, M.P.; Raoux, D.; Sommer, M.; Zyngier, H.; Chomillier, J.; Frouin, J.; Garreau, Y.; Loupias, G.; Tarbes, J.

    1989-01-01

    A five-pole superconducting wiggler has been installed in the DCI positron ring and operated without disturbing the machine characteristics at full energy (1.85 GeV) and maximum current (300 mA). Three beamlines have been built which feed six beam ports. The first two-crystal monochromator to be used for Compton scattering has been commissioned although the sagittal focusing has not yet been tested

  5. Leapfrogging of multiple coaxial viscous vortex rings

    International Nuclear Information System (INIS)

    Cheng, M.; Lou, J.; Lim, T. T.

    2015-01-01

    A recent theoretical study [Borisov, Kilin, and Mamaev, “The dynamics of vortex rings: Leapfrogging, choreographies and the stability problem,” Regular Chaotic Dyn. 18, 33 (2013); Borisov et al., “The dynamics of vortex rings: Leapfrogging in an ideal and viscous fluid,” Fluid Dyn. Res. 46, 031415 (2014)] shows that when three coaxial vortex rings travel in the same direction in an incompressible ideal fluid, each of the vortex rings alternately slips through (or leapfrogs) the other two ahead. Here, we use a lattice Boltzmann method to simulate viscous vortex rings with an identical initial circulation, radius, and separation distance with the aim of studying how viscous effect influences the outcomes of the leapfrogging process. For the case of two identical vortex rings, our computation shows that leapfrogging can be achieved only under certain favorable conditions, which depend on Reynolds number, vortex core size, and initial separation distance between the two rings. For the case of three coaxial vortex rings, the result differs from the inviscid model and shows that the second vortex ring always slips through the leading ring first, followed by the third ring slipping through the other two ahead. A simple physical model is proposed to explain the observed behavior

  6. Robots and lattice automata

    CERN Document Server

    Adamatzky, Andrew

    2015-01-01

    The book gives a comprehensive overview of the state-of-the-art research and engineering in theory and application of Lattice Automata in design and control of autonomous Robots. Automata and robots share the same notional meaning. Automata (originated from the latinization of the Greek word “αυτόματον”) as self-operating autonomous machines invented from ancient years can be easily considered the first steps of robotic-like efforts. Automata are mathematical models of Robots and also they are integral parts of robotic control systems. A Lattice Automaton is a regular array or a collective of finite state machines, or automata. The Automata update their states by the same rules depending on states of their immediate neighbours. In the context of this book, Lattice Automata are used in developing modular reconfigurable robotic systems, path planning and map exploration for robots, as robot controllers, synchronisation of robot collectives, robot vision, parallel robotic actuators. All chapters are...

  7. Lattice gauge theory

    International Nuclear Information System (INIS)

    Mack, G.

    1982-01-01

    After a description of a pure Yang-Mills theory on a lattice, the author considers a three-dimensional pure U(1) lattice gauge theory. Thereafter he discusses the exact relation between lattice gauge theories with the gauge groups SU(2) and SO(3). Finally he presents Monte Carlo data on phase transitions in SU(2) and SO(3) lattice gauge models. (HSI)

  8. Conceptual design of a permanent ring magnet based helicon plasma source module intended to be used in a large size fusion grade ion source

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Arun; Sudhir, Dass; Bandyopadhyay, M., E-mail: mainak@iter-india.org; Chakraborty, A.

    2016-02-15

    A conceptual design of a permanent magnet based single driver helicon plasma source module along with its design approach is described in this paper. The module unit is intended to be used in a large size ion source. The conceptual design of the helicon source module has been carried out using a computer code, HELIC. The magnetic field topology for the ring magnet is simulated with another code, BFieldM and the magnetic field values obtained from the calculation are further used as input in HELIC calculation for the conceptual design. The module is conceptualized based on a cylindrical glass vessel to produce plasma of diameter ∼50 mm, height ∼50 mm. The inner diameter of the permanent ring magnets is also of the same dimension with thickness ∼10 mm each, placed slightly above the backplate to maintain the required magnetic field. The simulated results show that for hydrogen gas, expected plasma density can be achieved as high as ∼10{sup 12}–10{sup 13} cm{sup −3} in the proposed helicon source configuration using 1 kW 13.56 MHz RF generator. An experimental setup to characterize a Helicon source module unit, consisting of a cylindrical glass (plasma) chamber along with the vacuum system, RF power supplies, probes and data acquisition system is being installed.

  9. Topological rings

    CERN Document Server

    Warner, S

    1993-01-01

    This text brings the reader to the frontiers of current research in topological rings. The exercises illustrate many results and theorems while a comprehensive bibliography is also included. The book is aimed at those readers acquainted with some very basic point-set topology and algebra, as normally presented in semester courses at the beginning graduate level or even at the advanced undergraduate level. Familiarity with Hausdorff, metric, compact and locally compact spaces and basic properties of continuous functions, also with groups, rings, fields, vector spaces and modules, and with Zorn''s Lemma, is also expected.

  10. Alpha - Skew Pi - Armendariz Rings

    Directory of Open Access Journals (Sweden)

    Areej M Abduldaim

    2018-03-01

    Full Text Available In this article we introduce a new concept called Alpha-skew Pi-Armendariz rings (Alpha - S Pi - ARas a generalization of the notion of Alpha-skew Armendariz rings.Another important goal behind studying this class of rings is to employ it in order to design a modern algorithm of an identification scheme according to the evolution of using modern algebra in the applications of the field of cryptography.We investigate general properties of this concept and give examples for illustration. Furthermore, this paperstudy the relationship between this concept and some previous notions related to Alpha-skew Armendariz rings. It clearly presents that every weak Alpha-skew Armendariz ring is Alpha-skew Pi-Armendariz (Alpha-S Pi-AR. Also, thisarticle showsthat the concepts of Alpha-skew Armendariz rings and Alpha-skew Pi- Armendariz rings are equivalent in case R is 2-primal and semiprime ring.Moreover, this paper proves for a semicommutative Alpha-compatible ringR that if R[x;Alpha] is nil-Armendariz, thenR is an Alpha-S Pi-AR. In addition, if R is an Alpha - S Pi -AR, 2-primal and semiprime ring, then N(R[x;Alpha]=N(R[x;Alpha]. Finally, we look forwardthat Alpha-skew Pi-Armendariz rings (Alpha-S Pi-ARbe more effect (due to their properties in the field of cryptography than Pi-Armendariz rings, weak Armendariz rings and others.For these properties and characterizations of the introduced concept Alpha-S Pi-AR, we aspire to design a novel algorithm of an identification scheme.

  11. Lattices with unique complements

    CERN Document Server

    Saliĭ, V N

    1988-01-01

    The class of uniquely complemented lattices properly contains all Boolean lattices. However, no explicit example of a non-Boolean lattice of this class has been found. In addition, the question of whether this class contains any complete non-Boolean lattices remains unanswered. This book focuses on these classical problems of lattice theory and the various attempts to solve them. Requiring no specialized knowledge, the book is directed at researchers and students interested in general algebra and mathematical logic.

  12. Development of a 3-dimensional calculation model of the Danish research reactor DR3 to analyse a proposal to a new core design called ring-core

    Energy Technology Data Exchange (ETDEWEB)

    Nonboel, E

    1985-07-01

    A 3-dimensional calculation model of the Danish research reactor DR3 has been developed. Demands of a more effective utilization of the reactor and its facilities has required a more detailed calculation tool than applied so far. A great deal of attention has been devoted to the treatment of the coarse control arms. The model has been tested against measurements with satisfying results. Furthermore the model has been used to analyse a proposal to a new core design called ring-core where 4 central fuel elements are replaced by 4 dummy elements to increase the thermal flux in the center of the reactor. (author)

  13. Lattice cell burnup calculation

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.

    1977-01-01

    Accurate burnup prediction is a key item for design and operation of a power reactor. It should supply information on isotopic changes at each point in the reactor core and the consequences of these changes on the reactivity, power distribution, kinetic characters, control rod patterns, fuel cycles and operating strategy. A basic stage in the burnup prediction is the lattice cell burnup calculation. This series of lectures attempts to give a review of the general principles and calculational methods developed and applied in this area of burnup physics

  14. Ring interferometry

    CERN Document Server

    Malykin, Grigorii B; Zhurov, Alexei

    2013-01-01

    This monograph is devoted to the creation of a comprehensive formalism for quantitative description of polarized modes' linear interaction in modern single-mode optic fibers. The theory of random connections between polarized modes, developed in the monograph, allows calculations of the zero shift deviations for a fiber ring interferometer. The monograph addresses also the

  15. Furosemide self nano emulsifying drug delivery system (SNEDDS formulation comprising of capryol-90, polysorbate-80, and peg-400 with simplex-lattice-design

    Directory of Open Access Journals (Sweden)

    Najma Annuria Fithri

    2017-10-01

    Full Text Available Preparation of SNEDDS aims to improve solubility and absorption of furosemide in the body to reduce the dosage and minimize the side effects of drugs. Ternary diagram constructed from composition mixture produced nanoemulsion in the range of 20-40% of capryol-90, 20-40% polysorbate-80 and 40-60% PEG-400. Formulations of SNEDDS using Design-Expert®10 with simplex-lattice-design method in the study was aimed to investigate the effect of SNEDDS each component's proportions towards test responses. Emulsification time, drug content and viscosity were best demonstrated by run-7 with consecutive values of 131.68±2.14 seconds, 99.89±2.68% and 0.87±0.0043 mm2/s. The optimum formula was obtained through entering test response parameter data of all thirteen formula. Drug content and emulsification time was 107.0 ± 1.44% and 155.59±1.56 seconds with viscosity value 0.91±0.00 mm2/s. From the physical stability studies, SNEDDS formulas were stable and did not show phase separation when exposed to temparature stress testing.

  16. Design analysis of a self-acting spiral-groove ring seal for counter-rotating shafts

    Science.gov (United States)

    Dirusso, E.

    1983-01-01

    A self-acting spiral groove inter-shaft ring seal of nominal 16.33 cm (6.43 in.) diameter for sealing fan bleed air between counter-rotating hafts in advanced turbofan engines was analyzed. The analysis focused on the lift force characteristics of the spiral grooves. A NASA Lewis developed computer program for predicting the performance of gas lubricated face seals was used to optimize the spiral groove geometry to produce maximum lift force. Load capacity curves (lift force as function of film thickness) were generated for four advanced turbofan engine operating conditions at relative seal speeds ranging from 17,850 to 29,800 rpm, sealed air pressures from 6 to 42 N/sq cm (9 to 60 psi) absolute and temperatures from 95 deg to 327 C (203 deg to 620 F). The relative seal sliding speed range was 152 to 255 m/sec (500 to 836 ft/sec). The analysis showed that the spiral grooves are capable of producing sufficient lift force such that the ring seal will operate in a noncontacting mode over the operating range of typical advanced turbofan engines.

  17. END FIELD EFFECTS IN BEND ONLY COOLING LATTICES

    International Nuclear Information System (INIS)

    BEERG, J.S.; KIRK, H.; GARREN, A.

    2003-01-01

    Cooling lattices consisting only of bends (using either rotated pole faces or gradient dipoles to achieve focusing) often require large apertures and short magnets. One expects the effect of end fields to be significant in this case. In this paper we explore the effect of adding end fields to a working lattice design that originally lacked them. The paper describes the process of correcting the lattice design for the added end fields so as to maintain desirable lattice characteristics. It then compares the properties of the lattice with end fields relative to the lattice without them

  18. Three families of mitered Borromean ring sculptures

    NARCIS (Netherlands)

    Verhoeff, T.; Verhoeff, K.; Delp, K.; Kaplan, C.S.; McKenna, D.; Sarhangi, R.

    2015-01-01

    Artists have drawn inspiration from many mathematical structures, such as regular tilings, lattices, symmetry groups, regular polyhedra, knots, and links. A particularly well-known link goes by the name Borromean rings. It consists of three closed loops (“rings”) that cannot be taken apart without

  19. Kac's ring: The case of four colours

    Indian Academy of Sciences (India)

    We present an instance from nonequilibrium statistical mechanics which combines increase in entropy and finite Poincaré recurrence time. The model we consider is a variation of the well-known Kac's ring where we consider balls of four colours. As is known, Kac introduced this model where balls arranged between lattice ...

  20. Osmotic pressure of ring polymer solutions : A Monte Carlo study

    NARCIS (Netherlands)

    Flikkema, Edwin; Brinke, Gerrit ten

    2000-01-01

    Using the wall theorem, the osmotic pressure of ring polymers in solution has been determined using an off-lattice topology conserving Monte Carlo algorithm. The ring polymers are modeled as freely-jointed chains with point-like beads, i.e., under conditions corresponding to θ-conditions for the

  1. BERKELEY: ALS ring

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-06-15

    Everybody at Lawrence Berkeley Laboratory's Center for Beam Physics is pleased with the rapid progress in commissioning LBL's Advanced Light Source (ALS) electron storage ring, the foundation for this third-generation synchrotron radiation facility. Designed for a maximum current of 400 mA, the ALS storage ring reached 407 mA just 24 days after storing the first beam on 16 March. ALS construction as a US Department of Energy (DOE) national user facility to provide high-brightness vacuum ultra-violet and soft x-ray radiation began in October 1987. One technical requirement marking project completion was to accumulate a 50-mA current in the storage ring. The ALS passed this milestone on 24 March, a week ahead of the official deadline. Once injected, the electron beam decays quasi-exponentially primarily because of interactions with residual gas molecules in the storage-ring vacuum chamber. Eventually, when the pressure in the vacuum chamber with beam decreases toward the expected operating level of 1 nano Torr, it will only be necessary to refill the storage ring at intervals of four to eight hours. At present the vacuum is improving rapidly as surfaces are irradiated (scrubbed) by the synchrotron radiation itself. At 100 mA, beam lifetime was about one hour (9 April)

  2. BERKELEY: ALS ring

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Everybody at Lawrence Berkeley Laboratory's Center for Beam Physics is pleased with the rapid progress in commissioning LBL's Advanced Light Source (ALS) electron storage ring, the foundation for this third-generation synchrotron radiation facility. Designed for a maximum current of 400 mA, the ALS storage ring reached 407 mA just 24 days after storing the first beam on 16 March. ALS construction as a US Department of Energy (DOE) national user facility to provide high-brightness vacuum ultra-violet and soft x-ray radiation began in October 1987. One technical requirement marking project completion was to accumulate a 50-mA current in the storage ring. The ALS passed this milestone on 24 March, a week ahead of the official deadline. Once injected, the electron beam decays quasi-exponentially primarily because of interactions with residual gas molecules in the storage-ring vacuum chamber. Eventually, when the pressure in the vacuum chamber with beam decreases toward the expected operating level of 1 nano Torr, it will only be necessary to refill the storage ring at intervals of four to eight hours. At present the vacuum is improving rapidly as surfaces are irradiated (scrubbed) by the synchrotron radiation itself. At 100 mA, beam lifetime was about one hour (9 April)

  3. Design Report for a 19-pin carbide test-bundle in a ring-subassembly of the test zone of KNK II/2

    International Nuclear Information System (INIS)

    Haefner, H.E.

    1982-03-01

    This report describes a 19-rod carbide test bundle in an annular oxide ring element placed at the position 201 of the test zone in the second core of KNK II as well as its behavior during the period of operation. The selected fuel rod concept includes low pellet density and a relatively large gap width as well as helium bonding between fuel and cladding. Characteristic design and operation data are: rod diameter 8.5 mm, pellet diameter 7.0 mm, maximum nominal linear rating 800 W/cm, maximum nominal burnup 70 MWd/kgHM. This report exclusively deals with the carbide test bundle and its individual components; it describes methods, criteria and results concerning the design. The annular carrier element with its head and foot is treated in a separate report. The loadability of the test bundle and its individual components is demonstrated by generally valid standards for strength criteria [de

  4. New integrable lattice hierarchies

    International Nuclear Information System (INIS)

    Pickering, Andrew; Zhu Zuonong

    2006-01-01

    In this Letter we give a new integrable four-field lattice hierarchy, associated to a new discrete spectral problem. We obtain our hierarchy as the compatibility condition of this spectral problem and an associated equation, constructed herein, for the time-evolution of eigenfunctions. We consider reductions of our hierarchy, which also of course admit discrete zero curvature representations, in detail. We find that our hierarchy includes many well-known integrable hierarchies as special cases, including the Toda lattice hierarchy, the modified Toda lattice hierarchy, the relativistic Toda lattice hierarchy, and the Volterra lattice hierarchy. We also obtain here a new integrable two-field lattice hierarchy, to which we give the name of Suris lattice hierarchy, since the first equation of this hierarchy has previously been given by Suris. The Hamiltonian structure of the Suris lattice hierarchy is obtained by means of a trace identity formula

  5. The vacuum system for the PEP II high energy ring straight sections

    International Nuclear Information System (INIS)

    Wienands, U.; Daly, E.; Heifets, S.A.; Kulikov, A.; Kurita, N.; Nordby, M.; Perkins, C.; Reuter, E.; Seeman, J.T.; Belser, F.C.; Berg, J.; Holdener, F.R.; Kerns, J.A.; McDaniel, M.R.; Stoeffl, W.

    1995-01-01

    The six straight sections of the PEP II High Energy Ring (HER) serve various functions: lattice tuning, beam injection and abort, providing space for rf cavities, longitudinal and transverse feedback, beam diagnostics and the interaction point. A stainless steel vacuum system has been designed; prototypes are currently being built. Cooling is required due to radiation coming from the last arc dipole and resistive losses in the vacuum chamber. Although the nominal beam current of the HER is 1 A the vacuum system is designed for 3 A to provide margin and an upgrade path. 5 refs., 7 figs

  6. Conceptual design of a moving-ring fusion reactor. AP-3229 Research Project 922, annual report, October 1983

    International Nuclear Information System (INIS)

    1983-10-01

    This report concludes a two-year project to design a prototype (roughly 100 MW(e) net) fusion power plant which places emphasis on commercial needs and to outline a development plan for it. This project is a follow-on to an earlier design of a small (11 MW(e) net) pilot power plant (EPRI Report AP-1544), which is included in the development plan as a step to be built before this prototype. The prototype design put major attention on minimizing nuclear issues. Other commercial matters, including suitability for scaling to a wide range of sizes, were also very important. The design, the earlier pilot design, and the extrapolation of these to commercial size designs identify gaps between required technical features and current technical knowledge. These gaps set targets for experiments and technology programs. These programs and designs define the development plan

  7. Moving ring reactor 'Karin-1'

    International Nuclear Information System (INIS)

    1983-12-01

    The conceptual design of a moving ring reactor ''Karin-1'' has been carried out to advance fusion system design, to clarify the research and development problems, and to decide their priority. In order to attain these objectives, a D-T reactor with tritium breeding blanket is designed, a commercial reactor with net power output of 500 MWe is designed, the compatibility of plasma physics with fusion engineering is demonstrated, and some other guideline is indicated. A moving ring reactor is composed mainly of three parts. In the first formation section, a plasma ring is formed and heated up to ignition temperature. The plasma ring of compact torus is transported from the formation section through the next burning section to generate fusion power. Then the plasma ring moves into the last recovery section, and the energy and particles of the plasma ring are recovered. The outline of a moving ring reactor ''Karin-1'' is described. As a candidate material for the first wall, SiC was adopted to reduce the MHD effect and to minimize the interaction with neutrons and charged particles. The thin metal lining was applied to the SiC surface to solve the problem of the compatibility with lithium blanket. Plasma physics, the engineering aspect and the items of research and development are described. (Kako, I.)

  8. Beam dynamic issues in TESLA damping ring

    International Nuclear Information System (INIS)

    Shiltsev, V.

    1996-05-01

    In this paper we study general requirements on impedances of the linear collider TESLA damping ring design. Quantitative consideration is performed for 17-km long ''dog-bone'' ring. Beam dynamics in alternative options of 6.3 and 2.3-km long damping rings is briefly discussed. 5 refs., 2 tabs

  9. Improving Photovoltaic Performance of a Fused-Ring Azepinedione Copolymer via a D-A-A Design.

    Science.gov (United States)

    Zhang, Honghong; Li, Ting; Xiao, Zuo; Lei, Zhongli; Ding, Liming

    2018-04-01

    Two conjugated copolymer donors, PTTABDT and PBTTABDT, based on a fused-ring azepinedione acceptor unit, 5-(2-octyldodecyl)-4H-thieno[2',3':4,5]thieno[3,2-c]thieno[2',3':4,5]thieno[2,3-e]azepine-4,6(5H)-dione (TTA), are prepared. PTTABDT possesses a conventional donor-acceptor (D-A) structure with one TTA in the repeat unit, while PBTTABDT has a D-A-A structure with two TTAs in the repeat unit. Compared with PTTABDT, PBTTABDT shows a deeper highest occupied molecular orbital (HOMO) level, a narrower bandgap, and a higher hole mobility, and exhibits better performance in bulk heterojunction solar cells. Power conversion efficiencies of 6.18% and 7.81% are achieved from PTTABDT:PC 71 BM and PBTTABDT:PC 71 BM solar cells, respectively. The higher performance of PBTTABDT:PC 71 BM solar cells results from the enhanced open-circuit voltage (V oc ) and short-circuit current density (  J sc ). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Future Synchrotron Light Sources Based on Ultimate Storage Rings

    International Nuclear Information System (INIS)

    Cai, Yunhai

    2012-01-01

    The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving an ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend achromatic cell, we

  11. Future Synchrotron Light Sources Based on Ultimate Storage Rings

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai; /SLAC

    2012-04-09

    The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving an ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend

  12. Thomson's Jumping Ring over a Long Coil

    Science.gov (United States)

    Jeffery, Rondo N.; Amiri, Farhang

    2018-01-01

    The classic jumping ring apparatus consists of a coil with an iron core that extends out of the coil. A copper or aluminum ring placed over the iron core jumps upward when AC power is applied to the coil. In this paper we will examine a modified design of the jumping ring apparatus, called the "long-coil design." It allows the ring to…

  13. Lattice Commissioning Strategy Simulation for the B Factory

    International Nuclear Information System (INIS)

    Lee, M.; Whittum, D.; Yan, Y.; Cai, Y.; Shoaee, H.

    2011-01-01

    To prepare for the PEP-II turn on, we have studied one commissioning strategy with simulated lattice errors. Features such as difference and absolute orbit analysis and correction are discussed. To prepare for the commissioning of the PEP-II injection line and high energy ring (HER), we have developed a system for on-line orbit analysis by merging two existing codes: LEGO and RESOLVE. With the LEGO-RESOLVE system, we can study the problem of finding quadrupole alignment and beam position (BPM) offset errors with simulated data. We have increased the speed and versatility of the orbit analysis process by using a command file written in a script language designed specifically for RESOLVE. In addition, we have interfaced the LEGO-RESOLVE system to the control system of the B-Factory. In this paper, we describe online analysis features of the LEGO-RESOLVE system and present examples of practical applications.

  14. Generalization of the Hofmann-Zotter combined-function formulation for application to 50x50 GeV e+e- storage rings

    International Nuclear Information System (INIS)

    Sakazaki, L.E.; Talman, R.M.

    1983-01-01

    Though all existing strong-focusing electron storage rings have separated-function lattices, the combined-function lattice would reduce energy loss to synchrotron radiation. Robinson and Hofmann and Zotter have shown how to overcome the anti-damping that was once thought to rule out this possibility. Their formulation is generalized to achieve a more realistic machine design having FODO cells to incorporate the inevitable straight sections between magnets and to allow for any subsequent insertion of nonlinear elements. An analysis is performed to estimate the energy savings for a 50x50 GeV e+e- facility using combined-function magnets

  15. Generalized isothermic lattices

    International Nuclear Information System (INIS)

    Doliwa, Adam

    2007-01-01

    We study multi-dimensional quadrilateral lattices satisfying simultaneously two integrable constraints: a quadratic constraint and the projective Moutard constraint. When the lattice is two dimensional and the quadric under consideration is the Moebius sphere one obtains, after the stereographic projection, the discrete isothermic surfaces defined by Bobenko and Pinkall by an algebraic constraint imposed on the (complex) cross-ratio of the circular lattice. We derive the analogous condition for our generalized isothermic lattices using Steiner's projective structure of conics, and we present basic geometric constructions which encode integrability of the lattice. In particular, we introduce the Darboux transformation of the generalized isothermic lattice and we derive the corresponding Bianchi permutability principle. Finally, we study two-dimensional generalized isothermic lattices, in particular geometry of their initial boundary value problem

  16. Ultrafast harmonic rf kicker design and beam dynamics analysis for an energy recovery linac based electron circulator cooler ring

    Directory of Open Access Journals (Sweden)

    Yulu Huang

    2016-08-01

    Full Text Available An ultrafast kicker system is being developed for the energy recovery linac (ERL based electron circulator cooler ring (CCR in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously named MEIC. In the CCR, the injected electron bunches can be recirculated while performing ion cooling for 10–30 turns before the extraction, thus reducing the recirculation beam current in the ERL to 1/10−1/30 (150  mA-50  mA of the cooling beam current (up to 1.5 A. Assuming a bunch repetition rate of 476.3 MHz and a recirculating factor of 10 in the CCR, the kicker is required to operate at a pulse repetition rate of 47.63 MHz with pulse width of around 2 ns, so that only every 10th bunch in the CCR will experience a transverse kick while the rest of the bunches will not be disturbed. Such a kicker pulse can be synthesized by ten harmonic modes of the 47.63 MHz kicker pulse repetition frequency, using up to four quarter wavelength resonator (QWR based deflecting cavities. In this paper, several methods to synthesize such a kicker waveform will be discussed and a comparison of their beam dynamics performance is made using ELEGANT. Four QWR cavities are envisaged with high transverse shunt impedance requiring less than 100 W of total rf power for a Flat-Top kick pulse. Multipole fields due to the asymmetry of this type of cavity are analyzed. The transverse emittance growth due to the sextupole component is simulated in ELEGANT. Off-axis injection and extraction issues and beam optics using a multicavity kick-drift scheme will also be discussed.

  17. 1,2,3-Triazole Rings as a Disulfide Bond Mimetic in Chimeric AGRP-Melanocortin Peptides: Design, Synthesis, and Functional Characterization.

    Science.gov (United States)

    Tala, Srinivasa R; Singh, Anamika; Lensing, Cody J; Schnell, Sathya M; Freeman, Katie T; Rocca, James R; Haskell-Luevano, Carrie

    2018-05-16

    The melanocortin system is involved in the regulation of complex physiological functions, including energy and weight homeostasis, feeding behavior, inflammation, sexual function, pigmentation, and exocrine gland function. The five melanocortin receptors that belong to the superfamily of G protein-coupled receptors (GPCRs) are regulated by endogenously expressed agonists and antagonists. The aim of this study was to explore the potential of replacing the disulfide bridge in chimeric AGRP-melanocortin peptide Tyr-c[Cys-His-d-Phe-Arg-Trp-Asn-Ala-Phe-Cys]-Tyr-NH 2 (1) with 1,2,3-triazole moieties. A series of 1,2,3-triazole-bridged peptidomimetics were designed, synthesized, and pharmacologically evaluated at the mouse melanocortin receptors. The ligands possessed nanomolar to micromolar agonist cAMP signaling potency. A key finding was that the disulfide bond in peptide 1 can be replaced with the monotriazole ring with minimal effect on the functional activity at the melanocortin receptors. The 1,5-disubstituted triazole-bridged peptide 6 showed equipotent functional activity at the mMC3R and modest 5-fold decreased agonist potency at the mMC4R compared to those of 1. Interestingly, the 1,4- and 1,5-disubstituted isomers of the triazole ring resulted in different selectivities at the receptor subtypes, indicating subtle structural features that may be exploited in the generation of selective melanocortin ligands. Introducing cyclic and acyclic bis-triazole moieties into chimeric AGRP template 1 generally decreased agonist activity. These results will be useful for the further design of neuronal chemical probes for the melanocortin receptors as well as in other receptor systems.

  18. Report of the workshop on realistic SSC lattices

    International Nuclear Information System (INIS)

    1985-10-01

    A workshop was held at the SSC Central Design Group from May 29 to June 4, 1985, on topics relating to the lattice of the SSC. The workshop marked a shift of emphasis from the investigation of simplified test lattices to the development of a realistic lattice suitable for the conceptual design report. The first day of the workshop was taken up by reviews of accelerator system requirements, of the reference design solutions for these requirements, of lattice work following the reference design, and of plans for the workshop. The work was divided among four working groups. The first, chaired by David Douglas, concerned the arcs of regular cells. The second group, which studied the utility insertions, was chaired by Beat Leemann. The third group, under David E. Johnson, concerned itself with the experimental insertions, dispersion suppressors, and phase trombones. The fourth group, responsible for global lattice considerations and the design of a new realistic lattice example, was led by Ernest Courant. The papers resulting from this workshop are roughly divided into three sets: those relating to specific lattice components, to complete lattices, and to other topics. Among the salient accomplishments of the workshop were additions to and optimization of lattice components, especially those relating to lattices using 1-in-1 magnets, either horizontally or vertically separated, and the design of complete lattice examples. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  19. Applications of first order matricial theory to the calculation of storage ring designed for producing synchrotron radiation

    International Nuclear Information System (INIS)

    Machado, J.M.

    1984-01-01

    A review of first order matrix theory (linear approximation) used for calculating component elements of a particle accelerator employing the synchrotron principle of alternated gradient, is presented. Based on this theory, criteria for dimensioning synchrotron designed, exclusively for producing electromagnetic radiation, are established. The problem to find out optimum disposition of elements (straight line sections, quadrupolar magnetic lens, etc.) which take advantages of deflector magnets of the DCI synchrotron (Orsay Linear Accelerator Laboratory, French) aiming to construct a synchrotron designed to operate as electromagnetic radiation source, is solved. (M.C.K.) [pt

  20. Precision Magnetic Elements for the SNS Storage Ring

    International Nuclear Information System (INIS)

    Danby, G.; Jackson, J.; Spataro, C.

    1999-01-01

    Magnetic elements for an accumulator storage ring for a 1 GeV Spallation Neutron Source (SNS) have been under design. The accumulation of very high intensity protons in a storage ring requires beam optical elements of very high purity to minimize higher order resonances in the presence of space charge. The parameters of the elements required by the accumulator lattice design have been reported. The dipoles have a 17 cm gap and are 124 cm long. The quadrupoles have a physical length to aperture diameter ratio of 40 cm/21 cm and of 45 cm/31 cm. Since the elements have a large aperture and short length, optimizing the optical effects of magnet ends is the major design challenge. Two dimensional (2D) computer computations can, at least on paper, produce the desired accuracy internal to magnets, i.e. constant dipole fields and linear quadrupole gradients over the desired aperture to 1 x 10 -4 . To minimize undesirable end effects three dimensional (3D) computations can be used to design magnet ends. However, limitations on computations can occur, such as necessary finite boundary conditions, actual properties of the iron employed, hysteresis effects, etc., which are slightly at variance with the assumed properties. Experimental refinement is employed to obtain the desired precision

  1. The Lattice-Valued Turing Machines and the Lattice-Valued Type 0 Grammars

    Directory of Open Access Journals (Sweden)

    Juan Tang

    2014-01-01

    Full Text Available Purpose. The purpose of this paper is to study a class of the natural languages called the lattice-valued phrase structure languages, which can be generated by the lattice-valued type 0 grammars and recognized by the lattice-valued Turing machines. Design/Methodology/Approach. From the characteristic of natural language, this paper puts forward a new concept of the l-valued Turing machine. It can be used to characterize recognition, natural language processing, and dynamic characteristics. Findings. The mechanisms of both the generation of grammars for the lattice-valued type 0 grammar and the dynamic transformation of the lattice-valued Turing machines were given. Originality/Value. This paper gives a new approach to study a class of natural languages by using lattice-valued logic theory.

  2. Lattice theory for nonspecialists

    International Nuclear Information System (INIS)

    Hari Dass, N.D.

    1984-01-01

    These lectures were delivered as part of the academic training programme at the NIKHEF-H. These lectures were intended primarily for experimentalists, and theorists not specializing in lattice methods. The goal was to present the essential spirit behind the lattice approach and consequently the author has concentrated mostly on issues of principle rather than on presenting a large amount of detail. In particular, the author emphasizes the deep theoretical infra-structure that has made lattice studies meaningful. At the same time, he has avoided the use of heavy formalisms as they tend to obscure the basic issues for people trying to approach this subject for the first time. The essential ideas are illustrated with elementary soluble examples not involving complicated mathematics. The following subjects are discussed: three ways of solving the harmonic oscillator problem; latticization; gauge fields on a lattice; QCD observables; how to solve lattice theories. (Auth.)

  3. Lattice gauge theories

    International Nuclear Information System (INIS)

    Creutz, M.

    1983-04-01

    In the last few years lattice gauge theory has become the primary tool for the study of nonperturbative phenomena in gauge theories. The lattice serves as an ultraviolet cutoff, rendering the theory well defined and amenable to numerical and analytical work. Of course, as with any cutoff, at the end of a calculation one must consider the limit of vanishing lattice spacing in order to draw conclusions on the physical continuum limit theory. The lattice has the advantage over other regulators that it is not tied to the Feynman expansion. This opens the possibility of other approximation schemes than conventional perturbation theory. Thus Wilson used a high temperature expansion to demonstrate confinement in the strong coupling limit. Monte Carlo simulations have dominated the research in lattice gauge theory for the last four years, giving first principle calculations of nonperturbative parameters characterizing the continuum limit. Some of the recent results with lattice calculations are reviewed

  4. Techniques for transparent lattice measurement and correction

    Science.gov (United States)

    Cheng, Weixing; Li, Yongjun; Ha, Kiman

    2017-07-01

    A novel method has been successfully demonstrated at NSLS-II to characterize the lattice parameters with gated BPM turn-by-turn (TbT) capability. This method can be used at high current operation. Conventional lattice characterization and tuning are carried out at low current in dedicated machine studies which include beam-based measurement/correction of orbit, tune, dispersion, beta-beat, phase advance, coupling etc. At the NSLS-II storage ring, we observed lattice drifting during beam accumulation in user operation. Coupling and lifetime change while insertion device (ID) gaps are moved. With the new method, dynamical lattice correction is possible to achieve reliable and productive operations. A bunch-by-bunch feedback system excites a small fraction (∼1%) of bunches and gated BPMs are aligned to see those bunch motions. The gated TbT position data are used to characterize the lattice hence correction can be applied. As there are ∼1% of total charges disturbed for a short period of time (several ms), this method is transparent to general user operation. We demonstrated the effectiveness of these tools during high current user operation.

  5. On Traveling Waves in Lattices: The Case of Riccati Lattices

    Science.gov (United States)

    Dimitrova, Zlatinka

    2012-09-01

    The method of simplest equation is applied for analysis of a class of lattices described by differential-difference equations that admit traveling-wave solutions constructed on the basis of the solution of the Riccati equation. We denote such lattices as Riccati lattices. We search for Riccati lattices within two classes of lattices: generalized Lotka-Volterra lattices and generalized Holling lattices. We show that from the class of generalized Lotka-Volterra lattices only the Wadati lattice belongs to the class of Riccati lattices. Opposite to this many lattices from the Holling class are Riccati lattices. We construct exact traveling wave solutions on the basis of the solution of Riccati equation for three members of the class of generalized Holling lattices.

  6. Some design considerations for a large solid angle charged plus neutrals detector for e+e/sup /minus// storage rings

    International Nuclear Information System (INIS)

    Mast, T.; Nelson, J.

    1974-08-01

    We describe here the relations between various design parameters, costs, resolutions, geometry, etc., that we have found useful in thinking about charged and neutral particle detectors for SPEAR and PEP. A great many alternatives exist for the various components of these detectors: solenoid vs. Helmholtz coils for the magnet, normal versus superconducting magnets, active converters versus passive converters for the gammas, different gamma detection methods, different return yoke configurations, etc. We have thought most about a system based upon a solenoid magnet with drift chambers inside for charged particle detection and lead glass outside for gamma detection. Consequently most of the formulae and figures in this paper are oriented toward that configuration. A great many other configurations have been discussed as possibilities for PEP detectors. Since the constraints ($, manpower, electrical power) and the physics of interest at PEP are still unknown we consider the present configuration to be only one of many possibilities. Each of the possible configurations needs to be carefully studied to understand its limitations and to optimize the design within those limitations. In that spirit we present here some of the tools needed for understanding the design of a solenoidal detector. 18 figs

  7. Ring insertions as light sources

    International Nuclear Information System (INIS)

    Green, G.K.

    1975-01-01

    Bending magnets can be inserted in the long straight sections of electron storage rings to produce synchrotron radiation. If the design is carefully proportioned, the bending magnets create only a small perturbation of the properties of the ring. The resulting spectra have favorable optical properties as sources for spectroscopy and diffraction studies. The characteristics of the source are discussed, and the geometrical requirements of the magnets are presented

  8. Lattice degeneracies of fermions

    International Nuclear Information System (INIS)

    Raszillier, H.

    1983-10-01

    We present a detailed description of the minimal degeneracies of geometric (Kaehler) fermions on all the lattices of maximal symmetries in n = 1, ..., 4 dimensions. We also determine the isolated orbits of the maximal symmetry groups, which are related to the minimal numbers of ''naive'' fermions on the reciprocals of these lattices. It turns out that on the self-reciprocal lattices the minimal numbers of naive fermions are equal to the minimal numbers of degrees of freedom of geometric fermions. The description we give relies on the close connection of the maximal lattice symmetry groups with (affine) Weyl groups of root systems of (semi-) simple Lie algebras. (orig.)

  9. Twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Shindler, A.

    2007-07-01

    I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)

  10. Twisted mass lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2007-07-15

    I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)

  11. Synthesis of spatially variant lattices.

    Science.gov (United States)

    Rumpf, Raymond C; Pazos, Javier

    2012-07-02

    It is often desired to functionally grade and/or spatially vary a periodic structure like a photonic crystal or metamaterial, yet no general method for doing this has been offered in the literature. A straightforward procedure is described here that allows many properties of the lattice to be spatially varied at the same time while producing a final lattice that is still smooth and continuous. Properties include unit cell orientation, lattice spacing, fill fraction, and more. This adds many degrees of freedom to a design such as spatially varying the orientation to exploit directional phenomena. The method is not a coordinate transformation technique so it can more easily produce complicated and arbitrary spatial variance. To demonstrate, the algorithm is used to synthesize a spatially variant self-collimating photonic crystal to flow a Gaussian beam around a 90° bend. The performance of the structure was confirmed through simulation and it showed virtually no scattering around the bend that would have arisen if the lattice had defects or discontinuities.

  12. Kayser-Fleischer Rings

    Science.gov (United States)

    ... Support Contacts Lab Tracker/Copper Calculator Stories Programs & Research ... About Everything you need to know about Wilson Disease Kayser-Fleischer Rings Definition Kayser-Fleischer Ring: Clinical sign. Brownish-yellow ring visible around the corneo- ...

  13. Code comparison for accelerator design and analysis

    International Nuclear Information System (INIS)

    Parsa, Z.

    1988-01-01

    We present a comparison between results obtained from standard accelerator physics codes used for the design and analysis of synchrotrons and storage rings, with programs SYNCH, MAD, HARMON, PATRICIA, PATPET, BETA, DIMAD, MARYLIE and RACE-TRACK. In our analysis we have considered 5 (various size) lattices with large and small angles including AGS Booster (10/degree/ bend), RHIC (2.24/degree/), SXLS, XLS (XUV ring with 45/degree/ bend) and X-RAY rings. The differences in the integration methods used and the treatment of the fringe fields in these codes could lead to different results. The inclusion of nonlinear (e.g., dipole) terms may be necessary in these calculations specially for a small ring. 12 refs., 6 figs., 10 tabs

  14. Status of the SLC damping rings

    International Nuclear Information System (INIS)

    Hutton, A.M.; Davies-White, W.A.; Delahaye, J.P.

    1985-06-01

    Electron beams of full design energy 1.21 GeV and nearly full design intensity 4 x 10 10 particles/pulse (design 5 x 10 10 ) have been extracted from the Stanford Linac and successfully stored in the electron damping ring. Beams of less intensity have been extracted from the ring and reinjected into the Linac. The present intensity limits are not thought to be fundamental. The operating experience with the electron ring and the status of the construction of the positron ring will be discussed. 11 refs., 1 fig., 2 tabs

  15. Quantum mechanical design of efficient second-order nonlinear optical materials based on heteroaromatic imido-substituted hexamolybdates: first theoretical framework of POM-based heterocyclic aromatic rings.

    Science.gov (United States)

    Janjua, Muhammad Ramzan Saeed Ashraf

    2012-11-05

    This work was inspired by a previous report (Janjua et al. J. Phys. Chem. A 2009, 113, 3576-3587) in which the nonlinear-optical (NLO) response strikingly improved with an increase in the conjugation path of the ligand and the nature of hexamolybdates (polyoxometalates, POMs) was changed into a donor by altering the direction of charge transfer with a second aromatic ring. Herein, the first theoretical framework of POM-based heteroaromatic rings is found to be another class of excellent NLO materials having double heteroaromatic rings. First hyperpolarizabilities of a large number of push-pull-substituted conjugated systems with heteroaromatic rings have been calculated. The β components were computed at the density functional theory (DFT) level (BP86 geometry optimizations and LB94 time-dependent DFT). The largest β values are obtained with a donor (hexamolybdates) on the benzene ring and an acceptor (-NO(2)) on pyrrole, thiophene, and furan rings. The pyrrole imido-substituted hexamolybdate (system 1c) has a considerably large first hyperpolarizability, 339.00 × 10(-30) esu, and it is larger than that of (arylimido)hexamolybdate, calculated as 0.302 × 10(-30) esu (reference system 1), because of the double aromatic rings in the heteroaromatic imido-substituted hexamolybdates. The heteroaromatic rings act as a conjugation bridge between the electron acceptor (-NO(2)) and donor (polyanion). The introduction of an electron donor into heteroaromatic rings significantly enhances the first hyperpolarizabilities because the electron-donating ability is substantially enhanced when the electron donor is attached to the heterocyclic aromatic rings. Interposing five-membered auxiliary fragments between strong donor (polyanion) or acceptor (-NO(2)) groups results in a large computed second-order NLO response. The present investigation provides important insight into the NLO properties of (heteroaromatic) imido-substituted hexamolybdate derivatives because these compounds

  16. Design of a Dual-Band Bidirectional Antenna Using Superellipse-Monopole-Fed Rectangular Ring for IEEE 802.11 a/b/g/n Applications

    Directory of Open Access Journals (Sweden)

    Ekajit Khoomwong

    2016-01-01

    Full Text Available This paper presents the design of a dual-band bidirectional ring antenna fed by a superellipse surface probe for 2.4/5 GHz WLAN applications. The Method of Moments (MoM with RWG basis function was utilized in the study and design processes. A prototype antenna was fabricated successfully with the advantages of simple and low-cost structure. The measured impedance bandwidth of 810 MHz (2.10–2.91 GHz and 2.39 GHz (3.57–5.96 GHz is achieved for the first and second band, respectively. The peak gains are also feasible, 4.67 dBi at 2.45 GHz and 7.83 dBi at 5.5 GHz, with bidirectional radiation patterns for both bands. From the experimental field tests, the proposed antenna was suitable for most applications in long and narrow communication sites in 2.4/5 GHz bands as desired. Also, the measured and calculated results were in good agreement.

  17. A muon storage ring for neutrino beams

    International Nuclear Information System (INIS)

    Lee, W.; Neuffer, D.

    1988-01-01

    A muon storage ring can provide electron and muon neutrino beams of precisely knowable flux. Constraints on muon collection and storage-ring design are discussed. Sample muon storage rings are presented and muon and neutrino intensities are estimated. Experimental use of the ν-beams, detector properties, and possible variations are described. Future directions for conceptual designs are outlined. 11 refs., 4 figs., 3 tabs

  18. VUV optical ring resonator for Duke storage ring free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H.; Litvinenko, V.N.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)] [and others

    1995-12-31

    The conceptual design of the multifaceted-mirror ring resonator for Duke storage ring VUV FEL is presented. The expected performance of the OK-4 FEL with ring resonator is described. We discuss in this paper our plans to study reflectivity of VUV mirrors and their resistivity to soft X-ray spontaneous radiation from OK-4 undulator.

  19. ASSOCIATIVE RINGS SOLVED AS LIE RINGS

    Directory of Open Access Journals (Sweden)

    M. B. Smirnov

    2011-01-01

    Full Text Available The paper has proved that an associative ring which is solvable of a n- class as a Lie ring has a nilpotent ideal of the nilpotent class not more than 3×10n–2  and a corresponding quotient ring satisfies an identity [[x1, x2, [x3, x4

  20. HIF research on the University of Maryland Electron Ring (UMER)

    International Nuclear Information System (INIS)

    Kishek, R.A.; Bernal, S.; Cui, Y.; Godlove, T.F.; Haber, I.; Harris, J.; Huo, Y.; Li, H.; O'Shea, P.G.; Quinn, B.; Reiser, M.; Walter, M.; Wilson, M.; Zou, Y.

    2005-01-01

    The understanding of collective interactions of particles in an intense beam by means of long-range forces is crucial for the successful development of heavy ion inertial fusion. Designs for heavy ion fusion drivers call for beam brightness and intensity surpassing traditional limits. Collective effects such as halo formation and emittance growth impose stringent limits on the driver and can raise the costs of the machine. The University of Maryland Electron Ring (UMER), currently near completion, is designed to be a scaled model (3.6-m diameter) for exploring the dynamics of such intense beams. The ring configuration permits the investigation of dispersion and other effects that would occur in bends and a recirculator machine, in addition to those occurring in a straight lattice. Using a 10 keV electron beam, other parameters are scaled to mimic those of much larger ion accelerators, except at much lower cost. An adjustable current in the 0.1-100 mA range provides a range of intensities unprecedented for a circular machine. By design, UMER provides a low-cost, well-diagnosed research platform for driver physics, and for beam physics in general. UMER is augmented with a separate setup, the Long Solenoid Experiment (LSE), for investigating the longitudinal beam dynamics and the evolution of energy spread due to Coulomb collisions in a straight geometry

  1. The 8-GeV transfer line injection into main ring

    International Nuclear Information System (INIS)

    Yang, M.J.

    1995-06-01

    Included in this report are a brief review of the design lattice of the 8-GeV beam transfer line and the Main Ring, the recent measurements on the 8-GeV line lattice function as well as that of the Main Ring at 8-GeV. The injection matching is a very important part of the MR operation. Mismatches such as energy, timing, or position are easily corrected because they cause oscillations which are visible on the Turn-By-Turn (TBT) TV monitor display. Mis-matches due to beta and dispersion functions are detected only by using the Flying Wire or by doing measurements during beam study. A new method which makes use of the available data from TBT hardware was used to obtain the beam phase space ellipse. Data taken from Main Ring at injection gives the beta function needed for transfer matching from 8-GeV line. The result of this measurement is also presented here

  2. Nuclear lattice simulations

    Directory of Open Access Journals (Sweden)

    Epelbaum E.

    2010-04-01

    Full Text Available We review recent progress on nuclear lattice simulations using chiral effective field theory. We discuss lattice results for dilute neutron matter at next-to-leading order, three-body forces at next-to-next-toleading order, isospin-breaking and Coulomb effects, and the binding energy of light nuclei.

  3. Lattice Higgs models

    International Nuclear Information System (INIS)

    Jersak, J.

    1986-01-01

    This year has brought a sudden interest in lattice Higgs models. After five years of only modest activity we now have many new results obtained both by analytic and Monte Carlo methods. This talk is a review of the present state of lattice Higgs models with particular emphasis on the recent development

  4. Prototype moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1982-01-01

    We have completed a design of the Prototype Moving-Ring Reactor. The fusion fuel is confined in current-carrying rings of magnetically-field-reversed plasma (Compact Toroids). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three burn stations. Separator coils and a slight axial guide field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for 1/3 of the total burn time at each station. D-T- 3 He ice pellets refuel the rings at a rate which maintains constant radiated power

  5. Status of the Fermilab lattice supercomputer project

    International Nuclear Information System (INIS)

    Mackenzie, P.; Eichten, E.; Hockney, G.

    1988-10-01

    Fermilab has completed construction of a sixteen node (320 megaflop peak speed) parallel computer for lattice gauge theory calculations. The architecture was designed to provide the highest possible cost effectiveness while maintaining a high level of programmability and constraining as little as possible the types of lattice problems which can be done on it. The machine is programmed in C. It is a prototype for a 256 node (5 gigaflop peak speed) computer which will be assembled this winter. 6 refs

  6. Electric dipole moment planning with a resurrected BNL Alternating Gradient Synchrotron electron analog ring

    Directory of Open Access Journals (Sweden)

    Richard M. Talman

    2015-07-01

    Full Text Available There has been much recent interest in directly measuring the electric dipole moments (EDM of the proton and the electron, because of their possible importance in the present day observed matter/antimatter imbalance in the Universe. Such a measurement will require storing a polarized beam of “frozen spin” particles, 15 MeV electrons or 230 MeV protons, in an all-electric storage ring. Only one such relativistic electric accelerator has ever been built—the 10 MeV “electron analog” ring at Brookhaven National Laboratory in 1954; it can also be referred to as the “AGS analog” ring to make clear it was a prototype for the Alternating Gradient Synchrotron (AGS proton ring under construction at that time at BNL. (Its purpose was to investigate nonlinear resonances as well as passage through “transition” with the newly invented alternating gradient proton ring design. By chance this electron ring, long since dismantled and its engineering drawings disappeared, would have been appropriate both for measuring the electron EDM and to serve as an inexpensive prototype for the arguably more promising, but 10 times more expensive, proton EDM measurement. Today it is cheaper yet to “resurrect” the electron analog ring by simulating its performance computationally. This is one purpose for the present paper. Most existing accelerator simulation codes cannot be used for this purpose because they implicitly assume magnetic bending. The new ual/eteapot code, described in detail in an accompanying paper, has been developed for modeling storage ring performance, including spin evolution, in electric rings. Illustrating its use, comparing its predictions with the old observations, and describing new expectations concerning spin evolution and code performance, are other goals of the paper. To set up some of these calculations has required a kind of “archeological physics” to reconstitute the detailed electron analog lattice design from a

  7. On singularities of lattice varieties

    OpenAIRE

    Mukherjee, Himadri

    2013-01-01

    Toric varieties associated with distributive lattices arise as a fibre of a flat degeneration of a Schubert variety in a minuscule. The singular locus of these varieties has been studied by various authors. In this article we prove that the number of diamonds incident on a lattice point $\\a$ in a product of chain lattices is more than or equal to the codimension of the lattice. Using this we also show that the lattice varieties associated with product of chain lattices is smooth.

  8. The Optical Design of the PEP-II Injection Beamlines

    CERN Document Server

    Fieguth, T

    1996-01-01

    The optical design of the PEP-II electron and positron Injection Beamlines is described. Use of the existing high power, low emittance beams available from the SLC damping rings require that pulsed extraction of 9.0 GeV electrons and 3.1 GeV positrons for injection into the PEP-II rings occur in the early sectors of the accelerator. More than 5 kilometers of new beam transport lines have been designed and are being constructed to bring these beams to their respective rings. The optical design maximizes the tolerance to errors especially to those contributing to beam size and position jitter. Secondly, the design minimizes costs by utilizing existing components or component designs and minimizing the number required. Here we discuss important attributes including choice of lattice, specification of error tolerances, including errors in construction, alignment, field errors, power supply stability, and orbit correction.

  9. The Optical Design of the PEP-II Injection Beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Fieguth, Ted

    2003-05-23

    The optical design of the PEP-II electron and positron Injection Beamlines is described. Use of the existing high power, low emittance beams available from the SLC damping rings require that pulsed extraction of 9.0 GeV electrons and 3.1 GeV positrons for injection into the PEP-II rings occur in the early sectors of the accelerator. More than 5 kilometers of new beam transport lines have been designed and are being constructed to bring these beams to their respective rings. The optical design maximizes the tolerance to errors especially to those contributing to beam size and position jitter. Secondly, the design minimizes costs by utilizing existing components or component designs and minimizing the number required. Here we discuss important attributes including choice of lattice, specification of error tolerances, including errors in construction, alignment, field errors, power supply stability, and orbit correction.

  10. Transitionless lattices for LAMPF II

    International Nuclear Information System (INIS)

    Franczak, B.J.

    1984-10-01

    Some techniques are described for the design of synchrotron lattices that have zero dispersion in the straight sections and/or imaginary transition energy (negative momentum-compaction factor) but no excessive amplitudes of the dispersion function. Included as an application is a single-stage synchrotron, with variable optics, that has different ion-optical properties at injection and extraction but requires a complex way of programming the quadrupoles. In addition, a two-stage facility consisting of a 45-GeV synchrotron of 1100-m circumference and a 9-GeV booster of half that size is presented. As alternates to these separated-function lattices, some combined-function modules are given that can be used to construct a synchrotron with similar properties

  11. Computational logic with square rings of nanomagnets

    Science.gov (United States)

    Arava, Hanu; Derlet, Peter M.; Vijayakumar, Jaianth; Cui, Jizhai; Bingham, Nicholas S.; Kleibert, Armin; Heyderman, Laura J.

    2018-06-01

    Nanomagnets are a promising low-power alternative to traditional computing. However, the successful implementation of nanomagnets in logic gates has been hindered so far by a lack of reliability. Here, we present a novel design with dipolar-coupled nanomagnets arranged on a square lattice to (i) support transfer of information and (ii) perform logic operations. We introduce a thermal protocol, using thermally active nanomagnets as a means to perform computation. Within this scheme, the nanomagnets are initialized by a global magnetic field and thermally relax on raising the temperature with a resistive heater. We demonstrate error-free transfer of information in chains of up to 19 square rings and we show a high level of reliability with successful gate operations of ∼94% across more than 2000 logic gates. Finally, we present a functionally complete prototype NAND/NOR logic gate that could be implemented for advanced logic operations. Here we support our experiments with simulations of the thermally averaged output and determine the optimal gate parameters. Our approach provides a new pathway to a long standing problem concerning reliability in the use of nanomagnets for computation.

  12. Alternative loop rings

    CERN Document Server

    Goodaire, EG; Polcino Milies, C

    1996-01-01

    For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri

  13. Proton storage rings

    International Nuclear Information System (INIS)

    Rau, R.R.

    1978-04-01

    A discussion is given of proton storage ring beam dynamic characteristics. Topics considered include: (1) beam energy; (2) beam luminosity; (3) limits on beam current; (4) beam site; (5) crossing angle; (6) beam--beam interaction; (7) longitudinal instability; (8) effects of scattering processes; (9) beam production; and (10) high magnetic fields. Much of the discussion is related to the design parameters of ISABELLE, a 400 x 400 GeV proton---proton intersecting storage accelerator to be built at Brookhaven National Laboratory

  14. Report of the eRHIC Ring-Ring Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer, E. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brennan, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palmer, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Parker, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Peggs, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Willeke, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-10-13

    This report evaluates the ring-ring option for eRHIC as a lower risk alternative to the linac-ring option. The reduced risk goes along with a reduced initial luminosity performance. However, a luminosity upgrade path is kept open. This upgrade path consists of two branches, with the ultimate upgrade being either a ring-ring or a linac-ring scheme. The linac-ring upgrade could be almost identical to the proposed linac-ring scheme, which is based on an ERL in the RHIC tunnel. This linac-ring version has been studied in great detail over the past ten years, and its significant risks are known. On the other hand, no detailed work on an ultimate performance ring-ring scenario has been performed yet, other than the development of a consistent parameter set. Pursuing the ring-ring upgrade path introduces high risks and requires significant design work that is beyond the scope of this report.

  15. Collins' bypass for the main ring

    International Nuclear Information System (INIS)

    Ohnuma, S.

    1982-01-01

    Design of the bypass for the main ring at Fermilab is discussed. Specific design features discussed include space, path length, geometric closure, matching of betatron functions, and external dispersion. Bypass parameters are given

  16. Isomorphism Theorem on Vector Spaces over a Ring

    Directory of Open Access Journals (Sweden)

    Futa Yuichi

    2017-10-01

    Full Text Available In this article, we formalize in the Mizar system [1, 4] some properties of vector spaces over a ring. We formally prove the first isomorphism theorem of vector spaces over a ring. We also formalize the product space of vector spaces. ℤ-modules are useful for lattice problems such as LLL (Lenstra, Lenstra and Lovász [5] base reduction algorithm and cryptographic systems [6, 2].

  17. Topology optimization and lattice Boltzmann methods

    DEFF Research Database (Denmark)

    Nørgaard, Sebastian Arlund

    This thesis demonstrates the application of the lattice Boltzmann method for topology optimization problems. Specifically, the focus is on problems in which time-dependent flow dynamics have significant impact on the performance of the devices to be optimized. The thesis introduces new topology...... a discrete adjoint approach. To handle the complexity of the discrete adjoint approach more easily, a method for computing it based on automatic differentiation is introduced, which can be adapted to any lattice Boltzmann type method. For example, while it is derived in the context of an isothermal lattice...... Boltzmann model, it is shown that the method can be easily extended to a thermal model as well. Finally, the predicted behavior of an optimized design is compared to the equiva-lent prediction from a commercial finite element solver. It is found that the weakly compressible nature of the lattice Boltzmann...

  18. MEETING: Lattice 88

    International Nuclear Information System (INIS)

    Mackenzie, Paul

    1989-01-01

    The forty-year dream of understanding the properties of the strongly interacting particles from first principles is now approaching reality. Quantum chromodynamics (QCD - the field theory of the quark and gluon constituents of strongly interacting particles) was initially handicapped by the severe limitations of the conventional (perturbation) approach in this picture, but Ken Wilson's inventions of lattice gauge theory and renormalization group methods opened new doors, making calculations of masses and other particle properties possible. Lattice gauge theory became a major industry around 1980, when Monte Carlo methods were introduced, and the first prototype calculations yielded qualitatively reasonable results. The promising developments over the past year were highlighted at the 1988 Symposium on Lattice Field Theory - Lattice 88 - held at Fermilab

  19. Angles in hyperbolic lattices

    DEFF Research Database (Denmark)

    Risager, Morten S.; Södergren, Carl Anders

    2017-01-01

    It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior of the den......It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior...... of the density function in both the small and large variable limits. This extends earlier results by Boca, Pasol, Popa and Zaharescu and Kelmer and Kontorovich in dimension 2 to general dimension n . Our proofs use the decay of matrix coefficients together with a number of careful estimates, and lead...

  20. Reactor lattice codes

    International Nuclear Information System (INIS)

    Kulikowska, T.

    1999-01-01

    The present lecture has a main goal to show how the transport lattice calculations are realised in a standard computer code. This is illustrated on the example of the WIMSD code, belonging to the most popular tools for reactor calculations. Most of the approaches discussed here can be easily modified to any other lattice code. The description of the code assumes the basic knowledge of reactor lattice, on the level given in the lecture on 'Reactor lattice transport calculations'. For more advanced explanation of the WIMSD code the reader is directed to the detailed descriptions of the code cited in References. The discussion of the methods and models included in the code is followed by the generally used homogenisation procedure and several numerical examples of discrepancies in calculated multiplication factors based on different sources of library data. (author)

  1. MEETING: Lattice 88

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, Paul

    1989-03-15

    The forty-year dream of understanding the properties of the strongly interacting particles from first principles is now approaching reality. Quantum chromodynamics (QCD - the field theory of the quark and gluon constituents of strongly interacting particles) was initially handicapped by the severe limitations of the conventional (perturbation) approach in this picture, but Ken Wilson's inventions of lattice gauge theory and renormalization group methods opened new doors, making calculations of masses and other particle properties possible. Lattice gauge theory became a major industry around 1980, when Monte Carlo methods were introduced, and the first prototype calculations yielded qualitatively reasonable results. The promising developments over the past year were highlighted at the 1988 Symposium on Lattice Field Theory - Lattice 88 - held at Fermilab.

  2. Computers for Lattice QCD

    International Nuclear Information System (INIS)

    Christ, Norman H

    2000-01-01

    The architecture and capabilities of the computers currently in use for large-scale lattice QCD calculations are described and compared. Based on this present experience, possible future directions are discussed

  3. Reactor lattice codes

    International Nuclear Information System (INIS)

    Kulikowska, T.

    2001-01-01

    The description of reactor lattice codes is carried out on the example of the WIMSD-5B code. The WIMS code in its various version is the most recognised lattice code. It is used in all parts of the world for calculations of research and power reactors. The version WIMSD-5B is distributed free of charge by NEA Data Bank. The description of its main features given in the present lecture follows the aspects defined previously for lattice calculations in the lecture on Reactor Lattice Transport Calculations. The spatial models are described, and the approach to the energy treatment is given. Finally the specific algorithm applied in fuel depletion calculations is outlined. (author)

  4. Lattice topological field theory on nonorientable surfaces

    International Nuclear Information System (INIS)

    Karimipour, V.; Mostafazadeh, A.

    1997-01-01

    The lattice definition of the two-dimensional topological quantum field theory [Fukuma et al., Commun. Math. Phys. 161, 157 (1994)] is generalized to arbitrary (not necessarily orientable) compact surfaces. It is shown that there is a one-to-one correspondence between real associative *-algebras and the topological state sum invariants defined on such surfaces. The partition and n-point functions on all two-dimensional surfaces (connected sums of the Klein bottle or projective plane and g-tori) are defined and computed for arbitrary *-algebras in general, and for the group ring A=R[G] of discrete groups G, in particular. copyright 1997 American Institute of Physics

  5. Lattice gauge theories

    International Nuclear Information System (INIS)

    Petronzio, R.

    1992-01-01

    Lattice gauge theories are about fifteen years old and I will report on the present status of the field without making the elementary introduction that can be found in the proceedings of the last two conferences. The talk covers briefly the following subjects: the determination of α s , the status of spectroscopy, heavy quark physics and in particular the calculation of their hadronic weak matrix elements, high temperature QCD, non perturbative Higgs bounds, chiral theories on the lattice and induced theories

  6. Permutohedral Lattice CNNs

    OpenAIRE

    Kiefel, Martin; Jampani, Varun; Gehler, Peter V.

    2014-01-01

    This paper presents a convolutional layer that is able to process sparse input features. As an example, for image recognition problems this allows an efficient filtering of signals that do not lie on a dense grid (like pixel position), but of more general features (such as color values). The presented algorithm makes use of the permutohedral lattice data structure. The permutohedral lattice was introduced to efficiently implement a bilateral filter, a commonly used image processing operation....

  7. Additive lattice kirigami.

    Science.gov (United States)

    Castle, Toen; Sussman, Daniel M; Tanis, Michael; Kamien, Randall D

    2016-09-01

    Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes.

  8. Flexible ring seal

    International Nuclear Information System (INIS)

    Abbes, Claude; Gournier, Andre; Rouaud, Christian; Villepoix, Raymond de.

    1976-01-01

    The invention concerns a flexible metal ring seal, able to ensure a perfect seal between two bearings due to the crushing and elastic deformation properties akin to similar properties in elastomers. Various designs of seal of this kind are already known, particularly a seal made of a core formed by a helical wire spring with close-wound turns and with high axial compression ratio, closed on itself and having the shape of an annulus. This wire ring is surrounded by at least one envelope having at rest the shape of a toroidal surface of which the generating circle does not close on itself. In a particular design mode, the seal in question can include, around the internal spring, two envelopes of which one in contact with the spring is composed of a low ductility elastic metal, such as mild steel or stainless steel and the other is, on the contrary, made of a malleable metal, such as copper or nickel. The first envelope evenly distributes the partial crushing of the spring, when the seal is tightened, on the second envelope which closely fits the two surfaces between which the seal operates. The stress-crushing curve characteristic of the seal comprises two separate parts, the first with a relatively sharp slope corresponds to the start of the seal compression phase, enabling at least some of these curves to reach the requisite seal threshold very quickly, then, beyond this, a second part, practically flat, where the stress is appreciably constant for a wide operating bracket [fr

  9. Lattice regularized chiral perturbation theory

    International Nuclear Information System (INIS)

    Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.

    2004-01-01

    Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term

  10. Vortex lattices in layered superconductors

    International Nuclear Information System (INIS)

    Prokic, V.; Davidovic, D.; Dobrosavljevic-Grujic, L.

    1995-01-01

    We study vortex lattices in a superconductor--normal-metal superlattice in a parallel magnetic field. Distorted lattices, resulting from the shear deformations along the layers, are found to be unstable. Under field variation, nonequilibrium configurations undergo an infinite sequence of continuous transitions, typical for soft lattices. The equilibrium vortex arrangement is always a lattice of isocell triangles, without shear

  11. Natural uranium lattice in heavy water

    International Nuclear Information System (INIS)

    Girard, Y.; Koechlin, J.C.; Moreau, J.; Naudet, R.

    1959-01-01

    A group of Laplacian determinations have been made under critical running conditions in a heavy water pile specially constructed to this end using either complete lattices or samples of lattices employing a two-zone method. The experimental equipment is briefly described: it has been devised to allow rapid modifications of the charge. The methods of measurement employed are also summarily described one operates either by flux charts in the case of lattices which are then used as references, or by progressive replacement of the bars by concentric rings and measurements of the reactivity. In this case, one attempts to obtain the difference between the material laplacian of the central unknown lattice and that of the reference lattice. The method has been specially develop ped to give precision. Results of Laplacian measurements for all these lattice types are presented, allowing the construction of a set of curves as a function of the separation. Various other effects have also been measured: the equivalent reactivity of a mm of water - anisotropy - temperature effect, etc. However in this first attack on the problem, the measurement of a large variety of Laplacian has been carried out, rather than careful measurements in particular cases. It is in this spirit that the interpretation of the results has been made. As a large number of very complex phenomena still escape the possibilities of the calculation, it is considered that a certain number of adjustments are necessary; now these can only give the desired efficiency in forecasting results if they refer to a sufficiently great number of experimental data. It is necessary then to connect the measurements closely on with the other whilst, at the same time, subdividing them according to logically deduced formulae. The principal source of trouble has been that of coherence. The rules governing the calculations employed in the interpretation of the data are given. In the first instance simple formula are used: first of

  12. Introduction to Vortex Lattice Theory

    Directory of Open Access Journals (Sweden)

    Santiago Pinzón

    2015-10-01

    Full Text Available Panel methods have been widely used in industry and are well established since the 1970s for aerodynamic analysis and computation. The Vortex Lattice Panel Method presented in this study comes across a sophisticated method that provides a quick solution time, allows rapid changes in geometry and suits well for aerodynamic analysis. The aerospace industry is highly competitive in design efficiency, and perhaps one of the most important factors on airplane design and engineering today is multidisciplinary optimization.  Any cost reduction method in the design cycle of a product becomes vital in the success of its outcome. The subsequent sections of this article will further explain in depth the theory behind the vortex lattice method, and the reason behind its selection as the method for aerodynamic analysis during preliminary design work and computation within the aerospace industry. This article is analytic in nature, and its main objective is to present a mathematical summary of this widely used computational method in aerodynamics.

  13. Development of design technology on thermal-hydraulic performance in tight-lattice rod bundles. II-rod bowing effect on boiling transition

    International Nuclear Information System (INIS)

    Liu, Wei; Tamai, Hidesada; Kureta, Masatoshi; Ohnuki, Akira; Takase, Kazuyuki; Akimoto, Hajime

    2007-01-01

    A thermal-hydraulic feasibility project for an Innovative Water Reactor for Flexible fuel cycle (FLWR) has been performed since 2002. In this R and D project, large-scale thermal-hydraulic tests, several model experiments and development of advanced numerical analysis codes have been carried out. In this paper, we will describe the critical power characteristics in a 37-rod tight-lattice bundle with rod-bowing under both steady and transient states. It is observed that no matter it is run under a steady or a transient state, boiling transition (BT) always occurs axially at exit elevation of upper high-heat-flux region and transversely in the central area of the bundle. Steady critical power increases monotonically with the increase of mass velocity, with the decrease of inlet water temperature and with the decrease of exit pressure. These trends are same as those in the base case test without rod-bowing. The steady critical power with rod-bowing is about 10% lower than that without rod-bowing. For the postulated power increase and flow decrease cases that may be possibly met in a normal operation of the FLWR, it is confirmed that no BT occurs when Initial Critical Power Ratio (ICPR) is 1.3. Moreover, when the transitions are run under severer ICPR that causes BT, the transient critical powers are generally same as the steady ones. The experiments are analyzed with TRAC-BF1 code. The TRAC-BF1 code shows good prediction for the occurrence or the non occurrence of the BT and predicts the BT starting time within the accuracy of critical power correlation. Traditional quasi - steady state prediction of the transient BT is confirmed being applicable for the postulated abnormal transient processes in the tight lattice bundle with rod - bowing. (author)

  14. Rings in drugs.

    Science.gov (United States)

    Taylor, Richard D; MacCoss, Malcolm; Lawson, Alastair D G

    2014-07-24

    We have analyzed the rings, ring systems, and frameworks in drugs listed in the FDA Orange Book to understand the frequency, timelines, molecular property space, and the application of these rings in different therapeutic areas and target classes. This analysis shows that there are only 351 ring systems and 1197 frameworks in drugs that came onto the market before 2013. Furthermore, on average six new ring systems enter drug space each year and approximately 28% of new drugs contain a new ring system. Moreover, it is very unusual for a drug to contain more than one new ring system and the majority of the most frequently used ring systems (83%) were first used in drugs developed prior to 1983. These observations give insight into the chemical novelty of drugs and potentially efficient ways to assess compound libraries and develop compounds from hit identification to lead optimization and beyond.

  15. Birth Control Ring

    Science.gov (United States)

    ... Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Birth Control Ring KidsHealth / For Teens / Birth Control Ring What's ...

  16. The Cryogenic Storage Ring CSR

    OpenAIRE

    von Hahn, Robert; Becker, Arno; Berg, Felix; Blaum, Klaus; Breitenfeldt, Christian; Fadil, Hisham; Fellenberger, Florian; Froese, Michael; George, Sebastian; Göck, Jürgen; Grieser, Manfred; Grussie, Florian; Guerin, Elisabeth A.; Heber, Oded; Herwig, Philipp

    2016-01-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion a...

  17. Groups, rings, modules

    CERN Document Server

    Auslander, Maurice

    2014-01-01

    This classic monograph is geared toward advanced undergraduates and graduate students. The treatment presupposes some familiarity with sets, groups, rings, and vector spaces. The four-part approach begins with examinations of sets and maps, monoids and groups, categories, and rings. The second part explores unique factorization domains, general module theory, semisimple rings and modules, and Artinian rings. Part three's topics include localization and tensor products, principal ideal domains, and applications of fundamental theorem. The fourth and final part covers algebraic field extensions

  18. Workshop on performance optimization of synchrotron radiation storage rings

    International Nuclear Information System (INIS)

    Decker, G.

    1995-01-01

    The purpose of this workshop was to provide a forum, with user participation, for accelerator physicists the synchrotron light source field to discuss current and planned state-of-the-art techniques storage ring performance. The scope of the workshop focused on two areas: lattice characterization and measurement, and fundamental limitations on low frequency beam stability

  19. Lower Emittance Lattice for the Advanced Photon Source Upgrade Using Reverse Bending Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Borland, M.; Berenc, T.; Sun, Y.; Sajaev, V.

    2017-06-01

    The Advanced Photon Source (APS) is pursuing an upgrade to the storage ring to a hybrid seven-bend-achromat design [1]. The nominal design provides a natural emittance of 67 pm [2]. By adding reverse dipole fields to several quadrupoles [3, 4] we can reduce the natural emittance to 41 pm while simultaneously providing more optimal beta functions in the insertion devices and increasing the dispersion function at the chromaticity sextupole magnets. The improved emittance results from a combination of increased energy loss per turn and a change in the damping partition. At the same time, the nonlinear dynamics performance is very similar, thanks in part to increased dispersion in the sextupoles. This paper describes the properties, optimization, and performance of the new lattice.

  20. Proton storage ring summer workshop

    International Nuclear Information System (INIS)

    Lawrence, G.P.; Cooper, R.K.

    1977-10-01

    During the week of August 16, 1976 a Workshop was held at the Los Alamos Scientific Laboratory (LASL) on the Proton Storage Ring (PSR) for the Weapons Neutron Research Facility (WNRF). Written contributions were solicited from each of the participants in the Workshop, and the contributions that were received are presented. The papers do not represent polished or necessarily complete work, but rather represent ''first cuts'' at their respective areas. Topics covered include: (1) background information on the storage ring; (2) WNRF design; (3) rf transient during filling; (4) rf capture; (5) beam bunch compression; (6) transverse space charge limits; (7) transverse resistive instability in the PSR; (8) longitudinal resistive instability; (9) synchrotron frequency splitting; (10) E Quintus Unum--off resonance; (11) first harmonic bunching in the storage ring; (12) kicker considerations; (13) beam extraction; (14) ferrite kicker magnets; and (15) E Quintus Unum: a possible ejection scheme

  1. New Main Ring control system

    International Nuclear Information System (INIS)

    Seino, K.; Anderson, L.; Ducar, R.; Franck, A.; Gomilar, J.; Hendricks, B.; Smedinghoff, J.

    1990-03-01

    The Fermilab Main Ring control system has been operational for over sixteen years. Aging and obsolescence of the equipment make the maintenance difficult. Since the advent of the Tevatron, considerable upgrades have been made to the controls of all the Fermilab accelerators except the Main Ring. Modernization of the equipment and standardization of the hardware and software have thus become inevitable. The Tevatron CAMAC serial system has been chosen as a basic foundation in order to make the Main Ring control system compatible with the rest of the accelerator complex. New hardware pieces including intelligent CAMAC modules have been designed to satisfy unique requirements. Fiber optic cable and repeaters have been installed in order to accommodate new channel requirements onto the already saturated communication medium system. 8 refs., 2 figs

  2. Dynamical lattice theory

    International Nuclear Information System (INIS)

    Chodos, A.

    1978-01-01

    A version of lattice gauge theory is presented in which the shape of the lattice is not assumed at the outset but is a consequence of the dynamics. Other related features which are not specified a priori include the internal and space-time symmetry groups and the dimensionality of space-time. The theory possesses a much larger invariance group than the usual gauge group on a lattice, and has associated with it an integer k 0 analogous to the topological quantum numer of quantum chromodynamics. Families of semiclassical solutions are found which are labeled by k 0 and a second integer x, but the analysis is not carried far enough to determine which space-time and internal symmetry groups characterize the lowest-lying states of the theory

  3. Graphene antidot lattice waveguides

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Gunst, Tue; Markussen, Troels

    2012-01-01

    We introduce graphene antidot lattice waveguides: nanostructured graphene where a region of pristine graphene is sandwiched between regions of graphene antidot lattices. The band gaps in the surrounding antidot lattices enable localized states to emerge in the central waveguide region. We model...... the waveguides via a position-dependent mass term in the Dirac approximation of graphene and arrive at analytical results for the dispersion relation and spinor eigenstates of the localized waveguide modes. To include atomistic details we also use a tight-binding model, which is in excellent agreement...... with the analytical results. The waveguides resemble graphene nanoribbons, but without the particular properties of ribbons that emerge due to the details of the edge. We show that electrons can be guided through kinks without additional resistance and that transport through the waveguides is robust against...

  4. Ring-testing and field-validation of a terrestrial model ecosystem TME) - An instrument for testing potentially harmful substances: conceptual approach and study design.

    NARCIS (Netherlands)

    Knacker, T.; van Gestel, C.A.M.; Jones, S.E.; Soares, A.M.V.M.; Schallnass, H.-J.; Förster, B.; Edwards, C.A.

    2004-01-01

    During spring and summer 1999 a ring-test and field-validation study with an open, intact Terrestrial Model Ecosystem (TME) was conducted at four different European sites (Amsterdam, The Netherlands; Bangor, U.K.; Coimbra, Portugal; Flörsheim, Germany). The objective of the study was to establish a

  5. Exact Lattice Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Catterall, Simon; Kaplan, David B.; Unsal, Mithat

    2009-03-31

    We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.

  6. Several loadings and stresses of first wall of SiC with metal liner on conceptual design of moving ring reactor 'KARIN-1'

    International Nuclear Information System (INIS)

    Nishikawa, Masahiro; Tachibana, Eizaburo; Watanabe, Kenji; Fujiie, Yoichi.

    1983-01-01

    On conceptual design of moving ring reactor ''KARIN-I'' (Output: 1850 MWe), the first wall of SiC with metal liner is considered by reason that SiC ceramics has specific features of excellent radiation damage resistance in fast neutron spectra and a very low residual radioactivity, and that the thin metal liner has good compatibility with liquid lithium and good vaccum-tight, however, a extent electromagnetic interaction. The electromagnetic force applied on the metal liner and several pressure losses of liquid lithum flow are estimated, and these forces correspond to the fluid mechanical loading on SiC first wall. Thermal loading by neutron flux is calculated on the first wall to obtain temperature distributions along the flow direction and toward the wall thickness. At the outlet of the burning section, the surface temperature of SiC rises to the value of 825 0 C on plasma side and on the metal liner, it rises to the value of 540 0 C. Finally, the stress analysis is performed. The thermal stress is about one order larger than the stress induced by the fluid mechanical loading. At the inlet of the burning section, the average tensile stress of 22.4kg/mm 2 is induced on the outer side of SiC wall, and on the inner side, the average compressive stress of -26.1kg/mm 2 is induced. At the outlet of the burning section, the tensile stress is found to oscillate between 25.5kg/mm 2 and 27.3kg/mm 2 on the outer side of SiC wall by frequency of 1 Hz, and on the inner side, the compressive stress also oscillates between -21.6kg/mm 2 and -29.0kg/mm 2 by the same frequency. These stresses are within the value of fracture stress, (72.5kg/mm 2 ). Difficult residual problems on the first wall are also discussed. (author)

  7. Galactic rings revisited - I. CVRHS classifications of 3962 ringed galaxies from the Galaxy Zoo 2 Database

    Science.gov (United States)

    Buta, Ronald J.

    2017-11-01

    Rings are important and characteristic features of disc-shaped galaxies. This paper is the first in a series that re-visits galactic rings with the goals of further understanding the nature of the features and for examining their role in the secular evolution of galaxy structure. The series begins with a new sample of 3962 galaxies drawn from the Galaxy Zoo 2 citizen science data base, selected because zoo volunteers recognized a ring-shaped pattern in the morphology as seen in Sloan Digital Sky Survey colour images. The galaxies are classified within the framework of the Comprehensive de Vaucouleurs revised Hubble-Sandage system. It is found that zoo volunteers cued on the same kinds of ring-like features that were recognized in the 1995 Catalogue of Southern Ringed Galaxies. This paper presents the full catalogue of morphological classifications, comparisons with other sources of classifications and some histograms designed mainly to highlight the content of the catalogue. The advantages of the sample are its large size and the generally good quality of the images; the main disadvantage is the low physical resolution that limits the detectability of linearly small rings such as nuclear rings. The catalogue includes mainly inner and outer disc rings and lenses. Cataclysmic (`encounter-driven') rings (such as ring and polar ring galaxies) are recognized in less than 1 per cent of the sample.

  8. Longitudinal Single-Bunch Instability in the ILC Damping Rings: Estimate of Current Threshold

    International Nuclear Information System (INIS)

    Venturini, Marco; Venturini, Marco

    2008-01-01

    Characterization of single-bunch instabilities in the International Linear Collider (ILC) damping rings (DRs) has been indicated as a high-priority activity toward completion of an engineering design. In this paper we report on a first estimate of the current thresholds for the instability using numerical and analytical models of the wake potentials associated with the various machine components. The numerical models were derived (upon appropriate scaling) from designs of the corresponding components installed in existing machines. The current thresholds for instabilities were determined by numerical solution of the Vlasov equation for the longitudinal dynamics. For the DR baseline lattice as of Feb. 2007 we find the critical current for instability to be safely above the design specifications leaving room for further optimization of the choice of the momentum compaction

  9. Polarization Insensitivity in Double-Split Ring and Triple-Split Ring Terahertz Resonators

    International Nuclear Information System (INIS)

    Wu Qian-Nan; Lan Feng; Tang Xiao-Pin; Yang Zi-Qiang

    2015-01-01

    A modified double-split ring resonator and a modified triple-split ring resonator, which offer polarization-insensitive performance, are investigated, designed and fabricated. By displacing the two gaps of the conventional double-split ring resonator away from the center, the second resonant frequency for the 0° polarized wave and the resonant frequency for the 90° polarized wave become increasingly close to each other until they are finally identical. Theoretical and experimental results show that the modified double-split ring resonator and the modified triple-split ring resonator are insensitive to different polarized waves and show strong resonant frequency dips near 433 and 444 GHz, respectively. The results of this work suggest new opportunities for the investigation and design of polarization-dependent terahertz devices based on split ring resonators. (paper)

  10. Multilayer DNA Origami Packed on Hexagonal and Hybrid Lattices

    DEFF Research Database (Denmark)

    Ke, Yonggang; Voigt, Niels Vinther; Shih, William M.

    2012-01-01

    “Scaffolded DNA origami” has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry....... Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer...... DNA origami with honeycomb-lattice, square-lattice, and hexagonal-lattice packing of helices all in one design. The availability of hexagonal close-packing of helices extends our ability to build complex structures using DNA nanotechnology....

  11. Multilayer DNA origami packed on hexagonal and hybrid lattices.

    Science.gov (United States)

    Ke, Yonggang; Voigt, Niels V; Gothelf, Kurt V; Shih, William M

    2012-01-25

    "Scaffolded DNA origami" has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry. Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer DNA origami with honeycomb-lattice, square-lattice, and hexagonal-lattice packing of helices all in one design. The availability of hexagonal close-packing of helices extends our ability to build complex structures using DNA nanotechnology. © 2011 American Chemical Society

  12. Ring cavity for a Raman capillary waveguide amplifier

    Science.gov (United States)

    Kurnit, N.A.

    1981-01-27

    A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.

  13. Ring cavity for a Raman capillary waveguide amplifir

    Science.gov (United States)

    Kurnit, N.A.

    1981-01-27

    A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.

  14. Studies on beam extraction from the 1 GeV proton accumulator ring

    International Nuclear Information System (INIS)

    Goyal, Pradeep Kumar; Sharma, Amalendu; Kumar, Vinit; Ghodke, A.D.

    2015-01-01

    For the proposed Indian Spallation Neutron Source (ISNS), a 1 GeV proton Accumulator Ring (AR) is presently being designed at RRCAT. Two optics configurations of AR, namely FODO and Hybrid lattices are under consideration. Each lattice configuration has four superperiods. In this paper, preliminary studies on beam extraction from AR are presented for both the optics configurations. The extraction system will be accommodated in one of the long dispersion free straight sections. Bunch length of the proton beam in AR is 700 ns, and the revolution time of the bunch in AR is 1 ms. This leaves a gap of ∼300 ns for bunch extraction. The proton bunch will be extracted to Ring to Target Beam Transport (RTBT) line, with the help of fast kicker and septum magnets. In this paper, we present the details of the beam extraction scheme with suitable number of kicker magnets, and find out their optimal location and strength. Estimation of field error tolerances for kicker magnets is also presented. (author)

  15. Design of a 6 Tesla wiggler for the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Hsieh, H.; Krinsky, S.; Luccio, A.; van Steenbergen, A.

    1981-01-01

    A 6-pole, 6 Tesla wiggler with Nb-Ti superconducting windings has been designed, to be installed in a straight section of the 2.5 GeV x-ray storage ring of the NSLS. The technical problems of this magnet are discussed, in particular the optimization of the two-layer magnetic windings and the mechanical structure designed to counteract the strong magnetic forces. The effects of the insertion of the wiggler in the storage ring lattice are also studied

  16. Quarks, gluons and lattices

    International Nuclear Information System (INIS)

    Krojts, M.

    1987-01-01

    The book by the known american physicist-theoretist M.Kreuts represents the first monography in world literature, where a new perspective direction in elementary particle physics and quantum field theory - lattice formulation of gauge theories is stated systematically. Practically all main ideas of this direction are given. Material is stated in systematic and understandable form

  17. Phenomenology Using Lattice QCD

    Science.gov (United States)

    Gupta, R.

    2005-08-01

    This talk provides a brief summary of the status of lattice QCD calculations of the light quark masses and the kaon bag parameter BK. Precise estimates of these four fundamental parameters of the standard model, i.e., mu, md, ms and the CP violating parameter η, help constrain grand unified models and could provide a window to new physics.

  18. Baryons on the lattice

    International Nuclear Information System (INIS)

    Bali, G.S.

    2005-01-01

    I comment on progress of lattice QCD techniques and calculations. Recent results on pentaquark masses as well as of the spectrum of excited baryons are summarized and interpreted. The present state of calculations of quantities related to the nucleon structure and of electromagnetic transition form factors is surveyed

  19. Finite lattice extrapolation algorithms

    International Nuclear Information System (INIS)

    Henkel, M.; Schuetz, G.

    1987-08-01

    Two algorithms for sequence extrapolation, due to von den Broeck and Schwartz and Bulirsch and Stoer are reviewed and critically compared. Applications to three states and six states quantum chains and to the (2+1)D Ising model show that the algorithm of Bulirsch and Stoer is superior, in particular if only very few finite lattice data are available. (orig.)

  20. Lattice Multiverse Models

    OpenAIRE

    Williamson, S. Gill

    2010-01-01

    Will the cosmological multiverse, when described mathematically, have easily stated properties that are impossible to prove or disprove using mathematical physics? We explore this question by constructing lattice multiverses which exhibit such behavior even though they are much simpler mathematically than any likely cosmological multiverse.

  1. Quantum lattice problems

    NARCIS (Netherlands)

    de Raedt, Hans; von der Linden, W.; Binder, K

    1995-01-01

    In this chapter we review methods currently used to perform Monte Carlo calculations for quantum lattice models. A detailed exposition is given of the formalism underlying the construction of the simulation algorithms. We discuss the fundamental and technical difficulties that are encountered and

  2. Convex Lattice Polygons

    Science.gov (United States)

    Scott, Paul

    2006-01-01

    A "convex" polygon is one with no re-entrant angles. Alternatively one can use the standard convexity definition, asserting that for any two points of the convex polygon, the line segment joining them is contained completely within the polygon. In this article, the author provides a solution to a problem involving convex lattice polygons.

  3. The Storage Ring Proton EDM Experiment

    Science.gov (United States)

    Semertzidis, Yannis; Storage Ring Proton EDM Collaboration

    2014-09-01

    The storage ring pEDM experiment utilizes an all-electric storage ring to store ~1011 longitudinally polarized protons simultaneously in clock-wise and counter-clock-wise directions for 103 seconds. The radial E-field acts on the proton EDM for the duration of the storage time to precess its spin in the vertical plane. The ring lattice is optimized to reduce intra-beam scattering, increase the statistical sensitivity and reduce the systematic errors of the method. The main systematic error is a net radial B-field integrated around the ring causing an EDM-like vertical spin precession. The counter-rotating beams sense this integrated field and are vertically shifted by an amount, which depends on the strength of the vertical focusing in the ring, thus creating a radial B-field. Modulating the vertical focusing at 10 kHz makes possible the detection of this radial B-field by a SQUID-magnetometer (SQUID-based BPM). For a total number of n SQUID-based BPMs distributed around the ring the effectiveness of the method is limited to the N = n /2 harmonic of the background radial B-field due to the Nyquist sampling theorem limit. This limitation establishes the requirement to reduce the maximum radial B-field to 0.1-1 nT everywhere around the ring by layers of mu-metal and aluminum vacuum tube. The metho's sensitivity is 10-29 e .cm , more than three orders of magnitude better than the present neutron EDM experimental limit, making it sensitive to SUSY-like new physics mass scale up to 300 TeV.

  4. Origami lattices with free-form surface ornaments

    NARCIS (Netherlands)

    Janbaz, S.; Noordzij, N.; Widyaratih, Dwisetya Safirna; Hagen, C.W.; Fratila-Apachitei, E.L.; Zadpoor, A.A.

    2017-01-01

    Lattice structures are used in the design of metamaterials to achieve unusual physical, mechanical, or biological properties. The properties of such metamaterials result from the topology of the lattice structures, which are usually three-dimensionally (3D) printed. To incorporate advanced

  5. General properties of an asymmetric B-factory lattice

    International Nuclear Information System (INIS)

    Autin, B.

    1989-08-01

    The type of collider considered for the production of B mesons consists of two rings in which unequal energy beams circulate. Criteria based on the beam-beam interaction are formulated and it is shown that they are consistent with lattices in which the synchrotron radiation occurs in the bending magnets only. However, the requirements imposed on the low energy ring dipole field and RF power may require the addition of horizontal wigglers in zero dispersion sections to control the damping time and of vertical wigglers in finite dispersion regions to adjust the shape of the beam at the crossing point. 9 refs., 1 fig

  6. Unquenched lattice upsilon spectroscopy

    International Nuclear Information System (INIS)

    Marcantonio, L.M.

    2001-03-01

    A non-relativistic effective theory of QCD (NRQCD) is used in calculations of the upsilon spectrum. Simultaneous multi-correlation fitting routines are used to yield lattice channel energies and amplitudes. The lattice configurations used were both dynamical, with two flavours of sea quarks included in the action; and quenched, with no sea quarks. These configurations were generated by the UKQCD collaboration. The dynamical configurations used were ''matched'', having the same lattice spacing, but differing in the sea quark mass. Thus, it was possible to analyse trends of observables with sea quark mass, in the certainty that the trend isn't partially due to varying lattice spacing. The lattice spacing used for spectroscopy was derived from the lattice 1 1 P 1 - 1 3 S 1 splitting. On each set of configurations two lattice bare b quark masses were used, giving kinetic masses bracketing the physical Υ mass. The only quantity showing a strong dependence on these masses was the hyperfine splitting, so it was interpolated to the real Υ mass. The radial and orbital splittings gave good agreement with experiment. The hyperfine splitting results showed a clear signal for unquenching and the dynamical hyperfine splitting results were extrapolated to a physical sea quark mass. This result, combined with the quenched result yielded a value for the hyperfine splitting at n f = 3, predicting an η b mass of 9.517(4) GeV. The NRQCD technique for obtaining a value of the strong coupling constant in the M-barS-bar scheme was followed. Using quenched and dynamical results a value was extrapolated to n f = 3. Employing a three loop beta function to run the coupling, with suitable matching conditions at heavy quark thresholds, the final result was obtained for n f = 5 at a scale equal to the Z boson mass. This result was α(5)/MS(Mz)=0.110(4). Two methods for finding the mass of the b quark in the MS scheme were employed. The results of both methods agree within error but the

  7. Calibration of the nonlinear ring model at the Diamond Light Source

    Directory of Open Access Journals (Sweden)

    R. Bartolini

    2011-05-01

    Full Text Available Nonlinear beam dynamics plays a crucial role in defining the performance of a storage ring. The beam lifetime, the injection efficiency, and the dynamic and momentum apertures available to the beam are optimized during the design phase by a proper optimization of the linear lattice and of the distribution of sextupole families. The correct implementation of the design model, especially the nonlinear part, is a nontrivial accelerator physics task. Several parameters of the nonlinear dynamics can be used to compare the real machine with the model and eventually to correct the accelerator. Most of these parameters are extracted from the analysis of turn-by-turn data after the excitation of betatron oscillations of the particles in the ring. We present the experimental results of the campaign of measurements carried out at the Diamond storage ring to characterize the nonlinear beam dynamics. A combination of frequency map analysis with the detuning with momentum measurements has allowed for a precise calibration of the nonlinear model that can accurately reproduce the nonlinear beam dynamics in Diamond.

  8. Field distributions and particle optics in main bending dipoles of Oak Ridge Spallation Neutron Source accumulator ring

    International Nuclear Information System (INIS)

    Wang, J.G.

    2013-01-01

    The SNS accumulator ring employs 32 electro-magnetic dipoles to bend proton beams. The dipoles are typical sector magnets with relatively large aperture and short length. Thus, how to correctly treat magnetic fringe fields in the devices remains as a question. We have performed 3D computer simulations to study magnetic field distributions in the dipoles. Further, we have analyzed particle optics based on the space-dependent curvature and focusing functions in the magnets. The effect of magnetic fringe fields on the particle motion, especially the focusing/defocusing and dispersion, is investigated. The lens parameters, including the second-order aberrations, are derived and compared with the design hard-edge parameters used in the ring lattice calculations

  9. APS storage ring vacuum system performance

    International Nuclear Information System (INIS)

    Noonan, J.R.; Gagliano, J.; Goeppner, G.A.

    1997-01-01

    The Advanced Photon Source (APS) storage ring was designed to operated with 7-GeV, 100-mA positron beam with lifetimes > 20 hours. The lifetime is limited by residual gas scattering and Touschek scattering at this time. Photon-stimulated desorption and microwave power in the rf cavities are the main gas loads. Comparison of actual system gas loads and design calculations will be given. In addition, several special features of the storage ring vacuum system will be presented

  10. Design, synthesis and biological evaluation of novel ring-opened cromakalim analogues with relaxant effects on vascular and respiratory smooth muscles and as stimulators of elastin synthesis.

    Science.gov (United States)

    Bouhedja, Mourad; Peres, Basile; Fhayli, Wassim; Ghandour, Zeinab; Boumendjel, Ahcène; Faury, Gilles; Khelili, Smail

    2018-01-20

    Two new series of ring-opened analogues of cromakalim bearing sulfonylurea moieties (series A: with N-unmethylated sulfonylureas, series B: with N-methylated sulfonylureas) were synthesized and tested as relaxants of vascular and respiratory smooth muscles (rat aorta and trachea, respectively). Ex vivo biological evaluations indicated that the most active compounds, belonging to series B, displayed a marked vasorelaxant activity on endothelium-intact aortic rings and the trachea. A majority of series B compounds exhibited a higher vasorelaxant activity (EC 50  stronger relaxant effects on the trachea than the reference compound cromakalim (EC 50  = 124 μM), in particular compounds B4, B7 and B16 (EC 50   57 μM for all, and EC 50  > 200 μM for a majority of them), but some of them showed an interesting relaxing effect on trachea (i.e. A15 and A33, EC 50  = 30 μM). The most potent compounds of both series, i.e. A15, A33 and B16, tested on aortic rings in the presence of glibenclamide or 80 mM KCl, suggested that they acted as voltage-gated Ca 2+ channel blockers, like verapamil, instead of being ATP-potassium channel activators, as is cromakalim, the parent molecule. Further investigations on cultured vascular smooth muscle cells showed a strong stimulating effect on elastin synthesis, especially compound B16, which was more active at 20 μM than diazoxide, a reference ATP-sensitive potassium channel activator. Taken together, our results show that the N-methylation of the sulfonylurea moieties of ring-opened cromakalim analogues led to new compounds blocking calcium-gated channels, which had a major impact on the arterial and tracheal activities as well as selectivity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Superspace approach to lattice supersymmetry

    International Nuclear Information System (INIS)

    Kostelecky, V.A.; Rabin, J.M.

    1984-01-01

    We construct a cubic lattice of discrete points in superspace, as well as a discrete subgroup of the supersymmetry group which maps this ''superlattice'' into itself. We discuss the connection between this structure and previous versions of lattice supersymmetry. Our approach clarifies the mathematical problems of formulating supersymmetric lattice field theories and suggests new methods for attacking them

  12. Basis reduction for layered lattices

    NARCIS (Netherlands)

    Torreão Dassen, Erwin

    2011-01-01

    We develop the theory of layered Euclidean spaces and layered lattices. We present algorithms to compute both Gram-Schmidt and reduced bases in this generalized setting. A layered lattice can be seen as lattices where certain directions have infinite weight. It can also be

  13. An overview of lattice QCD

    International Nuclear Information System (INIS)

    Woloshyn, R.M.

    1988-03-01

    The basic concepts of the Lagrangian formulation of lattice field theory are discussed. The Wilson and staggered schemes for dealing with fermions on the lattice are described. Some recent results for hadron masses and vector and axial vector current matrix elements in lattice QCD are reviewed. (Author) (118 refs., 16 figs.)

  14. Basis reduction for layered lattices

    NARCIS (Netherlands)

    E.L. Torreão Dassen (Erwin)

    2011-01-01

    htmlabstractWe develop the theory of layered Euclidean spaces and layered lattices. With this new theory certain problems that usually are solved by using classical lattices with a "weighting" gain a new, more natural form. Using the layered lattice basis reduction algorithms introduced here these

  15. Storage ring development at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Krinsky, S.; Bittner, J.; Fauchet, A.M.; Johnson, E.D.; Keane, J.; Murphy, J.; Nawrocky, R.J.; Rogers, J.; Singh, O.V.; Yu, L.H.

    1991-09-01

    This report contains papers on the following topics: Transverse Beam Profile Monitor; Bunch Length Measurements in the VUV Storage Ring; Photoelectric Effect Photon Beam Position Monitors; RF Receivers for Processing Electron Beam Pick-up Electrode Signals; Real-Time Global Orbit Feedback Systems; Local Orbit Feedback; Active Interlock System for High Power Insertion Devices in the X-ray Ring; Bunch Lengthening Cavity for the VUV Ring; SXLS Storage Ring Design

  16. Characterization of heterocyclic rings through quantum chemical topology.

    Science.gov (United States)

    Griffiths, Mark Z; Popelier, Paul L A

    2013-07-22

    Five-membered rings are found in a myriad of molecules important in a wide range of areas such as catalysis, nutrition, and drug and agrochemical design. Systematic insight into their largely unexplored chemical space benefits from first principle calculations presented here. This study comprehensively investigates a grand total of 764 different rings, all geometry optimized at the B3LYP/6-311+G(2d,p) level, from the perspective of Quantum Chemical Topology (QCT). For the first time, a 3D space of local topological properties was introduced, in order to characterize rings compactly. This space is called RCP space, after the so-called ring critical point. This space is analogous to BCP space, named after the bond critical point, which compactly and successfully characterizes a chemical bond. The relative positions of the rings in RCP space are determined by the nature of the ring scaffold, such as the heteroatoms within the ring or the number of π-bonds. The summed atomic QCT charges of the five ring atoms revealed five features (number and type of heteroatom, number of π-bonds, substituent and substitution site) that dictate a ring's net charge. Each feature independently contributes toward a ring's net charge. Each substituent has its own distinct and systematic effect on the ring's net charge, irrespective of the ring scaffold. Therefore, this work proves the possibility of designing a ring with specific properties by fine-tuning it through manipulation of these five features.

  17. Single-Particle Quantum Dynamics in a Magnetic Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, Marco

    2001-02-01

    We study the quantum dynamics of a spinless charged-particle propagating through a magnetic lattice in a transport line or storage ring. Starting from the Klein-Gordon equation and by applying the paraxial approximation, we derive a Schroedinger-like equation for the betatron motion. A suitable unitary transformation reduces the problem to that of a simple harmonic oscillator. As a result we are able to find an explicit expression for the particle wavefunction.

  18. Vertex ring-indexed Lie algebras

    International Nuclear Information System (INIS)

    Fairlie, David; Zachos, Cosmas

    2005-01-01

    Infinite-dimensional Lie algebras are introduced, which are only partially graded, and are specified by indices lying on cyclotomic rings. They may be thought of as generalizations of the Onsager algebra, but unlike it, or its sl(n) generalizations, they are not subalgebras of the loop algebras associated with sl(n). In a particular interesting case associated with sl(3), their indices lie on the Eisenstein integer triangular lattice, and these algebras are expected to underlie vertex operator combinations in CFT, brane physics, and graphite monolayers

  19. Radioactive gold ring dermatitis

    International Nuclear Information System (INIS)

    Miller, R.A.; Aldrich, J.E.

    1990-01-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy

  20. From coffee ring to spherulites ring of poly(ethylene oxide) film from drying droplet

    Science.gov (United States)

    Hu, Yinchun; Zhang, Xuerong; Qiu, Maibo; Wei, Yan; Zhou, Qiong; Huang, Di

    2018-03-01

    We discuss how the "spherulites ring" morphology and "coffee ring" profile of PEO film formed by the drying droplet at glass substrate with different heating rate. Upon increasing the heating rate of substrate, it is found that deposited PEO film from drying droplet shows the unusually observed "coffee ring" profile and "spherulites ring" morphology. The main mechanism for this phenomenon is proposed to be an enhanced Marangoni convection which is induced by the increased solute concentration gradient and reduced viscous force above 70 °C. A simple formation mechanism of the unusually observed "coffee ring" profile and "spherulites ring" morphology is proposed. These findings can be exploited to trace the center of Marangoni convection, with potential applications in designing the spherulite patterns of crystalline polymer films in ink-jet printing and self-assembly fields.