WorldWideScience

Sample records for ring laser gyros

  1. Periodic rotation noise induced by the crosstalk between two beat-frequency signals in multi-oscillator ring laser gyros

    International Nuclear Information System (INIS)

    Lu, Guangfeng; Wang, Zhiguo; Fan, Zhenfang; Luo, Hui

    2014-01-01

    Periodic rotation noise in the outputs of multi-oscillator ring laser gyros (MRLGs) is investigated in this paper for the first time. It is proved theoretically and experimentally that noise is induced by the crosstalk between two beat-frequency signals, which are combined from the left and right circularly polarized counter-propagating beams in MRLGs. Theoretical analysis and experimental results also indicate that the fundamental frequency of this noise is equal to the frequency difference between the two beat-frequency signals and the amplitude of the fundamental component is proportional to the crosstalk ratio between the two beat-frequency signals. Further, the amplitude of the nth-order component is proportional to the nth power of the crosstalk ratio. (paper)

  2. Dependence of mis-alignment sensitivity of ring laser gyro cavity on cavity parameters

    Energy Technology Data Exchange (ETDEWEB)

    Sun Feng; Zhang Xi; Zhang Hongbo; Yang Changcheng, E-mail: sunok1234@sohu.com [Huazhong Institute of Electro-Optics - Wuhan National Lab for Optoelectronics, Wuhan, Hubei (China)

    2011-02-01

    The ring laser gyroscope (RLG), as a rotation sensor, has been widely used for navigation and guidance on vehicles and missiles. The environment of strong random-vibration and large acceleration may deteriorate the performance of the RLG due to the vibration-induced tilting of the mirrors. In this paper the RLG performance is theoretically analyzed and the parameters such as the beam diameter at the aperture, cavity mirror alignment sensitivities and power loss due to the mirror tilting are calculated. It is concluded that by carefully choosing the parameters, the significant loss in laser power can be avoided.

  3. Study of sensitivity enhancement and dead band elimination in laser gyros, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The essential elements that characterize the performance of a laser gyro are (a) a bidirectional ring laser, (b) a lightweight, efficient instrument (c) a high...

  4. Symposium Gyro Technology 1997

    Energy Technology Data Exchange (ETDEWEB)

    Sorg, H [ed.; Stuttgart Univ. (Germany). Inst. A fuer Mechanik

    1997-10-01

    This volume includes the twenty papers which were presented at the Symposium Gyro Technology 1997. The subjects that have been treated during the symposium were as follows: Performance and design of silicon micromachined gyro; improved rate gyroscope designs designated for fabrication by modern deep silicon etching; micromechanical vibratory rate gyroscopes fabricated in conventional CMOS; error modelling of silicon angular rate sensor; a capacitive accelerometer as an example for surface micromachined inertial sensors; initial production results of a new family of fiber optic gyroscopes; dual-axis multiplexed open loop fiber optic gyroscope; flattely supported vibratory gyro-sensor using a Trident-type tuning fork resonator; innovative mechanizations to optimize inertial sensors for high or low rate operations; design of a planar vibratory gyroscope using electrostatic actuation and electromanetic detection; fiber optic gyro based land navigation system; FOG AHRS and AHRS/GPS navigation system: the low cost solution; GPS/GLONASS/INS-navigation (GLOGINAV); small-sized integrated system of the sea mobile objects attitude and navigation; concepts for hybrid positioning; preliminary results from a large ring laser gyroscope for fundamental physics and geophysics; a `sense of balance` - AHRS with low-cost vibrating-gyroscopes for medical diagnostics; application of strapdown inertial systems of orientation and navigation in intrapipe moving diagnostic apparatus; investigation of a digital readout system for laser gyro; the use of angular rate multiple integrals as input signals for strapdown attitude algorithms. (AKF)

  5. Erbium-doped fiber ring resonator for resonant fiber optical gyro applications

    Science.gov (United States)

    Li, Chunming; Zhao, Rui; Tang, Jun; Xia, Meijing; Guo, Huiting; Xie, Chengfeng; Wang, Lei; Liu, Jun

    2018-04-01

    This paper reports a fiber ring resonator with erbium-doped fiber (EDF) for resonant fiber optical gyro (RFOG). To analyze compensation mechanism of the EDF on resonator, a mathematical model of the erbium-doped fiber ring resonator (EDFRR) is established based on Jones matrix to be followed by the design and fabrication of a tunable EDFRR. The performances of the fabricated EDFRR were measured and the experimental Q-factor of 2 . 47 × 108 and resonant depth of 109% were acquired separately. Compared with the resonator without the EDF, the resonant depth and Q-factor of the proposed device are increased by 2.5 times and 14 times, respectively. A potential optimum shot noise limited resolution of 0 . 042∘ / h can be obtained for the RFOG, which is promising for low-cost and high precise detection.

  6. Ring lasers - a brief history

    Science.gov (United States)

    Klein, Tony

    2017-10-01

    Used these days in inertial navigation, ring lasers are also used in recording the tiniest variations in the Earth's spin, as well in detecting earthquakes and even the drift of continents. How did it all begin?

  7. Ring laser frequency biasing mechanism

    International Nuclear Information System (INIS)

    McClure, R.E.

    1975-01-01

    A ring laser cavity including a magnetically saturable member for differentially phase shifting the contradirectional waves propagating in the laser cavity, the phase shift being produced by the magneto-optic interaction occurring between the light waves and the magnetization in the cavity forming component as the light waves are reflected therefrom is described

  8. Dynamics of long ring Raman fiber laser

    Science.gov (United States)

    Sukhanov, Sergey V.; Melnikov, Leonid A.; Mazhirina, Yulia A.

    2016-04-01

    The numerical model for dynamics of long fiber ring Raman laser is proposed. The model is based on the transport equations and Courant-Isaacson-Rees numerical method. Different regimes of a long ring fiber Raman laser are investigated.

  9. Symposium Gyro Technology 1984; Proceedings of the Symposium, Universitaet Stuttgart, West Germany, September 11, 12, 1984

    Science.gov (United States)

    Sorg, H.

    Among the topics discussed are: drift and scale factor tests on the SEL fiber gyro; integrated optical rate sensor development; and the beam geometry of a ring laser gyro in relation to its performance. Consideration is also given to: a fast filtering technique for measuring random walk in a laser gyro; vibratory gyroscopic sensors; a redundant strapdown reference for advanced aircraft flight control systems; and a low-cost piezoelectric rate/acceleration sensor. Additional topics include: an inertial guidance system for a Low-Earth-Orbit (LEO) vehicle; and signal disturbance effects in a strapdown northfinder.

  10. A three axis turntable's online initial state measurement method based on the high-accuracy laser gyro SINS

    Science.gov (United States)

    Gao, Chunfeng; Wei, Guo; Wang, Qi; Xiong, Zhenyu; Wang, Qun; Long, Xingwu

    2016-10-01

    As an indispensable equipment in inertial technology tests, the three-axis turntable is widely used in the calibration of various types inertial navigation systems (INS). In order to ensure the calibration accuracy of INS, we need to accurately measure the initial state of the turntable. However, the traditional measuring method needs a lot of exterior equipment (such as level instrument, north seeker, autocollimator, etc.), and the test processing is complex, low efficiency. Therefore, it is relatively difficult for the inertial measurement equipment manufacturers to realize the self-inspection of the turntable. Owing to the high precision attitude information provided by the laser gyro strapdown inertial navigation system (SINS) after fine alignment, we can use it as the attitude reference of initial state measurement of three-axis turntable. For the principle that the fixed rotation vector increment is not affected by measuring point, we use the laser gyro INS and the encoder of the turntable to provide the attitudes of turntable mounting plat. Through this way, the high accuracy measurement of perpendicularity error and initial attitude of the three-axis turntable has been achieved.

  11. Calculating the parameters of a synchronisation zone of the frequencies of counterpropagating waves of a laser gyro

    International Nuclear Information System (INIS)

    Bondarenko, Evgenii A

    2011-01-01

    Based on the analysis of a well-known system of equations describing the dynamics of a two-isotope laser gyro with an equal-Q resonator under conditions of its fine-tuning to the centre of the emission line and balanced currents in the discharge arms, we have derived the formulas for calculating the parameters of the synchronisation zone for the frequencies of counterpropagating electromagnetic waves generated in the device. The formulas make it possible to calculate the coordinates on the axis of the angular velocity of the left and right boundaries of the synchronisation zone, the coordinate of its centre and half-width. It follows from the analysis that, in the general case of the asymmetric linear coupling between the counterpropagating waves via backscattering, absorption, and transmission of radiation from the mirrors of the gyro, the left and right boundaries of the synchronisation zone are located at different distances with respect to the origin of coordinates, so that the centre of the region is displaced along the axis of the angular velocity. The analysis of the formulas also implies that the shift of the centre of the synchronisation zone and its half-width decrease with increasing medium gain.

  12. Control of ring lasers by means of coupled cavities

    DEFF Research Database (Denmark)

    Buchhave, Preben; Abitan, Haim; Tidemand-Lichtenberg, Peter

    2000-01-01

    Variable phase coupling to an external ring is used to control a unidirectional ring laser. The observed behavior of the coupled rings is explained theoretically. We have found experimentally that by quickly changing the phase of the feedback from the external ring it is possible to Q......-switch the ring laser. Also, at certain values of the phase of the feedback in the external ring, instabilities in the total system occur and oscillations arise in the ring laser....

  13. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  14. Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication.

    Science.gov (United States)

    Chandrahalim, Hengky; Chen, Qiushu; Said, Ali A; Dugan, Mark; Fan, Xudong

    2015-05-21

    We designed, fabricated, and characterized a monolithically integrated optofluidic ring resonator laser that is mechanically, thermally, and chemically robust. The entire device, including the ring resonator channel and sample delivery microfluidics, was created in a block of fused-silica glass using a 3-dimensional femtosecond laser writing process. The gain medium, composed of Rhodamine 6G (R6G) dissolved in quinoline, was flowed through the ring resonator. Lasing was achieved at a pump threshold of approximately 15 μJ mm(-2). Detailed analysis shows that the Q-factor of the optofluidic ring resonator is 3.3 × 10(4), which is limited by both solvent absorption and scattering loss. In particular, a Q-factor resulting from the scattering loss can be as high as 4.2 × 10(4), suggesting the feasibility of using a femtosecond laser to create high quality optical cavities.

  15. Ring cavity surface emitting semiconductor lasers

    International Nuclear Information System (INIS)

    Mujagic, E.

    2010-01-01

    Quantum cascade lasers (QCLs) are electrically driven semiconductor lasers, which have undergone a steady improvement since the first demonstration in 1994. These are now well established as reliable sources of coherent light in the mid-infrared (MIR) and terahertz (THz)range of the electromagnetic spectrum (3-300 μm). The rapid progress of this type of lasers is based on a high degree of freedom in tailoring the emission wavelength within a large variety of semiconductor heterostructure designs and materials. These properties have attracted the attention of various applications such as gas analysis, chemical sensing, spectral imaging and free-space telecommunication. In order to improve the selectivity, sensitivity and efficiency of today's sensor systems, high optical power, continuous wave and room temperature performance, single-mode operation and low divergence optical beams, are highly desirable qualities of a compact laser source in this field of research. Since all of these features cannot be provided by a conventional edge-emitting device at the same time, research has put focus on the development of surface emitting devices. Nowadays, the vertical cavity surface emitting lasers (VCSELs) are the most prominent representative for this type of light emitters. With its capability of producing narrow circular beams, the feasibility of two-dimensional arrays and on-wafer testing, such a coherent light source results in a reduction of the fabrication effort and production costs. Since the radiation in QCLs is strictly polarized normal to the epitaxial layer plane, fabrication of VCSELs based on QC structures is not viable. The subject of this work is the design and realization of 'ring cavity surface emitting lasers' (ring-CSELs). This type of lasers employs a circular ring cavity and a resonant distributed feedback (DFB) surface grating. Ring-CSELs were fabricated on the basis of MIR and THz QC structures, which cover a wavelength range from 4 μm to 93

  16. Ring mirror fiber laser gyroscope

    Science.gov (United States)

    Shalaby, Mohamed Y.; Khalil, Kamal; Afifi, Abdelrahman E.; Khalil, Diaa

    2017-02-01

    In this work we present a new architecture for a laser gyroscope based on the use of a Sagnac fiber loop mirror. The proposed system has the unique property that its scale factor can be increased by increasing the gain of the optical amplifier used in the system as demonstrated experimentally using standard single mode fiber and explained physically by the system operation. The proposed gyroscope system is also capable of identifying the direction of rotation. This new structure opens the door for a new category of low cost optical gyroscopes.

  17. Study on the Dynamics of Laser Gyro Strapdown Inertial Measurement Unit System Based on Transfer Matrix Method for Multibody System

    Directory of Open Access Journals (Sweden)

    Gangli Chen

    2013-01-01

    Full Text Available The dynamic test precision of the strapdown inertial measurement unit (SIMU is the basis of estimating accurate motion of various vehicles such as warships, airplanes, spacecrafts, and missiles. So, it is paid great attention in the above fields to increase the dynamic precision of SIMU by decreasing the vibration of the vehicles acting on the SIMU. In this paper, based on the transfer matrix method for multibody system (MSTMM, the multibody system dynamics model of laser gyro strapdown inertial measurement unit (LGSIMU is developed; the overall transfer equation of the system is deduced automatically. The computational results show that the frequency response function of the LGSIMU got by the proposed method and Newton-Euler method have good agreements. Further, the vibration reduction performance and the attitude error responses under harmonic and random excitations are analyzed. The proposed method provides a powerful technique for studying dynamics of LGSIMU because of using MSTMM and its following features: without the global dynamics equations of the system, high programming, low order of system matrix, and high computational speed.

  18. Solid-state ring laser gyroscope

    Science.gov (United States)

    Schwartz, S.

    The ring laser gyroscope is a rotation sensor used in most kinds of inertial navigation units. It usually consists in a ring cavity filled with a mixture of helium and neon, together with high-voltage pumping electrodes. The use of a gaseous gain medium, while resulting naturally in a stable bidirectional regime enabling rotation sensing, is however the main industrially limiting factor for the ring laser gyroscopes in terms of cost, reliability and lifetime. We study in this book the possibility of substituting for the gaseous gain medium a solid-state medium (diode-pumped Nd-YAG). For this, a theoretical and experimental overview of the lasing regimes of the solid-state ring laser is reported. We show that the bidirectional emission can be obtained thanks to a feedback loop acting on the states of polarization and inducing differential losses proportional to the difference of intensity between the counterpropagating modes. This leads to the achievement of a solid-state ring laser gyroscope, whose frequency response is modified by mode coupling effects. Several configurations, either mechanically or optically based, are then successively studied, with a view to improving the quality of this frequency response. In particular, vibration of the gain crystal along the longitudinal axis appears to be a very promising technique for reaching high inertial performances with a solid-state ring laser gyroscope. Gyrolaser à état solide. Le gyrolaser est un capteur de rotation utilisé dans la plupart des centrales de navigation inertielle. Dans sa forme usuelle, il est constitué d'une cavité laser en anneau remplie d'un mélange d'hélium et de néon pompé par des électrodes à haute tension. L'utilisation d'un milieu amplificateur gazeux, si elle permet de garantir naturellement le fonctionnement bidirectionnel stable nécessaire à la mesure des rotations, constitue en revanche la principale limitation industrielle des gyrolasers actuels en termes de coût, fiabilit

  19. Laser reflectometry of submegahertz liquid meniscus ringing.

    Science.gov (United States)

    Farahi, R H; Passian, A; Jones, Y K; Tetard, L; Lereu, A L; Thundat, T G

    2009-10-15

    Optical techniques that permit nondestructive probing of interfacial dynamics of various media are of key importance in numerous applications such as ellipsometry, mirage effect, and all-optical switching. Characterization of the various phases of microjet droplet formation yields important information for volume control, uniformity, velocity, and rate. The ringing of the meniscus and the associated relaxation time that occurs after droplet breakoff affect subsequent drop formation and is an indicator of the physical properties of the fluid. Using laser reflectometry, we present an analysis of the meniscus oscillations in an orifice of a piezoelectric microjet.

  20. Unidirectional ring-laser operation using sum-frequency mixing

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Cheng, Haynes Pak Hay; Pedersen, Christian

    2010-01-01

    A technique enforcing unidirectional operation of ring lasers is proposed and demonstrated. The approach relies on sum-frequency mixing between a single-pass laser and one of the two counterpropagating intracavity fields of the ring laser. Sum-frequency mixing introduces a parametric loss for the...... where lossless second-order nonlinear materials are available. Numerical modeling and experimental demonstration of parametric-induced unidirectional operation of a diode-pumped solid-state 1342 nm cw ring laser are presented.......A technique enforcing unidirectional operation of ring lasers is proposed and demonstrated. The approach relies on sum-frequency mixing between a single-pass laser and one of the two counterpropagating intracavity fields of the ring laser. Sum-frequency mixing introduces a parametric loss...

  1. A laser gyro with a four-mirror square resonator: formulas for simulating the dynamics of the synchronisation zone parameters of the frequencies of counterpropagating waves during the device operation in the self-heating regime

    International Nuclear Information System (INIS)

    Bondarenko, E A

    2014-01-01

    For a laser gyro with a four-mirror square resonator we have developed a mathematical model, which allows one to simulate the temporal behaviour of the synchronisation zone parameters of the frequencies of counterpropagating waves in a situation when the device operates in the self-heating regime and is switched-on at different initial temperatures. (laser gyroscopes)

  2. Surface emitting ring quantum cascade lasers for chemical sensing

    Science.gov (United States)

    Szedlak, Rolf; Hayden, Jakob; Martín-Mateos, Pedro; Holzbauer, Martin; Harrer, Andreas; Schwarz, Benedikt; Hinkov, Borislav; MacFarland, Donald; Zederbauer, Tobias; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Acedo, Pablo; Lendl, Bernhard; Strasser, Gottfried

    2018-01-01

    We review recent advances in chemical sensing applications based on surface emitting ring quantum cascade lasers (QCLs). Such lasers can be implemented in monolithically integrated on-chip laser/detector devices forming compact gas sensors, which are based on direct absorption spectroscopy according to the Beer-Lambert law. Furthermore, we present experimental results on radio frequency modulation up to 150 MHz of surface emitting ring QCLs. This technique provides detailed insight into the modulation characteristics of such lasers. The gained knowledge facilitates the utilization of ring QCLs in combination with spectroscopic techniques, such as heterodyne phase-sensitive dispersion spectroscopy for gas detection and analysis.

  3. Laser plasma focus produced in a ring target

    International Nuclear Information System (INIS)

    Saint-Hilaire, G.; Szili, Z.

    1976-01-01

    A new geometry for generating a laser-produced plasma is presented. A toroidal mirror is used to focus a CO 2 laser beam on the inside wall of a copper ring target. The plasma produced converges at the center of the ring where an axial plasma focus is formed. High-speed photography shows details of a plasma generated at a distance from the target surface. This new geometry could have important applications in the field of x-ray lasers

  4. Semiconductor ring lasers coupled by a single waveguide

    Science.gov (United States)

    Coomans, W.; Gelens, L.; Van der Sande, G.; Mezosi, G.; Sorel, M.; Danckaert, J.; Verschaffelt, G.

    2012-06-01

    We experimentally and theoretically study the characteristics of semiconductor ring lasers bidirectionally coupled by a single bus waveguide. This configuration has, e.g., been suggested for use as an optical memory and as an optical neural network motif. The main results are that the coupling can destabilize the state in which both rings lase in the same direction, and it brings to life a state with equal powers at both outputs. These are both undesirable for optical memory operation. Although the coupling between the rings is bidirectional, the destabilization occurs due to behavior similar to an optically injected laser system.

  5. Laser-Cooled Ions and Atoms in a Storage Ring

    International Nuclear Information System (INIS)

    Kleinert, J.; Hannemann, S.; Eike, B.; Eisenbarth, U.; Grieser, M.; Grimm, R.; Gwinner, G.; Karpuk, S.; Saathoff, G.; Schramm, U.; Schwalm, D.; Weidemueller, M.

    2003-01-01

    We review recent experiments at the Heidelberg Test Storage Ring which apply advanced laser cooling techniques to stored ion beams. Very high phase-space densities are achieved by three-dimensional laser cooling of a coasting 9 Be + beam at 7.3 MeV. Laser-cooled, trapped Cs atoms are used as an ultracold precision target for the study of ion-atom interactions with a 74 MeV beam of 12 C 6+ ions.

  6. High-power single-mode cw dye ring laser

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, H W; Stein, L; Froelich, D; Fugger, B; Welling, H [Technische Univ. Hannover (Germany, F.R.). Inst. fuer Angewandte Physik

    1977-12-01

    Due to spatial hole burning, standing-wave dye lasers require a large amount of selectivity inside the cavity for single-mode operation. The output power of these lasers is limited by losses caused by the frequency selecting elements. In a travelling-wave laser, on the other hand, spatial hole burning does not exist, thereby eliminating the need for high selectivity. A travelling-wave cw dye laser was realized by unidirectional operation of a ring laser, yielding single mode output powers of 1.2 W at 595 nm and of 55 mW in the UV-region with intracavity frequency doubling.

  7. Optimization of the geometrical stability in square ring laser gyroscopes

    International Nuclear Information System (INIS)

    Santagata, R; Beghi, A; Cuccato, D; Belfi, J; Beverini, N; Virgilio, A Di; Ortolan, A; Porzio, A; Solimeno, S

    2015-01-01

    Ultra-sensitive ring laser gyroscopes are regarded as potential detectors of the general relativistic frame-dragging effect due to the rotation of the Earth. Our project for this goal is called GINGER (gyroscopes in general relativity), and consists of a ground-based triaxial array of ring lasers aimed at measuring the rotation rate of the Earth with an accuracy of 10 −14 rad s −1 . Such an ambitious goal is now within reach, as large-area ring lasers are very close to the required sensitivity and stability. However, demanding constraints on the geometrical stability of the optical path of the laser inside the ring cavity are required. Thus, we have begun a detailed study of the geometry of an optical cavity in order to find a control strategy for its geometry that could meet the specifications of the GINGER project. As the cavity perimeter has a stationary point for the square configuration, we identify a set of transformations on the mirror positions that allows us to adjust the laser beam steering to the shape of a square. We show that the geometrical stability of a square cavity strongly increases by implementing a suitable system to measure the mirror distances, and that the geometry stabilization can be achieved by measuring the absolute lengths of the two diagonals and the perimeter of the ring. (paper)

  8. Optimal control of quantum rings by terahertz laser pulses.

    Science.gov (United States)

    Räsänen, E; Castro, A; Werschnik, J; Rubio, A; Gross, E K U

    2007-04-13

    Complete control of single-electron states in a two-dimensional semiconductor quantum-ring model is established, opening a path into coherent laser-driven single-gate qubits. The control scheme is developed in the framework of optimal-control theory for laser pulses of two-component polarization. In terms of pulse lengths and target-state occupations, the scheme is shown to be superior to conventional control methods that exploit Rabi oscillations generated by uniform circularly polarized pulses. Current-carrying states in a quantum ring can be used to manipulate a two-level subsystem at the ring center. Combining our results, we propose a realistic approach to construct a laser-driven single-gate qubit that has switching times in the terahertz regime.

  9. Amplitude and polarization asymmetries in a ring laser

    Science.gov (United States)

    Campbell, L. L.; Buholz, N. E.

    1971-01-01

    Asymmetric amplitude effects between the oppositely directed traveling waves in a He-Ne ring laser are analyzed both theoretically and experimentally. These effects make it possible to detect angular orientations of an inner-cavity bar with respect to the plane of the ring cavity. The amplitude asymmetries occur when a birefringent bar is placed in the three-mirror ring cavity, and an axial magnetic field is applied to the active medium. A simplified theoretical analysis is performed by using a first order perturbation theory to derive an expression for the polarization of the active medium, and a set of self-consistent equations are derived to predict threshold conditions. Polarization asymmetries between the oppositely directed waves are also predicted. Amplitude asymmetries similar in nature to those predicted at threshold occur when the laser is operating in 12-15 free-running modes, and polarization asymmetry occurs simultaneously.

  10. Laser-Cooled Ions and Atoms in a Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Kleinert, J.; Hannemann, S.; Eike, B.; Eisenbarth, U.; Grieser, M.; Grimm, R.; Gwinner, G.; Karpuk, S.; Saathoff, G.; Schramm, U.; Schwalm, D.; Weidemueller, M., E-mail: m.weidemueller@mpi-hd.mpg.de [Max-Planck-Insitut fuer Kernphysik (Germany)

    2003-03-15

    We review recent experiments at the Heidelberg Test Storage Ring which apply advanced laser cooling techniques to stored ion beams. Very high phase-space densities are achieved by three-dimensional laser cooling of a coasting {sup 9}Be{sup +} beam at 7.3 MeV. Laser-cooled, trapped Cs atoms are used as an ultracold precision target for the study of ion-atom interactions with a 74 MeV beam of {sup 12}C{sup 6+} ions.

  11. Free electron laser on the ACO storage ring

    International Nuclear Information System (INIS)

    Elleaume, P.

    1984-06-01

    This dissertation presents the design and characteristics of a Free Electron Laser built on the electron storage ring ACO at Orsay. The weak optical gain available (approximately 0.1% per pass) necessitated the use of an optical klystron instead of an undulator and the use of mirror with extremely high reflectivity. The laser characteristics: spectra, micro and macro-temporal structures, transverse structure and power are presented. They are in very good agreement with a classical theory based on the Lorentz force and Maxwell equations [fr

  12. Storage ring free electron lasers and saw-tooth instability

    CERN Document Server

    Dattoli, Giuseppe; Migliorati, M; Palumbo, L; Renieri, A

    1999-01-01

    We show that Free Electron Lasers (FEL) operating with storage rings may counteract beam instabilities of the Saw Tooth (STI) type. We use a model based on a set of equations that couple those describing the FEL evolution to those accounting for the STI dynamics. The analysis provides a clear picture of the FEL-STI mutual feedback and clarifies the mechanisms of the instability inhibition. The reliability of the results is supported by a comparison with fully numerical codes.

  13. Investigation of longitudinal dynamic in laser electron storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Karnaukhov, I.; Zelinsky, A. E-mail: zelinsky@kipt.kharkov.ua; Telegin, Yu

    2001-09-01

    Longitudinal dynamic of electron beam due to radiation damping and quantum fluctuations in the storage ring with a laser-electron interaction section (Compton scattering) is investigated. This investigation was carried out by numerical simulations using the Monte Carlo method. The dependence of the steady-state energy spread of electron beam due to the Compton back scattering of photons on the electron beam energy and photon flash density were obtained. Simulation findings are compared with the analytical estimations by Z. Huang.

  14. Investigation of longitudinal dynamic in laser electron storage ring

    CERN Document Server

    Karnaukhov, I; Telegin, Yu P

    2001-01-01

    Longitudinal dynamic of electron beam due to radiation damping and quantum fluctuations in the storage ring with a laser-electron interaction section (Compton scattering) is investigated. This investigation was carried out by numerical simulations using the Monte Carlo method. The dependence of the steady-state energy spread of electron beam due to the Compton back scattering of photons on the electron beam energy and photon flash density were obtained. Simulation findings are compared with the analytical estimations by Z. Huang.

  15. Accuracy improvements of gyro-based measurement-while-drilling surveying instruments by a laser testing method

    Science.gov (United States)

    Li, Rong; Zhao, Jianhui; Li, Fan

    2009-07-01

    Gyroscope used as surveying sensor in the oil industry has been proposed as a good technique for measurement-whiledrilling (MWD) to provide real-time monitoring of the position and the orientation of the bottom hole assembly (BHA).However, drifts in the measurements provided by gyroscope might be prohibitive for the long-term utilization of the sensor. Some usual methods such as zero velocity update procedure (ZUPT) introduced to limit these drifts seem to be time-consuming and with limited effect. This study explored an in-drilling dynamic -alignment (IDA) method for MWD which utilizes gyroscope. During a directional drilling process, there are some minutes in the rotary drilling mode when the drill bit combined with drill pipe are rotated about the spin axis in a certain speed. This speed can be measured and used to determine and limit some drifts of the gyroscope which pay great effort to the deterioration in the long-term performance. A novel laser assembly is designed on the wellhead to count the rotating cycles of the drill pipe. With this provided angular velocity of the drill pipe, drifts of gyroscope measurements are translated into another form that can be easy tested and compensated. That allows better and faster alignment and limited drifts during the navigation process both of which can reduce long-term navigation errors, thus improving the overall accuracy in INS-based MWD system. This article concretely explores the novel device on the wellhead designed to test the rotation of the drill pipe. It is based on laser testing which is simple and not expensive by adding a laser emitter to the existing drilling equipment. Theoretical simulations and analytical approximations exploring the IDA idea have shown improvement in the accuracy of overall navigation and reduction in the time required to achieve convergence. Gyroscope accuracy along the axis is mainly improved. It is suggested to use the IDA idea in the rotary mode for alignment. Several other

  16. Application of ring lasers to determine the directions to the poles of Earth's rotation

    International Nuclear Information System (INIS)

    Golyaev, Yu D; Kolbas, Yu Yu

    2012-01-01

    Application of a ring laser to determine the directions to the poles of Earth's rotation is considered. The maximum accuracy of determining the directions is calculated, physical and technical mechanisms that limit the accuracy are analysed, and the instrumental errors are estimated by the example of ring He — Ne lasers with Zeeman biasing. (laser applications and other topics in quantum electronics)

  17. Colloidal-Quantum-Dot Ring Lasers with Active Color Control.

    Science.gov (United States)

    le Feber, Boris; Prins, Ferry; De Leo, Eva; Rabouw, Freddy T; Norris, David J

    2018-02-14

    To improve the photophysical performance of colloidal quantum dots for laser applications, sophisticated core/shell geometries have been developed. Typically, a wider bandgap semiconductor is added as a shell to enhance the gain from the quantum-dot core. This shell is designed to electronically isolate the core, funnel excitons to it, and reduce nonradiative Auger recombination. However, the shell could also potentially provide a secondary source of gain, leading to further versatility in these materials. Here we develop high-quality quantum-dot ring lasers that not only exhibit lasing from both the core and the shell but also the ability to switch between them. We fabricate ring resonators (with quality factors up to ∼2500) consisting only of CdSe/CdS/ZnS core/shell/shell quantum dots using a simple template-stripping process. We then examine lasing as a function of the optical excitation power and ring radius. In resonators with quality factors >1000, excitons in the CdSe cores lead to red lasing with thresholds at ∼25 μJ/cm 2 . With increasing power, green lasing from the CdS shell emerges (>100 μJ/cm 2 ) and then the red lasing begins to disappear (>250 μJ/cm 2 ). We present a rate-equation model that can explain this color switching as a competition between exciton localization into the core and stimulated emission from excitons in the shell. Moreover, by lowering the quality factor of the cavity we can engineer the device to exhibit only green lasing. The mechanism demonstrated here provides a potential route toward color-switchable quantum-dot lasers.

  18. Wavelength-selectable and steady single-mode erbium-doped fiber multiple ring laser

    Science.gov (United States)

    Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang

    2017-11-01

    To achieve a stable and selectable C-band erbium-doped fiber (EDF) laser with single-longitudinal-mode output, a multiple ring architecture is proposed and demonstrated experimentally. In this work, we design a passively quadruple-ring structure in the cavity of an EDF laser to produce a Vernier effect with a mode filter for suppressing the multimode spikes significantly. In addition, the output performance and stability of the proposed EDF ring laser are discussed.

  19. Broadband pulsed difference frequency generation laser source centered 3326 nm based on ring fiber lasers

    Science.gov (United States)

    Chen, Guangwei; Li, Wenlei

    2018-03-01

    A broadband pulsed mid-infrared difference frequency generation (DFG) laser source based on MgO-doped congruent LiNbO3 bulk is experimentally demonstrated, which employs a homemade pulsed ytterbium-doped ring fiber laser and a continuous wave erbium-doped ring fiber laser to act as seed sources. The experimental results indicate that the perfect phase match crystal temperature is about 74.5∘C. The maximum spectrum bandwidth of idler is about 60 nm with suitable polarization states of fundamental lights. The central wavelength of idlers varies from 3293 nm to 3333 nm over the crystal temperature ranges of 70.4-76∘C. A jump of central wavelength exists around crystal temperature of 72∘C with variation of about 30 nm. The conversion efficiency of DFG can be tuned with the crystal temperature and polarization states of fundamental lights.

  20. Numerical Modelling of a Bidirectional Long Ring Raman Fiber Laser Dynamics

    Science.gov (United States)

    Sukhanov, S. V.; Melnikov, L. A.; Mazhirina, Yu A.

    2017-11-01

    The numerical model for the simulation of the dynamics of a bidirectional long ring Raman fiber laser is proposed. The model is based on the transport equations and Courant-Isaacson-Rees method. Different regimes of a bidirectional long ring Raman fiber laser and long time-domain realizations are investigated.

  1. Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology.

    Science.gov (United States)

    Xie, Wen-Ge; Zhang, Ya-Nan; Wang, Peng-Zhao; Wang, Jian-Zhang

    2018-02-08

    A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach-Zehnder interferometer (MZI) typed sensors, Fabry-Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed.

  2. Theory of frequency synchronization in a ring laser

    Energy Technology Data Exchange (ETDEWEB)

    Radina, Tatiana V., E-mail: tatiana.radina@gmail.com

    2015-09-25

    The self-consistent problem of the frequency synchronization of counter-propagating waves in a ring laser is rigorously solved. An intrinsic nonlinear mechanism of the phase coupling between the waves is considered for the first time. This ineradicable coupling is provided by modulation of the population difference of the energy levels of the active medium atoms in the electromagnetic field of two counter-propagating waves. The theoretical limit for the range of phase locking between the counter-propagating waves is established. The general equation of phase synchronization is obtained from the solution of a self-consistent problem. The frequency-dependent boundaries of the synchronization band calculated in the framework of this approach show good agreement with experimental results published in the literature.

  3. Continuous wave room temperature external ring cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Revin, D. G., E-mail: d.revin@sheffield.ac.uk; Hemingway, M.; Vaitiekus, D.; Cockburn, J. W. [Physics and Astronomy Department, The University of Sheffield, S3 7RH Sheffield (United Kingdom); Hempler, N.; Maker, G. T.; Malcolm, G. P. A. [M Squared Lasers Ltd., G20 0SP Glasgow (United Kingdom)

    2015-06-29

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm{sup −1} is realized by the incorporation of a diffraction grating into the cavity.

  4. Continuous wave room temperature external ring cavity quantum cascade laser

    International Nuclear Information System (INIS)

    Revin, D. G.; Hemingway, M.; Vaitiekus, D.; Cockburn, J. W.; Hempler, N.; Maker, G. T.; Malcolm, G. P. A.

    2015-01-01

    An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm −1 is realized by the incorporation of a diffraction grating into the cavity

  5. Utilizing wheel-ring architecture for stable and selectable single-longitudinal-mode erbium fiber laser

    Science.gov (United States)

    Yeh, Chien-Hung; Yang, Zi-Qing; Huang, Tzu-Jung; Chow, Chi-Wai

    2018-03-01

    To achieve a steady single-longitudinal-mode (SLM) erbium-doped fiber (EDF) laser, the wheel-ring architecture is proposed in the laser cavity. According to Vernier effect, the proposed wheel-ring can produce three different free spectrum ranges (FSRs) to serve as the mode-filter for suppressing the densely multi-longitudinal-mode (MLM). Here, to complete wavelength-tunable EDF laser, an optical tunable bandpass filter (OTBF) is utilized inside the cavity for tuning arbitrarily. In addition, the entire output performances of the proposed EDF wheel-ring laser are also discussed and analyzed experimentally.

  6. LASERS: Stimulated emission in a solid-state ring laser with a stimulated Brillouin scattering mirror

    Science.gov (United States)

    Barashkov, M. S.; Bel'dyugin, Igor'M.; Zolotarev, M. V.; Krymskiĭ, M. I.; Oshkin, S. P.; Umnov, A. F.; Kharchenko, M. A.

    1990-06-01

    The results are presented of an experimental investigation of a solid-state ring laser with a stimulated Brillouin scattering mirror and lasing initiated by a series of ~ 200-300 ns pulses of 1.06 μm wavelength. It is shown that this laser may be useful for the development of a source with radiation parameters controlled by an external signal (energy, transverse and time structure) and also of a low-threshold mirror for phase self-conjugation of radiation.

  7. Continuous-wave singly resonant optical parametric oscillator placed inside a ring laser

    DEFF Research Database (Denmark)

    Abitan, Haim; Buchhave, Preben

    2003-01-01

    A cw singly resonant optical parametric oscillator (SRO) was built and placed inside the cavity of a ring laser. The system consists of a diode-end-pumped Nd:YVO4 ring laser with intracavity periodically poled lithium niobate as the nonlinear gain medium of the SRO. When the laser was operated...... in a unidirectional mode, we obtained more than 520 mW of signal power in one beam. When the laser was operated in a bidirectional mode, we obtained 600 mW of signal power (300 mW in two separate beams). The power and the spectral features of the laser in the unidirectional and bidirectional modes were measured while...... the laser was coupled with the SRO. The results show that it is preferable to couple a SRO with a unidirectional ring laser....

  8. Temperature Sensor Using a Multiwavelength Erbium-Doped Fiber Ring Laser

    Directory of Open Access Journals (Sweden)

    Silvia Diaz

    2017-01-01

    Full Text Available A novel temperature sensor is presented based on a multiwavelength erbium-doped fiber ring laser. The laser is comprised of fiber Bragg grating reflectors as the oscillation wavelength selecting filters. The performance of the temperature sensor in terms of both wavelength and laser output power was investigated, as well as the application of this system for remote temperature measurements.

  9. VUV optical ring resonator for Duke storage ring free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H.; Litvinenko, V.N.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)] [and others

    1995-12-31

    The conceptual design of the multifaceted-mirror ring resonator for Duke storage ring VUV FEL is presented. The expected performance of the OK-4 FEL with ring resonator is described. We discuss in this paper our plans to study reflectivity of VUV mirrors and their resistivity to soft X-ray spontaneous radiation from OK-4 undulator.

  10. Pierce-Wiggler electron beam system for 250 GHz GYRO-BWO: Final report

    International Nuclear Information System (INIS)

    Pirkle, D.R.; Alford, C.W.; Anderson, M.H.; Garcia, R.F.; Legarra, J.R.; Nordquist, A.L.

    1989-01-01

    This final report summarizes the design and performance of the VUW-8028 Pierce-Wiggler electron beam systems, which can be used to power high frequency gyro-BWO's. The operator's manual for this gyro-BWO beamstick is included as appendix A. Researchers at Lawrence Livermore National Laboratory (LLNL) are developing a gyro-BWO with a center frequency of 250 GHz, 6% bandwidth, and 10 kV peak output power. The gyro-BWO will be used to drive a free electron laser amplifier at LLNL. The electron beam requirements of the gyro-BWO application are: Small beam size, .100 inch at 2500 gauss axial magnetic field; a large fraction of the electron energy in rotational velocity; ability to vary the electrons' axial velocity easily, for electronic tuning; and low velocity spread i.e. little variation in the axial velocities of the electrons in the interaction region. 1 ref., 13 figs

  11. The non-planar single-frequency ring laser with variable output coupling

    Science.gov (United States)

    Wu, Ke-ying; Yang, Su-hui; Wei, Guang-hui

    2002-03-01

    We put forward a novel non-planar single-frequency ring laser, which consists of a corner cube prism and a specially cut Porro prism made by Nd:YAG crystal. The relative angle between the corner cube and the Porro prism could be adjusted to control the output coupling of the laser resonator and the polarization-state of the output laser. A 1.06 μm single-frequency laser with 1 W output has been obtained.

  12. Injection Characterization of Packaged Bi-Directional Diamond Shaped Ring Laser at 1550 NM

    National Research Council Canada - National Science Library

    Bussjager, Rebecca; Erdmann, Reinhard; Kovanis, Vassillios; McKeon, Brian; Fanto, Michael; Johns, Steve; Hayduk, Michael J; Osman, Joseph; Morrow, Alan; Green, Malcolm

    2006-01-01

    The Air Force Research Laboratory. Binoptics Corp. and Infotonics Technology Center worked collaboratively to package and characterize recently developed diode based ring lasers that operate at 1550 nm in a diamond shaped cavity...

  13. Modeling of anisotropic properties of double quantum rings by the terahertz laser field.

    Science.gov (United States)

    Baghramyan, Henrikh M; Barseghyan, Manuk G; Kirakosyan, Albert A; Ojeda, Judith H; Bragard, Jean; Laroze, David

    2018-04-18

    The rendering of different shapes of just a single sample of a concentric double quantum ring is demonstrated realizable with a terahertz laser field, that in turn, allows the manipulation of electronic and optical properties of a sample. It is shown that by changing the intensity or frequency of laser field, one can come to a new set of degenerated levels in double quantum rings and switch the charge distribution between the rings. In addition, depending on the direction of an additional static electric field, the linear and quadratic quantum confined Stark effects are observed. The absorption spectrum shifts and the additive absorption coefficient variations affected by laser and electric fields are discussed. Finally, anisotropic electronic and optical properties of isotropic concentric double quantum rings are modeled with the help of terahertz laser field.

  14. Mode structure in an optically pumped D2O far infrared ring laser

    International Nuclear Information System (INIS)

    Yuan, D.C.; Soumagne, G.; Siegrist, M.R.

    1989-07-01

    The mode structures in an optically pumped D 2 O far infrared ring laser and a corresponding linear resonator have been compared. While single mode operation can be obtained over the whole useful pressure range in the ring structure, this is only possible at pressures greater than 8 Torr in the linear resonator case. A numerical model predicts quite well the pulse shape, pressure dependence and influence of the resonator quality in the ring cavity. (author) 12 figs., 8 refs

  15. Femtosecond laser-induced concentric ring microstructures on Zr-based metallic glass

    International Nuclear Information System (INIS)

    Ma Fengxu; Yang Jianjun; Xiaonong Zhu; Liang Chunyong; Wang Hongshui

    2010-01-01

    Surface morphological evolution of Zr-based metallic glass ablated by femtosecond lasers is investigated in atmosphere condition. Three types of permanent ring structures with micro-level spacing are observed for different laser shots and fluences. In the case of low laser fluences, the generation of annular patterns with nonthermal features is observed on the rippled structure with the subwavelength scale, and the ring spacing shows a decrease tendency from the center to the margin. While in the case of high laser fluences, the concentric rings formation within the laser spot is found to have evident molten traces and display the increasing ring spacing along the radial direction. Moreover, when the laser shots accumulation becomes large, the above two types of ring microstructures begin to develop into the common ablation craters. Analysis and discussion suggests that the stress-induced condensation of ablation vapors and the frozen thermocapillary waves on the molten surfaces should be responsible for the formation of two different types of concentric ring structures, respectively. Eventually, a processing window for each resulting surface microstructure type is obtained experimentally and indicates the possibility to control the morphological transitions among different types.

  16. A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms

    Energy Technology Data Exchange (ETDEWEB)

    Miake, Yudai; Mukaiyama, Takashi, E-mail: muka@ils.uec.ac.jp [Institute for Laser Science, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); O’Hara, Kenneth M. [Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802-6300 (United States); Gensemer, Stephen [CSIRO Manufacturing Flagship, Lindfield, NSW 2070 (Australia)

    2015-04-15

    We have constructed a solid-state light source for experiments with laser cooled lithium atoms based on a Nd:Y V O{sub 4} ring laser with second-harmonic generation. Unidirectional lasing, an improved mode selection, and a high output power of the ring laser were achieved by weak coupling to an external cavity which contained the lossy elements required for single frequency operation. Continuous frequency tuning is accomplished by controlling two piezoelectric transducers (PZTs) in the internal and the external cavities simultaneously. The light source has been utilized to trap and cool fermionic lithium atoms into the quantum degenerate regime.

  17. Infrared cavity ring-down spectroscopy with a CW diode laser system

    NARCIS (Netherlands)

    Hemerik, M.M.; Kroesen, G.M.W.; Doebele, H.F.; Muraoka, K.

    1999-01-01

    We report on the first measurements with our CRDS setup. Although the diode laser system was out of order, we were able to test the most important parts with the use of a CO laser. The first results show a ring-down time of 1.54 ~is, which is in perfect agreement with the predicted reflectivity of

  18. The use of ring lasers for the measurement of relativistic effects

    International Nuclear Information System (INIS)

    Denisov, V I; Zubrilo, A A; Kravtsov, Nikolai V; Pinchuk, V B

    1999-01-01

    The possibility of using a ring laser for the investigation of relativistic effects is analysed. It is shown that gravitational experiments permitting a refinement of certain (fundamental) aspects of the theory of gravitation will become possible in the near future. (laser applications and other topics in quantum electronics)

  19. ULTRAVIOLET TRANSITIONS IN EUROPIUM STUDIED WITH A FREQUENCY-DOUBLED CW RING DYE-LASER

    NARCIS (Netherlands)

    Eliel, E.R.; Hogervorst, W.; van Leeuwen, K.A.H.; Post, B.H.

    1981-01-01

    High resolution laser spectroscopy has been applied to the study of three ultraviolet transitions in Europium at λ = 294.8, 295.1 and 295.8 nm. The tunable narrowband UV has been generated by intracavity frequency doubling in a cw ring dye laser using a temperate tuned, Brewster angled ADA crystal.

  20. Bistability of self-modulation oscillations in an autonomous solid-state ring laser

    International Nuclear Information System (INIS)

    Dudetskii, V Yu

    2013-01-01

    Bistable self-modulation regimes of generation for a ring YAG : Nd chip laser with the counterpropagating waves asymmetrically coupled via backward scattering are simulated numerically. Two branches of bistable self-modulation regimes of generation are found in the domain of the parametric resonance between the selfmodulation and relaxation oscillations. The self-modulation regimes observed in earlier experiments pertain to only one of the branches. Possible reasons for such a discrepancy are considered, related to the influence of technical and natural noise on the dynamics of solid-state ring lasers. (control of laser radiation parameters)

  1. Injection seeded, diode pumped regenerative ring Nd:YAG amplifier for spaceborne laser ranging technology development

    Science.gov (United States)

    Coyle, D. Barry; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.

    1992-01-01

    A small, all solid state, regenerative ring amplifier designed as a prototype for space application is discussed. Novel features include dual side pumping of the Nd:YAG crystal and a triangular ring cavity design which minimizes the number of optical components and losses. The amplifier is relatively small (3 ns round trip time) even though standard optical elements are employed. The ring regeneratively amplifies a 100 ps single pulse by approximately 10(exp 5) at a repetition rate of 10 to 100 Hz. The amplifier is designed to be injection seeded with a pulsed, 100 ps laser diode at 1.06 microns, but another Nd:YAG laser system supplying higher pulse energies was employed for laboratory experiment. This system is a prototype laser oscillator for the Geoscience Laser Ranging System (GLRS) platform. Results on measurements of beam quality, astigmatism, and gain are given.

  2. White-light laser cooling of ions in a storage ring

    International Nuclear Information System (INIS)

    Calabrese, R.; Guidi, V.; Lenisa, P.; Grimm, R.; Miesner, H.J.; Mariotti, E.; Siena Univ.; Moi, L.; Siena Univ.

    1996-01-01

    We propose the use of a white laser for laser cooling of ions in a storage ring. The use of a broad-band laser provides a radiation pressure force with wide velocity capture range and high magnitude, which is promising to improve the performance of both longitudinal and indirect transverse cooling. This wide-range force could also be suitable for direct transverse cooling of low-density beams. (orig.)

  3. Vernier effect-based multiplication of the Sagnac beating frequency in ring laser gyroscope sensors

    Science.gov (United States)

    Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2018-02-01

    A multiplication method of the Sagnac effect scale factor in ring laser gyroscopes is presented based on the Vernier effect of a dual-coupler passive ring resonator coupled to the active ring. The multiplication occurs when the two rings have comparable lengths or integer multiples and their scale factors have opposite signs. In this case, and when the rings have similar areas, the scale factor is multiplied by ratio of their length to their length difference. The scale factor of the presented configuration is derived analytically and the lock-in effect is analyzed. The principle is demonstrated using optical fiber rings and semiconductor optical amplifier as gain medium. A scale factor multiplication by about 175 is experimentally measured, demonstrating larger than two orders of magnitude enhancement in the Sagnac effect scale factor for the first time in literature, up to the authors' knowledge.

  4. Higher-order paraxial theory of the propagation of ring rippled laser beam in plasma: Relativistic ponderomotive regime

    International Nuclear Information System (INIS)

    Purohit, Gunjan; Rawat, Priyanka; Chauhan, Prashant; Mahmoud, Saleh T.

    2015-01-01

    This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled laser beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate

  5. Coffee-ring effects in laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Hu, Jie-Bi; Chen, Yu-Chie; Urban, Pawel L

    2013-03-05

    This report focuses on the heterogeneous distribution of small molecules (e.g. metabolites) within dry deposits of suspensions and solutions of inorganic and organic compounds with implications for chemical analysis of small molecules by laser desorption/ionization (LDI) mass spectrometry (MS). Taking advantage of the imaging capabilities of a modern mass spectrometer, we have investigated the occurrence of "coffee rings" in matrix-assisted laser desorption/ionization (MALDI) and surface-assisted laser desorption/ionization (SALDI) sample spots. It is seen that the "coffee-ring effect" in MALDI/SALDI samples can be both beneficial and disadvantageous. For example, formation of the coffee rings gives rise to heterogeneous distribution of analytes and matrices, thus compromising analytical performance and reproducibility of the mass spectrometric analysis. On the other hand, the coffee-ring effect can also be advantageous because it enables partial separation of analytes from some of the interfering molecules present in the sample. We report a "hidden coffee-ring effect" where under certain conditions the sample/matrix deposit appears relatively homogeneous when inspected by optical microscopy. Even in such cases, hidden coffee rings can still be found by implementing the MALDI-MS imaging technique. We have also found that to some extent, the coffee-ring effect can be suppressed during SALDI sample preparation. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Plasma diagnostics using laser-excited coupled and transmission ring resonators

    International Nuclear Information System (INIS)

    Haas, R.A.

    1976-01-01

    In this paper a simple two-level laser model is used to investigate the frequency response of coupled-cavity laser interferometers. It is found that under certain circumstances, often satisfied by molecular gas lasers, the frequency response exhibits a resonant behavior. This behavior severely complicates the interpretation of coupled-cavity laser interferometer measurements of rapidly varying plasmas. To circumvent this limitation a new type of laser interferometer plasma diagnostic with significantly improved time response was developed. In this interferometer the plasma is located in one arm of a transmission ring resonator cavity that is excited by an externally positioned laser. Thus, the laser is decoupled from the interferometer cavity and the time response of the interferometer is then limited by the Q of the ring resonator cavity. This improved time response is acquired without loss of spatial resolution, but requires a more sensitive signal detector since the laser is no longer used as a detector as it is in conventional coupled-cavity laser interferometers. Thus, the new technique incorporates the speed of the Mach--Zender interferometer and the sensitivity of the coupled-cavity laser interferometer. The basic operating principles of this type of interferometer have been verified using a CO 2 laser

  7. Gyro precession and Mach's principle

    International Nuclear Information System (INIS)

    Eby, P.

    1979-01-01

    The precession of a gyroscope is calculated in a nonrelativistic theory due to Barbour which satisfies Mach's principle. It is shown that the theory predicts both the geodetic and motional precession of general relativity to within factors of order 1. The significance of the gyro experiment is discussed from the point of view of metric theories of gravity and this is contrasted with its significance from the point of view of Mach's principle. (author)

  8. Orthogonal linear polarization tunable-beat ring laser with a superluminescent diode

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Y.; Yoshino, T. [Department of Electronic Engineering, Faculty of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376 (Japan)

    1997-09-01

    An orthogonal linear polarization operated ring laser with a superluminescent diode has been demonstrated to generate a tunable optical beat signal. The ring cavity contains a superluminescent diode as the optical gain medium, Faraday rotators, and a variable phase retarder (Babinet-Soleil compensator). By controlling the retarder, we changed the beat frequency in the range from a few tens of megahertz to 100 MHz. {copyright} 1997 Optical Society of America

  9. Storage ring free electron laser, pulse propagation effects and microwave type instabilities

    International Nuclear Information System (INIS)

    Dattoli, G.; Mezi, L.; Renieri, A.; Migliorati, M.

    2000-01-01

    It has been developed a dynamical model accounting for the storage Ring Free Electron Laser evolution including pulse propagation effects and e-beam instabilities of microwave type. It has been analyzed the general conditions under which the on set of the laser may switch off the instability and focus everybody attention on the interplay between cavity mismatch, laser pulsed behavior and e-beam instability dynamics. Particular attention is also devoted to the laser operation in near threshold conditions, namely at an intracavity level just enough to counteract the instability, that show in this region new and interesting effects arises [it

  10. Highly optimized tunable Er3+-doped single longitudinal mode fiber ring laser, experiment and model

    DEFF Research Database (Denmark)

    Poulsen, Christian; Sejka, Milan

    1993-01-01

    A continuous wave (CW) tunable diode-pumped Er3+-doped fiber ring laser, pumped by diode laser at wavelengths around 1480 nm, is discussed. Wavelength tuning range of 42 nm, maximum slope efficiency of 48% and output power of 14.4 mW have been achieved. Single longitudinal mode lasing...... with a linewidth of 6 kHz has been measured. A fast model of erbium-doped fiber laser was developed and used to optimize output parameters of the laser...

  11. Continuously tunable S and C+L bands ultra wideband erbium-doped fiber ring laser

    International Nuclear Information System (INIS)

    Wang, Q; Yu, Q X

    2009-01-01

    This paper presents an ultra wideband tunable silica-based erbium doped fiber ring laser (EDFRL) that can be continuously tuned in S and C+L bands from 1475 to 1619 nm. It is the first time that a fiber ring laser's tuning range reaches 144 nm using a standard silica-based C-band erbium-doped fiber as gain media. In the laser configuration two isolators are used in the fiber loop for suppressing the ASE in C-band and elevating the lasing gain in S-band. As a result the available lasing wavelength is extended toward the shorter wavelength of the gain bandwidth. The optimized erbium-doped fiber length, output coupling ratio and pumping laser power have been obtained through experimental study. This ring fiber laser has simple configuration, low threshold, flat laser spectral distribution and high signal-to-ASE-noise ratio. The laser will have many potential applications in fiber sensor wavelength interrogation, high-resolution spectroscopy and fiber optic communications

  12. Free electron laser and microwave instability interplay in a storage ring

    Directory of Open Access Journals (Sweden)

    G. L. Orlandi

    2004-06-01

    Full Text Available Collective effects, such as the microwave instability, influence the longitudinal dynamics of an electron beam in a storage ring. In a storage ring free electron laser (FEL they can compete with the induced beam heating and thus be treated as a further concomitant perturbing source of the beam dynamics. Bunch length and energy spread measurements, carried out at the Super-ACO storage ring, can be correctly interpreted according to a broad-band impedance model. Quantitative estimations of the relative role that is played by the microwave instability and the laser heating in shaping the beam longitudinal dynamics have been obtained by the analysis of the equilibrium laser power. It has been performed in terms of either a theoretical limit, implemented with the measured beam longitudinal characteristics, or the numerical results obtained by a macroparticle tracking code, which includes the laser pulse propagation. Such an analysis, carried out for different operating points of the Super-ACO storage ring FEL, indicates that the laser heating counteracts the microwave instability.

  13. Magnetized jet creation using a ring laser and applications

    Science.gov (United States)

    Liang, Edison; Gao, Ian; Lu, Yingchao; Ji, Hantao; Follett, Russ; Froula, Dustin; Tzeferacos, Petros; Lamb, Donald; Bickel, Andrew; Sio, Hong; Li, Chi Kiang; Petrasso, Richard; Wei, Mingsheng; Fu, Wen; Han, Lily

    2017-10-01

    We have recently demonstrated a new robust platform of magnetized jet creation using 20 OMEGA beams to form a hollow ring. We will present the latest experimental results and their theoretical interpretation, and explore potential applications to laboratory astrophysics, fundamental plasma physics and other areas. We will also discuss the scaling of this platform to future NIF experiments.

  14. Results and analysis of free-electron-laser oscillation in a high-energy storage ring

    International Nuclear Information System (INIS)

    Couprie, M.E.; Velghe, M.; Prazeres, R.; Jaroszynski, D.; Billardon, M.

    1991-01-01

    A storage-ring free-electron laser at Orsay has been operating since 1989 in the visible wavelength range. In contrast with previous experiments, it operates with positrons and at higher energies (600--800 MeV), with the storage ring Super-ACO (ACO denotes Anneau de Collisions d'Orsay). The optical gain, the laser power, the transverse profile, and the macrotemporal structure of the laser are analyzed. In particular, we show that the gain matrix possesses many off-diagonal elements, which results in lasing on a combination of noncylindrical Gaussian modes. The eigenmode of the laser oscillation is a combination of one or two main Gaussian modes and several higher-order modes, which results in most of the power being extracted in these modes

  15. Dynamics and control of the GyroPTO wave energy point absorber under sea waves

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R.K.; Basu, Biswajit

    2017-01-01

    The Gyroscopic Power Take-Off (GyroPTO) wave energy point absorber has the operational principle somewhat similar to the so-called gyroscopic hand wrist exerciser. Inside the float of GyroPTO, there is a mechanical system made up of a spinning flywheel with its spin axis in rolling contact...... to a ring. At certain conditions, the ring starts to rotate at a frequency equal to the excitation angular frequency. In this synchronized state, the generator is running at almost constant speed and the generated power becomes constant. In this paper, theoretical modeling of the GyroPTO device is carried...... out based on analytical rigid body dynamics, and a 3-DOF nonlinear model is established. Simulation results show that synchronization of the device is maintained under harmonic sea wave, but is lost easily under non-harmonic sea waves.To overcome this problem, a magnetic coupling mechanism is added...

  16. Studies of Lifetimes in an Ion Storage Ring Using Laser Technique

    International Nuclear Information System (INIS)

    Rostohar, Danijela; Derkatch, Anna; Hartman, Henrik; Norlin, Lars-Olov; Royen, Peder; Schef, Peter; Mannervik, Sven

    2003-01-01

    The laser-probing method for lifetime measurements of metastable levels, performed by applying the Fast Ion Beam Laser (FIBLAS) method to ions stored in a storage ring, has been developed by the Stockholm group. Recently, we have applied this method to lifetime measurements of close lying metastable levels. In this paper we discuss experimental studies of ions with complex structure and present the first experimentally obtained lifetimes of selected metastable levels in complex systems as Fe + , Eu + and La + .

  17. The theoretical and numerical models of the novel and fast tunable semiconductor ring laser

    Science.gov (United States)

    Zhu, Jiangbo; Zhang, Junwen; Chi, Nan; Yu, Siyuan

    2011-01-01

    Fast wavelength-tunable semiconductor lasers will be the key components in future optical packet switching networks. Especially, they are of great importance in the optical network nodes: transmitters, optical wavelength-routers, etc. In this paper, a new scheme of a next-generation fast tunable ring laser was given. Tunable lasers in this design have better wavelength tunability compared with others, for they are switched faster in wavelength and simpler to control with the injecting light from an external distributed Bragg-reflector(DBR). Then some discussion of the waveguide material system and coupler design of the ring laser were given. And we also derived the multimode rate equations corresponding to this scheme by analyzing some characteristics of the semiconductor ring cavity, directionality, nonlinear mode competition, optical injection locking, etc. We did MatLab simulation based on the new rate equations to research the process of mode competition and wavelength switching in the laser, and achieved the basic functions of a tunable laser. Finally some discussion of the impact of several key parameters was given.

  18. Demonstration of frequency control and CW diode laser injection control of a titanium-doped sapphire ring laser with no internal optical elements

    Science.gov (United States)

    Bair, Clayton H.; Brockman, Philip; Hess, Robert V.; Modlin, Edward A.

    1988-01-01

    Theoretical and experimental frequency narrowing studies of a Ti:sapphire ring laser with no intracavity optical elements are reported. Frequency narrowing has been achieved using a birefringent filter between a partially reflecting reverse wave suppressor mirror and the ring cavity output mirror. Results of CW diode laser injection seeding are reported.

  19. GINGER (Gyroscopes IN General Relativity), a ring lasers array to measure the Lense-Thirring effect

    Science.gov (United States)

    Di Virgilio, Angela D. V.

    The purpose of the GINGER is to perform the first test of general relativity (not considering the gravitational redshift measurements) in a terrestrial laboratory, using light as a probe. The experiment will complement the ones in space, performed or under way, with an entirely different technique and at a far lower cost. The methodology is based on ring-lasers, which are extremely accurate rotation sensors and can not only sense purely kinematical rotations (Sagnac effect accounting for the Earth rotation, polar motion of the terrestrial axis, local rotational movements of the laboratory due to the Earth crust dynamics...), but also general relativistic contributions such as the de Sitter effect (coupling between the gravito-electric field of the earth and the kinematical rotation) and the Lense-Thirring effect (inertial frame dragging due to the angular momentum of the earth). In order to reveal the latter effects, ring-laser response must be improved to be able to measure the effective rotation vector (kinematic plus GR terms) with an accuracy of 1 part in 109 or better. This is a challenging technological aspect, which however has been accurately taken into account by designing a system of ring lasers that will be implemented in this project. A ring laser have been installed inside the underground laboratory of GranSasso, with the purpose to see if an underground location is the right choice for GINGER. The apparatus and the preliminary results will be discussed.

  20. Self-injection locking of the DFB laser through an external ring fiber cavity: Polarization behavior

    Directory of Open Access Journals (Sweden)

    J.L. Bueno Escobedo

    Full Text Available We study stability of self-injection locking realized with DFB laser coupled with an external fiber optic ring cavity. Polarization behavior of the radiation circulating in the feedback loop is reported. Two regimes of mode hopping have been observed; one of them is accompanied by polarization bistability involving two orthogonal polarization states. Keywords: Self-injection locking, Polarization, Optical fiber

  1. Stimulated emission in a solid-state ring laser with an SBS mirror

    Energy Technology Data Exchange (ETDEWEB)

    Barashkov, M.S.; Bel' diugin, I.M.; Zolotarev, M.V.; Krymskii, M.I.; Oshkin, S.P.

    1990-06-01

    Experimental data are presented on a solid-state ring laser with an SBS mirror in the case of the initiation of stimulated emission by a series of pulses 200-300 ns in duration at a wavelength of 1.06 micron. It is shown that this laser can be suitable for the development of a laser source with radiation parameters (energy and transverse and temporal structure) that are controlled by an external signal. It is also suitable for the development of a low-threshold phase-conjugating mirror. 5 refs.

  2. Stimulated emission in a solid-state ring laser with an SBS mirror

    Science.gov (United States)

    Barashkov, M. S.; Bel'Diugin, I. M.; Zolotarev, M. V.; Krymskii, M. I.; Oshkin, S. P.

    1990-06-01

    Experimental data are presented on a solid-state ring laser with an SBS mirror in the case of the initiation of stimulated emission by a series of pulses 200-300 ns in duration at a wavelength of 1.06 micron. It is shown that this laser can be suitable for the development of a laser source with radiation parameters (energy and transverse and temporal structure) that are controlled by an external signal. It is also suitable for the development of a low-threshold phase-conjugating mirror.

  3. Ring shaped laser for tape winding of an endless tube

    NARCIS (Netherlands)

    Leonardus, Lucky

    2012-01-01

    AFPT is a start-up company that provides laser-assisted technology for the production of a pressurized component such as tube, pressure vessel, etc made from or strengthened by fiber reinforced plastic (FRP) tape. The tape is laid precisely by a machine head (connected to a robot), melted with a

  4. Erbium-doped fiber ring laser with SMS modal interferometer for hydrogen sensing

    Science.gov (United States)

    Zhang, Ya-nan; Zhang, Lebin; Han, Bo; Peng, Huijie; Zhou, Tianmin; Lv, Ri-qing

    2018-06-01

    A hydrogen sensor based on erbium-doped fiber ring laser with modal interferometer is proposed. A single mode-multimode-single mode (SMS) modal interferometer structure coated with Pd/WO3 film is used as the sensing head, due to that it is easy to be fabricated and low cost. The sensing structure is inserted into an erbium-doped fiber ring laser in order to solve the problem of spectral confusion and improve the detection limit of the hydrogen sensor based on the SMS modal interferometer. The SMS sensing structure is acted as a fiber band-pass filter. When hydrogen concentration around the sensor is changed, it will induce the refractive index and strain variations of the Pd/WO3 film, and then shift the resonant spectrum of the SMS modal interferometer as well as the laser wavelength of the fiber ring laser. Therefore, the hydrogen concentration can be measured by monitoring the wavelength shift of the laser, which has high intensity and narrow full width half maximum. Experimental results demonstrate that the sensor has high sensitivity of 1.23 nm/%, low detection limit of 0.017%, good stability and excellent repeatability.

  5. Alignment of Duke free electron laser storage ring and optical beam delivery system

    International Nuclear Information System (INIS)

    Emamian, M.; Hower, N.

    1999-01-01

    Duke Free Electron Laser Laboratory (DFELL) hosts a 1.1 GeV electron beam storage ring facility which is capable of generating beams in the range of nearly monochromatic gamma rays to high peak power infra red (IR) laser. In this report specifications and procedures for alignment of OK-4 /Duke storage ring FEL wiggler and optical cavity mirrors will be discussed. The OK-4 FEL lasing has demonstrated a series of world record in the last few years. In August of this year the OK-4 FEL successfully commissioned to laser at 193.7 nm. Also in this article, alignment of the γ-ray and UV optical beam delivery system that is currently in progress will be described. (authors)

  6. Laser cooling and ion beam diagnosis of relativistic ions in a storage ring

    International Nuclear Information System (INIS)

    Schroeder, S.

    1990-08-01

    Particle accelerator and storage ring technology has reached an advanced state, so that different heavy ion storage rings are coming into operation by now, capable of storing even fully stripped ions up to U 92+ . The main purpose of these machines are the accumulation of ions and the ability of improving the beam quality, that is the phase space density of the stored beams. This beam cooling is done successfully by the well established stochastic and electron cooling techniques. A new cooling method, the laser cooling, is taken over from atomic beam and ion trap experiments, where it has yielded extremely low temperatures of atomic samples. As a canditate at storage rings 7 Li + ions are stored in the Heidelberg TSR at 13.3 MeV. The ion beam properties of the metastable fraction like momentum spread, storage time and the influence of residual gas scattering are investigated by colinear laser spectroscopy in the experimental section of the TSR. An optical pumping experiment using two dye laser systems yields information about ion kinematics and velocity mixing processes in the ring. Lifetimes in the order of 100 ms for velocity classes marked in this way show that laser cooling can be applied to the stored 7 Li + beam. In an experimental situation of two strong counterpropagating laser beams, both tuned near resonance, a dramatic reduction of the ion beam momentum spread is observed. With a special geometrical control of laser and ion beam the longitudinal beam temperature is reduced from 260 K to at least 3 K with very high collection efficiency. (orig./HSI) [de

  7. Generation of single-frequency tunable green light in a coupled ring tapered diode laser cavity

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    in the broad wavelength range from 1049 nm to 1093 nm and the beam propagation factor is improved from M2 = 2.8 to below 1.1. The laser frequency is automatically locked to the cavity resonance frequency using optical feedback. Furthermore, we show that this adaptive external cavity approach leads to efficient......We report the realization of a tapered diode laser operated in a coupled ring cavity that significantly improves the coherence properties of the tapered laser and efficiently generates tunable light at the second harmonic frequency. The tapered diode laser is tunable with single-frequency output...... frequency doubling. More than 500 mW green output power is obtained by placing a periodically poled LiNbO3 crystal in the external cavity. The single frequency green output from the laser system is tunable in the 530 nm to 533 nm range limited by the LiNbO3 crystal. The optical to optical conversion...

  8. [Alternatives to femtosecond laser technology: subnanosecond UV pulse and ring foci for creation of LASIK flaps].

    Science.gov (United States)

    Vogel, A; Freidank, S; Linz, N

    2014-06-01

    In refractive corneal surgery femtosecond (fs) lasers are used for creating LASIK flaps, dissecting lenticules and for astigmatism correction by limbal incisions. Femtosecond laser systems are complex and expensive and cutting precision is compromised by the large focal length associated with the commonly used infrared (IR) wavelengths. Based on investigations of the cutting dynamics, novel approaches for corneal dissection using ultraviolet A (UVA) picosecond (ps) pulses and ring foci from vortex beams are presented. Laser-induced bubble formation in corneal stroma was investigated by high-speed photography at 1-50 million frames/s. Using Gaussian and vortex beams of UVA pulses with durations between 200 and 850 ps the laser energy needed for easy removal of flaps created in porcine corneas was determined and the quality of the cuts by scanning electron microscopy was documented. Cutting parameters for 850 ps are reported also for rabbit eyes. The UV-induced and mechanical stress were evaluated for Gaussian and vortex beams. The results show that UVA picosecond lasers provide better cutting precision than IR femtosecond lasers, with similar processing times. Cutting energy decreases by >50 % when the laser pulse duration is reduced to 200 ps. Vortex beams produce a short, donut-shaped focus allowing efficient and precise dissection along the corneal lamellae which results in a dramatic reduction of the absorbed energy needed for cutting and of mechanical side effects as well as in less bubble formation in the cutting plane. A combination of novel approaches for corneal dissection provides the option to replace femtosecond lasers by compact UVA microchip laser technology. Ring foci are also of interest for femtosecond laser surgery, especially for improved lenticule excision.

  9. Numerical analysis of Yb.sup.3+./sup. -sensitized Er.sup.3+./sup. -doped fibre-ring laser

    Czech Academy of Sciences Publication Activity Database

    Karásek, Miroslav; Kaňka, Jiří

    1998-01-01

    Roč. 145, č. 2 (1998), s. 133-137 ISSN 1350-2433 R&D Projects: GA AV ČR IAA267403 Keywords : optical fibre s * fibre lasers * numerical analysis * modelling * ring lasers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.628, year: 1998

  10. Improving solar-pumped laser efficiency by a ring-array concentrator

    Science.gov (United States)

    Tibúrcio, Bruno D.; Liang, Dawei; Almeida, Joana; Matos, Rodrigo; Vistas, Cláudia R.

    2018-01-01

    We report here a compact pumping scheme for achieving large improvement in collection and conversion efficiency of a Nd:YAG solar-pumped laser by an innovative ring-array solar concentrator. An aspheric fused silica lens was used to further concentrate the solar radiation from the focal region of the 1.5-m-diameter ring-array concentrator to a 5.0-mm-diameter, 20-mm-length Nd:YAG single-crystal rod within a conical-shaped pump cavity, enabling multipass pumping to the laser rod. 67.3-W continuous-wave solar laser power was numerically calculated, corresponding to 38.2-W / m2 solar laser collection efficiency, being 1.22 and 1.27 times more than the state-of-the-art records by both heliostat-parabolic mirror and Fresnel lens solar laser systems, respectively. 4.0% conversion efficiency and 0.021-W brightness figure of merit were also numerically obtained, corresponding to 1.25 and 1.62 times enhancement over the previous records, respectively. The influence of tracking error on solar laser output power was also analyzed.

  11. A single-frequency, ring cavity Tm-doped fiber laser based on a CMFBG filter

    International Nuclear Information System (INIS)

    Li, Qi; Yan, Fengping; Peng, Wanjing; Liu, Shuo; Feng, Ting; Tan, Siyu; Liu, Peng

    2013-01-01

    A single-frequency (SF), continuous-wave (CW), ring cavity Tm-doped fiber laser has been proposed and demonstrated. A chirped moiré fiber grating (CMFBG) was used as an ultra-narrow filter in the laser cavity to ensure SF operation. When the launched pump power was fixed at 2 W, this proposed laser was in stable operation with a central wavelength, optical signal-to-noise ratio, and full width at half maximum of 1942.8140 nm, 47 dB, and 0.0522 nm, respectively, with a resolution of 0.05 nm. The maximum output power of this laser is 95 mW, a higher output power is restricted by the optical circulator that is used in the cavity. The SF operation of this laser was confirmed by the self-homodyne method. To the best of the authors’ knowledge, this is the first report on an SF, CW, ring cavity Tm-doped fiber laser with a CMFBG filter. (letter)

  12. UV laser ablation of silicon carbide ring surfaces for mechanical seal applications

    Science.gov (United States)

    Daurelio, Giuseppe; Bellosi, Alida; Sciti, Diletta; Chita, Giuseppe; Allegretti, Didio; Guerrini, Fausto

    2000-02-01

    Silicon carbide ceramic seal rings are treated by KrF excimer laser irradiation. Surface characteristics, induced by laser treatment, depend upon laser fluence, the number of laser pulses, their energy and frequency, the rotation rate of the ring and the processing atmosphere. It was ascertained that silicon carbide has to be processed under an inert atmosphere to avoid surface oxidation. Microstructural analyses of surface and cross section of the laser processed samples showed that the SiC surface is covered by a scale due to the melting/resolidification processes. At high fluence there are no continuous scales on the surfaces; materials is removed by decomposition/vaporization and the ablation depth is linearly dependent on the number of pulses. Different surface morphologies are observed. The evolution of surface morphology and roughness is discussed with reference to compositions, microstructure and physical and optical properties of the ceramic material and to laser processing parameters. Preliminary results on tribological behavior of the treated seals are reported.

  13. Optical feedback in dfb quantum cascade laser for mid-infrared cavity ring-down spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Terabayashi, Ryohei, E-mail: terabayashi.ryouhei@h.mbox.nagoya-u.ac.jp; Sonnenschein, Volker, E-mail: volker@nagoya-u.jp; Tomita, Hideki, E-mail: tomita@nagoya-u.jp; Hayashi, Noriyoshi, E-mail: hayashi.noriyoshi@h.mbox.nagoya-u.ac.jp; Kato, Shusuke, E-mail: katou.shuusuke@f.mbox.nagoya-u.ac.jp; Jin, Lei, E-mail: kin@nuee.nagoya-u.ac.jp; Yamanaka, Masahito, E-mail: yamanaka@nuee.nagoya-u.ac.jp; Nishizawa, Norihiko, E-mail: nishizawa@nuee.nagoya-u.ac.jp [Nagoya University, Department of Quantum Engineering, Graduate School of Engineering (Japan); Sato, Atsushi, E-mail: atsushi.sato@sekisui.com; Nozawa, Kohei, E-mail: kohei.nozawa@sekisui.com; Hashizume, Kenta, E-mail: kenta.hashizume@sekisui.com; Oh-hara, Toshinari, E-mail: toshinari.ohara@sekisui.com [Sekisui Medical Co., Ltd., Drug Development Solutions Center (Japan); Iguchi, Tetsuo, E-mail: t-iguchi@nucl.nagoya-u.ac.jp [Nagoya University, Department of Quantum Engineering, Graduate School of Engineering (Japan)

    2017-11-15

    A simple external optical feedback system has been applied to a distributed feedback quantum cascade laser (DFB QCL) for cavity ring-down spectroscopy (CRDS) and a clear effect of feedback was observed. A long external feedback path length of up to 4m can decrease the QCL linewidth to around 50kHz, which is of the order of the transmission linewidth of our high finesse ring-down cavity. The power spectral density of the transmission signal from high finesse cavity reveals that the noise at frequencies above 20kHz is reduced dramatically.

  14. Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing.

    Science.gov (United States)

    Wang, Qiang; Wang, Zhen; Chang, Jun; Ren, Wei

    2017-06-01

    We demonstrated a novel trace gas sensing method based on fiber-ring laser intracavity photoacoustic spectroscopy. This spectroscopic technique is a merging of photoacoustic spectroscopy (PAS) with a fiber-ring cavity for sensitive and all-fiber gas detection. A transmission-type PAS gas cell (resonant frequency f0=2.68  kHz) was placed inside the fiber-ring laser to fully utilize the intracavity laser power. The PAS signal was excited by modulating the laser wavelength at f0/2 using a custom-made fiber Bragg grating-based modulator. We used this spectroscopic technique to detect acetylene (C2H2) at 1531.6 nm as a proof of principle. With a low Q-factor (4.9) of the PAS cell, our sensor achieved a good linear response (R2=0.996) to C2H2 concentration and a minimum detection limit of 390 ppbv at 2-s response time.

  15. Hybrid integrated single-wavelength laser with silicon micro-ring reflector

    Science.gov (United States)

    Ren, Min; Pu, Jing; Krishnamurthy, Vivek; Xu, Zhengji; Lee, Chee-Wei; Li, Dongdong; Gonzaga, Leonard; Toh, Yeow T.; Tjiptoharsono, Febi; Wang, Qian

    2018-02-01

    A hybrid integrated single-wavelength laser with silicon micro-ring reflector is demonstrated theoretically and experimentally. It consists of a heterogeneously integrated III-V section for optical gain, an adiabatic taper for light coupling, and a silicon micro-ring reflector for both wavelength selection and light reflection. Heterogeneous integration processes for multiple III-V chips bonded to an 8-inch Si wafer have been developed, which is promising for massive production of hybrid lasers on Si. The III-V layer is introduced on top of a 220-nm thick SOI layer through low-temperature wafer-boning technology. The optical coupling efficiency of >85% between III-V and Si waveguide has been achieved. The silicon micro-ring reflector, as the key element of the hybrid laser, is studied, with its maximized reflectivity of 85.6% demonstrated experimentally. The compact single-wavelength laser enables fully monolithic integration on silicon wafer for optical communication and optical sensing application.

  16. Spatial-mode switchable ring fiber laser based on low mode-crosstalk all-fiber mode MUX/DEMUX

    Science.gov (United States)

    Ren, Fang; Yu, Jinyi; Wang, Jianping

    2018-05-01

    We report an all-fiber ring laser that emits linearly polarized (LP) modes based on the intracavity all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). Multiple LP modes in ring fiber laser are generated by taking advantage of mode MUX/DEMUX. The all-fiber mode MUX/DEMUX are composed of cascaded mode-selective couplers (MSCs). The output lasing mode of the ring fiber laser can be switched among the three lowest-order LP modes by employing combination of a mode MUX and a simple N × 1 optical switch. The slope efficiencies, optical spectra and mode profiles are measured.

  17. Storage ring free electron laser, pulse propagation effects and microwave type instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, G.; Mezi, L.; Renieri, A. [ENEA, Divisione Fisica Applicata, Centro Ricerche Frascati, Frascati, RM (Italy); Migliorati, M. [Rome Univ. La Sapienza, Rome (Italy). Dipt. di Energetica

    2000-07-01

    It has been developed a dynamical model accounting for the storage Ring Free Electron Laser evolution including pulse propagation effects and e-beam instabilities of microwave type. It has been analyzed the general conditions under which the on set of the laser may switch off the instability and focus everybody attention on the interplay between cavity mismatch, laser pulsed behavior and e-beam instability dynamics. Particular attention is also devoted to the laser operation in near threshold conditions, namely at an intracavity level just enough to counteract the instability, that show in this region new and interesting effects arises. [Italian] Si sviluppa un modello dinamico per la descrizione dell'evoluzione di un laser ad elettroni liberi in anello di accumulazione con l'inclusione di effetti di propagazione d'impulso e di instabilita' a microonda. Si analizzano le condizioni per le quali l'instaurarsi dell'operazione laser puo' spegnere l'instabilita' e si focalizza l'attenzione sulla connessione fra desincronismo della cavita', comportamento pulsato del laser e comportamento instabile del fascio di elettroni: si analizza in particolare l'operazione laser quando il guadagno e' prossimo alle perdite della cavita' e si osservano effetti particolarmente interessanti.

  18. Laser spectroscopy with a cooler ring at the ESR (GSI) and the TSR (MPI Heidelberg)

    International Nuclear Information System (INIS)

    Kuehl, T.; Borneis, S.; Greten, G.; Marx, D.; Neumann, R.; Schroeder, S.; Grieser, R.; Hoog, I.; Huber, G.; Klaft, I.; Klein, R.; Merz, P.; Balykin, V.; Bock, M.; Ellert, C.; Forck, P.; Grieser, M.; Grimm, R.; Habs, D.; Miesner, H.J.; Petrich, W.; Wanner, B.; Becker, C.; Schwalm, D.; Wolf, A.

    1992-01-01

    At the TSR cooler ring at Heidelberg, laser studies were carried out using singly charged lithium and beryllium ions. Laser spectroscopy of relativistic lithium ions (υ = 0.04c) yielded signals with a narrow linewidth, suitable for an experimental test of special relativity. A dramatic reduction of the beam temperature, as defined by the longitudinal velocity spread, was achieved via laser cooling in both cases. At the ion energies available at ESR it will become possible to prepare and store bare ions up to U 92+ . Electron cooling was successfully demonstrated for hydrogen-like Bi 82+ ions, where a laser experiment is scheduled to study the ground-state hyperfine splitting. (orig.)

  19. Modeling multipulsing transition in ring cavity lasers with proper orthogonal decomposition

    International Nuclear Information System (INIS)

    Ding, Edwin; Shlizerman, Eli; Kutz, J. Nathan

    2010-01-01

    A low-dimensional model is constructed via the proper orthogonal decomposition (POD) to characterize the multipulsing phenomenon in a ring cavity laser mode locked by a saturable absorber. The onset of the multipulsing transition is characterized by an oscillatory state (created by a Hopf bifurcation) that is then itself destabilized to a double-pulse configuration (by a fold bifurcation). A four-mode POD analysis, which uses the principal components, or singular value decomposition modes, of the mode-locked laser, provides a simple analytic framework for a complete characterization of the entire transition process and its associated bifurcations. These findings are in good agreement with the full governing equation.

  20. Electric field detection of coherent synchrotron radiation in a storage ring generated using laser bunch slicing

    International Nuclear Information System (INIS)

    Katayama, I.; Shimosato, H.; Bito, M.; Furusawa, K.; Adachi, M.; Zen, H.; Kimura, S.; Katoh, M.; Shimada, M.; Yamamoto, N.; Hosaka, M.; Ashida, M.

    2012-01-01

    The electric field of coherent synchrotron radiation (CSR) generated by laser bunch slicing in a storage ring has been detected by an electro-optic sampling method. The gate pulses for sampling are sent through a large-mode-area photonic-crystal fiber. The observed electric field profile of the CSR is in good agreement with the spectrum of the CSR observed using Fourier transform far-infrared spectrometry, indicating good phase stability in the CSR. The longitudinal density profiles of electrons modulated by laser pulses were evaluated from the electric field profile.

  1. Dynamic synchronisation regions of a ring laser with the use of a periodic support

    International Nuclear Information System (INIS)

    Kuryatov, V N; Sudakov, V F

    2008-01-01

    The method is proposed for calculating dynamic synchronisation regions of a ring laser with a periodic frequency support of a special type. The proposed algorithm in essence taking into account the special type of the support allows the search for minimal widths of regions when the support parameters change. The widths of the regions are calculated as an example for the case of the harmonic carrier modulation as a harmonic envelope (three-frequency support) and an envelope of the 'soft' meander type (multifrequency support). (lasers, active media)

  2. The properties of Ge quantum rings deposited by pulsed laser deposition.

    Science.gov (United States)

    Ma, Xiying

    2010-07-01

    SiGe ring-shape nanostructures have attracted much research interest because of the interesting morphology, mechanical, and electromagnetic properties. In this paper, we present the planar Ge nanorings with well-defined sharp edges self-assembled on Si (100) matrix prepared with pulsed laser deposition (PLD) in the present of Ar gas. The transforming mechanism of the droplets is discussed, which a dynamic deformation model has been developed to simulate the self-transforming process of the droplets. The rings were found to be formed in two steps: from droplets to cones and from cones to rings via an elastic self-deforming process, which were likely to be driven by the lateral strain of Ge/Si layers and the surface tension.

  3. Rapid-swept CW cavity ring-down laser spectroscopy for carbon isotope analysis

    International Nuclear Information System (INIS)

    Tomita, Hideki; Watanabe, Kenichi; Takiguchi, Yu; Kawarabayashi, Jun; Iguchi, Tetsuo

    2006-01-01

    With the aim of developing a portable system for an in field isotope analysis, we investigate an isotope analysis based on rapid-swept CW cavity ring-down laser spectroscopy, in which the concentration of a chemical species is derived from its photo absorbance. Such a system can identify the isotopomer and still be constructed as a quite compact system. We have made some basic experimental measurements of the overtone absorption lines of carbon dioxide ( 12 C 16 O 2 , 13 C 16 O 2 ) by rapid-swept cavity ring-down spectroscopy with a CW infrared diode laser at 6,200 cm -1 (1.6 μm). The isotopic ratio has been obtained as (1.07±0.13)x10 -2 , in good agreement with the natural abundance within experimental uncertainty. The detection sensitivity in absorbance has been estimated to be 3x10 -8 cm -1 . (author)

  4. A beamline for x-ray laser spectroscopy at the experimental storage ring at GSI

    International Nuclear Information System (INIS)

    Winters, D F A; Bagnoud, V; Ecker, B; Eisenbarth, U; Götte, S; Kuehl, Th; Stöhlker, Th; Zielbauer, B; Neumayer, P; Spielmann, C

    2013-01-01

    By combining an x-ray laser (XRL) with a heavy-ion storage ring, precision laser spectroscopy of the fine-structure splitting in heavy Li-like ions will be possible. An initial study has been performed to determine the feasibility of a first experiment at the experimental storage ring at GSI in Darmstadt, which also has great potential for the experiments planned for FAIR. We plan to perform a unique, direct and precise measurement of a fine-structure transition in a heavy Li-like ion. Such a measurement will test state-of-the-art atomic structure calculations in strong fields. This endeavour will require that the existing infrastructure is complemented by a dedicated beamline for the XRL. In this paper, we will discuss the details of this project and outline a proof-of-principle experiment. (paper)

  5. Electron beam properties and impedance characterization for storage rings used for free electron lasers

    International Nuclear Information System (INIS)

    Dattoli, G.; Mezi, L.; Renieri, A.; Migliorati, M.; Walker, R.

    2000-01-01

    Good electron beam qualities and stability are the crucial features of Storage Rings dedicated to synchrotron radiation sources or to Free Electron Laser. Most of these characteristics depends on the coupling of the e-beam with the machine environment, which can be in turn modelled in terms of a characteristic impedance, whose absolute value and structure can be used to specify both the stability (longitudinal and transverse) of the beam and its qualities (energy spread, bunch length, peak current ...). In this paper are considered two specific examples of Storage Rings used for FEL operation and analyze their performances by means of semi analytical and numerical methods. The analysis is aimed at clarifying the dependence of beam energy spread and bunch length on beam current and at providing a set of parameters useful for the optimization of Free Electron Laser or synchrotron radiation sources [it

  6. Present status of storage ring free electron laser experiment at ETL

    International Nuclear Information System (INIS)

    Yamazaki, T.; Nakamura, T.; Tomimasu, T.; Sugiyama, S.; Noguchi, T.

    1988-01-01

    Outline is described of the present status of the ETL storage-ring free electron laser project. The structure and the performance of the ETL-type transverse optical klystron are given. A modification of the dispersive section has decreased the degradation of the shape of the spontaneous-emission spectrum due to energy spread of the electron beam. Relevant parameters of the stored beam are presented. Measurement of the optical-cavity loss is under way. (author)

  7. Strong-field physics using lasers and relativistic heavy ions at the high-energy storage ring HESR at FAIR

    International Nuclear Information System (INIS)

    Kuehl, T; Bagnoud, V; Stoehlker, T; Litvinov, Y; Winters, D F A; Zielbauer, B; Backe, H; Spielmann, Ch; Seres, J; Tünnermann, A; Neumayer, P; Aurand, B; Namba, S; Zhao, H Y

    2014-01-01

    The HESR high-energy ion storage ring at FAIR will provide unprecedented possibilities for strong-field physics using novel laser sources on relativistic heavy ions. An overview on the planning will be given.

  8. The electron beam dynamics simulation in the laser-electron storage ring involving compton and intrabeam scattering

    International Nuclear Information System (INIS)

    Gladkikh, P.I.; Telegin, Yu.N.; Karnaukhov, I.M.

    2002-01-01

    The feasibility of the development of intense X-ray sources based on Compton scattering in laser-electron storage rings is discussed. The results of the electron beam dynamics simulation involving Compton and intrabeam scattering are presented

  9. The electron beam dynamics simulation in the laser-electron storage ring involving compton and intrabeam scattering

    CERN Document Server

    Gladkikh, P I; Karnaukhov, I M

    2002-01-01

    The feasibility of the development of intense X-ray sources based on Compton scattering in laser-electron storage rings is discussed. The results of the electron beam dynamics simulation involving Compton and intrabeam scattering are presented.

  10. A new systematic calibration method of ring laser gyroscope inertial navigation system

    Science.gov (United States)

    Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Xiong, Zhenyu; Long, Xingwu

    2016-10-01

    Inertial navigation system has been the core component of both military and civil navigation systems. Before the INS is put into application, it is supposed to be calibrated in the laboratory in order to compensate repeatability error caused by manufacturing. Discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed theories of error inspiration and separation in detail and presented a new systematic calibration method for ring laser gyroscope inertial navigation system. Error models and equations of calibrated Inertial Measurement Unit are given. Then proper rotation arrangement orders are depicted in order to establish the linear relationships between the change of velocity errors and calibrated parameter errors. Experiments have been set up to compare the systematic errors calculated by filtering calibration result with those obtained by discrete calibration result. The largest position error and velocity error of filtering calibration result are only 0.18 miles and 0.26m/s compared with 2 miles and 1.46m/s of discrete calibration result. These results have validated the new systematic calibration method and proved its importance for optimal design and accuracy improvement of calibration of mechanically dithered ring laser gyroscope inertial navigation system.

  11. Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers

    International Nuclear Information System (INIS)

    Wójcik, Aleksander K.; Belyanin, Alexey; Malara, Pietro; Blanchard, Romain; Mansuripur, Tobias S.; Capasso, Federico

    2013-01-01

    We propose a robust and reliable method of active mode locking of mid-infrared quantum cascade lasers and develop its theoretical description. Its key element is the use of an external ring cavity, which circumvents fundamental issues undermining the stability of mode locking in quantum cascade lasers. We show that active mode locking can give rise to the generation of picosecond pulses and phase-locked frequency combs containing thousands of the ring cavity modes

  12. Micro-Fluidic Dye Ring Laser - Experimental Tuning of the Wavelength and Numerical Simulation of the Cavity Modes

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Niels Asger

    2006-01-01

    We demonstrate wavelength tuning of a micro-fluidic dye ring laser. Wavelength tunability is obtained by controlling the liquid dye concentration. The device performance is modelled by FEM simulations supporting a ray-tracing view.......We demonstrate wavelength tuning of a micro-fluidic dye ring laser. Wavelength tunability is obtained by controlling the liquid dye concentration. The device performance is modelled by FEM simulations supporting a ray-tracing view....

  13. 5-GHz passively mode-locked quantum dot ring laser diode at 1.5 μm

    NARCIS (Netherlands)

    Heck, M.J.R.; Renault, A.; Bente, E.A.J.M.; Oei, Y.S.; Smit, M.K.; Eikema, K.S.E.; Ubachs, W.; Anantathanasarn, S.; Nötzel, R.

    2008-01-01

    In this paper we present the first observation of passive mode-locking in a quantum dot (QD) ring laser operating at wavelengths around 1.5 µm. The device consists of an 18-mm long (electrically pumped) ring cavity, corresponding to a 5-GHz roundtrip frequency. The waveguide width is 2 µm. A

  14. Microscopic study on lasing characteristics of the UVSOR storage ring free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Hama, H. [Institute for Molecular Science, Okazaki (Japan)]|[Graduate Univ. for Advanced Stuides, Okazaki (Japan); Yamazaki, J.; Kinoshita, T. [Institute for Molecular Science, Okazaki (Japan)] [and others

    1995-12-31

    Characteristics of storage ring free electron laser (SRFEL) at a short wavelength region (UV and visible) has been studied at the UVSOR facility, Institute for Molecular Science. We have measured the laser power evolution by using a biplanar photodiode, and the micro-macro temporal structure of both the laser and the electron bunch with a dualsweep streak camera. The saturated energy of the laser micropulse in the gain-switching (Q-switching) mode has been measured as a function of the ring current. We have not observed a limitation of the output power yet within the beam current can be stored. We have analyzed the saturated micropulse energy based on a model of gain reduction due to the bunch-heating. The bunch-heating process seems to be very complicate. We derived time dependent gain variations from the shape of macropulse and the bunch length. Those two gain variations are almost consistent with each other but slightly different in detail. The gain may be not only simply reduced by the energy spread but also affected by the phase space rotation due to synchrotron oscillation of the electron bunch. As reported in previous issue, the lasing macropulse consists of a couple of micropulses that are simultaneously evolved. From high resolution two-dimensional spectra taken by the dual-sweep streak camera, we noticed considerable internal substructures of the laser micropulse in both the time distribution and the spectral shape. There are a couple of peaks separated with almost same distance in a optical bunch. Such substructure does not seem to result from statistical fluctuations of laser seeds. Although the origin of the substructure of macropulse is not dear at the present, we are going to discuss about SRFEL properties.

  15. Ion beam sputter coatings for laser technology

    Science.gov (United States)

    Ristau, Detlev; Gross, Tobias

    2005-09-01

    The initial motivation for the development of Ion Beam Sputtering (IBS) processes was the need for optical coatings with extremely low optical scatter losses for laser gyros. Especially, backscattering of the gyro-mirrors couples the directional modes in the ring resonator leading to the lock in effect which limits the sensitivity of the gyro. Accordingly, the first patent on IBS was approved for an aircraft company (Litton) in 1978. In the course of the rapid development of the IBS-concept during the last two decades, an extremely high optical quality could be achieved for laser coatings in the VIS- and NIR-spectral region. For example, high reflecting coatings with total optical losses below 1 ppm were demonstrated for specific precision measurement applications with the Nd:YAG-laser operating at 1.064 μm. Even though the high quality level of IBS-coatings had been confirmed in many applications, the process has not found its way into the production environment of most optical companies. Major restrictions are the relatively low rate of the deposition process and the poor lateral homogeneity of the coatings, which are related to the output characteristics of the currently available ion sources. In the present contribution, the basic principles of IBS will be discussed in the context of the demands of modern laser technology. Besides selected examples for special applications of IBS, aspects will be presented for approaches towards rapid manufacturing of coatings and the production of rugate filters on the basis of IBS-techniques.

  16. Reflective variable optical attenuators and fibre ring lasers for wavelength-division multiplexing systems

    Science.gov (United States)

    Liu, He Liang

    Wavelength division multiplexing (WDM) optical fibre system is an important enabling technology to fulfill the demands for bandwidth in the modern information age. The main objective of this project is to study novel devices with the potential to enhance the performance of WDM systems. In particular, a novel reflective variable optical attenuator (RVOA) used for dynamic gain equalization (DGE) and fibre lasers based on an entirely new type of erbium-doped fibres with ultrawide tuning range were investigated theoretically and experimentally. We proposed a new type of RVOA device which could be potentially integrated with arrayed waveguide grating (AWG) to reduce the cost of DGE substantially. Initially, fibre-based RVOAs, fabricated with optical fibre components such as fibre coupler and Faraday rotator mirror, were investigated theoretically and experimentally. Larger attenuation range up to 22 dB was realized for fibre coupler-based ROVA with a Faraday rotator mirror and its polarization-dependent loss is about 0.5 dB. Then polymeric waveguide-based RVOAs were investigated theoretically and experimentally. Using an epoxy Novolak resin as core material and an UV-cured resin (Norland's NOA61) as cladding material, a polymeric waveguide RVOA was successfully fabricated. The dynamic 15 dB attenuation range was achieved and the PDL was less than 0.2 dB. The measured insertion loss of the polymeric waveguide RVOA was too large (about 18 dB) and was mainly induced by coupling loss, material loss and poor alignment. In the second part of the study, fibre ring lasers with continuous wavelength tuning over wide wavelength range and fibre ring lasers with discrete wavelength tuning were investigated. Tunable lasers are important devices in WDM systems because they could be employed as reserved sources and therefore avoiding the need to stock large inventory of lasers to cover the ITU-wavelength grid. In this project, erbium ions doped bismuth oxide glass fibres instead of

  17. Photoinduced electric currents in ring-shaped molecules by circularly polarized laser pulses

    International Nuclear Information System (INIS)

    Nobusada, Katsuyuki; Yabana, Kazuhiro

    2007-01-01

    We have theoretically demonstrated that circularly polarized laser pulses induce electric currents and magnetic moments in ring-shaped molecules Na 10 and benzene. The time-dependent adiabatic local density approximation is employed for this purpose, solving the time-dependent Kohn-Sham equation in real space and real time. It has been found that the electric currents are induced efficiently and persist continuously even after the laser pulses were switched off provided the frequency of the applied laser pulse is in tune with the excitation energy of the electronic excited state with the dipole strength for each molecular system. The electric currents are definitely revealed to be a second-order nonlinear optical response to the magnitude of the electric field. The magnetic dipole moments inevitably accompany the ring currents, so that the molecules are magnetized. The production of the electric currents and the magnetic moments in the present procedure is found to be much more efficient than that utilizing static magnetic fields

  18. Controlling the optical field chaos in storage ring free-electron lasers

    International Nuclear Information System (INIS)

    Wang Wenjie

    1995-01-01

    The controlling of optical field chaos in a storage ring free-electron laser oscillator is discussed by using a phenomenal model. A novel method (which is called the 'beating method') of controlling chaos in a nonlinear dynamical system described by non-autonomous ordinary differential equations was developed. The result of theoretical analysis and numerical simulation shows that the optical field chaos in a storage ring free-electron laser oscillator can be suppressed and a periodic laser intensity can be obtained when a weak periodic control field is added to the optical cavity. The validity of this method of eliminating chaos is confirmed by the fact that the leading Lyapunov characteristic exponent of the system changes from a positive real number to a negative one. A further research is carried out, and it is found that only when the period of the control field equals to an integral multiple of that of the gain modulation in the optical cavity can the optical field chaos be suppressed. This means that the 'beating method' of controlling chaos is a kind of resonant method. A way to determine the 'best beating position' in the phase trajectory has also been obtained

  19. Single-Frequency Nd:YAG Ring Lasers with Corner Cube Prism

    Science.gov (United States)

    Wu, Ke-Ying; Yang, Su-Hui; Zhao, Chang-Ming; Wei, Guang-Hui

    2000-10-01

    We put forward another form of the non-planar ring lasers, in which the corner cube prism is the key element and the Nd:YAG crystal is used as a Porro prism to enclose the ring resonator. The phase shift due to the total internal reflections of the three differently orientated reflection planes of the corner cube prism, Faraday rotation in the Nd:YAG crystal placed in a magnetic field and the different output coupling in S and P polarization form an optical diode and enforce the single-frequency generating power. A round trip analysis of the polarization properties of the resonator is made by the evaluation of Jones matrix.

  20. Amplitude characteristics of a solid-state ring laser with active mode locking

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, E.M.; Klochan, E.L.; Lariontsev, E.G.

    1986-09-01

    A system of equations is obtained for the parameters of ultrashort light pulses (USLP) in a solid-state ring laser (SSRL) with periodic loss modulation. Allowance is made for the coupling between counterpropagating USLP due to backscattering in the modulator. The regime of counter-propagating wave frequency capture (CPWFC) is studied. It is shown that the coupling of counterpropagating waves due to backscattering at the modulator ends leads to the suppression of one of the counterpropagating waves during an increase in the detuning of the modulation frequency relative to its optimal value. The influence of rotation on the amplitude characteristics of an SSRL in the CPWFC regime is studied. 9 references.

  1. Photo excitation and laser detachment of C60 − anions in a storage ring

    DEFF Research Database (Denmark)

    Støchkel, Kristian; Andersen, Jens Ulrik

    2013-01-01

    (REMPED) has been repeated both at room temperature and with the trap cooled to liquid nitrogen temperature. However, wavelength dependence of the overlap of the strongly focused laser beam with the ion beam introduces distortions of the absorption spectrum. We have therefore applied a new method......, combining the IR light with a slightly delayed, powerful UV pulse (266 nm). After absorption of three UV photons, the ions decay by delayed (thermal) electron emission, and time spectra are recorded for varying wavelength. The fraction of ions heated by absorption of a single IR photon is then extracted...... level, is much weaker in the new measurements and could be an H g vibrational sideband. Also earlier studies of direct laser detachment from C60 − in the storage ring ASTRID have been revisited, with ions cooled by liquid nitrogen in the ion trap. We confirm the previous measurement with a determination...

  2. Digitally tunable dual wavelength emission from semiconductor ring lasers with filtered optical feedback

    International Nuclear Information System (INIS)

    Khoder, Mulham; Verschaffelt, Guy; Nguimdo, Romain Modeste; Danckaert, Jan; Leijtens, Xaveer; Bolk, Jeroen

    2013-01-01

    We report on a novel integrated approach to obtain dual wavelength emission from a semiconductor laser based on on-chip filtered optical feedback. Using this approach, we show experiments and numerical simulations of dual wavelength emission of a semiconductor ring laser. The filtered optical feedback is realized on-chip by employing two arrayed waveguide gratings to split/recombine light into different wavelength channels. Semiconductor optical amplifiers are placed in the feedback loop in order to control the feedback strength of each wavelength channel independently. By tuning the current injected into each of the amplifiers, we can effectively cancel the gain difference between the wavelength channels due to fabrication and material dichroism, thus resulting in stable dual wavelength emission. We also explore the accuracy needed in the operational parameters to maintain this dual wavelength emission. (letter)

  3. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    Science.gov (United States)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  4. Optical Analysis of Grazing Incidence Ring Resonators for Free-Electron Lasers

    Science.gov (United States)

    Gabardi, David Richard

    1990-08-01

    The design of resonators for free-electron lasers (FELs) which are to operate in the soft x-ray/vacuum ultraviolet (XUV) region of the spectrum is complicated by the fact that, in this wavelength regime, normal incidence mirrors, which would otherwise be used for the construction of the resonators, generally have insufficient reflectivities for this purpose. However, the use of grazing incidence mirrors in XUV resonators offers the possibility of (1) providing sufficient reflectivity, (2) a lessening of the mirrors' thermal loads due to the projection of the laser beam onto an oblique surface, and (3) the preservation of the FEL's tunability. In this work, the behavior of resonators employing grazing incidence mirrors in ring type configurations is explored. In particular, two designs, each utilizing four off-axis conic mirrors and a number of flats, are examined. In order to specify the location, orientation, and surface parameters for the mirrors in these resonators, a design algorithm has been developed based upon the properties of Gaussian beam propagation. Two computer simulation methods are used to perform a vacuum stability analysis of the two resonator designs. The first method uses paraxial ray trace techniques with the resonators' thin lens analogues while the second uses the diffraction-based computer simulation code GLAD (General Laser Analysis and Design). The effects of mirror tilts and deviations in the mirror surface parameters are investigated for a number of resonators designed to propagate laser beams of various Rayleigh ranges. It will be shown that resonator stability decreases as the laser wavelength for which the resonator was designed is made smaller. In addition, resonator stability will also be seen to decrease as the amount of magnification the laser beam receives as it travels around the resonator is increased.

  5. Variable diameter CO2 laser ring-cutting system adapted to a zoom microscope for applications on polymer tapes.

    Science.gov (United States)

    Förster, Erik; Bohnert, Patrick; Kraus, Matthias; Kilper, Roland; Müller, Ute; Buchmann, Martin; Brunner, Robert

    2016-11-20

    This paper presents the conception and implementation of a variable diameter ring-cutting system for a CO2 laser with a working wavelength of 10.6 μm. The laser-cutting system is adapted to an observation zoom microscope for combined use and is applicable for the extraction of small circular areas from polymer films, such as forensic adhesive tapes in a single shot. As an important characteristic for our application, the variable diameter ring-cutting system provides telecentricity in the target area. Ring diameters are continuously tunable between 500 μm and 2 mm. A minimum width of less than 20 μm was found for the ring profile edge. The basic characteristics of the system, including telecentricity, were experimentally evaluated and demonstrated by cutting experiments on different polymer tapes and further exemplary samples.

  6. Tests of a grazing-incidence ring resonator free-electron laser

    International Nuclear Information System (INIS)

    Dowell, D.H.; Laucks, M.L.; Lowrey, A.R.; Adamski, J.L.; Pistoresi, D.J.; Shoffstall, D.R.; Bentz, M.P.; Burns, R.H.; Guha, J.; Sun, K.; Tomita, W.

    1991-01-01

    This paper reports on the Boeing free-electron laser (FEL) optical cavity that has been changed from a simple concentric cavity using two spherical mirrors to a larger grazing-incidence ring resonator. The new resonator consists of two mirror telescopes located at each end of the wiggler with a round-trip path length of approximately 133 m. Each telescope is a grazing-incidence hyperboloid followed by a normal-incidence paraboloid. Initial tests showed that poorly positioned ring focus and unreliable pointing alignment resulted in reduced and structured FEL output. (First lasing operation occurred on March 23 and 24, 1990.) Later efforts concentrated on improving the resonator alignment techniques and lowering the single-pass losses. FEL performance and reliability have significantly improved due to better ring alignment. The alignment procedure and recent lasing results are described. The effect the electron beam has on lasing is also discussed. Measurements are presented showing how FEL temporal output and wavelength are sensitive to electron beam energy variations

  7. Present status of the NIJI-IV storage-ring free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, T.; Yamada, K.; Sei, N. [Electrotechnical Lab., Ibaraki (Japan)] [and others

    1995-12-31

    The tunable region of the free-electron-laser (FEL) wavelength with the NIJI-IV system is now 348{approximately}595 nm. After the lasing at 352 nm in 1994, the quality of the electron beam stored in the ring has been improved further, and the highest peak intensity of the laser obtained so far is more than 300 times as high as that of the resonated spontaneous emission. The macro-temporal structure of the lasing has been greatly improved. Recently, a single-bunch injection system was completed, and the system has been installed in the injector linac, which is expected to increase the peak stored-beam current. The commissioning and the test of the new system is under way. The beam transporting system from the linac to the ring is also being modified by increasing the number of quadrupole magnets. The experiments related to the FEL in the ultraviolet wavelength region will be begun in this coming May. The results and the status of the FEL experiments will be presented at the Conference.

  8. Saturation of the laser-induced narrowband coherent synchrotron radiation process: Experimental observation at a storage ring

    Science.gov (United States)

    Hosaka, M.; Yamamoto, N.; Takashima, Y.; Szwaj, C.; Le Parquier, M.; Evain, C.; Bielawski, S.; Adachi, M.; Zen, H.; Tanikawa, T.; Kimura, S.; Katoh, M.; Shimada, M.; Takahashi, T.

    2013-02-01

    We study the efficiency limitation affecting laser-induced coherent synchrotron radiation (CSR) at high laser power. Experiments are made on the UVSOR-II storage ring in conditions of narrowband terahertz CSR emission. While, at moderate power, CSR power increases quadratically with laser power, a noticeable decrease in efficiency and eventually a decrease in CSR power is observed experimentally at high power. Details of the underlying process are analyzed numerically. As the saturation effect depends almost instantaneously on the laser intensity, the saturation occurs locally in longitudinal space. This has important consequences on the modulation pattern induced on the electron bunch.

  9. Investigation of an He-Ne laser generating a beam with a ring-shaped intensity distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, I I; Troitskii, IU V; Iakushkin, S V

    1987-02-01

    The paper examines an He-Ne laser regime with the simultaneous generation of TEM(01) and TEM(10) modes, forming a beam with a ring-shaped intensity distribution with total suppression of the TEM(00) mode. The ratio of the intensity at the ring crest to the intensity at the axis reached a value of 200 and was limited by scattering in the optical components of the resonator. A regime of mutual frequency locking of the TEM(01) and TEM(10) modes was achieved with total spatial coherence of the ring-shaped beam. 14 references.

  10. Failure of GIMBAL bearing in directional GYRO

    International Nuclear Information System (INIS)

    Pervaiz, R.; Baig, N.A.; Shahid, M.; Ahmad, A.; Chohan, G.Y.

    2003-01-01

    This paper relates to the directional gyro of a sensing device used in indigenously developed surface-to-surface missile. The assembling of more than one thousand components in the form of several sub assemblies including hundreds of silver solders of this device was done in the hundred-thousands-class clean room according to assembly procedure. Whereas more than twenty bearings including gimbals bearings were assembled in the ten-thousands-class clean room after inspection/ testing them on beating testing system as per routine. The device was entered in testing and adjustment phase after successful completion of assembly work. The directional gyro qualified all the tests except the most critical one, the drift-rate. The drift-rate of outer gimbal was 60% more than permissible limit whereas drift-rate of inner gimbal was found O.K. It was diagnosed that at least one inner gimbal bearing out of two had some problem. The results were same after rebalancing of gimbals three times. The directional gyro was disassembled in clean room and the radial-thrust-bearing was recovered and flange bearing which are inner gimbal bearings. They were checked on bearing testing system and it was found that flange-bearing had more friction than permissible limit and hence rejected but radial thrust bearing were declared O.K. The gyro was reassembled with new O.K. flange bearing and the assembly work was completed in all respects. The sensing device qualified all the tests including the drift-rate. This case study is being presented to emphasize the importance of careful assembly of gyro in clean environment. (author)

  11. Parametric study of the damage ring pattern in fused silica induced by multiple longitudinal modes laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Chambonneau, M., E-mail: maxime.chambonneau@hotmail.fr; Grua, P.; Rullier, J.-L.; Lamaignère, L. [CEA CESTA, 15 Avenue des Sablières, CS 60001, 33116 Le Barp Cedex (France); Natoli, J.-Y. [Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, 13013 Marseille (France)

    2015-03-14

    With the use of multiple longitudinal modes nanosecond laser pulses at 1064 nm, laser damage sites at the exit surface of fused silica clearly and systematically exhibit ring patterns. It has been shown in our previous works that the apparent chronology of rings was closely related to the temporal shape of the laser pulses. This particular correspondence had suggested an explanation of the ring morphology formation based on the displacement of an ionization front in the surrounding air. To provide a former basis for this hypothesis and deeper understanding of ring pattern formation, additional experiments have been performed. First, the impact of fluence has been investigated, revealing that a wide variety of damage sites are produced within a very narrow fluence range; this fact involves the chronology of appearance of a surface plasma during the laser pulse. The sizes of the damage sites are proportional to the fluence of their expansion occurring between the beginning of the plasma and the end of the laser pulse. Second, specific experiments have been carried out at different angles of incidence, resulting in egg-shaped patterns rather than circular ones. This behavior can be explained by our previous hypothesis of creation of a plasma in air, its expansion being tightly conditioned by the illumination angle. This series of experiments, in which the angle of incidence is varied up to 80°, permits us to link quantitatively the working hypothesis of ionization front propagation with theoretical hydrodynamics modeling.

  12. Ring-shaped active mode-locked tunable laser using quantum-dot semiconductor optical amplifier

    Science.gov (United States)

    Zhang, Mingxiao; Wang, Yongjun; Liu, Xinyu

    2018-03-01

    In this paper, a lot of simulations has been done for ring-shaped active mode-locked lasers with quantum-dot semiconductor optical amplifier (QD-SOA). Based on the simulation model of QD-SOA, we discussed about the influence towards mode-locked waveform frequency and pulse caused by QD-SOA maximum mode peak gain, active layer loss coefficient, bias current, incident light pulse, fiber nonlinear coefficient. In the meantime, we also take the tunable performance of the laser into consideration. Results showed QD-SOA a better performance than original semiconductor optical amplifier (SOA) in recovery time, line width, and nonlinear coefficients, which makes it possible to output a locked-mode impulse that has a higher impulse power, narrower impulse width as well as the phase is more easily controlled. After a lot of simulations, this laser can realize a 20GHz better locked-mode output pulse after 200 loops, where the power is above 17.5mW, impulse width is less than 2.7ps, moreover, the tunable wavelength range is between 1540nm-1580nm.

  13. From Storage Rings to Free Electron Lasers for Hard X-Rays

    International Nuclear Information System (INIS)

    Nuhn, H

    2004-01-01

    The intensity of X-ray sources has increased at a rapid rate since the late 1960s by 10 orders of magnitude and more through the use of synchrotron radiation produced by bending magnets, wigglers and undulators. Three generations of radiation sources have been identified depending on amplitude and quality of the radiation provided. While user facilities of the third generation were being constructed a new concept of radiation generating devices was being developed that offers an even larger increase in peak and average brightness than had been achieved till then. The new concept of the X-ray Free Electron Laser based on the principle of Self-Amplified Spontaneous Emission will be the basis of fourth generation X-ray source user facilities of this century. The paper will start with a brief history of the development of x-ray sources, discuss some of the differences between storage ring and free electron laser based approaches, and close with an update of the present development of x-ray free electron laser user facilities

  14. From Storage Rings to Free Electron Lasers for Hard X-Rays

    Energy Technology Data Exchange (ETDEWEB)

    Nuhn, H

    2004-01-09

    The intensity of X-ray sources has increased at a rapid rate since the late 1960s by 10 orders of magnitude and more through the use of synchrotron radiation produced by bending magnets, wigglers and undulators. Three generations of radiation sources have been identified depending on amplitude and quality of the radiation provided. While user facilities of the third generation were being constructed a new concept of radiation generating devices was being developed that offers an even larger increase in peak and average brightness than had been achieved till then. The new concept of the X-ray Free Electron Laser based on the principle of Self-Amplified Spontaneous Emission will be the basis of fourth generation X-ray source user facilities of this century. The paper will start with a brief history of the development of x-ray sources, discuss some of the differences between storage ring and free electron laser based approaches, and close with an update of the present development of x-ray free electron laser user facilities.

  15. From storage rings to free electron lasers for hard x-rays

    International Nuclear Information System (INIS)

    Nuhn, Heinz-Dieter

    2004-01-01

    The intensity of x-ray sources has increased at a rapid rate since the late 1960s by ten orders of magnitude and more through the use of synchrotron radiation produced by bending magnets, wigglers and undulators. Three generations of radiation sources have been identified depending on amplitude and quality of the radiation provided. While user facilities of the third generation were being constructed, a new concept of radiation generating devices was being developed that offers an even larger increase in peak and average brightness than had been achieved till then. The new concept of the x-ray free electron laser based on the principle of self-amplified spontaneous emission will be the basis of fourth generation x-ray source user facilities of this century. The paper will start with a brief history of the development of x-ray sources, it will then discuss some of the differences between storage ring and free electron laser based approaches, and will close with an update of the present development of x-ray free electron laser user facilities

  16. Quasi-periodic synchronisation of self-modulation oscillations in a ring chip laser by an external periodic signal

    International Nuclear Information System (INIS)

    Aulova, T V; Kravtsov, Nikolai V; Lariontsev, E G; Chekina, S N

    2011-01-01

    The synchronisation of periodic self-modulation oscillations in a ring Nd:YAG chip laser under an external periodic signal modulating the pump power has been experimentally investigated. A new quasi-periodic regime of synchronisation of self-modulation oscillations is found. The characteristic features of the behaviour of spectral and temporal structures of synchronised quasi-periodic oscillations with a change in the external signal frequency are studied. (control of laser radiation parameters)

  17. An asymmetric integrated extended cavity 20GHz mode-locked quantum well ring laser fabricated in the JePPIX technology platform

    NARCIS (Netherlands)

    Tahvili, M.S.; Barbarin, Y.; Ambrosius, H.P.M.M.; Smit, M.K.; Bente, E.A.J.M.; Leijtens, X.J.M.; Vries, de T.; Smalbrugge, E.; Bolk, J.

    2011-01-01

    In this paper, we present mode-locked operation of a monolithic 20GHz integrated extended cavity ring laser. The 4mm-long laser ring cavity incorporates a 750µm-long optical amplifier section (SOA), a separate 40µm long saturable absorber (SA) section, passive waveguide sections (shallow and deep

  18. χ(2) Induced Non-Reciprocal Loss and/or Phase Shift for Unidirectional Operation of Ring Lasers

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Cheng, Haynes Pak Hay; Pedersen, Christian

    2010-01-01

    Numerical modelling and experimental validation of sum-frequency mixing enforcing stable unidirectional operation of a diode pumped solid-state 1342 nm ring laser with improved stability toward feedback.......Numerical modelling and experimental validation of sum-frequency mixing enforcing stable unidirectional operation of a diode pumped solid-state 1342 nm ring laser with improved stability toward feedback....

  19. An Outdoor Navigation Platform with a 3D Scanner and Gyro-assisted Odometry

    Science.gov (United States)

    Yoshida, Tomoaki; Irie, Kiyoshi; Koyanagi, Eiji; Tomono, Masahiro

    This paper proposes a light-weight navigation platform that consists of gyro-assisted odometry, a 3D laser scanner and map-based localization for human-scale robots. The gyro-assisted odometry provides highly accurate positioning only by dead-reckoning. The 3D laser scanner has a wide field of view and uniform measuring-point distribution. The map-based localization is robust and computationally inexpensive by utilizing a particle filter on a 2D grid map generated by projecting 3D points on to the ground. The system uses small and low-cost sensors, and can be applied to a variety of mobile robots in human-scale environments. Outdoor navigation experiments were conducted at the Tsukuba Challenge held in 2009 and 2010, which is an open proving ground for human-scale robots. Our robot successfully navigated the assigned 1-km courses in a fully autonomous mode multiple times.

  20. Applications of UV-storage ring free electron lasers: the case of super-ACO

    CERN Document Server

    Nahon, L; Couprie, Marie Emmanuelle; Merola, F; Dumas, P; Marsi, M; Taleb-Ibrahimi, A; Nutarelli, D; Roux, R; Billardon, M

    1999-01-01

    The potential of UV-storage ring free electron lasers (SRFELs) for the performance of original application experiments is shown with a special emphasis concerning their combination with the naturally synchronized synchrotron radiation (SR). The first two-color FEL+SR experiment, performed in surface science at Super-ACO is reported. The experimental parameters found to be the most important as gathered from the acquired experience, are underlined and discussed. Finally, future prospects for the scientific program of the Super-ACO FEL are presented with two-color experiments combining the FEL with SR undulator-based XUV and VUV beamlines as well as with a SR white light bending magnet beamline emiting in the IR-UV (20 mu m-0.25 mu m).

  1. Accuracy enhancement of laser induced breakdown spectra using permittivity and size optimized plasma confinement rings.

    Science.gov (United States)

    Li, An; Guo, Shuai; Wazir, Nasrullah; Chai, Ke; Liang, Liang; Zhang, Min; Hao, Yan; Nan, Pengfei; Liu, Ruibin

    2017-10-30

    The inevitable problems in laser induced breakdown spectroscopy are matrix effect and statistical fluctuation of the spectral signal, which can be partly avoided by utilizing a proper confined unit. The dependences of spectral signal enhancement on relative permittivity were studied by varying materials to confine the plasma, which include polytetrafluoroethylene(PTFE), nylon/dacron, silicagel, and nitrile-butadiene rubber (NBR) with the relative permittivity 2.2, ~3.3, 3.6, 8~13, 15~22. We found that higher relative permittivity rings induce stronger enhancement ability, which restricts the energy dissipation of plasma better and due to the reflected electromagnetic wave from the wall of different materials, the electromagnetic field of plasma can be well confined and makes the distribution of plasma more orderly. The spectral intensities of the characteristic lines Si I 243.5 nm and Si I 263.1 nm increased approximately 2 times with relative permittivity values from 2.2 to ~20. The size dependent enhancement of PTFE was further checked and the maximum gain was realized by using a confinement ring with a diameter size of 5 mm and a height of 3 mm (D5mmH3mm), and the rings with D2mmH1mm and D3mmH2mm also show higher enhancement factor. In view of peak shift, peak lost and accidental peaks in the obtained spectra were properly treated in data progressing; the spectral fluctuation decreased drastically for various materials with different relative permittivities as confined units, which means the core of plasma is stabilized, attributing to the confinement effect. Furthermore, the quantitative analysis in coal shows wonderful results-the prediction fitting coefficient R 2 reaches 0.98 for ash and 0.99 for both volatile and carbon.

  2. [Reduction of decentration after LASIK using a modified eye tracker ring for the MEL-70 excimer laser].

    Science.gov (United States)

    Schulze, S; Nietgen, G; Sekundo, W

    2004-07-01

    The aim of this study was to determine and compare the rate of eccentric laser ablation after LASIK depending on the eye tracker ring used. All LASIK treatments were carried out using the MEL-70 flying spot excimer laser (Zeiss-Meditec, Jena). The flap was produced using a Corneal Shaper trade mark or Hansatome trade mark Microkeratome (B and L Surgical, Heidelberg). Initially we used an 11 mm eye tracker ring without hinge protector. At the end of February 2001 this ring was replaced by a 10 mm and a 9.5 mm ring with built-in hinge protector. An additional modification was introduced by us: at 1 mm separations little teeth-like spikes were engraved into the eyeward side of the ring, thus stabilising the position of the ring on the globe and allowing free liquid to flow through the spaces between each spike. The built-in calibration system of the corneal topography (TMS 3, Tomey, Erlangen) from patients with a follow-up of one month or longer was used to determine the distance between the centre of the ablation zone from the fixation point. In group I patients (old ring) 42 eyes were treated. In 4 eyes ablation was perfect, in 21 eyes the ablation centre was located 0.1 to 0.49 mm from the fixation point, in 11 eyes 0.51 to 0.99 mm and in 5 eyes 1.1 to 1.49 mm whereas one eye showed a decentred ablation of 1.53 mm. In group II (new ring) 42 eyes were investigated also. In 11 eyes ablation was perfect, in 20 eyes the ablation centre was located 0.1 to 0.49 mm from the fixation point, in 10 eyes 0.5 to 0.99 mm and one eye had an eccentric ablation of 1.28 mm from the fixation point. The further development of our eye tracker ring for the MEL-70 laser considerably reduced the rate of decentred ablations. An enhanced grip of the ring onto the globe reduces a slow slide during the laser procedure.

  3. Long-time dynamics of laser-cooled ions in the TSR storage ring

    International Nuclear Information System (INIS)

    Mudrich, M.

    2000-01-01

    This diploma thesis studies experimentally the long-time dynamics of laser-cooled 9 Be + -beams at the TSR under different cooling conditions. The goal is to enlarge the understanding of ultra-cold, non-neutral plasma at high center-of-mass energies. By means of improved measurement capabilities one can now for the first time monitor the entire phase-space over a long time. This makes it possible to quantitatively analyse the possibilities and limitations of laser cooling at a storage ring. Under optimum cooling conditions a regime of high phase-space density is reached, close to the region where influences of Coulomb coupling are expected. Furthermore, a Monte-Carlo model is worked out that qualitatively describes the beam dynamics. The model includes the influence of transverse-longitudinal coupling due to intra beam scattering on the longitudinal phase-space distribution. At high phase-space density a sudden disappearance of intra beam collisions is observed experimentally and possible interpretations are given. (orig.)

  4. Detecting mode hopping in single-longitudinal-mode fiber ring lasers based on an unbalanced fiber Michelson interferometer.

    Science.gov (United States)

    Ma, Mingxiang; Hu, Zhengliang; Xu, Pan; Wang, Wei; Hu, Yongming

    2012-10-20

    A method of detecting mode hopping for single-longitudinal-mode (SLM) fiber ring lasers has been proposed and experimentally demonstrated. The method that is based on an unbalanced Michelson interferometer (MI) utilizing phase generated carrier modulation instantly transforms mode-hopping dynamics into steep phase changes of the interferometer. Multiform mode hops in an SLM erbium-doped fiber ring laser with an 18.6 MHz mode spacing have been detected exactly in real-time domain and discussed in detail. Numerical results show that the MI-based method has a high testing sensitivity for identifying mode hopping, which will play a significant role in evaluating the output stability of SLM fiber lasers.

  5. 280 GHz Gyro-BWO design study: Final report

    International Nuclear Information System (INIS)

    1988-07-01

    This report summarizes the results of a design study of a 280 GHz Gyro-BWO tunable source. The purpose of this study is to identify and propose viable design alternatives for any significant technological risk associated with building an operational BWO system. The tunable Gyro-BWO system will have three major components: a Gyro-BWO microwave tube, a superconducting magnet, and a power supply/modulator. The design tasks for this study in order of decreasing importance are: design and specification of the superconducting magnet; preliminary design and layout of a Gyro-BWO microwave tube; and specification for the power supply/modulator. 2 refs., 4 figs

  6. Application of quantum-dot multi-wavelength lasers and silicon photonic ring resonators to data-center optical interconnects

    Science.gov (United States)

    Beckett, Douglas J. S.; Hickey, Ryan; Logan, Dylan F.; Knights, Andrew P.; Chen, Rong; Cao, Bin; Wheeldon, Jeffery F.

    2018-02-01

    Quantum dot comb sources integrated with silicon photonic ring-resonator filters and modulators enable the realization of optical sub-components and modules for both inter- and intra-data-center applications. Low-noise, multi-wavelength, single-chip, laser sources, PAM4 modulation and direct detection allow a practical, scalable, architecture for applications beyond 400 Gb/s. Multi-wavelength, single-chip light sources are essential for reducing power dissipation, space and cost, while silicon photonic ring resonators offer high-performance with space and power efficiency.

  7. Novel method of dual fiber Bragg gratings integrated in fiber ring laser for biochemical sensors

    Science.gov (United States)

    Bui, H.; Pham, T. B.; Nguyen, V. A.; Pham, V. D.; Do, T. C.; Nguyen, T. V.; Hoang, T. H. C.; Le, H. T.; Pham, V. H.

    2018-05-01

    Optical sensors have been shown to be very effective for measuring the toxic content in liquid and air environments. Optical sensors, which operate based on the wavelength shift of the optical signals, require an expensive spectrometer. In this paper, we propose a new configuration of the optical sensor device for measuring wavelength shift without using a spectrometer. This configuration has a large potential for application in biochemical sensing techniques, and comes with a low cost. This configuration uses dual fiber Bragg gratings (FBGs) integrated in a fiber ring laser structure of erbium-doped fiber, in which one FBG is used as a reference to sweep over the applicable spectrum of the etched-Bragg grating. The etched-FBG as a sensing probe is suitable for bio- and/or chemical sensors. The sensitivity and accuracy of the sensor system can be improved by the narrow linewidth of emission spectra from the laser, the best limit of detection of this sensor is 1.5  ×  10‑4 RIU (RIU: refractive index unit), as achieved by the optical sensor using a high resolution spectrometer. This sensor system has been experimentally investigated to detect different types of organic compounds, gasoline, mixing ratios of organic solvents in gasoline, and nitrate concentration in water samples. The experimental results show that this sensing method could determine different mixing ratios of organic solvents with good repeatability, high accuracy, and rapid response: e.g. for ethanol and/or methanol in gasoline RON 92 (RON: research octane number) of 0%–14% v/v, and nitrate in water samples at a low concentration range of 0–50 ppm. These results suggest that the proposed configuration can construct low-cost and accurate biochemical sensors.

  8. Nonequilibrium statistical physics in a dithered ring laser gyroscope or quantum noise in pure and applied physics

    International Nuclear Information System (INIS)

    Schleich, W.; Dobiasch, P.

    1986-01-01

    A brief review is given of quantum noise in ring laser gyroscopes. Some the basic elements of ring laser theory, such as the Sagnac effect, the locking effect, and the influence of quantumnoise on the mean beat frequency versus rotation rate are discussed. The Langevin equation for the ase difference between the counterpropagating waves in the presence of any periodic and time symmetric dither is cast into a form which alows a qualitative discussion of the resulting lock-in curve as well as an exact expression in terms of infinite matrix continued fractions. The details of the transformation of the stochastic variable and the derivation of the exact expression for f>t may be found in appendices. Exact results are presented for two special cases of the dithering function: the harmonic and the square-wave bias

  9. The GINGERino ring laser gyroscope, seismological observations at one year from the first light

    Science.gov (United States)

    Simonelli, Andreino; Belfi, Jacopo; Beverini, Nicolò; Di Virgilio, Angela; Carelli, Giorgio; Maccioni, Enrico; De Luca, Gaetano; Saccorotti, Gilberto

    2016-04-01

    The GINGERino ring laser gyroscope (RLG) is a new large observatory-class RLG located in Gran Sasso underground laboratory (LNGS), one national laboratory of the INFN (Istituto Nazionale di Fisica Nucleare). The GINGERino apparatus funded by INFN in the context of a larger project of fundamental physics is intended as a pathfinder instrument to reach the high sensitivity needed to observe general relativity effects; more details are found at the URL (https://web2.infn.it/GINGER/index.php/it/). The sensitivity reached by our instrument in the first year after the set up permitted us to acquire important seismological data of ground rotations during the transit of seismic waves generated by seisms at different epicentral distances. RLGs are in fact the best sensors for capturing the rotational motions associated with the transit of seismic waves, thanks to the optical measurement principle, these instruments are in fact insensitive to translations. Ground translations are recorded by two seismometers: a Nanometrics Trillium 240 s and Guralp CMG 3T 360 s, the first instrument is part of the national earthquake monitoring program of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and provides the ground translation data to be compared to the RLG rotational data. We report the waveforms and the seismological analysis of some seismic events recorded during our first year of activity inside the LNGS laboratory.

  10. On Physical Interpretation of the In-Site Measurement of Earth Rotation by Ring Laser Gyrometers

    Science.gov (United States)

    Chao, B. F.

    2004-01-01

    Large ring laser gyrometers under development have demonstrated the capability of detecting minute ground motions and deformations on a wide range of timescales. The next challenge and goal is to measure the Earth's rotation variations to a precision that rivals that of the present space-geodesy techniques, thus providing an in-situ (and cost effective alternatives of Earth rotation measurement for geophysical research and geodetic applications. Aside from thermal and mechanical instabilities, "undesirable" ground motion and tilt that appear in the signal will need to be removed before any variation in Earth rotation can be detected. Removal of these signals, some of them are larger than the sought rotation signals, has been a typical procedure in many precise geophysical instruments, such as gravimeters, seismometers, and tiltmeters. The remaining Earth rotation signal resides in both the spin around the axis and in the orientation of the axis. In the case of the latter, the in-situ measurement is complementary to the space-geodetic observables in terms of polar motion and nutation, a fact to be exploited.

  11. Network connectivity enhancement by exploiting all optical multicast in semiconductor ring laser

    Science.gov (United States)

    Siraj, M.; Memon, M. I.; Shoaib, M.; Alshebeili, S.

    2015-03-01

    The use of smart phone and tablet applications will provide the troops for executing, controlling and analyzing sophisticated operations with the commanders providing crucial documents directly to troops wherever and whenever needed. Wireless mesh networks (WMNs) is a cutting edge networking technology which is capable of supporting Joint Tactical radio System (JTRS).WMNs are capable of providing the much needed bandwidth for applications like hand held radios and communication for airborne and ground vehicles. Routing management tasks can be efficiently handled through WMNs through a central command control center. As the spectrum space is congested, cognitive radios are a much welcome technology that will provide much needed bandwidth. They can self-configure themselves, can adapt themselves to the user requirement, provide dynamic spectrum access for minimizing interference and also deliver optimal power output. Sometimes in the indoor environment, there are poor signal issues and reduced coverage. In this paper, a solution utilizing (CR WMNs) over optical network is presented by creating nanocells (PCs) inside the indoor environment. The phenomenon of four-wave mixing (FWM) is exploited to generate all-optical multicast using semiconductor ring laser (SRL). As a result same signal is transmitted at different wavelengths. Every PC is assigned a unique wavelength. By using CR technology in conjunction with PC will not only solve network coverage issue but will provide a good bandwidth to the secondary users.

  12. Submicrosecond Q-Switching Er-Doped All-Fiber Ring Laser Based on Black Phosphorus

    Directory of Open Access Journals (Sweden)

    Yao Cai

    2017-01-01

    Full Text Available Black phosphorus (BP, a new two-dimensional (2D material, has been deeply developed for extensive applications in electronics and optoelectronics due to its similar physical structure to graphene and thickness dependent direct band gap. Here, we demonstrated a submicrosecond passive Q-switching Er-doped fiber laser with BP as saturable absorber (SA. The BP saturable absorber was fabricated by mechanical exfoliation method. By taking full advantage of the ultrafast relaxation time of BP-SA and careful design of compact ring cavity, we obtained stable Q-switching pulses output with a shortest duration as narrow as 742 ns. With increasing the pump power, the pulse repetition rate accreted gradually almost linearly from 9.78 to 61.25 kHz, and the pulse duration declined rapidly at lower pump power regime and retained approximate stationary at higher pump power regime from 3.05 to 0.742 μs. The experimental results indicate that BP-SA can be an effective SA for nanosecond Q-switching pulse generation.

  13. Development of a pulsed laser with emission at 1053 nm for Cavity Ring-Down Spectroscopy

    International Nuclear Information System (INIS)

    Cavalcanti, Fabio

    2014-01-01

    In this work, a pulsed and Q-switched laser resonator was developed using the double-beam mode-controlling technique. A Nd:LiYF4 crystal with 0,8mol% of doping concentration was used to generate a giant pulse with duration of 5,5 ns (FWHM), 1,2 mJ of energy and 220 kW peak power for the Cavity Ring-Down Spectroscopy (CRDS) technique. The CRDS technique is used to measure absorption spectra for gases, liquids and solids. With the CRDS technique it is possible to measure losses with high degree of accuracy, underscoring the sensitivity that is confirmed by the use of mirrors with high reflectivity. With this technique, the losses by reflection and scattering of transparent materials were evaluated. By calibrating the resonant cavity, it was possible to measure the losses in the samples with resolution of 0,045%, the maximum being reached by 0,18%. The calibration was possible because there was obtained to measure a decay time of approximately 20 μs with the empty cavity. Besides was obtained a method for determining the refractive index of transparent materials with accuracy of five decimals. (author)

  14. A quantum dynamics study of the benzopyran ring opening guided by laser pulses

    Science.gov (United States)

    Saab, Mohamad; Doriol, Loïc Joubert; Lasorne, Benjamin; Guérin, Stéphane; Gatti, Fabien

    2014-10-01

    The ring-opening photoisomerization of benzopyran, which occurs via a photochemical route involving a conical intersection, has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method (MCTDH). We introduce a mechanistic strategy to control the conversion of benzopyran to merocyanine with laser pulses. We use a six-dimensional model developed in a previous work for the potential energy surfaces (PES) based on an extension of the vibronic-coupling Hamiltonian model (diabatization method by ansatz), which depends on the most active degrees of freedom. The main objective of these quantum dynamics simulations is to provide a set of strategies that could help experimentalists to control the photoreactivity vs. photostability ratio (selectivity). In this work we present: (i) a pump-dump technique used to control the photostability, (ii) a two-step strategy to enhance the reactivity of the system: first, a pure vibrational excitation in the electronic ground state that prepares the system and, second, an ultraviolet excitation that brings the system to the first adiabatic electronic state; (iii) finally the effect of a non-resonant pulse (Stark effect) on the dynamics.

  15. Nonlinear Adaptive Filter for MEMS Gyro Error Cancellation

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal biases are the dominate error in low-cost low-power small MEMS gyros. CubeSats often can't afford the power/mass to put a heater on their MEMS gyros and...

  16. Dither Gyro Scale Factor Calibration: GOES-16 Flight Experience

    Science.gov (United States)

    Reth, Alan D.; Freesland, Douglas C.; Krimchansky, Alexander

    2018-01-01

    This poster is a sequel to a paper presented at the 34th Annual AAS Guidance and Control Conference in 2011, which first introduced dither-based calibration of gyro scale factors. The dither approach uses very small excitations, avoiding the need to take instruments offline during gyro scale factor calibration. In 2017, the dither calibration technique was successfully used to estimate gyro scale factors on the GOES-16 satellite. On-orbit dither calibration results were compared to more traditional methods using large angle spacecraft slews about each gyro axis, requiring interruption of science. The results demonstrate that the dither technique can estimate gyro scale factors to better than 2000 ppm during normal science observations.

  17. Passive mode locking at harmonics of the free spectral range of the intracavity filter in a fiber ring laser.

    Science.gov (United States)

    Zhang, Shumin; Lu, Fuyun; Dong, Xinyong; Shum, Ping; Yang, Xiufeng; Zhou, Xiaoqun; Gong, Yandong; Lu, Chao

    2005-11-01

    We report the passive mode-locking at harmonics of the free spectral range (FSR) of the intracavity multi-channel filter in a fiber ring laser. The laser uses a sampled fiber Bragg grating (SFBG) with a free spectral range (FSR) of 0.8 nm, or 99 GHz at 1555 nm, and a length of highly nonlinear photonic crystal fiber with low and flat dispersion. Stable picosecond soliton pulse trains with twofold to sevenfold enhancement in the repetition rate, relative to the FSR of the SFBG, have been achieved. The passive mode-locking mechanism that is at play in this laser relies on a dissipative four-wave mixing process and switching of repetition rate is realized simply by adjustment of the intracavity polarization controllers.

  18. Two-Gyro Pointing Stability of HST measured with ACS

    Science.gov (United States)

    Koekemoer, Anton M.; Kozhurina-Platais, Vera; Riess, Adam; Sirianni, Marco; Biretta, John; Pavlovsky

    2005-06-01

    We present the results of the pointing stability tests for HST, as measured with the ACS/ HRC during the Two-Gyro test program conducted in February 2005. We measure the shifts of 185 exposures of the globular clusters NGC6341 and Omega Centauri, obtained over a total of 13 orbits, and compare the measured pointings to those that were commanded in the observing program. We find in all cases that the measured shifts and rotations have the same level of accuracy as those that were commanded in three-gyro mode. Specifically, the pointing offsets during an orbit relative to the first exposure can be characterized with distributions having a dispersion of 2.3 milliarcseconds for shifts and 0.00097 degrees for rotations, thus less than 0.1 HRC pixels, and agree extremely well with similar values measured for comparable exposures obtained in three-gyro mode. In addition, we successfully processed these two-gyro test data through the MultiDrizzle software which is used in the HST pipeline to perform automated registration, cosmic ray rejection and image combination for multiple exposure sequences, and we find excellent agreement with similar exposures obtained in three-gyro mode. In summary, we find no significant difference between the quality of HST pointing as measured from these two-gyro test data, relative to the nominal behavior of HST in regular three-gyro operations.

  19. Flight suspension for the relativity gyro

    International Nuclear Information System (INIS)

    Patten, R.A. van

    1983-01-01

    A suspension system for levitation and precision positioning of the niobium coated spherical quartz gyro rotor during orbital flight has been simulated. The system employs multiple controllers and estimators with microprocessor (Z80) controlled range switching. The resulting system handles external accelerations up to 1 g in the highest range yet in the lowest range, below 10 -6 g the sensor noise power spectral density produces only 10 -10 g rms in the rotor. The system is capable of automatic emergency switch up within 100 μsec. Switch down is automatic to expected flight levels of ± 5 x 10 -8 g. Positioning accuracy in all ranges including emergency switch up is ± 5 μin. static, and ± 50 μin. dynamic. The average acceleration during the mission should be 10 -10 g to attain the science data accuracy goal. (Auth.)

  20. Switchable dual-wavelength single-longitudinal-mode erbium fiber laser utilizing a dual-ring scheme with a saturable absorber

    Science.gov (United States)

    Yang, Zi-Qing; Huang, Tzu-Jung; Chang, Yao-Jen; Yeh, Chien-Hung; Chow, Chi-Wai; Chen, Jing-Heng; Chen, Kun-Huang

    2018-06-01

    In this work, we propose and demonstrate a switchable dual-wavelength erbium-doped fiber (EDF) ring laser with stable single-longitudinal-mode (SLM) output. Here, a dual-ring (DR) structure with an unpumped EDF of 2 m is designed to achieve SLM oscillation. Five fiber Bragg gratings (FBGs) are applied in the laser cavity serving as the reflective element to generate different dual-wavelength outputs. In the measurement, six sets of generated dual-wavelengths with various mode-spacing (Δλ) can be achieved via the five FBGs. Additionally, the stability performance of the proposed EDF DR laser is also demonstrated.

  1. Single-frequency blue light generation by single-pass sum-frequency generation in a coupled ring cavity tapered laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    A generic approach for generation of tunable single frequency light is presented. 340 mW of near diffraction limited, single-frequency, and tunable blue light around 459 nm is generated by sum-frequency generation (SFG) between two tunable tapered diode lasers. One diode laser is operated in a ring...... cavity and another tapered diode laser is single-passed through a nonlinear crystal which is contained in the coupled ring cavity. Using this method, the single-pass conversion efficiency is more than 25%. In contrast to SFG in an external cavity, the system is entirely self-stabilized with no electronic...

  2. A Fiber Optic PD Sensor Using a Balanced Sagnac Interferometer and an EDFA-Based DOP Tunable Fiber Ring Laser

    Science.gov (United States)

    Wang, Lutang; Fang, Nian; Wu, Chunxu; Qin, Haijuan; Huang, Zhaoming

    2014-01-01

    A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA)-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD) in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP) tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR). Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified. PMID:24824371

  3. Ring-like spatial distribution of laser accelerated protons in the ultra-high-contrast TNSA-regime

    Science.gov (United States)

    Becker, G. A.; Tietze, S.; Keppler, S.; Reislöhner, J.; Bin, J. H.; Bock, L.; Brack, F.-E.; Hein, J.; Hellwing, M.; Hilz, P.; Hornung, M.; Kessler, A.; Kraft, S. D.; Kuschel, S.; Liebetrau, H.; Ma, W.; Polz, J.; Schlenvoigt, H.-P.; Schorcht, F.; Schwab, M. B.; Seidel, A.; Zeil, K.; Schramm, U.; Zepf, M.; Schreiber, J.; Rykovanov, S.; Kaluza, M. C.

    2018-05-01

    The spatial distribution of protons accelerated from submicron-thick plastic foil targets using multi-terawatt, frequency-doubled laser pulses with ultra-high temporal contrast has been investigated experimentally. A very stable, ring-like beam profile of the accelerated protons, oriented around the target’s normal direction has been observed. The ring’s opening angle has been found to decrease with increasing foil thicknesses. Two-dimensional particle-in-cell simulations reproduce our results indicating that the ring is formed during the expansion of the proton density distribution into the vacuum as described by the mechanism of target-normal sheath acceleration. Here—in addition to the longitudinal electric fields responsible for the forward acceleration of the protons—a lateral charge separation leads to transverse field components accelerating the protons in the lateral direction.

  4. High-power actively Q-switched single-mode 1342 nm Nd:YVO4 ring laser, injection-locked by a cw single-frequency microchip laser.

    Science.gov (United States)

    Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A

    2015-11-30

    In this paper we report on the realization of a single-mode Q-switched Nd:YVO4 ring laser at 1342 nm. Unidirectional and single-mode operation of the ring laser is achieved by injection-locking with a continuous wave Nd:YVO4 microchip laser, emitting a single-frequency power of up to 40 mW. The ring laser provides a single-mode power of 13.9 W at 10 kHz pulse repetition frequency with a pulse duration of 18.2 ns and an excellent beam quality (M2 laser, a power of 8.7 W at 671 nm with a pulse duration of 14.8 ns and a beam propagation factor of M2 < 1.1 is obtained. The 671 nm radiation features a long-term spectral width of 75 MHz.

  5. A Nonlinear Adaptive Filter for Gyro Thermal Bias Error Cancellation

    Science.gov (United States)

    Galante, Joseph M.; Sanner, Robert M.

    2012-01-01

    Deterministic errors in angular rate gyros, such as thermal biases, can have a significant impact on spacecraft attitude knowledge. In particular, thermal biases are often the dominant error source in MEMS gyros after calibration. Filters, such as J\\,fEKFs, are commonly used to mitigate the impact of gyro errors and gyro noise on spacecraft closed loop pointing accuracy, but often have difficulty in rapidly changing thermal environments and can be computationally expensive. In this report an existing nonlinear adaptive filter is used as the basis for a new nonlinear adaptive filter designed to estimate and cancel thermal bias effects. A description of the filter is presented along with an implementation suitable for discrete-time applications. A simulation analysis demonstrates the performance of the filter in the presence of noisy measurements and provides a comparison with existing techniques.

  6. Fiber optic gyro development at the Jet Propulsion Laboratory

    Science.gov (United States)

    Goss, Willis C.

    1987-01-01

    A low-level, but continuing, fiber-gyro development activity has been carried on at the Jet Propulsion Laboratory since 1977. The activity was originated because of a recognition of the potential for low-cost high-performance gyros suitable for interplanetary spacecraft. An early decision was made to concentrate available resources on supporting the development of electrooptically active channel waveguide components which could be fabricated by mask diffusion processes. Titanium-indiffused lithium niobate waveguide components used at 0.83 micron wavelength were first tested and then abandoned because of instabilities caused by so-called optical damage. Components fabricated for use at 1.3-micron wavelength have proven to be stable. A gyro configuration concept based upon 1.3 micron channel waveguide components has evolved, and a baseline 1.3-micron all-fiber gyro has been assembled and tested.

  7. Optical fibre cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser

    Science.gov (United States)

    Zhou, Kaiming; Webb, David; Mou, Chengbo; Farries, Mark; Hayes, Neil; Bennion, Ian

    2009-10-01

    μA microchannel was inscribed in the fibre of a ring cavity which was constructed from two 0.1%:99.9% couplers and a 10m fibre loop. Cavity ring down spectroscopy (CRDS) was used to measure the refractive index (RI) of gels infused into the microchannel with high resolution. The ring down time discloses a nonlinear increase with respect to the RI of the gel and sensitivity up to 300μs/RI unit (RIU) and resolution of 5×10-4 were obtained.

  8. Love waves trains observed after the MW 8.1 Tehuantepec earthquake by an underground ring laser gyroscope

    Science.gov (United States)

    Simonelli, A.; Belfi, J.; Beverini, N.; Di Virgilio, A.; Giacomelli, U.; De Luca, G.; Igel, H.

    2017-12-01

    We report the observation and analysis of the MW 8.1 Tehuantepec earthquake-induced rotational ground motion as observed by the Gingerino ring laser gyroscope (RLG).This instrument is located inside the National laboratory of the "Istituto Nazionale di Fisica Nucleare" in Gran Sasso (Italy) in a deep underground environment.We compare the vertical rotation rate with the horizontal acceleration measured by a co-located broadband seismometer. This analysis, performed by means of a wavelet-based correlation method, permits to identify the G1,G2,G3,G4 onsets of the surface Love waves in the 120 to 280 seconds period range.

  9. Formation of x-ray Newton’s rings from nano-scale spallation shells of metals in laser ablation

    Directory of Open Access Journals (Sweden)

    Masaharu Nishikino

    2017-01-01

    Full Text Available The initial stages of the femtosecond (fs laser ablation process of gold, platinum, and tungsten were observed by single-shot soft x-ray imaging technique. The formation and evolution of soft x-ray Newton’s rings (NRs were found for the first time. The soft x-ray NRs are caused by the interference between the bulk ablated surface and nanometer-scale thin spallation layer; they originate from the metal surface at pump energy fluence of around 1 J/cm2 and work as a flying soft x-ray beam splitter.

  10. Study of the use of methanol-filled Er-doped suspended-core fibres in a temperature-sensing ring laser system

    International Nuclear Information System (INIS)

    Martín, J C; Berdejo, V; Vallés, J A; Sánchez-Martín, J A; Díez, A; Andrés, M V

    2013-01-01

    We report on an experimental/numerical investigation into the use of methanol-filled Er-doped suspended-core fibres (SCFs) in temperature-sensing ring laser systems. We have adopted a ring laser configuration that includes an Er-doped SCF as a temperature-dependent attenuator (TDA) with a step-index Er-doped fibre (EDF) as the laser active medium. The laser performance dependence on the temperature was measured both in continuous wave (CW) and transient regimes. CW laser output power and build-up time values are compared with those of similar laser systems based on other types of Er-doped PCFs or using other laser configurations. A notable variation of 0.73% °C −1 was achieved in CW operation. Then, by means of parameters obtained by numerically fitting the experimental results, the potential sensing performance of the laser configuration with an SCF as a TDA is studied. Moreover, two ring cavity laser configurations (with the SCF acting basically as an attenuator or also as the active media) are compared and the influence of the position of the coupler inside the ring cavity and the contribution of the erbium doping to improve the sensor features are analysed. The longer interaction lengths compatible with laser action using the Er-doped SCF as a TDA could provide variations of laser output power up to 8.6% °C −1 for 90 mW pump power and a 1 m methanol-filled SCF. (paper)

  11. Self-induced laser line sweeping in double-clad Yb-doped fiber-ring lasers

    Czech Academy of Sciences Publication Activity Database

    Peterka, Pavel; Navrátil, P.; Maria, J.; Dussardier, B.; Slavík, Radan; Honzátko, Pavel; Kubeček, V.

    2012-01-01

    Roč. 9, č. 6 (2012), s. 445-450 ISSN 1612-2011 R&D Projects: GA MŠk(CZ) ME10119 Institutional support: RVO:67985882 Keywords : fiber laser * tunable laser * ytterbium Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 7.714, year: 2012

  12. Developmental Test of the Honeywell Laser Inertial Navigation System (LINS)

    Science.gov (United States)

    1975-11-01

    The ISA contains three Systron Donner 4841F-10 single axis accelerometers and three Honeywell GG1300- AEOI laser gyros in an orthogonal strapdown...DIAG.1,kM AN.D PHYSICAL CHARACTERISTICS The GG1300- AEOI laser gyro, shown schematically in Figure 2, has the following performance goals which were

  13. Active mode locking of quantum cascade lasers in an external ring cavity.

    Science.gov (United States)

    Revin, D G; Hemingway, M; Wang, Y; Cockburn, J W; Belyanin, A

    2016-05-05

    Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents.

  14. Gravity Probe B Number 4 Gyro Inspected

    Science.gov (United States)

    2000-01-01

    The Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. In this photograph, Stanford engineer, Chris Gray, is inspecting the number 4 gyro under monochromatic light. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Stanford University.)

  15. A novel image encryption algorithm based on synchronized random bit generated in cascade-coupled chaotic semiconductor ring lasers

    Science.gov (United States)

    Li, Jiafu; Xiang, Shuiying; Wang, Haoning; Gong, Junkai; Wen, Aijun

    2018-03-01

    In this paper, a novel image encryption algorithm based on synchronization of physical random bit generated in a cascade-coupled semiconductor ring lasers (CCSRL) system is proposed, and the security analysis is performed. In both transmitter and receiver parts, the CCSRL system is a master-slave configuration consisting of a master semiconductor ring laser (M-SRL) with cross-feedback and a solitary SRL (S-SRL). The proposed image encryption algorithm includes image preprocessing based on conventional chaotic maps, pixel confusion based on control matrix extracted from physical random bit, and pixel diffusion based on random bit stream extracted from physical random bit. Firstly, the preprocessing method is used to eliminate the correlation between adjacent pixels. Secondly, physical random bit with verified randomness is generated based on chaos in the CCSRL system, and is used to simultaneously generate the control matrix and random bit stream. Finally, the control matrix and random bit stream are used for the encryption algorithm in order to change the position and the values of pixels, respectively. Simulation results and security analysis demonstrate that the proposed algorithm is effective and able to resist various typical attacks, and thus is an excellent candidate for secure image communication application.

  16. Coherent x-rays and vacuum-ultraviolet radiation from storage-ring-based undulators and free electron lasers

    International Nuclear Information System (INIS)

    Kim, K.J.

    1984-12-01

    High-brightness electron storage rings and permanent-magnet technology provide a basis for the development of coherent radiation in the 10- to 1000-A (xuv) spectral range. The most assured route to the production of coherent x-rays and vuv is the simple interaction between properly constrained relativistic electrons and permanent-magnet undulators, a subject that is already well understood and where technology is well advanced. Other techniques are less well developed, but with increasing degrees of technical challenge they will provide additional coherence properties. Transverse optical klystrons (TOKs) provide an opportunity for additional coherence at certain harmonics of longer-wavelength lasers. Free electron lasers (FELs) extend coherence capabilities substantially through two possible routes: one is the development of suitable mirror coatings. Both FEL techniques would provide vuv radiation and soft x rays with extremely narrow spectral content. Research on all of these techniques (undulators, TOKs, and FELs) is possible in a single facility based on a high-brightness electron storage ring, referred to herein as a Coherent xuv Facility (CXF). Individual items from the report were prepared separately for the data base

  17. Short-wavelength multiline erbium-doped fiber ring laser by a broadband long-period fiber grating inscribed in a taper transition

    International Nuclear Information System (INIS)

    Anzueto-Sánchez, G; Martínez-Rios, A

    2014-01-01

    A stable multiwavelength all-fiber erbium-doped fiber ring laser (EDFRL) based on a broadband long-period fiber grating (LPFG) inscribed in a fiber taper transition is presented. The LPFG’s characteristics were engineered to provide a higher loss at the natural lasing wavelength of the laser cavity. The LPFG inscribed on a taper transition provided a depth greater than 25 dB, and posterior chemical etching provided a broad notch band to inhibit laser generation on the long-wavelength side of the EDF gain. Up to four simultaneous laser wavelengths are generated in the range of 1530–1535 nm. (paper)

  18. Numerical simulation of a passive twin-core fibre nonlinear coupler ring laser

    Czech Academy of Sciences Publication Activity Database

    Zhu, Y.; Hauderek, V. A.; Kaňka, Jiří; Rogers, A. J.

    1999-01-01

    Roč. 146, č. 4 (1999), s. 204-208 ISSN 1350-2433 Grant - others:EU COPERNICUS(XE) CIPA3510CT937882 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical fibres * fibre lasers * optical solitons Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.826, year: 1999

  19. Self-seeded single-frequency solid-state ring laser and system using same

    Science.gov (United States)

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-02-20

    A method of operating a laser to obtain an output pulse having a single wavelength, comprises inducing an intracavity loss into a laser resonator having an amount that prevents oscillation during a time that energy from the pump source is being stored in the gain medium. Gain is built up in the gain medium with energy from the pump source until formation of a single-frequency relaxation oscillation pulse in the resonator. Upon detection of the onset of the relaxation oscillation pulse, the intracavity loss is reduced, such as by Q-switching, so that the built-up gain stored in the gain medium is output from the resonator in the form of an output pulse at a single frequency. An electronically controllable output coupler is controlled to affect output pulse characteristics. The laser acts a master oscillator in a master oscillator power amplifier configuration. The laser is used for laser peening.

  20. On Sagnac frequency splitting in a solid-state ring Raman laser.

    Science.gov (United States)

    Liang, Wei; Savchenkov, Anatoliy; Ilchenko, Vladimir; Griffith, Robert; De Cuir, Edwin; Kim, Steven; Matsko, Andrey; Maleki, Lute

    2017-11-15

    We report on an accurate measurement of the frequency splitting of an optical rotating ring microcavity made out of calcium fluoride. By measuring the frequencies of the clockwise and counter-clockwise coherent Raman emissions confined in the cavity modes, we show that the frequency splitting is inversely proportional to the refractive index of the cavity host material. The measurement has an accuracy of 1% and unambiguously confirms the classical theoretical prediction based on special theory of relativity. This Letter also demonstrates the usefulness of the ring Raman microlaser for rotation measurements.

  1. Manipulating femtosecond spin-orbit torques with laser pulse sequences to control magnetic memory states and ringing

    Science.gov (United States)

    Lingos, P. C.; Wang, J.; Perakis, I. E.

    2015-05-01

    Femtosecond (fs) coherent control of collective order parameters is important for nonequilibrium phase dynamics in correlated materials. Here, we propose such control of ferromagnetic order based on using nonadiabatic optical manipulation of electron-hole (e -h ) photoexcitations to create fs carrier-spin pulses with controllable direction and time profile. These spin pulses are generated due to the time-reversal symmetry breaking arising from nonperturbative spin-orbit and magnetic exchange couplings of coherent photocarriers. By tuning the nonthermal populations of exchange-split, spin-orbit-coupled semiconductor band states, we can excite fs spin-orbit torques that control complex magnetization pathways between multiple magnetic memory states. We calculate the laser-induced fs magnetic anisotropy in the time domain by using density matrix equations of motion rather than the quasiequilibrium free energy. By comparing to pump-probe experiments, we identify a "sudden" out-of-plane magnetization canting displaying fs magnetic hysteresis, which agrees with switchings measured by the static Hall magnetoresistivity. This fs transverse spin-canting switches direction with magnetic state and laser frequency, which distinguishes it from the longitudinal nonlinear optical and demagnetization effects. We propose that sequences of clockwise or counterclockwise fs spin-orbit torques, photoexcited by shaping two-color laser-pulse sequences analogous to multidimensional nuclear magnetic resonance (NMR) spectroscopy, can be used to timely suppress or enhance magnetic ringing and switching rotation in magnetic memories.

  2. CARM and harmonic gyro-amplifier experiments at 17 GHz

    International Nuclear Information System (INIS)

    Menninger, W.L.; Danly, B.G.; Alberti, S.; Chen, C.; Rullier, J.L.; Temkin, R.J.

    1993-01-01

    Cyclotron resonance maser amplifiers are possible sources for applications such as electron cyclotron resonance heating of fusion plasmas and driving high-gradient rf linear accelerators. For accelerator drivers, amplifiers or phase locked-oscillators are required. A 17 GHz cyclotron autoresonance maser (CARM) amplifier experiment and a 17 GHz third harmonic gyro-amplifier experiment are presently underway at the MIT Plasma Fusion Center. Using the SRL/MIT SNOMAD II introduction accelerator to provide a 380 kV, 180 A, 30 ns flat top electron beam, the gyro-amplifier experiment has produced 5 MW of rf power with over 50 dB of gain at 17 GHz. The gyro-amplifier operates in the TE 31 mode using a third harmonic interaction. Because of its high power output, the gyro-amplifier will be used as the rf source for a photocathode rf electron gun experiment also taking place at MIT. Preliminary gyro-amplifier results are presented, including measurement of rf power, gain versus interaction length, and the far-field pattern. A CARM experiment designed to operate in the TE 11 mode is also discussed

  3. Cavity Ring-down Spectroscopy for Carbon Isotope Analysis with 2 μm Diode Laser

    International Nuclear Information System (INIS)

    Hiromoto, K.; Tomita, H.; Watanabe, K.; Kawarabayashi, J.; Iguchi, T.

    2009-01-01

    We have made a prototype based on CRDS with 2 μm diode laser for carbon isotope analysis of CO 2 in air. The carbon isotope ratio was obtained to be (1.085±0.012)x10 -2 which shows good agreement with the isotope ratio measured by the magnetic sector-type mass spectrometer within uncertainty. Hence, we demonstrated the carbon isotope analysis based on CRDS with 2 μm tunable diode laser.

  4. Self-injection locking of the DFB laser through an external ring fiber cavity: Application for phase sensitive OTDR acoustic sensor

    Directory of Open Access Journals (Sweden)

    J.L. Bueno Escobedo

    Full Text Available Self-injection locking of DFB laser implemented through the laser coupling with an external fiber optic ring cavity allows its direct employment as an interrogating light source for a phase sensitive OTDR acoustic sensor. Distributed detection and localization of dynamic perturbations of the optical fiber is experimentally demonstrated at the distance of 9270 m. Keywords: Self-injection locking, Optical fiber resonator, φ-OTDR

  5. Integrated Microwave Photonic Isolators: Theory, Experimental Realization and Application in a Unidirectional Ring Mode-Locked Laser Diode

    Directory of Open Access Journals (Sweden)

    Martijn J.R. Heck

    2015-09-01

    Full Text Available A novel integrated microwave photonic isolator is presented. It is based on the timed drive of a pair of optical modulators, which transmit a pulsed or oscillating optical signal with low loss, when driven in phase. A signal in the reverse propagation direction will find the modulators out of phase and, hence, will experience high loss. Optical and microwave isolation ratios were simulated to be in the range up to 10 dB and 20 dB, respectively, using parameters representative for the indium phosphide platform. The experimental realization of this device in the hybrid silicon platform showed microwave isolation in the 9 dB–22 dB range. Furthermore, we present a design study on the use of these isolators inside a ring mode-locked laser cavity. Simulations show that unidirectional operation can be achieved, with a 30–50-dB suppression of the counter propagating mode, at limited driving voltages. The potentially low noise and feedback-insensitive operation of such a laser makes it a very promising candidate for use as on-chip microwave or comb generators.

  6. A tuneable, power efficient and narrow single longitudinal mode fibre ring laser using an inline dual-taper fibre Mach–Zehnder filter

    International Nuclear Information System (INIS)

    Ahmad, H; Dernaika, M; Alimadad, M; Ibrahim, M F; Lim, K S; Harun, S W; Kharraz, O M

    2014-01-01

    A tuneable single longitudinal mode fibre ring laser with dual-taper fibre filter is proposed and experimentally demonstrated in this paper. The single longitudinal mode operation, and power limitations for a Mach–Zehnder interferometer filter generated from a single mode fibre, are verified for the first time. Incorporating an in-line taper fibre Mach–Zehnder interferometer filter inside the laser ring cavity causes a spatial mode beating interference, resulting in a passive narrow band filter with the ability to generate stable single longitudinal modes. The single longitudinal mode achieves a side mode suppression ratio of more than 60 dB using low pump power. The tuneability of the fibre laser ranges from 1525 to 1562 nm using a passive band pass filter. A study of the stability and limitation of the single longitudinal mode in the Mach–Zehnder tapered fibre is also presented. (paper)

  7. Characterization of a 15 GHz integrated bulk InGaAsP passively modelocked ring laser at 1.53microm.

    Science.gov (United States)

    Barbarin, Yohan; Bente, Erwin A J M; Heck, Martijn J R; Oei, Y S; Nötzel, Richard; Smit, Meint K

    2006-10-16

    We report on an extensive characterization of a 15GHz integrated bulk InGaAsP passively modelocked ring laser at 1530 nm. The laser is modelocked for a wide range of amplifier currents and reverse bias voltages on the saturable absorber. We have measured a timing jitter of 7.1 ps (20 kHz - 80 MHz), which is low for an all-active device using bulk material and due to the ring configuration. Measured output pulses are highly chirped, a FWHM bandwidth is obtained of up to 4.5 nm. Such lasers with high bandwidth pulses and compatible with active-passive integration are of great interest for OCDMA applications.

  8. A tunable narrow-line-width multi-wavelength Er-doped fiber laser based on a high birefringence fiber ring mirror and an auto-tracking filter

    Science.gov (United States)

    Jia, Xiu-jie; Liu, Yan-ge; Si, Li-bin; Guo, Zhan-cheng; Fu, Sheng-gui; Kai, Gui-yun; Dong, Xiao-yi

    2008-01-01

    A novel multi-wavelength erbium-doped fiber laser operating in C-band is proposed and successfully demonstrated. The wavelength interval between the wavelengths is about 0.22 nm. The 3 dB bandwidth of the laser is about 0.012 nm, and the output power reaches 4.8 mW. By using a high birefringence fiber ring mirror (HiBi-FLM) and a tunable FBG, the laser realizes switchable and tunable characteristic. The mode hopping can be effectively prevented. Moreover, this laser can improve wavelength stability significantly by taking advantage of an un-pumped Er3+-doped fiber at the standing-wave section. The laser can operate in stable narrow-line-width with single-, dual-wavelength, and unstable triple-wavelength output at room temperature.

  9. Precision pointing of imaging spacecraft using gyro-based attitude ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    three-axis attitude of the spacecraft is required continuously for the controller. Gyros provide .... Right ascension of ascending node ( ). 78·1290476 ... U = {ω1 + ω0X,ω2 + ω0Y ,ω3 + ω0Z,} are the process inputs and the matrices A, B and G.

  10. Reconfiguration of the multiwavelength operation of optical fiber ring lasers by the modifiable intra-cavity induced losses of an in-fiber tip probe modal Michelson interferometer

    Science.gov (United States)

    Salceda-Delgado, G.; Martinez-Rios, A.; Sierra-Hernandez, J. M.; Rodríguez-Carreón, V. C.; Toral-Acosta, D.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A. A.; Rojas-Laguna, R.

    2018-03-01

    A straightforward and versatile method for switching from single to different multiwavelength laser emission in ring cavity fiber lasers is proposed and demonstrated experimentally. The method is based on using the changeable interference pattern from an optical fiber modal Michelson interferometer as a wavelength selective filter into the ring cavity laser. The interferometer is constructed using a bi-conical tapered fiber and a single-mode fiber segment, with these being spliced together to form an optical fiber tip probe. When the length of the single-mode fiber piece is modified, the phase difference between the interfering modes of the interferometer causes a change in the interferometer free spectral range. As a consequence, the laser intra-cavity losses lead to gain competition, which allows us to adjust the number of simultaneously generated laser lines. A multiwavelength reconfiguration of the laser from one up to a maximum of eight emission lines was obtained, with a maximum SNR of around 47 dBm.

  11. Benchmark studies of the gyro-Landau-fluid code and gyro-kinetic codes on kinetic ballooning modes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, T. F. [Dalian University of Technology, Dalian 116024 (China); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Xu, X. Q. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Ma, C. H. [Fusion Simulation Center, School of Physics, Peking University, Beijing (China); Bass, E. M.; Candy, J. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Holland, C. [University of California San Diego, La Jolla, California 92093-0429 (United States)

    2016-03-15

    A Gyro-Landau-Fluid (GLF) 3 + 1 model has been recently implemented in BOUT++ framework, which contains full Finite-Larmor-Radius effects, Landau damping, and toroidal resonance [Ma et al., Phys. Plasmas 22, 055903 (2015)]. A linear global beta scan has been conducted using the JET-like circular equilibria (cbm18 series), showing that the unstable modes are kinetic ballooning modes (KBMs). In this work, we use the GYRO code, which is a gyrokinetic continuum code widely used for simulation of the plasma microturbulence, to benchmark with GLF 3 + 1 code on KBMs. To verify our code on the KBM case, we first perform the beta scan based on “Cyclone base case parameter set.” We find that the growth rate is almost the same for two codes, and the KBM mode is further destabilized as beta increases. For JET-like global circular equilibria, as the modes localize in peak pressure gradient region, a linear local beta scan using the same set of equilibria has been performed at this position for comparison. With the drift kinetic electron module in the GYRO code by including small electron-electron collision to damp electron modes, GYRO generated mode structures and parity suggest that they are kinetic ballooning modes, and the growth rate is comparable to the GLF results. However, a radial scan of the pedestal for a particular set of cbm18 equilibria, using GYRO code, shows different trends for the low-n and high-n modes. The low-n modes show that the linear growth rate peaks at peak pressure gradient position as GLF results. However, for high-n modes, the growth rate of the most unstable mode shifts outward to the bottom of pedestal and the real frequency of what was originally the KBMs in ion diamagnetic drift direction steadily approaches and crosses over to the electron diamagnetic drift direction.

  12. Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser

    International Nuclear Information System (INIS)

    Lin, Y-H; Lin, G-R

    2012-01-01

    The free-standing graphite nano-particle located between two FC/APC fiber connectors is employed as the saturable absorber to passively mode-lock the ring-type Erbium-doped fiber laser (EDFL). The host-solvent-free graphite nano-particles with sizes of 300 – 500 nm induce a comparable modulation depth of 54%. The interlayer-spacing and lattice fluctuations of polished graphite nano-particles are observed from the weak 2D band of Raman spectrum and the azimuth angle shift of –0.32 ° of {002}-orientation dependent X-ray diffraction peak. The graphite nano-particles mode-locked EDFL generates a 1.67-ps pulsewidth at linearly dispersion-compensated regime with a repetition rate of 9.1 MHz. The time-bandwidth product of 0.325 obtained under a total intra-cavity group-delay-dispersion of –0.017 ps 2 is nearly transform-limited. The extremely high stability of the nano-scale graphite saturable absorber during mode-locking is observed at an intra-cavity optical energy density of 7.54 mJ/cm 2 . This can be attributed to its relatively high damage threshold (one order of magnitude higher than the graphene) on handling the optical energy density inside the EDFL cavity. The graphite nano-particle with reduced size and sufficient coverage ratio can compete with other fast saturable absorbers such as carbon nanotube or graphene to passively mode-lock fiber lasers with decreased insertion loss and lasing threshold

  13. High-power narrow-linewidth quasi-CW diode-pumped TEM00 1064 nm Nd:YAG ring laser.

    Science.gov (United States)

    Liu, Yuan; Wang, Bao-shan; Xie, Shi-yong; Bo, Yong; Wang, Peng-yuan; Zuo, Jun-wei; Xu, Yi-ting; Xu, Jia-lin; Peng, Qin-jun; Cui, Da-fu; Xu, Zu-yan

    2012-04-01

    We demonstrated a high average power, narrow-linewidth, quasi-CW diode-pumped Nd:YAG 1064 nm laser with near-diffraction-limited beam quality. A symmetrical three-mirror ring cavity with unidirectional operation elements and an etalon was employed to realize the narrow-linewidth laser output. Two highly efficient laser modules and a 90° quartz rotator for birefringence compensation were used for the high output power. The maximum average output power of 62.5 W with the beam quality factor M(2) of 1.15 was achieved under a pump power of 216 W at a repetition rate of 500 Hz, corresponding to the optical-to-optical conversion efficiency of 28.9%. The linewidth of the laser at the maximum output power was measured to be less than 0.2 GHz.

  14. Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber

    Science.gov (United States)

    Feng, Suchun; Lu, Shaohua; Peng, Wanjing; Li, Qi; Feng, Ting; Jian, Shuisheng

    2013-04-01

    A tunable single-polarization single-longitudinal-mode (SLM) erbium-doped fiber ring laser is proposed and demonstrated. For the first time as we know, a chirped moiré fiber Bragg grating (CMFBG) filter with ultra-narrow transmission band and a uniform fiber Bragg grating (UFBG) are used to select the laser longitudinal mode. The stable SLM operation of the fiber laser is guaranteed by the combination of the CMFBG filter and 3 m unpumped erbium-doped fiber acting as a saturable absorber. The single polarization operation of the fiber laser is obtained by using an inline broadband polarizer. A tuning range of about 0.7 nm with about 0.1 nm step is achieved by stretching the uniform FBG.

  15. Use of a reflective semiconductor optical amplifier and dual-ring architecture design to produce a stable multi-wavelength fiber laser

    International Nuclear Information System (INIS)

    Yeh, Chien-Hung; Chow, Chi-Wai; Lu, Shao-Sheng

    2014-01-01

    In this work, we propose and demonstrate a multi-wavelength laser source produced by utilizing a C-band reflective semiconductor optical amplifier (RSOA) with a dual-ring fiber cavity. Here, the laser cavity consists of an RSOA, a 1 × 2 optical coupler, a 2 × 2 optical coupler and a polarization controller. As a result, thirteen to eighteen wavelengths around the L band could be generated simultaneously when the bias current of the C-band RSOA was driven at 30–70 mA. In addition, the output stabilities of the power and wavelength are also discussed. (paper)

  16. Use of a reflective semiconductor optical amplifier and dual-ring architecture design to produce a stable multi-wavelength fiber laser

    Science.gov (United States)

    Yeh, Chien-Hung; Chow, Chi-Wai; Lu, Shao-Sheng

    2014-05-01

    In this work, we propose and demonstrate a multi-wavelength laser source produced by utilizing a C-band reflective semiconductor optical amplifier (RSOA) with a dual-ring fiber cavity. Here, the laser cavity consists of an RSOA, a 1 × 2 optical coupler, a 2 × 2 optical coupler and a polarization controller. As a result, thirteen to eighteen wavelengths around the L band could be generated simultaneously when the bias current of the C-band RSOA was driven at 30-70 mA. In addition, the output stabilities of the power and wavelength are also discussed.

  17. 50-fs pulse generation directly from a colliding-pulse mode-locked Ti:sapphire laser using an antiresonant ring mirror

    Science.gov (United States)

    Naganuma, Kazunori; Mogi, Kazuo

    1991-05-01

    50-fs pulses were directly generated from a colliding-pulse mode-locked Ti:sapphire laser. To achieve the colliding-pulse mode locking, a miniature antiresonant ring containing an organic saturable dye jet was employed as the end mirror for the linear cavity laser. Based on measured dispersion of intracavity elements, a prism pair was implemented to control the cavity dispersion. The generated pulses have no linear chirp but do exhibit parabolic instantaneous frequency owing to third-order dispersion introduced by the prism pair.

  18. Inter-dependence of the electron beam excitations with the free electron laser stability on the super-ACO storage ring

    CERN Document Server

    Couprie, Marie Emmanuelle; Nutarelli, D; Renault, E; Billardon, M

    1999-01-01

    Storage ring free electron lasers have a complex dynamics as compared to the LINAC driven FEL sources since both the laser and the recirculating electron beam behaviours are involved. Electron beam perturbations can strongly affect the FEL operation (start-up, stability) whereas the FEL can stabilize beam instabilities. Experimental analysis together with simulations are reported here. Improvements of the Super-ACO FEL for users is discussed, and consequences are given in terms of electron beam tolerances for a source development for users.

  19. Synchronisation and desynchronisation of self-modulation oscillations in a ring chip laser under the action of a periodic signal and noise

    International Nuclear Information System (INIS)

    Dudetskiy, V Yu; Lariontsev, E G; Chekina, S N

    2014-01-01

    The effect of pump noise on the synchronisation of selfmodulation oscillations in a solid-state ring laser with periodic pump modulation is studied numerically and experimentally. It is found that, in contrast to desynchronisation that usually occurs under action of noise in the case of 1/1 synchronisation of self-oscillations by a periodic signal, the effect of noise on 1/2 synchronisation may be positive, namely, at a sufficiently low intensity, pump noise is favourable for synchronisation of self-oscillations, for narrowing of their spectrum, and for increasing the signal-to-noise ratio. (lasers)

  20. Stability and chaotic dynamics of a perturbed rate gyro

    International Nuclear Information System (INIS)

    Chen, H.-H.

    2006-01-01

    An analysis of stability and chaotic dynamics is presented by a single-axis rate gyro subjected to linear feedback control loops. This rate gyro is supposed to be mounted on a space vehicle which undergoes an uncertain angular velocity ω Z (t) around its spin axis and simultaneously acceleration ω-bar X (t) occurs with respect to the output axis. The necessary and sufficient conditions of stability and degeneracy conditions for the autonomous case, whose vehicle undergoes a steady rotation, were provided by Routh-Hurwitz theory. The stability of the nonlinear nonautonomous system was investigated by Liapunov stability and instability theorems. As the electrical time constant is much smaller than the mechanical time constant, the singularly perturbed system can be obtained by the singular perturbation theory. The Liapunov stability of this system by studying the reduced and boundary-layer systems was also analyzed. Using the Melinikov technique, we can give criteria for the existence of chaos in the gyro motion when the vehicle undergoes perturbed harmonic rotation about its spin and output axes

  1. End-pumped Nd:YVO4 laser with reduced thermal lensing via the use of a ring-shaped pump beam.

    Science.gov (United States)

    Lin, Di; Andrew Clarkson, W

    2017-08-01

    A simple approach for alleviating thermal lensing in end-pumped solid-state lasers using a pump beam with a ring-shaped intensity distribution to decrease the radial temperature gradient is described. This scheme has been implemented in a diode-end-pumped Nd:YVO 4 laser yielding 14 W of TEM 00 output at 1.064 μm with a corresponding slope efficiency of 53% and a beam propagation factor (M 2 ) of 1.08 limited by available pump power. By comparison, the same laser design with a conventional quasi-top-hat pump beam profile of approximately equal radial extent yielded only 9 W of output before the power rolled over due to thermal lensing. Further investigation with the aid of a probe beam revealed that the thermal lens power was ∼30% smaller for the ring-shaped pump beam compared to the quasi-top-hat beam. The implications for further power scaling in end-pumped laser configurations are considered.

  2. UV-laser microdissection system - A novel approach for the preparation of high-resolution stable isotope records (δ13C/δ18O) from tree rings

    Science.gov (United States)

    Schollaen, Karina; Helle, Gerhard

    2013-04-01

    Intra-annual stable isotope (δ13C and δ18O) studies of tree rings at various incremental resolutions have been attempting to extract valuable seasonal climatic and environmental information or assessing plant ecophysiological processes. For preparing high-resolution isotope samples normally wood segments or cores are mechanically divided in radial direction or cut in tangential direction. After mechanical dissection, wood samples are ground to a fine powder and either cellulose is extracted or bulk wood samples are analyzed. Here, we present a novel approach for the preparation of high-resolution stable isotope records from tree rings using an UV-laser microdissection system. Firstly, tree-ring cellulose is directly extracted from wholewood cross-sections largely leaving the wood anatomical structure intact and saving time as compared to the classical procedure. Secondly, micro-samples from cellulose cross-sections are dissected with an UV-Laser dissection microscope. Tissues of interest from cellulose cross-sections are identified and marked precisely with a screen-pen and dissected via an UV-laser beam. Dissected cellulose segments were automatically collected in capsules and are prepared for stable isotope (δ13C and δ18O) analysis. The new techniques facilitate inter- and intra-annual isotope analysis on tree-ring and open various possibilities for comparisons with wood anatomy in plant eco-physiological studies. We describe the design and the handling of this novel methodology and discuss advantages and constraints given by the example of intra-annual oxygen isotope analysis on tropical trees.

  3. Synchronisation of self-oscillations in a solid-state ring laser with pump modulation in the region of parametric resonance between self-modulation and relaxation oscillations

    International Nuclear Information System (INIS)

    Dudetskiy, V Yu; Lariontsev, E G; Chekina, S N

    2014-01-01

    The synchronisation of the self-modulation oscillation frequency in a Nd : YAG ring laser by an external periodic signal modulating the pump power in the region of parametric resonance between self-modulation and relaxation oscillations is studied theoretically and experimentally. The characteristic features of synchronisation processes in lasers operating in the self-modulation regime of the first kind and in the regime with a doubled self-modulation period are considered. Two bistable branches of synchronisation of self-modulation oscillations are found by numerical calculation. The experimental data agree well with the numerical simulation results for one of these branches, but the other branch of bistable self-modulation oscillations was not observed experimentally. (control of laser radiation parameters)

  4. Rotational motions from the 2016, Central Italy seismic sequence, as observed by an underground ring laser gyroscope

    Science.gov (United States)

    Simonelli, A.; Igel, H.; Wassermann, J.; Belfi, J.; Di Virgilio, A.; Beverini, N.; De Luca, G.; Saccorotti, G.

    2018-05-01

    We present the analysis of rotational and translational ground motions from earthquakes recorded during October/November, 2016, in association with the Central Italy seismic-sequence. We use co-located measurements of the vertical ground rotation rate from a large ring laser gyroscope (RLG), and the three components of ground velocity from a broadband seismometer. Both instruments are positioned in a deep underground environment, within the Gran Sasso National Laboratories (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN). We collected dozens of events spanning the 3.5-5.9 Magnitude range, and epicentral distances between 30 km and 70 km. This data set constitutes an unprecedented observation of the vertical rotational motions associated with an intense seismic sequence at local distance. Under the plane wave approximation we process the data set in order to get an experimental estimation of the events back azimuth. Peak values of rotation rate (PRR) and horizontal acceleration (PGA) are markedly correlated, according to a scaling constant which is consistent with previous measurements from different earthquake sequences. We used a prediction model in use for Italy to calculate the expected PGA at the recording site, obtaining consequently predictions for PRR. Within the modeling uncertainties, predicted rotations are consistent with the observed ones, suggesting the possibility of establishing specific attenuation models for ground rotations, like the scaling of peak velocity and peak acceleration in empirical ground-motion prediction relationships. In a second step, after identifying the direction of the incoming wave-field, we extract phase velocity data using the spectral ratio of the translational and rotational components.. This analysis is performed over time windows associated with the P-coda, S-coda and Lg phase. Results are consistent with independent estimates of shear-wave velocities in the shallow crust of the Central Apennines.

  5. Ring Theory

    CERN Document Server

    Jara, Pascual; Torrecillas, Blas

    1988-01-01

    The papers in this proceedings volume are selected research papers in different areas of ring theory, including graded rings, differential operator rings, K-theory of noetherian rings, torsion theory, regular rings, cohomology of algebras, local cohomology of noncommutative rings. The book will be important for mathematicians active in research in ring theory.

  6. UV-laser-based microscopic dissection of tree rings - a novel sampling tool for δ(13) C and δ(18) O studies.

    Science.gov (United States)

    Schollaen, Karina; Heinrich, Ingo; Helle, Gerhard

    2014-02-01

    UV-laser-based microscopic systems were utilized to dissect and sample organic tissue for stable isotope measurements from thin wood cross-sections. We tested UV-laser-based microscopic tissue dissection in practice for high-resolution isotopic analyses (δ(13) C/δ(18) O) on thin cross-sections from different tree species. The method allows serial isolation of tissue of any shape and from millimetre down to micrometre scales. On-screen pre-defined areas of interest were automatically dissected and collected for mass spectrometric analysis. Three examples of high-resolution isotopic analyses revealed that: in comparison to δ(13) C of xylem cells, woody ray parenchyma of deciduous trees have the same year-to-year variability, but reveal offsets that are opposite in sign depending on whether wholewood or cellulose is considered; high-resolution tree-ring δ(18) O profiles of Indonesian teak reflect monsoonal rainfall patterns and are sensitive to rainfall extremes caused by ENSO; and seasonal moisture signals in intra-tree-ring δ(18) O of white pine are weighted by nonlinear intra-annual growth dynamics. The applications demonstrate that the use of UV-laser-based microscopic dissection allows for sampling plant tissue at ultrahigh resolution and unprecedented precision. This new technique facilitates sampling for stable isotope analysis of anatomical plant traits like combined tree eco-physiological, wood anatomical and dendroclimatological studies. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  7. Mode-locking peculiarities in an all-fiber erbium-doped ring ultrashort pulse laser with a highly-nonlinear resonator

    Science.gov (United States)

    Dvoretskiy, Dmitriy A.; Sazonkin, Stanislav G.; Kudelin, Igor S.; Orekhov, Ilya O.; Pnev, Alexey B.; Karasik, Valeriy E.; Denisov, Lev K.

    2017-12-01

    Today ultrashort pulse (USP) fiber lasers are in great demand in a frequency metrology field, THz pulse spectroscopy, optical communication, quantum optics application, etc. Therefore mode-locked (ML) fiber lasers have been extensively investigated over the last decade due the number of scientific, medical and industrial applications. It should be noted, that USP fiber lasers can be treated as an ideal platform to expand future applications due to the complex ML nonlinear dynamics in a laser resonator. Up to now a series of novel ML regimes have been investigated e.g. self-similar pulses, noise-like pulses, multi-bound solitons and soliton rain generation. Recently, we have used a highly nonlinear germanosilicate fiber (with germanium oxides concentration in the core 50 mol. %) inside the resonator for more reliable and robust launching of passive mode-locking based on the nonlinear polarization evolution effect in fibers. In this work we have measured promising and stable ML regimes such as stretched pulses, soliton rain and multi-bound solitons formed in a highly-nonlinear ring laser and obtained by intracavity group velocity dispersion (GVD) variation in slightly negative region. As a result, we have obtained the low noise ultrashort pulse generation with duration 59 dB) and relative intensity noise <-101 dBc / Hz.

  8. Dynamics of a self-Q-switched fiber laser with a Rayleigh-stimulated Brillouin scattering ring mirror

    Science.gov (United States)

    Fotiadi, Andrei A.; Mégret, Patrice; Blondel, Michel

    2004-05-01

    Backward light scattering can cause passive Q switching in fiber lasers. We propose a self-consistent description of the laser dynamics. Our model quantitatively reproduces the temporal structure of pulsation and is also attractive for analysis of laser stability and statistics. The validity of the model is directly verified in an experiment.

  9. Rotational motions from the 2016, Central Italy seismic sequence, as observed by an underground ring laser gyroscope

    Science.gov (United States)

    Simonelli, Andreino; Belfi, Jacopo; Beverini, Nicolò; Di Virgilio, Angela; Maccioni, Enrico; De Luca, Gaetano; Saccorotti, Gilberto; Wassermann, Joachim; Igel, Heiner

    2017-04-01

    We present analyses of rotational and translational ground motions from earthquakes recorded during October-November, 2016, in association with the Central Italy seismic-sequence. We use co-located measurements of the vertical ground rotation rate from a large ring laser gyroscope (RLG), and the three components of ground velocity from a broadband seismometer. Both instruments are positioned in a deep underground environment, within the Gran Sasso National Laboratories (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN). We collected dozen of events spanning the 3.5-5.9 Magnitude range, and epicentral distances between 40 km and 80 km. This data set constitutes an unprecedented observation of the vertical rotational motions associated with an intense seismic sequence at local distance. In theory - assuming plane wave propagation - the ratio between the vertical rotation rate and the transverse acceleration permits, in a single station approach, the estimation of apparent phase velocity in the case of SH arrivals or real phase velocity in the case of Love surface waves. This is a standard approach for the analysis of earthquakes at teleseismic distances, and the results reported by the literature are compatible with the expected phase velocities from the PREM model. Here we extend the application of the same approach to local events, thus exploring higher frequency ranges and larger rotation rate amplitudes. We use a novel approach to joint rotation/acceleration analysis based on the continuous wavelet transform (CWT). Wavelet coherence (WTC) is used as a filter for identifying those regions of the time-period plane where the rotation rate and transverse acceleration signals exhibit significant coherence. This allows retrieving estimates of phase velocities over the period range spanned by correlated arrivals. Coherency among ground rotation and translation is also observed throughout the coda of the P-wave arrival, an observation which is interpreted in

  10. 5.7  W cw single-frequency laser at 671  nm by single-pass second harmonic generation of a 17.2  W injection-locked 1342  nm Nd : YVO4 ring laser using periodically poled MgO : LiNbO3.

    Science.gov (United States)

    Koch, Peter; Ruebel, Felix; Bartschke, Juergen; L'huillier, Johannes A

    2015-11-20

    We demonstrate a continuous wave single-frequency laser at 671.1 nm based on a high-power 888 nm pumped Nd:YVO4 ring laser at 1342.2 nm. Unidirectional operation of the fundamental ring laser is achieved with the injection-locking technique. A Nd:YVO4 microchip laser serves as the injecting seed source, providing a tunable single-frequency power of up to 40 mW. The ring laser emits a single-frequency power of 17.2 W with a Gaussian beam profile and a beam propagation factor of M2beam profile and a beam propagation factor of M2lasers. This work opens possibilities in cold atoms experiments with lithium, allowing the use of larger ensembles in magneto-optical traps or higher diffraction orders in atomic beam interferometers.

  11. Theory and Analysis of JolTech’s GyroPTO

    DEFF Research Database (Denmark)

    Kurniawan, Adi; Kofoed, Jens Peter; Kramer, Morten Mejlhede

    This report summarizes the work done by Aalborg University (AAU) for the project \\Gyro electric energy converter theory and analysis" (Olsen, 2015). The project's objective is to build a theoretical knowledge about gyro electric energy conversion systems, particularly for use in connection...

  12. Tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation

    International Nuclear Information System (INIS)

    Luo, A-P; Luo, Z-C; Xu, W-C; Dvoyrin, V V; Mashinsky, V M; Dianov, E M

    2011-01-01

    We demonstrate a tunable and switchable dual-wavelength passively mode-locked Bi-doped all-fiber ring laser by using nonlinear polarization rotation (NPR) technique. Exploiting the spectral filtering effect caused by the combination of the polarizer and intracavity birefringence, the wavelength separation of dual-wavelength mode-locked pulses can be flexibly tuned between 2.38 and 20.45 nm. Taking the advantage of NPR-induced intensity-dependent loss to suppress the mode competition, the stable dual-wavelength pulses output is obtained at room temperature. Moreover, the dual-wavelength switchable operation is achieved by simply rotating the polarization controllers (PCs)

  13. Gyro-effect stabilizes unstable permanent maglev centrifugal pump.

    Science.gov (United States)

    Qian, Kun-Xi

    2007-03-01

    According to Earnshaw's Theorem (1839), the passive maglev cannot achieve stable equilibrium and thus an extra coil is needed to make the rotor electrically levitated in a heart pump. The author had developed a permanent maglev centrifugal pump utilizing only passive magnetic bearings, to keep the advantages but to avoid the disadvantages of the electric maglev pumps. The equilibrium stability was achieved by use of so-called "gyro-effect": a rotating body with certain high speed can maintain its rotation stably. This pump consisted of a rotor (driven magnets and an impeller), and a stator with motor coil and pump housing. Two passive magnetic bearings between rotor and stator were devised to counteract the attractive force between the motor coil iron core and the rotor driven magnets. Bench testing with saline demonstrated a levitated rotor under preconditions of higher than 3,250 rpm rotation and more than 1 l/min pumping flow. Rotor levitation was demonstrated by 4 Hall sensors on the stator, with evidence of reduced maximal eccentric distance from 0.15 mm to 0.07 mm. The maximal rotor vibration amplitude was 0.06 mm in a gap of 0.15 mm between rotor and stator. It concluded that Gyro-effect can help passive maglev bearings to achieve stabilization of permanent maglev pump; and that high flow rate indicates good hydraulic property of the pump, which helps also the stability of passive maglev pump.

  14. An external-cavity quantum cascade laser operating near 5.2 µm combined with cavity ring-down spectroscopy for multi-component chemical sensing

    Science.gov (United States)

    Dutta Banik, Gourab; Maity, Abhijit; Som, Suman; Pal, Mithun; Pradhan, Manik

    2018-04-01

    We report on the performance of a widely tunable continuous wave mode-hop-free external-cavity quantum cascade laser operating at λ ~ 5.2 µm combined with cavity ring-down spectroscopy (CRDS) technique for high-resolution molecular spectroscopy. The CRDS system has been utilized for simultaneous and molecule-specific detection of several environmentally and bio-medically important trace molecular species such as nitric oxide, nitrous oxide, carbonyl sulphide and acetylene (C2H2) at ultra-low concentrations by probing numerous rotationally resolved ro-vibrational transitions in the mid-IR spectral region within a relatively small spectral range of ~0.035 cm-1. This continuous wave external-cavity quantum cascade laser-based multi-component CRDS sensor with high sensitivity and molecular specificity promises applications in environmental sensing as well as non-invasive medical diagnosis through human breath analysis.

  15. Double closed-loop resonant micro optic gyro using hybrid digital phase modulation.

    Science.gov (United States)

    Ma, Huilian; Zhang, Jianjie; Wang, Linglan; Jin, Zhonghe

    2015-06-15

    It is well-known that the closed-loop operation in optical gyros offers wider dynamic range and better linearity. By adding a stair-like digital serrodyne wave to a phase modulator can be used as a frequency shifter. The width of one stair in this stair-like digital serrodyne wave should be set equal to the optical transmission time in the resonator, which is relaxed in the hybrid digital phase modulation (HDPM) scheme. The physical mechanism for this relaxation is firstly indicated in this paper. Detailed theoretical and experimental investigations are presented for the HDPM. Simulation and experimental results show that the width of one stair is not restricted by the optical transmission time, however, it should be optimized according to the rise time of the output of the digital-to-analogue converter. Based on the optimum parameters of the HDPM, a bias stability of 0.05°/s for the integration time of 400 seconds in 1 h has been carried out in an RMOG with a waveguide ring resonator with a length of 7.9 cm and a diameter of 2.5 cm.

  16. Laser system for cooling of relativistic C{sup 3+}-ion beams in storage rings; Lasersystem zur Kuehlung relativistischer C{sup 3+}-Ionenstrahlen in Speicherringen

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Tobias

    2015-02-15

    Cold ion beams are essential for many precision experiments at storage rings. While spectroscopic experiments gain from the high energy resolution, collision experiments benefit from the increased luminosity. Furthermore, sympathetic cooling of exotic species is conceivable with the aid of cold ion beams. Besides the long established electron cooling, alternative cooling methods are gaining in importance, especially for high energy particles. In the past, experiments to cool ions with lasers were performed. Because of the matching wavelength and output power, frequency doubled Argon-ion lasers at 257 nm were used during these experiments. Due to the strongly limited scanning potential of these systems, it was not possible to cool the full inertia spread of the ion beams. A new laser system was developed in this thesis because of the lack of commercial alternatives. After the characterization of the system, it was tested during a beamtime at the Experimentierspeicherring (ESR) at the Gesellschaft fuer Schwerionenforschung (GSI). The completely solid state based system delivers up to 180 mW of output power at 257 nm and is modehop free tunable up to 16 GHz in 10 ms at this wavelength. By using efficient diode lasers, the new system consumes considerably less power than comparable Argon-ion lasers. The fundamental wavelength of 1028 nm is amplified up to 16 W with an Yb-doped fiber amplifier. Subsequently, the target wavelength of 257 nm is realized in two consecutive build-up cavities. Another diode laser, stabilized to a wavelength meter, serves as a frequency reference. This new laser system first came to operation during beamtime in August 2012, when relativistic C{sup 3+} ions with β=0.47 were cooled successfully. For the first time it was possible to access the whole inertia spread of a bunched ion beam without electron precooling. In contrast to prior experiments, only the laser frequency was scanned and not the bunching frequency of the ion beam. The results

  17. Numerical analysis of multifrequency erbium-doped fiber ring laser employing a periodic filter and frequency shifter

    Czech Academy of Sciences Publication Activity Database

    Karásek, Miroslav; Bellemare, A.

    2000-01-01

    Roč. 147, č. 2 (2000), s. 115-119 ISSN 1350-2433 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical fibre amplifiers * fibre lasers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.792, year: 2000

  18. Toward a New Test of the Relativistic Time Dilation Factor by Laser Spectroscopy of Fast Ions in a Storage Ring

    International Nuclear Information System (INIS)

    Saathoff, G.; Eisenbarth, U.; Hannemann, S.; Hoog, I.; Huber, G.; Karpuk, S.; Krohn, S.; Lassen, J.; Schwalm, D.; Weidemueller, M.; Wolf, A.; Gwinner, G.

    2003-01-01

    The frequency measurement of Doppler-shifted optical lines of ions circulating in a storage ring at high speed permits a sensitive test of the relativistic Doppler-formula and, hence, the time dilation factor γ SR of special relativity. Previous measurements at the storage ring TSR with 7 Li + at v=0.065c gave a new, improved limit, but were hampered by the large observed linewidth, exceeding the natural width 15-fold. Recently we have identified the broadening to be caused by velocity-changing processes in the storage ring. Saturation spectroscopy has proven to be largely immune against these effects and has yielded linewidths only a few MHz larger than the natural one. This is the major ingredient for an improved test of γ SR , which is now under way.

  19. Toward a New Test of the Relativistic Time Dilation Factor by Laser Spectroscopy of Fast Ions in a Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Saathoff, G.; Eisenbarth, U.; Hannemann, S. [Max-Planck-Institut fuer Kernphysik (Germany); Hoog, I.; Huber, G.; Karpuk, S. [Universitaet Mainz, Institut fuer Physik (Germany); Krohn, S. [Max-Planck-Institut fuer Kernphysik (Germany); Lassen, J. [Universitaet Mainz, Institut fuer Physik (Germany); Schwalm, D.; Weidemueller, M.; Wolf, A.; Gwinner, G. [Max-Planck-Institut fuer Kernphysik (Germany)

    2003-03-15

    The frequency measurement of Doppler-shifted optical lines of ions circulating in a storage ring at high speed permits a sensitive test of the relativistic Doppler-formula and, hence, the time dilation factor {gamma}{sub SR} of special relativity. Previous measurements at the storage ring TSR with {sup 7}Li{sup +} at v=0.065c gave a new, improved limit, but were hampered by the large observed linewidth, exceeding the natural width 15-fold. Recently we have identified the broadening to be caused by velocity-changing processes in the storage ring. Saturation spectroscopy has proven to be largely immune against these effects and has yielded linewidths only a few MHz larger than the natural one. This is the major ingredient for an improved test of {gamma}{sub SR}, which is now under way.

  20. Accurate frequency measurements on gyrotrons using a ''gyro-radiometer''

    International Nuclear Information System (INIS)

    Rebuffi, L.

    1986-08-01

    Using an heterodyne system, called ''Gyro-radiometer'', accurated frequency measurements have been carried out on VARIAN 60 GHz gyrotrons. Changing the principal tuning parameters of a gyrotron, we have detected frequency variations up to 100 MHz, ∼ 40 MHz frequency jumps and smaller jumps (∼ 10 MHz) when mismatches in the transmission line were present. FWHM bandwidth of 300 KHz, parasitic frequencies and frequency drift during 100 msec pulses have also been observed. An efficient method to find a stable-, high power-, long pulse-working point of a gyrotron loaded by a transmission line, has been derived. In general, for any power value it is possible to find stable working conditions tuning the principal parameters of the tube in correspondance of a maximum of the emitted frequency

  1. Bridge continuous deformation measurement technology based on fiber optic gyro

    Science.gov (United States)

    Gan, Weibing; Hu, Wenbin; Liu, Fang; Tang, Jianguang; Li, Sheng; Yang, Yan

    2016-03-01

    Bridge is an important part of modern transportation systems and deformation is a key index for bridge's safety evaluation. To achieve the long span bridge curve measurement rapidly and timely and accurately locate the bridge maximum deformation, the continuous deformation measurement system (CDMS) based on inertial platform is presented and validated in this paper. Firstly, based on various bridge deformation measurement methods, the method of deformation measurement based on the fiber optic gyro (FOG) is introduced. Secondly, the basic measurement principle based on FOG is presented and the continuous curve trajectory is derived by the formula. Then the measurement accuracy is analyzed in theory and the relevant factors are presented to ensure the measurement accuracy. Finally, the deformation measurement experiments are conducted on a bridge across the Yangtze River. Experimental results show that the presented deformation measurement method is feasible, practical, and reliable; the system can accurately and quickly locate the maximum deformation and has extensive and broad application prospects.

  2. Characterization of the Bell-Shaped Vibratory Angular Rate Gyro

    Directory of Open Access Journals (Sweden)

    Junfang Fan

    2013-08-01

    Full Text Available The bell-shaped vibratory angular rate gyro (abbreviated as BVG is a novel shell vibratory gyroscope, which is inspired by the Chinese traditional bell. It sensitizes angular velocity through the standing wave precession effect. The bell-shaped resonator is a core component of the BVG and looks like the millimeter-grade Chinese traditional bell, such as QianLong Bell and Yongle Bell. It is made of Ni43CrTi, which is a constant modulus alloy. The exciting element, control element and detection element are uniformly distributed and attached to the resonator, respectively. This work presents the design, analysis and experimentation on the BVG. It is most important to analyze the vibratory character of the bell-shaped resonator. The strain equation, internal force and the resonator's equilibrium differential equation are derived in the orthogonal curvilinear coordinate system. When the input angular velocity is existent on the sensitive axis, an analysis of the vibratory character is performed using the theory of thin shells. On this basis, the mode shape function and the simplified second order normal vibration mode dynamical equation are obtained. The coriolis coupling relationship about the primary mode and secondary mode is established. The methods of the signal processing and control loop are presented. Analyzing the impact resistance property of the bell-shaped resonator, which is compared with other shell resonators using the Finite Element Method, demonstrates that BVG has the advantage of a better impact resistance property. A reasonable means of installation and a prototypal gyro are designed. The gyroscopic effect of the BVG is characterized through experiments. Experimental results show that the BVG has not only the advantages of low cost, low power, long work life, high sensitivity, and so on, but, also, of a simple structure and a better impact resistance property for low and medium angular velocity measurements.

  3. Electron collisions in the trapped gyro-Landau fluid transport model

    International Nuclear Information System (INIS)

    Staebler, G. M.; Kinsey, J. E.

    2010-01-01

    Accurately modeling electron collisions in the trapped gyro-Landau fluid (TGLF) equations has been a major challenge. Insights gained from numerically solving the gyrokinetic equation have lead to a significant improvement of the low order TGLF model. The theoretical motivation and verification of this model with the velocity-space gyrokinetic code GYRO[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] will be presented. The improvement in the fidelity of TGLF to GYRO is shown to also lead to better prediction of experimental temperature profiles by TGLF for a dedicated collision frequency scan.

  4. Heavy ion storage rings

    International Nuclear Information System (INIS)

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented. 35 refs

  5. Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser

    OpenAIRE

    Liu, Ya; Zhao, Xin; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng

    2016-01-01

    Dual-comb lasers from which asynchronous ultrashort pulses can be simultaneously generated have recently become an interesting research subject. They could be an intriguing alternative to the current dual-laser optical-frequency-comb source with highly sophisticated electronic control systems. If generated through a common light path traveled by all pulses, the common-mode noises between the spectral lines of different pulse trains could be significantly reduced. Therefore, coherent dual-comb...

  6. GyroVR: Simulating Inertia in Virtual Reality using Head Worn Flywheels

    DEFF Research Database (Denmark)

    Gugenheimer, Jan; Wolf, Dennis; Eiríksson, Eyþór Rúnar

    2016-01-01

    We present GyroVR, head worn flywheels designed to render inertia in Virtual Reality (VR. Motions such as flying, diving or floating in outer space generate kinesthetic forces onto our body which impede movement and are currently not represented in VR. We simulate those kinesthetic forces...... by attaching flywheels to the users head, leveraging the gyroscopic effect of resistance when changing the spinning axis of rotation. GyroVR is an ungrounded, wireless and self contained device allowing the user to freely move inside the virtual environment. The generic shape allows to attach it to different...... positions on the users body. We evaluated the impact of GyroVR onto different mounting positions on the head (back and front) in terms of immersion, enjoyment and simulator sickness. Our results show, that attaching GyroVR onto the users head (front of the Head Mounted Display (HMD)) resulted in the highest...

  7. On the gyro resonance electron-whistler interaction in transition layers of near-earth plasma

    International Nuclear Information System (INIS)

    Erokhin, N.S.; Zol'nikova, N.N.; Mikhajlovskaya, L.A.

    1996-01-01

    Gyro resonance interaction of electrons with low amplitude triggered whistler in the transition layers of the ionospheric and magnetospheric plasma that correspond to the blurred jumps of the magnetic field and plasma concentration was studied

  8. Afterglow Studies of H3+(v=0) Recombination using Time Resolved cw.Diode Laser Cavity Ring-Down Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Macko, P.; Bánó, G.; Hlavenka, P.; Plašil, R.; Poterya, V.; Pysanenko, A.; Votava, Ondřej; Johnsen, R.; Glosík, J.

    2004-01-01

    Roč. 233, 1/3 (2004), s. 299-304 ISSN 1387-3806 R&D Projects: GA ČR GA205/02/0610; GA ČR GA202/02/0948 Institutional research plan: CEZ:AV0Z4040901 Keywords : recombination * H-3(+) ions * cavity ring-down Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.235, year: 2004

  9. Design, Construction, and Analysis of an Ultra-Low Expansion Quartz Resonant Cavity Passive Ring Resonator Laser Gyroscope.

    Science.gov (United States)

    1982-03-01

    Gyroscopes .... ....... 2 1.2 Sagnac’s Interferometer ....... ........ . . 4 1.3 Harress ’ Ring Interferometer ....... ...... 5 1.4 Michelson & Gale...graduate student, Harress , performed an experi- ment in which he attempted to measure the dispersion properties of glass. Figure 1.3 shows Harress ...8217 experiment. The results from his experiment did not agree-with data obtained from other methods, and Harress did not live long enough to find the discrepancy

  10. Black rings

    International Nuclear Information System (INIS)

    Emparan, Roberto; Reall, Harvey S

    2006-01-01

    A black ring is a five-dimensional black hole with an event horizon of topology S 1 x S 2 . We provide an introduction to the description of black rings in general relativity and string theory. Novel aspects of the presentation include a new approach to constructing black ring coordinates and a critical review of black ring microscopics. (topical review)

  11. Safety and effect of femtosecond laser-assisted cataract surgery combined with Cionni capsular tension ring implantation in the management of traumatic lens subluxation

    Directory of Open Access Journals (Sweden)

    Jia-Hui Chen

    2017-07-01

    Full Text Available AIM:To investigate the safety and effect of femtosecond laser-assisted cataract surgery with Cionni modified capsular tension ring(MCTRimplantation in the management of traumatic lens subluxation.METHODS: Totally 11 patients(11 eyeswith traumatic lens subluxation were divided into three groups according to the severity of lens dislocation, ranging from 90° to 120°(4 eyes, 120° to 180°(5 eyesand 180° to 270°(2 eyes. The contact LenSx femtosecond laser cataract surgery platform was applied to create the capsulotomy, prepare nuclear fragmentation and make corneal wound creation. Anterior vitrectomy was performed in some patients during the surgery. After capsular retractors insertion and phacoemulsification, the MCTR was inserted to the capsular bag and fixed to the sclera. Finally, the IOL was implanted into the capsular bag. Postoperative visual acuity, intra- and post-operative complications, anterior capsular opening, IOL and MCTR position and intraocular pressure(IOPwere assessed.RESULTS:The duration of follow-up was 2mo. All the operations were completed successfully. Five eyes underwent cataract surgery combined with anterior vitrectomy. Four eyes had been inserted with 2-eyelet MCTR and seven eyes with 1-eyelet MCTR. The best corrected visual acuity(BCVAafter operation was better than 0.5 in 4 eyes, between 0.3 and 0.5 in 3 eyes, between 0.1 and 0.3 in 3 eyes, and less than 0.1 in 1 eye. Compared with preoperative BCVA, the difference was statistically significant(PCONCLUSION:Femtosecond laser-assisted cataract surgery can improve the success rate of capsulorhexis, and reduce the difficulty of nuclear fragmentation. Femtosecond laser-assisted cataract surgery combined with MCTR implantation is an ideal surgical method for traumatic lens subluxation.

  12. 4D Density Determination of NH Radicals in an MSE Microplasma Combining Planar Laser Induced Fluorescence and Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Visser, Martin; Schenk, Andreas; Gericke, Karl-Heinz

    2010-10-01

    An application of microplasmas is surface modification under mild conditions and of small, well defined areas. For this, an understanding of the plasma composition is of importance. First results of our work on the production and detection of NH radicals in a capacitively coupled radio frequency (RF) microplasma are presented. A microstructured comb electrode was used to generate a glow discharge in a hydrogen/nitrogen gas mixture by applying 13.56 MHz RF voltage. The techniques of planar laser induced fluorescence (PLIF) and cavity ring-down spectroscopy (CRDS) are used for space and time resolved, quantitative detection of the NH radical in the plasma. The rotational temperature was determined to be 820 K and, the density 5.1×1012 cm3. Also, time dependent behaviour of the NH production was observed.

  13. 4D Density Determination of NH Radicals in an MSE Microplasma Combining Planar Laser Induced Fluorescence and Cavity Ring-Down Spectroscopy

    International Nuclear Information System (INIS)

    Visser, Martin; Schenk, Andreas; Gericke, Karl-Heinz

    2010-01-01

    An application of microplasmas is surface modification under mild conditions and of small, well defined areas. For this, an understanding of the plasma composition is of importance. First results of our work on the production and detection of NH radicals in a capacitively coupled radio frequency (RF) microplasma are presented. A microstructured comb electrode was used to generate a glow discharge in a hydrogen/nitrogen gas mixture by applying 13.56 MHz RF voltage. The techniques of planar laser induced fluorescence (PLIF) and cavity ring-down spectroscopy (CRDS) are used for space and time resolved, quantitative detection of the NH radical in the plasma. The rotational temperature was determined to be 820 K and, the density 5.1x10 12 cm 3 . Also, time dependent behaviour of the NH production was observed.

  14. 1.5 W high efficiency and tunable single-longitudinal-mode Ho:YLF ring laser based on Faraday effect.

    Science.gov (United States)

    Wu, Jing; Ju, Youlun; Dai, Tongyu; Yao, Baoquan; Wang, Yuezhu

    2017-10-30

    We demonstrated an efficient and tunable single-longitudinal-mode Ho:YLF ring laser based on Faraday effect for application to measure atmospheric carbon dioxide (CO 2 ). Single-longitudinal-mode power at 2051.65 nm achieved 528 mW with the slope efficiency of 39.5% and the M 2 factor of 1.07, and the tunable range of about 178 GHz was obtained by inserting a Fabry-Perot (F-P) etalon with the thickness of 0.5 mm. In addition, the maximum single-longitudinal-mode power reached 1.5 W with the injected power of 528 mW at 2051.65 nm by master oscillator power amplifier (MOPA) technique. High efficiency and tunable single-longitudinal-mode based on Faraday effect around 2 μm has not been reported yet to the best of our knowledge.

  15. Laser ablation-combustion-GC-IRMS--a new method for online analysis of intra-annual variation of delta13C in tree rings.

    Science.gov (United States)

    Schulze, Brigit; Wirth, Christian; Linke, Petra; Brand, Willi A; Kuhlmann, Iris; Horna, Viviana; Schulze, Ernst-Detlef

    2004-11-01

    We present a new, rapid method for high-resolution online determination of delta13C in tree rings, combining laser ablation (LA), combustion (C), gas chromatography (GC) and isotope ratio mass spectrometry (IRMS) (LA-C-GC-IRMS). Sample material was extracted every 6 min with a UV-laser from a tree core, leaving 40-microm-wide holes. Ablated wood dust was combusted to CO2 at 700 degrees C, separated from other gases on a GC column and injected into an isotope ratio mass spectrometer after removal of water vapor. The measurements were calibrated against an internal and an external standard. The tree core remained intact and could be used for subsequent dendrochronological and dendrochemical analyses. Cores from two Scots pine trees (Pinus sylvestris spp. sibirica Lebed.) from central Siberia were sampled. Inter- and intra-annual patterns of delta13C in whole-wood and lignin-extracted cores were indistinguishable apart from a constant offset, suggesting that lignin extraction is unnecessary for our method. Comparison with the conventional method (microtome slicing, elemental analysis and IRMS) indicated high accuracy of the LA-C-GC-IRMS measurements. Patterns of delta13C along three parallel ablation lines on the same core showed high congruence. A conservative estimate of the precision was +/- 0.24 per thousand. Isotopic patterns of the two Scots pine trees were broadly similar, indicating a signal related to the forest stand's climate history. The maximum variation in delta13C over 22 years was about 5 per thousand, ranging from -27 to -22.3 per thousand. The most obvious pattern was a sharp decline in delta13C during latewood formation and a rapid increase with spring early growth. We conclude that the LA-C-GC-IRMS method will be useful in elucidating short-term climate effects on the delta13C signal in tree rings.

  16. Real-Time 200 Gb/s (4x56.25 Gb/s) PAM-4 Transmission over 80 km SSMF using Quantum-Dot Laser and Silicon Ring-Modulator

    DEFF Research Database (Denmark)

    Eiselt, Nicklas; Griesser, Helmut; Eiselt, Michael

    2017-01-01

    We report real-time 4x56.26-Gb/s DWDM PAM-4 transmission over 80-km SSMF with novel optical transmitter sub-assembly comprising multi-wavelength quantum-dot laser and silicon ring modulators. Pre-FEC BERs below 1E-4 are achieved after 80-km, allowing error-free operation with HD-FEC...

  17. Fast all-optical multistate flip-flop operation realized by a single self-sustained micro-ring laser memory cell

    International Nuclear Information System (INIS)

    Wang, Zhuoran; Yuan, Guohui

    2013-01-01

    We investigate all-optical multistate flip-flop operation realized by a single self-sustained micro-ring laser memory cell based on a time-domain multi-mode nonlinear model. Each state is written by the corresponding 100 ps-width input non-return-to-zero (NRZ) pulse carrying the directional and wavelength information, and the cell remains in the written state until another trigger arrives. The effects of key parameters including the detuning frequency and injection power ratio on the injection locking and flipping regions of different modes in both directions of the micro-ring device are studied. By optimizing the operation conditions, we simulate the minimal switching speed for each mode. The fast switching speed of less than 20 ps and up to ten mode flip-flop operation indicate that this single optical memory cell can support ten states at a data rate of at least 10 Gbps, which is particularly valuable for the realization of future all-optical networking and functional sub-system technology. (letter)

  18. White Ring; White ring

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, H.; Yuzawa, H. [Nikken Sekkei Ltd., Osaka (Japan)

    1998-01-05

    White Ring is a citizen`s gymnasium used for figure skating and short track speed skating games of 18th Winter Olympic Games in 1998. White Ring is composed of a main-arena and a sub-arena. For the main-arena with an area 41mtimes66m, an ice link can be made by disengaging the potable floor and by flowing brine in the bridged polystyrene pipes embedded in the concrete floor. Due to the fortunate groundwater in this site, well water is used for the outside air treatment energy in 63% during heating and in 35% during cooling. Ammonia is used as a cooling medium for refrigerating facility. For the heating of audience area in the large space, heat load from the outside is reduced by enhancing the heat insulation performance of the roof of arena. The audience seats are locally heated using heaters. For the White Ring, high quality environment is realized for games through various functions of the large-scale roof of the large space. Success of the big event was expected. 15 figs., 4 tabs.

  19. Electrical crosstalk-coupling measurement and analysis for digital closed loop fibre optic gyro

    International Nuclear Information System (INIS)

    Jing, Jin; Hai-Ting, Tian; Xiong, Pan; Ning-Fang, Song

    2010-01-01

    The phase modulation and the closed-loop controller can generate electrical crosstalk-coupling in digital closed-loop fibre optic gyro. Four electrical cross-coupling paths are verified by the open-loop testing approach. It is found the variation of ramp amplitude will lead to the alternation of gyro bias. The amplitude and the phase parameters of the electrical crosstalk signal are measured by lock-in amplifier, and the variation of gyro bias is confirmed to be caused by the alternation of phase according to the amplitude of the ramp. A digital closed-loop fibre optic gyro electrical crosstalk-coupling model is built by approximating the electrical cross-coupling paths as a proportion and integration segment. The results of simulation and experiment show that the modulation signal electrical crosstalk-coupling can cause the dead zone of the gyro when a small angular velocity is inputted, and it could also lead to a periodic vibration of the bias error of the gyro when a large angular velocity is inputted

  20. Statistical properties of the gyro-averaged standard map

    Science.gov (United States)

    da Fonseca, Julio D.; Sokolov, Igor M.; Del-Castillo-Negrete, Diego; Caldas, Ibere L.

    2015-11-01

    A statistical study of the gyro-averaged standard map (GSM) is presented. The GSM is an area preserving map model proposed in as a simplified description of finite Larmor radius (FLR) effects on ExB chaotic transport in magnetized plasmas with zonal flows perturbed by drift waves. The GSM's effective perturbation parameter, gamma, is proportional to the zero-order Bessel function of the particle's Larmor radius. In the limit of zero Larmor radius, the GSM reduces to the standard, Chirikov-Taylor map. We consider plasmas in thermal equilibrium and assume a Larmor radius' probability density function (pdf) resulting from a Maxwell-Boltzmann distribution. Since the particles have in general different Larmor radii, each orbit is computed using a different perturbation parameter, gamma. We present analytical and numerical computations of the pdf of gamma for a Maxwellian distribution. We also compute the pdf of global chaos, which gives the probability that a particle with a given Larmor radius exhibits global chaos, i.e. the probability that Kolmogorov-Arnold-Moser (KAM) transport barriers do not exist.

  1. Online Estimation of ARW Coefficient of Fiber Optic Gyro

    Directory of Open Access Journals (Sweden)

    Yang Li

    2014-01-01

    Full Text Available As a standard method for noise analysis of fiber optic gyro (FOG, Allan variance has too large offline computational burden and data storages to be applied to online estimation. To overcome the barriers, the state space model is firstly established for FOG. Then the Sage-husa adaptive Kalman filter (SHAKF is introduced in this field. Through recursive calculation of measurement noise covariance matrix, SHAKF can avoid the storage of large amounts of history data. However, the precision and stability of this method are still the primary matters that needed to be addressed. Based on this point, a new online method for estimation of the coefficient of angular random walk is proposed. In the method, estimator of measurement noise is constructed by the recursive form of Allan variance at the shortest sampling time. Then the estimator is embedded into the SHAKF framework resulting in a new adaptive filter. The estimations of measurement noise variance and Kalman filter are independent of each other in this method. Therefore, it can address the problem of filtering divergence and precision degrading effectively. Test results of both digital simulation and experimental data of FOG verify the validity and feasibility of the proposed method.

  2. Measurement of the ratio of C3+ and O4+ ions produced by ECRIS to prepare a laser cooling experiment at storage rings

    International Nuclear Information System (INIS)

    Zhu, X.L.; Wen, W.Q.; Ma, X.; Li, J.Y.; Feng, W.T.; Zhang, R.T.; Wang, Enliang; Yan, S.; Guo, D.L.; Hai, B.; Qian, D.B.; Zhang, P.; Xu, S.; Zhao, D.M.; Yang, J.; Zhang, D.C.; Li, B.; Gao, Y.; Huang, Z.K.; Wang, H.B.

    2014-01-01

    To prepare the upcoming laser cooling of relativistic C 3+ ion beams at the experimental Cooler Storage Ring (CSRe), a novel experiment was performed using a reaction microscope to determine the ratio of C 3+ ions in mixed ion beams of C 3+ and O 4+ that are produced by an Electron Cyclotron Resonance Ion Source (ECRIS). The mixed ion beams at an energy of 4 keV/u were directed to collide on a supersonic helium gas target. Using the single-electron capture channel and the coincidence technique, the fractions of C 3+ and O 4+ ions in the primary beam were obtained. Using different injection gases for ECRIS, including O 2 , CO, CO 2 , and CH 4 , at a fixed radio-frequency power of 300 W, the measured results showed that the fraction of C 3+ ions was greater than 70% for the injection gases of CO and CO 2 . These measured results are very important and helpful for the upcoming laser cooling experiments

  3. Ultrashort Generation Regimes in the All-Fiber Kerr Mode-Locked Erbium-Doped Fiber Ring Laser for Terahertz Pulsed Spectroscopy

    Directory of Open Access Journals (Sweden)

    V. S. Voropaev

    2015-01-01

    Full Text Available Many femtosecond engineering applications require for a stable generation of ultrashort pulses. Thus, in the terahertz pulsed spectroscopy a measurement error in the refractive index is strongly dependent on the pulse duration stability with allowable variation of few femtoseconds. The aim of this work is to study the ultrashort pulses (USP regimes stability in the all – fiber erbium doped ring laser with Kerr mode-locking. The study was conducted at several different values of the total resonator intra-cavity dispersion. Three laser schemes with the intra-cavity dispersion values from -1.232 ps2 to +0.008 ps2 have been studied. In the experiment there were two regimes of generation observed: the stretched pulse generation and ordinary soliton generation. Main attention is focused on the stability of regimes under study. The most stable regime was that of the stretched pulse generation with a spectrum form of sech2 , possible pulse duration of 490 fs at least, repetition rate of 2.9 MHz, and average output power of 17 mW. It is worth noting, that obtained regimes had characteristics suitable for the successful use in the terahertz pulsed spectroscopy. The results may be useful in the following areas of science and technology: a high-precision spectroscopy, optical frequency standards, super-continuum generation, and terahertz pulsed spectroscopy. The future system development is expected to stabilize duration and repetition rate of the obtained regime of ultra-short pulse generation.

  4. Calibrated high-precision 17O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance

    Directory of Open Access Journals (Sweden)

    E. J. Steig

    2014-08-01

    Full Text Available High-precision analysis of the 17O / 16O isotope ratio in water and water vapor is of interest in hydrological, paleoclimate, and atmospheric science applications. Of specific interest is the parameter 17O excess (Δ17O, a measure of the deviation from a~linear relationship between 17O / 16O and 18O / 16O ratios. Conventional analyses of Δ17O of water are obtained by fluorination of H2O to O2 that is analyzed by dual-inlet isotope ratio mass spectrometry (IRMS. We describe a new laser spectroscopy instrument for high-precision Δ17O measurements. The new instrument uses cavity ring-down spectroscopy (CRDS with laser-current-tuned cavity resonance to achieve reduced measurement drift compared with previous-generation instruments. Liquid water and water-vapor samples can be analyzed with a better than 8 per meg precision for Δ17O using integration times of less than 30 min. Calibration with respect to accepted water standards demonstrates that both the precision and the accuracy of Δ17O are competitive with conventional IRMS methods. The new instrument also achieves simultaneous analysis of δ18O, Δ17O and δD with precision of < 0.03‰, < 0.02 and < 0.2‰, respectively, based on repeated calibrated measurements.

  5. Switchable multi-wavelength erbium-doped fiber ring laser based on a tapered in-line Mach–Zehnder interferometer

    Science.gov (United States)

    Zhou, Yuxin; Wang, Xin; Tang, Zijuan; Lou, Shuqin

    2018-05-01

    In this paper, a switchable multi-wavelength erbium-doped fiber ring laser based on a tapered in-line Mach–Zehnder interferometer is proposed. The in-line Mach–Zehnder interferometer is fabricated by splicing a large-core fiber between two segments of single mode fibers, in which the first splicing point is tapered and the second splicing point is connected directly. By carefully rotating the polarization controller, switchable single-, dual-, triple- and quad-wavelength lasing outputs can be obtained with a side mode suppression ratio higher than 50 dB. The maximal peak power difference of multi-wavelength lasing is 3.67 dB, demonstrating a good power equalization performance. Furthermore, the proposed laser is proven to be very stable at room temperature. The wavelength shifts and peak power fluctuations are less than 0.02 nm and 1.3 dB over half an hour. In addition, stable quintuple-wavelength lasing with a side mode suppression ratio higher than 50 dB can also be realized when the filter length is changed.

  6. Extending the applicability of an open-ring trap to perform experiments with a single laser-cooled ion

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo, J. M.; Colombano, M.; Doménech, J.; Rodríguez, D., E-mail: danielrodriguez@ugr.es [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, 18071 Granada (Spain); Block, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institut Mainz, 55099 Mainz (Germany); Institut für Kernchemie, University of Mainz, 55099 Mainz (Germany); Delahaye, P. [Grand Accélérateur National d’Ions Lourds, 14000 Caen (France)

    2015-10-15

    A special ion trap was initially built up to perform β-ν correlation experiments with radioactive ions. The trap geometry is also well suited to perform experiments with laser-cooled ions, serving for the development of a new type of Penning trap, in the framework of the project TRAPSENSOR at the University of Granada. The goal of this project is to use a single {sup 40}Ca{sup +} ion as detector for single-ion mass spectrometry. Within this project and without any modification to the initial electrode configuration, it was possible to perform Doppler cooling on {sup 40}Ca{sup +} ions, starting from large clouds and reaching single ion sensitivity. This new feature of the trap might be important also for other experiments with ions produced at radioactive ion beam facilities. In this publication, the trap and the laser system will be described, together with their performance with respect to laser cooling applied to large ion clouds down to a single ion.

  7. Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser

    Science.gov (United States)

    Liu, Ya; Zhao, Xin; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng

    2016-09-01

    Dual-comb lasers from which asynchronous ultrashort pulses can be simultaneously generated have recently become an interesting research subject. They could be an intriguing alternative to the current dual-laser optical-frequency-comb source with highly sophisticated electronic control systems. If generated through a common light path traveled by all pulses, the common-mode noises between the spectral lines of different pulse trains could be significantly reduced. Therefore, coherent dual-comb generation from a completely common-path, unidirectional lasing cavity would be an interesting territory to explore. In this paper, we demonstrate such a dual-comb lasing scheme based on a nanomaterial saturable absorber with additional pulse narrowing and broadening mechanisms concurrently introduced into a mode-locked fiber laser. The interactions between multiple soliton formation mechanisms result in unusual bifurcation into two-pulse states with quite different characteristics. Simultaneous oscillation of pulses with four-fold difference in pulsewidths and tens of Hz repetition rate difference is observed. The coherence between these spectral-overlapped, picosecond and femtosecond pulses is further verified by the corresponding asynchronous cross-sampling and dual-comb spectroscopy measurements.

  8. System Design and Performance of the Two-Gyro Science Mode For the Hubble Space Telescope

    Science.gov (United States)

    Prior, Michael; Dunham, Larry

    2005-01-01

    For fifteen years, the science mission of the Hubble Space Telescope (HST) required using at least three of the six on-board rate gyros for attitude control. Failed gyros were eventually replaced through Space Shuttle Servicing Missions. The tragic loss of the Space Shuttle Columbia has resulted in the cancellation of all planned Shuttle based missions to HST. While a robotic servicing mission is currently being planned instead, controlling with alternate sensors to replace failed gyros can extend the HST science gathering until a servicing mission can be performed, and also extend science at HST s end of life. Additionally, sufficient performance may allow a permanent transition to operations with less than 3 gyros (by intentionally turning off working gyros saving them for later use) allowing for an even greater science mission extension. To meet this need, a Two Gyro Science (TGS) mode has been designed and implemented using magnetometers (Magnetic Sensing System - MSS), Fixed Head Star Trackers (FHSTs), and Fine Guidance Sensors (FGSs) to control vehicle rate about the missing gyro input axis. The development of the TGS capability is the largest re-design of HST operations undertaken, since it affects several major spacecraft subsystems, the most heavily being the Pointing Control System (PCS) and Flight Software (FSW). Additionally, and equally important, are the extensive modifications and enhancements of the Planning and Scheduling system which must now be capable of scheduling science observations while taking into account several new constraints imposed by the TGS operational modes (such as FHST availability and magnetic field geometry) that will impact science gathering efficiency and target availability. This paper discusses the systems engineering design, development, and performance of the TGS mode, now in its final stages of completion.

  9. Vortex rings

    CERN Document Server

    Akhmetov, D G

    2009-01-01

    This text on vortex rings covers their theoretical foundation, systematic investigations, and practical applications such as the extinction of fires at gushing oil wells. It pays special attention to the formation and motion of turbulent vortex rings.

  10. Attitude and gyro bias estimation by the rotation of an inertial measurement unit

    International Nuclear Information System (INIS)

    Wu, Zheming; Sun, Zhenguo; Zhang, Wenzeng; Chen, Qiang

    2015-01-01

    In navigation applications, the presence of an unknown bias in the measurement of rate gyros is a key performance-limiting factor. In order to estimate the gyro bias and improve the accuracy of attitude measurement, we proposed a new method which uses the rotation of an inertial measurement unit, which is independent from rigid body motion. By actively changing the orientation of the inertial measurement unit (IMU), the proposed method generates sufficient relations between the gyro bias and tilt angle (roll and pitch) error via ridge body dynamics, and the gyro bias, including the bias that causes the heading error, can be estimated and compensated. The rotation inertial measurement unit method makes the gravity vector measured from the IMU continuously change in a body-fixed frame. By theoretically analyzing the mathematic model, the convergence of the attitude and gyro bias to the true values is proven. The proposed method provides a good attitude estimation using only measurements from an IMU, when other sensors such as magnetometers and GPS are unreliable. The performance of the proposed method is illustrated under realistic robotic motions and the results demonstrate an improvement in the accuracy of the attitude estimation. (paper)

  11. Regular self-oscillating and chaotic behaviour of a PID controlled gimbal suspension gyro

    International Nuclear Information System (INIS)

    Perez Polo, Manuel F.; Perez Molina, Manuel

    2004-01-01

    The dynamics of a gyro in gimbal with a PID controller to obtain steady state, self-oscillating and chaotic motion is considered in this paper. The mathematical model of the whole system is deduced from the gyroscope nutation theory and from a feedback control system formed by a PID controller with constrained integral action. The paper shows that the gyro and the associated PID feedback control system have multiple equilibrium points, and from the analysis of a Poincare-Andronov-Hopf bifurcation at the equilibrium points, it is possible to deduce the conditions, which give regular and self-oscillating behaviour. The calculation of the first Lyapunov value is used to predict the motion of the gyro in order to obtain a desired equilibrium point or self-oscillating behaviour. The mechanism of the stability loss of the gyro under small vibrations of the gyro platform and the appearance of chaotic motion is also presented. Numerical simulations are performed to verify the analytical results

  12. Passive axial magnetic bearing with Halbach magnetized array in magnetically suspended control moment gyro application

    International Nuclear Information System (INIS)

    Sun Jinji; Ren Yuan; Fang Jiancheng

    2011-01-01

    The paper presents a special configuration of passive axial magnetic bearing with segmented Halbach magnetized array in magnetically suspended control moment gyro (MSCMG). Peculiarity of presented passive axial magnetic bearing is its ability to provide angular stiffness so that it can produce gyro moment when it is used in MSCMG. The MSCMG with this passive axial magnetic bearing can efficiently reduce the power loss when it supplies gyro moment compared with the five degrees of freedom (5-DOF) MSCMG. The characteristics of the suspension force and stiffness of the passive axial magnetic bearing are studied using finite element method (FEM). The performance of the presented passive axial magnetic bearing with Halbach magnetized array is verified by a prototyped MSCMG. - Research highlights: → Passive axial magnetic bearing is used to provide angular stiffness. → Passive axial magnetic bearing is based on repulsion. → Layers Halbach magnetized array realizes higher stiffness per bearing volume. → Passive axial magnetic bearing can provide gyro moment in CMG. → Power loss of MSCMG with PMB does not increase when it provides gyro moment.

  13. A hybrid method for accurate star tracking using star sensor and gyros.

    Science.gov (United States)

    Lu, Jiazhen; Yang, Lie; Zhang, Hao

    2017-10-01

    Star tracking is the primary operating mode of star sensors. To improve tracking accuracy and efficiency, a hybrid method using a star sensor and gyroscopes is proposed in this study. In this method, the dynamic conditions of an aircraft are determined first by the estimated angular acceleration. Under low dynamic conditions, the star sensor is used to measure the star vector and the vector difference method is adopted to estimate the current angular velocity. Under high dynamic conditions, the angular velocity is obtained by the calibrated gyros. The star position is predicted based on the estimated angular velocity and calibrated gyros using the star vector measurements. The results of the semi-physical experiment show that this hybrid method is accurate and feasible. In contrast with the star vector difference and gyro-assisted methods, the star position prediction result of the hybrid method is verified to be more accurate in two different cases under the given random noise of the star centroid.

  14. Calibration of gyro G-sensitivity coefficients with FOG monitoring on precision centrifuge

    Science.gov (United States)

    Lu, Jiazhen; Yang, Yanqiang; Li, Baoguo; Liu, Ming

    2017-07-01

    The advantages of mechanical gyros, such as high precision, endurance and reliability, make them widely used as the core parts of inertial navigation systems (INS) utilized in the fields of aeronautics, astronautics and underground exploration. In a high-g environment, the accuracy of gyros is degraded. Therefore, the calibration and compensation of the gyro G-sensitivity coefficients is essential when the INS operates in a high-g environment. A precision centrifuge with a counter-rotating platform is the typical equipment for calibrating the gyro, as it can generate large centripetal acceleration and keep the angular rate close to zero; however, its performance is seriously restricted by the angular perturbation in the high-speed rotating process. To reduce the dependence on the precision of the centrifuge and counter-rotating platform, an effective calibration method for the gyro g-sensitivity coefficients under fiber-optic gyroscope (FOG) monitoring is proposed herein. The FOG can efficiently compensate spindle error and improve the anti-interference ability. Harmonic analysis is performed for data processing. Simulations show that the gyro G-sensitivity coefficients can be efficiently estimated to up to 99% of the true value and compensated using a lookup table or fitting method. Repeated tests indicate that the G-sensitivity coefficients can be correctly calibrated when the angular rate accuracy of the precision centrifuge is as low as 0.01%. Verification tests are performed to demonstrate that the attitude errors can be decreased from 0.36° to 0.08° in 200 s. The proposed measuring technology is generally applicable in engineering, as it can reduce the accuracy requirements for the centrifuge and the environment.

  15. Autonomous estimation of Allan variance coefficients of onboard fiber optic gyro

    International Nuclear Information System (INIS)

    Song Ningfang; Yuan Rui; Jin Jing

    2011-01-01

    Satellite motion included in gyro output disturbs the estimation of Allan variance coefficients of fiber optic gyro on board. Moreover, as a standard method for noise analysis of fiber optic gyro, Allan variance has too large offline computational effort and data storages to be applied to online estimation. In addition, with the development of deep space exploration, it is urged that satellite requires more autonomy including autonomous fault diagnosis and reconfiguration. To overcome the barriers and meet satellite autonomy, we present a new autonomous method for estimation of Allan variance coefficients including rate ramp, rate random walk, bias instability, angular random walk and quantization noise coefficients. In the method, we calculate differences between angle increments of star sensor and gyro to remove satellite motion from gyro output, and propose a state-space model using nonlinear adaptive filter technique for quantities previously measured from offline data techniques such as the Allan variance method. Simulations show the method correctly estimates Allan variance coefficients, R = 2.7965exp-4 0 /h 2 , K = 1.1714exp-3 0 /h 1.5 , B = 1.3185exp-3 0 /h, N = 5.982exp-4 0 /h 0.5 and Q = 5.197exp-7 0 in real time, and tracks degradation of gyro performance from initail values, R = 0.651 0 /h 2 , K = 0.801 0 /h 1.5 , B = 0.385 0 /h, N = 0.0874 0 /h 0.5 and Q = 8.085exp-5 0 , to final estimations, R = 9.548 0 /h 2 , K = 9.524 0 /h 1.5 , B = 2.234 0 /h, N = 0.5594 0 /h 0.5 and Q = 5.113exp-4 0 , due to gamma radiation in space. The technique proposed here effectively isolates satellite motion, and requires no data storage and any supports from the ground.

  16. High accuracy attitude reference stabilization and pointing using the Teledyne SDG-5 gyro and the DRIRU II inertial reference unit

    Science.gov (United States)

    Green, K. N.; van Alstine, R. L.

    This paper presents the current performance levels of the SDG-5 gyro, a high performance two-axis dynamically tuned gyro, and the DRIRU II redundant inertial reference unit relating to stabilization and pointing applications. Also presented is a discussion of a product improvement program aimed at further noise reductions to meet the demanding requirements of future space defense applications.

  17. Extending the performance of single-degree-of-freedom rate integrating gyros in strapdown applications

    Science.gov (United States)

    Baker, G. N.

    This paper examines the constraints upon a typical manufacturer of gyros and strapdown systems. It describes that while being responsive to exchange and keeping abreast of 'state of the art' technology, there are many reasons why the manufacturer must satisfy the market using existing technology and production equipment. The Single-Degree-of-Freedom Rate Integrating Gyro is a well established product, yet is capable of achieving far higher performances than originally envisaged due to modelling and characterization within digital strapdown systems. The parameters involved are discussed, and a description given of the calibration process undertaken on a strapdown system being manufactured in a production environment in batch quantities.

  18. Femtoslicing in Storage Rings

    CERN Document Server

    Khan, Shaukat

    2005-01-01

    The generation of ultrashort synchrotron radiation pulses by laser-induced energy modulation of electrons and their subsequent transverse displacement, now dubbed "femtoslicing," was demonstrated at the Advanced Light Source in Berkeley. More recently, a femtoslicing user facility was commissioned at the BESSY storage ring in Berlin, and another project is in progress at the Swiss Light Source. The paper reviews the principle of femtoslicing, its merits and shortcomings, as well as the variations of its technical implementation. Various diagnostics techniques to detect successful laser-electron interaction are discussed and experimental results are presented.

  19. Chaotic and steady state behaviour of a nonlinear controlled gyro subjected to harmonic disturbances

    International Nuclear Information System (INIS)

    Perez Polo, Manuel F.; Perez Molina, Manuel

    2007-01-01

    Chaotic and steady state motions of a nonlinear controlled gimbals suspension gyro used to stabilize an external body are studied in this paper. The equations of the gyro without nonlinear control are deduced from the Euler-Lagrange equations by using the nutation theory. The equations of the system show that a cyclic variable appears. Its elimination allows us to find an auxiliary nonlinear system from which it is possible to deduce a nonlinear control law in order to obtain a desired equilibrium point. From the analysis of the nonlinear control law it is possible to show that due to both harmonic disturbances in the platform of the gyro and in the body to stabilize, regular and chaotic motions can appear. The chaotic motion is researched by means of chaos maps, bifurcation diagrams, sensitivity to initial conditions, Lyapunov exponents and Fourier spectrum density. The transition from chaotic to steady state motion by eliminating the harmonic disturbances from the modification of the initial nonlinear control law is also researched. Next, the paper shows how to use the chaotic motion in order to obtain small input signals so that the desired equilibrium state of the gyro can be reached. The developed methodology and its compared performance are evaluated through analytical methods and numerical simulations

  20. Design studies of the Ku-band, wide-band Gyro-TWT amplifier

    Science.gov (United States)

    Jung, Sang Wook; Lee, Han Seul; Jang, Kwong Ho; Choi, Jin Joo; Hong, Yong Jun; Shin, Jin Woo; So, Jun Ho; Won, Jong Hyo

    2014-02-01

    This paper reports a Ku-band, wide band Gyrotron-Traveling-wave-tube(Gyro-TWT) that is currently being developed at Kwangwoon University. The Gyro-TWT has a two stage linear tapered interaction circuit to obtain a wide operating bandwidth. The linearly-tapered interaction circuit and nonlinearly-tapered magnetic field gives the Gyro-TWT a wide operating bandwidth. The Gyro-TWT bandwidth is 23%. The 2d-Particle-in-cell(PIC) and MAGIC2d code simulation results are 17.3 dB and 24.34 kW, respectively for the maximum saturated output power. A double anode MIG was simulated with E-Gun code. The results were 0.7 for the transvers to the axial beam velocity ratio (=alpha) and a 2.3% axial velocity spread at 50 kV and 4 A. A magnetic field profile simulation was performed by using the Poisson code to obtain the grazing magnetic field of the entire interaction circuit with Poisson code.

  1. On estimates of the balanced gyro drift and the accuracy of the magnus formula

    NARCIS (Netherlands)

    Amel'kin, N. I.

    2009-01-01

    We construct efficient estimates of the balanced gyro drift due to nutation oscillations. We show that, for oscillation amplitudes not exceeding one degree and for amajority of gyromotions, the relative error in the drift rate calculations on the basis of the obtained estimates does not exceed

  2. Chaotic and steady state behaviour of a nonlinear controlled gyro subjected to harmonic disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Perez Polo, Manuel F. [Department of Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Escuela Politecnica Superior, Campus de San Vicente, 03071 Alicante (Spain)]. E-mail: manolo@dfists.ua.es; Perez Molina, Manuel [Facultad de Ciencias Matematicas, Universidad Nacional de Educacion a Distancia, UNED, C/Boyero 12-1A, Alicante 03007 (Spain)]. E-mail: ma_perez_m@hotmail.com

    2007-07-15

    Chaotic and steady state motions of a nonlinear controlled gimbals suspension gyro used to stabilize an external body are studied in this paper. The equations of the gyro without nonlinear control are deduced from the Euler-Lagrange equations by using the nutation theory. The equations of the system show that a cyclic variable appears. Its elimination allows us to find an auxiliary nonlinear system from which it is possible to deduce a nonlinear control law in order to obtain a desired equilibrium point. From the analysis of the nonlinear control law it is possible to show that due to both harmonic disturbances in the platform of the gyro and in the body to stabilize, regular and chaotic motions can appear. The chaotic motion is researched by means of chaos maps, bifurcation diagrams, sensitivity to initial conditions, Lyapunov exponents and Fourier spectrum density. The transition from chaotic to steady state motion by eliminating the harmonic disturbances from the modification of the initial nonlinear control law is also researched. Next, the paper shows how to use the chaotic motion in order to obtain small input signals so that the desired equilibrium state of the gyro can be reached. The developed methodology and its compared performance are evaluated through analytical methods and numerical simulations.

  3. Hydraulic evaluation of Joltech’s GyroPTO for wave energy applications

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede; Pecher, Arthur Francois Serge; Guaraldi, Irene

    The work presented in this report was completed under the support from the Danish Energy Technological Development and Demonstration Program (EUDP), project no. 64014-0129 “Gyro electric energy converter unit for wave energy”. Testing took place in the wave basin at the Department of Civil Engine...

  4. The research of a gyro-stabilized platform and POS application technology in airborne remote sensing

    Science.gov (United States)

    Xu, Jiang; Du, Qi

    2009-07-01

    The distortion of the collected images usually takes place since the attitude changes along with the flying aerocraft on airborne remote sensing. In order to get original images without distortion, it is necessary to use professional gyro-stabilized platform. In addition to this, another solution of correcting the original image distortion is to utilize later geometric rectification using position & orientation system ( POS ) data. The third way is to utilize medium-accuracy stabilized platform to control the distortion at a tolerant range, and then make use of the data obtained by high-solution posture measure system to correct the low-quality remote sensing images. The third way which takes advantage of both techniques is better than using only one of the two other ways. This paper introduces several kinds of structural forms of gyro-stabilized platforms, and POS acquiring instruments respectively. Then, the essay will make some analysis of their advantages and disadvantages, key technologies and the application experiment of the third method. After the analysis, the thesis discusses the design of the gyro-stabilized platform. The thesis provides crucial information not only for the application technology of gyro-stabilized platform and POS but also for future development.

  5. Gyro-viscosity and linear dispersion relations in pair-ion magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kono, M. [Faculty of Policy Studies, Chuo University, Tokyo 192-0393 (Japan); Vranjes, J. [Instituto de Astrofisica de Canarias, Tenerife E38205 (Spain); Departamento de Astrofisica, Universidad de La Laguna, Tenerife E38205 (Spain)

    2015-11-15

    A fluid theory has been developed by taking account of gyro-viscosity to study wave propagation characteristics in a homogeneous pair-ion magnetized plasma with a cylindrical symmetry. The exact dispersion relations derived by the Hankel-Fourier transformation are shown comparable with those observed in the experiment by Oohara and co-workers. The gyro-viscosity is responsible for the change in propagation characteristics of the ion cyclotron wave from forward to backward by suppressing the effect of the thermal pressure which normally causes the forward nature of dispersion. Although the experiment has been already explained by a kinetic theory by the present authors, the kinetic derivations are so involved because of exact particle orbits in phase space, finite Lamor radius effects, and higher order ion cyclotron resonances. The present fluid theory provides a simple and transparent structure to the dispersion relations since the gyro-viscosity is renormalized into the ion cyclotron frequency which itself indicates the backward nature of dispersion. The usual disadvantage of a fluid theory, which treats only fundamental modes of eigen-waves excited in a system and is not able to describe higher harmonics that a kinetic theory does, is compensated by simple derivations and clear picture based on the renormalization of the gyro-viscosity.

  6. Generalized projective synchronization of chaotic nonlinear gyros coupled with dead-zone input

    International Nuclear Information System (INIS)

    Hung, M.-L.; Yan, J.-J.; Liao, T.-L.

    2008-01-01

    This paper addresses the synchronization problem of drive-response chaotic gyros coupled with dead-zone nonlinear input. Using the sliding mode control technique, a novel control law is established which guarantees generalized projective synchronization even when the dead-zone nonlinearity is present. Numerical simulations are presented to verify that the synchronization can be achieved by using the proposed synchronization scheme

  7. Artificial optical emissions at HAARP for pump frequencies near the third and second electron gyro-harmonic

    Directory of Open Access Journals (Sweden)

    M. J. Kosch

    2005-07-01

    Full Text Available High-power high-frequency radio waves beamed into the ionosphere cause plasma turbulence, which can accelerate electrons. These electrons collide with the F-layer neutral oxygen causing artificial optical emissions identical to natural aurora. Pumping at electron gyro-harmonic frequencies has special significance as many phenomena change their character. In particular, artificial optical emissions become strongly reduced for the third and higher gyro-harmonics. The High frequency Active Auroral Research Program (HAARP facility is unique in that it can select a frequency near the second gyro-harmonic. On 25 February 2004, HAARP was operated near the third and passed through the second gyro-harmonic for the first time in a weakening ionosphere. Two novel observations are: firstly, a strong enhancement of the artificial optical emission intensity near the second gyro-harmonic, which is opposite to higher gyro-harmonics; secondly, the optical enhancement maximum occurs for frequencies just above the second gyro-harmonic. We provide the first experimental evidence for these effects, which have been predicted theoretically. In addition, irregular optical structures were created when the pump frequency was above the ionospheric critical frequency.

    Keywords. Active experiments – Auroral ionosphere – Wave-particle interactions

  8. Artificial optical emissions at HAARP for pump frequencies near the third and second electron gyro-harmonic

    Directory of Open Access Journals (Sweden)

    M. J. Kosch

    2005-07-01

    Full Text Available High-power high-frequency radio waves beamed into the ionosphere cause plasma turbulence, which can accelerate electrons. These electrons collide with the F-layer neutral oxygen causing artificial optical emissions identical to natural aurora. Pumping at electron gyro-harmonic frequencies has special significance as many phenomena change their character. In particular, artificial optical emissions become strongly reduced for the third and higher gyro-harmonics. The High frequency Active Auroral Research Program (HAARP facility is unique in that it can select a frequency near the second gyro-harmonic. On 25 February 2004, HAARP was operated near the third and passed through the second gyro-harmonic for the first time in a weakening ionosphere. Two novel observations are: firstly, a strong enhancement of the artificial optical emission intensity near the second gyro-harmonic, which is opposite to higher gyro-harmonics; secondly, the optical enhancement maximum occurs for frequencies just above the second gyro-harmonic. We provide the first experimental evidence for these effects, which have been predicted theoretically. In addition, irregular optical structures were created when the pump frequency was above the ionospheric critical frequency.Keywords. Active experiments – Auroral ionosphere – Wave-particle interactions

  9. Beam dynamics in Compton ring gamma sources

    Directory of Open Access Journals (Sweden)

    Eugene Bulyak

    2006-09-01

    Full Text Available Electron storage rings of GeV energy with laser pulse stacking cavities are promising intense sources of polarized hard photons which, via pair production, can be used to generate polarized positron beams. In this paper, the dynamics of electron bunches circulating in a storage ring and interacting with high-power laser pulses is studied both analytically and by simulation. Both the common features and the differences in the behavior of bunches interacting with an extremely high power laser pulse and with a moderate pulse are discussed. Also considerations on particular lattice designs for Compton gamma rings are presented.

  10. ring system

    African Journals Online (AJOL)

    1,3,2-DIAZABORACYCLOALKANE. RING SYSTEM. Negussie Retta" and Robert H. Neilson. 'Department of Chemistry, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia. Department of Chemistry, Texas Christian University.

  11. Planetary Rings

    Science.gov (United States)

    Nicholson, P. D.

    2001-11-01

    A revolution in the studies in planetary rings studies occurred in the period 1977--1981, with the serendipitous discovery of the narrow, dark rings of Uranus, the first Voyager images of the tenuous jovian ring system, and the many spectacular images returned during the twin Voyager flybys of Saturn. In subsequent years, ground-based stellar occultations, HST observations, and the Voyager flybys of Uranus (1986) and Neptune (1989), as well as a handful of Galileo images, provided much additional information. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. Perhaps most puzzling is Saturn's multi-stranded, clumpy F ring, which continues to defy a simple explanation 20 years after it was first glimpsed in grainy images taken by Pioneer 11. Voyager and HST images reveal a complex, probably chaotic, dynamical interaction between unseen parent bodies within this ring and its two shepherd satellites, Pandora and Prometheus. The work described here reflects contributions by Joe Burns, Jeff Cuzzi, Luke Dones, Dick French, Peter Goldreich, Colleen McGhee, Carolyn Porco, Mark Showalter, and Bruno Sicardy, as well as those of the author. This research has been supported by NASA's Planetary Geology and Geophysics program and the

  12. Autonomous estimation of Allan variance coefficients of onboard fiber optic gyro

    Energy Technology Data Exchange (ETDEWEB)

    Song Ningfang; Yuan Rui; Jin Jing, E-mail: rayleing@139.com [School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191 (China)

    2011-09-15

    Satellite motion included in gyro output disturbs the estimation of Allan variance coefficients of fiber optic gyro on board. Moreover, as a standard method for noise analysis of fiber optic gyro, Allan variance has too large offline computational effort and data storages to be applied to online estimation. In addition, with the development of deep space exploration, it is urged that satellite requires more autonomy including autonomous fault diagnosis and reconfiguration. To overcome the barriers and meet satellite autonomy, we present a new autonomous method for estimation of Allan variance coefficients including rate ramp, rate random walk, bias instability, angular random walk and quantization noise coefficients. In the method, we calculate differences between angle increments of star sensor and gyro to remove satellite motion from gyro output, and propose a state-space model using nonlinear adaptive filter technique for quantities previously measured from offline data techniques such as the Allan variance method. Simulations show the method correctly estimates Allan variance coefficients, R = 2.7965exp-4 {sup 0}/h{sup 2}, K = 1.1714exp-3 {sup 0}/h{sup 1.5}, B = 1.3185exp-3 {sup 0}/h, N = 5.982exp-4 {sup 0}/h{sup 0.5} and Q = 5.197exp-7 {sup 0} in real time, and tracks degradation of gyro performance from initail values, R = 0.651 {sup 0}/h{sup 2}, K = 0.801 {sup 0}/h{sup 1.5}, B = 0.385 {sup 0}/h, N = 0.0874 {sup 0}/h{sup 0.5} and Q = 8.085exp-5 {sup 0}, to final estimations, R = 9.548 {sup 0}/h{sup 2}, K = 9.524 {sup 0}/h{sup 1.5}, B = 2.234 {sup 0}/h, N = 0.5594 {sup 0}/h{sup 0.5} and Q = 5.113exp-4 {sup 0}, due to gamma radiation in space. The technique proposed here effectively isolates satellite motion, and requires no data storage and any supports from the ground.

  13. Ring cavity for a Raman capillary waveguide amplifier

    Science.gov (United States)

    Kurnit, N.A.

    1981-01-27

    A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.

  14. Ring cavity for a Raman capillary waveguide amplifir

    Science.gov (United States)

    Kurnit, N.A.

    1981-01-27

    A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.

  15. Lasers

    CERN Document Server

    Milonni, Peter W

    1988-01-01

    A comprehensive introduction to the operating principles and applications of lasers. Explains basic principles, including the necessary elements of classical and quantum physics. Provides concise discussions of various laser types including gas, solid state, semiconductor, and free electron lasers, as well as of laser resonators, diffraction, optical coherence, and many applications including holography, phase conjugation, wave mixing, and nonlinear optics. Incorporates many intuitive explanations and practical examples. Discussions are self-contained in a consistent notation and in a style that should appeal to physicists, chemists, optical scientists and engineers.

  16. GyroBoy – a self-balancing robot programmed in JAVA with leJOS EV3

    DEFF Research Database (Denmark)

    Christensen, Bjørn Klint

    GyroBoy is a self-balancing robot created by LEGO as a demonstration of what you can build with the EV3 LEGO Mindstorms education kit. The kit includes building instructions as well as a control program for GyroBoy developed in LEGO´s so called block-programming language. In this article I will p...... will present a similar control program developed in Java using the leJOS EV3 class library.......GyroBoy is a self-balancing robot created by LEGO as a demonstration of what you can build with the EV3 LEGO Mindstorms education kit. The kit includes building instructions as well as a control program for GyroBoy developed in LEGO´s so called block-programming language. In this article I...

  17. Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser

    International Nuclear Information System (INIS)

    Lin, Yung-Hsiang; Chi, Yu-Chieh; Lin, Gong-Ru

    2013-01-01

    Triturated charcoal nano-powder directly brushed on a fiber connector end-face is used for the first time as a fast saturable absorber for a passively mode-locked erbium-doped fiber-ring laser (EDFL). These dispersant-free charcoal nano-powders with a small amount of crystalline graphene phase and highly disordered carbon structure exhibit a broadened x-ray diffraction peak and their Raman spectrum shows the existence of a carbon related D-band at 1350 cm −1 and the disappearance of the 2D-band peak at 2700 cm −1 . The charcoal nano-powder exhibits a featureless linear absorbance in the infrared region with its linear transmittance of 0.66 nonlinearly saturated at 0.73 to give a ΔT/T of 10%. Picosecond mode-locking at a transform-limited condition of a low-gain EDFL is obtained by using the charcoal nano-powder. By using a commercial EDFA with a linear gain of only 17 dB at the saturated output power of 17.5 dB m required to initiate the saturable absorption of the charcoal nano-powder, the EDFL provides a pulsewidth narrowing from 3.3 to 1.36 ps associated with its spectral linewidth broadening from 0.8 to 1.83 nm on increasing the feedback ratio from 30 to 90%. This investigation indicates that all the carbon-based materials containing a crystalline graphene phase can be employed to passively mode-lock the EDFL, however, the disordered carbon structure inevitably induces a small modulation depth and a large mode-locking threshold, thus limiting the pulsewidth shortening. Nevertheless, the nanoscale charcoal passively mode-locked EDFL still shows the potential to generate picosecond pulses under a relatively low cavity gain. An appropriate cavity design can be used to compensate this defect-induced pulsewidth limitation and obtain a short pulsewidth. (letter)

  18. Storage Rings

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Storage rings are circular machines that store particle beams at a constant energy. Beams are stored in rings without acceleration for a number of reasons (Tab. 1). Storage rings are used in high-energy, nuclear, atomic, and molecular physics, as well as for experiments in chemistry, material and life sciences. Parameters for storage rings such as particle species, energy, beam intensity, beam size, and store time vary widely depending on the application. The beam must be injected into a storage ring but may not be extracted (Fig. 1). Accelerator rings such as synchrotrons are used as storage rings before and after acceleration. Particles stored in rings include electrons and positrons; muons; protons and anti-protons; neutrons; light and heavy, positive and negative, atomic ions of various charge states; molecular and cluster ions, and neutral polar molecules. Spin polarized beams of electrons, positrons, and protons were stored. The kinetic energy of the stored particles ranges from 10 -6 eV to 3.5 x 10 12 eV (LHC, 7 x 10 12 eV planned), the number of stored particles from one (ESR) to 1015 (ISR). To store beam in rings requires bending (dipoles) and transverse focusing (quadrupoles). Higher order multipoles are used to correct chromatic aberrations, to suppress instabilities, and to compensate for nonlinear field errors of dipoles and quadrupoles. Magnetic multipole functions can be combined in magnets. Beams are stored bunched with radio frequency systems, and unbunched. The magnetic lattice and radio frequency system are designed to ensure the stability of transverse and longitudinal motion. New technologies allow for better storage rings. With strong focusing the beam pipe dimensions became much smaller than previously possible. For a given circumference superconducting magnets make higher energies possible, and superconducting radio frequency systems allow for efficient replenishment of synchrotron radiation losses of large current electron or positron beams

  19. Slewing maneuvers and vibration control of space structures by feedforward/feedback moment-gyro controls

    Science.gov (United States)

    Yang, Li-Farn; Mikulas, Martin M., Jr.; Park, K. C.; Su, Renjeng

    1993-01-01

    This paper presents a moment-gyro control approach to the maneuver and vibration suppression of a flexible truss arm undergoing a constant slewing motion. The overall slewing motion is triggered by a feedforward input, and a companion feedback controller is employed to augment the feedforward input and subsequently to control vibrations. The feedforward input for the given motion requirement is determined from the combined CMG (Control Momentum Gyro) devices and the desired rigid-body motion. The rigid-body dynamic model has enabled us to identify the attendant CMG momentum saturation constraints. The task for vibration control is carried out in two stages; first in the search of a suitable CMG placement along the beam span for various slewing maneuvers, and subsequently in the development of Liapunov-based control algorithms for CMG spin-stabilization. Both analytical and numerical results are presented to show the effectiveness of the present approach.

  20. Auto Regressive Moving Average (ARMA) Modeling Method for Gyro Random Noise Using a Robust Kalman Filter

    Science.gov (United States)

    Huang, Lei

    2015-01-01

    To solve the problem in which the conventional ARMA modeling methods for gyro random noise require a large number of samples and converge slowly, an ARMA modeling method using a robust Kalman filtering is developed. The ARMA model parameters are employed as state arguments. Unknown time-varying estimators of observation noise are used to achieve the estimated mean and variance of the observation noise. Using the robust Kalman filtering, the ARMA model parameters are estimated accurately. The developed ARMA modeling method has the advantages of a rapid convergence and high accuracy. Thus, the required sample size is reduced. It can be applied to modeling applications for gyro random noise in which a fast and accurate ARMA modeling method is required. PMID:26437409

  1. Aerodynamic Drag Analysis of 3-DOF Flex-Gimbal GyroWheel System in the Sense of Ground Test

    Science.gov (United States)

    Huo, Xin; Feng, Sizhao; Liu, Kangzhi; Wang, Libin; Chen, Weishan

    2016-01-01

    GyroWheel is an innovative device that combines the actuating capabilities of a control moment gyro with the rate sensing capabilities of a tuned rotor gyro by using a spinning flex-gimbal system. However, in the process of the ground test, the existence of aerodynamic disturbance is inevitable, which hinders the improvement of the specification performance and control accuracy. A vacuum tank test is a possible candidate but is sometimes unrealistic due to the substantial increase in costs and complexity involved. In this paper, the aerodynamic drag problem with respect to the 3-DOF flex-gimbal GyroWheel system is investigated by simulation analysis and experimental verification. Concretely, the angular momentum envelope property of the spinning rotor system is studied and its integral dynamical model is deduced based on the physical configuration of the GyroWheel system with an appropriately defined coordinate system. In the sequel, the fluid numerical model is established and the model geometries are checked with FLUENT software. According to the diversity and time-varying properties of the rotor motions in three-dimensions, the airflow field around the GyroWheel rotor is analyzed by simulation with respect to its varying angular velocity and tilt angle. The IPC-based experimental platform is introduced, and the properties of aerodynamic drag in the ground test condition are obtained through comparing the simulation with experimental results. PMID:27941602

  2. Topological rings

    CERN Document Server

    Warner, S

    1993-01-01

    This text brings the reader to the frontiers of current research in topological rings. The exercises illustrate many results and theorems while a comprehensive bibliography is also included. The book is aimed at those readers acquainted with some very basic point-set topology and algebra, as normally presented in semester courses at the beginning graduate level or even at the advanced undergraduate level. Familiarity with Hausdorff, metric, compact and locally compact spaces and basic properties of continuous functions, also with groups, rings, fields, vector spaces and modules, and with Zorn''s Lemma, is also expected.

  3. Ring accelerators

    International Nuclear Information System (INIS)

    Gisler, G.; Faehl, R.

    1983-01-01

    We present two-dimensional simulations in (r-z) and r-theta) cylinderical geometries of imploding-liner-driven accelerators of rings of charged particles. We address issues of azimuthal and longitudinal stability of the rings. We discuss self-trapping designs in which beam injection and extraction is aided by means of external cusp fields. Our simulations are done with the 2-1/2-D particle-in-cell plasma simulation code CLINER, which combines collisionless, electromagnetic PIC capabilities with a quasi-MHD finite element package

  4. Plasma parameter estimations for the Large Helical Device based on the gyro-reduced Bohm scaling

    International Nuclear Information System (INIS)

    Okamoto, Masao; Nakajima, Noriyoshi; Sugama, Hideo.

    1991-10-01

    A model of gyro-reduced Bohm scaling law is incorporated into a one-dimensional transport code to predict plasma parameters for the Large Helical Device (LHD). The transport code calculations reproduce well the LHD empirical scaling law and basic parameters and profiles of the LHD plasma are calculated. The amounts of toroidal currents (bootstrap current and beam-driven current) are also estimated. (author)

  5. The gyro-radius scaling of ion thermal transport from global numerical simulations of ITG turbulence

    International Nuclear Information System (INIS)

    Ottaviani, M.; Manfredi, G.

    1998-12-01

    A three-dimensional, fluid code is used to study the scaling of ion thermal transport caused by Ion-Temperature-Gradient-Driven (ITG) turbulence. The code includes toroidal effects and is capable of simulating the whole torus. It is found that both close to the ITG threshold and well above threshold, the thermal transport and the turbulence structures exhibit a gyro-Bohm scaling, at least for plasmas with moderate poloidal flow. (author)

  6. Fine and hyperfine structure spectra of the ultra-violet 23S → 53P transition in 4He and 3He with a frequency doubled CW ring laser, detected via associative ionization

    International Nuclear Information System (INIS)

    Runge, S.; Pesnelle, A.; Perdrix, M.; Sevin, D.; Wolffer, N.; Watel, G.

    1982-01-01

    High resolution laser spectroscopy coupled to a sensitive method of detection via mass analysis of He + 2 ions produced in He(5 3 P) + He(1 1 S) collisions, is used to obtain the fine and hyperfine spectra of the ultra-violet He 2 3 S → 5 3 P transition. A cw tunable UV radiation around 294.5 nm is generated by intracavity frequency doubling a Rhodamine 6G single mode ring dye laser using an ADA crystal. Both spectra enable fine and hyperfine structures to be determined within a few MHz. The magnetic dipole coupling constant A of the 5 3 P term of 3 He is found to be -4326 +- 9 MHz (-0.1443 +- 0.0003 cm -1 ). (orig.)

  7. Stimulated Brillouin scattering during electron gyro-harmonic heating at EISCAT

    Directory of Open Access Journals (Sweden)

    H. Y. Fu

    2015-08-01

    Full Text Available Observations of secondary radiation, stimulated electromagnetic emission (SEE, produced during ionospheric modification experiments using ground-based, high-power, high-frequency (HF radio waves are considered. The High Frequency Active Auroral Research Program (HAARP facility is capable of generating narrowband SEE in the form of stimulated Brillouin scatter (SBS and stimulated ion Bernstein scatter (SIBS in the SEE spectrum. Such narrowband SEE spectral lines have not been reported using the European Incoherent Scatter (EISCAT heater facility before. This work reports the first EISCAT results of narrowband SEE spectra and compares them to SEE previously observed at HAARP during electron gyro-harmonic heating. An analysis of experimental SEE data shows observations of emission lines within 100 Hz of the pump frequency, interpreted as SBS, during the 2012 July EISCAT campaign. Experimental results indicate that SBS strengthens as the pump frequency approaches the third electron gyro-harmonic. Also, for different heater antenna beam angles, the CUTLASS radar backscatter induced by HF radio pumping is suppressed near electron gyro-harmonics, whereas electron temperature enhancement weakens as measured by EISCAT/UHF radar. The main features of these new narrowband EISCAT observations are generally consistent with previous SBS measurements at HAARP.

  8. State-of-the-art of high power gyro-devices and free electron masers

    International Nuclear Information System (INIS)

    Thumm, M.

    1993-10-01

    At present, gyrotron oscillators are mainly used as high power millimeter wave sources for electron cyclotron resonance heating (ECRH) and diagnostics of magnetically confined plasmas for generation of energy by controlled thermonuclear fusion. 140 GHz gyrotrons with output power P out = 0.58 MW, pulse length τ = 2.0 s and efficiency η = 34% are commercially available. Diagnostic gyrotrons deliver P out = 40 kW with τ = 40 μs at frequencies up to 650 GHz (η ≥ 4%). Recently, gyrotron oscillators have also been successfully used in material processing and plasma chemistry. Such technological applications require gyrotrons with the following parameters: f ≥ 28 GHz, P out = 10-30 kW, CW, η ≥ 30%. This paper reports on achievements and problems related to the development of very high power mm-wave gyrotrons for long pulse or CW operation and describes the microwave technological pecularities of the different development steps. In addition, this work gives a short overview of the present development of gyrotrons for technological applications, quasi-optical gyrotrons, cyclotron autoresonance masers (CARMs), gyro-klystrons, gyro-TWT amplifiers, gyro-BWO's and free electron masers (FEMs). The most impressive FEM output parameters are: P out = 2 GW, τ = 20 ns, η = 13% at 140 GHz (LLNL) and P out = 15 kW, τ = 20 μs, η = 5% in the range from 120 to 900 GHz (UCSB). (orig.) [de

  9. Ring interferometry

    CERN Document Server

    Malykin, Grigorii B; Zhurov, Alexei

    2013-01-01

    This monograph is devoted to the creation of a comprehensive formalism for quantitative description of polarized modes' linear interaction in modern single-mode optic fibers. The theory of random connections between polarized modes, developed in the monograph, allows calculations of the zero shift deviations for a fiber ring interferometer. The monograph addresses also the

  10. Gyro-fluid and two-fluid theory and simulations of edge-localized-modes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X. Q.; Dimits, A.; Joseph, I.; Umansky, M. V. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Xi, P. W. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); School of Physics, Peking University, Beijing (China); Xia, T. Y.; Gui, B. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Kim, S. S.; Park, G. Y.; Rhee, T.; Jhang, H. [WCI Center for Fusion Theory, National Fusion Research Institute, Daejon 305-333 (Korea, Republic of); Diamond, P. H. [WCI Center for Fusion Theory, National Fusion Research Institute, Daejon 305-333 (Korea, Republic of); Center for Astrophysics and Space Sciences and Department of Physics, University of California, San Diego, La Jolla, California 92093-0424 (United States); Dudson, B. [University of York, Heslington, York YO10 5DD (United Kingdom); Snyder, P. B. [General Atomics, San Diego, California 92186 (United States)

    2013-05-15

    This paper reports on the theoretical and simulation results of a gyro-Landau-fluid extension of the BOUT++ code, which contributes to increasing the physics understanding of edge-localized-modes (ELMs). Large ELMs with low-to-intermediate-n peeling-ballooning (P-B) modes are significantly suppressed due to finite Larmor radius (FLR) effects when the ion temperature increases. For type-I ELMs, it is found from linear simulations that retaining complete first order FLR corrections as resulting from the incomplete “gyroviscous cancellation” in Braginskii's two-fluid model is necessary to obtain good agreement with gyro-fluid results for high ion temperature cases (T{sub i}≽3 keV) when the ion density has a strong radial variation, which goes beyond the simple local model of ion diamagnetic stabilization of ideal ballooning modes. The maximum growth rate is inversely proportional to T{sub i} because the FLR effect is proportional to T{sub i}. The FLR effect is also proportional to toroidal mode number n, so for high n cases, the P-B mode is stabilized by FLR effects. Nonlinear gyro-fluid simulations show results that are similar to those from the two-fluid model, namely that the P-B modes trigger magnetic reconnection, which drives the collapse of the pedestal pressure. Due to the additional FLR-corrected nonlinear E × B convection of the ion gyro-center density, for a ballooning-dominated equilibrium the gyro-fluid model further limits the radial spreading of ELMs. In six-field two fluid simulations, the parallel thermal diffusivity is found to prevent the ELM encroachment further into core plasmas and therefore leads to steady state L-mode profiles. The simulation results show that most energy is lost via ion channel during an ELM event, followed by particle loss and electron energy loss. Because edge plasmas have significant spatial inhomogeneities and complicated boundary conditions, we have developed a fast non-Fourier method for the computation of

  11. O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si.

    Science.gov (United States)

    Wan, Yating; Jung, Daehwan; Norman, Justin; Shang, Chen; MacFarlane, Ian; Li, Qiang; Kennedy, M J; Gossard, Arthur C; Lau, Kei May; Bowers, John E

    2017-10-30

    We report statistical comparisons of lasing characteristics in InAs quantum dot (QD) micro-rings directly grown on on-axis (001) GaP/Si and V-groove (001) Si substrates. CW thresholds as low as 3 mA and high temperature operation exceeding 80 °C were simultaneously achieved on the GaP/Si template template with an outer-ring radius of 50 µm and a ring width of 4 μm, while a sub-milliamp threshold of 0.6 mA was demonstrated on the V-groove Si template with a smaller cavity size of 5-μm outer-ring radius and 3-μm ring width. Evaluations were also made with devices fabricated simultaneously on native GaAs substrates over a significant sampling analysis. The overall assessment spotlights compelling insights in exploring the optimum epitaxial scheme for low-threshold lasing on industry standard Si substrates.

  12. Controllable Continuous evolution of electronic states in a single quantum ring

    OpenAIRE

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk; Laroze, David

    2017-01-01

    Intense terahertz laser field is shown to have a profound effect on the electronic and optical properties of quantum rings, where the isotropic and anisotropic quantum rings can now be treated on equal footing. We have demonstrated that in isotropic quantum rings the laser field creates irregular AB oscillations that are usually expected in anisotropic rings. Further, we have shown for the first time that intense laser fields can restore the {\\it isotropic} physical properties in anisotropic ...

  13. A new method to determine magnetic properties of the unsaturated-magnetized rotor of a novel gyro

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai, E-mail: lihai7772006@126.com [MEMS Center, Harbin Institution of Technology, Harbin, 150001 (China); Liu, Xiaowei [MEMS Center, Harbin Institution of Technology, Harbin, 150001 (China); Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin, 150001 (China); Dong, Changchun [School of Software, Harbin University of Science and Technology, Harbin, 150001 (China); Zhang, Haifeng [MEMS Center, Harbin Institution of Technology, Harbin, 150001 (China)

    2016-06-01

    A new method is proposed to determine magnetic properties of the unsaturated-magnetized, small and irregular shaped rotor of a novel gyro. The method is based on finite-element analysis and the measurements of the magnetic flux density distribution, determining magnetic parameters by comparing the magnetic flux intensity distribution differences between the modeling results under different parameters and the measured ones. Experiment on a N30 Grade NdFeB magnet shows that its residual magnetic flux density is 1.10±0.01 T, and coercive field strength is 801±3 kA/m, which are consistent with the given parameters of the material. The method was applied to determine the magnetic properties of the rotor of the gyro, and the magnetic properties acquired were used to predict the open-loop gyro precession frequency. The predicted precession frequency should be larger than 12.9 Hz, which is close to the experimental result 13.5 Hz. The result proves that the method is accurate in estimating the magnetic properties of the rotor of the gyro. - Highlights: • A new method to determine the magnetic properties of a gyro’s rotor is proposed. • The method is based on FEA and magnetic flux density distributions near magnets. • The result is determined by the distribution and values of all the measured points. • Using the result, the open-loop gyro precession frequency is precisely predicted.

  14. A new method to determine magnetic properties of the unsaturated-magnetized rotor of a novel gyro

    International Nuclear Information System (INIS)

    Li, Hai; Liu, Xiaowei; Dong, Changchun; Zhang, Haifeng

    2016-01-01

    A new method is proposed to determine magnetic properties of the unsaturated-magnetized, small and irregular shaped rotor of a novel gyro. The method is based on finite-element analysis and the measurements of the magnetic flux density distribution, determining magnetic parameters by comparing the magnetic flux intensity distribution differences between the modeling results under different parameters and the measured ones. Experiment on a N30 Grade NdFeB magnet shows that its residual magnetic flux density is 1.10±0.01 T, and coercive field strength is 801±3 kA/m, which are consistent with the given parameters of the material. The method was applied to determine the magnetic properties of the rotor of the gyro, and the magnetic properties acquired were used to predict the open-loop gyro precession frequency. The predicted precession frequency should be larger than 12.9 Hz, which is close to the experimental result 13.5 Hz. The result proves that the method is accurate in estimating the magnetic properties of the rotor of the gyro. - Highlights: • A new method to determine the magnetic properties of a gyro’s rotor is proposed. • The method is based on FEA and magnetic flux density distributions near magnets. • The result is determined by the distribution and values of all the measured points. • Using the result, the open-loop gyro precession frequency is precisely predicted.

  15. CONTROL OF LASER RADIATION PARAMETERS: Influence of feedback loop characteristics on the field structure in a phase-conjugating ring mirror

    Science.gov (United States)

    Esayan, A. A.; Zozulya, A. A.; Tikhonchuk, Vladimir T.

    1991-10-01

    An analysis is made of stimulated scattering in a ring resonator formed by a self-intersecting beam with simultaneous rotation and contraction of the beam due to feedback. Conditions for the excitation of lasing are obtained and the phase conjugation quality is determined near the lasing threshold.

  16. State-of-the-art of high power gyro-devices and free electron masers 1994

    International Nuclear Information System (INIS)

    Thumm, M.

    1995-04-01

    At present, gyrotron oscillators are mainly used as high power millimeter wave sources for electron cyclotron resonance heating (ECRH) and diagnostics of magnetically confined plasmas for generation of energy by controlled thermonuclear fusion. 140 GHz gyrotrons with output power P out =0.54 MW, pulse length τ=3.0 s and efficiency η=42% are commercially available. Total efficiencies around 50% have been achieved using single-stage depressed collectors. Diagnostic gyrotrons deliver P out =40 kW with τ=40 μs at frequencies up to 650 GHz (η≥4%). Recently, gyrotron oscillators have also been successfully used in material processing and plasma chemistry. Such technological applications require gyrotrons with the following parameters: f≥24 GHz, P out =10-50 kW, CW, η≥30%. This paper reports on achievements and problems related to the development of very high power mm-wave gyrotrons for long pulse or CW operation and describes the microwave technological pecularities of the different development steps. In addition, this work gives a short overview of the present development of gyrotrons for technological applications, relativistic gyrotrons, quasi-optical gyrotrons, cyclotron autoresonance masers (CARMs), gyro klystrons, gyro-TWT amplifiers, gyrotwystron amplifiers, gyro-BWO's, peniotrons and free electron masers (FEMs). The most impressive FEM output parameters are: P out =2 GW, τ=20 ns, η=13% at 140 GHz (LLNL) and P out =15 kW, τ=20 μs, η=5% in the range from 120 to 900 GHz (UCSB). (orig.) [de

  17. Analytical theory of frequency-multiplying gyro-traveling-wave-tubes

    International Nuclear Information System (INIS)

    Nusinovich, G.S.; Chen, W.; Granatstein, V.L.

    2001-01-01

    The theory is developed which describes analytically the gain and bandwidth in frequency-multiplying gyro-traveling-wave-tubes. In this theory the input waveguide is considered in the small-signal approximation. Then, in the drift region separating the input and output waveguides, the electron ballistic bunching evolves which causes the appearance in the electron current density of the harmonics of the signal frequency. The excitation of the output waveguide by one of these harmonics is considered in a specified current approximation. This makes the analytical study of a large-signal operation possible. The theory is illustrated by using it to analyze the performance of an existing experimental tube

  18. Deep coupling of star tracker and MEMS-gyro data under highly dynamic and long exposure conditions

    International Nuclear Information System (INIS)

    Sun, Ting; Xing, Fei; You, Zheng; Wang, Xiaochu; Li, Bin

    2014-01-01

    Star trackers and gyroscopes are the two most widely used attitude measurement devices in spacecrafts. The star tracker is supposed to have the highest accuracy in stable conditions among different types of attitude measurement devices. In general, to detect faint stars and reduce the size of the star tracker, a method with long exposure time method is usually used. Thus, under dynamic conditions, smearing of the star image may appear and result in decreased accuracy or even failed extraction of the star spot. This may cause inaccuracies in attitude measurement. Gyros have relatively good dynamic performance and are usually used in combination with star trackers. However, current combination methods focus mainly on the data fusion of the output attitude data levels, which are inadequate for utilizing and processing internal blurred star image information. A method for tracking deep coupling stars and MEMS-gyro data is proposed in this work. The method achieves deep fusion at the star image level. First, dynamic star image processing is performed based on the angular velocity information of the MEMS-gyro. Signal-to-noise ratio (SNR) of the star spot could be improved, and extraction is achieved more effectively. Then, a prediction model for optimal estimation of the star spot position is obtained through the MEMS-gyro, and an extended Kalman filter is introduced. Meanwhile, the MEMS-gyro drift can be estimated and compensated though the proposed method. These enable the star tracker to achieve high star centroid determination accuracy under dynamic conditions. The MEMS-gyro drift can be corrected even when attitude data of the star tracker are unable to be solved and only one navigation star is captured in the field of view. Laboratory experiments were performed to verify the effectiveness of the proposed method and the whole system. (paper)

  19. Deep coupling of star tracker and MEMS-gyro data under highly dynamic and long exposure conditions

    Science.gov (United States)

    Sun, Ting; Xing, Fei; You, Zheng; Wang, Xiaochu; Li, Bin

    2014-08-01

    Star trackers and gyroscopes are the two most widely used attitude measurement devices in spacecrafts. The star tracker is supposed to have the highest accuracy in stable conditions among different types of attitude measurement devices. In general, to detect faint stars and reduce the size of the star tracker, a method with long exposure time method is usually used. Thus, under dynamic conditions, smearing of the star image may appear and result in decreased accuracy or even failed extraction of the star spot. This may cause inaccuracies in attitude measurement. Gyros have relatively good dynamic performance and are usually used in combination with star trackers. However, current combination methods focus mainly on the data fusion of the output attitude data levels, which are inadequate for utilizing and processing internal blurred star image information. A method for tracking deep coupling stars and MEMS-gyro data is proposed in this work. The method achieves deep fusion at the star image level. First, dynamic star image processing is performed based on the angular velocity information of the MEMS-gyro. Signal-to-noise ratio (SNR) of the star spot could be improved, and extraction is achieved more effectively. Then, a prediction model for optimal estimation of the star spot position is obtained through the MEMS-gyro, and an extended Kalman filter is introduced. Meanwhile, the MEMS-gyro drift can be estimated and compensated though the proposed method. These enable the star tracker to achieve high star centroid determination accuracy under dynamic conditions. The MEMS-gyro drift can be corrected even when attitude data of the star tracker are unable to be solved and only one navigation star is captured in the field of view. Laboratory experiments were performed to verify the effectiveness of the proposed method and the whole system.

  20. HIGH-PRECISION ATTITUDE ESTIMATION METHOD OF STAR SENSORS AND GYRO BASED ON COMPLEMENTARY FILTER AND UNSCENTED KALMAN FILTER

    Directory of Open Access Journals (Sweden)

    C. Guo

    2017-07-01

    Full Text Available Determining the attitude of satellite at the time of imaging then establishing the mathematical relationship between image points and ground points is essential in high-resolution remote sensing image mapping. Star tracker is insensitive to the high frequency attitude variation due to the measure noise and satellite jitter, but the low frequency attitude motion can be determined with high accuracy. Gyro, as a short-term reference to the satellite’s attitude, is sensitive to high frequency attitude change, but due to the existence of gyro drift and integral error, the attitude determination error increases with time. Based on the opposite noise frequency characteristics of two kinds of attitude sensors, this paper proposes an on-orbit attitude estimation method of star sensors and gyro based on Complementary Filter (CF and Unscented Kalman Filter (UKF. In this study, the principle and implementation of the proposed method are described. First, gyro attitude quaternions are acquired based on the attitude kinematics equation. An attitude information fusion method is then introduced, which applies high-pass filtering and low-pass filtering to the gyro and star tracker, respectively. Second, the attitude fusion data based on CF are introduced as the observed values of UKF system in the process of measurement updating. The accuracy and effectiveness of the method are validated based on the simulated sensors attitude data. The obtained results indicate that the proposed method can suppress the gyro drift and measure noise of attitude sensors, improving the accuracy of the attitude determination significantly, comparing with the simulated on-orbit attitude and the attitude estimation results of the UKF defined by the same simulation parameters.

  1. Comparisons of 'Identical' Simulations by the Eulerian Gyrokinetic Codes GS2 and GYRO

    Science.gov (United States)

    Bravenec, R. V.; Ross, D. W.; Candy, J.; Dorland, W.; McKee, G. R.

    2003-10-01

    A major goal of the fusion program is to be able to predict tokamak transport from first-principles theory. To this end, the Eulerian gyrokinetic code GS2 was developed years ago and continues to be improved [1]. Recently, the Eulerian code GYRO was developed [2]. These codes are not subject to the statistical noise inherent to particle-in-cell (PIC) codes, and have been very successful in treating electromagnetic fluctuations. GS2 is fully spectral in the radial coordinate while GYRO uses finite-differences and ``banded" spectral schemes. To gain confidence in nonlinear simulations of experiment with these codes, ``apples-to-apples" comparisons (identical profile inputs, flux-tube geometry, two species, etc.) are first performed. We report on a series of linear and nonlinear comparisons (with overall agreement) including kinetic electrons, collisions, and shaped flux surfaces. We also compare nonlinear simulations of a DIII-D discharge to measurements of not only the fluxes but also the turbulence parameters. [1] F. Jenko, et al., Phys. Plasmas 7, 1904 (2000) and refs. therein. [2] J. Candy, J. Comput. Phys. 186, 545 (2003).

  2. Gyro Drift Correction for An Indirect Kalman Filter Based Sensor Fusion Driver

    Directory of Open Access Journals (Sweden)

    Chan-Gun Lee

    2016-06-01

    Full Text Available Sensor fusion techniques have made a significant contribution to the success of the recently emerging mobile applications era because a variety of mobile applications operate based on multi-sensing information from the surrounding environment, such as navigation systems, fitness trackers, interactive virtual reality games, etc. For these applications, the accuracy of sensing information plays an important role to improve the user experience (UX quality, especially with gyroscopes and accelerometers. Therefore, in this paper, we proposed a novel mechanism to resolve the gyro drift problem, which negatively affects the accuracy of orientation computations in the indirect Kalman filter based sensor fusion. Our mechanism focuses on addressing the issues of external feedback loops and non-gyro error elements contained in the state vectors of an indirect Kalman filter. Moreover, the mechanism is implemented in the device-driver layer, providing lower process latency and transparency capabilities for the upper applications. These advances are relevant to millions of legacy applications since utilizing our mechanism does not require the existing applications to be re-programmed. The experimental results show that the root mean square errors (RMSE before and after applying our mechanism are significantly reduced from 6.3 × 10−1 to 5.3 × 10−7, respectively.

  3. Combined spacecraft orbit and attitude control through extended Kalman filtering of magnetometer, gyro, and GPS measurements

    Directory of Open Access Journals (Sweden)

    Tamer Mekky Ahmed Habib

    2014-06-01

    Full Text Available The main goal of this research is to establish spacecraft orbit and attitude control algorithms based on extended Kalman filter which provides estimates of spacecraft orbital and attitude states. The control and estimation algorithms must be capable of dealing with the spacecraft conditions during the detumbling and attitude acquisition modes of operation. These conditions are characterized by nonlinearities represented by large initial attitude angles, large initial angular velocities, large initial attitude estimation error, and large initial position estimation error. All of the developed estimation and control algorithms are suitable for application to the next Egyptian scientific satellite, EGYPTSAT-2. The parameters of the case-study spacecraft are similar but not identical to the former Egyptian satellite EGYPTSAT-1. This is done because the parameters of EGYPTSAT-2 satellite have not been consolidated yet. The sensors utilized are gyro, magnetometer, and GPS. Gyro and magnetometer are utilized to provide measurements for the estimates of spacecraft attitude state vector where as magnetometer and GPS are utilized to provide measurements for the estimates of spacecraft orbital state vector.

  4. Kayser-Fleischer Rings

    Science.gov (United States)

    ... Support Contacts Lab Tracker/Copper Calculator Stories Programs & Research ... About Everything you need to know about Wilson Disease Kayser-Fleischer Rings Definition Kayser-Fleischer Ring: Clinical sign. Brownish-yellow ring visible around the corneo- ...

  5. Design of a Double Anode Magnetron Injection Gun for Q-band Gyro-TWT Using Boundary Element Method

    Science.gov (United States)

    Li, Zhiliang; Feng, Jinjun; Liu, Bentian

    2018-04-01

    This paper presents a novel design code for double anode magnetron injection guns (MIGs) in gyro-devices based on boundary element method (BEM). The physical and mathematical models were constructed, and then the code using BEM for MIG's calculation was developed. Using the code, a double anode MIG for a Q-band gyrotron traveling-wave tube (gyro-TWT) amplifier operating in the circular TE01 mode at the fundamental cyclotron harmonic was designed. In order to verify the reliability of this code, velocity spread and guiding center radius of the MIG simulated by the BEM code were compared with these from the commonly used EGUN code, showing a reasonable agreement. Then, a Q-band gyro-TWT was fabricated and tested. The testing results show that the device has achieved an average power of 5kW and peak power ≥ 150 kW at a 3% duty cycle within bandwidth of 2 GHz, and maximum output peak power of 220 kW, with a corresponding saturated gain of 50.9 dB and efficiency of 39.8%. This paper demonstrates that the BEM code can be used as an effective approach for analysis of electron optics system in gyro-devices.

  6. A Novel Approach Based on MEMS-Gyro's Data Deep Coupling for Determining the Centroid of Star Spot

    Directory of Open Access Journals (Sweden)

    Xing Fei

    2012-01-01

    Full Text Available The traditional approach of star tracker for determining the centroid of spot requires enough energy and good shape, so a relatively long exposure time and stable three-axis state become necessary conditions to maintain high accuracy, these limit its update rate and dynamic performance. In view of these issues, this paper presents an approach for determining the centroid of star spot which based on MEMS-Gyro's data deep coupling, it achieves the deep fusion of the data of star tracker and MEMS-Gyro at star map level through the introduction of EKF. The trajectory predicted by using the angular velocity of three axes can be used to set the extraction window, this enhances the dynamic performance because of the accurate extraction when the satellite has angular speed. The optimal estimations of the centroid position and the drift in the output signal of MEMS-Gyro through this approach reduce the influence of noise of the detector on accuracy of the traditional approach for determining the centroid and effectively correct the output signal of MEMS-Gyro. At the end of this paper, feasibility of this approach is verified by simulation.

  7. A new method to determine magnetic properties of the unsaturated-magnetized rotor of a novel gyro

    Science.gov (United States)

    Li, Hai; Liu, Xiaowei; Dong, Changchun; Zhang, Haifeng

    2016-06-01

    A new method is proposed to determine magnetic properties of the unsaturated-magnetized, small and irregular shaped rotor of a novel gyro. The method is based on finite-element analysis and the measurements of the magnetic flux density distribution, determining magnetic parameters by comparing the magnetic flux intensity distribution differences between the modeling results under different parameters and the measured ones. Experiment on a N30 Grade NdFeB magnet shows that its residual magnetic flux density is 1.10±0.01 T, and coercive field strength is 801±3 kA/m, which are consistent with the given parameters of the material. The method was applied to determine the magnetic properties of the rotor of the gyro, and the magnetic properties acquired were used to predict the open-loop gyro precession frequency. The predicted precession frequency should be larger than 12.9 Hz, which is close to the experimental result 13.5 Hz. The result proves that the method is accurate in estimating the magnetic properties of the rotor of the gyro.

  8. Practical Example of Introductory Engineering Education Based on the Design Process and Teaching Methodology Using a Gyro Bicycle

    Science.gov (United States)

    Higa, Yoshikazu; Shimojima, Ken

    2018-01-01

    This report describes a workshop on the Dynamics of Machinery based on the fabrication of a gyro- bicycle in a summer school program for junior high school students. The workshop was conducted by engineering students who had completed "Creative Research", an engineering design course at the National Institute of Technology, Okinawa…

  9. ASSOCIATIVE RINGS SOLVED AS LIE RINGS

    Directory of Open Access Journals (Sweden)

    M. B. Smirnov

    2011-01-01

    Full Text Available The paper has proved that an associative ring which is solvable of a n- class as a Lie ring has a nilpotent ideal of the nilpotent class not more than 3×10n–2  and a corresponding quotient ring satisfies an identity [[x1, x2, [x3, x4

  10. Variable area manifolds for ring mirror heat exchangers

    Science.gov (United States)

    Eng, Albert; Senterfitt, Donald R.

    1988-05-01

    A laser ring mirror assembly is disclosed which supports and cools an annular ring mirror of a high powered laser with a cooling manifold which has a coolant flow design which is intended to reduce thermal distortions of the ring mirror by minimizing azimuthal variations in temperature around its circumference. The cooling manifold has complementary pairs of cooling passages each of which conduct coolant in opposite flow directions. The manifold also houses adjusters which vary the depth between the annular ring mirror and each cooling, and which vary the flow area of the cooling passage to produce a control over the cooling characteristics of the cooling manifold.

  11. Manual Optical Attitude Re-initialization of a Crew Vehicle in Space Using Bias Corrected Gyro Data

    Science.gov (United States)

    Gioia, Christopher J.

    NASA and other space agencies have shown interest in sending humans on missions beyond low Earth orbit. Proposed is an algorithm that estimates the attitude of a manned spacecraft using measured line-of-sight (LOS) vectors to stars and gyroscope measurements. The Manual Optical Attitude Reinitialization (MOAR) algorithm and corresponding device draw inspiration from existing technology from the Gemini, Apollo and Space Shuttle programs. The improvement over these devices is the capability of estimating gyro bias completely independent from re-initializing attitude. It may be applied to the lost-in-space problem, where the spacecraft's attitude is unknown. In this work, a model was constructed that simulated gyro data using the Farrenkopf gyro model, and LOS measurements from a spotting scope were then computed from it. Using these simulated measurements, gyro bias was estimated by comparing measured interior star angles to those derived from a star catalog and then minimizing the difference using an optimization technique. Several optimization techniques were analyzed, and it was determined that the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm performed the best when combined with a grid search technique. Once estimated, the gyro bias was removed and attitude was determined by solving the Wahba Problem via the Singular Value Decomposition (SVD) approach. Several Monte Carlo simulations were performed that looked at different operating conditions for the MOAR algorithm. These included the effects of bias instability, using different constellations for data collection, sampling star measurements in different orders, and varying the time between measurements. A common method of estimating gyro bias and attitude in a Multiplicative Extended Kalman Filter (MEKF) was also explored and disproven for use in the MOAR algorithm. A prototype was also constructed to validate the proposed concepts. It was built using a simple spotting scope, MEMS grade IMU, and a Raspberry

  12. Controllable continuous evolution of electronic states in a single quantum ring

    Science.gov (United States)

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk; Laroze, David

    2018-02-01

    An intense terahertz laser field is shown to have a profound effect on the electronic and optical properties of quantum rings where the isotropic and anisotropic quantum rings can now be treated on equal footing. We have demonstrated that in isotropic quantum rings the laser field creates unusual Aharonov-Bohm oscillations that are usually expected in anisotropic rings. Furthermore, we have shown that intense laser fields can restore the isotropic physical properties in anisotropic quantum rings. In principle, all types of anisotropies (structural, effective masses, defects, etc.) can evolve as in isotropic rings in our present approach. Most importantly, we have found a continuous evolution of the energy spectra and intraband optical characteristics of structurally anisotropic quantum rings to those of isotropic rings in a controlled manner with the help of a laser field.

  13. INJECTION EFFICIENCY IN COMPTON RING NESTOR

    Directory of Open Access Journals (Sweden)

    P. I. Gladkikh

    2017-12-01

    Full Text Available NESTOR is the hard X-ray source that is under commissioning at NSC KIPT. NESTOR based on the Compton scattering of laser photons on relativistic electrons. The structure of the facility can be represented as the following components: a linear accelerator, a transport channel, a storage ring, and a laser-optical system. Electrons are stored in the storage ring for energy of 40-200 MeV. Inevitable alignment errors of magnetic elements are strongly effect on the beam dynamics in the storage ring. These errors lead to a shift of the equilibrium orbit relative to the ideal one. Significant shift of the equilibrium orbit could lead to loss of the beam on physical apertures. Transverse sizes of electron and laser beams are only few tens of microns at the interaction point. The shift of electron beam at the interaction point could greatly complicate the operation adjustment of storage ring without sufficient beam position diagnostic system. This article presents the simulation results of the efficiency of electron beam accumulation in the NESTOR storage ring. Also, this article is devoted to electron beam dynamics due to alignment errors of magnetic element in the ring.

  14. 110 GHz hybrid mode-locked fiber laser with enhanced extinction ratio based on nonlinear silicon-on-insulator micro-ring-resonator (SOI MRR)

    International Nuclear Information System (INIS)

    Liu, Yang; Hsu, Yung; Chow, Chi-Wai; Yang, Ling-Gang; Lai, Yin-Chieh; Yeh, Chien-Hung; Tsang, Hon-Ki

    2016-01-01

    We propose and experimentally demonstrate a new 110 GHz high-repetition-rate hybrid mode-locked fiber laser using a silicon-on-insulator microring-resonator (SOI MRR) acting as the optical nonlinear element and optical comb filter simultaneously. By incorporating a phase modulator (PM) that is electrically driven at a fraction of the harmonic frequency, an enhanced extinction ratio (ER) of the optical pulses can be produced. The ER of the optical pulse train increases from 3 dB to 10 dB. As the PM is only electrically driven by the signal at a fraction of the harmonic frequency, in this case 22 GHz (110 GHz/5 GHz), a low bandwidth PM and driving circuit can be used. The mode-locked pulse width and the 3 dB spectral bandwidth of the proposed mode-locked fiber laser are measured, showing that the optical pulses are nearly transform limited. Moreover, stability evaluation for an hour is performed, showing that the proposed laser can achieve stable mode-locking without the need for optical feedback or any other stabilization mechanism. (letter)

  15. Verification of GENE and GYRO with L-mode and I-mode plasmas in Alcator C-Mod

    Science.gov (United States)

    Mikkelsen, D. R.; Howard, N. T.; White, A. E.; Creely, A. J.

    2018-04-01

    Verification comparisons are carried out for L-mode and I-mode plasma conditions in Alcator C-Mod. We compare linear and nonlinear ion-scale calculations by the gyrokinetic codes GENE and GYRO to each other and to the experimental power balance analysis. The two gyrokinetic codes' linear growth rates and real frequencies are in good agreement throughout all the ion temperature gradient mode branches and most of the trapped electron mode branches of the kyρs spectra at r/a = 0.65, 0.7, and 0.8. The shapes of the toroidal mode spectra of heat fluxes in nonlinear simulations are very similar for kyρs ≤ 0.5, but in most cases GENE has a relatively higher heat flux than GYRO at higher mode numbers. The ratio of ion to electron heat flux is similar in the two codes' simulations, but the heat fluxes themselves do not agree in almost all cases. In the I-mode regime, GENE's heat fluxes are ˜3 times those from GYRO, and they are ˜60%-100% higher than GYRO in the L-mode conditions. The GYRO under-prediction of Qe is much reduced in GENE's L-mode simulations, and it is eliminated in the I-mode simulations. This largely improved agreement with the experimental electron heat flux is offset, however, by the large overshoot of GENE's ion heat fluxes, which are 2-3 times the experimental level, and its electron heat flux overshoot at r/a = 0.80 in the I-mode. Rotation effects can explain part of the difference between the two codes' predictions, but very significant differences remain in simulations without any rotation effects.

  16. Singularity and steering logic for control moment gyros on flexible space structures

    Science.gov (United States)

    Hu, Quan; Guo, Chuandong; Zhang, Jun

    2017-08-01

    Control moment gyros (CMGs) are a widely used device for generating control torques for spacecraft attitude control without expending propellant. Because of its effectiveness and cleanness, it has been considered to be mounted on a space structure for active vibration suppression. The resultant system is the so-called gyroelastic body. Since CMGs could exert both torque and modal force to the structure, it can also be used to simultaneously achieve attitude maneuver and vibration reduction of a flexible spacecraft. In this paper, we consider the singularity problem in such application of CMGs. The dynamics of an unconstrained gyroelastic body is established, from which the output equations of the CMGs are extracted. Then, torque singular state and modal force singular state are defined and visualized to demonstrate the singularity. Numerical examples of several typical CMGs configurations on a gyroelastic body are given. Finally, a steering law allowing output error is designed and applied to the vibration suppression of a plate with distributed CMGs.

  17. Symmetry evaluation for an interferometric fiber optic gyro coil utilizing a bidirectional distributed polarization measurement system.

    Science.gov (United States)

    Peng, Feng; Li, Chuang; Yang, Jun; Hou, Chengcheng; Zhang, Haoliang; Yu, Zhangjun; Yuan, Yonggui; Li, Hanyang; Yuan, Libo

    2017-07-10

    We propose a dual-channel measurement system for evaluating the optical path symmetry of an interferometric fiber optic gyro (IFOG) coil. Utilizing a bidirectional distributed polarization measurement system, the forward and backward transmission performances of an IFOG coil are characterized simultaneously by just a one-time measurement. The simple but practical configuration is composed of a bidirectional Mach-Zehnder interferometer and multichannel transmission devices connected to the IFOG coil under test. The static and dynamic temperature results of the IFOG coil reveal that its polarization-related symmetric properties can be effectively obtained with high accuracy. The optical path symmetry investigation is highly beneficial in monitoring and improving the winding technology of an IFOG coil and reducing the nonreciprocal effect of an IFOG.

  18. Electron Gun and Collector Design for 94 GHz Gyro-amplifiers.

    Science.gov (United States)

    Nguyen, K.; Danly, B.; Levush, B.; Blank, M.; True, D.; Felch, K.; Borchard, P.

    1997-05-01

    The electrical design of the magnetron injection gun and collector for high average power TE_01 gyro-amplifiers has recently been completed using the EGUN(W.B. Herrmannsfeldt, AIP Conf. Proc. 177, pp. 45-58, 1988.) and DEMEOS(R. True, AIP Conf. Proc. 297, pp. 493-499, 1993.) codes. The gun employs an optimized double-anode geometry and a radical cathode cone angle of 500 to achieve superior beam optics that are relatively insensitive to electrode misalignments and field errors. Perpendicular velocity spread of 1.6% at an perpendicular to axial velocity ratio of 1.52 is obtained for a 6 A, 65 kV beam. The 1.28" diameter collector, which also serves as the output waveguide, has an average power density of < 350 W/cm^2 for a 59 kW average power beam. Details will be presented at the conference.

  19. Dynamics of 3D Timoshenko gyroelastic beams with large attitude changes for the gyros

    Science.gov (United States)

    Hassanpour, Soroosh; Heppler, G. R.

    2016-01-01

    This work is concerned with the theoretical development of dynamic equations for undamped gyroelastic beams which are dynamic systems with continuous inertia, elasticity, and gyricity. Assuming unrestricted or large attitude changes for the axes of the gyros and utilizing generalized Hooke's law, Duleau torsion theory, and Timoshenko bending theory, the energy expressions and equations of motion for the gyroelastic beams in three-dimensional space are derived. The so-obtained comprehensive gyroelastic beam model is compared against earlier gyroelastic beam models developed using Euler-Bernoulli beam models and is used to study the dynamics of gyroelastic beams through numerical examples. It is shown that there are significant differences between the developed unrestricted Timoshenko gyroelastic beam model and the previously derived zero-order restricted Euler-Bernoulli gyroelastic beam models. These differences are more pronounced in the short beam and transverse gyricity cases.

  20. GYRO Simulations of Core Momentum Transport in DIII-D and JET Plasmas

    International Nuclear Information System (INIS)

    Budny, R.V.; Candy, J.; Waltz, R.E.

    2005-01-01

    Momentum, energy, and particle transport in DIII-D and JET ELMy H-mode plasmas is simulated with GYRO and compared with measurements analyzed using TRANSP. The simulated transport depends sensitively on the nabla(T(sub)i) turbulence drive and the nabla(E(sub)r) turbulence suppression inputs. With their nominal values indicated by measurements, the simulations over-predict the momentum and energy transport in the DIII-D plasmas, and under-predict in the JET plasmas. Reducing |nabla(T(sub)i)| and increasing |nabla(E(sub)r)| by up to 15% leads to approximate agreement (within a factor of two) for the DIII-D cases. For the JET cases, increasing |nabla(T(sub)i)| or reducing |nabla(E(sub)r)| results in approximate agreement for the energy flow, but the ratio of the simulated energy and momentum flows remains higher than measurements by a factor of 2-4

  1. Discrete Model Reference Adaptive Control for Gimbal Servosystem of Control Moment Gyro with Harmonic Drive

    Directory of Open Access Journals (Sweden)

    Bangcheng Han

    2013-01-01

    Full Text Available The double-gimbal control moment gyro (DGCMG demands that the gimbal servosystem should have fast response and small overshoot. But due to the low and nonlinear torsional stiffness of harmonic drive, the gimbal servo-system has poor dynamic performance with large overshoot and low bandwidth. In order to improve the dynamic performance of gimbal servo-system, a model reference adaptive control (MRAC law is introduced in this paper. The model of DGCMG gimbal servo-system with harmonic drive is established, and the adaptive control law based on POPOV super stable theory is designed. The MATLAB simulation results are provided to verify the effectiveness of the proposed control algorithm. The experimental results indicate that the MRAC could increase the bandwidth of gimbal servo-system to 3 Hz and improve the dynamic performance with small overshoot.

  2. Robust gap repair in the contractile ring ensures timely completion of cytokinesis.

    OpenAIRE

    Silva, AM; Osório, DS; Pereira, AJ; Maiato, H; Pinto, IM; Rubinstein, B; Gassmann, R; Telley, IA; Carvalho, AX

    2016-01-01

    Cytokinesis in animal cells requires the constriction of an actomyosin contractile ring, whose architecture and mechanism remain poorly understood. We use laser microsurgery to explore the biophysical properties of constricting rings in Caenorhabditis elegans embryos. Laser cutting causes rings to snap open. However, instead of disintegrating, ring topology recovers and constriction proceeds. In response to severing, a finite gap forms and is repaired by recruitment of new material in an acti...

  3. Experimental demonstration of an Er-doped fiber ring laser mode-locked with a Tm–Ho co-doped fiber saturable absorber

    International Nuclear Information System (INIS)

    Tao, Mengmeng; Wu, Junjie; Wu, Yong; Yang, Pengling; Ye, Xisheng; Peng, Junsong

    2013-01-01

    Mode-locking operation of an Er-doped fiber laser with a Tm–Ho co-doped fiber saturable absorber is demonstrated for the first time. Q-switching, Q-switched mode-locking and CW mode-locking operation modes are observed sequentially with increase of the pump power. In the mode-locking operation mode, a repetition rate at the fundamental cavity frequency of 9.05 MHz is obtained with a pulse duration of 46.3 ns. By rotating the polarization controller, a repetition rate up to 887 MHz is achieved, and the pulse duration is shortened to 0.548 ns. (paper)

  4. Stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  5. Alternative loop rings

    CERN Document Server

    Goodaire, EG; Polcino Milies, C

    1996-01-01

    For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri

  6. Alignment for new Subaru ring

    International Nuclear Information System (INIS)

    Zhang, Ch.; Matsui, S.; Hashimoto, S.

    1999-01-01

    The New SUBARU is a synchrotron light source being constructed at the SPring-8 site. The main facility is a 1.5 GeV electron storage ring that provides light beam in the region from VUV to soft X-ray using SPring-8's 1 GeV linac as an injector. The ring, with a circumference of about 119 meters, is composed of six bending cells. Each bending cell has two normal dipoles of 34 degree and one inverse dipole of -8 degree. The ring has six straight sections: two very long straight sections for a 11-m long undulator and an optical klystron, four short straight sections for a 2.3-m undulator, a super-conducting wiggler, rf cavity and injection, etc. The magnets of the storage ring are composed of 12 dipoles (BMs), 6 invert dipoles (BIs), 56 quadrupoles and 44 sextupoles, etc. For the magnet alignment, positions of the dipoles (the BMs and BIs) are determined by network survey method. The multipoles, which are mounted on girders between the dipoles, are aligned with a laser-CCD camera system. This article presents the methodology used to position the different components and particularly to assure the precise alignment of the multipoles. (authors)

  7. DRIRU I/SKIRU - The application of the DTG to spacecraft attitude control. [Dynamically-Tuned Gyro for Inertial Reference Unit systems

    Science.gov (United States)

    Swanson, C. O.

    1982-01-01

    The dynamically tuned gyro (DTG) was developed to replace the floated, rate integrating gyro used for space attitude control, as the DTG fulfills cost, performance, and reliability requirements not satisfied by its predecessor. The use of this gyro in the Dry Gyro Inertial Reference Unit I (DRIRU I) marked the first application of a DTG in a spacecraft attitude reference unit. Design and performance characteristics of DTG application in the Singer-Kearfott Inertial Reference Unit (SKIRU) are outlined, for example its minimal weight (7 lb), and operational reliability. The DTG has accomplished 156,000 failure-free hours, and a chart, logging test performance, indicates that this and other requirements were more than sufficiently satisfied. The unit has an unparalleled life span, with several units still operating after 70,000 to 130,000 hours, and a random drift which always remains under 0.0005 deg/h. Potential for improvements, such as drift performance, are considered.

  8. Fourth-generation storage rings

    International Nuclear Information System (INIS)

    Galayda, J. N.

    1999-01-01

    It seems clear that a linac-driven free-electron laser is the accepted prototype of a fourth-generation facility. This raises two questions: can a storage ring-based light source join the fourth generation? Has the storage ring evolved to its highest level of performance as a synchrotrons light source? The answer to the second question is clearly no. The author thinks the answer to the first question is unimportant. While the concept of generations has been useful in motivating thought and effort towards new light source concepts, the variety of light sources and their performance characteristics can no longer be usefully summed up by assignment of a ''generation'' number

  9. Ring-Interferometric Sol-Gel Bio-Sensor

    Science.gov (United States)

    Bearman, Gregory (Inventor); Cohen, David (Inventor)

    2006-01-01

    A biosensor embodying the invention includes a sensing volume having an array of pores sized for immobilizing a first biological entity tending to bind to a second biological entity in such a manner as to change an index of refraction of the sensing volume. The biosensor further includes a ring interferometer, one volumetric section of the ring interferometer being the sensing volume, a laser for supplying light to the ring interferometer, and a photodetector for receiving light from the interferometer.

  10. Cavity Ring-down Spectroscopic System And Method

    KAUST Repository

    Alquaity, Awad Bin Saud

    2015-05-14

    A system and method for cavity ring-down spectroscopy can include a pulsed quantum cascade laser, an optical ring-down cavity, a photodetector, and an oscilloscope. The system and method can produce pulse widths of less than 200 ns with bandwidths greater than 300 pm, as well as provide temporal resolution of greater than 10 .mu.s.

  11. Cavity Ring-down Spectroscopic System And Method

    KAUST Repository

    Alquaity, Awad Bin Saud; Farooq, Aamir

    2015-01-01

    A system and method for cavity ring-down spectroscopy can include a pulsed quantum cascade laser, an optical ring-down cavity, a photodetector, and an oscilloscope. The system and method can produce pulse widths of less than 200 ns with bandwidths greater than 300 pm, as well as provide temporal resolution of greater than 10 .mu.s.

  12. Investigation on the optimal magnetic field of a cusp electron gun for a W-band gyro-TWA

    Science.gov (United States)

    Zhang, Liang; He, Wenlong; Donaldson, Craig R.; Cross, Adrian W.

    2018-05-01

    High efficiency and broadband operation of a gyrotron traveling wave amplifier (gyro-TWA) require a high-quality electron beam with low-velocity spreads. The beam velocity spreads are mainly due to the differences of the electric and magnetic fields that the electrons withstand the electron gun. This paper investigates the possibility to decouple the design of electron gun geometry and the magnet system while still achieving optimal results, through a case study of designing a cusp electron gun for a W-band gyro-TWA. A global multiple-objective optimization routing was used to optimize the electron gun geometry for different predefined magnetic field profiles individually. Their results were compared and the properties of the required magnetic field profile are summarized.

  13. Recent advances in long wavelength quantum dot lasers and amplifiers

    NARCIS (Netherlands)

    Nötzel, R.; Bente, E.A.J.M.; Smit, M.K.; Dorren, H.J.S.

    2009-01-01

    We demonstrate 1.55-µm InAs/InGaAsP/InP (100) quantum dot (QD) shallow and deep etched Fabry-Pérot and ring lasers, micro-ring lasers, mode-locked lasers, Butt-joint integrated lasers, polarization control of gain, and wavelength conversion in QD amplifiers.

  14. An Innovative Strategy for Accurate Thermal Compensation of Gyro Bias in Inertial Units by Exploiting a Novel Augmented Kalman Filter

    Directory of Open Access Journals (Sweden)

    Rita Fontanella

    2018-05-01

    Full Text Available This paper presents an innovative model for integrating thermal compensation of gyro bias error into an augmented state Kalman filter. The developed model is applied in the Zero Velocity Update filter for inertial units manufactured by exploiting Micro Electro-Mechanical System (MEMS gyros. It is used to remove residual bias at startup. It is a more effective alternative to traditional approach that is realized by cascading bias thermal correction by calibration and traditional Kalman filtering for bias tracking. This function is very useful when adopted gyros are manufactured using MEMS technology. These systems have significant limitations in terms of sensitivity to environmental conditions. They are characterized by a strong correlation of the systematic error with temperature variations. The traditional process is divided into two separated algorithms, i.e., calibration and filtering, and this aspect reduces system accuracy, reliability, and maintainability. This paper proposes an innovative Zero Velocity Update filter that just requires raw uncalibrated gyro data as input. It unifies in a single algorithm the two steps from the traditional approach. Therefore, it saves time and economic resources, simplifying the management of thermal correction process. In the paper, traditional and innovative Zero Velocity Update filters are described in detail, as well as the experimental data set used to test both methods. The performance of the two filters is compared both in nominal conditions and in the typical case of a residual initial alignment bias. In this last condition, the innovative solution shows significant improvements with respect to the traditional approach. This is the typical case of an aircraft or a car in parking conditions under solar input.

  15. An Innovative Strategy for Accurate Thermal Compensation of Gyro Bias in Inertial Units by Exploiting a Novel Augmented Kalman Filter.

    Science.gov (United States)

    Fontanella, Rita; Accardo, Domenico; Moriello, Rosario Schiano Lo; Angrisani, Leopoldo; Simone, Domenico De

    2018-05-07

    This paper presents an innovative model for integrating thermal compensation of gyro bias error into an augmented state Kalman filter. The developed model is applied in the Zero Velocity Update filter for inertial units manufactured by exploiting Micro Electro-Mechanical System (MEMS) gyros. It is used to remove residual bias at startup. It is a more effective alternative to traditional approach that is realized by cascading bias thermal correction by calibration and traditional Kalman filtering for bias tracking. This function is very useful when adopted gyros are manufactured using MEMS technology. These systems have significant limitations in terms of sensitivity to environmental conditions. They are characterized by a strong correlation of the systematic error with temperature variations. The traditional process is divided into two separated algorithms, i.e., calibration and filtering, and this aspect reduces system accuracy, reliability, and maintainability. This paper proposes an innovative Zero Velocity Update filter that just requires raw uncalibrated gyro data as input. It unifies in a single algorithm the two steps from the traditional approach. Therefore, it saves time and economic resources, simplifying the management of thermal correction process. In the paper, traditional and innovative Zero Velocity Update filters are described in detail, as well as the experimental data set used to test both methods. The performance of the two filters is compared both in nominal conditions and in the typical case of a residual initial alignment bias. In this last condition, the innovative solution shows significant improvements with respect to the traditional approach. This is the typical case of an aircraft or a car in parking conditions under solar input.

  16. Polarized gas targets for storage rings

    International Nuclear Information System (INIS)

    Holt, R.J.

    1990-01-01

    It is widely recognized that polarized gas targets in electron storage rings represent a new opportunity for precision nuclear physics studies. New developments in polarized target technology specific to internal applications will be discussed. In particular, polarized gas targets have been used in the VEPP-3 electron ring in Novosibirsk. A simple storage cell was used to increase the total target thickness by a factor of 15 over the simple gas jet target from an atomic beam source. Results from the initial phase of this project will be reported. In addition, the plans for increasing the luminosity by an additional order or magnitude will be presented. The application of this work to polarized hydrogen and deuterium targets for the HERA ring will be noted. The influence of beam-induced depolarization, a phenomena encountered in short-pulse electron storage rings, will be discussed. Finally, the performance tests of laser-driven sources will be presented. 8 refs., 12 figs., 1 tab

  17. Three-Year Outcomes of Cross-Linking PLUS (Combined Cross-Linking with Femtosecond Laser Intracorneal Ring Segments Implantation for Management of Keratoconus

    Directory of Open Access Journals (Sweden)

    Mohammed Iqbal Hafez Saleem

    2018-01-01

    Full Text Available Purpose. To analyze the results of three-year outcomes of combined epithelium-on cross-linking with femtosecond laser ICRS (cross-linking PLUS for keratoconus management. Design. A retrospective multicenter clinical study. Methods. 43 eyes of 38 patients were subjected to preoperative and postoperative UCVA, BCVA, refraction, Pentacam pachymetry, and keratometry examinations at 3-, 6-, 12-, 24-, and 36-month follow-up period. Results. The preoperative and postoperative mean UCVA was 1.30 ± 0.48 (logMAR ± SD and 0.82 ± 0.22 respectively. The preoperative and postoperative mean BCVA was 0.90 ± 0.40 and 0.60 ± 0.30, respectively. The preoperative and postoperative mean K average was 50.63 ± 0.87 (D ± SD and 45.56 ± 0.98, respectively. The preoperative and postoperative mean pachymetry was 471 ± 92.36 (μm ± SD and 423 ± 39.58, respectively. The preoperative and postoperative mean astigmatism was 7.55 ± 1.75 and 3.39 ± 1.26, respectively. One eye showed ICRS edge exposure while 6 eyes showed progression of keratoconus. Conclusion. CXL PLUS was proved to be a successful procedure to halt progression (mainly by CXL and to correct the refractive status of the keratoconic eye (mainly by ICRS. CXL PLUS performed a synergistic action correcting and maintaining the correction of both myopic and astigmatic components of keratoconus.

  18. Survey and alignment of the Fermilab recycler antiproton storage ring

    International Nuclear Information System (INIS)

    Arics, Babatunde O.O.

    1999-01-01

    In June of 1999 Fermilab commissioned a newly constructed antiproton storage ring, the 'Recycler Ring', in the Main Injector tunnel directly above the Main Injector beamline. The Recycler Ring is a fixed 8 GeV kinetic energy storage ring and is constructed of strontium ferrite permanent magnets. The 3319.4-meter-circumference Recycler Ring consists of 344 gradient magnets and 100 quadrupoles all of which are permanent magnets. This paper discusses the methods employed to survey and align these permanent magnets within the Recycler Ring with the specified accuracy. The Laser Tracker was the major instrument used for the final magnet alignment. The magnets were aligned along the Recycler Ring with a relative accuracy of ±0.25 mm. (author)

  19. Rings in drugs.

    Science.gov (United States)

    Taylor, Richard D; MacCoss, Malcolm; Lawson, Alastair D G

    2014-07-24

    We have analyzed the rings, ring systems, and frameworks in drugs listed in the FDA Orange Book to understand the frequency, timelines, molecular property space, and the application of these rings in different therapeutic areas and target classes. This analysis shows that there are only 351 ring systems and 1197 frameworks in drugs that came onto the market before 2013. Furthermore, on average six new ring systems enter drug space each year and approximately 28% of new drugs contain a new ring system. Moreover, it is very unusual for a drug to contain more than one new ring system and the majority of the most frequently used ring systems (83%) were first used in drugs developed prior to 1983. These observations give insight into the chemical novelty of drugs and potentially efficient ways to assess compound libraries and develop compounds from hit identification to lead optimization and beyond.

  20. Birth Control Ring

    Science.gov (United States)

    ... Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español Birth Control Ring KidsHealth / For Teens / Birth Control Ring What's ...

  1. Advances in the simulation of toroidal gyro Landau fluid model turbulence

    International Nuclear Information System (INIS)

    Waltz, R.E.; Kerbel, G.D.; Milovich, J.; Hammett, G.W.

    1994-12-01

    The gyro-Landau fluid (GLF) model equations for toroidal geometry have been recently applied to the study ion temperature gradient (ITG) mode turbulence using the 3D nonlinear ballooning mode representation (BMR). The present paper extends this work by treating some unresolved issues conceming ITG turbulence with adiabatic electrons. Although eddies are highly elongated in the radial direction long time radial correlation lengths are short and comparable to poloidal lengths. Although transport at vanishing shear is not particularly large, transport at reverse global shear, is significantly less. Electrostatic transport at moderate shear is not much effected by inclusion of local shear and average favorable curvature. Transport is suppressed when critical ExB rotational shear is comparable to the maximum linear growth rate with only a weak dependence on magnetic shear. Self consistent turbulent transport of toroidal momentum can result in a transport bifurcation at suffciently large r/(Rq). However the main thrust of the new formulation in the paper deals with advances in the development of finite beta GLF models with trapped electron and BMR numerical methods for treating the fast parallel field motion of the untrapped electrons

  2. Groups, rings, modules

    CERN Document Server

    Auslander, Maurice

    2014-01-01

    This classic monograph is geared toward advanced undergraduates and graduate students. The treatment presupposes some familiarity with sets, groups, rings, and vector spaces. The four-part approach begins with examinations of sets and maps, monoids and groups, categories, and rings. The second part explores unique factorization domains, general module theory, semisimple rings and modules, and Artinian rings. Part three's topics include localization and tensor products, principal ideal domains, and applications of fundamental theorem. The fourth and final part covers algebraic field extensions

  3. Common pass decentered annular ring resonator

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, D. A.; Waite, T. R.

    1985-04-30

    An optical resonator having an annular cylindrical gain region for use in a chemical laser or the like in which two ring-shaped mirrors having substantially conical reflecting surfaces are spaced apart along a common axis of revolution of the respective conical surfaces. A central conical mirror reflects incident light directed along said axis radially outwardly to the reflecting surface of a first one of the ring-shaped mirrors. The radial light rays are reflected by the first ring mirror to the second ring mirror within an annular cylindrical volume concentric with said common axis and forming a gain region. Light rays impinging on the second ring mirror are reflected to diametrically opposite points on the same conical mirror surfaces and back to the first ring mirror through the same annular cylindrical volume. The return rays are then reflected by the conical mirror surface of the first ring mirror back to the central conical mirror. The mirror surfaces are angled such that the return rays are reflected back along the common axis by the central mirror in a concentric annular cylindrical volume. A scraper mirror having a central opening centered on said axis and an offset opening reflects all but the rays passing through the two openings in an output beam. The rays passing through the second opening are reflected back through the first opening to provide feedback.

  4. Comparison of low confinement mode transport simulations using the mixed Bohm/gyro-Bohm and the Multi-Mode-95 transport model

    International Nuclear Information System (INIS)

    Onjun, Thawatchai; Bateman, Glenn; Kritz, Arnold H.; Hannum, David

    2001-01-01

    Predictive transport simulations using the mixed Bohm/gyro-Bohm (JET) transport model [M. Erba , Plasma Phys. Controlled Fusion 39, 261 (1997)] are compared with simulations using the Multi-Mode-95 (MMM95) transport model [G. Bateman , Phys. Plasmas 5, 1793 (1998)]. Temperature and density profiles from these simulations are compared with experimental data for 13 low confinement mode (L-mode) discharges from the Doublet III-D Tokamak (DIII-D) [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)] and the Tokamak Fusion Test Reactor (TFTR) [D. Grove and D. M. Meade, Nucl. Fusion 25, 1167 (1985)]. The selected discharges include systematic scans over gyro-radius, plasma power, current, and density. It is found that simulations using the two models match experimental data equally well, in spite of the fact that the JET model has predominantly Bohm scaling (proportional to gyro-radius) while the MMM95 model has a purely gyro-Bohm scaling (proportional to gyro-radius squared)

  5. Achieving Translationally Invariant Trapped Ion Rings

    Science.gov (United States)

    Urban, Erik; Li, Hao-Kun; Noel, Crystal; Hemmerling, Boerge; Zhang, Xiang; Haeffner, Hartmut

    2017-04-01

    We present the design and implementation of a novel surface ion trap design in a ring configuration. By eliminating the need for wire bonds through the use of electrical vias and using a rotationally invariant electrode configuration, we have realized a trap that is able to trap up to 20 ions in a ring geometry 45um in diameter, 400um above the trap surface. This large trapping height to ring diameter ratio allows for global addressing of the ring with both lasers and electric fields in the chamber, thereby increasing our ability to control the ring as a whole. Applying compensating electric fields, we measure very low tangential trap frequencies (less than 20kHz) corresponding to rotational barriers down to 4mK. This measurement is currently limited by the temperature of the ions but extrapolation indicates the barrier can be reduced much further with more advanced cooling techniques. Finally, we show that we are able to reduce this energy barrier sufficiently such that the ions are able to overcome it either through thermal motion or rotational motion and delocalize over the full extent of the ring. This work was funded by the Keck Foundation and the NSF.

  6. Token Ring Project

    Directory of Open Access Journals (Sweden)

    Adela Ionescu

    2007-01-01

    Full Text Available Ring topology is a simple configuration used to connect processes that communicate among themselves. A number of network standards such as token ring, token bus, and FDDI are based on the ring connectivity. This article will develop an implementation of a ring of processes that communicate among themselves via pipe links. The processes are nodes in the ring. Each process reads from its standard input and writes in its standard output. N-1 process redirects the its standard output to a standard input of the process through a pipe. When the ring-structure is designed, the project can be extended to simulate networks or to implement algorithms for mutual exclusion

  7. Token ring technology report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. This report provides an overview of the IBM Token-Ring technology and products built by IBM and compatible vendors. It consists of two sections: 1. A summary of the design trade-offs for the IBM Token-Ring. 2. A summary of the products of the major token-ring compatible vendors broken down by adapters and components, wiring systems, testing, and new chip technology.

  8. Radioactive gold ring dermatitis

    International Nuclear Information System (INIS)

    Miller, R.A.; Aldrich, J.E.

    1990-01-01

    A superficial squamous cell carcinoma developed in a woman who wore a radioactive gold ring for more than 30 years. Only part of the ring was radioactive. Radiation dose measurements indicated that the dose to basal skin layer was 2.4 Gy (240 rad) per week. If it is assumed that the woman continually wore her wedding ring for 37 years since purchase, she would have received a maximum dose of approximately 4600 Gy

  9. Experimental study on line-of-sight (LOS) attitude control using control moment gyros under micro-gravity environment

    Science.gov (United States)

    Kojima, Hirohisa; Hiraiwa, Kana; Yoshimura, Yasuhiro

    2018-02-01

    This paper presents the results of line-of-sight (LOS) attitude control using control moment gyros under a micro-gravity environment generated by parabolic flight. The W-Z parameters are used to describe the spacecraft attitude. In order to stabilize the current LOS to the target LOS, backstepping-based feedback control is considered using the W-Z parameters. Numerical simulations and experiments under a micro-gravity environment are carried out, and their results are compared in order to validate the proposed control methods.

  10. Physics of quantum rings

    International Nuclear Information System (INIS)

    Fomin, Vladimir M.

    2014-01-01

    Presents the new class of materials of quantum rings. Provides an elemental basis for low-cost high-performance devices promising for electronics, optoelectronics, spintronics and quantum information processing. Explains the physical properties of quantum rings to cover a gap in scientific literature. Presents the application of most advanced nanoengineering and nanocharacterization techniques. This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is possible on the basis of modern characterization methods of nanostructures, such as Scanning Tunneling Microscopy. A high level of complexity is demonstrated to be needed for a dedicated theoretical model to adequately represent the specific features of quantum rings. The findings presented in this book contribute to develop low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings.

  11. DC electrostatic gyro suspension system for the Gravity Probe B experiment

    Science.gov (United States)

    Wu, Chang-Huei

    1994-12-01

    The Gravity Probe B experiment is a satellite-based experiment primarily designed to test two aspects of Einstein's General Theory of Relativity by observing the spin axis drift of near-perfect gyroscopes in a 650-km circular polar orbit. The goal of this experiment is to measure the drift angles to an accuracy of 0.3 milli-arcsec after one year in orbit. As a result, electrostatically suspended free-spinning gyroscopes operating at a very low temperature became the final choice for their ultra-low Newtonian torque-induced drift rate. The Conventional AC current-driven suspension system faces two fundamental difficulties for ground gyro testing. Field emission causes rotor charging and arcing with an imperfect electrode or rotor surfaces because the electric field intensity needed to support a solid rotor in the 1-g field is more than 107 V/m. The system not only becomes unstable at a high rotor charge, which can be more than 500 volts, but may also lose control in case of arcing. Both the high voltage AC suspension signal and the high frequency (1 MHz) signal for rotor position sensing interfere with the superconducting SQUID magnetometer for spin axis readout through inductive coupling. These problems were resolved by using DC voltage to generate a suspension force and a low frequency position sensor. In addition to the Input/Output linearization algorithm developed to remove the system nonlinearity for global stability and dynamic performance, we also minimized the electric field intensity to reduce rotor charging. Experimental results verified the desired global stability and satisfactory dynamic performance. The problem of rotor charging is virtually eliminated. More importantly, the DC system is compatible with the SQUID readout system in the Science Mission configuration. Consequently, experiments in low magnetic field at a sub-micro-gauss level for SQUID design verification and trapped flux distribution study were finally realizable in ground environment

  12. FLSR - The Frankfurt low energy storage ring

    International Nuclear Information System (INIS)

    Stiebing, K.E.; Alexandrov, V.; Doerner, R.; Enz, S.; Kazarinov, N.Yu.; Kruppi, T.; Schempp, A.; Schmidt Boecking, H.; Voelp, M.; Ziel, P.; Dworak, M.; Dilfer, W.

    2010-01-01

    An electrostatic storage ring for low-energy ions with a design energy of 50 keV is presently being set up at the Institut fuer Kernphysik der Johann Wolfgang Goethe-Universitaet Frankfurt am Main, Germany (IKF). This new device will provide a basis for new experiments on the dynamics of ionic and molecular collisions, as well as for high precision and time resolved laser spectroscopy. In this article, the design parameters of this instrument are reported.

  13. EBT ring physics

    International Nuclear Information System (INIS)

    Uckan, N.A.

    1980-04-01

    This workshop attempted to evaluate the status of the current experimental and theoretical understanding of hot electron ring properties. The dominant physical processes that influence ring formation, scaling, and their optimal behavior are also studied. Separate abstracts were prepared for each of the 27 included papers

  14. Map matching and heuristic elimination of gyro drift for personal navigation systems in GPS-denied conditions

    International Nuclear Information System (INIS)

    Aggarwal, Priyanka; Thomas, David; Ojeda, Lauro; Borenstein, Johann

    2011-01-01

    This paper introduces a method for the substantial reduction of heading errors in inertial navigation systems used under GPS-denied conditions. Presumably, the method is applicable for both vehicle-based and personal navigation systems, but experiments were performed only with a personal navigation system called 'personal dead reckoning' (PDR). In order to work under GPS-denied conditions, the PDR system uses a foot-mounted inertial measurement unit (IMU). However, gyro drift in this IMU can cause large heading errors after just a few minutes of walking. To reduce these errors, the map-matched heuristic drift elimination (MAPHDE) method was developed, which estimates gyro drift errors by comparing IMU-derived heading to the direction of the nearest street segment in a database of street maps. A heuristic component in this method provides tolerance to short deviations from walking along the street, such as when crossing streets or intersections. MAPHDE keeps heading errors almost at zero, and, as a result, position errors are dramatically reduced. In this paper, MAPHDE was used in a variety of outdoor walks, without any use of GPS. This paper explains the MAPHDE method in detail and presents experimental results

  15. A statistical study of gyro-averaging effects in a reduced model of drift-wave transport

    Science.gov (United States)

    da Fonseca, J. D.; del-Castillo-Negrete, D.; Sokolov, I. M.; Caldas, I. L.

    2016-08-01

    A statistical study of finite Larmor radius (FLR) effects on transport driven by electrostatic drift-waves is presented. The study is based on a reduced discrete Hamiltonian dynamical system known as the gyro-averaged standard map (GSM). In this system, FLR effects are incorporated through the gyro-averaging of a simplified weak-turbulence model of electrostatic fluctuations. Formally, the GSM is a modified version of the standard map in which the perturbation amplitude, K0, becomes K0J0(ρ ̂ ) , where J0 is the zeroth-order Bessel function and ρ ̂ is the Larmor radius. Assuming a Maxwellian probability density function (pdf) for ρ ̂ , we compute analytically and numerically the pdf and the cumulative distribution function of the effective drift-wave perturbation amplitude K0J0(ρ ̂ ) . Using these results, we compute the probability of loss of confinement (i.e., global chaos), Pc, and the probability of trapping in the main drift-wave resonance, Pt. It is shown that Pc provides an upper bound for the escape rate, and that Pt provides a good estimate of the particle trapping rate. The analytical results are compared with direct numerical Monte-Carlo simulations of particle transport.

  16. On the Laurent polynomial rings

    International Nuclear Information System (INIS)

    Stefanescu, D.

    1985-02-01

    We describe some properties of the Laurent polynomial rings in a finite number of indeterminates over a commutative unitary ring. We study some subrings of the Laurent polynomial rings. We finally obtain two cancellation properties. (author)

  17. Faithfully quadratic rings

    CERN Document Server

    Dickmann, M

    2015-01-01

    In this monograph the authors extend the classical algebraic theory of quadratic forms over fields to diagonal quadratic forms with invertible entries over broad classes of commutative, unitary rings where -1 is not a sum of squares and 2 is invertible. They accomplish this by: (1) Extending the classical notion of matrix isometry of forms to a suitable notion of T-isometry, where T is a preorder of the given ring, A, or T = A^2. (2) Introducing in this context three axioms expressing simple properties of (value) representation of elements of the ring by quadratic forms, well-known to hold in

  18. Influence of microstructure on laser damage threshold of IBS coatings

    International Nuclear Information System (INIS)

    Stolz, C.J.; Genin, F.Y.; Kozlowski, M.R.; Long, D.; Lalazari, R.; Wu, Z.L.; Kuo, P.K.

    1996-01-01

    Ion-beam sputtering (IBS) coatings were developed for the laser gyro industry to meet significantly different requirements than those of fusion lasers. Laser gyro mirrors are small ( 26 J/cm 2 at 1,064 nm with 3-ns pulses). As part of the National Ignition Facility (NIF) coating development effort, IBS coatings are being studied to explore the possible benefits of this technology to NIF optics. As an initial step to achieving the NIF size and damage threshold requirements, the coating process is being scaled to uniformly coat a 20 x 40 cm 2 area with reduced spectral, reflected wavefront, and laser damage threshold requirements. Here, multilayer coatings deposited by ion-beam sputtering with amorphous layers were found to have lower damage thresholds at 1,064 nm than similar coatings with crystalline layers. Interestingly, at higher fluences the damage was less severe for the amorphous coatings. The magnitude of the difference in damage thresholds between the two different microstructures was strongly influenced by the size of the tested area. To better understand the microstructure effects, single layers of HfO 2 with different microstructures were studied using transmission electron microscopy, ellipsometry, and a photothermal deflection technique. Since the laser damage initiated at defects, the influence of thermal diffusivity on thermal gradients in nodular defects is also presented

  19. On arbitrarily graded rings

    Indian Academy of Sciences (India)

    58

    paper is devoted to the study of arbitrary rings graded through arbitrary sets. .... which recover certain multiplicative relations among the homogeneous components ... instance the case in which the grading set A is an Abelian group, where the ...

  20. The g-2 ring

    CERN Multimedia

    1974-01-01

    The precise measurement of "g-2", the anomalous magnetic moment of the muon, required a special muon storage ring with electrostatic focussing and very accurate knowledge of the magnetic bending field. For more details see under photo 7405430.

  1. [Liesegang's rings resembling helminthiasis].

    Science.gov (United States)

    Zámecník, M; Riedl, I

    1996-12-01

    So called Liesegang's rings are lamellar corpuscles which develop after periodical precipitation of oversaturated solutions in gel medium. They can occur in cysts, closed cavities, inflammatory exudates and necroses. They resemble parasitic eggs, larvae or adult forms. A case of 28-year-old woman is presented with many Liesegang's rings in a stuff from dilated renal calyx. Their preliminary evaluation considered helminths, especially Dioctophyma renale.

  2. Storage ring group summary

    International Nuclear Information System (INIS)

    King, N.M.

    1980-01-01

    The Storage Ring Group set out to identify and pursue salient problems in accelerator physics for heavy ion fusion, divorced from any particular reference design concept. However, it became apparent that some basic parameter framework was required to correlate the different study topics. As the Workshop progressed, ring parameters were modified and updated. Consequently, the accompanying papers on individual topics will be found to refer to slightly varied parameters, according to the stage at which the different problems were tackled

  3. The rings of Uranus

    Science.gov (United States)

    Elliot, J. L.; Dunham, E.; Mink, D.

    1977-01-01

    A description is given of the observation of five brief occultations of the star SAO 158687 which occurred both before and after its occultation by Uranus on March 10, 1977. The events were observed with a three-channel occultation photometer, attached to a 91-cm telescope. The observations indicate that at least five rings encircle the planet Uranus. Possible reasons for the narrowness of the Uranus rings are discussed.

  4. Bistability in a laser with injected signal

    International Nuclear Information System (INIS)

    Dorobantu, I.A.; Vlad, V.I.; Ursu, I.

    1987-04-01

    A unified description of bistability is given in free running lasers, optical bistable devices, ring lasers and lasers with an injected signal (LIS). A general review of laser instabilities is also presented in the frame of the theory of elementary catastrophes, emphasizing the apparence of higher order catastrophes in the case of a LIS suggesting thus a possibility to devise from first principles the whole hierarchy of laser instabilities. Experimental results on the bistability in the polarisation of LIS are also discussed. (authors)

  5. Fast cooling of bunches in compton storage rings*

    CERN Document Server

    Bulyak, E; Zimmermann, F

    2011-01-01

    We propose an enhancement of laser radiative cooling by utilizing laser pulses of small spatial and temporal dimensions, which interact only with a fraction of an electron bunch circulating in a storage ring. We studied the dynamics of such electron bunch when laser photons scatter off the electrons at a collision point placed in a section with nonzero dispersion. In this case of ‘asymmetric cooling’, the stationary energy spread is much smaller than under conditions of regular scattering where the laser spot size is larger than the electron beam; and the synchrotron oscillations are damped faster. Coherent oscillations of large amplitude may be damped within one synchrotron period, so that this method can support the rapid successive injection of many bunches in longitudinal phase space for stacking purposes. Results of extensive simulations are presented for the performance optimization of Compton gamma-ray sources and damping rings.

  6. Orbit-averaged quantities, the classical Hellmann-Feynman theorem, and the magnetic flux enclosed by gyro-motion

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, R. J., E-mail: rperkins@pppl.gov; Bellan, P. M. [Applied Physics and Materials Science, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-02-15

    Action integrals are often used to average a system over fast oscillations and obtain reduced dynamics. It is not surprising, then, that action integrals play a central role in the Hellmann-Feynman theorem of classical mechanics, which furnishes the values of certain quantities averaged over one period of rapid oscillation. This paper revisits the classical Hellmann-Feynman theorem, rederiving it in connection to an analogous theorem involving the time-averaged evolution of canonical coordinates. We then apply a modified version of the Hellmann-Feynman theorem to obtain a new result: the magnetic flux enclosed by one period of gyro-motion of a charged particle in a non-uniform magnetic field. These results further demonstrate the utility of the action integral in regards to obtaining orbit-averaged quantities and the usefulness of this formalism in characterizing charged particle motion.

  7. A highly accurate positioning and orientation system based on the usage of four-cluster fibre optic gyros

    International Nuclear Information System (INIS)

    Zhang, Xiaoyue; Lin, Zhili; Zhang, Chunxi

    2013-01-01

    A highly accurate positioning and orientation technique based on four-cluster fibre optic gyros (FOGs) is presented. The four-cluster FOG inertial measurement unit (IMU) comprises three low-precision FOGs, one static high-precision FOG and three accelerometers. To realize high-precision positioning and orientation, the static alignment (north-seeking) before vehicle manoeuvre was divided into a low-precision self-alignment phase and a high-precision north-seeking (online calibration) phase. The high-precision FOG measurement information was introduced to obtain high-precision azimuth alignment (north-seeking) result and achieve online calibration of the low-precision three-cluster FOG. The results of semi-physical simulation were presented to validate the availability and utility of the highly accurate positioning and orientation technique based on the four-cluster FOGs. (paper)

  8. Some Aspects of Ring Theory

    CERN Document Server

    Herstein, IN

    2011-01-01

    S. Amitsur: Associative rings with identities.- I.N. Herstein: Topics in ring theory.- N. Jacobson: Representation theory of Jordan algebras.- I. Kaplansky: The theory of homological dimension.- D. Buchsbaum: Complexes in local ring theory.- P.H. Cohn: Two topics in ring theory.- A.W. Goldie: Non-commutative localisation.

  9. GYRO-ORBIT SIZE, BRIGHTNESS TEMPERATURE LIMIT, AND IMPLAUSIBILITY OF COHERENT EMISSION BY BUNCHING IN SYNCHROTRON RADIO SOURCES

    International Nuclear Information System (INIS)

    Singal, Ashok K.

    2012-01-01

    We show that an upper limit on the maximum brightness temperature for a self-absorbed incoherent synchrotron radio source is obtained from the size of its gyro orbits, which in turn must lie well within the confines of the total source extent. These temperature limits are obtained without recourse to inverse Compton effects or the condition of equipartition of energy between magnetic fields and relativistic particles. For radio variables, the intra-day variability implies brightness temperatures ∼10 19 K in the comoving rest frame of the source. This, if interpreted purely due to an incoherent synchrotron emission, would imply gyroradii >10 28 cm, the size of the universe, while from the causality arguments the inferred maximum size of the source in such a case is ∼ 15 cm. Such high brightness temperatures are sometimes modeled in the literature as some coherent emission process where bunches of non-thermal particles are somehow formed that radiate in phase. We show that, unlike in the case of curvature radiation models proposed in pulsars, in the synchrotron radiation mechanism the oppositely charged particles would contribute together to the coherent phenomenon without the need to form separate bunches of the opposite charges. At the same time we show that bunches would disperse over dimensions larger than a wavelength in time shorter than the gyro orbital period (∼< 0.1 s). Therefore, a coherent emission by bunches cannot be a plausible explanation of the high brightness temperatures inferred in extragalactic radio sources showing variability over a few hours or longer.

  10. Ring correlations in random networks.

    Science.gov (United States)

    Sadjadi, Mahdi; Thorpe, M F

    2016-12-01

    We examine the correlations between rings in random network glasses in two dimensions as a function of their separation. Initially, we use the topological separation (measured by the number of intervening rings), but this leads to pseudo-long-range correlations due to a lack of topological charge neutrality in the shells surrounding a central ring. This effect is associated with the noncircular nature of the shells. It is, therefore, necessary to use the geometrical distance between ring centers. Hence we find a generalization of the Aboav-Weaire law out to larger distances, with the correlations between rings decaying away when two rings are more than about three rings apart.

  11. An induction accelerator for the Heidelberg Test Storage Ring TSR

    International Nuclear Information System (INIS)

    Ellert, C.; Habs, D.; Music, M.; Schwalm, D.; Wolf, A.; Jaeschke, E.; Kambara, T.; Sigray, P.

    1992-01-01

    An induction accelerator has been installed in the heavy ion test storage ring TSR in Heidelberg. It allows for constant acceleration or deceleration of stored coasting ion beams without affecting their velocity profile and is well suited for ion beam manipulation in cooling experiments and for measurements of velocity dependent cooling forces. The design and operation of the device and first applications to laser cooling and to measurements of laser and electron cooling forces are described. (orig.)

  12. Mapping Ring Particle Cooling across Saturn's Rings with Cassini CIRS

    Science.gov (United States)

    Brooks, Shawn M.; Spilker, L. J.; Edgington, S. G.; Pilorz, S. H.; Deau, E.

    2010-10-01

    Previous studies have shown that the rings' thermal inertia, a measure of their response to changes in the thermal environment, varies from ring to ring. Thermal inertia can provide insight into the physical structure of Saturn's ring particles and their regoliths. Low thermal inertia and quick temperature responses are suggestive of ring particles that have more porous or fluffy regoliths or that are riddled with cracks. Solid, coherent particles can be expected to have higher thermal inertias (Ferrari et al. 2005). Cassini's Composite Infrared Spectrometer has recorded millions of spectra of Saturn's rings since its arrival at Saturn in 2004 (personal communication, M. Segura). CIRS records far infrared radiation between 10 and 600 cm-1 (16.7 and 1000 µm) at focal plane 1 (FP1), which has a field of view of 3.9 mrad. Thermal emission from Saturn's rings peaks in this wavelength range. FP1 spectra can be used to infer ring temperatures. By tracking how ring temperatures vary, we can determine the thermal inertia of the rings. In this work we focus on CIRS observations of the shadowed portion of Saturn's rings. The thermal budget of the rings is dominated by the solar radiation absorbed by its constituent particles. When ring particles enter Saturn's shadow this source of energy is abruptly cut off. As a result, ring particles cool as they traverse Saturn's shadow. From these shadow observations we can create cooling curves at specific locations across the rings. We will show that the rings' cooling curves and thus their thermal inertia vary not only from ring to ring, but by location within the individual rings. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

  13. The Rings of Saturn

    Science.gov (United States)

    Cuzzi, J. N.; Filacchione, G.; Marouf, E. A.

    2018-03-01

    One could become an expert on Saturn's iconic rings pretty easily in the early 1970s, as very little was known about them beyond the distinction between the A, B, and C rings, and the Cassini Division or "gap" between rings A and B (Alexander, 1962; Bobrov, 1970). Water ice was discovered spectroscopically on the ring particle surfaces, and radar and microwave emission observations proved that the particles must be centimeters to meters in size, consisting primarily, not just superficially, of water ice (Pollack, 1975). While a 2:1 orbital resonance with Mimas had long been suspected of having something to do with the Cassini Division, computers of the time were unable to model the subtle dynamical effects that we now know to dominate ring structure. This innocent state of affairs was exploded by the Voyager 1 and 2 encounters in 1980 and 1981. Spectacular images revealed filigree structure and odd regional color variations, and exquisitely detailed radial profiles of fluctuating particle abundance were obtained from the first stellar and radio occultations, having resolution almost at the scale of single particles. Voyager-era understanding was reviewed by Cuzzi et al. (1984) and Esposito et al. (1984). While the Voyager data kept ring scientists busy for decades, planning which led to the monumentally successful NASA-ESA-ASI Cassini mission, which arrived in 2004, had been under way even before Voyager got to Saturn. A review of pre-Cassini knowledge of Saturn's Rings can be found in Orton et al. (2009). This chapter will build on recent topical and process-specific reviews that treat the gamut of ring phenomena and its underlying physics in considerable detail (Colwell et al., 2009; Cuzzi et al., 2009; Horányi et al., 2009; Schmidt et al., 2009; Esposito, 2010; Tiscareno, 2013b; Esposito, 2014). We will follow and extend the general organization of Cuzzi et al. (2010), the most recent general discussion of Saturn's rings. For brevity and the benefit of the

  14. BERKELEY: ALS ring

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-06-15

    Everybody at Lawrence Berkeley Laboratory's Center for Beam Physics is pleased with the rapid progress in commissioning LBL's Advanced Light Source (ALS) electron storage ring, the foundation for this third-generation synchrotron radiation facility. Designed for a maximum current of 400 mA, the ALS storage ring reached 407 mA just 24 days after storing the first beam on 16 March. ALS construction as a US Department of Energy (DOE) national user facility to provide high-brightness vacuum ultra-violet and soft x-ray radiation began in October 1987. One technical requirement marking project completion was to accumulate a 50-mA current in the storage ring. The ALS passed this milestone on 24 March, a week ahead of the official deadline. Once injected, the electron beam decays quasi-exponentially primarily because of interactions with residual gas molecules in the storage-ring vacuum chamber. Eventually, when the pressure in the vacuum chamber with beam decreases toward the expected operating level of 1 nano Torr, it will only be necessary to refill the storage ring at intervals of four to eight hours. At present the vacuum is improving rapidly as surfaces are irradiated (scrubbed) by the synchrotron radiation itself. At 100 mA, beam lifetime was about one hour (9 April)

  15. Compressible Vortex Ring

    Science.gov (United States)

    Elavarasan, Ramasamy; Arakeri, Jayawant; Krothapalli, Anjaneyulu

    1999-11-01

    The interaction of a high-speed vortex ring with a shock wave is one of the fundamental issues as it is a source of sound in supersonic jets. The complex flow field induced by the vortex alters the propagation of the shock wave greatly. In order to understand the process, a compressible vortex ring is studied in detail using Particle Image Velocimetry (PIV) and shadowgraphic techniques. The high-speed vortex ring is generated from a shock tube and the shock wave, which precedes the vortex, is reflected back by a plate and made to interact with the vortex. The shadowgraph images indicate that the reflected shock front is influenced by the non-uniform flow induced by the vortex and is decelerated while passing through the vortex. It appears that after the interaction the shock is "split" into two. The PIV measurements provided clear picture about the evolution of the vortex at different time interval. The centerline velocity traces show the maximum velocity to be around 350 m/s. The velocity field, unlike in incompressible rings, contains contributions from both the shock and the vortex ring. The velocity distribution across the vortex core, core diameter and circulation are also calculated from the PIV data.

  16. BERKELEY: ALS ring

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Everybody at Lawrence Berkeley Laboratory's Center for Beam Physics is pleased with the rapid progress in commissioning LBL's Advanced Light Source (ALS) electron storage ring, the foundation for this third-generation synchrotron radiation facility. Designed for a maximum current of 400 mA, the ALS storage ring reached 407 mA just 24 days after storing the first beam on 16 March. ALS construction as a US Department of Energy (DOE) national user facility to provide high-brightness vacuum ultra-violet and soft x-ray radiation began in October 1987. One technical requirement marking project completion was to accumulate a 50-mA current in the storage ring. The ALS passed this milestone on 24 March, a week ahead of the official deadline. Once injected, the electron beam decays quasi-exponentially primarily because of interactions with residual gas molecules in the storage-ring vacuum chamber. Eventually, when the pressure in the vacuum chamber with beam decreases toward the expected operating level of 1 nano Torr, it will only be necessary to refill the storage ring at intervals of four to eight hours. At present the vacuum is improving rapidly as surfaces are irradiated (scrubbed) by the synchrotron radiation itself. At 100 mA, beam lifetime was about one hour (9 April)

  17. Electron Storage Ring Development for ICS Sources

    Energy Technology Data Exchange (ETDEWEB)

    Loewen, Roderick [Lyncean Technologies, Inc., Palo Alto, CA (United States)

    2015-09-30

    There is an increasing world-wide interest in compact light sources based on Inverse Compton Scattering. Development of these types of light sources includes leveraging the investment in accelerator technology first developed at DOE National Laboratories. Although these types of light sources cannot replace the larger user-supported synchrotron facilities, they offer attractive alternatives for many x-ray science applications. Fundamental research at the SLAC National Laboratory in the 1990’s led to the idea of using laser-electron storage rings as a mechanism to generate x-rays with many properties of the larger synchrotron light facilities. This research led to a commercial spin-off of this technology. The SBIR project goal is to understand and improve the performance of the electron storage ring system of the commercially available Compact Light Source. The knowledge gained from studying a low-energy electron storage ring may also benefit other Inverse Compton Scattering (ICS) source development. Better electron storage ring performance is one of the key technologies necessary to extend the utility and breadth of applications of the CLS or related ICS sources. This grant includes a subcontract with SLAC for technical personnel and resources for modeling, feedback development, and related accelerator physics studies.

  18. The European UV/VUV storage ring FEL at ELETTRA: first operation and future prospects

    CERN Document Server

    Walker, R P; Couprie, Marie Emmanuelle; Dattoli, Giuseppe; Eriksson, M; Garzella, D; Giannessi, L; Marsi, M; Poole, M W; Renault, E; Roux, R; Trovò, M; Werin, S; Wille, K

    2001-01-01

    A European project to develop the first storage ring free-electron laser on a third-generation synchrotron radiation facility is presented, including a description of the main features, initial performance at 350 and 220 nm and future prospects.

  19. Almost ring theory

    CERN Document Server

    2003-01-01

    This book develops thorough and complete foundations for the method of almost etale extensions, which is at the basis of Faltings' approach to p-adic Hodge theory. The central notion is that of an "almost ring". Almost rings are the commutative unitary monoids in a tensor category obtained as a quotient V-Mod/S of the category V-Mod of modules over a fixed ring V; the subcategory S consists of all modules annihilated by a fixed ideal m of V, satisfying certain natural conditions. The reader is assumed to be familiar with general categorical notions, some basic commutative algebra and some advanced homological algebra (derived categories, simplicial methods). Apart from these general prerequisites, the text is as self-contained as possible. One novel feature of the book - compared with Faltings' earlier treatment - is the systematic exploitation of the cotangent complex, especially for the study of deformations of almost algebras.

  20. Optimizing ring-based CSR sources

    International Nuclear Information System (INIS)

    Byrd, J.M.; De Santis, S.; Hao, Z.; Martin, M.C.; Munson, D.V.; Li, D.; Nishimura, H.; Robin, D.S.; Sannibale, F.; Schlueter, R.D.; Schoenlein, R.; Jung, J.Y.; Venturini, M.; Wan, W.; Zholents, A.A.; Zolotorev, M.

    2004-01-01

    Coherent synchrotron radiation (CSR) is a fascinating phenomenon recently observed in electron storage rings and shows tremendous promise as a high power source of radiation at terahertz frequencies. However, because of the properties of the radiation and the electron beams needed to produce it, there are a number of interesting features of the storage ring that can be optimized for CSR. Furthermore, CSR has been observed in three distinct forms: as steady pulses from short bunches, bursts from growth of spontaneous modulations in high current bunches, and from micro modulations imposed on a bunch from laser slicing. These processes have their relative merits as sources and can be improved via the ring design. The terahertz (THz) and sub-THz region of the electromagnetic spectrum lies between the infrared and the microwave . This boundary region is beyond the normal reach of optical and electronic measurement techniques and sources associated with these better-known neighbors. Recent research has demonstrated a relatively high power source of THz radiation from electron storage rings: coherent synchrotron radiation (CSR). Besides offering high power, CSR enables broadband optical techniques to be extended to nearly the microwave region, and has inherently sub-picosecond pulses. As a result, new opportunities for scientific research and applications are enabled across a diverse array of disciplines: condensed matter physics, medicine, manufacturing, and space and defense industries. CSR will have a strong impact on THz imaging, spectroscopy, femtosecond dynamics, and driving novel non-linear processes. CSR is emitted by bunches of accelerated charged particles when the bunch length is shorter than the wavelength being emitted. When this criterion is met, all the particles emit in phase, and a single-cycle electromagnetic pulse results with an intensity proportional to the square of the number of particles in the bunch. It is this quadratic dependence that can

  1. Small electrostatic storage rings; also for highly charged ions?

    International Nuclear Information System (INIS)

    Moeller, S.P.; Pedersen, U.V.

    2001-01-01

    Two years ago, a small electrostatic storage ring ELISA (electrostatic ion storage ring, Aarhus) was put into operation. The design of this small 7 m circumference ring was based on electrostatic deflection plates and quadrupoles. This is in contrast to the larger ion storage rings, which are based on magnetic focusing and deflection. The result is a small, relatively inexpensive, storage ring being able to store ions of any mass and any charge at low energy ( -11 mbar resulting in storage times of several tens of seconds for singly charged ions. The maximum number of singly charged ions that can be stored is a few 10 7 . Several experiments have already been performed in ELISA. These include lifetime studies of metastable ions and studies of fullerenes and metal-cluster ions. Lasers are also used for excitation of the circulating ions. Heating/cooling of the ring is possible. Cooling of the ring leads to significantly lower pressures, and correspondingly longer lifetimes. A change of the temperature of the vacuum chambers surrounding the ion beam also leads to a change of the spectrum of the black-body radiation, which has a significant influence on weakly bound negative ions. At the time of writing, at least two other electrostatic storage rings are being built, and more are planned. In the following, the electrostatic storage ring ELISA will be described, and results from some of the initial experiments demonstrating the performance will be shown. The relative merits of such a ring, as opposed to the larger magnetic rings and the smaller ion traps will be discussed. The potential for highly charged ions will be briefly mentioned. (orig.)

  2. Storage-ring FEL for the vuv

    International Nuclear Information System (INIS)

    Peterson, J.M.; Bisognano, J.J.; Garren, A.A.; Halbach, K.; Kim, K.J.; Sah, R.C.

    1984-09-01

    A free-electron laser for the vuv operating in a storage ring requires an electron beam of high density and low energy spread and a short wavelength, narrow-gap undulator. These conditions tend to produce longitudinal and transverse beam instabilities, excessive beam growth through multiple intrabeam scattering, and a short gas-scattering lifetime. Passing the beam only occasionally through the undulator in a by-pass straight section, as proposed by Murphy and Pellegrini, allows operation in a high-gain, single-pass mode and a long gas-scattering lifetime. Several storage ring designs have been considered to see how best to satisfy the several requirements. Each features a by-pass, a low-emittance lattice, and built-in wigglers for enhanced damping to counteract the intra-beam scattering. 15 references, 3 figures, 2 tables

  3. Infrared synchrotron radiation from electron storage rings

    International Nuclear Information System (INIS)

    Duncan, W.D.; Williams, G.P.

    1983-01-01

    Simple and useful approximations, valid at infrared wavelengths, to the equations for synchrotron radiation are presented and used to quantify the brightness and power advantage of current synchrotron radiation light sources over conventional infrared broadband laboratory sources. The Daresbury Synchrotron Radiation Source (SRS) and the Brookhaven National Synchrotron Light Source (vacuum ultraviolet) [NSLS(VUV)] storage rings are used as examples in the calculation of the properties of infrared synchrotron radiation. The pulsed nature of the emission is also discussed, and potential areas of application for the brightness, power, and time structure advantages are presented. The use of infrared free electron lasers and undulators on the next generation of storage ring light sources is briefly considered

  4. Compact electron storage rings

    International Nuclear Information System (INIS)

    Williams, G.P.

    1987-01-01

    There have been many recent developments in the area of compact storage rings. Such rings would have critical wavelengths of typically 10 A, achieved with beam energies of several hundreds of MeV and superconducting dipole fields of around 5 Tesla. Although the primary motivation for progress in this area is that of commercial x-ray lithography, such sources might be an attractive source for college campuses to operate. They would be useful for many programs in materials science, solid state, x-ray microscopy and other biological areas. We discuss the properties of such sources and review developments around the world, primarily in the USA, japan and W. Germany

  5. The covariant chiral ring

    Energy Technology Data Exchange (ETDEWEB)

    Bourget, Antoine; Troost, Jan [Laboratoire de Physique Théorique, École Normale Supérieure, 24 rue Lhomond, 75005 Paris (France)

    2016-03-23

    We construct a covariant generating function for the spectrum of chiral primaries of symmetric orbifold conformal field theories with N=(4,4) supersymmetry in two dimensions. For seed target spaces K3 and T{sup 4}, the generating functions capture the SO(21) and SO(5) representation theoretic content of the chiral ring respectively. Via string dualities, we relate the transformation properties of the chiral ring under these isometries of the moduli space to the Lorentz covariance of perturbative string partition functions in flat space.

  6. Vortex and source rings

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The velocity field, vector potential and velocity gradient of a vortex ring is derived in this chapter. The Biot-Savart law for the vector potential and velocity is expressed in a first section. Then, the flow is derived at specific locations: on the axis, near the axis and in the far field where...... the analogy to a doublet field is made. The following section derive the value of the vector potential and velocity field in the full domain. The expression for the velocity gradient is also provided since it may be relevant in a simulation with vortex particles and vortex rings. Most of this chapter...

  7. The Saturnian rings

    International Nuclear Information System (INIS)

    Alfven, H.

    1975-09-01

    The structure of the Saturnian rings is traditionally believed to be due to resonances caused by Mimas (and possibly other satellites). It is shown that both theoretical and observational evidence rule out this interpretation. The increased observational accuracy on one hand and the increased understanding of the cosmogonic processes on the other makes it possible to explain the structure of the ring system as a product of condensation from a partially corotating plasma. In certain respects the agreement between theory and observations is about 1%. (Auth.)

  8. RINGED ACCRETION DISKS: INSTABILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2016-04-01

    We analyze the possibility that several instability points may be formed, due to the Paczyński mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider a recently proposed model of a ringed accretion disk, made up by several tori (rings) that can be corotating or counter-rotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.

  9. Fusion rings and fusion ideals

    DEFF Research Database (Denmark)

    Andersen, Troels Bak

    by the so-called fusion ideals. The fusion rings of Wess-Zumino-Witten models have been widely studied and are well understood in terms of precise combinatorial descriptions and explicit generating sets of the fusion ideals. They also appear in another, more general, setting via tilting modules for quantum......This dissertation investigates fusion rings, which are Grothendieck groups of rigid, monoidal, semisimple, abelian categories. Special interest is in rational fusion rings, i.e., fusion rings which admit a finite basis, for as commutative rings they may be presented as quotients of polynomial rings...

  10. Flushing Ring for EDM

    Science.gov (United States)

    Earwood, L.

    1985-01-01

    Removing debris more quickly lowers cutting time. Operation, cutting oil and pressurized air supplied to ring placed around workpiece. Air forces oil through small holes and agitates oil as it flows over workpiece. High flow rate and agitation dislodge and remove debris. Electrical discharge removes material from workpiece faster.

  11. Sector ring accelerator ''RESATRON''

    International Nuclear Information System (INIS)

    Schwabe, E.

    1980-01-01

    Project of sector ring accelerator RESATRON is described. The curiosity of this accelerator is the second cycle of acceleration of the beam after stripping it on the foil. In such an accelerator heavy ions with a different ratio Z to A can be accelerated. (S.B.)

  12. Ring chromosome 13

    DEFF Research Database (Denmark)

    Brandt, C A; Hertz, Jens Michael; Petersen, M B

    1992-01-01

    A stillborn male child with anencephaly and multiple malformations was found to have the karyotype 46,XY,r(13) (p11q21.1). The breakpoint at 13q21.1, determined by high resolution banding, is the most proximal breakpoint ever reported in patients with ring chromosome 13. In situ hybridisation...

  13. SXLS storage ring design

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    X-ray lithography has emerged as a strong candidate to meet the demands of ever finer linewidths on integrated circuits, particularly for linewidths less than .25 microns. Proximity printing X-ray lithography makes use of soft X-rays to shadow print an image of a mask onto a semiconductor wafer to produce integrated circuits. To generate the required X-rays in sufficient quantities to make commercial production viable, electron storage rings have been proposed as the soft X-ray sources. Existing storage rings have been used to do the initial development work and the success of these efforts has led the lithographers to request that new rings be constructed that are dedicated to X-ray lithography. As a result of a series of workshops held at BNL [10.3] which were attended by both semiconductor and accelerator scientists, the following set of zeroth order specifications' on the light and electron beam of a storage ring for X-ray lithography were developed: critical wavelength of light: λ c = 6 to 10 angstroms, white light power: P = 0.25 to 2.5 watts/mrad, horizontal collection angle per port: θ = 10 to 50 mrad, electron beam sizes: σ x ∼ σ y y ' < 1 mrad

  14. Ring magnetron ionizer

    International Nuclear Information System (INIS)

    Alessi, J.G.

    1986-01-01

    A ring magnetron D - charge exchange ionizer has been built and tested. An H - current of 500 μA was extracted with an estimated H 0 density in the ionizer of 10 12 cm -3 . This exceeds the performance of ionizers presently in use on polarized H - sources. The ionizer will soon be tested with a polarized atomic beam

  15. Algebras, rings and modules

    CERN Document Server

    Hazewinkel, Michiel; Kirichenko, V V

    Provides both the classical aspects of the theory of groups and their representations as well as a general introduction to the modern theory of representations, including the representations of quivers and finite partially ordered sets. This volume provides the theory of semiprime Noetherian semiperfect and semidistributive rings.

  16. Lattices for antiproton rings

    International Nuclear Information System (INIS)

    Autin, B.

    1984-01-01

    After a description of the constraints imposed by the cooling of Antiprotons on the lattice of the rings, the reasons which motivate the shape and the structure of these machines are surveyed. Linear and non-linear beam optics properties are treated with a special amplification to the Antiproton Accumulator. (orig.)

  17. Formation of ring-patterned nanoclusters by laser–plume interaction

    International Nuclear Information System (INIS)

    Sivayoganathan, Mugunthan; Tan Bo; Venkatakrishnan, Krishnan

    2013-01-01

    This article reports for the first time a unique study performed to regulate the ring diameter of nanoclusters fabricated during femtosecond laser ablation of solids and a mechanism is proposed for the formation of those ring clusters. The ring nanoclusters are made out of nanoparticles with a range of 10–30 nm. Our experimental studies showed the synthesis of ring nanoclusters with random diameter distribution on metals, nonmetals, and semiconductors, such as titanium, aluminum, glasses, ceramics, graphite, and silicon. To regulate the ring size, the effects of laser parameters, such as wavelength, pulse duration, pulse energy, and repetition rate on the ring diameter are analyzed. The influence of ablated materials and the background gas on ring size is also elaborated in this article. The motion of plume species under the influence of ponderomotive force on free electrons possibly played a key role in the formation of the ring-patterned nanoclusters. This study could help to understand the fundamentals in laser ablative nanosynthesis as well as to produce nanostructures with organized ring diameter that controls the density and porosity of those 3D nanostructures.

  18. Propellers in Saturn's rings

    Science.gov (United States)

    Sremcevic, M.; Stewart, G. R.; Albers, N.; Esposito, L. W.

    2013-12-01

    Theoretical studies and simulations have demonstrated the effects caused by objects embedded in planetary rings. Even if the objects are too small to be directly observed, each creates a much larger gravitational imprint on the surrounding ring material. These strongly depend on the mass of the object and range from "S" like propeller-shaped structures for about 100m-sized icy bodies to the opening of circumferential gaps as in the case of the embedded moons Pan and Daphnis and their corresponding Encke and Keeler Gaps. Since the beginning of the Cassini mission many of these smaller objects (~data from Cassini Ultraviolet Imaging Spectrograph (UVIS) and Imaging Science Subsystem (ISS) experiments. We show evidence that B ring seems to harbor two distinct populations of propellers: "big" propellers covering tens of degrees in azimuth situated in the densest part of B ring, and "small" propellers in less dense inner B ring that are similar in size and shape to known A ring propellers. The population of "big" propellers is exemplified with a single object which is observed for 5 years of Cassini data. The object is seen as a very elongated bright stripe (40 degrees wide) in unlit Cassini images, and dark stripe in lit geometries. In total we report observing the feature in images at 18 different epochs between 2005 and 2010. In UVIS occultations we observe this feature as an optical depth depletion in 14 out of 93 occultation cuts at corrotating longitudes compatible with imaging data. Combining the available Cassini data we infer that the object is a partial gap located at r=112,921km embedded in the high optical depth region of the B ring. The gap moves at Kepler speed appropriate for its radial location. Radial offsets of the gap locations in UVIS occultations are consistent with an asymmetric propeller shape. The asymmetry of the observed shape is most likely a consequence of the strong surface mass density gradient, as the feature is located at an edge between

  19. FLSR - The Frankfurt low energy storage ring

    Science.gov (United States)

    Stiebing, K. E.; Alexandrov, V.; Dörner, R.; Enz, S.; Kazarinov, N. Yu.; Kruppi, T.; Schempp, A.; Schmidt Böcking, H.; Völp, M.; Ziel, P.; Dworak, M.; Dilfer, W.

    2010-02-01

    An electrostatic storage ring for low-energy ions with a design energy of 50 keV is presently being set up at the Institut für Kernphysik der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany (IKF). This new device will provide a basis for new experiments on the dynamics of ionic and molecular collisions, as well as for high precision and time resolved laser spectroscopy. In this article, the design parameters of this instrument are reported.

  20. FUZZY RINGS AND ITS PROPERTIES

    Directory of Open Access Journals (Sweden)

    Karyati Karyati

    2017-01-01

      One of algebraic structure that involves a binary operation is a group that is defined  an un empty set (classical with an associative binary operation, it has identity elements and each element has an inverse. In the structure of the group known as the term subgroup, normal subgroup, subgroup and factor group homomorphism and its properties. Classical algebraic structure is developed to algebraic structure fuzzy by the researchers as an example semi group fuzzy and fuzzy group after fuzzy sets is introduced by L. A. Zadeh at 1965. It is inspired of writing about semi group fuzzy and group of fuzzy, a research on the algebraic structure of the ring is held with reviewing ring fuzzy, ideal ring fuzzy, homomorphism ring fuzzy and quotient ring fuzzy with its properties. The results of this study are obtained fuzzy properties of the ring, ring ideal properties fuzzy, properties of fuzzy ring homomorphism and properties of fuzzy quotient ring by utilizing a subset of a subset level  and strong level  as well as image and pre-image homomorphism fuzzy ring.   Keywords: fuzzy ring, subset level, homomorphism fuzzy ring, fuzzy quotient ring

  1. Status of the Frankfurt low energy electrostatic storage ring (FLSR)

    International Nuclear Information System (INIS)

    King, F; Kruppi, T; Müller, J; Dörner, R; Schmidt, L Ph H; Schmidt-Böcking, H; Stiebing, K E

    2015-01-01

    Frankfurt low-energy storage ring (FLSR) is an electrostatic storage ring for low-energy ions up to q · 80 keV (q being the ion charge state) at Institut für Kernphysik der Goethe-Universität, Frankfurt am Main, Germany. It has especially been designed to provide a basis for experiments on the dynamics of ionic and molecular collisions in complete kinematics, as well as for high precision and time resolved laser spectroscopy. The ring has ‘racetrack’ geometry with a circumference of 14.23 m. It comprises four experimental/diagnostic sections with regions of enhanced ion density (interaction regions). First beam has successfully been stored in FLSR in summer 2013. Since then the performance of the ring has continuously been improved and an electron target for experiments on dissociative recombination has been installed in one of the experimental sections. (paper)

  2. Status of the Frankfurt low energy electrostatic storage ring (FLSR)

    Science.gov (United States)

    King, F.; Kruppi, T.; Müller, J.; Dörner, R.; Schmidt, L. Ph H.; Schmidt-Böcking, H.; Stiebing, K. E.

    2015-11-01

    Frankfurt low-energy storage ring (FLSR) is an electrostatic storage ring for low-energy ions up to q · 80 keV (q being the ion charge state) at Institut für Kernphysik der Goethe-Universität, Frankfurt am Main, Germany. It has especially been designed to provide a basis for experiments on the dynamics of ionic and molecular collisions in complete kinematics, as well as for high precision and time resolved laser spectroscopy. The ring has ‘racetrack’ geometry with a circumference of 14.23 m. It comprises four experimental/diagnostic sections with regions of enhanced ion density (interaction regions). First beam has successfully been stored in FLSR in summer 2013. Since then the performance of the ring has continuously been improved and an electron target for experiments on dissociative recombination has been installed in one of the experimental sections.

  3. Estimating Attitude, Trajectory, and Gyro Biases in an Extended Kalman Filter using Earth Magnetic Field Data from the Rossi X-Ray Timing Explorer

    Science.gov (United States)

    Deutschmann, Julie; Bar-Itzhack, Itzhack

    1997-01-01

    Traditionally satellite attitude and trajectory have been estimated with completely separate systems, using different measurement data. The estimation of both trajectory and attitude for low earth orbit satellites has been successfully demonstrated in ground software using magnetometer and gyroscope data. Since the earth's magnetic field is a function of time and position, and since time is known quite precisely, the differences between the computed and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft orbit, are a function of both the spacecraft trajectory and attitude errors. Therefore, these errors can be used to estimate both trajectory and attitude. This work further tests the single augmented Extended Kalman Filter (EKF) which simultaneously and autonomously estimates spacecraft trajectory and attitude with data from the Rossi X-Ray Timing Explorer (RXTE) magnetometer and gyro-measured body rates. In addition, gyro biases are added to the state and the filter's ability to estimate them is presented.

  4. High pressure photoinduced ring opening of benzene

    International Nuclear Information System (INIS)

    Ciabini, Lucia; Santoro, Mario; Bini, Roberto; Schettino, Vincenzo

    2002-01-01

    The chemical transformation of crystalline benzene into an amorphous solid (a-C:H) was induced at high pressure by employing laser light of suitable wavelengths. The reaction was forced to occur at 16 GPa, well below the pressure value (23 GPa) where the reaction normally occurs. Different laser sources were used to tune the pumping wavelength into the red wing of the first excited singlet state S 1 ( 1 B 2u ) absorption edge. Here the benzene ring is distorted, presenting a greater flexibility which makes the molecule unstable at high pressure. The selective pumping of the S 1 level, in addition to structural considerations, was of paramount importance to clarify the mechanism of the reaction

  5. Inorganic glass ceramic slip rings

    Science.gov (United States)

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  6. Uniquely Strongly Clean Group Rings

    Institute of Scientific and Technical Information of China (English)

    WANG XIU-LAN

    2012-01-01

    A ring R is called clean if every element is the sum of an idempotent and a unit,and R is called uniquely strongly clean (USC for short) if every element is uniquely the sum of an idempotent and a unit that commute.In this article,some conditions on a ring R and a group G such that RG is clean are given.It is also shown that if G is a locally finite group,then the group ring RG is USC if and only if R is USC,and G is a 2-group.The left uniquely exchange group ring,as a middle ring of the uniquely clean ring and the USC ring,does not possess this property,and so does the uniquely exchange group ring.

  7. Ring closure in actin polymers

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Supurna, E-mail: supurna@rri.res.in [Raman Research Institute, Bangalore 560080 (India); Chattopadhyay, Sebanti [Doon University, Dehradun 248001 (India)

    2017-03-18

    We present an analysis for the ring closure probability of semiflexible polymers within the pure bend Worm Like Chain (WLC) model. The ring closure probability predicted from our analysis can be tested against fluorescent actin cyclization experiments. We also discuss the effect of ring closure on bend angle fluctuations in actin polymers. - Highlights: • Ring closure of biopolymers. • Worm like chain model. • Predictions for experiments.

  8. Studies of Turbulence and Transport in Alcator C-Mod H-Mode Plasmas with Phase Contrast Imaging and Comparisons with GYRO

    Science.gov (United States)

    Porkolab, M.; Lin, L.; Edlund, E. M.; Rost, J. C.; Fiore, C. L.; Greenwald, M.; Mikkelsen, D.

    2008-11-01

    We present recent experimental measurements of turbulence and transport in C-Mod H-Mode plasmas with and without internal transport barriers (ITB) using the phase contrast imaging (PCI) diagnostic and compare the results with GYRO predictions. In plasmas without ITB, the fluctuation above 300 kHz observed by PCI agrees with ITG in GYRO simulation, including the direction of propagation, wavenumber spectrum, and absolute intensity within experimental uncertainly (+/-75%). After transition to ITBs, the observed overall fluctuation intensity increases. GYRO simulation in the core shows that ITG dominates in ITBs but its intensity is lower than the overall experimental measurements which may also include contributions from the plasma edge. These results, as well as the impact of varying ∇Ti, ∇n, and ExB shear on turbulence will be discussed. C.L. Fiore et al., Fusion Sci. Technol., 51, 303 (2007). M. Porkolab et al., IEEE Trans. Plasma Sci. 34, 229 (2006). J. Candy et al., Phys. Rev. Lett., 91, 045001 (2003).

  9. Design of low energy ring(s)

    CERN Document Server

    Lachaize, Antoine

    During the last two years, several upgrades of the initial baseline scenario were studied with the aim of increasing the average intensity of ion beams in the accelerator chain of the Beta Beam complex. This is the reason why the Rapid Cycling Synchrotron (RCS) specifications were reconsidered many times [1], [2], [3].General considerations on the optical design were presented at the Beta Beam Task Meetings held at CERN and at Saclay in 2005 [4]. More detailed beam optics studies were performed during the next months. Lattices, RF system parameters, multi-turn injection scheme, fast extraction, closed orbit correction and chromaticity correction systems were proposed for different versions of the RCS [5], [6], [7].Finally, the RCS specifications have stabilized in November 2006 after the fourth Beta Beam Task Meeting when it was decided to fix the maximum magnetic rigidity of ion beams to 14.47 T.m (3.5 GeV equivalent proton energy) and to adopt a ring physical radius of 40 m in order to facilitate injectio...

  10. Fusion Rings for Quantum Groups

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Stroppel, Catharina

    2012-01-01

    We study the fusion rings of tilting modules for a quantum group at a root of unity modulo the tensor ideal of negligible tilting modules. We identify them in type A with the combinatorial rings from [12] and give a similar description of the sp2n-fusion ring in terms of noncommutative symmetric...

  11. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  12. Laser Spectroscopy for Atmospheric and Environmental Sensing

    Directory of Open Access Journals (Sweden)

    Solomon Bililign

    2009-12-01

    Full Text Available Lasers and laser spectroscopic techniques have been extensively used in several applications since their advent, and the subject has been reviewed extensively in the last several decades. This review is focused on three areas of laser spectroscopic applications in atmospheric and environmental sensing; namely laser-induced fluorescence (LIF, cavity ring-down spectroscopy (CRDS, and photoluminescence (PL techniques used in the detection of solids, liquids, aerosols, trace gases, and volatile organic compounds (VOCs.

  13. Ring Confidential Transactions

    Directory of Open Access Journals (Sweden)

    Shen Noether

    2016-12-01

    Full Text Available This article introduces a method of hiding transaction amounts in the strongly decentralized anonymous cryptocurrency Monero. Similar to Bitcoin, Monero is a cryptocurrency which is distributed through a proof-of-work “mining” process having no central party or trusted setup. The original Monero protocol was based on CryptoNote, which uses ring signatures and one-time keys to hide the destination and origin of transactions. Recently the technique of using a commitment scheme to hide the amount of a transaction has been discussed and implemented by Bitcoin Core developer Gregory Maxwell. In this article, a new type of ring signature, A Multilayered Linkable Spontaneous Anonymous Group signature is described which allows one to include a Pedersen Commitment in a ring signature. This construction results in a digital currency with hidden amounts, origins and destinations of transactions with reasonable efficiency and verifiable, trustless coin generation. The author would like to note that early drafts of this were publicized in the Monero Community and on the #bitcoin-wizards IRC channel. Blockchain hashed drafts are available showing that this work was started in Summer 2015, and completed in early October 2015. An eprint is also available at http://eprint.iacr.org/2015/1098.

  14. Broadband rectangular TEn0 mode exciter with H-plane power dividers for 100 GHz confocal gyro-devices.

    Science.gov (United States)

    Yao, Yelei; Wang, Jianxun; Li, Hao; Liu, Guo; Luo, Yong

    2017-07-01

    A generic approach to excite TE n0 (n ≥ 1) modes in a rectangular waveguide for confocal gyro-devices is proposed. The exciter consists of a 3 dB H-plane power divider (n ≥ 3) and a mode-converting section. The injection power is split into two in-phase signals with equal amplitudes which simultaneously excite the secondary waveguide via two sets of multiple slots. Both the position and width of the slot are symmetrically distributed with respect to the center line for each set of slots. The slot width complies with a geometry sequence, with adjacent slots being spaced a quarter wavelength apart to cancel the backward wave out. A TE 40 mode exciter at 100 GHz is numerically simulated and optimized, achieving a 1 dB and a 3 dB transmission bandwidth of 18.2 and 21 GHz, respectively. The prototype is fabricated and measured. The cold test is carried out utilizing two identical back-to-back connected mode exciters, and the measured performances are in good agreement with the numerical simulation results when taking into account the wall loss and assembly tolerance.

  15. Parasitic oscillation in and suppression of a gyro BW mode in a low-Q 8 GHz gyrotron

    International Nuclear Information System (INIS)

    Muggli, P.; Tran, M.Q.; Tran, T.M.

    1991-12-01

    The parasitic oscillation of the TE o 21 gyrotron Backward Wave (gyro BW) mode is observed in a low-Q, 8 GHz TE o 011 gyrotron. Although at low power (P BW o 011 mode efficiency of less than 0.25. The parasitic oscillation is suppressed by operating the gyrotron with a negative magnetic field gradient along the electron beam, which allows the maximum efficiency to reach 0.40 and the output power to be multiplied by a factor varying from 1.4 to 1.7. The optimum efficiency curve of the TE o 011 mode indicates that the low-Q cavity behaves as a much higher Q diff cavity. Too large magnetic field gradient and α values favour the TE o 012 longitudinal mode, which oscillates in place of the TE o 011 mode and limits its maximum output power. This competitive process is responsible for the high-Q like output power. (author) 14 figs., 14 refs

  16. THE EFFECT OF INTERMITTENT GYRO-SCALE SLAB TURBULENCE ON PARALLEL AND PERPENDICULAR COSMIC-RAY TRANSPORT

    International Nuclear Information System (INIS)

    Le Roux, J. A.

    2011-01-01

    Earlier work based on nonlinear guiding center (NLGC) theory suggested that perpendicular cosmic-ray transport is diffusive when cosmic rays encounter random three-dimensional magnetohydrodynamic turbulence dominated by uniform two-dimensional (2D) turbulence with a minor uniform slab turbulence component. In this approach large-scale perpendicular cosmic-ray transport is due to cosmic rays microscopically diffusing along the meandering magnetic field dominated by 2D turbulence because of gyroresonant interactions with slab turbulence. However, turbulence in the solar wind is intermittent and it has been suggested that intermittent turbulence might be responsible for the observation of 'dropout' events in solar energetic particle fluxes on small scales. In a previous paper le Roux et al. suggested, using NLGC theory as a basis, that if gyro-scale slab turbulence is intermittent, large-scale perpendicular cosmic-ray transport in weak uniform 2D turbulence will be superdiffusive or subdiffusive depending on the statistical characteristics of the intermittent slab turbulence. In this paper we expand and refine our previous work further by investigating how both parallel and perpendicular transport are affected by intermittent slab turbulence for weak as well as strong uniform 2D turbulence. The main new finding is that both parallel and perpendicular transport are the net effect of an interplay between diffusive and nondiffusive (superdiffusive or subdiffusive) transport effects as a consequence of this intermittency.

  17. THE EFFECT OF INTERMITTENT GYRO-SCALE SLAB TURBULENCE ON PARALLEL AND PERPENDICULAR COSMIC-RAY TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    Le Roux, J. A. [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2011-12-10

    Earlier work based on nonlinear guiding center (NLGC) theory suggested that perpendicular cosmic-ray transport is diffusive when cosmic rays encounter random three-dimensional magnetohydrodynamic turbulence dominated by uniform two-dimensional (2D) turbulence with a minor uniform slab turbulence component. In this approach large-scale perpendicular cosmic-ray transport is due to cosmic rays microscopically diffusing along the meandering magnetic field dominated by 2D turbulence because of gyroresonant interactions with slab turbulence. However, turbulence in the solar wind is intermittent and it has been suggested that intermittent turbulence might be responsible for the observation of 'dropout' events in solar energetic particle fluxes on small scales. In a previous paper le Roux et al. suggested, using NLGC theory as a basis, that if gyro-scale slab turbulence is intermittent, large-scale perpendicular cosmic-ray transport in weak uniform 2D turbulence will be superdiffusive or subdiffusive depending on the statistical characteristics of the intermittent slab turbulence. In this paper we expand and refine our previous work further by investigating how both parallel and perpendicular transport are affected by intermittent slab turbulence for weak as well as strong uniform 2D turbulence. The main new finding is that both parallel and perpendicular transport are the net effect of an interplay between diffusive and nondiffusive (superdiffusive or subdiffusive) transport effects as a consequence of this intermittency.

  18. Cavity ring-down technique for measurement of reflectivity of high ...

    Indian Academy of Sciences (India)

    Laser & Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400 085,. India. *Corresponding author. E-mail: gsridhar@barc.gov.in. Abstract. A simple, accurate and reliable method for measuring the reflectivity of laser- ... Keywords. Cavity ring-down method; reflectivity measurement; optical resonator.

  19. Corneal ring infiltration in contact lens wearers

    Directory of Open Access Journals (Sweden)

    Seyed Ali Tabatabaei

    2017-01-01

    Full Text Available To report a case of atypical sterile ring infiltrates during wearing soft silicone hydrogel contact lens due to poor lens care. A 29-year-old woman presented with complaints of pain, redness, and morning discharge. She was wearing soft silicone hydrogel contact lens previously; her current symptoms began 1 week before presentation. On examination, best-corrected visual acuity was 20/40 in that eye. Slit-lamp examination revealed dense, ring-shaped infiltrate involving both the superficial and deep stromal layers with lucid interval to the limbus, edema of the epithelium, epithelial defect, and vascularization of the superior limbus. Cornea-specific in vivo laser confocal microscopy (Heidelberg Retina Tomograph 2 Rostock Cornea Module, HRT 2-RCM, Heidelberg Engineering GmbH, Dossenheim, Germany revealed Langerhans cells and no sign of Acanthamoeba or fungal features, using lid scraping and anti-inflammatory drops; her vision completely recovered. We reported an atypical case of a sterile corneal ring infiltrate associated with soft contact lens wearing; smear, culture, and confocal microscopy confirmed a sterile inflammatory reaction.

  20. Lasers '89

    International Nuclear Information System (INIS)

    Harris, D.G.; Shay, T.M.

    1990-01-01

    This book covers the following topics: XUV, X-Ray and Gamma-Ray Lasers, excimer lasers, chemical lasers, nuclear pumped lasers, high power gas lasers, solid state lasers, laser spectroscopy. The paper presented include: Development of KrF lasers for fusion and Nuclear driven solid-state lasers

  1. Fusion Rings for Quantum Groups

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Stroppel, Catharina

    2014-01-01

    We study the fusion rings of tilting modules for a quantum group at a root of unity modulo the tensor ideal of negligible tilting modules. We identify them in type A with the combinatorial rings from Korff, C., Stroppel, C.: The sl(ˆn)k-WZNW fusion ring: a combinato-rial construction...... and a realisation as quotient of quantum cohomology. Adv. Math. 225(1), 200–268, (2010) and give a similar description of the sp2n-fusion ring in terms of non-commutative symmetric functions. Moreover we give a presentation of all fusion rings in classical types as quotients of polynomial rings. Finally we also...... compute the fusion rings for type G2....

  2. Tree Rings: Timekeepers of the Past.

    Science.gov (United States)

    Phipps, R. L.; McGowan, J.

    One of a series of general interest publications on science issues, this booklet describes the uses of tree rings in historical and biological recordkeeping. Separate sections cover the following topics: dating of tree rings, dating with tree rings, tree ring formation, tree ring identification, sample collections, tree ring cross dating, tree…

  3. First results of cavity ring down signals from exhaled air

    Science.gov (United States)

    Revalde, G.; Grundšteins, K.; Alnis, J.; Skudra, A.

    2017-12-01

    In this paper we report first results from the developed cavity ring-down spectrometer for application in human breath analysis for the diagnostics of diabetes and later for early detection of lung cancer. Our cavity ring-down spectrometer works in UV region with pulsed Nd:YAG laser at 266 nm wavelength. First experiments allow us to determine acetone and benzene at the level bellow ppm. In our experiment, first results from breath samples from volunteers after doing different activities were collected and examined. Influence of the smoking on the breath signals also was examined.

  4. Polymers Containing 1, 3, 4-Oxadiazole Rings for Advanced Materials

    Directory of Open Access Journals (Sweden)

    Mariana-Dana Damaceanu

    2011-10-01

    Full Text Available This paper presents the synthesis, properties and potential applications of new polymers containing 1, 3, 4-oxadiazole rings, tacking into account the requirements of the modern technologies. Two classes of polymers containing oxadiazole rings were approached: polyamides and polyimides. All the polymers were characterized with respect to the identification of their chemical structure, solubility, molecular weights, film forming ability, thermal, dielectric and optical properties, and the behaviour of polyoxadiazole films upon irradiation with pulsed KrF laser. All the properties were discussed in correlation with their chemical structure and compared with those of related polymers.

  5. SOR-ring failure

    International Nuclear Information System (INIS)

    Kitamura, Hideo

    1981-01-01

    It was in the autumn of 1976 that the SOR-ring (synchrotron radiation storage ring) has commenced the regular operation. Since then, the period when the operation was interrupted due to the failures of SOR-ring itself is in total about 8 weeks. Failures and accidents have occurred most in the vacuum system. Those failure experiences are described on the vacuum, electromagnet, radio-frequency acceleration and beam transport systems with their interrupted periods. The eleven failures in the vacuum system have been reported, such as bellows breakage in a heating-evacuating period, leakage from the bellows of straight-through valves (made in U.S.A. and Japan), and leakage from the joint flange of the vacuum system. The longest interruption was 5 weeks due to the failure of a domestically manufactured straight-through valve. The failures of the electromagnet system involve the breakage in a cooling water system, short circuit of a winding in the Q magnet power transformer, blow of a fuse protecting the deflection magnet power source by the current less than the rating, and others. The failures of the RF acceleration system include the breakage of an output electronic tube the breakage of a cavity ceramic, RF voltage fluctuation due to the contact deterioration at a cavity electrode, and the failure of grid bias power source. It is necessary to select the highly reliable components for the vacuum system because the vacuum system failures require longer time for recovery, and very likely to induce secondary and tertiary failures. (Wakatsuki, Y.)

  6. Proton storage rings

    International Nuclear Information System (INIS)

    Rau, R.R.

    1978-04-01

    A discussion is given of proton storage ring beam dynamic characteristics. Topics considered include: (1) beam energy; (2) beam luminosity; (3) limits on beam current; (4) beam site; (5) crossing angle; (6) beam--beam interaction; (7) longitudinal instability; (8) effects of scattering processes; (9) beam production; and (10) high magnetic fields. Much of the discussion is related to the design parameters of ISABELLE, a 400 x 400 GeV proton---proton intersecting storage accelerator to be built at Brookhaven National Laboratory

  7. Ring-constrained Join

    DEFF Research Database (Denmark)

    Yiu, Man Lung; Karras, Panagiotis; Mamoulis, Nikos

    2008-01-01

    . This new operation has important applications in decision support, e.g., placing recycling stations at fair locations between restaurants and residential complexes. Clearly, RCJ is defined based on a geometric constraint but not on distances between points. Thus, our operation is fundamentally different......We introduce a novel spatial join operator, the ring-constrained join (RCJ). Given two sets P and Q of spatial points, the result of RCJ consists of pairs (p, q) (where p ε P, q ε Q) satisfying an intuitive geometric constraint: the smallest circle enclosing p and q contains no other points in P, Q...

  8. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana

    2013-10-15

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  9. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana; Vasilakopoulos, Thodoris C.; Jeong, Youncheol; Lee, Hyojoon; Rogers, Simon A.; Sakellariou, Georgios; Allgaier, Jü rgen B.; Takano, Atsushi; Brá s, Ana Rita E; Chang, Taihyun; Gooß en, Sebastian; Pyckhout-Hintzen, Wim; Wischnewski, Andreas; Hadjichristidis, Nikolaos; Richter, Dieter R.; Rubinstein, Michael H.; Vlassopoulos, Dimitris

    2013-01-01

    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  10. Alpha - Skew Pi - Armendariz Rings

    Directory of Open Access Journals (Sweden)

    Areej M Abduldaim

    2018-03-01

    Full Text Available In this article we introduce a new concept called Alpha-skew Pi-Armendariz rings (Alpha - S Pi - ARas a generalization of the notion of Alpha-skew Armendariz rings.Another important goal behind studying this class of rings is to employ it in order to design a modern algorithm of an identification scheme according to the evolution of using modern algebra in the applications of the field of cryptography.We investigate general properties of this concept and give examples for illustration. Furthermore, this paperstudy the relationship between this concept and some previous notions related to Alpha-skew Armendariz rings. It clearly presents that every weak Alpha-skew Armendariz ring is Alpha-skew Pi-Armendariz (Alpha-S Pi-AR. Also, thisarticle showsthat the concepts of Alpha-skew Armendariz rings and Alpha-skew Pi- Armendariz rings are equivalent in case R is 2-primal and semiprime ring.Moreover, this paper proves for a semicommutative Alpha-compatible ringR that if R[x;Alpha] is nil-Armendariz, thenR is an Alpha-S Pi-AR. In addition, if R is an Alpha - S Pi -AR, 2-primal and semiprime ring, then N(R[x;Alpha]=N(R[x;Alpha]. Finally, we look forwardthat Alpha-skew Pi-Armendariz rings (Alpha-S Pi-ARbe more effect (due to their properties in the field of cryptography than Pi-Armendariz rings, weak Armendariz rings and others.For these properties and characterizations of the introduced concept Alpha-S Pi-AR, we aspire to design a novel algorithm of an identification scheme.

  11. State-of-the-art of high power gyro-devices and free electron masers. Update 2015

    Energy Technology Data Exchange (ETDEWEB)

    Thumm, Manfred [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Hochleistungsimpuls- und Mikrowellentechnik, Programm Fusion

    2016-07-01

    many other applications. In addition, this work gives a short overview of the present development status of frequency step-tunable gyrotrons, coaxial-cavity multi-megawatt gyrotrons, gyrotrons for technological and spectroscopy applications, relativistic gyrotrons, large orbit gyrotrons (LOGs), quasi-optical gyrotrons, fast-and slow-wave cyclotron autoresonance masers (CARMs), gyroklystrons, gyro-TWT amplifiers, gyrotwystron amplifiers, gyro-BWOs, gyroharmonic converters, gyropeniotrons, magnicons, free electron masers (FEMs) and of vacuum windows for such high-power mm-wave sources. The highest average powers produced by gyroklystrons and FEMs are 10 kW (94 GHz) and 36 W (15 GHz), respectively. The IR FEL at the Thomas Jefferson National Accelerator Facility in the USA obtained a record average power of 14.2 kW at a wavelength of 1.6 μm. The THz FEL (NOVEL) at the Budker Institute of Nuclear Physics in Russia achieved a maximum average power of 0.5 kW in the wavelength range 50-240 μm (6.00-1.25 THz).

  12. NRL ion ring program

    International Nuclear Information System (INIS)

    Kapetanakos, C.A.; Golden, J.; Drobot, A.; Mahaffey, R.A.; Marsh, S.J.; Pasour, J.A.

    1977-01-01

    An experiment is under way to form a storng proton ring using the 200 ka, 1.2 MeV, 50 nsec hollow proton beam recently generated at NRL. The 5 m long magnetic field configuration consists of a magnetic cusp, a compressing magnetic field, a gate field and a magnetic mirror. The midplane value of the magnetic mirror is such that the major radius of the ring will be about 10 cm. The degree of field reversal that will be achieved with 5 x 10 16 protons per pulse from the existing beam depends upon the field reversal is possible with the 600 kA proton beam that would be generated from the low inductance coaxial triode coupled to the upgraded Gamble II generator. The propagation and trapping of an intense proton beam in the experimental magnetic field configuration is investigated numerically. The results show that the self magnetic has a very pronounced effect on the dynamics of the gyrating protons

  13. Flexible ring seal

    International Nuclear Information System (INIS)

    Abbes, Claude; Gournier, Andre; Rouaud, Christian; Villepoix, Raymond de.

    1976-01-01

    The invention concerns a flexible metal ring seal, able to ensure a perfect seal between two bearings due to the crushing and elastic deformation properties akin to similar properties in elastomers. Various designs of seal of this kind are already known, particularly a seal made of a core formed by a helical wire spring with close-wound turns and with high axial compression ratio, closed on itself and having the shape of an annulus. This wire ring is surrounded by at least one envelope having at rest the shape of a toroidal surface of which the generating circle does not close on itself. In a particular design mode, the seal in question can include, around the internal spring, two envelopes of which one in contact with the spring is composed of a low ductility elastic metal, such as mild steel or stainless steel and the other is, on the contrary, made of a malleable metal, such as copper or nickel. The first envelope evenly distributes the partial crushing of the spring, when the seal is tightened, on the second envelope which closely fits the two surfaces between which the seal operates. The stress-crushing curve characteristic of the seal comprises two separate parts, the first with a relatively sharp slope corresponds to the start of the seal compression phase, enabling at least some of these curves to reach the requisite seal threshold very quickly, then, beyond this, a second part, practically flat, where the stress is appreciably constant for a wide operating bracket [fr

  14. Magnetization of two coupled rings

    International Nuclear Information System (INIS)

    Avishai, Y; Luck, J M

    2009-01-01

    We investigate the persistent currents and magnetization of a mesoscopic system consisting of two clean metallic rings sharing a single contact point in a magnetic field. Many novel features with respect to the single-ring geometry are underlined, including the explicit dependence of wavefunctions on the Aharonov-Bohm fluxes, the complex pattern of two-fold and three-fold degeneracies, the key role of length and flux commensurability, and in the case of commensurate ring lengths the occurrence of idle levels which do not carry any current. Spin-orbit interactions, induced by the electric fields of charged wires threading the rings, give rise to a peculiar version of the Aharonov-Casher effect where, unlike for a single ring, spin is not conserved. Remarkably enough, this can only be realized when the Aharonov-Bohm fluxes in both rings are neither integer nor half-integer multiples of the flux quantum

  15. Split ring containment attachment device

    International Nuclear Information System (INIS)

    Sammel, A.G.

    1996-01-01

    A containment attachment device is described for operatively connecting a glovebag to plastic sheeting covering hazardous material. The device includes an inner split ring member connected on one end to a middle ring member wherein the free end of the split ring member is inserted through a slit in the plastic sheeting to captively engage a generally circular portion of the plastic sheeting. A collar potion having an outer ring portion is provided with fastening means for securing the device together wherein the glovebag is operatively connected to the collar portion. 5 figs

  16. Radar imaging of Saturn's rings

    Science.gov (United States)

    Nicholson, Philip D.; French, Richard G.; Campbell, Donald B.; Margot, Jean-Luc; Nolan, Michael C.; Black, Gregory J.; Salo, Heikki J.

    2005-09-01

    We present delay-Doppler images of Saturn's rings based on radar observations made at Arecibo Observatory between 1999 and 2003, at a wavelength of 12.6 cm and at ring opening angles of 20.1°⩽|B|⩽26.7°. The average radar cross-section of the A ring is ˜77% relative to that of the B ring, while a stringent upper limit of 3% is placed on the cross-section of the C ring and 9% on that of the Cassini Division. These results are consistent with those obtained by Ostro et al. [1982, Icarus 49, 367-381] from radar observations at |B|=21.4°, but provide higher resolution maps of the rings' reflectivity profile. The average cross-section of the A and B rings, normalized by their projected unblocked area, is found to have decreased from 1.25±0.31 to 0.74±0.19 as the rings have opened up, while the circular polarization ratio has increased from 0.64±0.06 to 0.77±0.06. The steep decrease in cross-section is at variance with previous radar measurements [Ostro et al., 1980, Icarus 41, 381-388], and neither this nor the polarization variations are easily understood within the framework of either classical, many-particle-thick or monolayer ring models. One possible explanation involves vertical size segregation in the rings, whereby observations at larger elevation angles which see deeper into the rings preferentially see the larger particles concentrated near the rings' mid-plane. These larger particles may be less reflective and/or rougher and thus more depolarizing than the smaller ones. Images from all four years show a strong m=2 azimuthal asymmetry in the reflectivity of the A ring, with an amplitude of ±20% and minima at longitudes of 67±4° and 247±4° from the sub-Earth point. We attribute the asymmetry to the presence of gravitational wakes in the A ring as invoked by Colombo et al. [1976, Nature 264, 344-345] to explain the similar asymmetry long seen at optical wavelengths. A simple radiative transfer model suggests that the enhancement of the azimuthal

  17. Magnetic ring for stripping enhancement

    International Nuclear Information System (INIS)

    Selph, F.

    1992-10-01

    A ring designed to recycle ions through a stripping medium offers the possibility for increasing output of the desired charge state by up to 4x. This could be a very important component of a Radioactive Nuclear Beam Facility. In order for such a ring to work effectively it must satisfy certain design conditions. These include achromaticity at the stripper, a dispersed region for an extraction magnet, and a number of first and higher order optics constraints which are necessary to insure that the beam emittance is not degraded unduly by the ring. An example is given of a candidate design of a stripping ring

  18. Saturn's Rings Edge-on

    Science.gov (United States)

    1995-01-01

    In one of nature's most dramatic examples of 'now-you see-them, now-you-don't', NASA's Hubble Space Telescope captured Saturn on May 22, 1995 as the planet's magnificent ring system turned edge-on. This ring-plane crossing occurs approximately every 15 years when the Earth passes through Saturn's ring plane.For comparison, the top picture was taken by Hubble on December 1, 1994 and shows the rings in a more familiar configuration for Earth observers.The bottom picture was taken shortly before the ring plane crossing. The rings do not disappear completely because the edge of the rings reflects sunlight. The dark band across the middle of Saturn is the shadow of the rings cast on the planet (the Sun is almost 3 degrees above the ring plane.) The bright stripe directly above the ring shadow is caused by sunlight reflected off the rings onto Saturn's atmosphere. Two of Saturn's icy moons are visible as tiny starlike objects in or near the ring plane. They are, from left to right, Tethys (slightly above the ring plane) and Dione.This observation will be used to determine the time of ring-plane crossing and the thickness of the main rings and to search for as yet undiscovered satellites. Knowledge of the exact time of ring-plane crossing will lead to an improved determination of the rate at which Saturn 'wobbles' about its axis (polar precession).Both pictures were taken with Hubble's Wide Field Planetary Camera 2. The top image was taken in visible light. Saturn's disk appears different in the bottom image because a narrowband filter (which only lets through light that is not absorbed by methane gas in Saturn's atmosphere) was used to reduce the bright glare of the planet. Though Saturn is approximately 900 million miles away, Hubble can see details as small as 450 miles across.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and

  19. Acceleration of magnetized plasma rings

    International Nuclear Information System (INIS)

    Hartman, D.; Eddleman, J.; Hammer, J.H.

    1982-01-01

    One scheme is considered, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focussing) during acceleration. Because the allowable acceleration force F/sub a/ = kappa U/sub m//R (kappa - 2 , the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency

  20. Ground Movement in SSRL Ring

    International Nuclear Information System (INIS)

    Sunikumar, Nikita

    2011-01-01

    Users of the Stanford Synchrotron Radiation Lightsource (SSRL) are being affected by diurnal motion of the synchrotron's storage ring, which undergoes structural changes due to outdoor temperature fluctuations. In order to minimize the effects of diurnal temperature fluctuations, especially on the vertical motion of the ring floor, scientists at SSRL tried three approaches: painting the storage ring white, covering the asphalt in the middle of the ring with highly reflective Mylar and installing Mylar on a portion of the ring roof and walls. Vertical motion in the storage ring is measured by a Hydrostatic Leveling System (HLS), which calculates the relative height of water in a pipe that extends around the ring. The 24-hr amplitude of the floor motion was determined using spectral analysis of HLS data, and the ratio of this amplitude before and after each experiment was used to quantitatively determine the efficacy of each approach. The results of this analysis showed that the Mylar did not have any significant effect on floor motion, although the whitewash project did yield a reduction in overall HLS variation of 15 percent. However, further analysis showed that the reduction can largely be attributed to a few local changes rather than an overall reduction in floor motion around the ring. Future work will consist of identifying and selectively insulating these local regions in order to find the driving force behind diurnal floor motion in the storage ring.

  1. ring og refleksion

    DEFF Research Database (Denmark)

    Wahlgren, B.; Rattleff, Pernille; Høyrup, S.

    State of the art inden for forskning om læring på arbejdspladsen samt gennemgang af læringsteori og refleksionsbegrebet hos Dewey, Dreyfus, Schön, Argyris, Kolb, Jarvis, Mezirow og Brookfield. Afsluttes med diskussion af syntetiseret model for læring på arbejdspladsen.......State of the art inden for forskning om læring på arbejdspladsen samt gennemgang af læringsteori og refleksionsbegrebet hos Dewey, Dreyfus, Schön, Argyris, Kolb, Jarvis, Mezirow og Brookfield. Afsluttes med diskussion af syntetiseret model for læring på arbejdspladsen....

  2. Laser fusion overview

    International Nuclear Information System (INIS)

    Nuckolls, J.

    1976-01-01

    Because of recent breakthroughs in the target area, and in the glass laser area, the scientific feasibility of laser fusion--and of inertial fusion--may be demonstrated in the early 1980's. Then the development in that time period of a suitable laser (or storage ring or other driving source) would make possible an operational inertial fusion reactor in this century. These are roughly the same time scales as projected by the Tokamak magnetic confinement approach. It thus appears that the 15-20 year earlier start by magnetic confinement fusion may be overcome. Because inertial confinement has been demonstrated, and inertial fusion reactors may operate on smaller scales than Tokamaks, laser fusion may have important technical and economic advantages

  3. The GEO 600 laser system

    CERN Document Server

    Zawischa, I; Danzmann, K; Fallnich, C; Heurs, M; Nagano, S; Quetschke, V; Welling, H; Willke, B

    2002-01-01

    Interferometric gravitational wave detectors require high optical power, single frequency lasers with very good beam quality and high amplitude and frequency stability as well as high long-term reliability as input light source. For GEO 600 a laser system with these properties is realized by a stable planar, longitudinally pumped 12 W Nd:YAG rod laser which is injection-locked to a monolithic 800 mW Nd:YAG non-planar ring oscillator. Frequency control signals from the mode cleaners are fed to the actuators of the non-planar ring oscillator which determines the frequency stability of the system. The system power stabilization acts on the slave laser pump diodes which have the largest influence on the output power. In order to gain more output power, a combined Nd:YAG-Nd:YVO sub 4 system is scaled to more than 22 W.

  4. Rotating ring-ring electrode theory and experiment

    NARCIS (Netherlands)

    Kuiken, H.K.; Bakkers, E.P.A.M.; Ligthart, H.; Kellyb, J.J.

    2000-01-01

    A model is presented for the rotating ring-ring electrode. Although the electrode is defined by four characteristic lengths, it is shown that the collection efficiency depends on only two dimensionless parameters. A simple relationship between these and the corresponding parameters for the rotating

  5. The Rotating Ring-Ring Electrode. Theory and Experiment

    NARCIS (Netherlands)

    Kuiken, H.K.; Bakkers, E.P.A.M.; Ligthart, H.; Kelly, J.J.

    2000-01-01

    A model is presented for the rotating ring-ring electrode. Although the electrode is defined by four characteristic lengths, it is shown that the collection efficiency depends on only two dimensionless parameters. A simple relationship between these and the corresponding parameters for the rotating

  6. Performance assessment of a cavity ring-down laser spectrometer: achieving better precision and accuracy in the measurement of δ18O and δ2H in liquid water samples

    International Nuclear Information System (INIS)

    Prado-Pérez, A J; Rodríguez-Arévalo, J; Díaz-Teijeiro, M F

    2014-01-01

    The development of new isotopic laser-based analyzers currently represents a clear alternative to conventional isotope ratio mass spectrometers. However, this analytical technique also suffers some disadvantages such as the memory effect, problems related to the overall stability of the equipment and other issues associated with the injection system, essentially regarding the syringe's longevity. This paper aims to minimize these disadvantages in order to increase the overall performance, in terms of precision and accuracy, of these kinds of analyzers. The main results of the experiments carried out in this paper have shown that: (i) the minimum number of discarded injections needed to eliminate the memory effect can be determined just considering the expected isotopic signature difference between two consecutive samples; (ii) both accuracy and precision of the isotopic measurements increase with increasing injection volume up to 2.1–2.2 µL; (iii) it is possible to extend the syringe lifetime by almost a factor of 6 by using n-methyl 2-pyrrolidone as a lubricant. Besides, it has been concluded that, by using the appropriate procedure, the main disadvantages associated with CRDS laser spectroscopy analyzers can be minimized, achieving measurement accuracy and precision of the order of ±0.05 ‰ for δ 18 O and ±0.3 ‰ for δ 2 H. (paper)

  7. Phenomena induced by powerful HF pumping towards magnetic zenith with a frequency near the F-region critical frequency and the third electron gyro harmonic frequency

    Directory of Open Access Journals (Sweden)

    N. F. Blagoveshchenskaya

    2009-01-01

    Full Text Available Multi-instrument observational data from an experiment on 13 October 2006 at the EISCAT/HEATING facility at Tromsø, Norway are analysed. The experiment was carried out in the evening hours when the electron density in the F-region dropped, and the HF pump frequency fH was near and then above the critical frequency of the F2 layer. The distinctive feature of this experiment is that the pump frequency was just below the third electron gyro harmonic frequency, while both the HF pump beam and UHF radar beam were directed towards the magnetic zenith (MZ. The HF pump-induced phenomena were diagnosed with several instruments: the bi-static HF radio scatter on the London-Tromsø-St. Petersburg path, the CUTLASS radar in Hankasalmi (Finland, the European Incoherent Scatter (EISCAT UHF radar at Tromsø and the Tromsø ionosonde (dynasonde. The results show thermal electron excitation of the HF-induced striations seen simultaneously from HF bi-static scatter and CUTLASS radar observations, accompanied by increases of electron temperature when the heater frequency was near and then above the critical frequency of the F2 layer by up to 0.4 MHz. An increase of the electron density up to 25% accompanied by strong HF-induced electron heating was observed, only when the heater frequency was near the critical frequency and just below the third electron gyro harmonic frequency. It is concluded that the combined effect of upper hybrid resonance and gyro resonance at the same altitude gives rise to strong electron heating, the excitation of striations, HF ray trapping and extension of HF waves to altitudes where they can excite Langmuir turbulence and fluxes of electrons accelerated to energies that produce ionization.

  8. Phenomena induced by powerful HF pumping towards magnetic zenith with a frequency near the F-region critical frequency and the third electron gyro harmonic frequency

    Directory of Open Access Journals (Sweden)

    N. F. Blagoveshchenskaya

    2009-01-01

    Full Text Available Multi-instrument observational data from an experiment on 13 October 2006 at the EISCAT/HEATING facility at Tromsø, Norway are analysed. The experiment was carried out in the evening hours when the electron density in the F-region dropped, and the HF pump frequency fH was near and then above the critical frequency of the F2 layer. The distinctive feature of this experiment is that the pump frequency was just below the third electron gyro harmonic frequency, while both the HF pump beam and UHF radar beam were directed towards the magnetic zenith (MZ. The HF pump-induced phenomena were diagnosed with several instruments: the bi-static HF radio scatter on the London-Tromsø-St. Petersburg path, the CUTLASS radar in Hankasalmi (Finland, the European Incoherent Scatter (EISCAT UHF radar at Tromsø and the Tromsø ionosonde (dynasonde. The results show thermal electron excitation of the HF-induced striations seen simultaneously from HF bi-static scatter and CUTLASS radar observations, accompanied by increases of electron temperature when the heater frequency was near and then above the critical frequency of the F2 layer by up to 0.4 MHz. An increase of the electron density up to 25% accompanied by strong HF-induced electron heating was observed, only when the heater frequency was near the critical frequency and just below the third electron gyro harmonic frequency. It is concluded that the combined effect of upper hybrid resonance and gyro resonance at the same altitude gives rise to strong electron heating, the excitation of striations, HF ray trapping and extension of HF waves to altitudes where they can excite Langmuir turbulence and fluxes of electrons accelerated to energies that produce ionization.

  9. Damping rings for CLIC

    CERN Document Server

    Jowett, John M; Zimmermann, Frank; Owen, H

    2001-01-01

    The Compact Linear Colider (CLIC) is designed to operate at 3 TeV centre-of-mass energy with a total luminosity of 10^35 cm^-2 s^-1. The overall system design leads to extremely demanding requirements on the bunch trains injected into the main libac at frequency of 100 Hz. In particular, the emittances of the intense bunches have to be about an order of magnitude smaller than presently achieved. We describe our approach to finding a damping ring design capable of meeting these requirements. Besides lattice design, emittance and damping rate considerations, a number of scattering and instability effects have to be incorporated into the optimisation of parameters. Among these, intra-bem scattering and the electron cloud effect are two of the most significant.

  10. Does the sun ring

    International Nuclear Information System (INIS)

    Isaak, G.R.

    1978-01-01

    The work of various groups, which have been investigating the possibility of measuring the periodicities of solar oscillations in an attempt to test theoretical models of the sun, is reported. In particular the observation of small velocity oscillations of the surface layers of the sun that permits the measurement of the sound waves (or phonons) in the solar atmosphere, is discussed. Oscillations with periods of 2.65 h, 58 and 40 min and amplitudes of 2.7, 0.8 and 0.7 ms -1 respectively are reported. Support for a periodicity at about 2.65 h from a number of other groups using other measuring techniques are considered. It is felt that the most probable interpretation of the observed solar oscillations is that the sun is a resonator which is ringing. (UK)

  11. Cusp Guns for Helical-Waveguide Gyro-TWTs of a High-Gain High-Power W-Band Amplifier Cascade

    Science.gov (United States)

    Manuilov, V. N.; Samsonov, S. V.; Mishakin, S. V.; Klimov, A. V.; Leshcheva, K. A.

    2018-02-01

    The evaluation, design, and simulations of two different electron guns generating the beams for W-band second cyclotron harmonic gyro-TWTs forming a high-gain powerful amplifier cascade are presented. The optimum configurations of the systems creating nearly axis-encircling electron beams having velocity pitch-factor up to 1.5, voltage/current of 40 kV/0.5 A, and 100 kV/13 A with acceptable velocity spreads have been found and are presented.

  12. MR imaging findings of ring apophyseal fractures in lumbar vertebrae

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yong Soo; Kwon, Soon Tae; Song, Chang Joon; Lee, Young Hwan; Kim, Hyoung Seob; Lee, Hwan Do; Cho, June Sik; Ahn, Jae Sung; Lee, June Kyu [Chungnam National Univ. College of Medicine, Taejon (Korea, Republic of)

    1997-07-01

    To assess the location and associated findings of fractures of the posterior lumbar vertebral ring apophysis as seen on MRI We retrospectively evaluated MR findings in 77 patients (86 lesions) with lumbar apophyseal ring fractures. Their age ranged from ten to 67 (mean 33-1) years. To confirm the presence of verterbral ring fractures, CT was performed in 29 patients (31 lesions) within two weeks of MR imaging. Open laminectomy was performed in ten patients, percutaneous automated nucleotomy in three, and LASER operation in four. The most common location of fractures was the superior margin of L5 (36 lesions 41.9%), next was superior margin of S1 (21 lesions, 24.4%). On CT, a bony fragment was seen in 28 patients (30 lesions); the positive predictive value of MR was 99.7%. Multiple lesions were seen in nine patients. Associated disc herniation and bulging were noted in 64 (74.4%) and 15 lesions (17.4%), respectively, and a high signal intensity rim aound the bony fragment on T1 weighted image was noted in 33 (38.4%). Other associated findings were spondylolysis in eight patients, retrolisthesis in five, and spondylolisthesis in three. Operative outcomes were variable. The results of open laminectomy were better than those of percutaneous automated laminectomy or LASER operation. In patients with lumbar apophyseal ring fractures, their exact location and associated findings could be evalvated by MRI, which was therefore useful in the planning of appropriate surgery.

  13. MR imaging findings of ring apophyseal fractures in lumbar vertebrae

    International Nuclear Information System (INIS)

    Kang, Yong Soo; Kwon, Soon Tae; Song, Chang Joon; Lee, Young Hwan; Kim, Hyoung Seob; Lee, Hwan Do; Cho, June Sik; Ahn, Jae Sung; Lee, June Kyu

    1997-01-01

    To assess the location and associated findings of fractures of the posterior lumbar vertebral ring apophysis as seen on MRI We retrospectively evaluated MR findings in 77 patients (86 lesions) with lumbar apophyseal ring fractures. Their age ranged from ten to 67 (mean 33-1) years. To confirm the presence of verterbral ring fractures, CT was performed in 29 patients (31 lesions) within two weeks of MR imaging. Open laminectomy was performed in ten patients, percutaneous automated nucleotomy in three, and LASER operation in four. The most common location of fractures was the superior margin of L5 (36 lesions 41.9%), next was superior margin of S1 (21 lesions, 24.4%). On CT, a bony fragment was seen in 28 patients (30 lesions); the positive predictive value of MR was 99.7%. Multiple lesions were seen in nine patients. Associated disc herniation and bulging were noted in 64 (74.4%) and 15 lesions (17.4%), respectively, and a high signal intensity rim aound the bony fragment on T1 weighted image was noted in 33 (38.4%). Other associated findings were spondylolysis in eight patients, retrolisthesis in five, and spondylolisthesis in three. Operative outcomes were variable. The results of open laminectomy were better than those of percutaneous automated laminectomy or LASER operation. In patients with lumbar apophyseal ring fractures, their exact location and associated findings could be evalvated by MRI, which was therefore useful in the planning of appropriate surgery

  14. Robust gap repair in the contractile ring ensures timely completion of cytokinesis.

    Science.gov (United States)

    Silva, Ana M; Osório, Daniel S; Pereira, Antonio J; Maiato, Helder; Pinto, Inês Mendes; Rubinstein, Boris; Gassmann, Reto; Telley, Ivo Andreas; Carvalho, Ana Xavier

    2016-12-19

    Cytokinesis in animal cells requires the constriction of an actomyosin contractile ring, whose architecture and mechanism remain poorly understood. We use laser microsurgery to explore the biophysical properties of constricting rings in Caenorhabditis elegans embryos. Laser cutting causes rings to snap open. However, instead of disintegrating, ring topology recovers and constriction proceeds. In response to severing, a finite gap forms and is repaired by recruitment of new material in an actin polymerization-dependent manner. An open ring is able to constrict, and rings repair from successive cuts. After gap repair, an increase in constriction velocity allows cytokinesis to complete at the same time as controls. Our analysis demonstrates that tension in the ring increases while net cortical tension at the site of ingression decreases throughout constriction and suggests that cytokinesis is accomplished by contractile modules that assemble and contract autonomously, enabling local repair of the actomyosin network. Consequently, cytokinesis is a highly robust process impervious to discontinuities in contractile ring structure. © 2016 Silva et al.

  15. How Jupiter's Ring Was Discovered.

    Science.gov (United States)

    Elliot, James; Kerr, Richard

    1985-01-01

    "Rings" (by astronomer James Elliot and science writer Richard Kerr) is a nontechnical book about the discovery and exploration of ring systems from the time of Galileo to the era of the Voyager spacecraft. One of this book's chapters is presented. (JN)

  16. Pyrimidine-pyridine ring interconversion

    NARCIS (Netherlands)

    Plas, van der H.C.

    2003-01-01

    This chapter discusses the pyrimidine-to-pyridine ring transformation and pyridine-to-pyrimidine ring transformation. In nucleophile-induced pyrimidine-to-pyridine rearrangements, two types of reactions can be distinguished depending on the structure of the nucleophile: (1) reactions in which the

  17. Superintense fields from multiple ultrashort laser pulses retroreflected in circular geometry

    Science.gov (United States)

    Ooi, C. H. Raymond

    2010-02-01

    Laser field with superintensity beyond 1029 W/cm2 can be generated by coherent superposition of multiple 100 fs laser pulses in circular geometry setup upon retroreflection by a ring mirror. We have found the criteria for attaining such intensities using broadband ring mirror within the practical damage threshold and paraxial focusing regime. Simple expressions for the intensity enhancement factor are obtained, providing insight for achieving unlimited laser intensity. Higher intensities can be achieved by using few-cycle laser pulses.

  18. Binomial Rings: Axiomatisation, Transfer and Classification

    OpenAIRE

    Xantcha, Qimh Richey

    2011-01-01

    Hall's binomial rings, rings with binomial coefficients, are given an axiomatisation and proved identical to the numerical rings studied by Ekedahl. The Binomial Transfer Principle is established, enabling combinatorial proofs of algebraical identities. The finitely generated binomial rings are completely classified. An application to modules over binomial rings is given.

  19. Ionization cooling ring for muons

    Directory of Open Access Journals (Sweden)

    R. Palmer

    2005-06-01

    Full Text Available Practical ionization cooling rings could lead to lower cost or improved performance in neutrino factory or muon collider designs. The ring modeled here uses realistic three-dimensional fields. The performance of the ring compares favorably with the linear cooling channel used in the second U.S. Neutrino Factory Study. The normalized 6D emittance of an ideal ring is decreased by a factor of approximately 240, compared with a factor of only 15 for the linear channel. We also examine such real-world effects as windows on the absorbers and rf cavities and leaving empty lattice cells for injection and extraction. For realistic conditions the ring decreases the normalized 6D emittance by a factor of 49.

  20. Evaluation of ring impedance of the Photon Factory storage ring

    International Nuclear Information System (INIS)

    Kiuchi, T.; Izawa, M.; Tokumoto, S.; Hori, Y.; Sakanaka, S.; Kobayashi, M.; Kobayakawa, H.

    1992-05-01

    The loss parameters of the ducts in the Photon Factory (PF) storage ring were evaluated using the wire method and the code TBCI. Both the measurement and the calculation were done for a different bunch length (σ) ranging from 23 to 80 ps. The PF ring impedance was estimated to be |Z/n|=3.2 Ω using the broadband impedance model. The major contribution to the impedance comes from the bellows and the gate valve sections. Improvements of these components will lower the ring impedance by half. (author)

  1. Laser Technology.

    Science.gov (United States)

    Gauger, Robert

    1993-01-01

    Describes lasers and indicates that learning about laser technology and creating laser technology activities are among the teacher enhancement processes needed to strengthen technology education. (JOW)

  2. Free-electron lasers 2

    International Nuclear Information System (INIS)

    Petroff, Y.

    1989-01-01

    This book presents papers on free-electron laser technology. The authors cover technological developments on existing FELs, new FEL research, and the use of FELs in experimental investigations. Among the studies reported are lasing in the visible and UV on the Novosibirsk VEPP-3 storage ring, description of Japanese FEL research, and Mark III FEL, and the Paladin results

  3. Predictions of the near edge transport shortfall in DIII-D L-mode plasmas using the trapped gyro-Landau-fluid model

    Energy Technology Data Exchange (ETDEWEB)

    Kinsey, J. E. [CompX, P.O. Box 2672, Del Mar, California 92014 (United States); Staebler, G. M.; Candy, J.; Petty, C. C.; Waltz, R. E. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Rhodes, T. L. [Physics Department and PSTI, University of California, Los Angeles, California 90095 (United States)

    2015-01-15

    Previous studies of DIII-D L-mode plasmas have shown that a transport shortfall exists in that our current models of turbulent transport can significantly underestimate the energy transport in the near edge region. In this paper, the Trapped Gyro-Landau-Fluid (TGLF) drift wave transport model is used to simulate the near edge transport in a DIII-D L-mode experiment designed to explore the impact of varying the safety factor on the shortfall. We find that the shortfall systematically increases with increasing safety factor and is more pronounced for the electrons than for the ions. Within the shortfall dataset, a single high current case has been found where no transport shortfall is predicted. Reduced neutral beam injection power has been identified as the key parameter separating this discharge from other discharges exhibiting a shortfall. Further analysis shows that the energy transport in the L-mode near edge region is not stiff according to TGLF. Unlike the H-mode core region, the predicted temperature profiles are relatively more responsive to changes in auxiliary heating power. In testing the fidelity of TGLF for the near edge region, we find that a recalibration of the collision model is warranted. A recalibration improves agreement between TGLF and nonlinear gyrokinetic simulations performed using the GYRO code with electron-ion collisions. The recalibration only slightly impacts the predicted shortfall.

  4. Tinkering at the main-ring lattice

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, S.

    1982-08-23

    To improve production of usable antiprotons using the proton beam from the main ring and the lossless injection of cooled antiprotons into the main ring, modifications of the main ring lattice are recommended.

  5. Is the bell ringing?

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    During the Nobel prize-winning UA1 experiment, scientists in the control room used to ring a bell if a particularly interesting event had occurred. Today, the “CMS Exotica hotline” routine produces a daily report that lists the exotic events that were recorded the day before.   Display of an event selected by the Exotica routine. Take just a very small fraction of the available data (max. 5%); define the events that you want to keep and set the parameters accordingly; run the Exotica routine and only look at the very few images that the system has selected for you. This is the recipe that a small team of CMS researchers has developed to identify the signals coming from possible new physics processes. “This approach does not replace the accurate data analysis on the whole set of data. However, it is a very fast and effective way to focus on just a few events that are potentially very interesting”, explains Maurizio Pierini (CERN), who developed the...

  6. Electron beam cooling by laser

    CERN Document Server

    Urakawa, J; Terunuma, N; Taniguchi, T; Yamazaki, Y; Hirano, K; Nomura, M; Sakai, I; Takano, M; Sasao, N; Honda, Y; Noda, A; Bulyak, E; Gladkikh, P; Mystykov, A; Zelinsky, A; Zimmermann, Frank

    2004-01-01

    In 1997, Z.Huang and R.Ruth proposed a compact laser-electron storage ring (LESR) for electron beam cooling or x-ray generation. Because the laser-wire monitor in the ATF storage ring has worked well and demonstrated the achievement of the world's smallest transverse emittance for a circulating electron beam, we have started the design of a small storage ring with about 10 m circumference and the development of basic technologies for the LESR. In this paper, we describe the design and experimental results of pulse stacking in a 42-cm long optical cavity. Since our primary purpose is demonstrating the proof-of-principle of the LESR, we will then discuss the future experimental plan at the KEK-ATF for the generation of high average-brilliance gamma-rays.

  7. Moving ring reactor 'Karin-1'

    International Nuclear Information System (INIS)

    1983-12-01

    The conceptual design of a moving ring reactor ''Karin-1'' has been carried out to advance fusion system design, to clarify the research and development problems, and to decide their priority. In order to attain these objectives, a D-T reactor with tritium breeding blanket is designed, a commercial reactor with net power output of 500 MWe is designed, the compatibility of plasma physics with fusion engineering is demonstrated, and some other guideline is indicated. A moving ring reactor is composed mainly of three parts. In the first formation section, a plasma ring is formed and heated up to ignition temperature. The plasma ring of compact torus is transported from the formation section through the next burning section to generate fusion power. Then the plasma ring moves into the last recovery section, and the energy and particles of the plasma ring are recovered. The outline of a moving ring reactor ''Karin-1'' is described. As a candidate material for the first wall, SiC was adopted to reduce the MHD effect and to minimize the interaction with neutrons and charged particles. The thin metal lining was applied to the SiC surface to solve the problem of the compatibility with lithium blanket. Plasma physics, the engineering aspect and the items of research and development are described. (Kako, I.)

  8. Ring retroreflector system consisting of cube-corner reflectors with special coating

    International Nuclear Information System (INIS)

    Burmistrov, V B; Sadovnikov, M A; Sokolov, A L; Shargorodskiy, V D

    2013-01-01

    The ring retroreflector system (RS) consisting of cubecorner reflectors (CCRs) with a special coating of reflecting surfaces, intended for uniaxially Earth-oriented navigation satellites, is considered. The error of distance measurement caused by both the laser pulse delay in the CCR and its spatial position (CCR configuration) is studied. It is shown that the ring RS, formed by the CCR with a double-spot radiation pattern, allows the distance measurement error to be essentially reduced. (nanogradient dielectric coatings and metamaterials)

  9. Quantum Fourier Transform Over Galois Rings

    OpenAIRE

    Zhang, Yong

    2009-01-01

    Galois rings are regarded as "building blocks" of a finite commutative ring with identity. There have been many papers on classical error correction codes over Galois rings published. As an important warm-up before exploring quantum algorithms and quantum error correction codes over Galois rings, we study the quantum Fourier transform (QFT) over Galois rings and prove it can be efficiently preformed on a quantum computer. The properties of the QFT over Galois rings lead to the quantum algorit...

  10. Polarized particles in storage rings

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Kondratenko, A.M.; Serednyakov, S.I.; Skrinskij, A.N.; Tumajkin, G.M.; Shatunov, Yu.M.

    1977-01-01

    Experiments with polarized beams on the VEPP-2M and SPEAK storage rings are described. Possible methods of producing polarized particle beams in storage rings as well as method of polarization monitoring are counted. Considered are the processes of radiation polarization of electrons and positrons. It is shown, that to preserve radiation polarization the introduction of regions with a strong sign-variable magnetic field is recommended. Methods of polarization measurement are counted. It is suggested for high energies to use dependence of synchrotron radiation power on transverse polarization of electrons and positrons. Examples of using polarizability of colliding beams in storage rings are presented

  11. Researches on the Piston Ring

    Science.gov (United States)

    Ehihara, Keikiti

    1944-01-01

    In internal combustion engines, steam engines, air compressors, and so forth, the piston ring plays an important role. Especially, the recent development of Diesel engines which require a high compression pressure for their working, makes, nowadays, the packing action of the piston ring far more important than ever. Though a number of papers have been published in regard to researches on the problem of the piston ring, none has yet dealt with an exact measurement of pressure exerted on the cylinder wall at any given point of the ring. The only paper that can be traced on this subject so far is Mr. Nakagawa's report on the determination of the relative distribution of pressure on the cylinder wall, but the measuring method adopted therein appears to need further consideration. No exact idea has yet been obtained as to how the obturation of gas between the piston and cylinder, the frictional resistance of the piston, and the wear of the cylinder wall are affected by the intensity and the distribution of the radial pressure of the piston ring. Consequently, the author has endeavored, by employing an apparatus of his own invention, to get an exact determination of the pressure distribution of the piston ring. By means of a newly devised ring tester, to which piezoelectricity of quartz was applied, the distribution of the radial pressure of many sample rings on the market was accurately determined. Since many famous piston rings show very irregular pressure distribution, the author investigated and achieved a manufacturing process of the piston ring which will exert uniform pressure on the cylinder wall. Temperature effects on the configuration and on the mean spring power have also been studied. Further, the tests were performed to ascertain how the gas tightness of the piston ring may be affected by the number or spring power. The researches as to the frictional resistance between the piston ring and the cylinder wall were carried out, too. The procedure of study, and

  12. Soft Congruence Relations over Rings

    Science.gov (United States)

    Xin, Xiaolong; Li, Wenting

    2014-01-01

    Molodtsov introduced the concept of soft sets, which can be seen as a new mathematical tool for dealing with uncertainty. In this paper, we initiate the study of soft congruence relations by using the soft set theory. The notions of soft quotient rings, generalized soft ideals and generalized soft quotient rings, are introduced, and several related properties are investigated. Also, we obtain a one-to-one correspondence between soft congruence relations and idealistic soft rings and a one-to-one correspondence between soft congruence relations and soft ideals. In particular, the first, second, and third soft isomorphism theorems are established, respectively. PMID:24949493

  13. Distributively generated matrix near rings

    International Nuclear Information System (INIS)

    Abbasi, S.J.

    1993-04-01

    It is known that if R is a near ring with identity then (I,+) is abelian if (I + ,+) is abelian and (I,+) is abelian if (I*,+) is abelian [S.J. Abbasi, J.D.P. Meldrum, 1991]. This paper extends these results. We show that if R is a distributively generated near ring with identity then (I,+) is included in Z(R), the center of R, if (I + ,+) is included in Z(M n (R)), the center of matrix near ring M n (R). Furthermore (I,+) is included in Z(R) if (I*,+) is included in Z(M n (R)). (author). 5 refs

  14. SMARANDACHE NON-ASSOCIATIVE RINGS

    OpenAIRE

    Vasantha, Kandasamy

    2002-01-01

    An associative ring is just realized or built using reals or complex; finite or infinite by defining two binary operations on it. But on the contrary when we want to define or study or even introduce a non-associative ring we need two separate algebraic structures say a commutative ring with 1 (or a field) together with a loop or a groupoid or a vector space or a linear algebra. The two non-associative well-known algebras viz. Lie algebras and Jordan algebras are mainly built using a vecto...

  15. Undulator physics and coherent harmonic generation at the MAX-lab electron storage ring

    International Nuclear Information System (INIS)

    Werin, Sverker.

    1991-01-01

    This work presents the undulator and harmonic generation project at the electron storage ring MAX-lab at University of Lund. The theory of undulator radiation, laser coherent harmonic generation, optical klystron amplifiers and FELs is treated in one uniform way, with complete solutions of the necessary equations. The permanent magnet undulator is described in some detail, along with the installation of the undulator in the storage ring. Details regarding the emitted radiation, the electron beam path in the undulator and other results are analysed. Finally harmonic generation using a Nd:YAG laser and the creation of coherent photons at the third harmonic (355 nm) is described. (author)

  16. Prototype moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1982-01-01

    We have completed a design of the Prototype Moving-Ring Reactor. The fusion fuel is confined in current-carrying rings of magnetically-field-reversed plasma (Compact Toroids). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three burn stations. Separator coils and a slight axial guide field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for 1/3 of the total burn time at each station. D-T- 3 He ice pellets refuel the rings at a rate which maintains constant radiated power

  17. Autumn study on storage rings

    CERN Multimedia

    1974-01-01

    The first two weeks of October have seen storage ring people from accelerator Laboratories throughout the world at CERN to study the fundamental problems of very high energy protonproton colliding beam machines.

  18. Minimal Gromov-Witten rings

    International Nuclear Information System (INIS)

    Przyjalkowski, V V

    2008-01-01

    We construct an abstract theory of Gromov-Witten invariants of genus 0 for quantum minimal Fano varieties (a minimal class of varieties which is natural from the quantum cohomological viewpoint). Namely, we consider the minimal Gromov-Witten ring: a commutative algebra whose generators and relations are of the form used in the Gromov-Witten theory of Fano varieties (of unspecified dimension). The Gromov-Witten theory of any quantum minimal variety is a homomorphism from this ring to C. We prove an abstract reconstruction theorem which says that this ring is isomorphic to the free commutative ring generated by 'prime two-pointed invariants'. We also find solutions of the differential equation of type DN for a Fano variety of dimension N in terms of the generating series of one-pointed Gromov-Witten invariants

  19. Cosmic rings from colliding galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Mitton, S

    1976-11-18

    Research on two ring galaxies has led to the proposal of an interaction model to account for the rings. It is envisaged that this class of galaxy is created when a compact galaxy crashes through the disc of a spiral galaxy. The results of a spectroscopic investigation of the galaxy known as the Cartwheel and of another ring galaxy 11 NZ 4 are discussed. The general picture of ring galaxies which emerges from these studies of a massive starry nucleus with a necklace of emitting gas and some spokes and along the spin axis of the wheel a small companion galaxy that is devoid of interstellar gas. An explanation of these properties is considered.

  20. Calibration and field testing of cavity ring-down laser spectrometers measuring CH4, CO2, and δ13CH4 deployed on towers in the Marcellus Shale region

    Directory of Open Access Journals (Sweden)

    N. L. Miles

    2018-03-01

    Full Text Available Four in situ cavity ring-down spectrometers (G2132-i, Picarro, Inc. measuring methane dry mole fraction (CH4, carbon dioxide dry mole fraction (CO2, and the isotopic ratio of methane (δ13CH4 were deployed at four towers in the Marcellus Shale natural gas extraction region of Pennsylvania. In this paper, we describe laboratory and field calibration of the analyzers for tower-based applications and characterize their performance in the field for the period January–December 2016. Prior to deployment, each analyzer was tested using bottles with various isotopic ratios, from biogenic to thermogenic source values, which were diluted to varying degrees in zero air, and an initial calibration was performed. Furthermore, at each tower location, three field tanks were employed, from ambient to high mole fractions, with various isotopic ratios. Two of these tanks were used to adjust the calibration of the analyzers on a daily basis. We also corrected for the cross-interference from ethane on the isotopic ratio of methane. Using an independent field tank for evaluation, the standard deviation of 4 h means of the isotopic ratio of methane difference from the known value was found to be 0.26 ‰ δ13CH4. Following improvements in the field tank testing scheme, the standard deviation of 4 h means was 0.11 ‰, well within the target compatibility of 0.2 ‰. Round-robin style testing using tanks with near-ambient isotopic ratios indicated mean errors of −0.14 to 0.03 ‰ for each of the analyzers. Flask to in situ comparisons showed mean differences over the year of 0.02 and 0.08 ‰, for the east and south towers, respectively. Regional sources in this region were difficult to differentiate from strong perturbations in the background. During the afternoon hours, the median differences of the isotopic ratio measured at three of the towers, compared to the background tower, were &minus0.15 to 0.12 ‰ with standard deviations of the 10

  1. Calibration and field testing of cavity ring-down laser spectrometers measuring CH4, CO2, and δ13CH4 deployed on towers in the Marcellus Shale region

    Science.gov (United States)

    Miles, Natasha L.; Martins, Douglas K.; Richardson, Scott J.; Rella, Christopher W.; Arata, Caleb; Lauvaux, Thomas; Davis, Kenneth J.; Barkley, Zachary R.; McKain, Kathryn; Sweeney, Colm

    2018-03-01

    Four in situ cavity ring-down spectrometers (G2132-i, Picarro, Inc.) measuring methane dry mole fraction (CH4), carbon dioxide dry mole fraction (CO2), and the isotopic ratio of methane (δ13CH4) were deployed at four towers in the Marcellus Shale natural gas extraction region of Pennsylvania. In this paper, we describe laboratory and field calibration of the analyzers for tower-based applications and characterize their performance in the field for the period January-December 2016. Prior to deployment, each analyzer was tested using bottles with various isotopic ratios, from biogenic to thermogenic source values, which were diluted to varying degrees in zero air, and an initial calibration was performed. Furthermore, at each tower location, three field tanks were employed, from ambient to high mole fractions, with various isotopic ratios. Two of these tanks were used to adjust the calibration of the analyzers on a daily basis. We also corrected for the cross-interference from ethane on the isotopic ratio of methane. Using an independent field tank for evaluation, the standard deviation of 4 h means of the isotopic ratio of methane difference from the known value was found to be 0.26 ‰ δ13CH4. Following improvements in the field tank testing scheme, the standard deviation of 4 h means was 0.11 ‰, well within the target compatibility of 0.2 ‰. Round-robin style testing using tanks with near-ambient isotopic ratios indicated mean errors of -0.14 to 0.03 ‰ for each of the analyzers. Flask to in situ comparisons showed mean differences over the year of 0.02 and 0.08 ‰, for the east and south towers, respectively. Regional sources in this region were difficult to differentiate from strong perturbations in the background. During the afternoon hours, the median differences of the isotopic ratio measured at three of the towers, compared to the background tower, were &minus0.15 to 0.12 ‰ with standard deviations of the 10 min isotopic ratio differences of 0.8

  2. Ring insertions as light sources

    International Nuclear Information System (INIS)

    Green, G.K.

    1975-01-01

    Bending magnets can be inserted in the long straight sections of electron storage rings to produce synchrotron radiation. If the design is carefully proportioned, the bending magnets create only a small perturbation of the properties of the ring. The resulting spectra have favorable optical properties as sources for spectroscopy and diffraction studies. The characteristics of the source are discussed, and the geometrical requirements of the magnets are presented

  3. Collector ring project at FAIR

    International Nuclear Information System (INIS)

    Dolinskii, A; Blell, U; Dimopoulou, C; Gorda, O; Leibrock, H; Litvinov, S; Laier, U; Schurig, I; Weinrich, U; Berkaev, D; Koop, I; Starostenko, A; Shatunov, P

    2015-01-01

    The collector ring is a dedicated ring for fast cooling of ions coming from separators at the FAIR project. To accommodate optimal technical solutions, a structure of a magnet lattice was recently reviewed and modified. Consequently, more appropriate technical solutions for the main magnets could be adopted. A general layout and design of the present machine is shown. The demanding extraction schemes have been detailed and open design issues were completed. (paper)

  4. Synlig læring

    DEFF Research Database (Denmark)

    Brandsen, Mads

    2017-01-01

    Introduktionen af John Hatties synlig læring i den danske skoleverden møder stadig meget kritik. Mange lærere og pædagoger oplever synlig læring som en tornado, der vil opsuge og ødelægge deres særlige danske udgave af den kontinentale dannelsestænkning, didaktik og pædagogik. Spørgsmålet er om...

  5. The circular RFQ storage ring

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1998-01-01

    This paper presents a novel idea of storage ring for the accumulation of intense beams of light and heavy ions at low energy. The new concept is a natural development of the combined features used in a conventional storage ring and an ion trap, and is basically a linear RFQ bend on itself. In summary the advantages are: smaller beam dimensions, higher beam intensity, and a more compact storage device

  6. The Circular RFQ Storage Ring

    International Nuclear Information System (INIS)

    Ruggiero, A. G.

    1999-01-01

    This paper presents a novel idea of storage ring for the accumulation of intense beams of light and heavy ions at low energy. The new concept is a natural development of the combined features of conventional storage rings and ion traps, and is basically a linear RFQ bent on itself. The advantages are: smaller beam dimensions, higher beam intensity, and a more compact storage device

  7. Electrically charged dilatonic black rings

    International Nuclear Information System (INIS)

    Kunduri, Hari K.; Lucietti, James

    2005-01-01

    In this Letter we present (electrically) charged dilatonic black ring solutions of the Einstein-Maxwell-dilaton theory in five dimensions and we consider their physical properties. These solutions are static and as in the neutral case possess a conical singularity. We show how one may remove the conical singularity by application of a Harrison transformation, which physically corresponds to supporting the charged ring with an electric field. Finally, we discuss the slowly rotating case for arbitrary dilaton coupling

  8. Low emittance electron storage rings

    Science.gov (United States)

    Levichev, E. B.

    2018-01-01

    Low-emittance electron (positron) beams are essential for synchrotron light sources, linear collider damping rings, and circular Crab Waist colliders. In this review, the principles and methods of emittance minimization are discussed, prospects for developing relativistic electron storage rings with small beam phase volume are assessed, and problems related to emittance minimization are examined together with their possible solutions. The special features and engineering implementation aspects of various facilities are briefly reviewed.

  9. Resonance capture and Saturn's rings

    International Nuclear Information System (INIS)

    Patterson, C.W.

    1986-05-01

    We have assigned the resonances apparently responsible for the stabilization of the Saturn's shepherd satellites and for the substructure seen in the F-ring and the ringlets in the C-ring. We show that Saturn's narrow ringlets have a substructure determined by three-body resonances with Saturn's ringmoons and the sun. We believe such resonances have important implications to satellite formation. 17 refs., 1 fig., 1 tab

  10. Energy spectra of quantum rings.

    Science.gov (United States)

    Fuhrer, A; Lüscher, S; Ihn, T; Heinzel, T; Ensslin, K; Wegscheider, W; Bichler, M

    2001-10-25

    Quantum mechanical experiments in ring geometries have long fascinated physicists. Open rings connected to leads, for example, allow the observation of the Aharonov-Bohm effect, one of the best examples of quantum mechanical phase coherence. The phase coherence of electrons travelling through a quantum dot embedded in one arm of an open ring has also been demonstrated. The energy spectra of closed rings have only recently been studied by optical spectroscopy. The prediction that they allow persistent current has been explored in various experiments. Here we report magnetotransport experiments on closed rings in the Coulomb blockade regime. Our experiments show that a microscopic understanding of energy levels, so far limited to few-electron quantum dots, can be extended to a many-electron system. A semiclassical interpretation of our results indicates that electron motion in the rings is governed by regular rather than chaotic motion, an unexplored regime in many-electron quantum dots. This opens a way to experiments where even more complex structures can be investigated at a quantum mechanical level.

  11. Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser

    International Nuclear Information System (INIS)

    Spirin, V V; Lopez-Mercado, C A; Megret, P; Fotiadi, A A

    2012-01-01

    We demonstrate a single-mode Brillouin fiber ring laser, which is passively stabilized at pump resonance frequency by using self-injection locking of semiconductor pump laser. Resonance condition for Stokes radiation is achieved by length fitting of Brillouin laser cavity. The laser generate single-frequency Stokes wave with linewidth less than 0.5 kHz using approximately 17-m length cavity

  12. Accretion in Saturn's F Ring

    Science.gov (United States)

    Meinke, B. K.; Esposito, L. W.; Stewart, G.

    2012-12-01

    Saturn's F ring is the solar system's principal natural laboratory for direct observation of accretion and disruption processes. The ring resides in the Roche zone, where tidal disruption competes with self-gravity, which allows us to observe the lifecycle of moonlets. Just as nearby moons create structure at the B ring edge (Esposito et al. 2012) and the Keeler gap (Murray 2007), the F ring "shepherding" moons Prometheus and Pandora stir up ring material and create observably changing structures on timescales of days to decades. In fact, Beurle et al (2010) show that Prometheus makes it possible for "distended, yet gravitationally coherent clumps" to form in the F ring, and Barbara and Esposito (2002) predicted a population of ~1 km bodies in the ring. In addition to the observations over the last three decades, the Cassini Ultraviolet Imaging Spectrograph (UVIS) has detected 27 statistically significant features in 101 occultations by Saturn's F ring since July 2004. Seventeen of those 27 features are associated with clumps of ring material. Two features are opaque in occultation, which makes them candidates for solid objects, which we refer to as Moonlets. The 15 other features partially block stellar signal for 22 m to just over 3.7 km along the radial expanse of the occultation. Upon visual inspection of the occultation profile, these features resemble Icicles, thus we will refer to them as such here. The density enhancements responsible for such signal attenuations are likely due to transient clumping of material, evidence that aggregations of material are ubiquitous in the F ring. Our lengthy observing campaign reveals that Icicles are likely transient clumps, while Moonlets are possible solid objects. Optical depth is an indicator of clumping because more-densely aggregated material blocks more light; therefore, it is natural to imagine moonlets as later evolutionary stage of icicle, when looser clumps of material compact to form a feature that appears

  13. Double acting stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1986-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  14. Study for ILC Damping Ring at KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, J.W.; Fukuma, H.; Kanazawa, K.I.; Koiso, H.; Masuzawa, M.; Ohmi, Kazuhito; Ohnishi, Y.; Oide, Katsunobu; Suetsugu, Y.; Tobiyama, M.; /KEK, Tsukuba; Pivi, M.; /SLAC

    2011-11-04

    ILC damping ring consists of very low emittance electron and positron storage rings. It is necessary for ILC damping ring to study electron cloud effects in such low emittance positron ring. We propose a low emittance operation of KEKB to study the effects.

  15. Dynamical aspects on FEL interaction in single passage and storage ring devices

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, G.; Renieri, A. [ENEA, Frascati (Italy)

    1995-12-31

    The dynamical behaviour of the free-electron lasers is investigated using appropriate scaling relations valid for devices operating in the low and high gain regimes, including saturation. The analysis is applied to both single passage and storage ring configurations. In the latter case the interplay between the interaction of the electron bean with the laser field and with the accelerator environment is investigated. In particular we discuss the effect of FEL interaction on the microwave instability.

  16. Compact near-IR and mid-IR cavity ring down spectroscopy device

    Science.gov (United States)

    Miller, J. Houston (Inventor)

    2011-01-01

    This invention relates to a compact cavity ring down spectrometer for detection and measurement of trace species in a sample gas using a tunable solid-state continuous-wave mid-infrared PPLN OPO laser or a tunable low-power solid-state continuous wave near-infrared diode laser with an algorithm for reducing the periodic noise in the voltage decay signal which subjects the data to cluster analysis or by averaging of the interquartile range of the data.

  17. Manipulation of vortex rings for flow control

    International Nuclear Information System (INIS)

    Toyoda, Kuniaki; Hiramoto, Riho

    2009-01-01

    This paper reviews the dynamics of vortex rings and the control of flow by the manipulation of vortex rings. Vortex rings play key roles in many flows; hence, the understanding of the dynamics of vortex rings is crucial for scientists and engineers dealing with flow phenomena. We describe the structures and motions of vortex rings in circular and noncircular jets, which are typical examples of flows evolving into vortex rings. For circular jets the mechanism of evolving, merging and breakdown of vortex rings is described, and for noncircular jets the dynamics of three-dimensional deformation and interaction of noncircular vortex rings under the effect of self- and mutual induction is discussed. The application of vortex-ring manipulation to the control of various flows is reviewed with successful examples, based on the relationship between the vortex ring dynamics and the flow properties. (invited paper)

  18. Structure and dynamics of ringed galaxies

    International Nuclear Information System (INIS)

    Buta, R.J.

    1984-01-01

    In many spiral and SO galaxies, single or multiple ring structures are visible in the disk. These inner rings (r), outer rings (R), and nuclear rings (nr) were investigated by means of morphology, photometry, and spectroscopy in order to provide basic data on a long neglected phenomenon. The metric properties of each ring are investigated and found to correlate with the structure of the parent galaxy. When properly calibrated, inner rings in barred (SB) systems can be used as geometric extragalactic distance indicators to distances in excess of 100 Mpc. Other statistics are presented that confirm previous indications that the rings have preferred shapes, relative sizes, and orientations with respect to bars. A survey is made of the less homogeneous non-barred (SA) ringed systems, and the causes of the inhomogeneity are isolated. It is shown that rings can be identified in multiple-ring SA systems that are exactly analogous to those in barred spirals

  19. Integrated Power and Attitude Control Design of Satellites Based on a Fuzzy Adaptive Disturbance Observer Using Variable-Speed Control Moment Gyros

    Directory of Open Access Journals (Sweden)

    Zhongyi Chu

    2016-01-01

    Full Text Available To satisfy the requirements for small satellites that seek agile slewing with peak power, this paper investigates integrated power and attitude control using variable-speed control moment gyros (VSCMGs that consider the mass and inertia of gimbals and wheels. The paper also details the process for developing the controller by considering various environments in which the controller may be implemented. A fuzzy adaptive disturbance observer (FADO is proposed to estimate and compensate for the effects of equivalent disturbances. The algorithms can simultaneously track attitude and power. The simulation results illustrate the effectiveness of the control approach, which exhibits an improvement of 80 percent compared with alternate approaches that do not employ a FADO.

  20. Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nano-fluid containing gyro-tactic microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, A. [Department of Mechanical Engineering, School of Engineering and Applied Science, Gonzaga University, Spokane, WA 99258 (United States); Khan, W.A. [Department of Engineering Sciences, National University of Sciences and Technology, Karachi 75350 (Pakistan); Pop, I. [Department of Applied Mathematics, Babes-Bolyai University, Cluj-Napoca (Romania)

    2012-06-15

    The steady boundary layer free convection flow past a horizontal flat plate embedded in a porous medium filled by a water-based nano-fluid containing gyro-tactic microorganisms is investigated. The Oberbeck-Boussinesq approximation is assumed in the analysis. The effects of bio-convection parameters on the dimensionless velocity, temperature, nano-particle concentration and density of motile microorganisms as well as on the local Nusselt, Sherwood and motile microorganism numbers are investigated and presented graphically. In the absence of bio-convection, the results are compared with the existing data in the open literature and found to be in good agreement. The bio-convection parameters strongly influence the heat, mass, and motile microorganism transport rates. (authors)