The impact of exospheric neutral dynamics on ring current decay
Ilie, R.; Liemohn, M. W.; Skoug, R. M.; Funsten, H. O.; Gruntman, M.; Bailey, J. J.; Toth, G.
2015-12-01
The geocorona plays an important role in the energy budget of the Earth's inner magnetosphere since charge exchange of energetic ions with exospheric neutrals makes the exosphere act as an energy sink for ring current particles. Long-term ring current decay following a magnetic storm is mainly due to these electron transfer reactions, leading to the formation energetic neutral atoms (ENAs) that leave the ring current system on ballistic trajectories. The number of ENAs emitted from a given region of space depends on several factors, such as the energy and species of the energetic ion population in that region and the density of the neutral gas with which the ions undergo charge exchange. However, the density and structure of the exosphere are strongly dependent on changes in atmospheric temperature and density as well as charge exchange with the ions of plasmaspheric origin, which depletes the geocorona (by having a neutral removed from the system). Moreover, the radiation pressure exerted by solar far-ultraviolet photons pushes the geocoronal hydrogen away from the Earth in an anti-sunward direction to form a tail of neutral hydrogen. TWINS ENA images provide a direct measurement of these ENA losses and therefore insight into the dynamics of the ring current decay through interactions with the geocorona. We assess the influence of geocoronal neutrals on ring current formation and decay by analysis of the predicted ENA emissions using 6 different geocoronal models and simulations from the HEIDI ring current model during storm time. Comparison with TWINS ENA images shows that the location of the peak ENA enhancements is highly dependent on the distribution of geocoronal hydrogen density. We show that the neutral dynamics has a strong influence on the time evolution of the ring current populations as well as on the formation of energetic neutral atoms.
Dynamics of the earth's ring current - Theory and observation
Williams, D. J.
1985-01-01
The development of currents within an arbitrary distribution of particles trapped in the geomagnetic field is described. These currents combine to form the earth's ring current and thus are responsible for the worldwide depressions of surface magnetic field strength during periods of magnetic activity known as magnetic storms. Following a brief review of trapped particle motion in magnetic fields, ring current development is described and presented in terms of basic field and particle distribution parameters. Experimental observations then are presented and discussed within the theoretical framework developed earlier. New results are presented which, in the area of composition and charge state observations, hold high promise in solving many long standing ring current problems. Finally, available experimental results will be used to assess the present understanding as to ring current sources, generation, and dissipation.
The Magnetic and Shielding Effects of Ring Current on Radiation Belt Dynamics
Fok, Mei-Ching
2012-01-01
The ring current plays many key roles in controlling magnetospheric dynamics. A well-known example is the magnetic depression produced by the ring current, which alters the drift paths of radiation belt electrons and may cause significant electron flux dropout. Little attention is paid to the ring current shielding effect on radiation belt dynamics. A recent simulation study that combines the Comprehensive Ring Current Model (CRCM) with the Radiation Belt Environment (RBE) model has revealed that the ring current-associated shielding field directly and/or indirectly weakens the relativistic electron flux increase during magnetic storms. In this talk, we will discuss how ring current magnetic field and electric shielding moderate the radiation belt enhancement.
Buzulukova, N.; Fok, M.-C.; Goldstein, J.; Valek, P.; McComas, D. J.; Brandt, P. C.
2010-01-01
We present a comparative study of ring current dynamics during strong and moderate storms. The ring current during the strong storm is studied with IMAGE/HENA data near the solar cycle maximum in 2000. The ring current during the moderate storm is studied using energetic neutral atom (ENA) data from the Two Wide-Angle Imaging Neutral- Atom Spectrometers (TWINS) mission during the solar minimum in 2008. For both storms, the local time distributions of ENA emissions show signatures of postmidnight enhancement (PME) during the main phases. To model the ring current and ENA emissions, we use the Comprehensive Ring Current Model (CRCM). CRCM results show that the main-phase ring current pressure peaks in the premidnight-dusk sector, while the most intense CRCM-simulated ENA emissions show PME signatures. We analyze two factors to explain this difference: the dependence of charge-exchange cross section on energy and pitch angle distributions of ring current. We find that the IMF By effect (twisting of the convection pattern due to By) is not needed to form the PME. Additionally, the PME is more pronounced for the strong storm, although relative shielding and hence electric field skewing is well developed for both events.
Richaud, Andrea; Penna, Vittorio
2017-07-01
We study the quantum dynamics of the Bose-Hubbard model on a ladder formed by two rings coupled by the tunneling effect. By implementing the Bogoliubov approximation scheme, we prove that, despite the presence of the inter-ring coupling term, the Hamiltonian decouples in many independent sub-Hamiltonians Ĥk associated with momentum-mode pairs ±k . Each sub-Hamiltonian Ĥk is then shown to be part of a specific dynamical algebra. The properties of the latter allow us to perform the diagonalization process, to find the energy spectrum and the conserved quantities of the model, and to derive the time evolution of important physical observables. We then apply this solution scheme to the simplest possible closed ladder, the double trimer. After observing that the excitations of the system are weakly populated vortices, we explore the corresponding dynamics by varying the initial conditions and the model parameters. Finally, we show that the inter-ring tunneling determines a spectral collapse when approaching the border of the dynamical-stability region.
Crary, F. J.
2014-04-01
Saturn's main rings orbit the planet within an atmosphere and ionosphere of water, oxygen and hydrogen, produced by meteoritic impacts on and ultraviolet photodesorbtion of the ring particles [Johnson et al., 2006; Luhmann et al., 2006; Tseng et al., 2010]. The neutral atmosphere itself has only been tentatively detected through ultraviolet fluorescents of OH [Hall et al., 1996] while the ionosphere was observed in situ by the Cassini spacecraft shortly after orbital insertion [Coates et al.,2005; Tokar et al. 2005, Waite et al. 2005]. Although the plasma flow velocity of this ionosphere is not well-constrained, but the close association with the rings suggests that its speed would be couppled to the keplarian velocity of the rings themselves. As a result, the motion of the plasma through Saturn's magnetic field would produce an induced voltage, oriented away from the planet outside synchronous orbit and towards the planet inside synchronous orbit. Such a potential could result in currents flowing across the ring plane and closeing along magnetic field lines and through Saturn's ionosphere at latitudes between 36o and 48o. Cassini observations of whistler-mode plasma wave emissions [Xin et al.,2006] centered on synchronous orbit (1.76 Rs, mapping to 41o latitude) have been interpreted as a product of field-aligned electron beams associated with such a current. This presentation will investigate the magnitude of these currents and the resulting Joule heating of the ionosphere. An important constraint is that no auroral ultraviolet emissions have been observed at the relevant latitudes. In contrast, Joule heating could affect infrared emissions from H3+. Variations in H3+ emission associated with Saturn's rings have been reported by O'Donoghue et al., 2013, and interpreted as a result of ring "rain", i.e. precipitating water group species from the rings which alter ionosphereic chemistry and H3+ densities. As noted by O'Donoghue et al., this interpretation may be
Gkioulidou, M.; Ukhorskiy, A. Y.; Mitchell, D. G.; Lanzerotti, L. J.
2015-12-01
The ring current energy budget plays a key role in the global electrodynamics of Earth's space environment. Pressure gradients developed in the inner magnetosphere can shield the near-Earth region from solar wind-induced electric fields. The distortion of Earth's magnetic field due to the ring current affects the dynamics of particles contributing both to the ring current and radiation belts. Therefore, understanding the long-term evolution of the inner magnetosphere energy content is essential. We have investigated the evolution of ring current proton pressure (7 - 600 keV) in the inner magnetosphere based on data from the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument aboard Van Allen Probe B throughout the year 2013. We find that although the low-energy component of the protons (governed by convective timescales and is very well correlated with the Dst index, the high-energy component (>100 keV) varies on much longer timescales and shows either no or anti-correlation with the Dst index. Interestingly, the contributions of the high- and low-energy protons to the total energy content are comparable. Our results indicate that the proton dynamics, and as a consequence the total energy budget in the inner magnetosphere (inside geosynchronous orbit), is not strictly controlled by storm-time timescales as those are defined by the Dst index.
Ring current and radiation belts
Williams, D. J.
1987-01-01
Studies performed during 1983-1986 on the ring current, the injection boundary model, and the radiation belts are discussed. The results of these studies yielded the first observations on the composition and charge state of the ring current throughout the ring-current energy range, and strong observational support for an injection-boundary model accounting for the origins of radiation-belt particles, the ring current, and substorm particles observed at R less than about 7 earth radii. In addition, the results have demonstrated that the detection of energetic neutral atoms generated by charge-exchange interactions between the ring current and the hydrogen geocorona can provide global images of the earth's ring current and its spatial and temporal evolution.
Understanding the Dynamical Evolution of the Earth Radiation Belt and Ring Current Coupled System
Shprits, Yuri; Usanova, Maria; Kellerman, Adam; Drozdov, Alexander
2016-07-01
Modeling and understanding the ring current and radiation belt-coupled system has been a grand challenge since the beginning of the space age. In this study we show long-term simulations with a 3D Versatile Electron Radiation Belt (VERB) code of modeling the radiation belts with boundary conditions derived from observations around geosynchronous orbit. Simulations can reproduce long term variations of the electron radiation belt fluxes and show the importance of local acceleration, radial diffusion, loss to the atmosphere and loss to the magnetopause. We also present 4D VERB simulations that include convective transport, radial diffusion, pitch angle scattering and local acceleration. VERB simulations show that the lower energy inward transport is dominated by the convection and higher energy transport is dominated by the diffusive radial transport. We also show that at energies of 100s of keV, a number of processes work simultaneously, including convective transport, radial diffusion, local acceleration, loss to the loss cone and loss to the magnetopause. The results of the simulation of the March 2013 storm are compared with Van Allen Probes observations.
Mineo, H; Lin, S H; Fujimura, Y
2013-02-21
The results of a theoretical investigation of coherent π-electron dynamics for nonplanar (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses are presented. Expressions for the time-dependent coherent angular momentum and ring current are derived by using the density matrix method. The time dependence of these coherences is determined by the off-diagonal density matrix element, which can be obtained by solving the coupled equations of motion of the electronic-state density matrix. Dephasing effects on coherent angular momentum and ring current are taken into account within the Markov approximation. The magnitudes of the electronic angular momentum and current are expressed as the sum of expectation values of the corresponding operators in the two phenol rings (L and R rings). Here, L (R) denotes the phenol ring in the left (right)-hand side of (P)-2,2'-biphenol. We define the bond current between the nearest neighbor carbon atoms Ci and Cj as an electric current through a half plane perpendicular to the Ci-Cj bond. The bond current can be expressed in terms of the inter-atomic bond current. The inter-atomic bond current (bond current) depends on the position of the half plane on the bond and has the maximum value at the center. The coherent ring current in each ring is defined by averaging over the bond currents. Since (P)-2,2'-biphenol is nonplanar, the resultant angular momentum is not one-dimensional. Simulations of the time-dependent coherent angular momentum and ring current of (P)-2,2'-biphenol excited by ultrashort linearly polarized UV pulses are carried out using the molecular parameters obtained by the time-dependent density functional theory (TD-DFT) method. Oscillatory behaviors in the time-dependent angular momentum (ring current), which can be called angular momentum (ring current) quantum beats, are classified by the symmetry of the coherent state, symmetric or antisymmetric. The bond current of the bridge bond linking the L and R
Rheology of Rings: Current Status and Future Challenges
McKenna, Gregory
Understanding the dynamics of circular or ring-like polymers has been a subject of investigation since the 1980s and is one which remains an area that is not fully understood. Part of the reason for this is the difficulty of making synthetic rings of sufficient size to establish the nature of the entanglement dynamics, if entanglements even exist in these materials. Furthermore, there is now strong evidence that small amounts of linear impurities can impact the dynamics. Hence, one of the major challenges to our understanding of ring dynamics is to make large molecular weight rings of sufficient purity that the dynamics of the rings themselves can be determined. In the present work the current state of understanding of the dynamics of rings is outlined and current work from our group of collaborators to make extremely large circular polymers using Echeverria Coli as a route to make pure rings (circular DNA) in sufficient quantity and size to determine the dynamics of these materials will be shown. First results of ring dynamics in dilute solution are presented and new results on concentrated and entangled solutions will be discussed. Remaining challenges will be elucidated. Partially supported by the John R. Bradford Endowment and the Paul Whitfield Horn Professorship at Texas Tech University.
Persistent currents in normal metal rings.
Bluhm, Hendrik; Koshnick, Nicholas C; Bert, Julie A; Huber, Martin E; Moler, Kathryn A
2009-04-03
The authors have measured the magnetic response of 33 individual cold mesoscopic gold rings, one ring at a time. The response of some sufficiently small rings has a component that is periodic in the flux through the ring and is attributed to a persistent current. Its period is close to h/e, and its sign and amplitude vary between rings. The amplitude distribution agrees well with predictions for the typical h/e current in diffusive rings. The temperature dependence of the amplitude, measured for four rings, is also consistent with theory. These results disagree with previous measurements of three individual metal rings that showed a much larger periodic response than expected. The use of a scanning SQUID microscope enabled in situ measurements of the sensor background. A paramagnetic linear susceptibility and a poorly understood anomaly around a zero field are attributed to defect spins.
Persistent current in small superconducting rings.
Schwiete, Georg; Oreg, Yuval
2009-07-17
We study theoretically the contribution of fluctuating Cooper pairs to the persistent current in superconducting rings threaded by a magnetic flux. For sufficiently small rings, in which the coherence length xi exceeds the radius R, mean field theory predicts a full reduction of the transition temperature to zero near half-integer flux. We find that nevertheless a very large current is expected to persist in the ring as a consequence of Cooper pair fluctuations that do not condense. For larger rings with R>xi, we calculate analytically the susceptibility in the critical region of strong fluctuations and show that it reflects competition of two interacting complex order parameters.
Morphology of the ring current derived from magnetic field observations
G. Le
2004-04-01
Full Text Available Our examination of the 20 years of magnetospheric magnetic field data from ISEE, AMPTE/CCE and Polar missions has allowed us to quantify how the ring current flows and closes in the magnetosphere at a variety of disturbance levels. Using intercalibrated magnetic field data from the three spacecraft, we are able to construct the statistical magnetic field maps and derive 3-dimensional current density by the simple device of taking the curl of the statistically determined magnetic field. The results show that there are two ring currents, an inner one that flows eastward at ~3 R_{E} and a main westward ring current at ~4–7 R_{E} for all levels of geomagnetic disturbances. In general, the in-situ observations show that the ring current varies as the D_{st} index decreases, as we would expect it to change. An unexpected result is how asymmetric it is in local time. Some current clearly circles the magnetosphere but much of the energetic plasma stays in the night hemisphere. These energetic particles appear not to be able to readily convect into the dayside magnetosphere. During quiet times, the symmetric and partial ring currents are similar in strength (~0.5MA and the peak of the westward ring current is close to local midnight. It is the partial ring current that exhibits most drastic intensification as the level of disturbances increases. Under the condition of moderate magnetic storms, the total partial ring current reaches ~3MA, whereas the total symmetric ring current is ~1MA. Thus, the partial ring current contributes dominantly to the decrease in the D_{st} index. As the ring current strengthens the peak of the partial ring current shifts duskward to the pre-midnight sector. The partial ring current is closed by a meridional current system through the ionosphere, mainly the field-aligned current, which maximizes at local times near the dawn and dusk. The closure currents flow in
Ring current proton decay by charge exchange
Smith, P. H.; Hoffman, R. A.; Fritz, T. A.
1976-01-01
Explorer 45 (S3-A) measurements were made during the recovery phase of the moderate magnetic storm of February 24, 1972, in which a symmetric ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, which is a consequence of the dissipation of the asymmetric ring current, the equatorially mirroring protons in the energy range 5-30 keV decayed throughout the L value range of 3.5-5.0 at the charge exchange decay rate calculated by Liemohn (1961). After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange is more than sufficient as a particle loss mechanism for the storm time proton ring current decay.
Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves
Khazanov, George V.
2002-01-01
A new ring current global model has been developed for the first time that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall coductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC, global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms. The space whether aspects of RC modelling and comparison with the data will also be discussed.
Holomorphic Dynamics and Herman Rings
Henriksen, Christian
1997-01-01
Existence theorem for Herman Rings of holomorphic mappings in a certain holomorphic family is given, using quasiconformal mappings. Proofs of topological properties of these Herman rings are given.......Existence theorem for Herman Rings of holomorphic mappings in a certain holomorphic family is given, using quasiconformal mappings. Proofs of topological properties of these Herman rings are given....
Buzulukova, N.; Fok, M.-C.; Pulkkinen, A.; Kuznetsova, M.; Moore, T. E.; Glocer, A.; Brandt, P. C.; Toth, G.; Rastaetter, L.
2010-01-01
We present simulation results from a one-way coupled global MHD model (Block-Adaptive-Tree Solar-Wind Roe-Type Upwind Scheme, BATS-R-US) and kinetic ring current models (Comprehensive Ring Current Model, CRCM, and Fok Ring Current, FokRC). The BATS-R-US provides the CRCM/FokRC with magnetic field information and plasma density/temperature at the polar CRCM/FokRC boundary. The CRCM uses an electric potential from the BATS-R-US ionospheric solver at the polar CRCM boundary in order to calculate the electric field pattern consistent with the CRCM pressure distribution. The FokRC electric field potential is taken from BATS-R-US ionospheric solver everywhere in the modeled region, and the effect of Region II currents is neglected. We show that for an idealized case with southward-northward-southward Bz IMF turning, CRCM-BATS-R-US reproduces well known features of inner magnetosphere electrodynamics: strong/weak convection under the southward/northward Bz; electric field shielding/overshielding/penetration effects; an injection during the substorm development; Subauroral Ion Drift or Polarization Jet (SAID/PJ) signature in the dusk sector. Furthermore, we find for the idealized case that SAID/PJ forms during the substorm growth phase, and that substorm injection has its own structure of field-aligned currents which resembles a substorm current wedge. For an actual event (12 August 2000 storm), we calculate ENA emissions and compare with Imager for Magnetopause-to-Aurora Global Exploration/High Energy Neutral Atom data. The CRCM-BATS-R-US reproduces both the global morphology of ring current and the fine structure of ring current injection. The FokRC-BATS-R-US shows the effect of a realistic description of Region II currents in ring current-MHD coupled models.
Longitudinal dynamics in storage rings
Colton, E.P.
1986-01-01
The single-particle equations of motion are derived for charged particles in a storage ring. Longitudinal space charge is included in the potential assuming an infinitely conducting circular beam pipe with a distributed inductance. The framework uses Hamilton's equations with the canonical variables phi and W. The Twiss parameters for longitudinal motion are also defined for the small amplitude synchrotron oscillations. The space-charge Hamiltonian is calculated for both parabolic bunches and ''matched'' bunches. A brief analysis including second-harmonic rf contributions is also given. The final sections supply calculations of dynamical quantities and particle simulations with the space-charge effects neglected.
Persistent currents in metallic rings containing a quantum dot
Machura, Lukasz [Institute of Physics, University of Silesia, Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, University of Silesia, 41-500 Chorzów (Poland); Łuczka, Jerzy, E-mail: jerzy.luczka@us.edu.pl [Institute of Physics, University of Silesia, Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, University of Silesia, 41-500 Chorzów (Poland)
2015-08-28
Currents in metallic rings with a quantum dot are studied in the framework of a Langevin equation for a magnetic flux passing through the ring. Two scenarios are considered: one in which thermal fluctuations of the dissipative part of the current are modeled by classical Johnson–Nyquist noise and one in which quantum character of thermal fluctuations is taken into account in terms of a quantum Smoluchowski equation. The impact of the amplitude and phase of the transmission coefficient of the electron through a quantum dot on current characteristics is analyzed. In tailored parameter regimes, both scenarios can exhibit the transition from para- to diamagnetic response of the current versus external magnetic flux. The type of response is more robust to changes of the amplitude of the transmission coefficient and more sensitive to changes of the phase around some values. - Highlights: • Langevin dynamics of the magnetic flux for classical and quantum Smoluchowski regimes. • Current-flux characteristics vs the amplitude and phase of the transmission coefficient. • Crucial role of the phase of the transmission coefficient. • Contribution to the development of effective control of current in mesoscopic rings.
Molecular Scale Dynamics of Large Ring Polymers
Gooßen, S.; Brás, A. R.; Krutyeva, M.; Sharp, M.; Falus, P.; Feoktystov, A.; Gasser, U.; Pyckhout-Hintzen, W.; Wischnewski, A.; Richter, D.
2014-10-01
We present neutron scattering data on the structure and dynamics of melts from polyethylene oxide rings with molecular weights up to ten times the entanglement mass of the linear counterpart. The data reveal a very compact conformation displaying a structure approaching a mass fractal, as hypothesized by recent simulation work. The dynamics is characterized by a fast Rouse relaxation of subunits (loops) and a slower dynamics displaying a lattice animal-like loop displacement. The loop size is an intrinsic property of the ring architecture and is independent of molecular weight. This is the first experimental observation of the space-time evolution of segmental motion in ring polymers illustrating the dynamic consequences of their topology that is unique among all polymeric systems of any other known architecture.
Formation of the storm-time ring current
XIE Lun; PU Zuyin; ZHOU Xuzhi; FU Suiyan; ZONG Qiugang
2004-01-01
An extensive study of ring current injection and intensification of the storm-time symmetric ring current is conducted with three-dimensional (3-D) test particle trajectory calculations (TPTCs) in this paper. TPTCs reveal more accurately the process of ring current injection. The main results are the following: (1) an intense convection electric field can effectively energize and inject plasma sheet particles into ring current region within 1-3 h. (2) Injection ions often follow chaotic trajectories in non-adiabatic regions,which may have implications in storm and ring current physics. (3) The shielding electric field, which arises as a consequence of enhanced convection and co-exists with injection and convection electric field, leads the original open trajectories to change into closed ones, thus may play an important role in the formation of the symmetric ring current.
Non-Linear Dynamics of Saturn's Rings
Esposito, L. W.
2015-12-01
Non-linear processes can explain why Saturn's rings are so active and dynamic. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw', as observed ny Cassini cameras. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn's rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. This confirms the triple architecture of ring particles: a broad size distribution of particles; these aggregate into temporary rubble piles; coated by a regolith of dust. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from
Aromatic and antiaromatic ring currents in a molecular nanoring
Peeks, Martin D.; Claridge, Timothy D. W.; Anderson, Harry L.
2016-12-01
Aromatic and antiaromatic molecules—which have delocalized circuits of [4n + 2] or [4n] electrons, respectively—exhibit ring currents around their perimeters. The direction of the ring current in an aromatic molecule is such as to generate a magnetic field that opposes the external field inside the ring (a ‘diatropic’ current), while the ring current in an antiaromatic molecule flows in the reverse direction (‘paratropic’). Similar persistent currents occur in metal or semiconductor rings, when the phase coherence of the electronic wavefunction is preserved around the ring. Persistent currents in non-molecular rings switch direction as a function of the magnetic flux passing through the ring, so that they can be changed from diatropic (‘aromatic’) to paratropic (‘antiaromatic’) simply by changing the external magnetic field. As in molecular systems, the direction of the persistent current also depends on the number of electrons. The relationship between ring currents in molecular and non-molecular rings is poorly understood, partly because they are studied in different size regimes: the largest aromatic molecules have diameters of about one nanometre, whereas persistent currents are observed in microfabricated rings with diameters of 20-1,000 nanometres. Understanding the connection between aromaticity and quantum-coherence effects in mesoscopic rings provides a motivation for investigating ring currents in molecules of an intermediate size. Here we show, using nuclear magnetic resonance spectroscopy and density functional theory, that a six-porphyrin nanoring template complex, with a diameter of 2.4 nanometres, is antiaromatic in its 4+ oxidation state (80 π electrons) and aromatic in its 6+ oxidation state (78 π electrons). The antiaromatic state has a huge paramagnetic susceptibility, despite having no unpaired electrons. This work demonstrates that a global ring current can be promoted in a macrocycle by adjusting its oxidation state
Transport currents measured in ring samples: test of superconducting weld
Zheng, H.; Claus, H.; Chen, L.; Paulikas, A. P.; Veal, B. W.; Olsson, B.; Koshelev, A.; Hull, J.; Crabtree, G. W.
2001-02-01
The critical current densities in bulk melt-textured YBa 2Cu 3O x and across superconducting “weld” joints are measured using scanning Hall probe measurements of the trapped magnetic field in ring samples. With this method, critical current densities are obtained without the use of electrical contacts. Large persistent currents are induced in ring samples at 77 K, after cooling in a 3 kG field. These currents can be determined from the magnetic field they produce. At 77 K a supercurrent exceeding 2000 A (about 10 4 A/cm 2) was induced in a 2 cm diameter ring; this current produces a magnetic field exceeding 1.5 kG in the bore of the ring. We demonstrate that when a ring is cut, and the cut is repaired by a superconducting weld, the weld joint can transmit the same high supercurrent as the bulk.
Relation between the ring current and the tail current during magnetic storms
V. V. Kalegaev
2005-02-01
Full Text Available We study the dynamics of the magnetospheric large-scale current systems during storms by using three different magnetospheric magnetic field models: the paraboloid, event-oriented, and Tsyganenko T01 models. We have modelled two storm events, one moderate storm on 25-26 June 1998, when D_{st} reached -120nT and one intense storm on 21-23 October 1999, when D_{st} dropped to -250nT. We compare the observed magnetic field from GOES 8, GOES 9, and GOES 10, Polar and Geotail satellites with the magnetic field given by the three models to estimate their reliability. All models demonstrated quite good agreement with observations. Since it is difficult to measure exactly the relative contributions from different current systems to the D_{st} index, we compute the contributions from ring, tail and magnetopause currents given by the three magnetic field models. We discuss the dependence of the obtained contributions to the D_{st} index in relation to the methods used in constructing the models. All models show a significant tail current contribution to the D_{st} index, comparable to the ring current contribution during moderate storms. The ring current becomes the major D_{st} source during intense storms.
Space Weather Effects Produced by the Ring Current Particles
Ganushkina, Natalia; Jaynes, Allison; Liemohn, Michael
2017-10-01
One of the definitions of space weather describes it as the time-varying space environment that may be hazardous to technological systems in space and/or on the ground and/or endanger human health or life. The ring current has its contributions to space weather effects, both in terms of particles, ions and electrons, which constitute it, and magnetic and electric fields produced and modified by it at the ground and in space. We address the main aspects of the space weather effects from the ring current starting with brief review of ring current discovery and physical processes and the Dst-index and predictions of the ring current and storm occurrence based on it. Special attention is paid to the effects on satellites produced by the ring current electrons. The ring current is responsible for several processes in the other inner magnetosphere populations, such as the plasmasphere and radiation belts which is also described. Finally, we discuss the ring current influence on the ionosphere and the generation of geomagnetically induced currents (GIC).
Seki, K.; Amano, T.; Saito, S.; Kamiya, K.; Miyoshi, Y.; Keika, K.; Matsumoto, Y.
2016-12-01
Terrestrial inner magnetosphere is the region where different plasma regimes over a wide range of energy such as the plasmasphere, ring current, and radiation belt coexist. Among them, the ring current carries most of plasma pressure and is thus responsible for deformation of the magnetic field. Since the deformation changes drift paths of charged particles including the ring current ions, it is important to describe this coupling between the ring current and electric/magnetic fields self-consistently. It is known that short-timescale phenomena such as ULF waves and substorm related ion injections from the plasma sheet play important roles in the inner magnetospheric dynamics during magnetic storms. While ULF waves contribute to the radial transport of relativistic electrons to form the radiation belt, the ion injections contribute to excitation of storm-time Pc5 ULF waves as well as to plasma supply to the ring current from the magnetotail. Aiming at a self-consistent description of the coupling between ring current ions and electric/magnetic fields, we have developed a global ring current model (GEMSIS-RC model). The model is a self-consistent and kinetic numerical simulation code solving the five-dimensional collisionless drift-kinetic equation for the ring-current ions coupled with Maxwell equations. Without assuming a force-balanced equilibrium, the GEMSIS-RC model allows the force-imbalance to exist, which generates induced electric field through the polarization current. In this study, we applied the GEMSIS-RC model for simulation of ULF waves in the inner magnetosphere with a focus on the short-timescale phenomena described above. Comparison between runs with/without ring current ions show that the existence of hot ring current ions can deform and amplify the original sinusoidal waveforms. The deformation causes the energy cascade to higher frequency range (Pc4 and Pc3 ranges). The cascade is more pronounced in high plasma beta cases. It is also shown that
Perimeter ring currents in benzenoids from Pauling bond orders.
Fowler, Patrick W; Myrvold, Wendy; Jenkinson, Daniel; Bird, William H
2016-04-28
It is shown that the ring currents in perimeter hexagonal rings of Kekulean benzenoids, as estimated within the Randić conjugated-circuit model, can be calculated directly without tedious pairwise comparison of Kekulé structures or Kekulé counting for cycle-deleted subgraphs. Required are only the Pauling bond orders of perimeter bonds and the number of Kekulé structures of the benzenoid, both readily available from the adjacency matrix of the carbon skeleton. This approach provides easy calculation of complete current maps for benzenoids in which every face has at least one bond on the perimeter (as in the example of cata-condensed benzenoids), and allows qualitative evaluation of the main ring-current contributions to (1)H chemical shifts in general benzenoids. A combined Randić-Pauling model for correlation of ring current and bond length through bond order is derived and shown to be consistent with resilience of current under bond alternation.
The Linkage Between the Ionospheric Trough and Ring Current
Brandt, P. C.; Zheng, Y.; Talaat, E.; Sotirelis, T.; Foster, J. C.; Erickson, P. J.
2007-05-01
We present data-model investigations of how the ring current couples to the sub-auroral ionosphere. The ring current pressure distribution during storm and substorms is highly asymetrical and sets up the region 2 current system that closes through the sub-auroral ionosphere. Of particular interest is what happens in the so-called ionospheric trough region, which is a region in the evening ionosphere with extremely low conductance (few tenths of a mho). Observations show strong westward flows in the ionospheric trough (Sub-Auroral Polarization Stream - SAPS) and sometimes highly structured and variable. The Comprehensive Ring Current Model models the ring current by using the bounce averaged Boltzmann equation and allowing the ring current to close through the ionosphere. Our model ionosphere includes dayside and auroral conductance as well as semi-empirical representation of the trough conductance. By using realistic representations of the conductances we seek to explore how the ring current pressure distribution (and therefore the region 2 current system) is linked to the presence of the trough. We use data from the IMAGE satellite, the Millstone Hill and SuperDARN radar facilities.
The rings of Saturn: State of current knowledge and some suggestions for future studies
Cuzzi, J. N.
1978-01-01
The state of our current knowledge of the properties of the ring system as a whole, and of the particles individually, is assessed. Attention is primarily devoted to recent results and possibilities for exploration of the ring system by a Saturn orbiter. In particular, the infrared and microwave properties of the ring system are discussed. The behavior of the ring brightness is not well understood in the critical transition spectral region from approximately 100 micrometers to approximately 1 cm. Also, the dynamical behavior of the ring system is discussed. Recent theoretical studies show that ongoing dynamical effects continually affect the ring structure in azimuth (possibly producing the A ring brightness asymmetry) and in the vertical direction. Orbital spacecraft-based studies of the rings will offer several unique advantages and impact important cosmogonical questions. Bistatic radar studies and millimeter-wavelength spectrometer/radiometry will give particle sizes and composition limits needed to resolve the question of the density of the rings, and provide important boundary conditions on the state of Saturn's protoplanetary nebula near the time of planetary formation.
Equilibrium currents in a Corbino graphene ring
A. López
2014-09-01
Full Text Available We address the description of a graphene Corbino disk in the context of a tight binding approach that includes both kinetic and Rashba spin-orbit coupling due to an external out-of-plane electric field. Persistent equilibrium currents are induced by an external magnetic field breaking time reversal symmetry. By direct diagonalization, we compute the spectrum and focus on the dispersion near the K points at the Fermi level. The dispersion keenly reproduces that of a continuum model in spite of the complexity of the boundary conditions. We validate the assumptions of the continuum model in terms of predominant zig-zag boundaries conditions and weak sub-band coupling. The wave functions displaying the lowest transverse modes are obtained, showing the predominance of edge states with charge density at the zig-zag edges. The persistent charge currents, nevertheless, do not follow the traditional argument of current cancellation from levels below the Fermi level, and thus they depart in the tight-binding from those found in the continuum model.
Stochastic longshore current dynamics
Restrepo, Juan M.; Venkataramani, Shankar
2016-12-01
We develop a stochastic parametrization, based on a 'simple' deterministic model for the dynamics of steady longshore currents, that produces ensembles that are statistically consistent with field observations of these currents. Unlike deterministic models, stochastic parameterization incorporates randomness and hence can only match the observations in a statistical sense. Unlike statistical emulators, in which the model is tuned to the statistical structure of the observation, stochastic parametrization are not directly tuned to match the statistics of the observations. Rather, stochastic parameterization combines deterministic, i.e physics based models with stochastic models for the "missing physics" to create hybrid models, that are stochastic, but yet can be used for making predictions, especially in the context of data assimilation. We introduce a novel measure of the utility of stochastic models of complex processes, that we call consistency of sensitivity. A model with poor consistency of sensitivity requires a great deal of tuning of parameters and has a very narrow range of realistic parameters leading to outcomes consistent with a reasonable spectrum of physical outcomes. We apply this metric to our stochastic parametrization and show that, the loss of certainty inherent in model due to its stochastic nature is offset by the model's resulting consistency of sensitivity. In particular, the stochastic model still retains the forward sensitivity of the deterministic model and hence respects important structural/physical constraints, yet has a broader range of parameters capable of producing outcomes consistent with the field data used in evaluating the model. This leads to an expanded range of model applicability. We show, in the context of data assimilation, the stochastic parametrization of longshore currents achieves good results in capturing the statistics of observation that were not used in tuning the model.
Oscillatory persistent currents in quantum rings: Semiconductors versus superconductors
Devreese, J.T., E-mail: jozef.devreese@ua.ac.b [TFVS, Universiteit Antwerpen, B-2020 Antwerpen (Belgium); COBRA, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Fomin, V.M. [TFVS, Universiteit Antwerpen, B-2020 Antwerpen (Belgium); COBRA, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Dept. of Theoretical Physics, State Univ. of Moldova, MD-2009 Chisinau (Moldova, Republic of); Institute for Integrative Nanosciences, IFW Dresden, D-01069 Dresden (Germany); Gladilin, V.N. [TFVS, Universiteit Antwerpen, B-2020 Antwerpen (Belgium); Dept. of Theoretical Physics, State Univ. of Moldova, MD-2009 Chisinau (Moldova, Republic of); Tempere, J. [TFVS, Universiteit Antwerpen, B-2020 Antwerpen (Belgium); Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138 (United States)
2010-10-01
Persistent currents are a hallmark of superconductivity in metals. To observe those dissipationless currents in a non-superconducting ring, the circumference of the ring must be short enough so that the phase coherence of the electronic wave functions is preserved around the loop. Recent progress in the fabrication of self-assembled semiconductor quantum rings (SAQRs), which can be filled with only a few (1-2) electrons, has offered the unique possibility to study the magnetic-field-induced oscillations in the persistent current carried by a single electron. In this paper, we discuss similarities and distinctions between the behavior of persistent currents in semiconductor and superconductor samples and give an overview of the recent results for oscillatory persistent currents in SAQRs. Although the real SAQR shape differs strongly from an idealized circular-symmetric open ring structure, the Aharonov-Bohm oscillations of the magnetization survive, as observed in low temperature magnetization measurements on In{sub x}Ga{sub 1-x}As/GaAs SAQRs.
DYNAMICAL BALANCE STUDY OF RING REDUCER
无
2003-01-01
The basic structure of epicyclical gear transmission with inner teeth of single-ring, double-ring, three-ring and four-ring reducer are analyzed. The force analysis model of ring reducer is built. Following this, it is concluded that the present ring reducers have the problem that the inertia force or the inertia moment is lopsided. On the base of analysis and calculation the balanced ring reducer which can realize the balance of inertia force and inertia moment is brought forward, and so is its concrete realizing step. The specimen of the balanced ring reducer is designed and manufactured; the experiment is carried out on the gear transmission test bench. Compared with other ring reducer of the same power, the balanced ring reducer has many advantages, such as low vibration noise, low cost and less production difficulty and less heat. It is the substitute of other ring reducer of the same kind. Therefore, it has important theoretic significance and highly practical engineering value.
Glassy dynamics of nanoparticles in semiflexible ring polymer nanocomposite melts
Zhou, Xiaolin; Jiang, Yangwei; Deng, Zhenyu; Zhang, Linxi
2017-03-01
By employing molecular dynamics simulations, we explore the dynamics of NPs in semiflexible ring polymer nanocomposite melts. A novel glass transition is observed for NPs in semiflexible ring polymer melts as the bending energy (Kb) of ring polymers increases. For NPs in flexible ring polymer melts (Kb = 0), NPs move in the classic diffusive behavior. However, for NPs in semiflexible ring polymer melts with large bending energy, NPs diffuse very slowly and exhibit the glassy state in which the NPs are all irreversibly caged be the neighbouring semiflexible ring polymers. This glass transition occurs well above the classical glass transition temperature at which microscopic mobility is lost, and the topological interactions of semiflexible ring polymers play an important role in this non-classical glass transition. This investigation can help us understand the nature of the glass transition in polymer systems.
Glassy dynamics of nanoparticles in semiflexible ring polymer nanocomposite melts
Zhou, Xiaolin; Jiang, Yangwei; Deng, Zhenyu; Zhang, Linxi
2017-01-01
By employing molecular dynamics simulations, we explore the dynamics of NPs in semiflexible ring polymer nanocomposite melts. A novel glass transition is observed for NPs in semiflexible ring polymer melts as the bending energy (Kb) of ring polymers increases. For NPs in flexible ring polymer melts (Kb = 0), NPs move in the classic diffusive behavior. However, for NPs in semiflexible ring polymer melts with large bending energy, NPs diffuse very slowly and exhibit the glassy state in which the NPs are all irreversibly caged be the neighbouring semiflexible ring polymers. This glass transition occurs well above the classical glass transition temperature at which microscopic mobility is lost, and the topological interactions of semiflexible ring polymers play an important role in this non-classical glass transition. This investigation can help us understand the nature of the glass transition in polymer systems. PMID:28290546
Modeling the Inner Magnetosphere: Radiation Belts, Ring Current, and Composition
Glocer, Alex
2011-01-01
The space environment is a complex system defined by regions of differing length scales, characteristic energies, and physical processes. It is often difficult, or impossible, to treat all aspects of the space environment relative to a particular problem with a single model. In our studies, we utilize several models working in tandem to examine this highly interconnected system. The methodology and results will be presented for three focused topics: 1) Rapid radiation belt electron enhancements, 2) Ring current study of Energetic Neutral Atoms (ENAs), Dst, and plasma composition, and 3) Examination of the outflow of ionospheric ions. In the first study, we use a coupled MHD magnetosphere - kinetic radiation belt model to explain recent Akebono/RDM observations of greater than 2.5 MeV radiation belt electron enhancements occurring on timescales of less than a few hours. In the second study, we present initial results of a ring current study using a newly coupled kinetic ring current model with an MHD magnetosphere model. Results of a dst study for four geomagnetic events are shown. Moreover, direct comparison with TWINS ENA images are used to infer the role that composition plays in the ring current. In the final study, we directly model the transport of plasma from the ionosphere to the magnetosphere. We especially focus on the role of photoelectrons and and wave-particle interactions. The modeling methodology for each of these studies will be detailed along with the results.
Perimeter ring currents in benzenoids from Pauling bond orders
Fowler, P.W.; Myrvold, W.; Jenkinson, D; Bird, W.H.
2016-01-01
It is shown that the ring currents in perimeter hexagonal rings of Kekulean benzenoids, as estimated\\ud within the Randić conjugated-circuit model, can be calculated directly without tedious pairwise\\ud comparison of Kekulé structures or Kekulé counting for cycle-deleted subgraphs. Required are only\\ud the Pauling bond orders of perimeter bonds and the number of Kekulé structures of the benzenoid,\\ud both readily available from the adjacency matrix of the carbon skeleton. This approach provid...
Rivetta, Claudio; Mastorides, T.; Fox, J.D.; Teytelman, D.; Van Winkle, D.; /SLAC
2007-03-06
A time domain dynamic modeling and simulation tool for beam-cavity interactions in the Low Energy Ring (LER) and High Energy Ring (HER) at the Positron-Electron Project (PEP-II) is presented. Dynamic simulation results for PEP-II are compared to measurements of the actual machine. The motivation for this tool is to explore the stability margins and performance limits of PEP-II radio-frequency (RF) systems at future higher currents and upgraded RF configurations. It also serves as a test bed for new control algorithms and can define the ultimate limits of the low-level RF (LLRF) architecture. The time domain program captures the dynamic behavior of the beam-cavity-LLRF interaction based on a reduced model. The ring current is represented by macrobunches. Multiple RF stations in the ring are represented via one or two macrocavities. Each macrocavity captures the overall behavior of all the 2 or 4 cavity RF stations. Station models include nonlinear elements in the klystron and signal processing. This enables modeling the principal longitudinal impedance control loops interacting via the longitudinal beam model. The dynamics of the simulation model are validated by comparing the measured growth rates for the LER with simulation results. The simulated behavior of the LER at increased operation currents is presented via low-mode instability growth rates. Different control strategies are compared and the effects of both the imperfections in the LLRF signal processing and the nonlinear drivers and klystrons are explored.
The dynamic behavior of a semiconductor ring laser
Van der Sande, Guy; Gelens, Lendert; Tassin, Philippe; Scirè, Alessandro; Danckaert, Jan
2008-04-01
We review theoretical results on the dynamics of solitary single longitudinal mode and single transversal mode semiconductor ring lasers. These analyses are based on a rate equation model for the slowly varying envelopes of the counter-propagating fields in the ring cavity which has been proposed by Sorel et al. [Opt. Lett. 27, 1992 (2002); IEEE J. Quantum Electron. 39, 1187 (2003)]. The model shows several operating regimes. The lasers are found to operate bidirectionally up to twice the threshold, where unidirectional operation starts. Just above threshold, the lasers operate in a regime where the two counterpropagating modes are continuous wave, while as the injected current is increased, a regime appears where the intensities of the two counterpropagating modes undergo alternate sinusoidal oscillations. To understand these dynamical features, we discuss a reduction of this basic rate equation model derived by Van der Sande et al. [accepted for publication in J. Phys. B (2008)]. The reduction has been achieved using asymptotic methods based on the typical relative scaling of the dynamical time scales of the system. Physical conditions for the emergence of the operating regimes are assessed quantitatively in terms of nonlinear (saturation processes) and linear coupling (backscattering) between the counter-propagating modes.
Azimuthally asymmetric ring current as a function of Dst and solar wind conditions
A. A. Ostapenko
2004-09-01
Full Text Available Based on magnetic data, spatial distribution of the westward ring current flowing at |z|<3 RE has been found under five levels of Dst, five levels of the interplanetary magnetic field (IMF z component, and five levels of the solar wind dynamic pressure Psw. The maximum of the current is located near midnight at distances 5 to 7 RE. The magnitude of the nightside and dayside parts of the westward current at distances from 4 to 9 RE can be approximated as Inight=1.75-0.041 Dst, Inoon=0.22-0.013 Dst, where the current is in MA. The relation of the nightside current to the solar wind parameters can be expressed as Inight=1.45-0.20 Bs IMF + 0.32 Psw, where BsIMF is the IMF southward component. The dayside ring current poorly correlates with the solar wind parameters.
Protons as the prime contributors to storm time ring current
Berko, F. W.; Cahill, L. J., Jr.; Fritz, T. A.
1975-01-01
Following a large sudden commencement on June 17, 1972, a large magnetic storm evolved, with a well-developed main phase and recovery phase. Explorer 45 (S3-A), with its apogee near 16 hours local time in June, measured the equatorial particle populations and magnetic field throughout this period. By use of data obtained during the symmetric recovery phase it is shown that through a series of self-consistent calculations, the measured protons, with energies from 1 to 872 keV, can account for almost all of the observed ring current magnetic effects within the limits of experimental uncertainties. This enables us to set an upper limit to the heavy ion contribution to the storm time ring current of a few percent of the proton contribution.
Comparison of Ring Current and Radiation Belt Responses during Transient Solar Wind Structures
Mulligan, T. L.; Roeder, J. L.; Lemon, C.; Fennell, J. F.
2013-12-01
The analysis of radiation belt dynamics provides insight into the physical mechanisms of trapping, energization, and loss of energetic particles in the magnetosphere. It is well known that the storm-time ring current response to solar wind drivers changes the magnetic field in the inner magnetosphere, which modifies radiation belt particle trajectories as well as the magnetopause and geomagnetic cutoff locations. What is not well known is the detailed space-time structure of solar wind transient features that drive the dynamics of the ring-current and radiation belt response. We compare observed responses of the ring current and radiation belts during two geomagnetic storms of similar intensity on 15 November 2012 and 29 June 2013. Using the self-consistent ring current model RCM-Equilibrium (RCM-E), which ensures a force-balanced ring-current response at each time step, we generate a simulated ring current in response to the changing conditions as the storm evolves on a timescale of hours. Observations of the plasma sheet particles, fields, and solar wind parameters are used to specify the dynamic boundary conditions as the storm evolves. This allows more realistic magnetospheric field and plasma dynamics during solar wind transients than can be obtained from existing empirical models. Using a spatial mapping algorithm developed by Mulligan et al., (2012) we create two-dimensional contour maps of the solar wind bulk plasma parameters using ACE, Wind, Geotail, and THEMIS data to quantitatively follow upstream spatial variations in the radial and azimuthal dimensions driving the storm. We perform a comparison of how the structure and impact angle of the solar wind transients affect the intensity and duration of energization of the ring current and radiation belt at various energies. We also investigate how the varying geomagnetic conditions determined by the solar wind affect dominant loss mechanisms such as magnetopause shadowing. Comparison of energetic particle
Persistent Currents in the Double Aharonov-Bohm Ring Connected to Electron Reservoirs
ZHANG Ying; XIAO Jing-Lin
2007-01-01
We study persistent currents in the double Aharonov-Bohm ring connected to two electron reservoirs by quantum waveguide theory. It is found that the persistent currents in the double Aharonov-Bohm ring depend on the direction of the current flow from one reservoir to another. When the direction of the current flow reverses, the persistent current in each ring of the double Aharonov-Bohm ring changes. If the two rings are of the same size, the persistent currents in the left and the right rings exchange at the reversal of the current flow direction.
Modelling of the ring current in Saturn's magnetosphere
Giampieri, G.; Dougherty, M.
2004-02-01
. The existence of a ring current inside Saturn's magnetosphere was first suggested by smith80 and ness81,ness82, in order to explain various features in the magnetic field observations from the Pioneer 11 and Voyager 1 and 2 spacecraft. connerney83 formalized the equatorial current model, based on previous modelling work of Jupiter's current sheet and estimated its parameters from the two Voyager data sets. Here, we investigate the model further, by reconsidering the data from the two Voyager spacecraft, as well as including the Pioneer 11 flyby data set. First, we obtain, in closed form, an analytic expression for the magnetic field produced by the ring current. We then fit the model to the external field, that is the difference between the observed field and the internal magnetic field, considering all the available data. In general, through our global fit we obtain more accurate parameters, compared to previous models. We point out differences between the model's parameters for the three flybys, and also investigate possible deviations from the axial and planar symmetries assumed in the model. We conclude that an accurate modelling of the Saturnian disk current will require taking into account both of the temporal variations related to the condition of the magnetosphere, as well as non-axisymmetric contributions due to local time effects.
Dynamic explicit FE modeling of hot ring rolling process
WANG Min; YANG He; SUN Zhi-chao; GUO Liang-gang; OU Xin-zhe
2006-01-01
A new FE modeling method of hot ring rolling was presented by solving key technologies such as contact and heat boundary conditions, motion control over guide rolls, and mass scaling. The method has the following features: 1) the elastic-plastic dynamic explicit approach instead of the static implicit approach is adopted to solve the process so as to greatly improve computational efficiency without sacrificing computational accuracy; 2) the coupled thermal-mechanical effect is considered as opposed to the conventional isothermal assumption, which is more practical; 3) in contrast to the simplified 2D or local 3D ring model, the full 3D ring is modeled to simulate the process. Based on the FE modeling method, two cases of hot plain ring rolling are simulated in the FEA software ABAQUS/Explicit. The simulation results are compared with the experimental measurements and the good agreement between them is observed regarding the material flow and the temperature distribution of the ring.
Simulation of Spin-orbit Dynamics in Storage Rings
Ivanov, A.; Andrianov, S.; Senichev, Yu.
2016-09-01
In the article a mapping approach based on nonlinear matrix integration for longterm spin-orbit dynamics simulation is briefly described. Using this technique the nonlinear effects of spin dynamics in an electrostatics storage ring are investigated. Namely, the fringe fields, the energy conservation law and the random field errors are considered. The necessity of examination of such effects arises, for example, in the storage ring design for search the Electrical Dipole Moment of proton and deuteron. The EDM ring is proposed to measure EDM using the spin transformation of polarized particle in the magneto-electrostatic elements of the ring. The article consists of short description of the spin-orbit simulation results based on the nonlinear model.
Short-Term Forecasting of Radiation Belt and Ring Current
Fok, Mei-Ching
2007-01-01
A computer program implements a mathematical model of the radiation-belt and ring-current plasmas resulting from interactions between the solar wind and the Earth s magnetic field, for the purpose of predicting fluxes of energetic electrons (10 keV to 5 MeV) and protons (10 keV to 1 MeV), which are hazardous to humans and spacecraft. Given solar-wind and interplanetary-magnetic-field data as inputs, the program solves the convection-diffusion equations of plasma distribution functions in the range of 2 to 10 Earth radii. Phenomena represented in the model include particle drifts resulting from the gradient and curvature of the magnetic field; electric fields associated with the rotation of the Earth, convection, and temporal variation of the magnetic field; and losses along particle-drift paths. The model can readily accommodate new magnetic- and electric-field submodels and new information regarding physical processes that drive the radiation-belt and ring-current plasmas. Despite the complexity of the model, the program can be run in real time on ordinary computers. At present, the program can calculate present electron and proton fluxes; after further development, it should be able to predict the fluxes 24 hours in advance
Z-ring Structure and Constriction Dynamics in E. coli
Pramod Kumar
2017-09-01
Full Text Available The Z-ring plays a central role in bacterial division. It consists of FtsZ filaments, but the way these reorganize in the ring-like structure during septation remains largely unknown. Here, we measure the effective constriction dynamics of the ring. Using an oscillating optical trap, we can switch individual rod-shaped E. coli cells between horizontal and vertical orientations. In the vertical orientation, the fluorescent Z-ring image appears as a symmetric circular structure that renders itself to quantitative analysis. In the horizontal orientation, we use phase-contrast imaging to determine the extent of the cell constriction and obtain the effective time of division. We find evidence that the Z-ring constricts at a faster rate than the cell envelope such that its radial width (inwards from the cytoplasmic membrane grows during septation. In this respect, our results differ from those recently obtained using photoactivated localization microscopy (PALM where the radial width of the Z-ring was found to be approximately constant as the ring constricts. A possible reason for the different behavior of the constricting Z-rings could be the significant difference in the corresponding cell growth rates.
An upper ocean current jet and internal waves in a Gulf Stream warm core ring
Joyce, T. M.; Stalcup, M. C.
1984-01-01
On June 22, 1982, the R/V Endeavor, while participating in a multi-ship study of a warm core ring 82B, encountered a strong front in the core of the ring. The vessel was headed on a radial section outward from ring center while a CTD was repeatedly raised and lowered between 10 and 300 m. Current profiles in the upper 100 m were obtained continuously with a Doppler acoustic profiling system. Above the shallow 45 m seasonal thermocline, a current jet of 4 km width was encountered having a central core of relatively light water and a maximum current of 1.1 m/s. This jet was both highly nonlinear and totally unexpected. A high frequency packet of directional internal waves was acoustically observed in the seasonal thermocline at the outer edge of the jet. Vertical velocities were large enough (6 cm/s) as to be directly observable in the Doppler returns. The waves were propagating from the northeast, parallel to the ship track, and orthogonal to the jet toward the center of the warm core ring. While a nonlinear, centrifugal term was required for the force balance of the jet, the high-frequency internal wave packet could be explained with linear, gravest-mode wave dynamics.
Lower Current Large Deviations for Zero-Range Processes on a Ring
Chleboun, Paul; Grosskinsky, Stefan; Pizzoferrato, Andrea
2017-04-01
We study lower large deviations for the current of totally asymmetric zero-range processes on a ring with concave current-density relation. We use an approach by Jensen and Varadhan which has previously been applied to exclusion processes, to realize current fluctuations by travelling wave density profiles corresponding to non-entropic weak solutions of the hyperbolic scaling limit of the process. We further establish a dynamic transition, where large deviations of the current below a certain value are no longer typically attained by non-entropic weak solutions, but by condensed profiles, where a non-zero fraction of all the particles accumulates on a single fixed lattice site. This leads to a general characterization of the rate function, which is illustrated by providing detailed results for four generic examples of jump rates, including constant rates, decreasing rates, unbounded sublinear rates and asymptotically linear rates. Our results on the dynamic transition are supported by numerical simulations using a cloning algorithm.
Dynamic specific heat of frustrated Ising spin rings
Ismail, G
2003-01-01
The dynamic specific heat C(omega) is calculated exactly for rings of six coupled Ising spins within Glauber dynamics. We used the response of the internal energy to small temperature oscillations to find C(omega). The spin glass (SG) and disordered ferromagnetic (DFM) rings showed here have four energy minima and thus four diverging relaxation times in the time evolution of magnetization and three such times in the evolution of energy. The properties of the real and imaginary parts of dynamic specific heat are investigated for different temperatures and frequencies. The dynamic susceptibility is affected by the longest relaxing mode while the dynamic specific heat is not. Our results confirm that C(omega) is sensitive only to rapidly relaxing processes for ferromagnetic (FM) and anti-ferromagnetic (AFM) cases. (Author)
Effects of Magnetic Flux Circulation on Radiation Belt and Ring Current Populations
Mitchell, E. J.; Fok, M. H.
2011-12-01
The orientation of the interplanetary magnetic field (IMF) determines the location of the dayside merging line and the magnetic flux circulation patterns. Magnetic flux circulation determines the amount of energy which enters the magnetosphere and ionosphere. We use the Lyon-Fedder-Mobarry (LFM) global Magneto-Hydro-Dynamic (MHD) code to simulate both idealized and real solar wind cases. We use several satellites to validate the LFM simulation results for the real solar wind case studies. With these cases, we examine the magnetic flux circulation under differing IMF orientations. We also use the Comprehensive Ring Current Model (CRCM) and Radiation Belt Environment (RBE) model to examine the inner magnetospheric response to the orientation of the IMF. We will present the different magnetic flux circulation patterns and the resulting effects on the radiation belt and ring current population.
Stormtime transport of ring current and radiation belt ions
Chen, Margaret W.; Schulz, Michael; Lyons, L. R.; Gorney, David J.
1993-01-01
This is an investigation of stormtime particle transport that leads to formation of the ring current. Our method is to trace the guiding-center motion of representative ions (having selected first adiabatic invariants mu) in response to model substorm-associated impulses in the convection electric field. We compare our simulation results qualitatively with existing analytically tractable idealizations of particle transport (direct convective access and radial diffusion) in order to assess the limits of validity of these approximations. For mu approximately less than 10 MeV/G (E approximately less than 10 keV at L equivalent to 3) the ion drift period on the final (ring-current) drift shell of interest (L equivalent to 3) exceeds the duration of the main phase of our model storm, and we find that the transport of ions to this drift shell is appropriately idealized as direct convective access, typically from open drift paths. Ion transport to a final closed drift path from an open (plasma-sheet) drift trajectory is possible for those portions of that drift path that lie outside the mean stormtime separatrix between closed and open drift trajectories, For mu approximately 10-25 MeV/G (110 keV approximately less than E approximately less than 280 keV at L equivalent to 3) the drift period at L equivalent to 3 is comparable to the postulated 3-hr duration of the storm, and the mode of transport is transitional between direct convective access and transport that resembles radial diffusion. (This particle population is transitional between the ring current and radiation belt). For mu approximately greater than 25 MeV/G (radiation-belt ions having E approximately greater than 280 keV at L equivalent to 3) the ion drift period is considerably shorter than the main phase of a typical storm, and ions gain access to the ring-current region essentially via radial diffusion. By computing the mean and mean-square cumulative changes in 1/L among (in this case) 12 representative
Operational advances in ring current modeling using RAM-SCB
Welling, Daniel T [Los Alamos National Laboratory; Jordanova, Vania K [Los Alamos National Laboratory; Zaharia, Sorin G [Los Alamos National Laboratory; Morley, Steven K [Los Alamos National Laboratory
2010-12-03
The Ring current Atmosphere interaction Model with Self-Consistently calculated 3D Magnetic field (RAM-SCB) combines a kinetic model of the ring current with a force-balanced model of the magnetospheric magnetic field to create an inner magnetospheric model that is magnetically self consistent. RAM-SCB produces a wealth of outputs that are valuable to space weather applications. For example, the anisotropic particle distribution of the KeV-energy population calculated by the code is key for predicting surface charging on spacecraft. Furthermore, radiation belt codes stand to benefit substantially from RAM-SCB calculated magnetic field values and plasma wave growth rates - both important for determining the evolution of relativistic electron populations. RAM-SCB is undergoing development to bring these benefits to the space weather community. Data-model validation efforts are underway to assess the performance of the system. 'Virtual Satellite' capability has been added to yield satellite-specific particle distribution and magnetic field output. The code's outer boundary is being expanded to 10 Earth Radii to encompass previously neglected geosynchronous orbits and allow the code to be driven completely by either empirical or first-principles based inputs. These advances are culminating towards a new, real-time version of the code, rtRAM-SCB, that can monitor the inner magnetosphere conditions on both a global and spacecraft-specific level. This paper summarizes these new features as well as the benefits they provide the space weather community.
A Rational Approach to Ring Flexibility in Internal Coordinate Dynamics
Mazur, A K
1998-01-01
Internal coordinate molecular dynamics (ICMD) is an efficient method for studying biopolymers, but it is readily applicable only to molecules with tree topologies, that is with no internal flexible rings. Common examples violating this condition are prolines and loops closed by S-S bridges in proteins. The most important such case, however, is nucleic acids because the flexibility of the furanose rings always plays an essential role in conformational transitions both in DNA and RNA. There are a few long-known theoretical approaches to this problem, but, in practice, rings with fixed bond lengths are closed by adding appropriate harmonic distance restraints, which is not always acceptable especially in dynamics. This paper tries to overcome this handicap of ICMD and proposes a rational strategy which results in practical numerical algorithms. It gives a unified analytical treatment which shows that this problem is very close to the difficulties encountered by the method of constraints in Cartesian coordinate d...
State-of-Art Empirical Modeling of Ring Current Plasma Pressure
Yue, C.; Ma, Q.; Wang, C. P.; Bortnik, J.; Thorne, R. M.
2015-12-01
The plasma pressure in the inner magnetosphere plays a key role in plasma dynamics by changing magnetic field configurations and generating the ring current. In this study, we present our preliminary results of empirically constructing 2D equatorial ring current pressure and pressure anisotropy spatial distributions controlled by Dst based on measurements from two particle instruments (HOPE and RBSPICE) onboard Van Allen Probes. We first obtain the equatorial plasma perpendicular and parallel pressures for different species including H+, He+, O+ and e- from 20 eV to ~1 MeV, and investigate their relative contributions to the total plasma pressure and pressure anisotropy. We then establish empirical equatorial pressure models within ~ 6 RE using a state-of-art machine learning technique, Support Vector Regression Machine (SVRM). The pressure models predict equatorial perpendicular and parallel plasma thermal pressures (for each species and for total pressures) and pressure anisotropy at any given r, MLT, Bz/Br (equivalent Z distance), and Dst within applicable ranges. We are currently validating our model predictions and investigating how the ring current pressure distributions and the associated pressure gradients vary with Dst index.
Bichromatic emission and multimode dynamics in bidirectional ring lasers
Pérez-Serrano, Antonio; Javaloyes, Julien; Balle, Salvador
2010-04-01
The multimode dynamics of a two-level ring laser is explored numerically using a bidirectional traveling wave model retaining the spatial effects due to the presence of counter-propagating electric fields in the population inversion. Dynamical regimes where the emission in each direction occurs at different wavelengths are studied. Mode-locked unidirectional emission for large gain bandwidth and relatively small detuning is reported.
Computational Modelling of Piston Ring Dynamics in 3D
Dlugoš Jozef
2014-12-01
Full Text Available Advanced computational models of a piston assembly based on the level of virtual prototypes require a detailed description of piston ring behaviour. Considering these requirements, the piston rings operate in regimes that cannot, in general, be simplified into an axisymmetric model. The piston and the cylinder liner do not have a perfect round shape, mainly due to machining tolerances and external thermo-mechanical loads. If the ring cannot follow the liner deformations, a local loss of contact occurs resulting in blow-by and increased consumption of lubricant oil in the engine. Current computational models are unable to implement such effects. The paper focuses on the development of a flexible 3D piston ring model based on the Timoshenko beam theory using the multibody system (MBS. The MBS model is compared to the finite element method (FEM solution.
Non-Linear Dynamics of Saturn’s Rings
Esposito, Larry W.
2015-11-01
Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects
A Formulation of the Ring Polymer Molecular Dynamics
Horikoshi, Atsushi
2014-01-01
The exact formulation of the path integral centroid dynamics is extended to include composites of the position and momentum operators. We present the generalized centroid dynamics (GCD), which provides a basis to calculate Kubo-transformed correlation functions by means of classical averages. We define various types of approximate GCD, one of which is equivalent to the ring polymer molecular dynamics (RPMD). The RPMD and another approximate GCD are tested in one-dimensional harmonic system, and it is shown that the RPMD works better in the short time region.
Resonant Charge Current in a Rashba Ring Induced by Spin-Dependent Potential
JIANG Zhan-Feng; LI Hong
2008-01-01
A one-dimensional ring subject to Rashba spin-orbit coupling is investigated. When it is attached to a lead with spin-dependent chemical potential, there will be charge current in the ring. The charge current response is resonantly maximized when the Fermi energy of the lead is equal to any energy level of the 1D ring. And if two probes are attached to the ring, the electric voltage between them creates sawtooth-like wave, which indicates the direction of the charge current. A ferromagnetic lead can also induce persistent charge current, which can be detected by magnetization intensity measurement.
RPMDrate: Bimolecular chemical reaction rates from ring polymer molecular dynamics
Suleimanov, Yu.V.
2013-03-01
We present RPMDrate, a computer program for the calculation of gas phase bimolecular reaction rate coefficients using the ring polymer molecular dynamics (RPMD) method. The RPMD rate coefficient is calculated using the Bennett-Chandler method as a product of a static (centroid density quantum transition state theory (QTST) rate) and a dynamic (ring polymer transmission coefficient) factor. The computational procedure is general and can be used to treat bimolecular polyatomic reactions of any complexity in their full dimensionality. The program has been tested for the H+H2, H+CH 4, OH+CH4 and H+C2H6 reactions. © 2012 Elsevier B.V. All rights reserved.
Dynamic behavior and complexity of modulated optical micro ring resonator
Lei Yang; Wei Pan; Bin Luo; ShuiYing Xiang; Ning Jiang
2011-01-01
@@ The dynamic behavior of an optical micro ring resonator (OMRR) with an amplitude modulator positioned in the micro ring is investigated quantitatively by adopting a recently introduced quantifier, the permutation entropy (PE).The effects of modulation depth are focused on, and the roles of input power are considered.The two-dimensional (2D) maps of PE showing dependence on both modulation depth and input power are presented as well.PE values nearly increase with modulation depth.On the other hand, the optimal value of input power is achieved when the PE reaches its maximum.Thus, PE can successfully quantify the dynamics of modulated OMRR.Selecting the parameters in the region with high PE values would contribute to the complexity-enhanced OMRR-based chaotic communication systems.%The dynamic behavior of an optical micro ring resonator (OMRR) with an amplitude modulator positioned in the micro ring is investigated quantitatively by adopting a recently introduced quantifier, the permutation entropy (PE). The effects of modulation depth are focused on, and the roles of input power are considered. The two-dimensional (2D) maps of PE showing dependence on both modulation depth and input power are presented as well. PE values nearly increase with modulation depth. On the other hand, the optimal value of input power is achieved when the PE reaches its maximum. Thus, PE can successfully quantify the dynamics of modulated OMRR. Selecting the parameters in the region with high PE values would contribute to the complexity-enhanced OMRR-based chaotic communication systems.
Ring Current-Electromagnetic Ion Cyclotron Waves Coupling
Khazanov, G. V.
2005-01-01
The effect of Electromagnetic Ion Cyclotron (EMIC) waves, generated by ion temperature anisotropy in Earth s ring current (RC), is the best known example of wave- particle interaction in the magnetosphere. Also, there is much controversy over the importance of EMIC waves on RC depletion. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt (RB) by EMIC wave scattering during a magnetic storm. That is why the calculation of EMIC waves must be a very critical part of the space weather studies. The new RC model that we have developed and present for the first time has several new features that we have combine together in a one single model: (a) several lower frequency cold plasma wave modes are taken into account; (b) wave tracing of these wave has been incorporated in the energy EMIC wave equation; (c) no assumptions regarding wave shape spectra have been made; (d) no assumptions regarding the shape of particle distribution have been made to calculate the growth rate; (e) pitch-angle, energy, and mix diffusions are taken into account together for the first time; (f) the exact loss-cone RC analytical solution has been found and coupled with bounce-averaged numerical solution of kinetic equation; (g) the EMIC waves saturation due to their modulation instability and LHW generation are included as an additional factor that contributes to this process; and (h) the hot ions were included in the real part of dielectric permittivity tensor. We compare our theoretical results with the different EMIC waves models as well as RC experimental data.
The dynamics of rings around small, irregular bodies
Sicardy, Bruno
2017-06-01
Stellar occultations revealed the presence of two dense rings around the Centaur object (10199) Chariklo (Braga-Ribas et al., Nature 508, 72, 2014). This is the first ring system discovered around an object that is not a giant planet, suggesting that rings may exist around numerous bodies in the solar system. Chariklo's rings roughly reside at the outer limit of the Roche zone of the body. Moreover, the main ring has sharp edges, which call for the presence of putative shepherd satellites. Those characteristics give an image of Chariklo's rings that are rather similar, in terms of dynamics, to those surrounding the gaseous planets.An important difference exists, however, between giant planets and small bodies: the formers are highly axisymmetric, while the latters can support mass anomalies (eg surface topographic features) or non-spherical shapes (eg an ellipsoidal figure of equilibrium) that involve masses, relative to the body itself, as large as 10-4-10-3.We investigate the effect of non-axisymmetric terms in the potential of the body upon a collisional debris disk that initially surrounds a small irregular body. We show that the corotation points being maxima of energy, dissipative collisions remove the particles from the corotation zone over short time scales (< 106 years). Moreover, the Lindblad resonances inside the corotation radius create torques that drive the particles onto the surface of the central body. Conversely, the outer Lindblad resonances push the disk material beyond the outer 3/2 and 2/1 Lindblad resonances.Taking as an example Chariklo's ring system, for which recent data have been obtained from stellar occultations, we show that the Lindblad resonant torques actuate over short time scales (< 106 years). This general picture offers a natural explanation of the presence of dense rings at the outer limit of Chariklo's Roche zone, and their absence closer to the body.The work leading to this results has received funding from the European
Probing the dynamics of Andreev states in a coherent normal/superconducting ring.
Chiodi, F; Ferrier, M; Tikhonov, K; Virtanen, P; Heikkilä, T T; Feigelman, M; Guéron, S; Bouchiat, H
2011-01-01
The supercurrent that establishes between two superconductors connected through a normal N mesoscopic link is carried by quasiparticule states localized within the link, the "Andreev bound states (ABS)". Whereas the dc properties of this supercurrent in SNS junctions are now well understood, its dynamical properties are still an unresolved issue. In this letter we probe this dynamics by inductively coupling an NS ring to a multimode superconducting resonator, thereby implementing both a phase bias and current detection at high frequency. Whereas at very low temperatures we essentially measure the phase derivative of the supercurrent, at higher temperature we find a surprisingly strong frequency dependence in the current response of the ring: the ABS do not follow adiabatically the phase modulation. This experiment also illustrates a new tool to probe the fundamental time scales of phase coherent systems that are decoupled from macroscopic normal contacts and thermal baths.
Dynamical 3-Space: Alternative Explanation of the "Dark Matter Ring"
Cahill R. T.
2007-10-01
Full Text Available NASA has claimed the discovery of a “Ring of Dark Matter” in the galaxy cluster CL 0024 +17, see Jee M.J. et al. arXiv:0705.2171, based upon gravitational lensing data. Here we show that the lensing can be given an alternative explanation that does not involve “dark matter”. This explanation comes from the new dynamics of 3-space. This dynamics involves two constant G and alpha — the fine structure constant. This dynamics has explained the bore hole anomaly, spiral galaxy flat rotation speeds, the masses of black holes in spherical galaxies, gravitational light bending and lensing, all without invoking “dark matter”, and also the supernova redshift data without the need for “dark energy”.
Dynamic nonlinear thermal optical effects in coupled ring resonators
Chenguang Huang
2012-09-01
Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.
Polar rings dynamics in the triaxial dark matter halo
Khoperskov, S A; Khoperskov, A V
2012-01-01
Spectroscopic observations at the Russian 6-m telescope are used to study the two polar ring galaxies (PRGs) from the catalogue by Moiseev et al.: SPRC-7 and SPRC-260. We have analyzed the kinematics of the stellar component of the central galaxies as well as the ionized gas kinematics in the external ring structures. The disc-halo decomposition of rotation curves in two perpendicular directions are considered. The observed 2D velocity fields are compared with the model predictions for different dark halo shapes. Based on these data, we constrain that for potential of DM halo semiaxis ratios is $s=0.8$, $q=1$ for SPRC-7 and $s=0.95$, $q=1.1$ for SPRC-260. Using 3D hydrodynamic simulations we also study the dynamics and evolution of the polar component in the potential of the galactic disc and dark halo for these two galaxies. We show that the polar component is dynamically quasi-stable on the scale of $\\sim10$ dynamical times (about a few Gyr). This is demonstrate the possibility for the growth of a spiral st...
Assessing the role of oxygen on ring current formation and evolution through numerical experiments
Ilie, R.; Liemohn, M. W.; Toth, G.; Yu Ganushkina, N.; Daldorff, L. K. S.
2015-06-01
We address the effect of ionospheric outflow and magnetospheric ion composition on the physical processes that control the development of the 5 August 2011 magnetic storm. Simulations with the Space Weather Modeling Framework are used to investigate the global dynamics and energization of ions throughout the magnetosphere during storm time, with a focus on the formation and evolution of the ring current. Simulations involving multifluid (with variable H+/O+ ratio in the inner magnetosphere) and single-fluid (with constant H+/O+ ratio in the inner magnetosphere) MHD for the global magnetosphere with inner boundary conditions set either by specifying a constant ion density or by physics-based calculations of the ion fluxes reveal that dynamical changes of the ion composition in the inner magnetosphere alter the total energy density of the magnetosphere, leading to variations in the magnetic field as well as particle drifts throughout the simulated domain. A low oxygen to hydrogen ratio and outflow resulting from a constant ion density boundary produced the most disturbed magnetosphere, leading to a stronger ring current but misses the timing of the storm development. Conversely, including a physics-based solution for the ionospheric outflow to the magnetosphere system leads to a reduction in the cross-polar cap potential (CPCP). The increased presence of oxygen in the inner magnetosphere affects the global magnetospheric structure and dynamics and brings the nightside reconnection point closer to the Earth. The combination of reduced CPCP together with the formation of the reconnection line closer to the Earth yields less adiabatic heating in the magnetotail and reduces the amount of energetic plasma that has access to the inner magnetosphere.
Dynamic states of a unidirectional ring of chen oscillators
Carvalho, Ana [Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4440-452 Porto, Portugal up200802541@fc.up.pt (Portugal); Pinto, Carla M.A. [School of Engineering, Polytechnic of Porto, Rua Dr António Bernardino de Almeida, 431, 4200-072 Porto, Portugal cap@isep.ipp.pt (Portugal)
2015-03-10
We study curious dynamical patterns appearing in a network of a unidirectional ring of Chen oscillators coupled to a ‘buffer’ cell. The network has Z{sub 3} exact symmetry group. We simulate the coupled cell systems associated to the two networks and obtain steady-states, rotating waves, quasiperiodic behavior, and chaos. The different patterns appear to arise through a sequence of Hopf, period-doubling and period-halving bifurcations. The network architecture appears to explain some patterns, whereas the properties of the chaotic oscillator may explain others. We use XPPAUT and MATLAB to compute numerically the relevant states.
Chaotic dynamics in a storage-ring Free Electron Laser
De Ninno, G; Bruni, C; Couprie, Marie Emmanuelle
2002-01-01
The temporal dynamics of a storage-ring Free Electron Laser is here investigated with particular attention to the case in which an external modulation is applied to the laser-electron beam detuning. The system is shown to produce bifurcations, multi-furcations as well as chaotic regimes. The peculiarities of this phenomenon with respect to the analogous behavior displayed by conventional laser sources are pointed out. Theoretical results, obtained by means of a phenomenological model reproducing the evolution of the main statistical parameters of the system, are shown to be in a good agreement with experiments carried out on the Super-ACO Free Electron Laser.
Cuzzi, J. N.
2014-12-01
The rings are changing before our eyes; structure varies on all timescales and unexpected things have been discovered. Many questions have been answered, but some answers remain elusive (see Cuzzi et al 2010 for a review). Here we highlight the major ring science progress over the mission to date, and describe new observations planned for Cassini's final three years. Ring Composition and particle sizes: The rings are nearly all water ice with no other ices - so why are they reddish? The C Ring and Cassini Division are "dirtier" than the more massive B and A Rings, as shown by near-IR and, recently, microwave observations. Particle sizes, from stellar and radio occultations, vary from place to place. Ring structure, micro and macro: numerous spiral density waves and ubiquitous "self-gravity wakes" reveal processes which fostered planet formation in the solar system and elsewhere. However, big puzzles remain regarding the main ring divisions, the C Ring plateau structures, and the B Ring irregular structure. Moonlets, inside and out, seen and unseen: Two gaps contain sizeable moonlets, but more gaps seem to contain none; even smaller embedded "propeller" objects wander, systematically or randomly, through the A ring. Rubble pile ringmoons just outside the rings may escaped from the rings, and the recently discovered "Peggy" may be trying this as we watch. Impact bombardment of the rings: Comet fragments set the rings to rippling on century-timescales, and boulders crash through hourly; meanwhile, the constant hail of infalling Kuiper belt material has a lower mass flux than previously thought. Origin and Age of the Rings: The ring mass and bombardment play key roles. The ring mass is well known everywhere but in the B Ring (where most of it is). New models suggest how tidal breakup of evolving moons may have formed massive ancient rings, of which the current ring is just a shadow. During its last three years, the Cassini tour profile will allow entirely new
Bunce, E. J.; Arridge, C. S.; Cowley, S. W. H.; Dougherty, M. K.
2008-02-01
Ring current modeling in Saturn's magnetosphere using Pioneer-11, Voyager, and Cassini data has shown that the size and strength of the current system grows with the extension of the magnetosphere, governed by the solar wind dynamic pressure. Here we show that the consequent middle magnetosphere field is quasi-dipolar in form when the magnetosphere is strongly compressed, but extends into a magnetodisc when it is strongly expanded. We also show that the region occupied by the modeled ring current corresponds to an essentially fixed shell of field lines that expands and contracts with the size of the system, thus mapping to an almost fixed co-latitude range in Saturn's ionosphere, between ~14° and ~20° in the northern hemisphere, and ~16° and ~22° in the southern hemisphere. The median dayside UV auroral oval is found to map from near the poleward edge of the modeled ring current toward the boundary of open field lines at smaller co-latitudes. In the equatorial plane this corresponds to a layer ~2-5 Saturn radius wide (depending on magnetosphere size), extending from near the outer edge of the ring current to the vicinity of the magnetopause.
Self-Consistent Ring Current/Electromagnetic Ion Cyclotron Waves Modeling
Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.
2006-01-01
The self-consistent treatment of the RC ion dynamics and EMIC waves, which are thought to exert important influences on the ion dynamical evolution, is an important missing element in our understanding of the storm-and recovery-time ring current evolution. For example, the EMlC waves cause the RC decay on a time scale of about one hour or less during the main phase of storms. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Under certain conditions, relativistic electrons, with energies 21 MeV, can be removed from the outer radiation belt by EMIC wave scattering during a magnetic storm. That is why the modeling of EMIC waves is critical and timely issue in magnetospheric physics. This study will generalize the self-consistent theoretical description of RC ions and EMIC waves that has been developed by Khazanov et al. [2002, 2003] and include the heavy ions and propagation effects of EMIC waves in the global dynamic of self-consistent RC - EMIC waves coupling. The results of our newly developed model that will be presented at the meeting, focusing mainly on the dynamic of EMIC waves and comparison of these results with the previous global RC modeling studies devoted to EMIC waves formation. We also discuss RC ion precipitations and wave induced thermal electron fluxes into the ionosphere.
Wu Suzhi; Li Ning [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Jin Guojun [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)], E-mail: gjin@nju.edu.cn; Ma Yuqiang [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)
2008-03-24
Persistent current and transmission probability in the Aharonov-Bohm (AB) ring with an embedded quantum dot (QD) are studied using the technique of the scattering matrix. For the first time, we find that the persistent current can arise in the absence of magnetic flux in the ring with an embedded QD. The persistent current and the transmission probability are sensitive to the lead-ring coupling and the short-range potential barrier. It is shown that increasing the lead-ring coupling or the short-range potential barrier causes the suppression of the persistent current and the increasing resonance width of the transmission probability. The effect of the potential barrier on the number of the transmission peaks is also investigated. The dependence of the persistent current and the transmission probability on the magnetic flux exhibits a periodic property with period of the flux quantum.
Adelina eGeyer
2014-09-01
Full Text Available The term collapse caldera refers to those volcanic depressions resulting from the sinking of the chamber roof due to the rapid withdrawal of magma during the course of an eruption. During the last three decades, collapse caldera dynamics has been the focus of attention of numerous, theoretical, numerical and experimental studies. Nonetheless, even if there is a tendency to go for a general and comprehensive caldera dynamics model, some key aspects remain unclear, controversial or completely unsolved. This is the case of ring fault nucleation points and propagation and dip direction. Since direct information on calderas’ deeper structure comes mainly from partially eroded calderas or few witnessed collapses, ring faults layout at depth remains still uncertain. This has generated a strong debate over the detailed internal fault and fracture configuration of a caldera collapse and, in more detail, how ring faults initiate and propagate. We offer here a very short description of the main results obtained by those analogue and theoretical/mathematical models applied to the study of collapse caldera formation. We place special attention on those observations related to the nucleation and propagation of the collapse-controlling ring faults. This summary is relevant to understand the current state-of-the-art of this topic and it should be taken under consideration in future works dealing with collapse caldera dynamics.
Localized persistent spin currents in defect-free quasiperiodic rings with Aharonov–Casher effect
Qiu, R.Z.; Chen, C.H.; Cheng, Y.H.; Hsueh, W.J., E-mail: hsuehwj@ntu.edu.tw
2015-06-26
We propose strongly localized persistent spin current in one-dimensional defect-free quasiperiodic Thue–Morse rings with Aharonov–Casher effect. The results show that the characteristics of these localized persistent currents depend not only on the radius filling factor, but also on the strength of the spin–orbit interaction. The maximum persistent spin currents in systems always appear in the ring near the middle position of the system array whether or not the Thue–Morse rings array is symmetrical. The magnitude of the persistent currents is proportional to the sharpness of the resonance peak, which is dependent on the bandwidth of the allowed band in the band structure. The maximum persistent spin currents also increase exponentially as the generation order of the system increases. - Highlights: • Strongly localized persistent spin current in quasiperiodic AC rings is proposed. • Localized persistent spin currents are much larger than those produced by traditional mesoscopic rings. • Characteristics of the localized persistent currents depend on the radius filling factor and SOI strength. • The maximum persistent current increases exponentially with the system order. • The magnitude of the persistent currents is related to the sharpness of the resonance.
Role of substorm-associated impulsive electric fields in the ring current development during storms
N. Yu. Ganushkina
2005-02-01
Full Text Available Particles with different energies produce varying contributions to the total ring current energy density as the storm progresses. Ring current energy densities and total ring current energies were obtained using particle data from the Polar CAMMICE/MICS instrument during several storms observed during the years 1996-1998. Four different energy ranges for particles are considered: total (1-200keV, low (1-20keV, medium (20-80keV and high (80-200keV. Evolution of contributions from particles with different energy ranges to the total energy density of the ring current during all storm phases is followed. To model this evolution we trace protons with arbitrary pitch angles numerically in the drift approximation. Tracing is performed in the large-scale and small-scale stationary and time-dependent magnetic and electric field models. Small-scale time-dependent electric field is given by a Gaussian electric field pulse with an azimuthal field component propagating inward with a velocity dependent on radial distance. We model particle inward motion and energization by a series of electric field pulses representing substorm activations during storm events. We demonstrate that such fluctuating fields in the form of localized electromagnetic pulses can effectively energize the plasma sheet particles to higher energies (>80keV and transport them inward to closed drift shells. The contribution from these high energy particles dominates the total ring current energy during storm recovery phase. We analyse the model contributions from particles with different energy ranges to the total energy density of the ring current during all storm phases. By comparing these results with observations we show that the formation of the ring current is a combination of large-scale convection and pulsed inward shift and consequent energization of the ring current particles.
Protons as the prime contributors to the storm time ring current. [measured from Explorer 45
Berko, F. W.; Cahill, L. J., Jr.; Fritz, T. A.
1974-01-01
Following a large magnetic storm (17 June 1972), Explorer 45 measured the equatorial particle populations and magnetic field. Using data obtained during the symmetic recovery phase, it is shown that through a series of self-consistent calculations, the measured protons with energies from 1 to 872 keV, can account for the observed ring current magnetic effects within experimental uncertainities. This enables an upper limit to be set for the heavy ion contribution to the storm time ring current.
A renormalization group study of persistent current in a quasiperiodic ring
Dutta, Paramita [Theoretical Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Sector-I, Block-AF, Bidhannagar, Kolkata-700 064 (India); Maiti, Santanu K., E-mail: santanu.maiti@isical.ac.in [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata-700 108 (India); Karmakar, S.N. [Theoretical Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Sector-I, Block-AF, Bidhannagar, Kolkata-700 064 (India)
2014-04-01
We propose a real-space renormalization group approach for evaluating persistent current in a multi-channel quasiperiodic Fibonacci tight-binding ring based on a Green's function formalism. Unlike the traditional methods, the present scheme provides a powerful tool for the theoretical description of persistent current with a very high degree of accuracy in large periodic and quasiperiodic rings, even in the micron scale range, which emphasizes the merit of this work.
Perspective of the study on the ring current - past, present and future
Ebihara, Y.
2016-12-01
The study of the ring current has a long history going back to the early 20th century. The ring current was predicted by Carl Stoermer to explain the equatorward movement of the auroral zone during magnetic storms. In 1917, Adolf Schmidt introduced the concept of the ring current to explain the global decrease of the geomagnetic field. Since then, number of studies have been accomplished in the context of the growth and recovery of magnetic storms. Observations have shown that protons and oxygen ions with energies 1 - 100 keV significantly increase during the storm main phase, which are most likely the major contributor to the storm-time ring current. When the loss of the ions dominates the injection of them, the storm recovery phase takes place. Immediate problems are the origin, transport and loss of the ions. All these relevant processes are essential to understand the growth and decay of the ring current. Derived problems, for example, include the entry of solar wind plasma into the magnetosphere, the outflow of ionospheric ions, generation of the convection electric field, influence of substorm-associated electric field, and pitch angle scattering of ions. Recalling that the ring current is the diamagnetic current, we shall consider the force balance and stress carefully. Generation of field-aligned currents is one of the consequences, which might redistribute the state of the inner magnetosphere including the plasmasphere, the ring current and the radiation belts. The ring current may also have a large influence on the geomagnetically induced current (GIC) on the ground at mid- and low-latitudes. The magnetic storms can be easily identified by looking at magnetograms, but the processes behind the magnetic storms cannot be easily understood because the processes depend on each other. From this sense, we shall pay much attention to the detailed function of each process as well as its role on the overall system. Dealing with the ring current as a complex system
Vidal, VíCtor M. V.; Vidal, Francisco V.; PéRez-Molero, José M.
1992-02-01
A Loop Current anticyclonic ring ˜330 km in diameter and extending to a depth of >1500 m was observed to collide in January of 1984 against the continental shelf slope of the western Gulf of Mexico between 21.5° and 23°N. The collision occurred precisely at the time we conducted our Argos 84-1 hydrographic cruise in the western gulf (26°00' to 19°20'N) aboard the R/V Justo Sierra. The Caribbean Subtropical Underwater (SUW) was used as a tracer to identify the Loop Current anticyclonic ring within the western gulf. The collision was identified from temperature and salinity distributions and from the dynamic topography distribution relative to 500 m. The ring's collision zone was identified by the presence of a horizontal baroclinic flow divergence, to the east of Tamiahua, that divides the surface circulation into northward and southward baroclinic currents parallel to the western gulf's continental shelf break, with speeds of 85 and 32 cm s-1, respectively. Horizontal divergence and vertical convergence (ring asymmetries) resulted at the focus of the anticyclonic ring's collision and originated the alongshore self advection and northward translation of the colliding anticyclone. Upon colliding the anticyclonic ring shed approximately one third of its volume (˜2 × 104 km3), mass, and transferred angular momentum to the south flanking water mass, thus generating a cyclonic ring to the south of the collision zone. The observed alongshelf southward current results from mass conservation and volume continuity requirements associated with the anticyclonic ring's volume shedding and most probably constitutes the colliding ring's potential vorticity conservation mechanism. The weakening of the anticyclonic ring's relative vorticity due to the collision is most likely made up by gain of vorticity from lateral shear in the northward and southward current jets parallel to the continental shelf break. The core of both the anticyclonic and cyclonic rings had typical SUW
Nonlinear and long-term beam dynamics in low energy storage rings
Papash, A. I.; Smirnov, A. V.; Welsch, C. P.
2013-06-01
Electrostatic storage rings operate at very low energies in the keV range and have proven to be invaluable tools for atomic and molecular physics. Because of the mass independence of electric rigidity, these machines are able to store a wide range of different particles, from light ions to heavy singly charged biomolecules, opening up unique research opportunities. However, earlier measurements have shown strong limitations in maximum beam intensity, fast decay of the stored ion current, and reduced beam lifetime. The nature of these effects has not been fully understood and an improved understanding of the physical processes influencing beam motion and stability in such rings is needed. In this paper, a comprehensive study into nonlinear and long-term beam dynamics studies is presented on the examples of a number of existing and planned electrostatic storage rings using the BETACOOL, OPERA-3D, and MAD-X simulation software. A detailed investigation into ion kinetics, under consideration of effects from electron cooling and multiple scattering of the beam on a supersonic gas jet target, is carried out and yields a consistent explanation of the physical effects in a whole class of storage rings. The lifetime, equilibrium momentum spread, and equilibrium lateral spread during collisions with the target are estimated. In addition, the results from experiments at the Test Storage Ring, where a low-intensity beam of CF+ ions at 93keV/u has been shrunk to extremely small dimensions, are reproduced. Based on these simulations, the conditions for stable ring operation with an extremely low-emittance beam are presented. Finally, results from studies into the interaction of 3-30 keV ions with a gas jet target are summarized.
Nonlinear and long-term beam dynamics in low energy storage rings
A. I. Papash
2013-06-01
Full Text Available Electrostatic storage rings operate at very low energies in the keV range and have proven to be invaluable tools for atomic and molecular physics. Because of the mass independence of electric rigidity, these machines are able to store a wide range of different particles, from light ions to heavy singly charged biomolecules, opening up unique research opportunities. However, earlier measurements have shown strong limitations in maximum beam intensity, fast decay of the stored ion current, and reduced beam lifetime. The nature of these effects has not been fully understood and an improved understanding of the physical processes influencing beam motion and stability in such rings is needed. In this paper, a comprehensive study into nonlinear and long-term beam dynamics studies is presented on the examples of a number of existing and planned electrostatic storage rings using the BETACOOL, OPERA-3D, and MAD-X simulation software. A detailed investigation into ion kinetics, under consideration of effects from electron cooling and multiple scattering of the beam on a supersonic gas jet target, is carried out and yields a consistent explanation of the physical effects in a whole class of storage rings. The lifetime, equilibrium momentum spread, and equilibrium lateral spread during collisions with the target are estimated. In addition, the results from experiments at the Test Storage Ring, where a low-intensity beam of CF^{+} ions at 93 keV/u has been shrunk to extremely small dimensions, are reproduced. Based on these simulations, the conditions for stable ring operation with an extremely low-emittance beam are presented. Finally, results from studies into the interaction of 3–30 keV ions with a gas jet target are summarized.
Localized persistent spin currents in defect-free quasiperiodic rings with Aharonov-Casher effect
Qiu, R. Z.; Chen, C. H.; Cheng, Y. H.; Hsueh, W. J.
2015-06-01
We propose strongly localized persistent spin current in one-dimensional defect-free quasiperiodic Thue-Morse rings with Aharonov-Casher effect. The results show that the characteristics of these localized persistent currents depend not only on the radius filling factor, but also on the strength of the spin-orbit interaction. The maximum persistent spin currents in systems always appear in the ring near the middle position of the system array whether or not the Thue-Morse rings array is symmetrical. The magnitude of the persistent currents is proportional to the sharpness of the resonance peak, which is dependent on the bandwidth of the allowed band in the band structure. The maximum persistent spin currents also increase exponentially as the generation order of the system increases.
Influence analysis of secondary O-ring seals in dynamic behavior of spiral groove gas face seals
Hu, Songtao; Huang, Weifeng; Liu, Xiangfeng; Wang, Yuming
2016-05-01
The current research on secondary O-ring seals used in mechanical seals has begun to focus on their dynamic properties. However, detailed analysis of the dynamic properties of O-ring seals in spiral groove gas face seals is lacking. In particular a transient study and a difference analysis of steady-state and transient performance are imperative. In this paper, a case study is performed to gauge the effect of secondary O-ring seals on the dynamic behavior (steady-state performance and transient performance) of face seals. A numerical finite element method (FEM) model is developed for the dynamic analysis of spiral groove gas face seals with a flexibly mounted stator in the axial and angular modes. The rotor tilt angle, static stator tilt angle and O-ring damping are selected to investigate the effect of O-ring seals on face seals during stable running operation. The results show that the angular factor can be ignored to save time in the simulation under small damping or undamped conditions. However, large O-ring damping has an enormous effect on the angular phase difference of mated rings, affecting the steady-state performance of face seals and largely increasing the possibility of face contact that reduces the service life of face seals. A pressure drop fluctuation is carried out to analyze the effect of O-ring seals on the transient performance of face seals. The results show that face seals could remain stable without support stiffness and O-ring damping during normal stable operation but may enter a large-leakage state when confronting instantaneous fluctuations. The oscillation-amplitude shortening effect of O-ring damping on the axial mode is much greater than that on the angular modes and O-ring damping prefers to cater for axial motion at the cost of angular motion. This research proposes a detailed dynamic-property study of O-ring seals in spiral groove gas face seals, to assist in the design of face seals.
Casana, R; Mouchrek-Santos, V E; Silva, Edilberto O
2015-01-01
We have demonstrated that Lorentz-violating terms stemming from the fermion sector of the SME are able to generate geometrical phases on the wave function of electrons confined in 1-dimensional rings, as well as persistent spin currents, in the total absence of electromagnetic fields. We have explicitly evaluated the eigenenergies and eigenspinors of the electrons modified by the Lorentz-violating terms, using them to calculate the dynamic and the Aharonov-Anandan phases in the sequel. The total phase presents a pattern very similar to the Aharonov-Casher phase accumulated by electrons in rings under the action of the Rashba interaction. Finally, the persistent spin current were carried out and used to impose upper bounds on the Lorentz-violating parameters.
R. Casana
2015-06-01
Full Text Available We have demonstrated that Lorentz-violating terms stemming from the fermion sector of the SME are able to generate geometrical phases on the wave function of electrons confined in 1-dimensional rings, as well as persistent spin currents, in the total absence of electromagnetic fields. We have explicitly evaluated the eigenenergies and eigenspinors of the electrons modified by the Lorentz-violating terms, using them to calculate the dynamic and the Aharonov–Anandan phases in the sequel. The total phase presents a pattern very similar to the Aharonov–Casher phase accumulated by electrons in rings under the action of the Rashba interaction. Finally, the persistent spin current were carried out and used to impose upper bounds on the Lorentz-violating parameters.
Casana, R.; Ferreira, M.M., E-mail: manojr.ufma@gmail.com; Mouchrek-Santos, V.E.; Silva, Edilberto O.
2015-06-30
We have demonstrated that Lorentz-violating terms stemming from the fermion sector of the SME are able to generate geometrical phases on the wave function of electrons confined in 1-dimensional rings, as well as persistent spin currents, in the total absence of electromagnetic fields. We have explicitly evaluated the eigenenergies and eigenspinors of the electrons modified by the Lorentz-violating terms, using them to calculate the dynamic and the Aharonov–Anandan phases in the sequel. The total phase presents a pattern very similar to the Aharonov–Casher phase accumulated by electrons in rings under the action of the Rashba interaction. Finally, the persistent spin current were carried out and used to impose upper bounds on the Lorentz-violating parameters.
Casana, R.; Ferreira, M. M.; Mouchrek-Santos, V. E.; Silva, Edilberto O.
2015-06-01
We have demonstrated that Lorentz-violating terms stemming from the fermion sector of the SME are able to generate geometrical phases on the wave function of electrons confined in 1-dimensional rings, as well as persistent spin currents, in the total absence of electromagnetic fields. We have explicitly evaluated the eigenenergies and eigenspinors of the electrons modified by the Lorentz-violating terms, using them to calculate the dynamic and the Aharonov-Anandan phases in the sequel. The total phase presents a pattern very similar to the Aharonov-Casher phase accumulated by electrons in rings under the action of the Rashba interaction. Finally, the persistent spin current were carried out and used to impose upper bounds on the Lorentz-violating parameters.
DYNAMICAL EVOLUTION OF URANIAN ε RING WITH MAPPING APPROACH
Zhoujiling; SunYisui
1997-01-01
Both the ground-obased occultation observations and the Voyager Uranus encounter detected some narrow rings,with typical width being several tens of kilometers. Due to collisions between ring particles ,a narrow ring will disperse within millions of years. Thus the pres-
Propellant grain dynamics in aft attach ring of shuttle solid rocket booster
Verderaime, V.
1979-01-01
An analytical technique for implementing simultaneously the temperature, dynamic strain, real modulus, and frequency properties of solid propellant in an unsymmetrical vibrating ring mode is presented. All dynamic parameters and sources are defined for a free vibrating ring-grain structure with initial displacement and related to a forced vibrating system to determine the change in real modulus. Propellant test data application is discussed. The technique was developed to determine the aft attach ring stiffness of the shuttle booster at lift-off.
Khazanov, G. V.
2004-01-01
The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on a newly developed self-consistent model (Khazanov et. al., 2002, 2003) that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.
On the role of collective interactions in asymmetric ring current formation
P. A. Bespalov
Full Text Available The contribution of resonant wave-particle interactions to the formation and decay of the magnetospheric ring current is analysed in the framework of a self-consistent set of equations which take into account azimuthal plasmasphere asymmetry. It is shown that the cyclotron interaction of westward drifting energetic protons with Alfven waves in the evening-side plasmaspheric bulge region leads to the formation of a ring current asymmetry located near 18:00 MLT. The time-scale of this asymmetry is determined by the proton drift time through the plasmaspheric bulge and is about 1 - 3 h. A symmetrical ring current decays mainly due to charge exchange processes. The theory is compared with known experimental data on ions and waves in the ring current and on low-latitude magnetic disturbances. New low-latitude magnetometer data on the magnetic storm of 24 - 26 July 1986 are also discussed. The model presented explains the observed localization of an asymmetrical ring current loop in the evening sector and the difference in relaxation time-scales of the asymmetry and the D_{st} index. It also explains measured wave turbulence levels in the evening-side plasmasphere and wave observation statistics.
The current progress of the ALICE Ring Imaging Cherenkov Detector
Braem, André; Davenport, M; Mauro, A D; Franco, A; Gallas, A; Hoedlmoser, H; Martinengo, P; Nappi, E; Paic, G; Piuz, François; Peskov, Vladimir
2007-01-01
Recently, the last two modules (out of seven) of the ALICE High Momentum Particle Identification detector (HMPID) were assembled and tested. The full detector, after a pre-commissioning phase, has been installed in the experimental area, inside the ALICE solenoid, at the end of September 2006. In this paper we review the status of the ALICE/HMPID project and we present a summary of the series production of the CsI photo-cathodes. We describe the key features of the production procedure which ensures high quality photo-cathodes as well as the results of the quality assessment performed by means of a specially developed 2D scanner system able to produce a detailed map of the CsI photo-current over the entire photo-cathode surface. Finally we present our recent R&D efforts toward the development of a novel generation of imaging Cherenkov detectors with the aim to identify, in heavy ions collisions, hadrons up to 30 GeV/c.
Persistent current of relativistic electrons on a Dirac ring in presence of impurities
Ghosh, Sumit
2014-08-01
We study the behaviour of persistent current of relativistic electrons on a one dimensional ring in presence of attractive/repulsive scattering potentials. In particular, we investigate the persistent current in accordance with the strength as well as the number of the scattering potential. We find that in presence of single scatterer the persistent current becomes smaller in magnitude than the scattering free scenario. This behaviour is similar to the non-relativistic case. Even for a very strong scattering potential, finite amount of persistent current remains for a relativistic ring. In presence of multiple scatterer we observe that the persistent current is maximum when the scatterers are placed uniformly compared to the current averaged over random configurations. However if we increase the number of scatterers, we find that the random averaged current increases with the number of scatterers. The latter behaviour is in contrast to the non-relativistic case. © 2014 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.
Yu, Y.; Jordanova, V.; Larsen, B.; Claudepierre, S. G.; Welling, D. T.; Skoug, R. M.; Kletzing, C.
2013-12-01
As modeling capabilities become increasingly available for the study of inner magnetospheric dynamics, the models' boundary conditions remain a crucial controlling factor in reproducing observations. In this study, we use the kinetic Ring current-Atmosphere Interaction Model (RAM) two-way coupled with the global MHD model BATS-R-US to study the evolution of the ring current and its feedback to the ionospheric electrodynamics during the March 17, 2013 storm. The MHD code solves fluid quantities and provides the inner magnetosphere code with plasma sheet plasma, which is the primary source for the development of the ring current. In this study, we examine the effect of different boundary conditions in specifying the plasma sheet plasma source on reproducing observations of the inner magnetospheric/subauroral region, such as in-situ observations (e.g., flux, magnetic fields, and electric fields) from Van Allen Probes (RBSP), field-aligned currents from AMPERE, and global convection maps from SuperDARN. These different boundary settings include a Maxwellian distribution assumption with MHD single-fluid temperature and density, a Kappa distribution assumption with MHD single-fluid temperature and density, and a bi-Maxwellian distribution with anisotropic pressures passed from the MHD code. Results indicate that a Kappa distribution at the boundary of RAM leads to a better ring current flux prediction than that with a Maxwellian distribution assumption, as well as a more realistic spatial distribution of ion anisotropy, which is important in driving electromagnetic ion cyclotron waves. The anisotropic pressure coupling between the kinetic code and the MHD code with a bi-Maxwellian function significantly improves the agreement with observations, especially the Dst index prediction.
Persistent spin currents in a triple-terminal quantum ring with three arms*
Du Jian; Wang Suxin; Pan Jianghong; Duan Xiuzhi
2011-01-01
A new model of a triple-terminal quantum ring with three arms is proposed. We develop an equivalent method for reducing the triple-terminal quantum ring to the double-terminal quantum ring and calculate the persistent spin currents in this model. The results indicate that the persistent spin currents show behavior of nonperiodic and unequal amplitude oscillation with increasing semiconductor ring size when the total magnetic flux is zero.However, when the total magnetic flux is non-zero, the persistent spin currents make periodic equal amplitude oscillations with increasing AB magnetic flux intensity. At the same time, the two kinds of spin state persistent spin currents have the same frequency and amplitude but the inverse phase. In addition, the Rashba spin-orbit interaction affects the phase and the phase difference of the persistent spin currents. The average persistent spin currents relate to the arm length and the terminal position as well as the distribution of the magnetic flux in each arm. Furthermore,our results indicate that the AB magnetic flux has different influences on the two kinds of spin state electrons.
Giant Persistent Current in a Mesoscopic Ring with Parallel-Coupled Double Quantum Dots
CHEN Xiong-Wen; WU Shao-Quan; WANG Peng; SUN Wei-Li
2004-01-01
@@ We theoretically study the properties of the ground state of the parallel-coupled double quantum dots embedded in a mesoscopic ring in the Kondo regime by means of the two-impurity Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. Our results show that in this system, the persistent current depends sensitively on both the parity of this system and the size of the ring. Two dots can be coupled coherently, which is reflected in the giant current peak in the strong coupling regime. This system might be a candidate for future device applications.
Wan, Wu-Bing; Lv, Hong-Hong; Merlitz, Holger; Wu, Chen-Xu
2016-10-01
By defining a topological constraint value (rn), the static and dynamic properties of a polymer brush composed of moderate or short chains with different topological ring structures are studied using molecular dynamics simulation, and a comparison with those of linear polymer brush is also made. For the center-of-mass height of the ring polymer brush scaled by chain length h ˜ N ν , there is no significant difference of exponent from that of a linear brush in the small topological constraint regime. However, as the topological constraint becomes stronger, one obtains a smaller exponent. It is found that there exists a master scaling power law of the total stretching energy scaled by chain length N for moderate chain length regime, F ene ˜ Nρ ν , for ring polymer brushes, but with a larger exponent ν than 5/6, indicating an influence of topological constraint to the dynamic properties of the system. A topological invariant of free energy scaled by 5/4 is found. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374243 and 11574256).
Noise-Assisted Currents in a Cylinder-Like Set of Mesoscopic Rings
Dajka, J.; Kostur, M.; Luczka, J.; Szopa, M.; Zipper, E.
2003-07-01
We study magnetic fluxes and currents in a set of mesoscopic rings which form a cylinder. We investigate the noiseless system as well as the influence of equilibrium and non-equilibrium fluctuations on the properties of selfsustaining currents. Thermal equilibrium Nyquist noise does not destroy selfsustaining currents up to temperatures of the same order as the critical temperature for selfsustaining currents. For temperatures below the critical temperature, randomness in the distribution of parity of the coherent electrons can lead to disappearing of selfsustaining currents and inducing new metastable states. For temperatures above the critical temperature, it causes a creation of new metastable states with non-zero currents.
Dynamic magnetoconductance fluctuations and oscillations in mesoscopic wires and rings
Liu, D. Z.; Hu, Ben Yu-Kuang; Stafford, C. A.;
1994-01-01
and temperature, the fluctuations decrease as omega-1/2. Similar frequency-dependent behavior is found for the Aharonov-Bohm oscillations in a metal ring. However, the Al'tshuler-Aronov-Spivak oscillations, which predominate at high temperatures or in rings with many channels, are strongly suppressed at high...
Persistent Spin and Charge Currents in Open Conducting Ring Subjected to Rashba Spin-Orbit Coupling
ZHANG Xi-Sua; XIONG Shi-Jie
2008-01-01
We investigate persistent charge and spin currents of a one-dimensional ring with Rashba spin-orbit coupling and connected asymmetrically to two external leads spanned with angle (φ)0.Because of the asymmetry of the structure and the spin-reflection,the persistent charge and spin currents can be induced.The magnification of persistent currents can be obtained when tuning the energy of incident electron to the sharp zero and sharp resonance of transmission depending on the Aharonov-Casher (AC) phase due to the spin-orbit coupling and the angle spanned by two leads (φ)0.The general dependence of the charge and spin persistent currents on these parameters is obtained.This suggests a possible method of controlling the magnitude and direction of persistent currents by tuning the AC phase and (φ)0,without the electromagnetic flux though the ring.
Dynamical systems analysis of fluid transport in time-periodic vortex ring flows
Shariff, Karim; Leonard, Anthony; Ferziger, Joel H.
2006-01-01
It is known that the stable and unstable manifolds of dynamical systems theory provide a powerful tool for understanding Lagrangian aspects of time-periodic flows. In this work we consider two time-periodic vortex ring flows. The first is a vortex ring with an elliptical core. The manifolds provide information about entrainment and detrainment of irrotational fluid into and out of the volume transported with the ring. The likeness of the manifolds with features observed in flow visualization ...
Understanding the dynamics of rings in the melt in terms of the annealed tree model.
Smrek, Jan; Grosberg, Alexander Y
2015-02-18
The dynamical properties of a long polymer ring in a melt of unknotted and unconcatenated rings are calculated. We re-examine and generalize the well known model of a ring confined to a lattice of topological obstacles in light of the recently developed Flory theory of untangled rings which maps every ring on an annealed branched polymer and establishes that the backbone associated with each ring follows self-avoiding rather than Gaussian random walk statistics. We find the scaling of the ring relaxation time and diffusion coefficient with ring length, as well as the time dependence of stress relaxation modulus, zero shear viscosity and the mean square averaged displacements of both individual monomers and the ring's mass centre. Our results agree within error bars with all available experimental and simulation data of the ring melt, although the quality of the data so far is insufficient to make a definitive judgement for or against the annealed tree theory. At the end we review briefly the relation between our findings and experimental data on chromatin dynamics.
Zhang, Shengyao; Ming Leung, Chung; Kuang, Wei; Wing Or, Siu; Ho, S. L.
2013-05-01
A heterostructure possessing two concurrent operational modes: current sensing (CS) mode and current transduction (CT) mode and an enhanced current sensitivity associated with the CT mode is proposed by combining a magnetoelectric ring (MER) with a piezoelectric transformer (PET). The MER is a ring-shaped magnetoelectric laminate having an axially polarized Pb(Zr, Ti)O3 (PZT) piezoelectric ceramic ring sandwiched between two circumferentially magnetized, inter-magnetically biased Tb0.3Dy0.7Fe1.92 (Terfenol-D) short-fiber/NdFeB magnet/epoxy three-phase magnetostrictive composite rings, while the PET is a Rosen-type PZT piezoelectric ceramic transformer. The current sensitivity (SI) and magnetoelectric voltage coefficient (αV) of the heterostructure in the two operational modes are evaluated theoretically and experimentally. The CS mode provides a large SI of ˜10 mV/A over a flat frequency range of 10 Hz-40 kHz with a high resonance SI of 157 mV/A at 62 kHz. The CT mode gives a 6.4-times enhancement in resonance SI, reaching 1000 mV/A at 62 kHz, as a result of the amplified vortex magnetoelectric effect caused by the vortex magnetoelectric effect in the MER, the matching of the resonance frequencies between the MER and the PET, and the resonance voltage step-up effect in the PET.
Global, Energy-Dependent Ring Current Response During Two Large Storms
Goldstein, J.; Angelopoulos, V.; Burch, J. L.; De Pascuale, S.; Fuselier, S. A.; Genestreti, K. J.; Kurth, W. S.; LLera, K.; McComas, D. J.; Reeves, G. D.; Spence, H. E.; Valek, P. W.
2015-12-01
Two recent large (~200 nT) geomagnetic storms occurred during 17--18 March 2015 and 22--23 June 2015. The global, energy-dependent ring current response to these two extreme events is investigated using both global imaging and multi-point in situ observations. Energetic neutral atom (ENA) imaging by the Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission provides a global view of ring current ions. Local measurements are provided by two multi-spacecraft missions. The two Van Allen Probes measure in situ plasma (including ion composition) and fields at ring current and plasmaspheric L values. The recently launched Magnetospheric Multiscale (MMS) comprises four spacecraft that have just begun to measure particles (including ion composition) and fields at outer magnetospheric L-values. We analyze the timing and energetics of the stormtime evolution of ring current ions, both trapped and precipitating, using TWINS ENA images and in situ data by the Van Allen Probes and MMS.
DRMR:Dynamic-Ring-Based Multicast Routing Protocol for Ad Hoc Networks
Yuan Zhoux; Guang-Sheng Li; Yong-Zhao Zhan; Qi-Rong Mao; Yi-Bin Hou
2004-01-01
Recently a number of multicast routing protocols for ad hoc networks have been proposed, however, most of them do not provide proper tradeoffs between effectiveness, efficiency and scalability. In this paper, a novel multicast routing protocol is presented for ad hoc networks. The protocol, termed as dynamic-ring-based multicast routing protocol (DRMR), uses the concept of dynamic ring whose radius can be adjusted dynamically and DRMR configures this type of ring for all group member nodes. According to the principle of zone routing, two nodes whose rings overlap can create route to each other, thus, when the ring graph composed of all rings is connected, each member node has one or more routes to others. DRMR uses the method of expanding ring search (ERS) to maintain the connected ring graph, and also can decrease the radius of the ring to reduce the overhead. The performances of DRMR were simulated and evaluated with NS2, and results show that DRMR has a high data packet delivery ratio, low control overhead and good scalability.
The Dynamics of the Neptunian ADAMS Ring's Arcs
Foryta, Dietmar W.; Sicardy, Bruno
1996-09-01
We examine the resonant forcing of a narrow ringlet by a nearby satellite on an inclined, but circular, orbit. The general techniques that we develop are used to study the dynamics of Neptune's ring arcs, near the 43:42 mean motion resonances with the satellite Galatea. More specifically, the averaged equations of motions are used to analyze the coupling between the various resonances at work, while a mapping integrator allows us to integrate the motion of up to 104particles for several centuries. We show that even in the absence of dissipation, the coupling between the horizontal and vertical motions of the particles can lead to a stochastic migration of the particles for one to the other of the 43 × 2 = 86 corotation sites where the arcs are assumed to be trapped. The pressure of solar radiation sweeps out from the arcs the particles with a ratio β_cdof pressure of radiation to solar gravitation larger than ∼0.01, corresponding to ∼50 μm-sized icy particles in the limit of geometrical optics. Poynting-Robertson (PR) drag, on the other hand, has only a small effect on dust particlesalreadyinside the corotation sites. In contrast, PR drag rapidly drives the particles lying outside these sites on unstable orbits. Inelastic collisions between the larger particles remain the most serious problem for the arc stability. We discuss the implications of these results in terms of a population of large particles being the source of dusty arcs. We show in particular that such structures, while not permanent, can be nevertheless statistically common at corotation resonances with a nearby satellite such as Galatea.
Stormtime ring current and radiation belt ion transport: Simulations and interpretations
Lyons, Larry R.; Gorney, David J.; Chen, Margaret W.; Schulz, Michael
1995-01-01
We use a dynamical guiding-center model to investigate the stormtime transport of ring current and radiation-belt ions. We trace the motion of representative ions' guiding centers in response to model substorm-associated impulses in the convection electric field for a range of ion energies. Our simple magnetospheric model allows us to compare our numerical results quantitatively with analytical descriptions of particle transport, (e.g., with the quasilinear theory of radial diffusion). We find that 10-145-keV ions gain access to L approximately 3, where they can form the stormtime ring current, mainly from outside the (trapping) region in which particles execute closed drift paths. Conversely, the transport of higher-energy ions (approximately greater than 145 keV at L approximately 3) turns out to resemble radial diffusion. The quasilinear diffusion coefficient calculated for our model storm does not vary smoothly with particle energy, since our impulses occur at specific (although randomly determined) times. Despite the spectral irregularity, quasilinear theory provides a surprisingly accurate description of the transport process for approximately greater than 145-keV ions, even for the case of an individual storm. For 4 different realizations of our model storm, the geometric mean discrepancies between diffusion coefficients D(sup sim, sub LL) obtained from the simulations and the quasilinear diffusion coefficient D(sup ql, sub LL) amount to factors of 2.3, 2.3, 1.5, and 3.0, respectively. We have found that these discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) can be reduced slightly by invoking drift-resonance broadening to smooth out the sharp minima and maxima in D(sup ql, sub LL). The mean of the remaining discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) for the 4 different storms then amount to factors of 1.9, 2.1, 1.5, and 2.7, respectively. We find even better agreement when we reduce the impulse amplitudes systematically in
Results from a survey of the dynamics shaping Uranus' Mab/μ-ring system
Kumar, Kartik; de Pater, Imke; Showalter, Mark R.
2014-11-01
Based on Hubble Space Telescope (HST) data, Showalter and Lissauer (2006) reported the discovery of two faint rings beyond Uranus’ main rings: the ν- and μ- rings. They constitute Uranus' outer ring system and are located beyond the ɛ-ring but interior to the large classical moons. After co-adding a series of HST images, Showalter and Lissauer (2006) obtained radial profiles for both new rings. They discovered that the peak radial intensity of the μ-ring aligns closely with the orbit of Mab. Along with numerous other observations, this points to the fact that the Mab/μ-ring system is highly coupled.The discovery of the μ-ring has led to open questions about dust dynamics beyond Uranus' main rings. Like Saturn's E-ring, observations reveal that the μ-ring is blue, indicative of a pre-dominance of sub-micron-sized particles (de Pater et al., 2006). The E-ring results from plumes on Enceladus' south pole, however the origin of the μ-ring remains a mystery. The latter is likely fed by ejecta from micro-meteorite impacts with Mab, much like Jupiter's faint rings are regenerated by companion (small) moons (Burns et al., 1999). The μ-ring's steep size-distribution suggests that there is an unknown mechanism at play that hides or removes large dust particles. We present results from an investigation into the forces shaping the μ-ring. To simulate the motion of dust in the Mab/μ-ring system, we developed a numerical toolbox (Dustsim; Kumar et al., 2015) that uses Tudat (Kumar et al., 2012). We performed integrations using Dustsim that included the effects of Uranus' gravity field, titled magnetic moment, solar radiation pressure, and collisions with a putative suite of large μ-ring bodies, hypothesized as the cause of Mab's anomalous orbital motion (Kumar et al., 2014). Following on from previous studies (e.g., Sfair and Giuliatti Winter, 2009; Sfair and Giuliatti Winter, 2012), we present a survey of the expected lifetime of μ-ring dust, as a function of
On the lack of ring-current aromaticity of (heteroatom) [N]radialenes and their dianions
Domene, C.; Fowler, P.W.; Jenneskens, L.W.; Steiner, E.
2007-01-01
Current-density maps, calculated at the ab initio RHF//6-31G**/ CTOCD-DZ level, show no significant π ring current in planar equilateral geometries ofneutral and dianionic [N]radialenes, oxocarbons and thiocarbons CNYNq- (Y=CH2, O, S; N=4, 5, 6; q=0 (1a-12 a), 2 (1b-12b)). Only the N=3 deltate diani
An integrating current transformer for fast extraction from the HIRFL-CSR main ring
Wu, Jun-Xia; Zheng, Jian-Hua; Zhao, Tie-Cheng; Mao, Rui-Shi; Yin, Yan; Yuan, You-Jin; Yang, Jian-Cheng
2010-01-01
For any experiment that uses the beam of an accelerator, monitoring the beam intensity is always an important concern. It is particularly useful if one can continuously measure the beam current without disturbing the beam. We report here on test experiments for an Integrating Current Transformer (ICT) used to measure fast extraction beams from the HIRFL-CSR main ring (CSRm). The laboratory tests and beam intensity measurement results are presented in this paper. The influence of the kicker noise is also analyzed.
BEAM DYNAMICS ANALYSIS FOR THE ULTRA-FAST KICKER IN CIRCULAR COOLER RING OF JLEIC
Huang, Yulu [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Inst. Modern Phys., Chinese Academy of Sciences, Lanzhou, China; Wang, Haipeng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Rimmer, Robert A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, Shaoheng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-05-01
An ultra-fast kicker system consisting of four quarter wavelength resonator based deflecting cavities was developed that simultaneously resonates at 10 subharmonic modes of the 476.3MHz bunch repetition frequency. Thus every 10th bunch in the bunch train will experience a transverse kick while all the other bunches are undisturbed. This fast kicker is being developed for the Energy Recovery Linac (ERL) based electron Circular Cooler Ring (CCR) in the proposed Jefferson Lab Electron Ion Collider (JLEIC, previously MEIC). The electron bunches can be reused 10-30 turns thus the beam current in the ERL can be reduced to 1/10 - 1/30 (150mA - 50mA) of the cooling bunch current (1.5A). In this paper, several methods to synthesize such a kicker waveform and the comparison made by the beam dynamics tracking in Elegant will be discussed.
Theory and analysis of nonlinear dynamics and stability in storage rings: A working group summary
Chattopadhyay, S.; Audy, P.; Courant, E.D.; Forest, E.; Guignard, G.; Hagel, J.; Heifets, S.; Keil, E.; Kheifets, S.; Mais, H.; Moshammer, H.; Pellegrini, C.; Pilat, F.; Suzuki, T.; Turchetti, G.; Warnock, R.L.
1988-07-01
A summary and commentary of the available theoretical and analytical tools and recent advances in the nonlinear dynamics, stability and aperture issues in storage rings are presented. 11 refs., 4 figs.
Dynamic Aperture and Tolerances for PEP-X Ultimate Storage Ring Design
Borland, M.; /Argonne; Cai, Y.; Nosochkov, Y.; Wang, M.-H.; /SLAC; Hettel, R.O.; /SLAC
2011-12-13
A lattice for the PEP-X ultimate storage ring light source, having 11 pm-rad natural emittance at a beam energy of 4.5 GeV at zero current, using 90 m of damping wiggler and fitting into the existing 2.2-km PEP-II tunnel, has been recently designed. Such a low emittance lattice requires very strong sextupoles for chromaticity correction, which in turn introduce strong non-linear field effects that limit the beam dynamic aperture. In order to maximize the dynamic aperture we choose the cell phases to cancel the third and fourth order geometric resonances in each 8-cell arc. Four families of chromatic sextupoles and six families of geometric (or harmonic) sextupoles are added to correct the chromatic and amplitude-dependent tunes. To find the best settings of the ten sextupole families, we use a Multi-Objective Genetic Optimizer employing elegant to optimize the beam lifetime and dynamic aperture simultaneously. Then we evaluate dynamic aperture reduction caused by magnetic field multipole errors, magnet fabrication errors and misalignments. A sufficient dynamic aperture is obtained for injection, as well as workable beam lifetime.
Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array
Alexeyev, C. N.; Volyar, A. V. [Taurida National V.I. Vernadsky University, Vernadsky Prospekt, 4, Simferopol, 95007, Crimea (Ukraine); Yavorsky, M. A. [Taurida National V.I. Vernadsky University, Vernadsky Prospekt, 4, Simferopol, 95007, Crimea (Ukraine); Universite Bordeaux and CNRS, LOMA, UMR 5798, FR-33400 Talence (France)
2011-12-15
We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over the array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.
Dynamic simulation of planetary gear set with flexible spur ring gear
Chen, Zaigang; Shao, Yimin; Su, Daizhong
2013-12-01
Ring gear is a key element for vibration transmission and noise radiation in the planetary gear system which has been widely employed in different areas, such as wind turbine transmissions. Its flexibility has a great influence on the mesh stiffness of internal gear pair and the dynamic response of the planetary gear system, especially for the thin ring cases. In this paper, the flexibility of the internal ring gear is considered based on the uniformly curved Timoshenko beam theory. The ring deformation is coupled into the mesh stiffness model, which enables the investigation on the effects of the ring flexibility on the mesh stiffness and the dynamic responses of the planetary gear. A method about how to synthesize the total mesh stiffness of the internal gear pairs in multi-tooth region together with the ring deformation and the tooth errors is proposed. Numerical results demonstrate that the ring thickness has a great impact on the shape and magnitude of the mesh stiffness of the internal gear pair. It is noted that the dynamic responses of the planetary gear set with equally spaced supports for the ring gear are modulated due to the cyclic variation of the mesh stiffness resulted from the presence of the supports, which adds more complexity in the frequency structure.
Induced fermionic charge and current densities in two-dimensional rings
Bellucci, S; Grigoryan, A Kh
2016-01-01
For a massive quantum fermionic field, we investigate the vacuum expectation values (VEVs) of the charge and current densities induced by an external magnetic flux in a two-dimensional circular ring. Both the irreducible representations of the Clifford algebra are considered. On the ring edges the bag (infinite mass) boundary conditions are imposed for the field operator. This leads to the Casimir type effect on the vacuum characteristics. The radial current vanishes. The charge and the azimuthal current are decomposed into the boundary-free and boundary-induced contributions. Both these contributions are odd periodic functions of the magnetic flux with the period equal to the flux quantum. An important feature that distinguishes the VEVs of the charge and current densities from the VEV of the energy density, is their finiteness on the ring edges. The current density is equal to the charge density for the outer edge and has the opposite sign on the inner edge. The VEVs are peaked near the inner edge and, as f...
Fowler, Patrick W; Gibson, Christopher M; Bean, David E
2014-03-01
Alternating partial hydrogenation of the interior region of a polycyclic aromatic hydrocarbon gives a finite model system representing systems on the pathway from graphene to the graphane modification of the graphene sheet. Calculations at the DFT and coupled Hartree-Fock levels confirm that sp(2) cycles of bare carbon centres isolated by selective hydrogenation retain the essentially planar geometry and electron delocalization of the annulene that they mimic. Delocalization is diagnosed by the presence of ring currents, as detected by ipsocentric calculation and visualization of the current density induced in the π system by a perpendicular external magnetic field. These induced 'ring' currents have essentially the same sense, strength and orbital origin as in the free hydrocarbon. Subjected to the important experimental proviso of the need for atomic-scale control of hydrogenation, this finding predicts the possibility of writing single, multiple and concentric diatropic and/or paratropic ring currents on the graphene/graphane sheet. The implication is that pathways for free flow of ballistic current can be modelled in the same way.
Numerical study on ring bubble dynamics in a narrow cylinder with a compliant coating
Farhangmehr, V; Shervani-Tabar, M T [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Parvizi, R [Department of Cardiac Surgery, Shahid Madani Heart Hospital, Tabriz (Iran, Islamic Republic of); Ohl, S W [Institute of High Performance Computing, 1 Fusinopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Khoo, B C, E-mail: vfarhangmehr@gmail.com [Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 (Singapore)
2015-04-15
In this paper, the ring bubble contraction inside a narrow vertical rigid cylinder with a compliant coating filled with water is studied numerically. To simulate ring bubble dynamics numerically, in addition to computing the pressure and velocity fields of the surrounding fluid, an axisymmetric boundary integral equation approach is adopted alongside a finite difference method. The compliant boundary is modeled as a membrane with a spring foundation. During the ring bubble contraction and under the attraction of the cylinder wall due to the Bjerknes force, a horizontal ring jet is initiated and develops towards the cylinder wall. The numerical results represent the effects of the cylinder radius and two compliant coating characteristics, including its mass per unit area and the spring constant, on the ring bubble behavior. This investigation is motivated by the possibility of utilizing the ring jet in therapeutic cardiovascular applications. (paper)
Sundholm, Dage; Berger, Raphael J F; Fliegl, Heike
2016-06-21
Magnetically induced current susceptibilities and current pathways have been calculated for molecules consisting of two pentalene groups annelated with a benzene (1) or naphthalene (2) moiety. Current strength susceptibilities have been obtained by numerically integrating separately the diatropic and paratropic contributions to the current flow passing planes through chosen bonds of the molecules. The current density calculations provide novel and unambiguous current pathways for the unusual molecules with annelated aromatic and antiaromatic hydrocarbon moieties. The calculations show that the benzene and naphthalene moieties annelated with two pentalene units as in molecules 1 and 2, respectively, are unexpectedly antiaromatic sustaining only a local paratropic ring current around the ring, whereas a weak diatropic current flows around the C-H moiety of the benzene ring. For 1 and 2, the individual five-membered rings of the pentalenes are antiaromatic and a slightly weaker semilocal paratropic current flows around the two pentalene rings. Molecules 1 and 2 do not sustain any net global ring current. The naphthalene moiety of the molecule consisting of a naphthalene annelated with two pentalene units (3) does not sustain any strong ring current that is typical for naphthalene. Instead, half of the diatropic current passing the naphthalene moiety forms a zig-zag pattern along the C-C bonds of the naphthalene moiety that are not shared with the pentalene moieties and one third of the current continues around the whole molecule partially cancelling the very strong paratropic semilocal ring current of the pentalenes. For molecule 3, the pentalene moieties and the individual five-membered rings of the pentalenes are more antiaromatic than for 1 and 2. The calculated current patterns elucidate why the compounds with formally [4n + 2] π-electrons have unusual aromatic properties violating the Hückel π-electron count rule. The current density calculations also provide
Control of Josephson current by Aharonov-Casher phase in a Rashba ring
Liu, Xin; Borunda, M. F.; Liu, Xiong-Jun; Sinova, Jairo
2009-11-01
We study the interference effect induced by the Aharonov-Casher phase on the Josephson current through a semiconducting ring attached to superconducting leads. Using a one-dimensional model that incorporates spin-orbit coupling in the semiconducting ring, we calculate the Andreev levels analytically and numerically, and predict oscillations of the Josephson current due to the AC phase. This result is valid from the point-contact limit to the long channel-length case, as defined by the ratio of the junction length and the BCS healing length. We show in the long channel-length limit that the impurity scattering has no effect on the oscillation of the Josephson current, in contrast to the case of conductivity oscillations in a spin-orbit-coupled ring system attached to normal leads where impurity scattering reduces the amplitude of oscillations. Our results suggest a scheme to measure the AC phase with, in principle, higher sensitivity. In addition, this effect allows for control of the Josephson current through the gate-voltage-tuned AC phase.
The persistent current in an Aharonov-Bohm ring with a side-coupled quantum dot
Zhou Bo; Wu Shao-Quan; Sun Wei-Li; Zhou Xiao-Lin
2004-01-01
We have investigated the persistent current in a mesoscopic ring with a side-coupled quantum dot. The problems are probed by using the one-impurity Anderson Hamiltonian and are treated with the slave boson mean field theory. It is shown that the persistent current in this system has the spin fluctuations, and the charge transfers between the two subsystems are suppressed in the limit of △/TKo < 1. The minimum value of the persistent current for ζK/L = 5 of the odd parity system provides an opportunity to detect the Kondo screening cloud.
Deau, E.
2007-12-01
In the Solar system, the planetary rings represent a fantastic opportunity of studying a majority of phenomena taking place in the thin discs. One can find discs at all redshifts and on all scales of the Universe. Planetary discs are very different~: among the jovian rings, one finds a halo of fine and diffuse dust; the rings of Uranus are very compact, like radially confined strings and the system of rings of Neptune consists of azimuthally stable arcs. However our interest goes on Saturn which has the most complex and widest system of rings known to date~: 484.000 km and a vertical extension which increases with the distance to Saturn (typically less than 1km to 10.000 km). The interest of such a matter organization around Saturn plus its many moons (more than one forty including 8 of a size of several hundreds kilometers) gave birth to the exploration mission CASSINI, supposed to allow the development and the refinement of models set up at the flybies of the two interplanetary probes VOYAGER. The CASSINI Mission began its nominal tour on january, 15th 2005 after the orbital insertion the 1st july 2004 and the dropping of HUYGENS probe on january, 14th 2005 on Titan's surface. The purpose of this thesis consists to revisite two subjects unsolved of long date in the photometric and dynamic behaviours of the Saturn's rings. In a first part, we try to solve the problem of accretion of matter within the Roche limit by studying the F ring. This ring, since its discovery in 1979 by Pioneer 11, is involved in a most various dynamic theories to explain its complex multi-radial structure and its variable azimuthal structure. We showed that the multi-radial structure of this ring can be understood by the existence of a spiral which is rolled up around a central area, bright, eccentric and inclined~: the core. The lifespan of this spiral is not the same one as the core, suggesting that the processes which create the spiral are periodic. Moreover, we showed that the
Wide dynamic range microwave planar coupled ring resonator for sensing applications
Zarifi, Mohammad Hossein; Daneshmand, Mojgan
2016-06-01
A highly sensitive, microwave-coupled ring resonator with a wide dynamic range is studied for use in sensing applications. The resonator's structure has two resonant rings and, consequently, two resonant frequencies, operating at 2.3 and 2.45 GHz. Inductive and capacitive coupling mechanisms are explored and compared to study their sensing performance. Primary finite element analysis and measurement results are used to compare the capacitive and inductive coupled ring resonators, demonstrating sensitivity improvements of up to 75% and dynamic range enhancement up to 100% in the capacitive coupled structure. In this work, we are proposing capacitive coupled planar ring resonators as a wide dynamic range sensing platform for liquid sensing applications. This sensing device is well suited for low-cost, real-time low-power, and CMOS compatible sensing technologies.
Evolution of Ring Current Protons Induced by Electromagnetic Ion Cyclotron Waves
XIAO Fu-Liang; TIAN Tian; CHEN Liang-Xu; SU Zhen-Peng; ZHENG Hui-Nan
2009-01-01
We investigate the evolution of the phase space density (PSD) of ring current protons induced by electromagnetic ion cyclotron (EMIC) waves at the location L=3.5, calculate the diffusion coefficients in pitch angle and momentum, and solve the standard two-dimensional Fokker-Planck diffusion equation. The pitch angle diffusion coefficient is found to be larger than the momentum diffusion coefficient by a factor of about 10~3 or above at lower pitch angles. We show that EMIC waves can produce efficient pitch angle scattering of energetic (～100 keV) protons, yielding a rapid decrement in PSD, typically by a factor of ～10 within a few hours, consistent with observational data. This result further supports previous findings that wave-particle interaction is responsible for the rapid ring current decay.
Second-Order Resonant Interaction of Ring Current Protons with Whistler-Mode Waves
XIAO Fu-Liang; CHEN Liang-Xu; HE Hui-Yong; ZHOU Qing-Hua
2008-01-01
We present a study on the second-order resonant interaction between the ring current protons with Whistler-mode waves propagating near the quasi electrostatic limit following the previous second-order resonant theory.The diffusion coefficients are proportional to the electric field amplitude E,much greater than those for the regular first-order resonance.which are proportional to the electric field amplitudes square E2.Numerical calculations for the pitch angle scattering are performed for typical energies of protons Ek=50ke V and 100ke V at locations L=2 and L=3.5.The timescale for the loss process of protons by the Whistler waves is found to approach one hour,comparable to that by the EMIC waves,suggesting that Whistler waves may also contribute significantly to the ring current decay under appropriate conditions.
Latitudinal shift and tilt of the ring current during magnetic storms
CHEN Bo; XU WenYao; CHEN GengXiong; DU AiMin; WU YingYan; LIU XiaoCan
2009-01-01
The equatorial ring current (ERC) theory suggested that the distribution of global disturbed horizontal geomagnetic field only depends on the cosine of station's latitude. However, we always observe a lar-ger △H at higher latitude stations than lower ones, implying that the ERC could tilt or/and shift with respect to the equatorial plane during intense storms. In this paper, we analyze 11 intense magnetic storms from 2000 to 2004, and introduce two configurational factors to characterize the topology of storm time ring current. The results show that ERC has occasionally deviated off equatorial plane with both tilt angle δ≈13°-25°and latitude shift δ≈0°-21.8°. The ground disturbed field distribution should be improved as △Hk = △H,maxCOS(φk-δ), which agree well with the geomagnetic observations.
Opportunities for detecting ring currents using the attoclock set-up
Kaushal, Jivesh; Smirnova, Olga
2015-01-01
Strong field ionization by circularly polarized laser fields from initial states with internal orbital momentum has interesting propensity rule: electrons counter-rotating with respect to the laser field can be liberated more easily than co-rotating electrons [Barth and Smirnova PRA 84, 063415, 2011}]. Here we show that application of few-cycle IR pulses allows one to use this propensity rule to detect ring currents associated with such quantum states, by observing angular shifts of the ejected electrons. Such shifts present the main observable of the attoclock method. We use time-dependent Analytical $R$-Matrix (A$R$M) theory to show that the attoclock measured angular shifts of an electron originating from two counter-rotating orbitals ($p^{+}$ and $p^{-}$) are noticeably different. Our work opens new opportunities for detecting ring currents excited in atoms and molecules, using the attoclock set-up.
Chemical Reaction Rates from Ring Polymer Molecular Dynamics: Theory and Practical Applications
Suleimanov, Yury V; Guo, Hua
2016-01-01
This Feature Article presents an overview of the current status of Ring Polymer Molecular Dynamics (RPMD) rate theory. We first analyze theory and its connection to quantum transition state theory. We then focus on its practical application to prototypical chemical reactions in the gas phase, which demonstrate how accurate and reliable RPMD is for calculating thermal chemical reaction rates in multifarious cases. This review serves as an important checkpoint in RPMD rate theory development, which shows that RPMD is shifting from being just one of recent novel ideas to a well-established and validated alternative to conventional techniques for calculating thermal chemical rates. We also hope it will motivate further applications of RPMD to various chemical reactions.
Suleimanov, Yury V; Aoiz, F Javier; Guo, Hua
2016-11-03
This Feature Article presents an overview of the current status of ring polymer molecular dynamics (RPMD) rate theory. We first analyze the RPMD approach and its connection to quantum transition-state theory. We then focus on its practical applications to prototypical chemical reactions in the gas phase, which demonstrate how accurate and reliable RPMD is for calculating thermal chemical reaction rate coefficients in multifarious cases. This review serves as an important checkpoint in RPMD rate theory development, which shows that RPMD is shifting from being just one of recent novel ideas to a well-established and validated alternative to conventional techniques for calculating thermal chemical rate coefficients. We also hope it will motivate further applications of RPMD to various chemical reactions.
Non-Gaussian beam dynamics in low energy antiproton storage rings
Resta-López, J.; Hunt, J. R.; Welsch, C. P.
2016-10-01
In low energy antiproton facilities, where electron cooling is fundamental, the cooling forces together with heating phenomena causing emittance blow-up, such as Intra Beam Scattering (IBS), result in highly non-Gaussian beam distributions. In these cases, a precise simulation of IBS effects is essential to realistically evaluate the long term beam evolution, taking into account the non-Gaussian characteristics of the beam. Here, we analyse the beam dynamics in the Extra Low ENergy Antiproton ring (ELENA), which is a new small synchrotron currently being constructed at CERN to decelerate antiprotons to energies as low as 100 keV. Simulations are performed using the code BETACOOL, comparing different models of IBS.
Ion transport and loss in the earth's quiet ring current. I - Data and standard model
Sheldon, R. B.; Hamilton, D. C.
1993-01-01
A study of the transport and loss of ions in the earth's quiet time ring current, in which the standard radial diffusion model developed for the high-energy radiation belt particles is compared with the measurements of the lower-energy ring current ions, is presented. The data set provides ionic composition information in an energy range that includes the bulk of the ring current energy density, 1-300 keV/e. Protons are found to dominate the quiet time energy density at all altitudes, peaking near L of about 4 at 60 keV/cu cm, with much smaller contributions from O(+) (1-10 percent), He(+) (1-5 percent), and He(2+) (less than 1 percent). A minimization procedure is used to fit the amplitudes of the standard electric radial diffusion coefficient, yielding 5.8 x 10 exp -11 R(E-squared)/s. Fluctuation ionospheric electric fields are suggested as the source of the additional diffusion detected.
Ion transport and loss in the earth's quiet ring current. I - Data and standard model
Sheldon, R. B.; Hamilton, D. C.
1993-01-01
A study of the transport and loss of ions in the earth's quiet time ring current, in which the standard radial diffusion model developed for the high-energy radiation belt particles is compared with the measurements of the lower-energy ring current ions, is presented. The data set provides ionic composition information in an energy range that includes the bulk of the ring current energy density, 1-300 keV/e. Protons are found to dominate the quiet time energy density at all altitudes, peaking near L of about 4 at 60 keV/cu cm, with much smaller contributions from O(+) (1-10 percent), He(+) (1-5 percent), and He(2+) (less than 1 percent). A minimization procedure is used to fit the amplitudes of the standard electric radial diffusion coefficient, yielding 5.8 x 10 exp -11 R(E-squared)/s. Fluctuation ionospheric electric fields are suggested as the source of the additional diffusion detected.
Geomagnetic storms, the Dst ring-current myth and lognormal distributions
Campbell, W.H.
1996-01-01
The definition of geomagnetic storms dates back to the turn of the century when researchers recognized the unique shape of the H-component field change upon averaging storms recorded at low latitude observatories. A generally accepted modeling of the storm field sources as a magnetospheric ring current was settled about 30 years ago at the start of space exploration and the discovery of the Van Allen belt of particles encircling the Earth. The Dst global 'ring-current' index of geomagnetic disturbances, formulated in that period, is still taken to be the definitive representation for geomagnetic storms. Dst indices, or data from many world observatories processed in a fashion paralleling the index, are used widely by researchers relying on the assumption of such a magnetospheric current-ring depiction. Recent in situ measurements by satellites passing through the ring-current region and computations with disturbed magnetosphere models show that the Dst storm is not solely a main-phase to decay-phase, growth to disintegration, of a massive current encircling the Earth. Although a ring current certainly exists during a storm, there are many other field contributions at the middle-and low-latitude observatories that are summed to show the 'storm' characteristic behavior in Dst at these observatories. One characteristic of the storm field form at middle and low latitudes is that Dst exhibits a lognormal distribution shape when plotted as the hourly value amplitude in each time range. Such distributions, common in nature, arise when there are many contributors to a measurement or when the measurement is a result of a connected series of statistical processes. The amplitude-time displays of Dst are thought to occur because the many time-series processes that are added to form Dst all have their own characteristic distribution in time. By transforming the Dst time display into the equivalent normal distribution, it is shown that a storm recovery can be predicted with
Sahakyan, Aleksandr B; Vendruscolo, Michele
2013-02-21
Ring current and electric field effects can considerably influence NMR chemical shifts in biomolecules. Understanding such effects is particularly important for the development of accurate mappings between chemical shifts and the structures of nucleic acids. In this work, we first analyzed the Pople and the Haigh-Mallion models in terms of their ability to describe nitrogen base conjugated ring effects. We then created a database (DiBaseRNA) of three-dimensional arrangements of RNA base pairs from X-ray structures, calculated the corresponding chemical shifts via a hybrid density functional theory approach and used the results to parametrize the ring current and electric field effects in RNA bases. Next, we studied the coupling of the electric field and ring current effects for different inter-ring arrangements found in RNA bases using linear model fitting, with joint electric field and ring current, as well as only electric field and only ring current approximations. Taken together, our results provide a characterization of the interdependence of ring current and electric field geometric factors, which is shown to be especially important for the chemical shifts of non-hydrogen atoms in RNA bases.
Yengui, Ihsen
2015-01-01
The main goal of this book is to find the constructive content hidden in abstract proofs of concrete theorems in Commutative Algebra, especially in well-known theorems concerning projective modules over polynomial rings (mainly the Quillen-Suslin theorem) and syzygies of multivariate polynomials with coefficients in a valuation ring. Simple and constructive proofs of some results in the theory of projective modules over polynomial rings are also given, and light is cast upon recent progress on the Hermite ring and Gröbner ring conjectures. New conjectures on unimodular completion arising from our constructive approach to the unimodular completion problem are presented. Constructive algebra can be understood as a first preprocessing step for computer algebra that leads to the discovery of general algorithms, even if they are sometimes not efficient. From a logical point of view, the dynamical evaluation gives a constructive substitute for two highly nonconstructive tools of abstract algebra: the Law of Exclud...
Universal cumulants of the current in diffusive systems on a ring
Appert-Rolland, C.; Derrida, B.; Lecomte, V.; van Wijland, F.
2008-08-01
We calculate exactly the first cumulants of the integrated current and of the activity (which is the total number of changes of configurations) of the symmetric simple exclusion process on a ring with periodic boundary conditions. Our results indicate that for large system sizes the large deviation functions of the current and of the activity take a universal scaling form, with the same scaling function for both quantities. This scaling function can be understood either by an analysis of Bethe ansatz equations or in terms of a theory based on fluctuating hydrodynamics or on the macroscopic fluctuation theory of Bertini, De Sole, Gabrielli, Jona-Lasinio, and Landim.
Fluctuation dynamics in reconnecting current sheets
von Stechow, Adrian; Grulke, Olaf; Ji, Hantao; Yamada, Masaaki; Klinger, Thomas
2015-11-01
During magnetic reconnection, a highly localized current sheet forms at the boundary between opposed magnetic fields. Its steep perpendicular gradients and fast parallel drifts can give rise to a range of instabilities which can contribute to the overall reconnection dynamics. In two complementary laboratory reconnection experiments, MRX (PPPL, Princeton) and VINETA.II (IPP, Greifswald, Germany), magnetic fluctuations are observed within the current sheet. Despite the large differences in geometries (toroidal vs. linear), plasma parameters (high vs. low beta) and magnetic configuration (low vs. high magnetic guide field), similar broadband fluctuation characteristics are observed in both experiments. These are identified as Whistler-like fluctuations in the lower hybrid frequency range that propagate along the current sheet in the electron drift direction. They are intrinsic to the localized current sheet and largely independent of the slower reconnection dynamics. This contribution characterizes these magnetic fluctuations within the wide parameter range accessible by both experiments. Specifically, the fluctuation spectra and wave dispersion are characterized with respect to the magnetic topology and plasma parameters of the reconnecting current sheet.
Dynamical systems analysis of fluid transport in time-periodic vortex ring flows
Shariff, Karim; Leonard, Anthony; Ferziger, Joel H.
2006-04-01
It is known that the stable and unstable manifolds of dynamical systems theory provide a powerful tool for understanding Lagrangian aspects of time-periodic flows. In this work we consider two time-periodic vortex ring flows. The first is a vortex ring with an elliptical core. The manifolds provide information about entrainment and detrainment of irrotational fluid into and out of the volume transported with the ring. The likeness of the manifolds with features observed in flow visualization experiments of turbulent vortex rings suggests that a similar process might be at play. However, what precise modes of unsteadiness are responsible for stirring in a turbulent vortex ring is left as an open question. The second situation is that of two leapfrogging rings. The unstable manifold shows striking agreement with even the fine features of smoke visualization photographs, suggesting that fluid elements in the vicinity of the manifold are drawn out along it and begin to reveal its structure. We suggest that interpretations of these photographs that argue for complex vorticity dynamics ought to be reconsidered. Recently, theoretical and computational tools have been developed to locate structures analogous to stable and unstable manifolds in aperiodic, or finite-time systems. The usefulness of these analogs is demonstrated, using vortex ring flows as an example, in the paper by Shadden, Dabiri, and Marsden [Phys. Fluids 18, 047105 (2006)].
Hele, Timothy J H
2015-01-01
We obtain thermostatted ring polymer molecular dynamics (TRPMD) from exact quantum dynamics via Matsubara dynamics, a recently-derived form of linearization which conserves the quantum Boltzmann distribution. Performing a contour integral in the complex quantum Boltzmann distribution of Matsubara dynamics, replacement of the imaginary Liouvillian which results with a Fokker-Planck term gives TRPMD. We thereby provide error terms between TRPMD and quantum dynamics and predict the systems in which they are likely to be small. Using a harmonic analysis we show that careful addition of friction causes the correct oscillation frequency of the higher ring-polymer normal modes in a harmonic well, which we illustrate with calculation of the position-squared autocorrelation function. However, no physical friction parameter will produce the correct fluctuation dynamics for a parabolic barrier. The results in this paper are consistent with previous numerical studies and advise the use of TRPMD for the computation of spe...
Evolution of the magnetospheric storm-ring current with a constant time delay
Cluadegonzalez, A.L.; Gonzalez, W.D.; Detman, T.R.; Joselyn, J.A. [National Oceanic and Atmospheric Administration, Boulder, CO (United States)
1994-01-01
Using the energy balance equation for the ring current during magnetic storms, a theoretical study of the response of this current is done, for the case of a constant time decay tau. The input energy function for the balance equation is assumed to be described by a simple time variation during the injection time, such that an analytical response can be obtained. The model is used for 5 of the 10 intense storms in the interval August 1978-December 1979, for which the ISEE-3 interplanetary data are available. The energy input function for these 5 events (those with less data gaps) is assumed to be one of both, the azimuthal interplanetary electric field or the Akasofu`s coupling function. These input functions are approximated by one of the simple mentioned input functions and the solution obtained from the energy balance equation, for different values of tau, is compared to the actual evolution of the ring current (derived from the geomagnetic index Dst). The sets of input functions and tau values that better reproduce the observed storm evolution are adopted as the best approximation. As a conclusion, it is found that the more appropriate values of tau are longer than those determined in previous studies, especially for the case of more intense storms.
Current-dependent spectral blueshift in a three-dimensional photonic-quantum-ring laser.
An, Sung-Jae; Bae, Joongwoo; Minogin, Vladimir G; Kwon, O'Dae
2006-03-10
The emission spectra of photonic-quantum-ring lasers can be explained by a three-dimensional Rayleigh-Fabry-Perot cavity resonance model. The proposed model for the emission spectral peaks fits well with the observed blueshift of the emission spectrum envelope as a function of the view angle. Furthermore, we observe that the emission spectra with the high-order mode index showed blueshift behaviors as functions of the injection current, whereas those with the low-order mode index showed redshift behaviors. These phenomena might result in lowering the effective refractive index by the carrier inhomogeneity in the active disk.
Dynamical studies of the Mersa Matruh Gyre: intense meander and ring formation events
Golnaraghi, Maryam
A study of the dynamics of the Mersa Matruh Gyre and the Mid-Mediterranean Jet flow system in the southwestern Levantine basin is presented. Data-driven simulations in the Levantine basin, using an eddy-resolving quasigeostrophic model initialized with two quasi-synoptic hydrographic data sets, reveal intense mesoscale meander and ring formation events involving the Mid-Mediterranean Jet, the Mersa Matruh Gyre and the Rhodes Gyre. The dynamics of these events are quantified via local energy and vorticity budget analyses. The dominant processes are investigated and compared with previously studied events in the Gulf Stream Ring and Meander region.
New chromaticity compensation approach and dynamic aperture increase in the SSRF storage ring
TIAN Shun-Qiang; HOU Jie; CHEN Guang-Ling; LIU Gui-Min
2008-01-01
Strong chromatic sextupoles used to compensate natural chromaticities in the third generation light source storage ring usually reduce dynamic aperture drastically.Many optimization methods can be used to find solutions that provide large dynamic apertures.This paper discusses a new optimization approach of sextupole strengths with step-by-step procedure,which is applied in the SSRF storage ring,and a better solution is obtained.Investigating driving terms generated by the sextupoles in every step can analyze their convergences and guide the weight setting among different terms in object function of the single resonance approach based on the perturbation theory.
Effects of heat current on magnetization dynamics
Vetro, Francesco Antonio; Brechet, Sylvain; Ansermet, Jean-Philippe
The work is aimed at investigating the interplay between spin dynamics and heat currents in single-crystal Yttrium Iron Garnet (YIG). The irreversible thermodynamics for a continuous medium predicts that a thermal gradient, in the presence of magnetization waves, produces a magnetic induction field, thus a magnetic analog of the well-known Seebeck effect. Time-resolved transmission measurements revealed a change in the attenuation of magnetization waves propagating along the thermal gradient when the gradient is reversed. This magnetic damping change can be accounted for by the Magnetic Seebeck effect. In order to characterize this effect further, we have conducted studies on magnetization dynamic in YIG single crystal samples placed in various geometrical configurations, e.g. with YIG disks in which magnetic vortices might be present. Various magnetic resonance schemes were used, e.g. local probes and cavities.
Modelling of the ring current in Saturn's magnetosphere
G. Giampieri
2004-01-01
Full Text Available The existence of a ring current inside Saturn's magnetosphere was first suggested by Smith et al. (1980 and Ness et al. (1981, 1982, in order to explain various features in the magnetic field observations from the Pioneer 11 and Voyager 1 and 2 spacecraft. Connerney et al. (1983 formalized the equatorial current model, based on previous modelling work of Jupiter's current sheet and estimated its parameters from the two Voyager data sets. Here, we investigate the model further, by reconsidering the data from the two Voyager spacecraft, as well as including the Pioneer 11 flyby data set.
First, we obtain, in closed form, an analytic expression for the magnetic field produced by the ring current. We then fit the model to the external field, that is the difference between the observed field and the internal magnetic field, considering all the available data. In general, through our global fit we obtain more accurate parameters, compared to previous models. We point out differences between the model's parameters for the three flybys, and also investigate possible deviations from the axial and planar symmetries assumed in the model. We conclude that an accurate modelling of the Saturnian disk current will require taking into account both of the temporal variations related to the condition of the magnetosphere, as well as non-axisymmetric contributions due to local time effects.
Key words. Magnetospheric physics (current systems; planetary magnetospheres; plasma sheet
Spin tune mapping as a novel tool to probe the spin dynamics in storage rings
Saleev, A.; Nikolaev, N. N.; Rathmann, F.; Augustyniak, W.; Bagdasarian, Z.; Bai, M.; Barion, L.; Berz, M.; Chekmenev, S.; Ciullo, G.; Dymov, S.; Eversmann, D.; Gaisser, M.; Gebel, R.; Grigoryev, K.; Grzonka, D.; Guidoboni, G.; Heberling, D.; Hejny, V.; Hempelmann, N.; Hetzel, J.; Hinder, F.; Kacharava, A.; Kamerdzhiev, V.; Keshelashvili, I.; Koop, I.; Kulikov, A.; Lehrach, A.; Lenisa, P.; Lomidze, N.; Lorentz, B.; Maanen, P.; Macharashvili, G.; Magiera, A.; Mchedlishvili, D.; Mey, S.; Müller, F.; Nass, A.; Pesce, A.; Prasuhn, D.; Pretz, J.; Rosenthal, M.; Schmidt, V.; Semertzidis, Y.; Senichev, Y.; Shmakova, V.; Silenko, A.; Slim, J.; Soltner, H.; Stahl, A.; Stassen, R.; Stephenson, E.; Stockhorst, H.; Ströher, H.; Tabidze, M.; Tagliente, G.; Talman, R.; Engblom, P. Thörngren; Trinkel, F.; Uzikov, Yu.; Valdau, Yu.; Valetov, E.; Vassiliev, A.; Weidemann, C.; Wrońska, A.; Wüstner, P.; Zuprański, P.; Zurek, M.; JEDI Collaboration
2017-07-01
Precision experiments, such as the search for electric dipole moments of charged particles using storage rings, demand for an understanding of the spin dynamics with unprecedented accuracy. The ultimate aim is to measure the electric dipole moments with a sensitivity up to 15 orders in magnitude better than the magnetic dipole moment of the stored particles. This formidable task requires an understanding of the background to the signal of the electric dipole from rotations of the spins in the spurious magnetic fields of a storage ring. One of the observables, especially sensitive to the imperfection magnetic fields in the ring is the angular orientation of stable spin axis. Up to now, the stable spin axis has never been determined experimentally, and in addition, the JEDI collaboration for the first time succeeded to quantify the background signals that stem from false rotations of the magnetic dipole moments in the horizontal and longitudinal imperfection magnetic fields of the storage ring. To this end, we developed a new method based on the spin tune response of a machine to artificially applied longitudinal magnetic fields. This novel technique, called spin tune mapping, emerges as a very powerful tool to probe the spin dynamics in storage rings. The technique was experimentally tested in 2014 using polarized deuterons stored in the cooler synchrotron COSY, and for the first time, the angular orientation of the stable spin axis at two different locations in the ring has been determined to an unprecedented accuracy of better than 2.8 μ rad .
Simulation of Electron Beam Dynamics in a Nonmagnetized High-Current Vacuum Diode
Anishchenko, Sergey
2016-01-01
The electron beam dynamics in a nonmagnetized high-current vacuum diode is analyzed for different cathode-anode gap geometries. The conditions enabling to achieve the minimal {initial} momentum spread in the electron beam are found out. A drastic rise of current density in a vacuum diode with a ring-type cathode is described. The effect is shown to be caused by electrostatic repulsion.
Leybourne, Bruce; Smoot, Christian; Longhinos, Biju
2014-05-01
Interplanetary Magnetic Field (IMF) coupling to south polar magnetic ring currents transfers induction energy to the Southern Geostream ringing Antarctica and underlying its encircling mid-ocean ridge structure. Magnetic reconnection between the southward interplanetary magnetic field and the magnetic field of the earth is the primary energy transfer mechanism between the solar wind and the magnetosphere. Induced telluric currents focused within joule spikes along Geostreams heat the southern Pacific. Alignment of the Australian Antarctic Discordance to other tectonic vortexes along the Western Pacific Rim, provide electrical connections to Earths core that modulate global telluric currents. The Banda Sea Triple Junction, a mantle vortex north of Australia, and the Lake Baikal Continental Rift vortex in the northern hemisphere modulate atmospheric Jetstream patterns gravitationally linked to internal density oscillations induced by these telluric currents. These telluric currents are driven by solar magnetic power, rotation and orbital dynamics. A solar rotation 40 day power spectrum in polarity controls north-south migration of earthquakes along the Western Pacific Rim and manifest as the Madden Julian Oscillation a well-documented climate cycle. Solar plasma turbulence cycles related to Hale flares trigger El Nino Southern Oscillations (ENSO's), while solar magnetic field strength frequencies dominate global warming and cooling trends indexed to the Pacific Decadal Oscillation. These Pacific climate anomalies are solar-electro-tectonically modulated via coupling to tropical geostream vortex streets. Particularly the section along the Central Pacific Megatrend connecting the Banda Sea Triple Junction (up welling mantle vortex) north of Australia with the Easter Island & Juan Fernandez twin rotating micro-plates (twin down welling mantle vortexes) along the East Pacific Rise modulating ENSO. Solar eruptions also enhance the equatorial ring current located
Ongoing Dynamics and Evolution of Neptune's Ring-Moon System
Showalter, Mark R.; de Pater, Imke; Lissauer, Jack J.; French, Robert S.
2017-06-01
We report results derived from observations of the Neptune system using the Hubble Space Telescope (HST) during August 2016. These observations entail repeated, extremely long exposures through the broadest available filter on the WFC3/UVIS instrument to reveal details of Neptune's faint rings and small, inner moons. The work complements similar observations performed by HST in 2004-2005 and 2009. A principal goal was the recovery of the small moon S/2004 N 1 (henceforth N14), which was first reported in 2009. New images show the moon clearly and make it possible to obtain accurate orbital elements for the first time. A complete analysis of all data 2004-2016 reveals that the mean motion n = 378.90616 +/- 0.00003 degrees per day, corresponding to a semimajor axis a = 105,283 km. Eccentricity and inclination are quite small, with e < 0.001 and i < 0.1 degrees. (This result accounts for the local Laplace Plane tilt of ~ 0.4 degrees). N14 has a physical radius R = 13-15 km, assuming its albedo is 0.09 +/- 0.01, which is the range of Neptune's other inner moons. It orbits interior to the much larger moon Proteus (a = 117,647 km; R = 210 km). Tides are believed to have caused Proteus to spiral outward significantly since its origin, and we find that N14 orbits within the radial zone likely crossed by Proteus. We suggest that N14 may have originated as debris ejected from an impact into Proteus; Proteus subsequently continued to evolve outward but the debris accreted into N14 and remains at its original point of origin. Naiad, the innermost of Neptune's moons, is now orbiting ~ 120 degrees ahead of its published orbital elements. This represents only a 1-sigma correction from its mean motion as derived from Voyager data, but it indicates that later, purported detections of Naiad with the Keck telescope were almost certainly misidentifications. The arcs in the Adams ring show that trends reported previously have continued: the two leading arcs are no longer visible
Ring current Atmosphere interactions Model with Self-Consistent Magnetic field
2016-09-09
The Ring current Atmosphere interactions Model with Self-Consistent magnetic field (B) is a unique code that combines a kinetic model of ring current plasma with a three dimensional force-balanced model of the terrestrial magnetic field. The kinetic portion, RAM, solves the kinetic equation to yield the bounce-averaged distribution function as a function of azimuth, radial distance, energy and pitch angle for three ion species (H+, He+, and O+) and, optionally, electrons. The domain is a circle in the Solar-Magnetic (SM) equatorial plane with a radial span of 2 to 6.5 RE. It has an energy range of approximately 100 eV to 500 KeV. The 3-D force balanced magnetic field model, SCB, balances the JxB force with the divergence of the general pressure tensor to calculate the magnetic field configuration within its domain. The domain ranges from near the Earth’s surface, where the field is assumed dipolar, to the shell created by field lines passing through the SM equatorial plane at a radial distance of 6.5 RE. The two codes work in tandem, with RAM providing anisotropic pressure to SCB and SCB returning the self-consistent magnetic field through which RAM plasma is advected.
The inconsistency between proton charge exchange and the observed ring current decay
Lyons, L. R.; Evans, D. S.
1976-01-01
The equatorial pitch-angle distributions of ring-current ions observed during a storm recovery phase at L values between 3 and 4 are compared with the pitch-angle distributions predicted by proton charge exchange with neutral hydrogen. Large disagreements are found, and three alternative explanations are explored. (1) A strong proton source acts to mask the effects of charge exchange. It is believed that the required strong continual source with a unique pitch-angle and energy dependence is unrealistic at these low L values. (2) Presently accepted neutral hydrogen density models have densities well over an order of magnitude too large for a storm recovery phase. No evidence is known to support the required large errors in the densities. (3) The ring current at particle energies not exceeding 50 keV was dominated by some ion species other than protons during the storm recovery phase. Such ions must have much longer lifetimes for charge exchange with hydrogen than do protons. This alternative is strongly favored, with He(+) being an attractive candidate.
Energy transfer between energetic ring current H(+) and O(+) by electromagnetic ion cyclotron waves
Thorne, Richard M.; Horne, Richard B.
1994-01-01
Electromagnetic ion cyclotron (EMIC) waves in the frequency range below the helium gyrofrequency can be excited in the equatorial region of the outer magnetosphere by cyclotron resonant instability with anisotropic ring current H(+) ions. As the unducted waves propagate to higher latitudes, the wave normal should become highly inclined to the ambient magnetic field. Under such conditions, wave energy can be absorbed by cyclotron resonant interactions with ambient O(+), leading to ion heating perpendicular to the ambient magnetic field. Resonant wave absorption peaks in the vicinity of the bi-ion frequency and the second harmonic of the O(+) gyrofrequrency. This absorption should mainly occur at latitudes between 10 deg and 30 deg along auroral field lines (L is greater than or equal to 7) in the postnoon sector. The concomitant ion heating perpendicular to the ambient magnetic field can contribute to the isotropization and geomagnetic trapping of collapsed O(+) ion conics (or beams) that originate from a low-altitude ionospheric source region. During geomagnetic storms when the O(+) content of the magnetosphere is significantly enhanced, the absorption of EMIC waves should become more efficient, and it may contribute to the observed acceleration of O(+) ions of ionospheric origin up to ring current energies.
Spin dynamics in storage rings and linear accelerators
Irwin, J.
1994-04-01
The purpose of these lectures is to survey the subject of spin dynamics in accelerators: to give a sense of the underlying physics, the typical analytic and numeric methods used, and an overview of results achieved. Consideration will be limited to electrons and protons. Examples of experimental and theoretical results in both linear and circular machines are included.
Current evolution and plasma density space distribution in the reflex discharge with ring cathodes
Samokhin, A. A.; Liziakin, G. D.; Gavrikov, A. V.; Usmanov, R. A.; Smirnov, V. P.
2016-11-01
In this paper the numerical model of direct current gas discharge in drift-diffusion approximation is considered. For two-component plasma the processes of the gas discharge development in the reflex geometry with ring cathodes at a helium pressure of 35 mTorr are studied. We investigate the influence of: (a) the boundary conditions on the dielectric, (b) the electron temperature and (c) the coefficient of the secondary ion-electron emission on the I-U curve of the discharge. In a magnetic field of 50 Gauss the impact of the discharge voltage U = 300-700 V on the evolutionary process of the discharge is examined. The effect of diffusion on maintaining steady state discharge is researched. The parameters of the existence of a high-current (tens of μA) and low voltage (tens of mA) discharge modes are defined.
Omidi, Mahboubeh; Faizabadi, Edris
2015-09-01
We use a simple model to study the electron-phonon interaction influences on persistent current in a one-dimensional quantum ring enclosed by a magnetic flux. With increasing the temperature, persistent current amplitude is reduced, especially in a quantum ring with two ions per primitive cell (diatomic ring) because of the participation of optical phonons. Furthermore, the periodicity of the Aharonov-Bohm oscillations changes to Φ0 / 2 (Φ0 is magnetic flux quantum). In a diatomic ring, by increasing the difference between left and right nearest-neighbor hopping integrals at zero temperature, persistent current variations show a transition from metallic to insulator against distinctive behavior at nonzero temperature.
Observation of central wavelength dynamics in erbium-doped fiber ring laser.
Xu, Huiwen; Lei, Dajun; Wen, Shuangchun; Fu, Xiquan; Zhang, Jinggui; Shao, Yufeng; Zhang, Lifu; Zhang, Hua; Fan, Dianyuan
2008-05-12
We report on the observation of central wavelength dynamics in an erbium-doped fiber ring laser by using the nonlinear polarization rotating technique. The evolution of central wavelength with the laser operation state was observed experimentally. Numerical simulations confirmed the experimental observation and further demonstrated that the dynamics of wavelength evolution is due to the combined effects of fiber birefringence, fiber nonlinearity, and cavity filter.
Plasma Relaxation Dynamics Moderated by Current Sheets
Dewar, Robert; Bhattacharjee, Amitava; Yoshida, Zensho
2014-10-01
Ideal magnetohydrodynamics (IMHD) is strongly constrained by an infinite number of microscopic constraints expressing mass, entropy and magnetic flux conservation in each infinitesimal fluid element, the latter preventing magnetic reconnection. By contrast, in the Taylor-relaxed equilibrium model all these constraints are relaxed save for global magnetic flux and helicity. A Lagrangian is presented that leads to a new variational formulation of magnetized fluid dynamics, relaxed MHD (RxMHD), all static solutions of which are Taylor equilibrium states. By postulating that some long-lived macroscopic current sheets can act as barriers to relaxation, separating the plasma into multiple relaxation regions, a further generalization, multi-relaxed MHD (MRxMHD), is developed. These concepts are illustrated using a simple two-region slab model similar to that proposed by Hahm and Kulsrud--the formation of an initial shielding current sheet after perturbation by boundary rippling is calculated using MRxMHD and the final island state, after the current sheet has relaxed through a reconnection sequence, is calculated using RxMHD. Australian Research Council Grant DP110102881.
THE POTENTIAL FOR NEUTRINO PHYSICS AT MUON COLLIDERS AND DEDICATED HIGH CURRENT MUON STORAGE RINGS
BIGI,I.; BOLTON,T.; FORMAGGIO,J.; HARRIS,D.; MORFIN,J.; SPENTZOURIS,P.; YU,J.; KAYSER,B.; KING,B.J.; MCFARLAND,K.; PETROV,A.; SCHELLMAN,H.; VELASCO,M.; SHROCK,R.
2000-05-11
Conceptual design studies are underway for both muon colliders and high-current non-colliding muon storage rings that have the potential to become the first true neutrino factories. Muon decays in long straight sections of the storage rings would produce uniquely intense and precisely characterized two-component neutrino beams--muon neutrinos plus electron antineutrinos from negative muon decays and electron neutrinos plus muon antineutrinos from positive muons. This article presents a long-term overview of the prospects for these facilities to greatly extend the capabilities for accelerator-based neutrino physics studies for both high rate and long baseline neutrino experiments. As the first major physics topic, recent experimental results involving neutrino oscillations have motivated a vigorous design effort towards dedicated neutrino factories that would store muon beams of energies 50 GeV or below. These facilities hold the promise of neutrino oscillation experiments with baselines up to intercontinental distances and utilizing well understood beams that contain, for the first time, a substantial component of multi-GeV electron-flavored neutrinos. In deference to the active and fast-moving nature of neutrino oscillation studies, the discussion of long baseline physics at neutrino factories has been limited to a concise general overview of the relevant theory, detector technologies, beam properties, experimental goals and potential physics capabilities. The remainder of the article is devoted to the complementary high rate neutrino experiments that would study neutrino-nucleon and neutrino-electron scattering and would be performed at high performance detectors placed as close as is practical to the neutrino production straight section of muon storage rings in order to exploit beams with transverse dimensions as small as a few tens of centimeters.
Meddah, Chahrazed; Milchev, Andrey; Sabeur, Sid Ahmed; Skvortsov, Alexander M.
2016-11-01
Using molecular dynamics simulations, we study and compare the pressure, P, and the surface tension, γ , of linear chains and of ring polymers at the hard walls confining both melts into a slit. We examine the dependence of P and γ on the length (i.e., molecular weight) N of the macromolecules. For linear chains, we find that both pressure and surface tension are inversely proportional to the chain length, P (N ) -P (N →∞ ) ∝N-1,γ (N ) -γ (N →∞ ) ∝N-1 , irrespective of whether the confining planes attract or repel the monomers. In contrast, for melts comprised of cyclic (ring) polymers, neither the pressure nor the surface tension is found to depend on molecular weight N for both kinds of wall-monomer interactions. While other structural properties as, e.g., the probability distributions of trains and loops at impenetrable walls appear quantitatively indistinguishable, we observe an amazing dissimilarity in the probability to find a chain end or a tagged monomer of a ring at a given distance from the wall in both kinds of polymeric melts. In particular, we demonstrate that the conformational equivalence of linear chains in a confined melt to a single chain under conditions of critical adsorption to a planar surface, established two decades ago, does also hold for ring polymers in a melt of linear chains. This analogy does not hold, however, for linear and ring chains in a confined melt of ring chains.
The storm-time ring current: a statistical analysis at two widely separated low-latitude stations
P. Francia
2004-11-01
Full Text Available We conducted a statistical analysis of the geomagnetic field variations during the storm main phase at two low-latitude stations, separated by several hours in magnetic local time, in order to investigate the asymmetry and longitudinal extent of the storm-time ring current. The results show evidence for an asymmetric current which typically extends from evening to noon and, during moderate solar wind electric field conditions, up to the early morning, confirming the important role of the magnetospheric convection in the ring current energization. We also analyzed a possible relationship between the local current intensity during the storm main phase and the substorm activity observed at different time delays τ with respect to the storm onset. The results show a significant anticorrelation for τ =-1h, indicating that if the substorm activity is high just before the storm, a weaker ring current develops.
Akande, Akinlolu; Sanvito, Stefano
2016-11-01
We perform a numerical study of interacting one-dimensional Hubbard rings with a single impurity potential and pierced by a magnetic flux. Our calculations are carried out at the level of current lattice density functional theory (CLDFT) for the Hubbard model and compared to known results obtained in the thermodynamical limit from the Bethe ansatz. In particular, we investigate the effects of disorder and Coulomb interaction on the persistent current (PC) and the Drude weight. It is found that CLDFT is able to accurately describe qualitative and quantitative features of these ground state properties in the presence of disorder and electronic interaction. When the impurity potential is switched off, the CLDFT approach describes well the velocity of the Luttinger liquid excitations as a function of both interaction strength and electron filling. Then, when the impurity scattering potential is finite, we find the PC to vanish as {{L}-{{α\\text{B}}-1}} for large L and independent on the strength of the scattering potential, in good agreement with Luttinger liquid theory.
Ultrafast ring-closing reaction dynamics of a photochromic furan-based difurylethene
Khodko, A.; Khomenko, V.; Shynkarenko, Y.; Mamuta, O.; Kapitanchuk, O.; Sysoiev, D.; Kachalova, N.; Huhn, T.; Snegir, S.
2017-02-01
The ultrafast photoinduced ring-closing dynamics of a furan-based difurylethene (YnPhT) has been investigated by femtosecond transient absorption spectroscopy. We performed time-dependent density functional theory (TD-DFT) calculations to explain the experimental results in detail. The sub-picosecond time scale of the ring-closing reaction is comparable with thiophene-based analogues, but oxygen atoms at the photochromic core can avoid adverse interaction between switches and metal contacts in further applications. This observation proves that furan-based diarylethenes are potential optoelectronic elements with an ultrafast optical response.
Force generation by a dynamic Z-ring in Escherichia coli cell division.
Allard, Jun F; Cytrynbaum, Eric N
2009-01-06
FtsZ, a bacterial homologue of tubulin, plays a central role in bacterial cell division. It is the first of many proteins recruited to the division site to form the Z-ring, a dynamic structure that recycles on the time scale of seconds and is required for division to proceed. FtsZ has been recently shown to form rings inside tubular liposomes and to constrict the liposome membrane without the presence of other proteins, particularly molecular motors that appear to be absent from the bacterial proteome. Here, we propose a mathematical model for the dynamic turnover of the Z-ring and for its ability to generate a constriction force. Force generation is assumed to derive from GTP hydrolysis, which is known to induce curvature in FtsZ filaments. We find that this transition to a curved state is capable of generating a sufficient force to drive cell-wall invagination in vivo and can also explain the constriction seen in the in vitro liposome experiments. Our observations resolve the question of how FtsZ might accomplish cell division despite the highly dynamic nature of the Z-ring and the lack of molecular motors.
Prediction for Dynamic Characteristics of Ring-Plate Planetary Indexing Cam Mechanism
SONG Yimin; TIAN Guangcai; ZHANG Jun; LIU Mingtao; LIU Jianping
2009-01-01
This paper is aimed to propose an approach to predict the dynamic characteristics of ring-plate planetary indexing cam mechanism, which is a novel type of indexing mechanism that employs internal planetary transmis-sion structure. Firstly, the geometry and structure of the mechanism are discussed and the kinematic practicability is simulated with virtual prototype design. Then a 3D finite element model of the ring-plate planetary indexing cam mechanism is developed with the commercial software of MATLAB and ANSYS. Through the finite element analysis, the natural frequencies and the corresponding mode shapes are predicted in one motion cycle. On the basis of the virtual prototype design and finite element analysis, an experimental prototype is made and tested to validate the prediction of the dynamic characteristics. The agreement between experimental results and the finite element analysis testifies that the finite element model developed is applicable to the prediction of the dynamic characteris-tics of this type of mechanism.
The dynamic nature of the Adams ring arcs—Fraternite, Egalite (2,1), Liberte, Courage
Tsui, K. H.
2007-11-01
By considering the finite mass of Fraternite, the dynamic nature of the Adams ring arcs is regarded as caused by the reaction of a test body (a minor arc) through the Lindblad resonance (LR). Assuming the eccentricity of the test body is larger than that of Galatea, this generates several locations along the ring in the neighborhood of Fraternite where the time averaged force on a test body vanishes. These locations appear to correspond to the time dependent configuration of Egalite (2,1), Liberte, and Courage, and seem to be able to account for the dynamics of the arcs. Such a configuration is a dynamic one because the minor arcs are not bounded by the corotation eccentricity resonance (CER) externally imposed by Galatea, but are self-generated by LR reacting to the external fields.
Design and Dynamics Simulation of a Novel Double-Ring-Plate Gear Reducer
无
2007-01-01
A patented double-ring-plate gear reducer was designed and its dynamic performance was simulated. One unique characteristic of this novel drive is that the phase angle difference between two parallelogram mechanisms is a little less than 180 degree and four counterweights on two crankshafts are designed to balance inertia forces and inertia moments of the mechanisms. lts oper ating principle, advantages, and design issues were discussed. An elasto-dynamics model was presented to acquire its dynamic response by considering the elastic deformations of ring-plates,gears, bearings, etc. The simulation results reveal that compared with housing bearings, planetary bearings work in more severe conditions. The fluctuation of loads on gears and bearings indicates that the main reason for reducer vibration is elastic deformations of the system rather than inertia forces and inertia moments of the mechanisms.
Blob-Spring Model for the Dynamics of Ring Polymer in Obstacle Environment
Lele, Ashish K.; Iyer, Balaji V. S.; Juvekar, Vinay A.
2008-07-01
The dynamical behavior of cyclic macromolecules in a fixed obstacle (FO) environment is very different than the behavior of linear chains in the same topological environment; while the latter relax by a snake-like reptational motion from their chain ends the former can relax only by contour length fluctuations since they are endless. Duke, Obukhov and Rubinstein proposed a scaling model (the DOR model) to interpret the dynamical scaling exponents shown by Monte Carlo simulations of rings in a FO environment. We present a model (blob-spring model) to describe the dynamics of flexible and non-concatenated ring polymer in FO environment based on a theoretical formulation developed for the dynamics of an unentangled fractal polymer. We argue that the perpetual evolution of ring perimeter by the motion of contour segments results in an extra frictional load. Our model predicts self-similar dynamics with scaling exponents for the molecular weight dependence of diffusion coefficient and relaxation times that are in agreement with the scaling model proposed by Obukhov et al.
Dynamics of the southern California current system
di Lorenzo, Emanuele
The dynamics of seasonal to long-term variability of the Southern California Current System (SCCS) is studied using a four dimensional space-time analysis of the 52 year (1949--2000) California Cooperative Oceanic Fisheries Investigations (CalCOFI) hydrography combined with a sensitivity analysis of an eddy permitting primitive equation ocean model under various forcing scenarios. The dynamics of the seasonal cycle in the SCCS can be summarized as follows. In spring upwelling favorable winds force an upward tilt of the isopycnals along the coast (equatorward flow). Quasi-linear Rossby waves are excited by the ocean adjustment to the isopycnal displacement. In summer as these waves propagate offshore poleward flow develops at the coast and the Southern California Eddy (SCE) reaches its seasonal maxima. Positive wind stress curl in the Southern California Bight is important in maintaining poleward flow and locally reinforcing the SCE with an additional upward displacement of isopycnals through Ekman pumping. At the end of summer and throughout the fall instability processes within the SCE are a generating mechanism for mesoscale eddies, which fully develop in the offshore waters during winter. On decadal timescales a warming trend in temperature (1 C) and a deepening trend in the depth of the mean thermocline (20 m) between 1950 and 1998 are found to be primarily forced by large-scale decadal fluctuations in surface heat fluxes combined with horizontal advection by the mean currents. After 1998 the surface heat fluxes suggest the beginning of a period of cooling, which is consistent with colder observed ocean temperatures. The temporal and spatial distribution of the warming is coherent over the entire northeast Pacific Ocean. Salinity changes are decoupled from temperature and uncorrelated with indices of large-scale oceanic variability. Temporal modulation of southward horizontal advection by the California Current is the primary mechanism controlling local
Energy content of stormtime ring current from phase space mapping simulations
Chen, Margaret W.; Schulz, Michael; Lyons, Larry R.
1993-01-01
We perform a phase space mapping study to estimate the enhancement in energy content that results from stormtime particle transport in the equatorial magnetosphere. Our pre-storm phase space distribution is based on a steady-state transport model. Using results from guiding-center simulations of ion transport during model storms having main phases of 3 hr, 6 hr, and 12 hr, we map phase space distributions of ring current protons from the pre-storm distribution in accordance with Liouville's theorem. We find that transport can account for the entire ten to twenty-fold increase in magnetospheric particle energy content typical of a major storm if a realistic stormtime enhancement of the phase space density f is imposed at the nightside tail plasma sheet (represented by an enhancement of f at the neutral line in our model).
The Heidelberg High Current Injector A Versatile Injector for Storage Ring Experiments
Von Hahn, R; Repnow, R; Schwalm, D; Welsch, C P
2004-01-01
The High Current Injector (HCI) was designed and built as a dedicated injector for the Test Storage Ring in Heidelberg to deliver mainly singly charged Li- and Be-ions. After start for routine operation in 1999 the HCI delivered stable beams during the following years for about 50 % of the experiments with very high reliability. Due to the requirements from the experiment the HCI changed during that period from a machine for singly charged positive ions to an injector for a large variety of molecules as well as positively or negatively charged light ions. After successful commissioning of the custom built 18 GHz high power ECR-source at its present test location various modifications and additions were made in preparation of a possible conversion into an injector for highly charged heavy ions as a second phase. This paper gives an overview of the experience gained in the passed 5 years and presents the status of the upgrade of the HCI.
Seki, K.; Amano, T.; saito, S.; Miyoshi, Y.; Matsumoto, Y.; Umeda, T.; Miyashita, Y.; Ebihara, Y.
2012-12-01
Acceleration mechanisms of electrons to cause drastic variation of the Earth's outer radiation belt is one of outstanding issues of the geospace researches. While the radial diffusion of the electrons driven by ULF waves has been considered as one of the candidate mechanisms, efficiency of the mechanism under realistic ULF characteristics and distribution is far from understood. GEMSIS (Geospace Environment Modeling System for Integrated Studies) of STEL, Nagoya University, is the observation-based modeling project for understanding energy and mass transportation from the Sun to the Earth in the geospace environment. Aiming at understanding the dynamics of the inner magnetosphere during the geospace storms, the GEMSIS-Magnetosphere working team has developed a new physics-based model for the global dynamics of the ring current (GEMSIS-RC model). The GEMSIS-RC model is a self-consistent and kinetic numerical simulation code solving the five-dimensional collisionless drift-kinetic equation for the ring-current ions in the inner-magnetosphere coupled with Maxwell equations. We applied the GEMSIS-RC model for simulation of global distribution of ULF waves to test its capability of describing fast time scale phenomena like SCs and ULF waves. Two cases of background profile, i.e., cases without/with plasmapause in the simulation domain, are compared. The result shows that existence of plasmapause strengthens ULFs outside the plasmapause and widens the MLT region where the E_r (toroidal) component is excited from initially-given E_phi (poloidal) component. Comparison between runs with/without ring current ions show that the existence of hot ring current ions can deform and amplify the original sinusoidal waveforms. The deformation causes the energy cascade to higher frequency range (Pc4 and Pc3 ranges). The cascade is more pronounced in the high beta case. Combination with GEMSIS-RB model reproduced rapid radial transport by the drift resonance for ions with drift period
Chen, M. W.; Guild, T. B.; Lemon, C.; Roeder, J. L.; Le, G.; Schulz, M.
2009-12-01
Recent progress in ring current and plasma sheet modeling has shown the importance of a self-consistent treatment of particle transport and magnetic and electric fields in the inner magnetosphere. Models with and without self-consistency can lead to significantly different magnitudes and spatial distributions of plasma pressure and magnetic intensity during disturbed times. In this study we compare simulated and observed stormtime magnetic intensities (GOES and Polar/MFE) and ion densities (LANL/MPA and Polar/CAMMICE) to test how well self-consistent simulations can simultaneously reproduce these quantities. We simulate the ring current and plasma sheet for conditions corresponding to the 11 August 2000 storm using the self-consistent Rice Convection Model-Equilibrium (RCM-E) [Lemon et al., JGR, 2004] with a constant magnetopause location. Using the empirical IMF-dependent model of Tsyganenko and Mukai [JGR, 2003], we specify the plasma sheet pressure and density at 10 RE as the plasma boundary location in the RCM-E. The simulated ion densities at different magnetic local times agree fairly well with those from the re-analysis model of LANL/MPA densities of O’Brien and Lemon [Space Weather, 2007]. We compare the simulated magnetic intensity with the magnetic intensity measured by magnetometers on the GOES satellites at geosynchronous altitude (6.6 RE) and on the Polar satellite. Agreement between the simulated and observed magnetic intensities tends to agree better on the nightside than on the dayside in the inner magnetosphere. In particular, the model cannot account for observed drops in the dayside magnetic intensity during decreases in the solar wind pressure. We will modify the RCM-E to include a time-varying magnetopause location to simulate compressions and expansions associated with variations in the solar wind pressure. We investigate whether this will lead to improved agreement between the simulated and model magnetic intensities.
Proceedings of the 1979 workshop on beam current limitations in storage rings, July 16-27, 1979
Pellegrini, C. (ed.)
1979-01-01
The Workshop on Beam Current Limitations in Storage Rings was held at Brookhaven National Laboratory from July 16 to 27, 1979. The purpose of this Workshop was to discuss the physical mechanisms limiting the beam current or current density in accelerators or storage rings. Many of these machines are now being built or planned for a variety of applications, such as colliding beam experiments, synchrotron light production, heavy ion beams. This diversity was reflected in the Workshop and in the papers which have been contributed to these Proceedings. The twenty-one papers from the workshop were incorporated individually in the data base. (GHT)
Proposal of a relationship between dynamic aperture adn intensity evolution in a storage ring
Giovannozzi, M
2010-01-01
A scaling law for the time-dependence of the dynamic aperture, i.e., the region of phase space where stable motion occurs, was proposed in previous papers, about ten years ago. The use of fundamental theorems of the theory of dynamical systems allowed showing that the dynamic aperture has a logarithmic dependence on time. In this paper this result, proved by mean of numerical simulations, is used as a basis for deriving a scaling law for the intensity evolution in a storage ring. The proposed scaling law is also tested against experimental data showing a remarkable agreement.
Th.P-19. Collisional effects and dynamic aperture in high-intensity storage rings
Benedetti, C. [Dipartimento di Fisica Universita di Bologna and INFN, Via Irnerio 46, Bologna 40126 (Italy)]. E-mail: benedetti@bo.infn.it; Rambaldi, S. [Dipartimento di Fisica Universita di Bologna and INFN, Via Irnerio 46, Bologna 40126 (Italy); Turchetti, G. [Dipartimento di Fisica Universita di Bologna and INFN, Via Irnerio 46, Bologna 40126 (Italy)
2005-05-21
We analyze the dynamic aperture in the presence of strong sextupolar errors for a high-intensity beam. The scaling laws for the short-term dynamic aperture are examined and its dependence on the perveance is discussed in a mean field approximation for a coasting beam. The collisional effects of Coulombian interaction are estimated for a linear lattice using a scaling law for the relaxation time. The collisional effects on the long-time dynamic aperture are discussed by comparing the results of full Hamiltonian integration with a mean field theory. An application to a storage ring with the HIDIF parameters is briefly outlined.
Ab initio path integral ring polymer molecular dynamics: Vibrational spectra of molecules
Shiga, Motoyuki; Nakayama, Akira
2008-01-01
The path integral ring polymer molecular dynamics method is combined with 'on-the-fly' ab initio electronic structure calculations and applied to vibrational spectra of small molecules, LiH and H 2O, at the room temperature. The results are compared with those of the numerically exact solution and ab initio path integral centroid molecular dynamics calculation. The peak positions in the calculated spectra are found to be reasonable, showing the red-shift due to potential anharmonicity. This unification enables the investigation of real-time quantum dynamics of chemically complex molecular systems on the ab initio Born-Oppenheimer potential energy surface.
Dynamics of Turing and Faraday instabilities in a longitudinally modulated fiber-ring cavity.
Copie, F; Conforti, M; Kudlinski, A; Trillo, S; Mussot, A
2017-02-01
We experimentally investigate the round-trip-to-round-trip dynamics of the modulation instability spectrum in a passive fiber-ring cavity presenting an inhomogeneous dispersion profile. By implementing a real-time spectroscopy technique, we are able to record successive single-shot spectra, which display the evolution of the system toward a stationary state. We find that the two instability regimes (Turing and Faraday) that compete in this kind of inhomogeneous cavity not only differ by their characteristic frequency but also by their dynamical behavior. The dynamic transition between those two regimes of instability is also presented.
An analysis of nonadiabatic ring-polymer molecular dynamics and its application to vibronic spectra
Richardson, Jeremy O; Pleinert, Marc-Oliver; Thoss, Michael
2016-01-01
Nonadiabatic ring-polymer molecular dynamics employs the mapping approach to describe nonadiabatic effects within the ring-polymer ansatz. In this paper, it is generalized to allow for the nuclear and electronic degrees of freedom to be described by different numbers of ring-polymer beads. Analysis of the resulting method shows that as the number of electronic mapping variables increases, certain problems associated with the approach are removed, such as the non-unique choice of the mapping Hamiltonian and negative populations leading to inverted potential-energy surfaces. Explicit integration over cyclic variables reduces the sign problem for the initial distribution in the general case. A new application for the simulation of vibronic spectra is described and promising results are presented for a model system.
An analysis of nonadiabatic ring-polymer molecular dynamics and its application to vibronic spectra
Richardson, Jeremy O.; Meyer, Philipp; Pleinert, Marc-Oliver; Thoss, Michael
2017-01-01
Nonadiabatic ring-polymer molecular dynamics employs the mapping approach to describe nonadiabatic effects within the ring-polymer ansatz. In this paper, it is generalized to allow for the nuclear and electronic degrees of freedom to be described by different numbers of ring-polymer beads. Analysis of the resulting method shows that as the number of electronic mapping variables increases, certain problems associated with the approach are removed, such as the non-unique choice of the mapping Hamiltonian and negative populations leading to inverted potential-energy surfaces. Explicit integration over cyclic variables reduces the sign problem for the initial distribution in the general case. A new application for the simulation of vibronic spectra is described and promising results are presented for a model system.
Spin tune mapping as a novel tool to probe the spin dynamics in storage rings
2017-07-01
Full Text Available Precision experiments, such as the search for electric dipole moments of charged particles using storage rings, demand for an understanding of the spin dynamics with unprecedented accuracy. The ultimate aim is to measure the electric dipole moments with a sensitivity up to 15 orders in magnitude better than the magnetic dipole moment of the stored particles. This formidable task requires an understanding of the background to the signal of the electric dipole from rotations of the spins in the spurious magnetic fields of a storage ring. One of the observables, especially sensitive to the imperfection magnetic fields in the ring is the angular orientation of stable spin axis. Up to now, the stable spin axis has never been determined experimentally, and in addition, the JEDI collaboration for the first time succeeded to quantify the background signals that stem from false rotations of the magnetic dipole moments in the horizontal and longitudinal imperfection magnetic fields of the storage ring. To this end, we developed a new method based on the spin tune response of a machine to artificially applied longitudinal magnetic fields. This novel technique, called spin tune mapping, emerges as a very powerful tool to probe the spin dynamics in storage rings. The technique was experimentally tested in 2014 using polarized deuterons stored in the cooler synchrotron COSY, and for the first time, the angular orientation of the stable spin axis at two different locations in the ring has been determined to an unprecedented accuracy of better than 2.8 μ rad.
Vortex rings and jets recent developments in near-field dynamics
Yu, Simon
2015-01-01
In this book, recent developments in our understanding of fundamental vortex ring and jet dynamics will be discussed, with a view to shed light upon their near-field behaviour which underpins much of their far-field characteristics. The chapters provide up-to-date research findings by their respective experts and seek to link near-field flow physics of vortex ring and jet flows with end-applications in mind. Over the past decade, our knowledge on vortex ring and jet flows has grown by leaps and bounds, thanks to increasing use of high-fidelity, high-accuracy experimental techniques and numerical simulations. As such, we now have a much better appreciation and understanding on the initiation and near-field developments of vortex ring and jet flows under many varied initial and boundary conditions. Chapter 1 outlines the vortex ring pinch-off phenomenon and how it relates to the initial stages of jet formations and subsequent jet behaviour, while Chapter 2 takes a closer look at the behaviour resulting from vor...
Klein, R.; Thornagel, R.; Ulm, G. [Physikalisch-Technische Bundesanstalt, Berlin (Germany)
2010-10-15
The spectral radiant intensity of synchrotron radiation from electron storage rings can be calculated from basic electrodynamic relations (Schwinger equation) and it is directly proportional to the stored electron beam current, i.e. the number of stored electrons. With the necessary equipment installed to measure and control the electron beam current over a wide dynamic range, the radiant intensity of the synchrotron radiation can be adjusted accordingly without changing the spectrum. This is done, e.g., at the Metrology Light Source (MLS), the dedicated electron storage ring of the Physikalisch-Technische Bundesanstalt. The MLS is operated as a primary radiation source standard from the near IR up to the soft x-ray region and its operational parameters can be adjusted and accurately measured in a wide range: the electron beam current can be varied from 1 pA (one stored electron) up to 200 mA and thus the radiant intensity can be changed by more than 11 decades. The photon flux or radiant power for typical angular acceptances can thus be varied from single photons to milliwatts. This is a very powerful tool, e.g., for the characterization of the linearity of the response of radiation detectors or for the calibration of photon counting detectors. In this article we present an overview of past, current and possible future activities exploiting this feature. (authors)
Farideh Roshanali
2012-12-01
Full Text Available Objective: Considering the importance of annular dynamics in the valvular and ventricular function, we sought to evaluate the effects of treated pericardial annuloplasty rings on mitral annular dynamics and left-ventricular (LV function after mitral valve repair. The results were compared with the mitral annular dynamics and LV function in patients with rigid and flexible rings and also in those without any heart problems. Materials and Methods: One hundred and thirty-six consecutive patients with a myxomatous mitral valve and severe regurgitation were prospectively enrolled in this observational cohort study. The patients underwent comparable surgical mitral valve reconstruction; of these 100 received autologous pericardium rings (Group I, 20 were given flexible prosthetic rings (Group II, and 16 received rigid rings (Group III. Other repair modalities were also performed, depending on the involved segments. The patients were compared with 100 normal subjects in whom an evaluation of the coronary artery was not indicative of valvular or myocardial abnormalities (Group IV. At follow-up, LV systolic indices were assessed via two-dimensional echocardiography at rest and during dobutamine stress echocardiography. Mitral annular motion was examined through mitral annulus systolic excursion (MASE. Peak transmitral flow velocities (TMFV and mitral valve area (MVA were also evaluated by means of continuous-wave Doppler. Results: A postoperative echocardiographic study showed significant mitral regurgitation (>=2+ in one patient in Group I, one patient in Group II, and none in Group III. None of the patients died. There was a noteworthy increase in TMFV with stress in all the groups, the increase being more considerable in the prosthetic ring groups (Group I from 1.10 ± 0.08 to 1.36 ± 0.13 m/s, Group II from 1.30 ± 0.11 to 1.59 ± 0.19 m/s, Group III from 1.33 ± 0.09 to 1.69 ± 0.21 m/s, and Group IV from 1.08 ± 0.08 to 1.21 ± 0.12 m
Intergrain and intragrain currents in bulk melt-grown YBa2Cu3O7-δ rings
Surzhenko, A. B.; Zeisberger, M.; Habisreuther, T.; Gawalek, W.; Uspenskaya, L. S.
2003-08-01
A simple contactless method suitable for discerning between the intergrain (circular) current, which flows in the thin superconducting ring, and the intragrain current, which does not cross the weakest link, has been proposed. At first, we show that the intergrain current may directly be estimated from the magnetic flux density B(±z0) measured by the Hall sensor positioned in the special points ±z0 above or below the ring center. The experimental and numerical techniques to determine the value z0 are discussed. Being very promising for the characterization of a current flowing across the joints in welded YBaCuO rings (its dependences on the temperature and external magnetic field as well as the time dissipation), the approach has been applied to study the corresponding properties of the intragrain and intergrain currents flowing across the a-twisted grain boundaries which are frequent in bulk melt-textured (MT) YBaCuO samples. We present experimental data related to the flux penetration inside a bore of MT YBaCuO rings both in the nonmagnetized, virgin state, and during the field reversal. The shielding properties and their dependence on external magnetic fields are also studied. Besides, we consider flux creep effects and their influence on the current redistribution during a dwell.
WANG Longkai; BIN Guangfu; LI Xuejun; ZHANG Xuefeng
2015-01-01
The inner and outer oil film dynamic characteristic coefficients of floating ring bearings(FRBs) change due to the manufacturing tolerance of the floating ring, journal and intermediate, which leads to high-speed turbocharger’s vibration too large and even causes nonlinear vibration accident. However, the investigation of floating ring bearing manufacturing tolerance clearance on the rotordynamic characteristics is less at present. In order to study the influence law of inner and outer clearance on turbocharger vibration, the rotor dynamic motion equations of turbocharger supported in FRBs are derived by analyzing the size relations between floating ring, journal and intermediate for the inner and outer oil film clearances, the time transient response analysis for combination of FRBs clearance are developed. A realistic turbocharger is taken as a research object, the FE model of the turbocharger with FRBs is modeled. Under the conditions of four kinds of limit state bearing clearances for inner and outer oil film, the nonlinear transient analyses are performed based on the established FE dynamic models of the nonlinear rotor-FRBs system applied incentive combinations of gravity and unbalance force, respectively. From the waterfall, the simulation results show that the speed for the appearance of fractional frequency is not identical and the amplitude magnitude is different under the four kinds of bearing manufacturing tolerance limit clearances, and fractional frequency does not appear in the turbocharger and the amplitude is minimum under the ODMin/IDMax bearing manufacturing tolerance clearances. The turbocharger vibration is reduced by controlling the manufacturing tolerance clearance combinations of FRBs, which is helpful for the dynamic design and production-manufacturing of high-speed turbocharger.
Dynamical aspects on FEL interaction in single passage and storage ring devices
Dattoli, G.; Renieri, A. [ENEA, Frascati (Italy)
1995-12-31
The dynamical behaviour of the free-electron lasers is investigated using appropriate scaling relations valid for devices operating in the low and high gain regimes, including saturation. The analysis is applied to both single passage and storage ring configurations. In the latter case the interplay between the interaction of the electron bean with the laser field and with the accelerator environment is investigated. In particular we discuss the effect of FEL interaction on the microwave instability.
Should Thermostatted Ring Polymer Molecular Dynamics be used to calculate reaction rates?
Hele, Timothy J H
2015-01-01
We apply Thermostatted Ring Polymer Molecular Dynamics (TRPMD), a recently-proposed approximate quantum dynamics method, to the computation of thermal reaction rates. Its short-time Transition-State Theory (TST) limit is identical to rigorous Quantum Transition-State Theory, and we find that its long-time limit is independent of the location of the dividing surface. TRPMD rate theory is then applied to one-dimensional model systems, the atom-diatom bimolecular reactions H+H$_2$, D+MuH and F+H$_2$, and the prototypical polyatomic reaction H+CH$_4$. Above the crossover temperature, the TRPMD rate is virtually invariant to the strength of the friction applied to the internal ring-polymer normal modes, and beneath the crossover temperature the TRPMD rate generally decreases with increasing friction, in agreement with the predictions of Kramers theory. We therefore find that TRPMD is less accurate than Ring Polymer Molecular Dynamics (RPMD) for symmetric reactions, and in certain asymmetric systems closer to the q...
Should thermostatted ring polymer molecular dynamics be used to calculate thermal reaction rates?
Hele, Timothy J. H., E-mail: tjhh2@cam.ac.uk [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Suleimanov, Yury V. [Computation-based Science and Technology Research Center, Cyprus Institute, 20 Kavafi St., Nicosia 2121 (Cyprus); Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139 (United States)
2015-08-21
We apply Thermostatted Ring Polymer Molecular Dynamics (TRPMD), a recently proposed approximate quantum dynamics method, to the computation of thermal reaction rates. Its short-time transition-state theory limit is identical to rigorous quantum transition-state theory, and we find that its long-time limit is independent of the location of the dividing surface. TRPMD rate theory is then applied to one-dimensional model systems, the atom-diatom bimolecular reactions H + H{sub 2}, D + MuH, and F + H{sub 2}, and the prototypical polyatomic reaction H + CH{sub 4}. Above the crossover temperature, the TRPMD rate is virtually invariant to the strength of the friction applied to the internal ring-polymer normal modes, and beneath the crossover temperature the TRPMD rate generally decreases with increasing friction, in agreement with the predictions of Kramers theory. We therefore find that TRPMD is approximately equal to, or less accurate than, ring polymer molecular dynamics for symmetric reactions, and for certain asymmetric systems and friction parameters closer to the quantum result, providing a basis for further assessment of the accuracy of this method.
Energy-dependent evolution of the ring current during the magnetic storms
Temporin, Ayako; Ebihara, Yusuke; Fritz, Theodore A.
The ring current is known to mainly consist of two components of ions; one having energy from keV to tens of keV (low-energy), and the other having energy from 100keV to several hundreds keV(high-energy) in the quiet time. According to the past observations, the low-energy component increases during the storm main phase, and decreases during the storm recovery phase. However, the behavior of the high-energy component and the relationship between the two components are less known. For the purpose of understanding the behavior of the ring current in detail, we use data from the ion mass spectrometer called MICS and the magnetometer called MFE aboard the Polar satellite. We focus on the differential flux of protons with 31-80keV (as a proxy of the low-energy component) and those with 125-173keV (as a proxy of the high-energy component) at a pitch angle of 90 degrees when the Polar satellite crossed the magnetic equatorial plane. Pre-storm condition (t1), intense phase of magnetic storm (t2), and decline phase (t3) are identified based on the Dst index. We selected 27 subsets from January 1997 to March 2000 and from April 2001 to April 2002. We obtained the following major results. (1) In the low-energy component, the proton flux tends to increase during the intense phase, and decrease during the decline phase with an exception in the pre-noon sector. (2) In the high-energy component, the proton flux tends to be stationary during the intense phase. During the decline phase, the flux tends to increase, and occasionally, exceeds that in the pre-storm condition. (3) The magnetic field tends to decrease during the intense phase, and increase during the decline phase. The anti-correlation between the low-energy component and the magnetic field may indicate a diamagnetic response. The weak correlation between the high-energy component and the magnetic field during the decline phase may indicate an adiabatic variation of high-energy component. It is suggested that the high
Routes to complex dynamics in a ring of unidirectionally coupled systems.
Perlikowski, P; Yanchuk, S; Wolfrum, M; Stefanski, A; Mosiolek, P; Kapitaniak, T
2010-03-01
We study the dynamics of a ring of unidirectionally coupled autonomous Duffing oscillators. Starting from a situation where the individual oscillator without coupling has only trivial equilibrium dynamics, the coupling induces complicated transitions to periodic, quasiperiodic, chaotic, and hyperchaotic behavior. We study these transitions in detail for small and large numbers of oscillators. Particular attention is paid to the role of unstable periodic solutions for the appearance of chaotic rotating waves, spatiotemporal structures, and the Eckhaus effect for a large number of oscillators. Our analytical and numerical results are confirmed by a simple experiment based on the electronic implementation of coupled Duffing oscillators.
Beam dynamics studies on BEPC-Ⅱstorage rings at the commissioning stage
QIN Qing; HUANG Nan; LIU Wei-Bin; LIU Yu-Dong; PENG Yue-Mei; QIU Jing; WANG Dou; WANG Xin-Hao; WANG Na; WANG Jiu-Qing; WEI Yuan-Yuan; WEN Xue-Mei; XING Jun; XU Gang; Yu Cheng-Hui; ZHANG Chuang; ZHANG Yuan; ZHAO Zheng; ZHOU De-Min
2009-01-01
During the 1st and 2nd stages of the commissioning of the upgrade project of the Beijing Electron Positron Collider(BEPC Ⅱ),which started on Nov.12,2006 and Oct.24,2007,respectively,we got the luminosity one tenth of its design value,provided beams to synchrotron radiation users for about 4 months,and studied beam dynamics as well.In this paper,some beam dynamics studies on the storage rings and their preliminary results are given.
Dynamic modes of microwave signal autogeneration in a radio photonic ring generator
Kondrashov, A. V.; Ustinov, A. B.; Kalinikos, B. A.
2017-02-01
Dynamic modes of microwave signal autogeneration in a radio photonic generator have been investigated. The generator is a ring circuit with a low-pass filter and microwave amplifier in its microwave path. The optical path contains an optical fiber delay line. The generator demonstrates the periodical, chaotic, and noise dynamics. It has been shown that the correlation dimensionality of the random signal attractor in the chaotic generation mode saturates with increasing phase space dimensionality. Saturation is not observed in the noise-generation mode.
Copini, P.
2015-01-01
MARKERS INSIDE WOOD – TREE RINGS AS ARCHIVES OF INSECT OUTBREAKS, DRIFT-SAND DYNAMICS AND SPRING FLOODING Trees are long-living organisms that record ecologically relevant information in their xylem that can be accessed by dendrochronology, the study of tree rings. Specific environmental event
Malone, K.M.; Versteegt, H.H.
2009-01-01
This paper investigates the effects of dynamic road marking on the Ring around Amsterdam. This Ring is congested during most of the day, but especially during the peak periods in the morning and evening rush hours. The goal is to determine what (traffic) effects, if any, can be found by applying Dyn
Li, Xinlin; Zhao, Hong; Baker, Daniel; Claudepierre, Seth; Fennell, Joe; Blake, J. Bernard; Larsen, Brian; Skoug, Ruth; Funsten, Herbert; Friedel, Reiner; Reeves, Geoff; Spence, Harlan; Mitchell, Donald; Lanzerotti, Louis
2016-04-01
Deep injections of energetic electrons and ions into the inner magnetosphere occur frequently, but the depths of the injections strongly depend on the species and energies. Electrons with energies of 10s to 100s of keV are injected into the inner belt (Linner belt but lost quickly. Ions with higher energies have much longer lifetime but cannot be injected as deep. For similar energies (100s of keV), Oxygen are injected a little deeper than Hydrogen and also decayed faster. Those results are obtained based on the measurements from the Van Allen Probes mission. The underline physics mechanisms responsible for these observations are still not clear. The relative contributions of these energetic particles to the ring current energy content have been calculated. Electrons contribute much less than the ions (~10%) with <35 keV electrons dominating the electron energy content during the main phases of a storm. The enhancement of electron energy content during a storm can get to ~30% of that of ions, indicating a more dynamic feature of the electrons.
Zvyagin, A.A. [B. I. Verkin Institute for Low Temperature Physics and Engineering of the National Ukrainian Academy of Sciences, 47, Lenin Avenue, 310164, Kharkov (Ukraine); Schlottmann, P. [Department of Physics, Florida State University, Tallahassee, Florida 32306 (United States)
1996-12-01
We consider a spin-1/2 impurity interacting with conduction electrons in two different orbital channels via an isotropic spin exchange. The exchange is the same for both channels, but a crystalline field breaks the symmetry between the orbital channels. This corresponds to a splitting of the conduction electron {Gamma}{sub 8} into two doublets in the quadrupolar Kondo effect, or to the electron-assisted tunneling of an atom in a double-well potential in an external magnetic field. Another possible realization could be a quantum dot coupled to two equal rings of the same length subject to an electrostatic potential difference. We consider the Bethe ansatz equations for this model and derive the tower structure of the finite-size corrections to the ground-state energy. These results are used to discuss the Aharonov-Bohm-Casher interference pattern in the persistent charge and spin currents, and the magnetoresistivity due to the scattering of electrons off the impurity. {copyright} {ital 1996 The American Physical Society.}
Witt, Alexander; Ivanov, Sergei D.; Shiga, Motoyuki; Forbert, Harald; Marx, Dominik
2009-05-01
Centroid molecular dynamics (CMD) and ring polymer molecular dynamics (RPMD) are two conceptually distinct extensions of path integral molecular dynamics that are able to generate approximate quantum dynamics of complex molecular systems. Both methods can be used to compute quasiclassical time correlation functions which have direct application in molecular spectroscopy; in particular, to infrared spectroscopy via dipole autocorrelation functions. The performance of both methods for computing vibrational spectra of several simple but representative molecular model systems is investigated systematically as a function of temperature and isotopic substitution. In this context both CMD and RPMD feature intrinsic problems which are quantified and investigated in detail. Based on the obtained results guidelines for using CMD and RPMD to compute infrared spectra of molecular systems are provided.
Effective dynamics of an electrically charged string with a current
Kazinski, P. O.
2005-08-01
Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations is found.
Effective dynamics of an electrically charged string with a current
Kazinski, P O
2005-01-01
Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations ...
Adelnia, Fatemeh; Lascialfari, Alessandro [Dipartimento di Fisica, Università degli Studi di Milano and INSTM, Milano (Italy); Dipartimento di Fisica, Università degli Studi di Pavia and INSTM, Pavia (Italy); Mariani, Manuel [Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna (Italy); Ammannato, Luca; Caneschi, Andrea; Rovai, Donella [Dipartimento di Chimica, Università degli Studi di Firenze and INSTM, Firenze (Italy); Winpenny, Richard; Timco, Grigore [School of Chemistry, The University of Manchester, Manchester (United Kingdom); Corti, Maurizio, E-mail: maurizio.corti@unipv.it; Borsa, Ferdinando [Dipartimento di Fisica, Università degli Studi di Pavia and INSTM, Pavia (Italy)
2015-05-07
We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ring and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.
Modeling and analysis of deployment dynamics for a novel ring mechanism
Li, Bing; Qi, Xiaozhi; Huang, Hailin; Xu, Wenfu
2016-03-01
With the development of satellite-communication and earth-observation technologies, the demands for large and light space-deployable antennas have become more and more urgent. In this paper, a deployable ring mechanism capable of supporting a large flexible cable net antenna reflector is presented. The mechanism is driven by torsion springs and controlled by cables. It is composed of multiple deployable modules and has a high deploy/fold ratio, therefore, it has good application prospects. To improve the reliability of the mechanism, a dynamic simulation must be conducted at the design stage to investigate the mechanical characteristics. First, a full kinematic model is established and the position, velocity, and acceleration of the mechanism are analyzed. Next, taking into account the influence of the flexible cable net, frictional damping and the torsion springs, the deployment dynamics of the mechanism are modeled by using a Lagrange's method. Finally, forward dynamics and inverse dynamics simulations are conducted to investigate the rules the governing system-energy variation, and the influence of viscous damping on the motion of the mechanism. A modified deployment motion planning method based on force-control is proposed, and the relationships between control force and motion are ascertained and verified by a prototype of the ring mechanism.
Controlling the dynamical behavior of nonlinear fiber ring resonators with balanced loss and gain
Deka, Jyoti P; Sarma, Amarendra K
2015-01-01
We show the possibility of controlling the dynamical behavior of a single fiber ring (SFR) resonator system with the fiber being an amplified (gain) channel and the ring being attenuated (loss) nonlinear dielectric medium. The system considered here is a simple alteration in the basic building block of the parity time (PT) symmetric synthetic coupler structures reported in A. Regensburger et al., Nature 488, 167 (2012). We find that this result in a dynamically controllable algorithm for the chaotic dynamics inherent in the system. We have also shown the dependence of the period doubling point upon the input amplitude, emphasizing on the dynamical aspects of our system. Moreover, the fact that the resonator essentially plays the role of a damped harmonic oscillator has been elucidated with the non-zero intensity inside the resonator due to constant influx of input light. This study may be a step forward to further investigations in regard to the inter-connectivity between the PT symmetry and chaos along with ...
Applications of differential algebra to single-particle dynamics in storage rings
Yan, Y.
1991-09-01
Recent developments in the use of differential algebra to study single-particle beam dynamics in charged-particle storage rings are the subject of this paper. Chapter 2 gives a brief review of storage rings. The concepts of betatron motion and synchrotron motion, and their associated resonances, are introduced. Also introduced are the concepts of imperfections, such as off-momentum, misalignment, and random and systematic errors, and their associated corrections. The chapter concludes with a discussion of numerical simulation principles and the concept of one-turn periodic maps. In Chapter 3, the discussion becomes more focused with the introduction of differential algebras. The most critical test for differential algebraic mapping techniques -- their application to long-term stability studies -- is discussed in Chapter 4. Chapter 5 presents a discussion of differential algebraic treatment of dispersed betatron motion. The paper concludes in Chapter 6 with a discussion of parameterization of high-order maps.
Beam dynamics simulations in laser electron storage rings and optical stochastic cooling
Duru, Alper
Laser-electron storage rings are potential compact X-ray sources. Longitudinal dynamics in laser-electron storage rings is studied including the effects of both laser interaction and synchrotron radiation. It is shown that the steady state energy spread can reach as high as a few percent. The main reason is the wide spread in the energy loss by electrons to laser photons. Optical stochastic cooling has been studied numerically. The effects of the finite bandwidth of the amplifier are mixing and signal distortion. Both are included in the simulations and the results are compared to theoretical results. It is shown that the beam can be cooled both in transverse and longitudinal phase phase spaces simultaneously.
Caplan, Ronald Meyer
We numerically study the dynamics and interactions of vortex rings in the nonlinear Schrodinger equation (NLSE). Single ring dynamics for both bright and dark vortex rings are explored including their traverse velocity, stability, and perturbations resulting in quadrupole oscillations. Multi-ring dynamics of dark vortex rings are investigated, including scattering and merging of two colliding rings, leapfrogging interactions of co-traveling rings, as well as co-moving steady-state multi-ring ensembles. Simulations of choreographed multi-ring setups are also performed, leading to intriguing interaction dynamics. Due to the inherent lack of a close form solution for vortex rings and the dimensionality where they live, efficient numerical methods to integrate the NLSE have to be developed in order to perform the extensive number of required simulations. To facilitate this, compact high-order numerical schemes for the spatial derivatives are developed which include a new semi-compact modulus-squared Dirichlet boundary condition. The schemes are combined with a fourth-order Runge-Kutta time-stepping scheme in order to keep the overall method fully explicit. To ensure efficient use of the schemes, a stability analysis is performed to find bounds on the largest usable time step-size as a function of the spatial step-size. The numerical methods are implemented into codes which are run on NVIDIA graphic processing unit (GPU) parallel architectures. The codes running on the GPU are shown to be many times faster than their serial counterparts. The codes are developed with future usability in mind, and therefore are written to interface with MATLAB utilizing custom GPU-enabled C codes with a MEX-compiler interface. Reproducibility of results is achieved by combining the codes into a code package called NLSEmagic which is freely distributed on a dedicated website.
Ananth, Nandini
2013-09-01
We introduce mapping-variable ring polymer molecular dynamics (MV-RPMD), a model dynamics for the direct simulation of multi-electron processes. An extension of the RPMD idea, this method is based on an exact, imaginary time path-integral representation of the quantum Boltzmann operator using continuous Cartesian variables for both electronic states and nuclear degrees of freedom. We demonstrate the accuracy of the MV-RPMD approach in calculations of real-time, thermal correlation functions for a range of two-state single-mode model systems with different coupling strengths and asymmetries. Further, we show that the ensemble of classical trajectories employed in these simulations preserves the Boltzmann distribution and provides a direct probe into real-time coupling between electronic state transitions and nuclear dynamics.
A quantum dynamics study of the benzopyran ring opening guided by laser pulses
Saab, Mohamad, E-mail: mohamad.saab@univ-montp2.fr [CTMM, Institut Charles Gerhardt Montpellier (UMR5253), CC 15001, Université Montpellier 2, F-34095 Montpellier (France); Doriol, Loïc Joubert, E-mail: Loic.Joubert-Doriol@univ-montp2.fr [CTMM, Institut Charles Gerhardt Montpellier (UMR5253), CC 15001, Université Montpellier 2, F-34095 Montpellier (France); Lasorne, Benjamin, E-mail: lasorne@univ-montp2.fr [CTMM, Institut Charles Gerhardt Montpellier (UMR5253), CC 15001, Université Montpellier 2, F-34095 Montpellier (France); Guérin, Stéphane, E-mail: sguerin@u-bourgogne.fr [Département Optique, Interaction Matière-Rayonnement (OMR) (UMR 6303), Université de Bourgogne, F-21078 Dijon (France); Gatti, Fabien, E-mail: gatti@univ-montp2.fr [CTMM, Institut Charles Gerhardt Montpellier (UMR5253), CC 15001, Université Montpellier 2, F-34095 Montpellier (France)
2014-10-17
Highlights: • We perform quantum mechanical simulations for the ring-opening of benzopyran. • We develop strategies of control with laser pulses. • We focus on the physics involving the conical intersection. - Abstract: The ring-opening photoisomerization of benzopyran, which occurs via a photochemical route involving a conical intersection, has been studied with quantum dynamics calculations using the multi-configuration time-dependent Hartree method (MCTDH). We introduce a mechanistic strategy to control the conversion of benzopyran to merocyanine with laser pulses. We use a six-dimensional model developed in a previous work for the potential energy surfaces (PES) based on an extension of the vibronic-coupling Hamiltonian model (diabatization method by ansatz), which depends on the most active degrees of freedom. The main objective of these quantum dynamics simulations is to provide a set of strategies that could help experimentalists to control the photoreactivity vs. photostability ratio (selectivity). In this work we present: (i) a pump–dump technique used to control the photostability, (ii) a two-step strategy to enhance the reactivity of the system: first, a pure vibrational excitation in the electronic ground state that prepares the system and, second, an ultraviolet excitation that brings the system to the first adiabatic electronic state; (iii) finally the effect of a non-resonant pulse (Stark effect) on the dynamics.
Progress on optimization of the nonlinear beam dynamics in the MEIC collider rings
Nosochkov, Y. M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Cai, Y. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Sullivan, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wang, M-H [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wienands, U. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Morozov, V. S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Ya. S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, F. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pilat, F. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Y. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2015-07-13
One of the key design features of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is a small beta function at the interaction point (IP) allowing one to achieve a high luminosity of up to 10^{34} cm^{-2}s^{-1}. The required strong beam focusing unavoidably causes large chromatic effects such as chromatic tune spread and beam smear at the IP, which need to be compensated. This paper reports recent progress in our development of a chromaticity correction scheme for the ion ring including optimization of dynamic aperture and momentum acceptance.
Progress on Optimization of the Nonlinear Beam Dynamics in the MEIC Collider Rings
Morozov, Vasiliy S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Pilat, Fulvia [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cai, Y. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nosochkov, Y. M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Sullivan, Michael [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wang, M.-H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wienands, Uli [SLAC National Accelerator Lab., Menlo Park, CA (United States)
2015-09-01
One of the key design features of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is a small beta function at the interaction point (IP) allowing one to achieve a high luminosity of up to 10^{34} cm^{-2}s^{-1}. The required strong beam focusing unavoidably causes large chromatic effects such as chromatic tune spread and beam smear at the IP, which need to be compensated. This paper reports recent progress in our development of a chromaticity correction scheme for the ion ring including optimization of dynamic aperture and momentum acceptance.
Simulation of spin dynamics to measure electric dipole moments in storage rings
Rosenthal, Marcel; Lehrach, Andreas [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik; Collaboration: JEDI-Collaboration
2013-07-01
CP violation in the baryon sector, which is predicted by the Standard Model of Particle Physics, is too small to explain the matter and antimatter asymmetry in our universe. Permanent Electric Dipole Moments (EDMs) violate both P and T symmetries and are therefore, through the CPT theorem, also CP violating. No direct EDM measurements for protons, deuterons and light nuclei have been performed up to now. The JEDI collaboration at Forschungszentrum Juelich (FZJ) and the BNL-EDM collaboration at Brookhaven National Laboratory (BNL) pursue the goal to measure the EDMs of these particles in dedicated storage rings. Therefore different approaches are studied to reach an ultimate sensitivity of 10{sup -29} e.cm. A first direct measurement of the proton and deuteron EDM at a sensitivity level of 10{sup -24} e.cm will be performed in the existing conventional storage ring at FZJ, the Cooler Synchrotron COSY. Particle tracking simulations to explore the motion-correlated spin dynamics are a crucial part of feasibility studies of the planned storage ring EDM experiments. In a first step, a benchmarking of simulation codes with measurements at the Cooler Synchrotron COSY is performed.
Dynamic fragmentation of Al-W granular rings with different mesostructures
Chiu, Po-Hsun; Olney, Karl L.; Benson, David J.; Braithwaite, Chris; Collins, Adam; Nesterenko, Vitali F.
2017-01-01
Explosively driven fragmentation mechanisms of Al-W particulate composite rings were investigated. The effect of mesostructures (particulate Al and W, particulate Al and W fibers) and bonding between Al particles (processing via cold isostatic and cold isostatic + hot isostatic pressing) were determined. The kinematics of the expansion process was monitored using Photon Doppler Velocimetry measurements of the velocity of the outer surface of the rings. Numerical simulations of the expansion velocity of rings were in agreement with experimental data. Agglomerated fragments larger than sizes of initial Al particles were observed in experiments. The characteristic size of these agglomerates is most likely determined by the spacing between W inclusions. The simulations show that the dynamically expanded rings had clusters of particulates between shear bands (developing into macrocracks), which expand without significant plastic deformation, generating agglomerated fragments with sizes larger than initial Al particles, as observed in experiments. It was also demonstrated that debris has a measurable fraction of particles with sizes below the original particle sizes. The mesostructure of the fragments demonstrated that Al particles were heavily deformed within the regions having locally high strain plastic flow, which may result in fragments sizes below initial Al particle diameter. Simulations agree with experiments in that Al particles between neighboring W particles/fibers are heavily plastically deformed in comparison with Al particles away from W inclusions. Simulations also demonstrated that increasing initial porosity increases the plastic straining of Al particles between W particles/fibers. Thus, initial porosity may cause an increase in temperature of the Al fragments and cracking their surface oxide layers, therefore increasing the chance of subsequent rapid oxidation in air.
Khazanov, G. V.; Krivorutsky, E.; Gamayunov, K.; Avanov, L.
2003-01-01
The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on our newly developed self-consistent model that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.
Design and fabrication of nano-ring MRAM demo devices based on spin-polarized current driving
无
2007-01-01
Nano-ring-type magnetic tunnel junctions(NR-MTJ)were nano-fabricated.The tunneling magnetoresistance(TMR)versus current(Ⅰ)loops of the NR-MTJs for a spin-polarized current switching were measured and the TMR ratio of around 20%～50% with a Al-O barrier at room temperature were observed.The critical value of switching current for the free Co_(60)Fe_(20)B_(20) layer between parallel and anti-parallel magnetization states is smaller than 650μA.The NR-MTJs arrays were also integrated above the transistors in ...
A Long-term Ring Current Measure Created by Using the VMO MANGO Service Package
Bargatze, L. F.; King, T. A.
2008-12-01
A set of computational routines called MANGO (Magnetogram Analysis for the Network of Geomagnetic Observatories) is utilized to calculate a new measure of magnetic storm activity for the years 1932 to the near present. The MANGO routines are part of an effort to enhance data services available to users of the Heliophysics VxOs, specifically for the Virtual Magnetospheric Observatory (VMO). The community can utilize MANGO to derive value-added data products and images suitable for publication via the VMO web site. MANGO routines will be demonstrated through their application to study magnetic storms, a field of research that began in 1828 when von Humboldt launched an investigation of observations taken simultaneously from magnetic field stations spread around the Earth. The defining signature of magnetic storms is a worldwide decrease of the horizontal component of the magnetic field caused by fluctuations in the strength of the ring current. In the 1940's, Bartel pushed for deriving an index to measure the strength of magnetic storms. Progress intensified during the International Geophysical Year leading to the definition of the Dst index. The definitive Dst index is calculated at WDC-C2 for Geomagnetism in Kyoto by using a derivation scheme certified by Division V of IAGA. The Dst index time series spans the years 1957 to present with a cadence equal to 1-hr. The new data set we will present is a magnetic storm measure that is similar to the Dst index though it is calculated by using MANGO and a method that differs slightly from the official scheme. The MANGO data service package is based on a set of IDL routines that decompose ground magnetic field observations to isolate secular, diurnal, and disturbance variations of the magnetic field station-by-station. Each MANGO subroutine has been written in modular fashion to allow "plug and play"- style flexibility and each has been designed to account for failure modes and noisy data so that the programs will run to
The effect of guard ring on leakage current and spectroscopic performance of TlBr planar detectors
Kargar, Alireza; Kim, Hadong; Cirignano, Leonard; Shah, Kanai
2014-09-01
Four thallium bromide planar detectors were fabricated from materials grown at RMD Inc. The TlBr samples were prepared to investigate the effect of guard ring on device gamma-ray spectroscopy performance, and to investigate the leakage current through surface and bulk. The devices' active area in planar configuration were 4.4 × 4.4 × 1.0 mm3. In this report, the detector fabrication process is described and the resulting energy spectra are discussed. It is shown that the guard ring improves device spectroscopic performance by shielding the sensing electrode from the surface leakage current, and by making the electric filed more uniform in the active region of the device.
Ring opening reaction dynamics in the reaction of hydrogen atoms with ethylene oxide
Shin, S. K.; Jarek, R. L.; Böhmer, E.; Wittig, C.
1994-10-01
Ethylene oxide, C2H4O, is a three-membered ring with a single oxygen atom bridging the two carbons. Reactions of H and D atoms with ethylene oxide have been studied in the gas phase to provide insight into the dynamics of three-membered ring opening. H atoms were produced by photolyzing HI in the wavelength range 240-266 nm. The channel leading to OH+C2H4 was monitored via laser-induced fluorescence (LIF) of the OH A 2Σ←X 2Π system. The D atom reaction yields OD with no hydrogen scrambling. With an available energy of 23 000 cm-1, the average OH D rotational energy is ˜350 cm-1 for OH(v=0) and OD(v=0) and ˜250 cm-1 for OD(v=1). OH(v=1) was not observed, while the OD(v=1) population was about one-tenth that of OD(v=0). There was no apparent bias in populations between Λ doublets in each of the spin-orbit states for both OH and OD. Doppler broadening of OH(v=0) rotational lines was measured to evaluate the average center-of-mass (c.m.) translational energy, which was found to be ˜2300 cm-1. On average, the ring opening process deposits ˜10% of the available energy into c.m. translation, ˜2% into OH rotation, and ˜88% into ethylene internal energy. Comparison with CH2CH2OH unimolecular dissociation dynamics and theoretical transition state calculations leads to a likely mechanism in which hydrogen abstracts oxygen via sequential C-O bond fission without involving a long-lived CH2CH2OH intermediate.
Complex dynamics analysis of impulsively coupled Duffing oscillators with ring structure
姜海波; 张丽萍; 于建江
2015-01-01
Impulsively coupled systems are high-dimensional non-smooth systems that can exhibit rich and complex dynamics. This paper studies the complex dynamics of a non-smooth system which is unidirectionally impulsively coupled by three Duffing oscillators in a ring structure. By constructing a proper Poincar ´e map of the non-smooth system, an analytical expression of the Jacobian matrix of Poincar´e map is given. Two-parameter Hopf bifurcation sets are obtained by combining the shooting method and the Runge–Kutta method. When the period is fixed and the coupling strength changes, the system undergoes stable, periodic, quasi-periodic, and hyper-chaotic solutions, etc. The Floquet theory is used to study the stability of the periodic solutions of the system and their bifurcations.
Hu, Zhan; Zheng, Gangtie
2016-08-01
A combined analysis method is developed in the present paper for studying the dynamic properties of a type of geometrically nonlinear vibration isolator, which is composed of push-pull configuration rings. This method combines the geometrically nonlinear theory of curved beams and the Harmonic Balance Method to overcome the difficulty in calculating the vibration and vibration transmissibility under large deformations of the ring structure. Using the proposed method, nonlinear dynamic behaviors of this isolator, such as the lock situation due to the coulomb damping and the usual jump resulting from the nonlinear stiffness, can be investigated. Numerical solutions based on the primary harmonic balance are first verified by direct integration results. Then, the whole procedure of this combined analysis method is demonstrated and validated by slowly sinusoidal sweeping experiments with different amplitudes of the base excitation. Both numerical and experimental results indicate that this type of isolator behaves as a hardening spring with increasing amplitude of the base excitation, which makes it suitable for isolating both steady-state vibrations and transient shocks.
Figliozzi, Patrick; Sule, Nishant; Yan, Zijie; Bao, Ying; Burov, Stanislav; Gray, Stephen K.; Rice, Stuart A.; Vaikuntanathan, Suriyanarayanan; Scherer, Norbert F.
2017-02-01
To date investigations of the dynamics of driven colloidal systems have focused on hydrodynamic interactions and often employ optical (laser) tweezers for manipulation. However, the optical fields that provide confinement and drive also result in electrodynamic interactions that are generally neglected. We address this issue with a detailed study of interparticle dynamics in an optical ring vortex trap using 150-nm diameter Ag nanoparticles. We term the resultant electrodynamically interacting nanoparticles a driven optical matter system. We also show that a superior trap is created by using a Au nanoplate mirror in a retroreflection geometry, which increases the electric field intensity, the optical drive force, and spatial confinement. Using nanoparticles versus micron sized colloids significantly reduces the surface hydrodynamic friction allowing us to access small values of optical topological charge and drive force. We quantify a further 50% reduction of hydrodynamic friction when the nanoparticles are driven over the Au nanoplate mirrors versus over a mildly electrostatically repulsive glass surface. Further, we demonstrate through experiments and electrodynamics-Langevin dynamics simulations that the optical drive force and the interparticle interactions are not constant around the ring for linearly polarized light, resulting in a strong position-dependent variation in the nanoparticle velocity. The nonuniformity in the optical drive force is also manifest as an increase in fluctuations of interparticle separation, or effective temperature, as the optical driving force is increased. Finally, we resolve an open issue in the literature on periodic modulation of interparticle separation with comparative measurements of driven 300-nm-diameter polystyrene beads that also clearly reveal the significance of electrodynamic forces and interactions in optically driven colloidal systems. Therefore, the modulations in the optical forces and electrodynamic interactions
Porco, C. C.; Nicholson, P. D.; Cuzzi, J. N.; Lissauer, J. J.; Esposito, L. W.
The authors review the current state of knowledge regarding the structure, particle properties, kinematics, dynamics, origin, and evolution of the Neptune rings derived from Earth-based and Voyager data. Neptune has a diverse system of five continuous rings - 2 broad (Galle and Lassell) and 3 narrow (Adams, Le Verrier, and Arago) - plus a narrow discontinuous ring sharing the orbit of one of its ring-region satellites, Galatea. The outermost Adams ring contains the only arcs observed so far in Voyager images. The five arcs vary in angular extent from ≡1° to ≡10°, and exhibit internal azimuthal structure with typical spatial scales of ≡0.5°. All five lie within ≡40° of longitude. Dust is present throughout the Neptune system and measureable quantities of it were detected over Neptune's north pole. The Adams ring (including the arcs) and the Le Verrier ring contain a significant fraction of dust. The Neptune ring particles are probably red, and may consist of ice "dirtied" with silicates and/or some carbon-bearing material. A kinematic model for the arcs derived from Voyager data, the arcs' physical characteristics, and their orbital geometry and phasing are all roughly in accord with single-satellite arc shepherding by Galatea, though the presence of small kilometer-sized bodies embedded either within the arcs or placed at their Lagrange points may explain some inconsistencies with this model.
The dynamics of the outer edge of Saturn's A ring disturbed by Janus-Epimetheus
Renner, Stéfan; Santos Araujo, Nilton Carlos; Cooper, Nicholas; El Moutamid, Maryame; Murray, Carl; Sicardy, Bruno
2016-10-01
We developed an analytical model to study the dynamics of the outer edge of Saturn's A ring. The latter is influenced by 7:6 mean motion resonances with Janus and Epimetheus. Because of the horseshoe motion of the two co-orbital moons, the location of the resonances shift inwards or outwards every four years, making the ring edge particles alternately trapped in a corotation eccentricity resonance (CER) or a Lindblad eccentricity resonance (LER). However, the oscillation periods of the resonances are longer than the four-year interval between the switches in the orbits of Janus and Epimetheus.Averaged equations of motion are used, and our model is numerically integrated to describe the effects of the periodic sweeping of the 7:6 CER and LER over the ring edge region.We show that four radial zones (ranges 136715-136723, 136738-136749, 136756-136768, 136783-136791 km) are chaotic on decadal timescales, within which particle semimajor axes have periodic changes due to partial libration motions around the CER fixed points. After a few decades, the maximum variation of semimajor axis is about eleven (resp. three) kilometers in the case of the CER with Janus (resp. Epimetheus).Similarly, particle eccentricities have partial oscillations forced by the LERs every four years, and are in good agreement with the observed eccentricities (Spitale and Porco 2009, El Moutamid et al. 2015). For initially circular orbits, the maximum eccentricity reached (~0.001) corresponds to the value obtained from the classical theory of resonance (proportional to the cube root of the satellite-to-planet mass ratio).We notice that the fitted semimajor axes for the object recently discovered at the ring edge (Murray et al. 2014) are just outside the chaotic zone of radial range 136756-136768 km.We compare our results to Cassini observations, and discuss how the periodic LER/CER perturbations by Janus/Epimetheus may help to aggregate ring edge particles into clumps, as seen in high
On Dynamic Range Limitations of CMOS Current Conveyors
Bruun, Erik
1999-01-01
This paper is concerned with the dynamic range of continuous time CMOS current mode circuits. As a representative current mode device a class AB current conveyor is examined. First, the voltage input range of the high impedance Y input is investigated. Next, the current input range of the low...... frequency band and for the situation where the conveyor is used over the full bandwidth achievable. Finally, the optimisation of the current input range is related to the distortion characteristics and it is pointed out that to a first order approximation the distortion is independent of the current range....... impedance X input is investigated. It is compared to the thermal noise in the X to Z signal path in order to evaluate the dynamic range, and the dependencies of the dynamic range on the supply voltage and the transistor lay-out is derived, both for the situation where the conveyor is used over a narrow...
A. Rammig
2014-02-01
Full Text Available Climate extremes can trigger exceptional responses in terrestrial ecosystems, for instance by altering growth or mortality rates. Effects of this kind are often manifested in reductions of the local net primary production (NPP. Investigating a set of European long-term data on annual radial tree growth confirms this pattern: we find that 53% of tree ring width (TRW indices are below one standard deviation, and up to 16% of the TRW values are below two standard deviations in years with extremely high temperatures and low precipitation. Based on these findings we investigate if climate driven patterns in long-term tree growth data may serve as benchmarks for state-of-the-art dynamic vegetation models such as LPJmL. The model simulates NPP but not explicitly the radial tree ring growth, hence requiring a generic method to ensure an objective comparison. Here we propose an analysis scheme that quantifies the coincidence rate of climate extremes with some biotic responses (here TRW or simulated NPP. We find that the reduction in tree-ring width during drought extremes is lower than the corresponding reduction of simulated NPP. We identify ten extreme years during the 20th century in which both, model and measurements indicate high coincidence rates across Europe. However, we detect substantial regional differences in simulated and observed responses to extreme events. One explanation for this discrepancy could be that the tree-ring data have preferentially been sampled at more climatically stressed sites. The model-data difference is amplified by the fact that dynamic vegetation models are designed to simulate mean ecosystem responses at landscape or regional scale. However, we find that both model-data and measurements display carry-over effects from the previous year. We conclude that using radial tree growth is a good basis for generic model-benchmarks if the data are analyzed by scale-free measures such as coincidence analysis. Our study shows
E. J. Bunce
Full Text Available We examine the residual (measured minus internal magnetic field vectors observed in Saturn’s magnetosphere during the Pioneer-11 fly-by in 1979, and compare them with those observed during the Voyager-1 and -2 fly-bys in 1980 and 1981. We show for the first time that a ring current system was present within the magnetosphere during the Pioneer-11 encounter, which was qualitatively similar to those present during the Voyager fly-bys. The analysis also shows, however, that the ring current was located closer to the planet during the Pioneer-11 encounter than during the comparable Voyager-1 fly-by, reflecting the more com-pressed nature of the magnetosphere at the time. The residual field vectors have been fit using an adaptation of the current system proposed for Jupiter by Connerney et al. (1981a. A model that provides a reasonably good fit to the Pioneer-11 Saturn data extends radially between 6.5 and 12.5 RS (compared with a noon-sector magnetopause distance of 17 RS, has a north-south extent of 4 RS, and carries a total current of 9.6 MA. A corresponding model that provides a qualitatively similar fit to the Voyager data, determined previously by Connerney et al. (1983, extends radially between 8 and 15.5 RS (compared with a noon-sector magnetopause distance for Voyager-1 of 23–24 RS, has a north-south extent of 6 RS, and carries a total current of 11.5 MA.
Key words. Magnetospheric physics (current systems, magnetospheric configuration and dynamics, planetary magnetospheres
Abraham, Raymond J; Leonard, Paul; Tormena, Cláudio F
2012-04-01
The (1) H chemical shifts of selected three-membered ring compounds in CDCl(3) solvent were obtained. This allowed the determination of the substituent chemical shifts of the substituents in the three-membered rings and the long-range effect of these rings on the distant protons. The substituent chemical shifts of common substituents in the cyclopropane ring differ considerably from the same substituents in acyclic fragments and in cyclohexane and were modelled in terms of a three-bond (γ)-effect. For long-range protons (more than three bonds removed), the substituent effects of the cyclopropane ring were analysed in terms of the cyclopropane magnetic anisotropy and steric effect. The cyclopropane magnetic anisotropy (ring current) shift was modelled by (a) a single equivalent dipole perpendicular to and at the centre of the cyclopropane ring and (b) by three identical equivalent dipoles perpendicular to the ring placed at each carbon atom. Model (b) gave a more accurate description of the (1) H chemical shifts and was the selected model. After parameterization, the overall root mean square error for the dataset of 289 entries was 0.068 ppm. The anisotropic effects are significant for the cyclopropane protons (ca 1 ppm) but decrease rapidly with distance. The heterocyclic rings of oxirane, thiirane and aziridine do not possess a ring current. (3) J(HH) couplings of the epoxy ring proton with side-chain protons were obtained and shown to be dependent on both the H-C-C-H and H-C-C-O orientations. Both density functional theory calculations and a simple Karplus-type equation gave general agreement with the observed couplings (root mean square error 0.5 Hz over a 10-Hz range).
Are Ring Current Ions Lost in Electromagnetic Ion Cyclotron Wave Dispersion Relation?
Khazanov, G. V.; Gamayunov, K. V.
2006-01-01
Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by
Effect of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation
Gamayunov, K. V.; Khazanov, G. V.
2006-01-01
Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by
HIGH DYNAMIC-RANGE HIGH SPEED LINAC CURRENT MEASUREMENTS
Deibele, Craig Edmond [ORNL; Curry, Douglas E [ORNL; Dickson, Richard W [ORNL
2012-01-01
It is desired to measure the linac current of a charged particle beam with a consistent accuracy over a dynamic range of over 120 dB. Conventional current transformers suffer from droop, can be susceptible to electromagnetic interference (EMI), and can be bandwidth limited. A novel detector and electronics were designed to maximize dynamic range of about 120 dB and measure rise-times on the order of 10 nanoseconds.
Ivan V Surovtsev
Full Text Available Cytokinesis in prokaryotes involves the assembly of a polymeric ring composed of FtsZ protein monomeric units. The Z ring forms at the division plane and is attached to the membrane. After assembly, it maintains a stable yet dynamic steady state. Once induced, the ring contracts and the membrane constricts. In this work, we present a computational deterministic biochemical model exhibiting this behavior. The model is based on biochemical features of FtsZ known from in vitro studies, and it quantitatively reproduces relevant in vitro data. An essential part of the model is a consideration of interfacial reactions involving the cytosol volume, where monomeric FtsZ is dispersed, and the membrane surface in the cell's mid-zone where the ring is assembled. This approach allows the same chemical model to simulate either in vitro or in vivo conditions by adjusting only two geometrical parameters. The model includes minimal reactions, components, and assumptions, yet is able to reproduce sought-after in vivo behavior, including the rapid assembly of the ring via FtsZ-polymerization, the formation of a dynamic steady state in which GTP hydrolysis leads to the exchange of monomeric subunits between cytoplasm and the ring, and finally the induced contraction of the ring. The model gives a quantitative estimate for coupling between the rate of GTP hydrolysis and of FtsZ subunit turnover between the assembled ring and the cytoplasmic pool as observed. Membrane constriction is chemically driven by the strong tendency of GTP-bound FtsZ to self-assembly. The model suggests a possible mechanism of membrane contraction without a motor protein. The portion of the free energy of GTP hydrolysis released in cyclization is indirectly used in this energetically unfavorable process. The model provides a limit to the mechanistic complexity required to mimic ring behavior, and it highlights the importance of parallel in vitro and in vivo modeling.
Duke, Jessica R; Ananth, Nandini
2015-11-05
Mapping variable ring polymer molecular dynamics (MV-RPMD) is an approximate quantum dynamics method based on imaginary-time path integrals for simulating electronically nonadiabatic photochemical processes. By employing a mapping protocol to transform from a discrete electronic state basis to continuous Cartesian phase-space variables, the method captures electronic state transitions coupled to nuclear motion using only classical MD trajectories. In this work, we extend the applicability of MV-RPMD to simulations of photoinduced excited electronic state dynamics in nonadiabatic systems with multiple avoided crossings. We achieve this by deriving a new electronic state population estimator in the phase space of electronic variables that is exact at equilibrium and numerically accurate in real time. Further, we introduce an efficient constraint protocol to initialize an MV-RPMD simulation to a particular electronic state. We numerically demonstrate the accuracy of this estimator and constraint technique in describing electronic state dynamics from an initial nonequilibrium state in six model systems, three of which describe photodissociation.
Analysis of the wake field effects in the PEP-II storage rings with extremely high currents
Novokhatski, A., E-mail: novo@slac.stanford.edu; Seeman, J.; Sullivan, M.
2014-01-21
We present the history and analysis of different wake field effects throughout the operational life of the PEP-II SLAC B-factory. Although the impedance of the high and low energy rings is small, the intense high-current beams generated a lot of power. The effects from these wake fields are: heating and damage of vacuum beam chamber elements like RF seals, vacuum valves, shielded bellows, BPM buttons and ceramic tiles; vacuum spikes, vacuum instabilities and high detector background; and beam longitudinal and transverse instabilities. We also discuss the methods used to eliminate these effects. Results of this analysis and the PEP-II experience may be very useful in the design of new storage rings and light sources.
Analysis of the wake field effects in the PEP-II storage rings with extremely high currents
Novokhatski, A.; Seeman, J.; Sullivan, M.
2014-01-01
We present the history and analysis of different wake field effects throughout the operational life of the PEP-II SLAC B-factory. Although the impedance of the high and low energy rings is small, the intense high-current beams generated a lot of power. The effects from these wake fields are: heating and damage of vacuum beam chamber elements like RF seals, vacuum valves, shielded bellows, BPM buttons and ceramic tiles; vacuum spikes, vacuum instabilities and high detector background; and beam longitudinal and transverse instabilities. We also discuss the methods used to eliminate these effects. Results of this analysis and the PEP-II experience may be very useful in the design of new storage rings and light sources.
Aron, Zachary D; Ito, Tatsuya; May, Tricia L; Overman, Larry E; Wang, Jocelyn
2013-10-01
A new strategy for enantioselective synthesis of azacyclic molecules in which dynamic kinetic equilibration of diastereomeric iminium ions precedes a stereochemistry-determining sigmatropic rearrangement is reported. The method is illustrated by the synthesis, in high enantiomeric purity (generally 95-99% ee), of a variety of 1-azabicyclic molecules containing angular allyl or 3-substituted 2-propenyl side chains adjacent to nitrogen and up to three stereogenic centers. In these products, the size of the carbocyclic ring is varied widely (5-12 membered); however, useful yields are obtained in forming 1-azabicyclic products containing only fused pyrrolidine and piperidine rings. Chirality transfer from substituents at carbons 1 and 2 of the 3-butenylamine fragment of the starting material is investigated, with methyl and phenyl substituents at the allylic position shown to provide exquisite stereocontrol (generally 98-99% chirality transfer). An attractive feature of the method is the ability to carry out the key transformation in the absence of solvent. Illustrated also is the high yielding conversion of four such products to a new family of bicyclic β-amino acids of high enantiomeric purity.
Tiscareno, Matthew S
2011-01-01
Planetary rings are the only nearby astrophysical disks, and the only disks that have been investigated by spacecraft. Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 1e-7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close-range and in real-time in planetary rings. We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The main rings of Saturn comprise our system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty...
Direct observation of spatio-temporal dynamics of short electron bunches in storage rings
Evain, C; Parquier, M Le; Szwaj, C; Tordeux, M -A; Manceron, L; Brubach, J -B; Roy, P; Bielawski, S
2016-01-01
In recent synchrotron radiation facilities, the use of short (picosecond) electron bunches is a powerful method for producing giant pulses of Terahertz Coherent Synchrotron Radiation (THz CSR). Here we report on the first direct observation of these pulse shapes with a few picoseconds resolution, and of their dynamics over a long time. We thus confirm in a very direct way the theories predicting an interplay between two physical processes. Below a critical bunch charge, we observe a train of identical THz pulses (a broadband Terahertz comb) stemming from the shortness of the electron bunches. Above this threshold, a large part of the emission is dominated by drifting structures, which appear through spontaneous self-organization. These challenging single-shot THz recordings are made possible by using a recently developed photonic time stretch detector with a high sensitivity. The experiment has been realized at the SOLEIL storage ring.
Non-Linear Beam Dynamics Studies of the Diamond Storage Ring
Bartolini, Riccardo; Belgroune, Mahdia; Henry Rowland, James; Jones, James; Martin, Ian; Singh, Beni
2005-01-01
The non-linear beam dynamics have been investigated for the non-zero dispersion lattice of the Diamond storage ring. Effects in realistic lattice configurations such as the introduction of coupling errors, beta beating, closed orbit correction, quadrupole fringe field and in-vacuum and helical insertion devices have been studied in the presence of realistic physical aperture limitations. Frequency map analysis together with 6D tracking allows identification of the limiting resonances as well as the loss locations and calculation of the influence of non-linear longitudinal motion on the Touschek lifetime. The sensitivity of the lattice to some of these effects leads to the identification of a better working point for the machine.
An alternative derivation of ring-polymer molecular dynamics transition-state theory
Hele, Timothy J H
2016-01-01
In a previous article [J. Chem. Phys. 138, 084108 (2013)], we showed that the transition-state-theory ($t\\rightarrow 0_+$) limit of ring-polymer molecular dynamics rate-theory (RPMD-TST) is also the $t\\rightarrow 0_+$ limit of a new type of quantum flux-side time-correlation function, in which the dividing surfaces are invariant to imaginary-time translation; in other words, that RPMD-TST is a $t\\rightarrow 0_+$ quantum transition-state theory (QTST). Recently, Jang and Voth [J. Chem. Phys. 144, 084110 (2016)] rederived this quantum $t\\rightarrow 0_+$ limit, and claimed that it gives instead the centroid-density approximation. Here we show that the $t\\rightarrow 0_+$ limit derived by Jang and Voth is in fact RPMD-TST.
Conformational analysis of six- and twelve-membered ring compounds by molecular dynamics
Christensen, I T; Jørgensen, Flemming Steen
1997-01-01
A molecular dynamics (MD)-based conformational analysis has been performed on a number of cycloalkanes in order to demonstrate the reliability and generality of MD as a tool for conformational analysis. MD simulations on cyclohexane and a series of methyl-substituted cyclohexanes were performed...... provided 19 out of the 20 most stable conformations found in the MM2 force field. Finally, the general performance of the MD method for conformational analysis is discussed........ A series of methyl-substituted 1,3-dioxanes were investigated at 1000 K, and the number of chair-chair interconversions could be quantitatively correlated to the experimentally determined ring inversion barrier. Similarly, the distribution of sampled minimum-energy conformations correlated with the energy...
Characterization of beam dynamics in the APS injector rings using time-resolved imaging techniques
Yang, B.X.; Lumpkin, A.H.; Borland, M. [and others
1997-06-01
Images taken with streak cameras and gated intensified cameras with both time (longitudinal) and spatial (transverse) resolution reveal a wealth of information about circular accelerators. The authors illustrate a novel technique by a sequence of dual-sweep streak camera images taken at a high dispersion location in the booster synchrotron, where the horizontal coordinate is strongly correlated with the particle energy and the {open_quotes}top-view{close_quotes} of the beam gives a good approximation to the particle density distribution in the longitudinal phase space. A sequence of top-view images taken fight after injection clearly shows the beam dynamics in the phase space. We report another example from the positron accumulator ring for the characterization of its beam compression bunching with the 12th harmonic rf.
Spin currents and magnetization dynamics in multilayer systems
van der Bijl, E.
2014-01-01
In this Thesis the interplay between spin currents and magnetization dynamics is investigated theoretically. With the help of a simple model the relevant physical phenomena are introduced. From this model it can be deduced that in systems with small spin-orbit coupling, current-induced torques on
Wojtas, H
2004-07-01
The main source of errors in measuring the corrosion rate of rebars on site is a non-uniform current distribution between the small counter electrode (CE) on the concrete surface and the large rebar network. Guard ring electrodes (GEs) are used in an attempt to confine the excitation current within a defined area. In order to better understand the functioning of modulated guard ring electrode and to assess its effectiveness in eliminating errors due to lateral spread of current signal from the small CE, measurements of the polarisation resistance performed on a concrete beam have been numerically simulated. Effect of parameters such as rebar corrosion activity, concrete resistivity, concrete cover depth and size of the corroding area on errors in the estimation of polarisation resistance of a single rebar has been examined. The results indicate that modulated GE arrangement fails to confine the lateral spread of the CE current within a constant area. Using the constant diameter of confinement for the calculation of corrosion rate may lead to serious errors when test conditions change. When high corrosion activity of rebar and/or local corrosion occur, the use of the modulated GE confinement may lead to significant underestimation of the corrosion rate.
Testing the necessity of transient spikes in the drivers for creating a storm-time ring current
Liemohn, M. W.; Ilie, R.; Ridley, A. J.; Kozyra, J. U.; Thomsen, M. F.; Borovsky, J. E.
2007-12-01
The role of transient spikes in upstream solar wind parameters and near-Earth plasma sheet parameters is investigated through a series of numerical simulations. During magnetic storms, the near-Earth plasma sheet density (as observed at geosynchronous altitude) is often enhanced relative to its normal, quiescent level. In addition to a baseline increase of the density of up to a few per cubic centimeter lasting several hours, there are usually short-lived (a few to tens of minutes) increases on top of this (up to double the baseline). In addition, the solar wind parameters also often have numerous short-lived spikes and fluctuations within it. The question then arises of the relative contribution of these transient spikes in the drivers to the storm-time ring current intensity. To address this issue, a series of simulations are conducted using the Hot Electron and Ion Drift Integrator (HEIDI) model (formerly the Michigan version of RAM). Various running averages of the upstream solar wind conditions and geosynchronous orbit nightside boundary conditions are used to drive HEIDI. It is found that the spikes are simply adding a linear contribution to the ring current intensity over the baseline (averaged) input levels, and that any nonlinear influences occur beyond the HEIDI simulation domain (i.e., at high latitudes or in the tail). That is, the spikes do not last long enough to develop nonlinear influences on the ring current's total energy content. The HEIDI results are compared against global magnetospheric modeling results using averaged input parameters into the Space Weather Modeling Framework (SWMF), which show a nonlinear response to transient spikes.
Dynamics of an unbalanced ring spinning on a rough horizontal surface
Budiman, Benny S.
1993-01-01
An interesting stability property, as fascinating as that of spinning tops and gyroscopes, is observable in the motion of an unbalanced ring spinning on a rough horizontal surface. An analytical and numerical study is performed to investigate the general motion of an unbalanced ring modeled as a thin ring with a particle attached to its rim. The translational motion is represented by the rectangular coordinates of the ring geometric center. The rotational motion is represented by a 1-2-3 set ...
Decadal record of monsoon dynamics across the Himalayas using tree ring data
Brunello, Camilla Francesca; Andermann, Christoff; Helle, Gerhard; Comiti, Francesco; Tonon, Giustino; Ventura, Maurizio; Hovius, Niels
2017-04-01
The temporal variability of the Indian monsoon penetrating through the Himalayan range and into the southern Tibetan Plateau is poorly understood. Intermittent ingress of wet monsoon air masses into the otherwise arid and deserted landscapes beyond the orographic barrier can have consequences for erosion and flooding, as well as for water availability. Furthermore, the latitudinal rainfall distribution across the mountain range is crucial to better understand the hydrological cycles of rivers originating there. Because instrumental measurements are rare in the High Himalayas and on the Plateau, hydro-climatic sensitive proxies, such as oxygen stable isotope ratios in cellulose of tree-rings, are a valuable source of data covering decades to centuries. Here we present new findings on how often and how far the Indian monsoon penetrated into trans-Himalayan region over the last century. To cope with the lack of direct measurements, we strive to reconstruct a record of intense monsoon years based on tree-ring width chronologies along a latitudinal gradient. Thus, we need to answer whether water availability is the main driver of tree growth in the trans-Himalayan region and how dendro-isotopic data relate to seasonal precipitation inputs and sources. In order to study the monsoon dynamics, we selected four sites along the Kali Gandaki River valley in the central Himalayas (Nepal). This valley connects the very wet, monsoon dominated south Himalayan front with the arid trans-Himalayan region and the southern Tibetan Plateau. Our study area covers the sensitive northern end of the precipitation gradient, located in the upper part of the catchment. Water availability, which drastically varies at each site, was explored by using the climate signal- and isotope-transfer within arboreal systems composed of Juniperus sp., Cupressus sp. and Pinus sp. Results from continuous dendrometer measurements for the entire growing season (Mar-Oct) allowed us to assess the link between
Transformation dynamics of Ni clusters into NiO rings under electron beam irradiation.
Knez, Daniel; Thaler, Philipp; Volk, Alexander; Kothleitner, Gerald; Ernst, Wolfgang E; Hofer, Ferdinand
2017-05-01
We report the transformation of nickel clusters into NiO rings by an electron beam induced nanoscale Kirkendall effect. High-purity nickel clusters consisting of a few thousand atoms have been used as precursors and were synthesized with the superfluid helium droplet technique. Aberration-corrected, analytical scanning transmission electron microscopy was applied to oxidise and simultaneously analyse the nanostructures. The transient dynamics of the oxidation could be documented by time lapse series using high-angle annular dark-field imaging and electron energy-loss spectroscopy. A two-step Cabrera-Mott oxidation mechanism was identified. It was found that water adsorbed adjacent to the clusters acts as oxygen source for the electron beam induced oxidation. The size-dependent oxidation rate was estimated by quantitative EELS measurements combined with molecular dynamics simulations. Our findings could serve to better control sample changes during examination in an electron microscope, and might provide a methodology to generate other metal oxide nanostructures. Copyright © 2016 Elsevier B.V. All rights reserved.
Saha, Madhumita; Maiti, Santanu K.
2016-01-01
The interplay between Hubbard interaction, long-range hopping and disorder on persistent current in a mesoscopic one-dimensional conducting ring threaded by a magnetic flux $\\phi$ is analyzed in detail. Two different methods, exact numerical diagonalization and Hartree-Fock mean field theory, are used to obtain numerical results from the many-body Hamiltonian. The current in a disordered ring gets enhanced as a result of electronic correlation and it becomes more significant when contribution...
GAO Ying-Fang; ZHANG Yong-Ping; LIANG Jiu-Qing
2004-01-01
@@ We study the transport of spin-polarized current induced by the Aharonov-Bohm and Aharonov-Casher phases in a mesoscopic ring with two leads in the presence of a cylindrically symmetric electric field and the magnetic flux at the centre of the same ring. An exact solution for the quantum transport is obtained. It is shown that the transport spin-polarized current and its polarizability can be controlled by the electric field and the magnetic flux as well.
Dynamics of the Disruption Halo Current Toroidal Asymmetry in NSTX
S.P. Gerhardt
2012-09-27
This paper describes the dynamics of disruption halo current non-axisymmetries in the lower divertor of the National Spherical Torus Experiment [M. Ono, et al. Nuclear Fusion 40, 557 (2000)]. While. The halo currents typically have a strongly asymmetric structure where they enter the divertor floor, and this asymmetry has been observed to complete up to 7 toroidal revolutions over the duration of the halo current pulse. However, the rotation speed and toroidal extend of the asymmetry can vary significantly during the pulse. The rotation speed, halo current pulse duration, and total number of revolutions tend to be smaller in cases with large halo currents. The halo current pattern is observed to become toroidally symmetric at the end of the halo current pulse. It is proposed that this symmeterization is due to the loss of most or all of the closed field line geometry in the final phase of the vertical displacement event.
Current-induced dynamics in carbon atomic contacts
Lu, Jing Tao; Gunst, Tue; Brandbyge, Mads
2011-01-01
voltage, which can be used to explore current-induced vibrational instabilities due the NC/BP forces. Furthermore, using tight-binding and the Brenner potential we illustrate how Langevin-type molecular-dynamics calculations including the Joule heating effect for the carbon-chain systems can be performed...... of molecular-scale contacts. Systems based on molecules bridging electrically gated graphene electrodes may offer an interesting test-bed for these effects. Results: We employ a semi-classical Langevin approach in combination with DFT calculations to study the current-induced vibrational dynamics of an atomic...... carbon chain connecting electrically gated graphene electrodes. This illustrates how the device stability can be predicted solely from the modes obtained from the Langevin equation, including the current-induced forces. We point out that the gate offers control of the current, independent of the bias...
Current-induced dynamics in carbon atomic contacts
Jing-Tao Lü
2011-12-01
Full Text Available Background: The effect of electric current on the motion of atoms still poses many questions, and several mechanisms are at play. Recently there has been focus on the importance of the current-induced nonconservative forces (NC and Berry-phase derived forces (BP with respect to the stability of molecular-scale contacts. Systems based on molecules bridging electrically gated graphene electrodes may offer an interesting test-bed for these effects.Results: We employ a semi-classical Langevin approach in combination with DFT calculations to study the current-induced vibrational dynamics of an atomic carbon chain connecting electrically gated graphene electrodes. This illustrates how the device stability can be predicted solely from the modes obtained from the Langevin equation, including the current-induced forces. We point out that the gate offers control of the current, independent of the bias voltage, which can be used to explore current-induced vibrational instabilities due the NC/BP forces. Furthermore, using tight-binding and the Brenner potential we illustrate how Langevin-type molecular-dynamics calculations including the Joule heating effect for the carbon-chain systems can be performed. Molecular dynamics including current-induced forces enables an energy redistribution mechanism among the modes, mediated by anharmonic interactions, which is found to be vital in the description of the electrical heating.Conclusion: We have developed a semiclassical Langevin equation approach that can be used to explore current-induced dynamics and instabilities. We find instabilities at experimentally relevant bias and gate voltages for the carbon-chain system.
Jiang Songqing; Li Yongchi; Hu Xiuzhang; Zheng Jijia
2000-01-01
The Initial Imperfection Amplified Criterion is applied to investigate the geometric nonlinear dynamic buckling of statically preloaded ring-stiffened cylindrical shells under axial fluid-solid impact. Tak ing account of the effects of large deformation and initial geometric imperfection, the governing equations are obtained by the Galerkin method and solved by the Runge-Kutta method. The effects of static preloading (uniform external radial pressure) on the buckling features and the load-carrying ability of ring-stiffened cy lindrical shells against axial impact are discussed.
Cuzzi, Jeffrey N.
1994-01-01
Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system
Current-induced magnetization dynamics in disordered itinerant ferromagnets
Tserkovnyak, Y.; Skadsem, H.J.; Brataas, A.; Bauer, G.E.W.
2006-01-01
Current-driven magnetization dynamics in ferromagnetic metals is studied in a self-consistent adiabatic local-density approximation in the presence of spin-conserving and spin-dephasing impurity scattering. Based on a quantum kinetic equation, we derive Gilbert damping and spin-transfer torques ente
Current-induced atomic dynamics, instabilities, and Raman signals
Lu, Jing Tao; Brandbyge, Mads; Hedegard, Per
2012-01-01
We derive and employ a semiclassical Langevin equation obtained from path integrals to describe the ionic dynamics of a molecular junction in the presence of electrical current. The electronic environment serves as an effective nonequilibrium bath. The bath results in random forces describing Jou...... of these in the Raman signals....
Controllable Persistent Atom Current of Bose-Einstein Condensates in an Optical Lattice Ring
ZHENG Gong-Ping; LIANG Jiu-Qing
2005-01-01
In this paper the macroscopic quantum state of Bose-Einstein condensates in optical lattices is studied by solving the periodic Gross-Pitaevskii equation in one-dimensional geometry. It is shown that an exact solution seen to be a travelling wave of excited macroscopic quantum states resultes in a persistent atom current, which can be controlled by adjusting of the barrier height of the optical periodic potential. A critical condition to generate the travelling wave is demonstrated and we moreover propose a practical experiment to realize the persistent atom current in a toroidal atom waveguide.
Dickens, T K; Mallion, R B
2013-06-01
A series of hypothetical conjugated structures is defined; the series is called the p-Coronenes and the first four members of it are shown to respect the 'Annulene-Within-an-Annulene' (AWA) model when tested by means of Hückel-London-Pople-McWeeny (HLPM) π-electron ring-current and bond-current calculations. The first member of this series, 5-Coronene, is also a member of the regular [r,s]-Coronene series, where it is known as [10,5]-Coronene. It is shown that, as p is varied (with p always odd, and with p > 3) through the values 5, 7, 9, 11, etc., the resulting structures alternate between a '[4n + 2]-Annulene-Within-a-[4m]-Annulene' (if (p- 1) is divisible by 4) and a '[4n]-Annulene-Within-a-[4m + 2]-Annulene' (if (p- 1) is not divisible by 4). It is therefore claimed that the p-Coronenes constitute an ideal series for testing the AWA model. It is also remarked that each member of the p-Coronene series has only four Kekulé structures, and that the 'spokes' or 'transverse' bonds connecting the central [p(p- 3)]-membered ring to the outer [p(p- 1)]-membered periphery always have a Pauling bond-order of zero, ensuring that the outer and inner rings are 'decoupled'; such bonds also bear zero bond-current, by symmetry. It is argued that the former property of these transverse bonds, rather than the latter, determines that the p-Coronenes obey the AWA rule-which is in fact an exception, rather than a 'rule'per se. The paper concludes by explicitly stating our philosophy that a conceptually simple model depending on no subjective (or any other) parameters whatsoever can give intuitive chemical insight for certain systems equal to that available from far-more complex methods such as ab initio calculations-what Coulson once famously called 'primitive patterns of understanding'.
A ring polymer molecular dynamics study of the Cl + O3 reaction.
de Tudela, R Pérez; Suleimanov, Y V; Menéndez, M; Castillo, J F; Aoiz, F J
2014-02-21
We have performed ring polymer molecular dynamics (RPMD) calculations on the Cl + O3 → ClO + O2 reaction at temperatures ranging from 200 K to 400 K, and compared the results with previous theoretical studies and also with the available experimental data. This reaction presents a couple of features which makes it a particularly interesting and challenging case to be studied using RPMD. First, classically, this is essentially a barrierless reaction, with a saddle point located below the reactants. However, the free energy profiles along the reaction coordinate display small barriers due to the fact that the decrease in enthalpy from reactants to the TS is somewhat compensated by a decrease in entropy. To our knowledge this is the first time such a process is studied using this technique. Second, the transition state is located early in the reactant valley, therefore the inclusion of the recrossing correction in the RPMD calculations is crucial to determine rate coefficients. Regarding quantum effects, our calculations show that RPMD results are within the error bars of the purely classical ones. This implies that tunnelling is negligible in this reaction at the temperatures studied, not surprisingly for a system including oxygen and chlorine atoms, and that the zero point energies of reactants, transition state and products are practically the same. Finally, the rate coefficients presented in this work are in a fairly good agreement with the recommended experimental values, somewhat better than those obtained using other approaches.
Effect of Compton Scattering on the Electron Beam Dynamics at the ATF Damping Ring
Chaikovska, I; Delerue, N; Variola, A; Zomer, F; Kubo, K; Naito, T; Omori, T; Terunuma, N; Urakawa, J
2011-01-01
Compton scattering provides one of the most promising scheme to obtain polarized positrons for the next generation of $e^-$ -- $e^+$ colliders. Moreover it is an attractive method to produce monochromatic high energy polarized gammas for nuclear applications and X-rays for compact light sources. In this framework a four-mirror Fabry-P\\'erot cavity has been installed at the Accelerator Test Facility (ATF - KEK, Tsukuba, Japan) and is used to produce an intense flux of polarized gamma rays by Compton scattering \\cite{ipac-mightylaser}. For electrons at the ATF energy (1.28 GeV) Compton scattering may result in a shorter lifetime due to the limited bucket acceptance. We have implemented the effect of Compton scattering on a 2D tracking code with a Monte-Carlo method. This code has been used to study the longitudinal dynamics of the electron beam at the ATF damping ring, in particular the evolution of the energy spread and the bunch length under Compton scattering. The results obtained are presented and discussed...
Is C-50 a superaromat? Evidence from electronic structure and ring current calculations
Matias, Ana Sanz; Havenith, Remco W. A.; Alcami, Manuel; Ceulemans, Arnout
2016-01-01
The fullerene-50 is a 'magic number' cage according to the 2(N + 1)(2) rule. For the three lowest isomers of C-50 with trigonal and pentagonal symmetries, we calculate the sphericity index, the spherical parentage of the occupied p-orbitals, and the current density in an applied magnetic field. The
Kozyra, J. U.; Rasmussen, C. E.; Miller, R. H.; Villalon, E.
1995-11-01
The evolution of the bounce-averaged ring current/radiation belt proton distribution is simulated during resonant interactions with ducted plasmaspheric hiss. The plasmaspheric hiss is assumed to be generated by ring current electrons and to be damped by the energetic protons. Thus energy is transferred between energetic electrons and protons using the plasmaspheric hiss as a mediary. The problem is not solved self-consistently. During the simulation period, interactions with ring current electrons (not represented in the model) are assumed to maintain the wave amplitudes in the presence of damping by the energetic protons, allowing the wave spectrum to be held fixed. Diffusion coefficients in pitch angle, cross pitch angle/energy, and energy were previously calculated by Kozyra et al. (1994) and are adopted for the present study. The simulation treats the energy range, E>=80 keV, within which the wave diffusion operates on a shorter timescale than other proton loss processes (i.e., Coulomb drag and charge exchange). These other loss processes are not included in the simulation. An interesting result of the simulation is that energy diffusion maximizes at moderate pitch angles near the edge of the atmospheric loss cone. Over the simulation period, diffusion in energy creates an order of magnitude enhancement in the bounce-averaged proton distribution function at moderate pitch angles. The loss cone is nearly empty because scattering of particles at small pitch angles is weak. The bounce-averaged flux distribution, mapped to ionospheric heights, results in elevated locally mirroring proton fluxes. OGO 5 observed order of magnitude enhancements in locally mirroring energetic protons at altitudes between 350 and 1300 km and invariant latitudes between 50° and 60° (Lundblad and Soraas, 1978). The proton distributions were highly anisotropic in pitch angle with nearly empty loss cones. The similarity between the observed distributions and those resulting from this
Scalar mixing and strain dynamics methodologies for PIV/LIF measurements of vortex ring flows
Bouremel, Yann; Ducci, Andrea
2017-01-01
Fluid mixing operations are central to possibly all chemical, petrochemical, and pharmaceutical industries either being related to biphasic blending in polymerisation processes, cell suspension for biopharmaceuticals production, and fractionation of complex oil mixtures. This work aims at providing a fundamental understanding of the mixing and stretching dynamics occurring in a reactor in the presence of a vortical structure, and the vortex ring was selected as a flow paradigm of vortices commonly encountered in stirred and shaken reactors in laminar flow conditions. High resolution laser induced fluorescence and particle imaging velocimetry measurements were carried out to fully resolve the flow dissipative scales and provide a complete data set to fully assess macro- and micro-mixing characteristics. The analysis builds upon the Lamb-Oseen vortex work of Meunier and Villermaux ["How vortices mix," J. Fluid Mech. 476, 213-222 (2003)] and the engulfment model of Baldyga and Bourne ["Simplification of micromixing calculations. I. Derivation and application of new model," Chem. Eng. J. 42, 83-92 (1989); "Simplification of micromixing calculations. II. New applications," ibid. 42, 93-101 (1989)] which are valid for diffusion-free conditions, and a comparison is made between three methodologies to assess mixing characteristics. The first method is commonly used in macro-mixing studies and is based on a control area analysis by estimating the variation in time of the concentration standard deviation, while the other two are formulated to provide an insight into local segregation dynamics, by either using an iso-concentration approach or an iso-concentration gradient approach to take into account diffusion.
Beam dynamics and expected performance of Sweden’s new storage-ring light source: MAX IV
S. C. Leemann
2009-12-01
Full Text Available MAX IV will be Sweden’s next-generation high-performance synchrotron radiation source. The project has recently been granted funding and construction is scheduled to begin in 2010. User operation for a broad and international user community should commence in 2015. The facility is comprised of two storage rings optimized for different wavelength ranges, a linac-based short-pulse facility and a free-electron laser for the production of coherent radiation. The main radiation source of MAX IV will be a 528 m ultralow emittance storage ring operated at 3 GeV for the generation of high-brightness hard x rays. This storage ring was designed to meet the requirements of state-of-the-art insertion devices which will be installed in nineteen 5 m long dispersion-free straight sections. The storage ring is based on a novel multibend achromat design delivering an unprecedented horizontal bare lattice emittance of 0.33 nm rad and a vertical emittance below the 8 pm rad diffraction limit for 1 Å radiation. In this paper we present the beam dynamics considerations behind this storage-ring design and detail its expected unique performance.
Lackner, Florian; Chatterley, Adam S.; Pemmaraju, C. D.; Closser, Kristina D.; Prendergast, David; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver
2016-12-01
Femtosecond extreme ultraviolet transient absorption spectroscopy is used to explore strong-field ionization induced dynamics in selenophene (C4H4Se). The dynamics are monitored in real-time from the viewpoint of the Se atom by recording the temporal evolution of element-specific spectral features near the Se 3d inner-shell absorption edge (˜58 eV). The interpretation of the experimental results is supported by first-principles time-dependent density functional theory calculations. The experiments simultaneously capture the instantaneous population of stable molecular ions, the emergence and decay of excited cation states, and the appearance of atomic fragments. The experiments reveal, in particular, insight into the strong-field induced ring-opening dynamics in the selenophene cation, which are traced by the emergence of non-cyclic molecules as well as the liberation of Se+ ions within an overall time scale of approximately 170 fs. We propose that both products may be associated with dynamics on the same electronic surfaces but with different degrees of vibrational excitation. The time-dependent inner-shell absorption features provide direct evidence for a complex relaxation mechanism that may be approximated by a two-step model, whereby the initially prepared, excited cyclic cation decays within τ1 = 80 ± 30 fs into a transient molecular species, which then gives rise to the emergence of bare Se+ and ring-open cations within an additional τ2 = 80 ± 30 fs. The combined experimental and theoretical results suggest a close relationship between σ* excited cation states and the observed ring-opening reactions. The findings demonstrate that the combination of femtosecond time-resolved core-level spectroscopy with ab initio estimates of spectroscopic signatures provide new insights into complex, ultrafast photochemical reactions such as ring-opening dynamics in organic molecules in real-time and with simultaneous sensitivity for electronic and structural
Blood rheology using a Brownian dynamics simulation of bead spring ring with a constant area
Lopez, Rogelio
Coronary artery disease is epidemic in the western world. Occlusive vascular disease, when considered in terms of total incidence rather than separated to organ involvement, is the leading human's health hazard. A better understanding of occlusive vascular disease is so important that does not need to be justified. Blood theological properties are important factors in the occurrence and onset development of these diseases and may help in a rational approach to predictive and anticipatory therapies. Blood is a suspension of red blood cells (RBC) and therefore has a complex flow behavior. This research presents a Brownian dynamics (BD) model that captures the complex rheological behavior of blood; a three-bead-spring ring with a holonomic constant area constraint is being used to model the RBC in a dilute Newtonian solvent. The BD model has been used in simulations of RBCs to generate the RBC configuration. The stress tensor or momentum flux tensor is obtained as an ensemble average over molecular configurations by Giesekus expression of the stress calculator. This stress calculator makes it possible to obtain the RBC rheological properties of the model blood suspension under different flow conditions: homogeneous simple shear flow, elongational flow, inception of a steady shear flow, stress relaxation after cessation of steady shear flow and flow within narrow vessels by considering the blood microstructure scale process. The model's main results obtained for the specified flows are as follows: (a) Simulations in steady shear flow in an unbounded space the dilute blood suspension model expresses both shear thinning behavior for the viscosity and first normal stress coefficient. (b) In steady elongational flow, the elongational viscosity of the dilute blood suspension increases when the elongational rate increases. (c) Stress growth upon inception of steady shear flow; increasing shear rates does the shear stress approach its steady state monotonically. (d) Stress
Diez-Silva, Monica; Park, Yongkeun; Huang, Sha; Bow, Hansen; Mercereau-Puijalon, Odile; Deplaine, Guillaume; Lavazec, Catherine; Perrot, Sylvie; Bonnefoy, Serge; Feld, Michael S.; Han, Jongyoon; Dao, Ming; Suresh, Subra
2012-08-01
Proteins exported by Plasmodium falciparum to the red blood cell (RBC) membrane modify the structural properties of the parasitized RBC (Pf-RBC). Although quasi-static single cell assays show reduced ring-stage Pf-RBCs deformability, the parameters influencing their microcirculatory behavior remain unexplored. Here, we study the dynamic properties of ring-stage Pf-RBCs and the role of the parasite protein Pf155/Ring-Infected Erythrocyte Surface Antigen (RESA). Diffraction phase microscopy revealed RESA-driven decreased Pf-RBCs membrane fluctuations. Microfluidic experiments showed a RESA-dependent reduction in the Pf-RBCs transit velocity, which was potentiated at febrile temperature. In a microspheres filtration system, incubation at febrile temperature impaired traversal of RESA-expressing Pf-RBCs. These results show that RESA influences ring-stage Pf-RBCs microcirculation, an effect that is fever-enhanced. This is the first identification of a parasite factor influencing the dynamic circulation of young asexual Pf-RBCs in physiologically relevant conditions, offering novel possibilities for interventions to reduce parasite survival and pathogenesis in its human host.
Horikawa, Yo
2014-05-01
Transient rotating waves in a ring of sigmoidal neurons with asymmetric bidirectional coupling and self-coupling were studied. When a pair of stable steady states and an unstable traveling wave coexisted, rotating waves propagating in a ring were generated in transients. The pinning (propagation failure) of the traveling wave occurred in the presence of asymmetric coupling and self-coupling, and its conditions were obtained. A kinematical equation for the propagation of wave fronts of the traveling and rotating waves was then derived for a large output gain of neurons. The kinematical equation showed that the duration of transient rotating waves increases exponentially with the number of neurons as that in a ring of unidirectionally coupled neurons (metastable dynamical transients). However, the exponential growth rate depended on the asymmetry of bidirectional coupling and the strength of self-coupling. The rate was equal to the propagation time of the traveling wave (a reciprocal of the propagation speed), and it increased near pinned regions. Then transient rotating waves could show metastable dynamics (extremely long duration) even in a ring of a small number of neurons. Copyright © 2014 Elsevier Ltd. All rights reserved.
Unione, Luca; Xu, Bixue; Díaz, Dolores; Martín-Santamaría, Sonsoles; Poveda, Ana; Sardinha, João; Rauter, Amelia Pilar; Blériot, Yves; Zhang, Yongmin; Cañada, F Javier; Sollogoub, Matthieu; Jiménez-Barbero, Jesus
2015-07-13
Sugar function, structure and dynamics are intricately correlated. Ring flexibility is intrinsically related to biological activity; actually plasticity in L-iduronic rings modulates their interactions with biological receptors. However, the access to the experimental values of the energy barriers and free-energy difference for conformer interconversion in water solution has been elusive. Here, a new generation of fluorine-containing glycomimetics is presented. We have applied a combination of organic synthesis, NMR spectroscopy and computational methods to investigate the conformational behaviour of idose- and glucose-like rings. We have used low-temperature NMR spectroscopic experiments to slow down the conformational exchange of the idose-like rings. Under these conditions, the exchange rate becomes slow in the (19) F NMR spectroscopic chemical shift timescale and allows shedding light on the thermodynamic and kinetic features of the equilibrium. Despite the minimal structural differences between these compounds, a remarkable difference in their dynamic behaviour indeed occurs. The importance of introducing fluorine atoms in these sugars mimics is also highlighted. Only the use of (19) F NMR spectroscopic experiments has permitted the unveiling of key features of the conformational equilibrium that would have otherwise remained unobserved.
Chance, M.S. (Princeton Univ., NJ (USA). Plasma Physics Lab.); Greene, J.M.; Jensen, T.H. (General Atomics, San Diego, CA (USA))
1991-07-01
A magnetic field line topology with nulls, generated by superimposing a uniform magnetic field onto the field from a distributed ring current, is analyzed. This simple model is amenable to substantial analytical progress and also facilitates the visualization of the three dimensional field geometry. Four nulls are seen to exist and representative field lines and tubes of flux found by numerical integration are presented. An infinite number of topologically distinct flux bundles is found. A convenient mapping is defined which proves very useful in distinguishing between and following the paths of the different tubes of flux as they traverse through the null system. The complexities already present in this simple but nontrivial configuration serve to emphasize the difficulties in analyzing more complicated geometries, but the intuition gained from this study proves beneficial in those cases. One such example is the application to a model of plasmoid formations in the earth's magnetotail. 7 refs., 19 figs.
Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.; Ridley, A. J.
2009-01-01
Further development of our self-consistent model of interacting ring current (RC) ions and electromagnetic ion cyclotron (EMIC) waves is presented. This model incorporates large scale magnetosphere-ionosphere coupling and treats self-consistently not only EMIC waves and RC ions, but also the magnetospheric electric field, RC, and plasmasphere. Initial simulations indicate that the region beyond geostationary orbit should be included in the simulation of the magnetosphere-ionosphere coupling. Additionally, a self-consistent description, based on first principles, of the ionospheric conductance is required. These initial simulations further show that in order to model the EMIC wave distribution and wave spectral properties accurately, the plasmasphere should also be simulated self-consistently, since its fine structure requires as much care as that of the RC. Finally, an effect of the finite time needed to reestablish a new potential pattern throughout the ionosphere and to communicate between the ionosphere and the equatorial magnetosphere cannot be ignored.
Xiong, Ying; Chen, Lunjin; Xie, Lun; Fu, Suiyan; Xia, Zhiyang; Pu, Zuyin
2017-05-01
Dayside modulated relativistic electron's butterfly pitch angle distributions (PADs) from ˜200 keV to 2.6 MeV were observed by Van Allen Probe B at L = 5.3 on 15 November 2013. They were associated with localized magnetic dip driven by hot ring current ion (60-100 keV proton and 60-200 keV helium and oxygen) injections. We reproduce the electron's butterfly PADs at satellite's location using test particle simulation. The simulation results illustrate that a negative radial flux gradient contributes primarily to the formation of the modulated electron's butterfly PADs through inward transport due to the inductive electric field, while deceleration due to the inductive electric field and pitch angle change also makes in part contribution. We suggest that localized magnetic field perturbation, which is a frequent phenomenon in the magnetosphere during magnetic disturbances, is of great importance for creating electron's butterfly PADs in the Earth's radiation belts.
Arrese-Igor, Silvia; Arbe, Arantxa; Alegría, Angel; Colmenero, Juan; Frick, Bernhard
2007-05-01
We have investigated the dynamics of phenylene rings in the engineering thermoplastic bisphenol-A poly(hydroxyether) -- phenoxy -- below its glass transition temperature by means of neutron scattering techniques. A relatively wide dynamic range has been covered thanks to the combination of two different types of neutron spectrometers, time of flight and backscattering. Partially deuterated samples have been used in order to isolate the phenylene ring dynamics. The resulting neutron scattering signal of phenoxy has been described by a model that considers pi flips and oscillation motions for phenylene rings. The associated time scales are broadly distributed with mean activation energies equal to 0.41 and 0.21eV , respectively. Finally, a comparative study with the literature shows that the dielectric and mechanical gamma relaxation in phenoxy exhibit good correlation with the characteristic times of the aliphatic chain published elsewhere and with the characteristic times observed for the motion of phenylene rings by neutron scattering. These findings are discussed in a more general framework that considers, in addition, previous results on other polymers, which also contain the bisphenol-A unit.
LI; Tong-zhong(
2001-01-01
［1］Ibrahim S R. Application of random time domain analysis to dynamic flight measurements [J]. Shock and Vibration Bulletin, 1979, 49(2): 165～170.［2］Pappa R S, Juang J N. Some experiences with the eigensystem realization algorithm [A]. Proceeding of the 6th IMAC[C]. Orlando, FL, USA, 1988.［3］Kramer C, Desmet C A M, Peeters B. Comparison of ambient and forced vibration testing of civil engineering structures [A]. 17th IMAC[C]. Kissimmee, FL, USA, 1999. 1030～1034.［4］Hoen C, Moan T, Remseth S. System identification of structures exposed to environmental loads [A]. Proceedings of EURODYN'93, the 2nd European Conference on Structural Dynamics [C]. Trondheim, Norway, 1993. 835～844.［5］James G H, Carne T G, Edmunds R S. Stars missile-modal analysis of first flight data using the natural excitation technique, NExT [A]. 12th IMAC [C]. Honolulu, HI, USA, 1994.［6］Hermans I. In-flight modal testing and analysis of a helicopter [A]. 17th IMAC [C]. Florida, 1999. 80～89.［7］Hermans L. Modal testing and analysis of a car under operational conditions [A]. 16th IMAC [C]. Florida, 1998. 1000～1006.［8］James G H, Garne T G. The natural excitation technique (NExT) for modal parameter extraction from ambient operating structure [J]. The International J of Analytical and Experimental Modal Analysis, 1995, 10(4): 260～277.［9］傅志方.振动模态分析与参数辨识[M].北京：机械工业出版社,1989.［10］周概容.概率论与数理统计.北京：高等教育出版社,1984.［11］宁德成.信号与系统.西安：西北工业大学出版社,1996.［12］葛照强.矩阵理论及其在工程技术中的应用.西安：陕西科学技术出版社,1991.［13］Chiang Dar-Yun, Cheng Ming-Si. Modal parameter identification from ambient response [J]. AIAA Journal, 1999, 37(4): 513～515.
Marsalek, Ondrej
2015-01-01
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ab initio ring polymer contraction (AI-RPC) scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive pro...
Dynamics of a Marine Turbine for Deep Ocean Currents
Ling-Yuan Chang
2016-09-01
Full Text Available For most of the ocean currents, such as the Kuroshio at east Taiwan, the Gulf Stream at east Florida and the Agulhas Current at southeast Africa, the depth of the seabed is generally deeper than one hundred meters, some waters of which can even reach one thousand meters. In such deep waters, the design of the turbine, as well as the anchoring system shall have special features so that existing ocean engineering technologies can be applied and the engineering cost can be lowered. Thus, as regards design, in addition to the analysis of the interaction between turbine and current, priority shall also be given to the design of the anchoring system of the turbine. To address the concerns, the authors propose an ocean turbine featured as follows: (1 it can be anchored in deep waters with a single cable; (2 it can generate high power in a current of moderate flow speed while producing low drag; (3 it can be self-balanced against current disturbance; (4 it is shrouded to enhance power efficiency; (5 the dynamic variations due to the interaction between the turbine and current are small. All of these features are confirmed with the computational results, leading to a detailed design of the turbine structure. If the easy-to-install high-efficiency shrouded turbines, having the capability to self-balance and requiring minimum maintenance effort, are successfully developed, the power supply pressure in Taiwan can be greatly alleviated. The Kuroshio was chosen as the typical current for the present dynamic analysis because, firstly, the flow characteristics of Kuroshio are similar to those of other large-scale currents mentioned above, and secondly, the data of Kuroshio are highly available to us so that a thorough analysis can be done.
Spin currents and magnon dynamics in insulating magnets
Nakata, Kouki; Simon, Pascal; Loss, Daniel
2017-03-01
Nambu–Goldstone theorem provides gapless modes to both relativistic and nonrelativistic systems. The Nambu–Goldstone bosons in insulating magnets are called magnons or spin-waves and play a key role in magnetization transport. We review here our past works on magnetization transport in insulating magnets and also add new insights, with a particular focus on magnon transport. We summarize in detail the magnon counterparts of electron transport, such as the Wiedemann–Franz law, the Onsager reciprocal relation between the Seebeck and Peltier coefficients, the Hall effects, the superconducting state, the Josephson effects, and the persistent quantized current in a ring to list a few. Focusing on the electromagnetism of moving magnons, i.e. magnetic dipoles, we theoretically propose a way to directly measure magnon currents. As a consequence of the Mermin–Wagner–Hohenberg theorem, spin transport is drastically altered in one-dimensional antiferromagnetic (AF) spin-1/2 chains; where the Néel order is destroyed by quantum fluctuations and a quasiparticle magnon-like picture breaks down. Instead, the low-energy collective excitations of the AF spin chain are described by a Tomonaga–Luttinger liquid (TLL) which provides the spin transport properties in such antiferromagnets some universal features at low enough temperature. Finally, we enumerate open issues and provide a platform to discuss the future directions of magnonics.
Current methods for studying dynamic processes in the ionosphere
Filipp, Nikolai D.; Blaunshtein, Natan Sh.; Erukhimov, Lev M.; Ivanov, Vladimir A.; Uriadov, Valerii P.
Current experimental and theoretical data relevant to the study of dynamic processes in the ionospheric plasma using state-of-the-art methods are summarized. The methods used include linear FM sounding, partial radio wave reflection, oblique-incidence radio wave scattering, radio wave heating of the ionosphere, plasma injection, and computer simulation of physical processes. For each specific method, experimental data are compared against theoretical predictions and numerical calculations.
Optimal control of stochastic magnetization dynamics by spin current
Wang, Yong; Zhang, Fu-Chun
2013-05-01
Fluctuation-induced stochastic magnetization dynamics plays an important role in spintronics devices. Here we propose that it can be optimally controlled by spin currents to minimize or maximize the Freidlin-Wentzell action functional of the system hence to increase or decrease the probability of the large fluctuations. We apply this method to study the thermally activated magnetization switching problem and to demonstrate the merits of the optimal control strategy.
Arnold, Thorsten; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar
2014-05-01
We calculate the persistent charge and spin polarization current inside a finite-width quantum ring of realistic geometry as a function of the strength of the Rashba or Dresselhaus spin-orbit interaction. The time evolution in the transient regime of the two-dimensional (2D) quantum ring connected to electrically biased semi-infinite leads is governed by a time-convolutionless non-Markovian generalized master equation. The electrons are correlated via Coulomb interaction. In addition, the ring is embedded in a photon cavity with a single mode of linearly polarized photon field, which is polarized either perpendicular or parallel to the charge transport direction. To analyze carefully the physical effects, we compare to the analytical results of the toy model of a one-dimensional (1D) ring of non-interacting electrons with spin-orbit coupling. We find a pronounced charge current dip associated with many-electron level crossings at the Aharonov-Casher phase ΔΦ = π, which can be disguised by linearly polarized light. Qualitative agreement is found for the spin polarization currents of the 1D and 2D ring. Quantitatively, however, the spin polarization currents are weaker in the more realistic 2D ring, especially for weak spin-orbit interaction, but can be considerably enhanced with the aid of a linearly polarized electromagnetic field. Specific spin polarization current symmetries relating the Dresselhaus spin-orbit interaction case to the Rashba one are found to hold for the 2D ring, which is embedded in the photon cavity.
M. L. Parkinson
2007-02-01
Full Text Available An auroral westward flow channel (AWFC is a latitudinally narrow channel of unstable F-region plasma with intense westward drift in the dusk-to-midnight sector ionosphere. AWFCs tend to overlap the equatorward edge of the auroral oval, and their life cycle is often synchronised to that of substorms: they commence close to substorm expansion phase onset, intensify during the expansion phase, and then decay during the recovery phase. Here we define for the first time the relationship between an AWFC, large-scale field-aligned current (FAC, the ring current, and plasmapause location. The Tasman International Geospace Environment Radar (TIGER, a Southern Hemisphere HF SuperDARN radar, observed a jet-like AWFC during ~08:35 to 13:28 UT on 7 April 2001. The initiation of the AWFC was preceded by a band of equatorward expanding ionospheric scatter (BEES which conveyed an intense poleward electric field through the inner plasma sheet. Unlike previous AWFCs, this event was not associated with a distinct substorm surge; rather it occurred during an interval of persistent, moderate magnetic activity characterised by AL~−200 nT. The four Cluster spacecraft had perigees within the dusk sector plasmasphere, and their trajectories were magnetically conjugate to the radar observations. The Waves of High frequency and Sounder for Probing Electron density by Relaxation (WHISPER instruments on board Cluster were used to identify the plasmapause location. The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE EUV experiment also provided global-scale observations of the plasmapause. The Cluster fluxgate magnetometers (FGM provided successive measurements specifying the relative location of the ring current and filamentary plasma sheet current. An analysis of Iridium spacecraft magnetometer measurements provided estimates of large-scale ionospheric FAC in relation to the AWFC evolution. Peak flows in the AWFC were located close to the peak of a Region 2
Non-autonomous and stochastic dynamics of oceanic gravity currents
Bongolan-Walsh, Vena Pearl
The incompressible Navier-Stokes equations (the momentum, continuity and scalar transport equations) are the fundamental equations of fluid mechanics. Of great importance to weather and climate studies is the thermohaline circulation, which is affected by gravity currents, hence we chose it as our application. First, we studied the Navier-Stokes equations (without scalar transport) using non-autonomous dynamical systems techniques, and showed the existence of recurrent or Poisson stable motions under recurrent or Poisson stable forcing, respectively. This was motivated by observed periodic and recurrent motions in nature. Next, we investigated the coupled Navier-Stokes and scalar transport equations (we may take the scalar to be salinity, say), with spatially correlated white noise on the boundary. We employed random dynamical system ideas, and showed that this system is ergodic under suitable conditions for mean salinity input flux on the boundary, Prandtl number and covariance of the noise. This addition of a random term to the boundary conditions was motivated by observed seasonal variations in the salinity flux in gravity currents. The final part of this thesis are numerical simulations studying the effects of different boundary conditions on the entrainment behavior, salinity distribution and salinity transport properties of gravity currents. The finding is that gravity currents developing under Neumann and Dirichlet boundary conditions differ most in the way they transport salinity from the middle salinity parts (roughly the middle of the current) towards the fresher part (roughly the top of the current). This study contributes to understanding the behavior of the Navier-Stokes Equations under time-periodic forcings, uncertain boundary conditions, and how gravity currents are affected by different boundary conditions.
Non-linear dynamics, entanglement and the quantum-classical crossover of two coupled SQUID rings
Everitt, M J
2009-01-01
We explore the quantum-classical crossover of two coupled, identical, superconducting quantum interference device (SQUID) rings. We note that the motivation for this work is based on a study of a similar system comprising two coupled Duffing oscillators. In that work we showed that the entanglement characteristics of chaotic and periodic (entrained) solutions differed significantly and that in the classical limit entanglement was preserved only in the chaotic-like solutions. However, Duffing oscillators are a highly idealised toy model. Motivated by a wish to explore more experimentally realisable systems we now extend our work to an analysis of two coupled SQUID rings. We observe some differences in behaviour between the system that is based on SQUID rings rather than on Duffing oscillators. However, we show that the two systems share a common feature. That is, even when the SQUID ring's trajectories appear to follow (semi) classical orbits entanglement persists.
Charges and currents in quantum spin chains: late-time dynamics and spontaneous currents
Fagotti, Maurizio
2017-01-01
We review the structure of the conservation laws in noninteracting spin chains and unveil a formal expression for the corresponding currents. We briefly discuss how interactions affect the picture. In the second part, we explore the effects of a localized defect. We show that the emergence of spontaneous currents near the defect undermines any description of the late-time dynamics by means of a stationary state in a finite chain. In particular, the diagonal ensemble does not work. Finally, we provide numerical evidence that simple generic localized defects are not sufficient to induce thermalization.
Fischer-Friedrich, Elisabeth; Friedrich, Benjamin M.; Gov, Nir S.
2012-02-01
In many bacterial species, the protein FtsZ forms a cytoskeletal ring that marks the future division site and scaffolds the division machinery. In rod-shaped bacteria, most frequently membrane-attached FtsZ rings or ring fragments are reported and occasionally helices. By contrast, axial FtsZ clusters have never been reported. In this paper, we investigate theoretically how dynamic FtsZ aggregates align in rod-shaped bacteria. We study systematically different physical mechanisms that affect the alignment of FtsZ polymers using a computational model that relies on autocatalytic aggregation of FtsZ filaments at the membrane. Our study identifies a general tool kit of physical and geometrical mechanisms by which rod-shaped cells align biopolymer aggregates. Our analysis compares the relative impact of each mechanism on the circumferential alignment of FtsZ as observed in rod-shaped bacteria. We determine spontaneous curvature of FtsZ polymers and axial confinement of FtsZ on the membrane as the strongest factors. Including Min oscillations in our model, we find that these stabilize axial and helical clusters on short time scales, but promote the formation of an FtsZ ring at the cell middle at longer times. This effect could provide an explanation to the long standing puzzle of transiently observed oscillating FtsZ helices in Escherichia coli cells prior to cell division.
Jackson Buss
2015-04-01
Full Text Available The prokaryotic tubulin homolog, FtsZ, forms a ring-like structure (FtsZ-ring at midcell. The FtsZ-ring establishes the division plane and enables the assembly of the macromolecular division machinery (divisome. Although many molecular components of the divisome have been identified and their interactions extensively characterized, the spatial organization of these proteins within the divisome is unclear. Consequently, the physical mechanisms that drive divisome assembly, maintenance, and constriction remain elusive. Here we applied single-molecule based superresolution imaging, combined with genetic and biophysical investigations, to reveal the spatial organization of cellular structures formed by four important divisome proteins in E. coli: FtsZ, ZapA, ZapB and MatP. We show that these interacting proteins are arranged into a multi-layered protein network extending from the cell membrane to the chromosome, each with unique structural and dynamic properties. Further, we find that this protein network stabilizes the FtsZ-ring, and unexpectedly, slows down cell constriction, suggesting a new, unrecognized role for this network in bacterial cell division. Our results provide new insight into the structure and function of the divisome, and highlight the importance of coordinated cell constriction and chromosome segregation.
Fluid Dynamical Consequences of Current and Stress-Energy Conservation
Scofield, Dillon; Huq, Pablo
The dynamical consequences of fluid current conservation combined with the conservation of fluid stress-energy are used to develop the geometrodynamical theory of fluid flow (GTF). In the derivation of the GTF, we highlight the fact the continuity equation, equivalently the conservation of current density, implies the existence of the fluid dynamical vortex field. The vortex field transports part of the stress-energy; the other part of the stress-energy is transported by the fluid inertia field. Two channels of energy dissipation are determined by the GTF. One is an analog of the Joule heating found in electrodynamics. This follows from the conservation of stress-energy. The other dissipation channel arises from mechanisms leading to complex-valued constitutive parameters described in the electrodynamical analogy as due to a lossy medium. The dynamical consequences of the continuity equation, combined with the conservation of total stress-energy, then lead to a causal, covariant, theory of fluid flow, consistent with thermodynamics for all physically possible flow rates.
Simulation of the dynamics in the magnetotail current sheet
Ojeda, Arian; Calzadilla, Alexander; Savio, Siomel; Alazo, Katy
2013-01-01
The dynamics in the magnetosphere current sheet was simulated following transformations to the rectangular NxM array of cells (cellular automaton) originally proposed by Koselov and Koselova (2002). The magnetosphere part of the modeling system was organized as a rectangular arrangement of cells with a stored energy, a local redistribution of the energy will exist when a value threshold is exceeded in one of the cells. We assume that the threshold value in each cell depends on external control parameter which influences the long boundaries of the rectangular array (40x80). The model dynamics controlled by the z-component of the interplanetary magnetic field (Bz) as well as analogies between the model transient processes and the observed substorm auroral activations are discussed. The Bz correspond to temporary windows of the solar wind for a group of magnetic clouds and plasmoids. The model simulates organized patterns in the energy distribution. The function of distribution of probability (or PDF) of the siz...
Kovalenko, Oleksandr
2015-06-24
The High-Energy Storage Ring (HESR) is a part of an upcoming International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt. A key part of a scientific program, along with antiproton physics, will be physics with highly-charged heavy ions. Phase-space cooled beams together with fixed internal target will provide an excellent environment for storage ring experiments at the HESR for the SPARC collaboration. Until recently, however, the existing ion optical lattice for the HESR was designed only for the experiments with antiproton beams. The thesis presents a new ion optical mode developed specifically for the operation of the HESR with highly charged heavy ions. The presence of the errors, such as beam momentum spread, magnetic field impurities or magnets misalignments, leads to disruption of beam dynamics: exciting of resonant motion and loss of beam stability. Within the paper, these effects are investigated with the help of numerical codes for particle accelerator design and simulation MAD-X and MIRKO. A number of correction techniques are applied to minimize the nonlinear impact on the beam dynamics and improve the experimental conditions. The application of the analytical and numerical tools is demonstrated in the experiment with uranium U{sup 90+} beam at the existing storage ring ESR, GSI.
Dynamics and stabilization of peak current-mode controlled buck converter with constant current load
冷敏瑞; 周国华; 张凯暾; 李振华
2015-01-01
The discrete iterative map model of peak current-mode controlled buck converter with constant current load (CCL), containing the output voltage feedback and ramp compensation, is established in this paper. Based on this model the com-plex dynamics of this converter is investigated by analyzing bifurcation diagrams and the Lyapunov exponent spectrum. The effects of ramp compensation and output voltage feedback on the stability of the converter are investigated. Experimental results verify the simulation and theoretical analysis. The stability boundary and chaos boundary are obtained under the theoretical conditions of period-doubling bifurcation and border collision. It is found that there are four operation regions in the peak current-mode controlled buck converter with CCL due to period-doubling bifurcation and border-collision bifur-cation. Research results indicate that ramp compensation can extend the stable operation range and transfer the operating mode, and output voltage feedback can eventually eliminate the coexisting fast-slow scale instability.
Dynamic Feedback Controlling Chaos in Current-Mode Boost Converter
LU Wei-Guo; ZHOU Luo-Wei; LUO Quan-Ming
2007-01-01
A method for the control of chaos in the current-mode boost converter is presented by using the first-order dynamic feedback control. The feedback part consists of a resistance and a capacitance in series. The system to be controlled is treated as a third-order model, and then the discrete mapping model is obtained by using the data-sampling method. By analysing the position of the maximum norm eigenvalue, the stable range of feedback gain is ascertained out and its optimization is also carried out. Finally, the results of simulation and experiment confirm the correctness of the theoretical analysis and the validity of the proposed means.
Marsalek, Ondrej; Markland, Thomas E
2016-02-07
Path integral molecular dynamics simulations, combined with an ab initio evaluation of interactions using electronic structure theory, incorporate the quantum mechanical nature of both the electrons and nuclei, which are essential to accurately describe systems containing light nuclei. However, path integral simulations have traditionally required a computational cost around two orders of magnitude greater than treating the nuclei classically, making them prohibitively costly for most applications. Here we show that the cost of path integral simulations can be dramatically reduced by extending our ring polymer contraction approach to ab initio molecular dynamics simulations. By using density functional tight binding as a reference system, we show that our ring polymer contraction scheme gives rapid and systematic convergence to the full path integral density functional theory result. We demonstrate the efficiency of this approach in ab initio simulations of liquid water and the reactive protonated and deprotonated water dimer systems. We find that the vast majority of the nuclear quantum effects are accurately captured using contraction to just the ring polymer centroid, which requires the same number of density functional theory calculations as a classical simulation. Combined with a multiple time step scheme using the same reference system, which allows the time step to be increased, this approach is as fast as a typical classical ab initio molecular dynamics simulation and 35× faster than a full path integral calculation, while still exactly including the quantum sampling of nuclei. This development thus offers a route to routinely include nuclear quantum effects in ab initio molecular dynamics simulations at negligible computational cost.
Kozyra, J. U.; Rasmussen, C. E.; Miller, R. H.; Lyons, L. R.
1994-01-01
Protons that are convected into the inner magnetosphere in response to enhanced magnetic activity can resonate with ducted plasmaspheric hiss in the outer plasmasphere via an anomalous Doppler-shifted cyclotron resonance. Plasmaspheric hiss is a right-hand-polarized electromagnetic emission that is observed to fill the plasmasphere on a routine basis. When plasmaspheric hiss is confined within field-aligned ducts or guided along density gradients, wave normal angles remain largely below 45 deg. This allows resonant interactions with ions at typical ring current and radiation belt energies to take place. Such field-aligned ducts have been observed both within the plasmasphere and in regions outside of the plasmasphere. Wave intensities are estimated using statistical information from studies of detached plasma regions. Diffusion coefficients are presented for a range of L shells and proton energies for a fixed wave distribution. Harmonic resonances in the range N = +/-100 are considered in order to include interactions between hiss at 100 Hz to 2 kHz frequencies, and protons in the energy range between approximately 10 keV and 1000 keV. Diffusion timescales are estimated to be of the order of tens of days and comparable to or shorter than lifetimes for Coulomb decay and charge exchange losses over most of the energy and spatial ranges of interest.
Backer, Carl L; Mongé, Michael C; Popescu, Andrada R; Eltayeb, Osama M; Rastatter, Jeffrey C; Rigsby, Cynthia K
2016-06-01
The term vascular ring refers to congenital vascular anomalies of the aortic arch system that compress the esophagus and trachea, causing symptoms related to those two structures. The most common vascular rings are double aortic arch and right aortic arch with left ligamentum. Pulmonary artery sling is rare and these patients need to be carefully evaluated for frequently associated tracheal stenosis. Another cause of tracheal compression occurring only in infants is the innominate artery compression syndrome. In the current era, the diagnosis of a vascular ring is best established by CT imaging that can accurately delineate the anatomy of the vascular ring and associated tracheal pathology. For patients with a right aortic arch there recently has been an increased recognition of a structure called a Kommerell diverticulum which may require resection and transfer of the left subclavian artery to the left carotid artery. A very rare vascular ring is the circumflex aorta that is now treated with the aortic uncrossing operation. Patients with vascular rings should all have an echocardiogram because of the incidence of associated congenital heart disease. We also recommend bronchoscopy to assess for additional tracheal pathology and provide an assessment of the degree of tracheomalacia and bronchomalacia. The outcomes of surgical intervention are excellent and most patients have complete resolution of symptoms over a period of time. Copyright © 2016 Elsevier Inc. All rights reserved.
Polaron dynamics in two-dimensional photon-echo spectroscopy of molecular rings.
Huynh, Thanh Duc; Sun, Ke-Wei; Gelin, Maxim; Zhao, Yang
2013-09-14
We have developed a new approach to the computation of third-order spectroscopic signals of molecular rings, by incorporating the Davydov soliton theory into the nonlinear response function formalism. The Davydov D1 and D Ansätze have been employed to treat the interactions between the excitons and the primary phonons, allowing for a full description of arbitrary exciton-phonon coupling strengths. As an illustration, we have simulated a series of optical 2D spectra for two models of molecular rings.
Anodisation with dynamic current control for tailored alumina coatings
Sieber, M.; Althöfer, I.; Höhlich, D.; Scharf, I.; Böttger, D.; Böttger, S.; Böttger, E.; Lampke, T.
2016-03-01
The anodic oxidation process is commonly used to refine the surface of aluminium and its alloys. Compared to the substrate, the alumina layers produced by anodising exhibit an increased hardness and chemical resistance. Thus, the corrosion and wear resistance are generally improved. The coatings are also electrically isolating and may serve decorative purposes. Applying a time-variant, dynamic electrical process control by pulse-current or current-steps is a promising approach to improve the coating properties, which is partially deployed in an industrial scale. In the present work, the influence of dynamic electrical process control on the coating properties is examined by means of a design of experiments (DOE). The effects of various electrolyte compositions and temperatures as well as processing time are considered with regard to coating thickness, hardness, wear resistance and the electrical energy consumption during the formation of the coatings. Information about the statistical significance of the effects of the parameters on the considered properties is obtained by an analysis of variance (ANOVA).
Large dynamic range diagnostics for high current electron LINACs
Evtushenko, Pavel [JLAB
2013-11-01
The Jefferson Lab FEL driver accelerator - Energy Recovery Linac has provided a beam with average current of up to 9 mA and beam energy of 135 MeV. The high power beam operations have allowed developing and testing methods and approaches required to set up and tune such a facility simultaneously for the high beam power and high beam quality required for high performance FEL operations. In this contribution we briefly review this experience and outline problems that are specific to high current - high power non-equilibrium linac beams. While the original strategy for beam diagnostics and tuning have proven to be quite successful, some shortcomings and unresolved issues were also observed. The most important issues are the non-equilibrium (non-Gaussian) nature of the linac beam and the presence of small intensity - large amplitude fraction of the beam a.k.a. beam halo. Thus we also present a list of the possible beam halo sources and discuss possible mitigations means. We argue that for proper understanding and management of the beam halo large dynamic range (>10{sup 6}) transverse and longitudinal beam diagnostics can be used. We also present results of transverse beam profile measurements with the dynamic range approaching 10{sup 5} and demonstrate the effect the increased dynamic range has on the beam characterization, i.e., emittance and Twiss parameters measurements. We also discuss near future work planned in this field and where the JLab FEL facility will be used for beam tests of the developed of new diagnostics.
Large dynamic range diagnostics for high current electron LINACs
Evtushenko, P., E-mail: Pavel.Evtushenko@jlab.org [Thomas Jefferson National Accelerator Facility 12000 Jefferson Avenue, Newport News, VA 23606 (United States)
2013-11-07
The Jefferson Lab FEL driver accelerator - Energy Recovery Linac has provided a beam with average current of up to 9 mA and beam energy of 135 MeV. The high power beam operations have allowed developing and testing methods and approaches required to set up and tune such a facility simultaneously for the high beam power and high beam quality required for high performance FEL operations. In this contribution we briefly review this experience and outline problems that are specific to high current - high power non-equilibrium linac beams. While the original strategy for beam diagnostics and tuning have proven to be quite successful, some shortcomings and unresolved issues were also observed. The most important issues are the non-equilibrium (non-Gaussian) nature of the linac beam and the presence of small intensity - large amplitude fraction of the beam a.k.a. beam halo. Thus we also present a list of the possible beam halo sources and discuss possible mitigations means. We argue that for proper understanding and management of the beam halo large dynamic range (>10{sup 6}) transverse and longitudinal beam diagnostics can be used. We also present results of transverse beam profile measurements with the dynamic range approaching 10{sup 5} and demonstrate the effect the increased dynamic range has on the beam characterization, i.e., emittance and Twiss parameters measurements. We also discuss near future work planned in this field and where the JLab FEL facility will be used for beam tests of the developed of new diagnostics.
An experiment of dynamical behaviours in an erbium-doped fibre-ring laser with loss modulation
Liu Yue; Feng Xue; Zhang Wei; Liu Xiao-Ming
2009-01-01
This paper reports a systematic experimental investigation on the dynamics in the low-frequency region in an erbium-doped fibre-ring laser with loss modulation.A rich variety of bifurcation is analyzed through the bifurcation diagram and structured with the concept of the winding numbers.The coexistence of multiple attractors and the crisis that appear in the saddle-node bifurcations,and an interesting structure of bifurcation which is similar to the bifurcations in high-frequency range,have been observed.
LI Qing-kai; LI Xiao-fang; ZHAO Yong-qiang
2007-01-01
The new mechanism of drum-shaped gear with ring-involute teeth is presented to implement dimensional transmission for the stairlift. The structure of the gear and rack in this actuating mechanism is designed,and then its inherent radius of turn and modulus selection have been studied. In order to make the mechanism move steadily, the drive guide is proposed. After using the dynamics simulation software ADAMS to analyze the 3D model, this kind of mechanism is confirmed to be able to implement dimensional track. The useful method and basis would be provided for the optimization design of the mechanism.
Yuri, Yosuke, E-mail: yuri.yosuke@jaea.go.jp [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi Takasaki, Gunma 370-1292 Japan (Japan)
2015-06-29
Three-dimensional (3D) ordering of a charged-particle beams circulating in a storage ring is systematically studied with a molecular-dynamics simulation code. An ion beam can exhibit a 3D ordered configuration at ultralow temperature as a result of powerful 3D laser cooling. Various unique characteristics of the ordered beams, different from those of crystalline beams, are revealed in detail, such as the single-particle motion in the transverse and longitudinal directions, and the dependence of the tune depression and the Coulomb coupling constant on the operating points.
Consistent gauge interaction involving dynamical coupling and anomalous current
Guendelman, Eduardo I
2015-01-01
We show a possible way to construct a consistent formalism where the effective electric charge can change with space and time without destroying the invariance. In the previous work [1][2] we took the gauge coupling to be of the form $g(\\phi)j_\\mu (A^{\\mu} +\\partial^{\\mu}B)$ where $B$ is an auxiliary field, $ \\phi $ is a scalar field and the current $j_\\mu$ is the Dirac current. This term produces a constraint $ (\\partial_{\\mu}\\phi) j^{\\mu}=0 $ which can be related to M.I.T bag model by boundary condition. In this paper we show that when we use the term $ g(\\phi)j_{\\mu}(A^{\\mu} - \\partial^{\\mu}(\\frac{1}{\\square}\\partial_{\\rho}A^{\\rho})) $, instead of the auxiliary field $ B $, there is a possibility to produce a theory with dynamical coupling constant, which does not produce any constraint or confinement. The coupling $ j_{\\mu}^{A}(A^{\\mu} - \\partial^{\\mu}(\\frac{1}{\\square}\\partial_{\\rho}A^{\\rho})) $ where $ j_{\\mu}^{A} $ is an anomalous current also discussed.
Warner, S
1993-01-01
This text brings the reader to the frontiers of current research in topological rings. The exercises illustrate many results and theorems while a comprehensive bibliography is also included. The book is aimed at those readers acquainted with some very basic point-set topology and algebra, as normally presented in semester courses at the beginning graduate level or even at the advanced undergraduate level. Familiarity with Hausdorff, metric, compact and locally compact spaces and basic properties of continuous functions, also with groups, rings, fields, vector spaces and modules, and with Zorn''s Lemma, is also expected.
The role of convection in the buildup of the ring current pressure during the 17 March 2013 storm
Menz, A. M.; Kistler, L. M.; Mouikis, C. G.; Spence, H. E.; Skoug, R. M.; Funsten, H. O.; Larsen, B. A.; Mitchell, D. G.; Gkioulidou, M.
2017-01-01
On 17 March 2013, the Van Allen Probes measured the H+ and O+ fluxes of the ring current during a large geomagnetic storm. Detailed examination of the pressure buildup during the storm shows large differences in the pressure measured by the two spacecraft, with measurements separated by only an hour, and large differences in the pressure measured at different local times. In addition, while the H+ and O+ pressure contributions are about equal during the main phase in the near-Earth plasma sheet outside L = 5.5, the O+ pressure dominates at lower L values. We test whether adiabatic convective transport from the near-Earth plasma sheet (L > 5.5) to the inner magnetosphere can explain these observations by comparing the observed inner magnetospheric distributions with the source distribution at constant magnetic moment, mu. We find that adiabatic convection can account for the enhanced pressure observed during the storm. Using a Weimer 1996 electric field we model the drift trajectories to show that the key features can be explained by variation in the near-Earth plasma sheet population and particle access that changes with energy and L shell. Finally, we show that the dominance of O+ at low L shells is due partly to a near-Earth plasma sheet that is preferentially enhanced in O+ at lower energies (5-10 keV) and partly due to the time dependence in the source combined with longer drift times to low L shells. No source of O+ inside L = 5.5 is required to explain the observations at low L shells.
Assessment of current criteria for dynamic stability of container vessels
Stanca, C.; Ancuta, C.; Acomi, N.; Andrei, C.
2016-08-01
Container vessels sailing through heavy weather are exposed to a significant variation of stability due to specific shape of the hull combined with the action of the waves. Even if the weather forecast is transmitted to vessels, the way of acting it is a matter of officers’ experience. The Maritime Safety Committee, under the International Maritime Organization, has approved the Guidance to the master for avoiding dangerous situations in adverse weather and sea conditions. Adverse weather conditions include wind induced waves or heavy swell. The development of dangerous phenomena such as surf-riding and broaching to, syncronious and parametric rollings is a result of a these adverse conditions which has to be encountered by the vessels. Understanding the dynamic stability of the vessel in the waves and ship's behaviour based on mathematical and physical rules is a difficult task, any effort in order to assess these components are salutary. To avoid excessive acceleration and forces which can damage the hull of the vessel, lashing and integrity of containers, course and speed may need to be changed for the vessel's motion in heavy seas. Specific software have been developed as aids for evaluating the response of the vessel in heavy seas according to parameters variations. The paper aims at assessing of current criteria for dynamic stability of a container vessel model ship in order to determine the ways for avoiding dangerous conditions. The results should be regarded as a supporting tool during the decision making process.
Chaotic dynamics outside Saturn’s main rings: The case of Atlas
Renner, Stéfan; Cooper, Nicholas J.; El Moutamid, Maryame; Evans, Mike W.; Murray, Carl D.; Sicardy, Bruno
2014-11-01
We revisit in detail the dynamics of Atlas. From a fit to new Cassini ISS astrometric observations spanning February 2004 to August 2013, we estimate GM_Atlas=0.384+/-0.001 x 10^(-3)km^3s^(-2), a value 13% smaller than the previously published estimate but with an order of magnitude reduction in the uncertainty. Our numerically-derived orbit shows that Atlas is currently librating in both a 54:53 corotation eccentricity resonance (CER) and a 54:53 Lindblad eccentricity resonance (LER) with Prometheus. We demonstrate that the orbit of Atlas is chaotic, with a Lyapunov time of order 10 years, as a direct consequence of the coupled resonant interaction (CER/LER) with Prometheus. The interactions between the two resonances is investigated using the CoraLin analytical model (El Moutamid et al., 2014), showing that the chaotic zone fills almost all the corotation site occupied by the satellite’s orbit. Four 70 :67 apse-type mean motion resonances with Pandora are also overlapping, but these resonances have a much weaker effect on Atlas.We estimate the capture probabilities of Atlas into resonances with Prometheus as the orbits expand through tidal effects, and discuss the implications for the orbital evolution.
Constraints on the size and dynamics of the J1407b ring system
Rieder, Steven
2016-01-01
Context. J1407 (1SWASP J140747.93-394542.6 in full) is a young star in the Scorpius-Centaurus OB association that underwent a series of complex eclipses over 56 days in 2007. In a series of articles, Mamajek et al. (2012) and others hypothesised that a secondary substellar companion, J1407b, has a giant ring system filling a large fraction of the Hill sphere, causing the eclipses. Observations have not successfully detected J1407b, but do rule out circular orbits for the companion around the primary star. Aims. We test to what degree the ring model of J1407b could survive in an eccentric orbit required to fit the observations. Methods. We run N-body simulations under the AMUSE framework to test the stability of Hill radius-filling systems where the companion is on an eccentric orbit. Results. We strongly rule out prograde ring systems and find that a secondary of 60 to 100MJup with an 11 year orbital period and retrograde orbiting material can survive for at least $10^4$ orbits and produce eclipses with simil...
Constraints on the size and dynamics of the J1407b ring system
Rieder, Steven; Kenworthy, Matthew A.
2016-11-01
Context. J1407 (1SWASP J140747.93-394542.6 in full) is a young star in the Scorpius-Centaurus OB association that underwent a series of complex eclipses over 56 days in 2007. To explain these, it was hypothesised that a secondary substellar companion, J1407b, has a giant ring system filling a large fraction of the Hill sphere, causing the eclipses. Observations have not successfully detected J1407b, but do rule out circular orbits for the companion around the primary star. Aims: We test to what degree the ring model of J1407b could survive in an eccentric orbit required to fit the observations. Methods: We run N-body simulations under the AMUSE framework to test the stability of Hill radius-filling systems where the companion is on an eccentric orbit. Results: We strongly rule out prograde ring systems and find that a secondary of 60 to 100 MJup with an 11 yr orbital period and retrograde orbiting material can survive for at least 104 orbits and produce eclipses with similar durations as the observed one.
Statistical Correlations Between Near-Infrared Luminosities and Ring Sizes in Field Ringed Galaxies
Wu, Wentao
2008-01-01
Statistically complete samples of inner-pseudo-, inner-, and outer-ringed galaxies can be extracted from the Catalog of Southern Ringed Galaxies. Redshifts and near-infrared (NIR) photometric data are available for the samples, allowing the derivation of the statistical correlations between the total NIR luminosities (L NIR) and the projected ring major axes in the physical scale (D) for these galaxies. For any of the three types of rings, the correlations are approximately L NIR vprop D 1.2 among the early-type ringed galaxies (the most commonly observed ringed galaxies). The correlations among late-type ringed galaxies appear significantly different. The results contradict the previous suggestion by Kormendy (1979, ApJ, 227, 714), who gave LB vprop D 2 (LB : B-band galaxy luminosity). The relations can be used in future to test theoretical simulations of dynamical structures of ringed galaxies as well as those of ring formation under the framework of cosmological models. Currently the results indicate at most small differences in the relative contributions of disk components to total galaxy masses and in the initial disk velocity dispersions between commonly observed ringed galaxies of similar type. The correlations also suggest a new approach to effectively use ring sizes as tertiary cosmological distance indicators, to help enhance the reliability of the measurement of the Hubble Constant.
Dynamics and stabilization of peak current-mode controlled buck converter with constant current load
Leng, Min-Rui; Zhou, Guo-Hua; Zhang, Kai-Tun; Li, Zhen-Hua
2015-10-01
The discrete iterative map model of peak current-mode controlled buck converter with constant current load (CCL), containing the output voltage feedback and ramp compensation, is established in this paper. Based on this model the complex dynamics of this converter is investigated by analyzing bifurcation diagrams and the Lyapunov exponent spectrum. The effects of ramp compensation and output voltage feedback on the stability of the converter are investigated. Experimental results verify the simulation and theoretical analysis. The stability boundary and chaos boundary are obtained under the theoretical conditions of period-doubling bifurcation and border collision. It is found that there are four operation regions in the peak current-mode controlled buck converter with CCL due to period-doubling bifurcation and border-collision bifurcation. Research results indicate that ramp compensation can extend the stable operation range and transfer the operating mode, and output voltage feedback can eventually eliminate the coexisting fast-slow scale instability. Project supported by the National Natural Science Foundation of China (Grant No. 61371033), the Fok Ying-Tung Education Foundation for Young Teachers in the Higher Education Institutions of China (Grant No. 142027), the Sichuan Provincial Youth Science and Technology Fund, China (Grant Nos. 2014JQ0015 and 2013JQ0033), and the Fundamental Research Funds for the Central Universities, China (Grant No. SWJTU11CX029).
Current-driven dynamics of chiral ferromagnetic domain walls.
Emori, Satoru; Bauer, Uwe; Ahn, Sung-Min; Martinez, Eduardo; Beach, Geoffrey S D
2013-07-01
In most ferromagnets the magnetization rotates from one domain to the next with no preferred handedness. However, broken inversion symmetry can lift the chiral degeneracy, leading to topologically rich spin textures such as spin spirals and skyrmions through the Dzyaloshinskii-Moriya interaction (DMI). Here we show that in ultrathin metallic ferromagnets sandwiched between a heavy metal and an oxide, the DMI stabilizes chiral domain walls (DWs) whose spin texture enables extremely efficient current-driven motion. We show that spin torque from the spin Hall effect drives DWs in opposite directions in Pt/CoFe/MgO and Ta/CoFe/MgO, which can be explained only if the DWs assume a Néel configuration with left-handed chirality. We directly confirm the DW chirality and rigidity by examining current-driven DW dynamics with magnetic fields applied perpendicular and parallel to the spin spiral. This work resolves the origin of controversial experimental results and highlights a new path towards interfacial design of spintronic devices.
Menzeleev, Artur R; Ananth, Nandini; Miller, Thomas F
2011-08-21
The use of ring polymer molecular dynamics (RPMD) for the direct simulation of electron transfer (ET) reaction dynamics is analyzed in the context of Marcus theory, semiclassical instanton theory, and exact quantum dynamics approaches. For both fully atomistic and system-bath representations of condensed-phase ET, we demonstrate that RPMD accurately predicts both ET reaction rates and mechanisms throughout the normal and activationless regimes of the thermodynamic driving force. Analysis of the ensemble of reactive RPMD trajectories reveals the solvent reorganization mechanism for ET that is anticipated in the Marcus rate theory, and the accuracy of the RPMD rate calculation is understood in terms of its exact description of statistical fluctuations and its formal connection to semiclassical instanton theory for deep-tunneling processes. In the inverted regime of the thermodynamic driving force, neither RPMD nor a related formulation of semiclassical instanton theory capture the characteristic turnover in the reaction rate; comparison with exact quantum dynamics simulations reveals that these methods provide inadequate quantization of the real-time electronic-state dynamics in the inverted regime.
Birgit eKriener
2014-01-01
Full Text Available Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics,specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of macroscopic variables such as population firing rates. Though neural field models are often deduced from and equipped with biophysically meaningfulproperties, a direct mapping to simulations of individual spiking neuron populations is rarely considered. Neurons have a distinct identity defined by their action on their postsynaptic targets. In its simplest form they act either excitatorily or inhibitorily.When the distribution of neuron identities is assumed to be periodic, pattern formation can be observed, given the coupling strength is supercritical, i.e., larger than a critical weight. We find that this critical weight is strongly dependent on the characteristics of the neuronal input, i.e., depends on whether neurons are mean- orfluctuation driven, and different limits in linearizing the full non-linear system apply in order to assess stability.In particular, if neurons are mean-driven, the linearization has a very simple form and becomesindependent of both the fixed point firing rate and the variance of the input current, while in the very strongly fluctuation-driven regime the fixed point rate, as well as the input mean and variance areimportant parameters in the determination of the critical weight.We demonstrate that interestingly even in ``intermediate'' regimes, when the system is technically fluctuation-driven, the simple linearization neglecting the variance of the input can yield the better prediction of the critical couplingstrength. We moreover analyze the effects of structural randomness by rewiring individualsynapses or redistributing weights, as well as coarse-graining on pattern
Dynamical stability analysis of delayed recurrent neural networks with ring structure
Zhang, Huaguang; Huang, Yujiao; Cai, Tiaoyang; Wang, Zhanshan
2014-04-01
In this paper, multistability is discussed for delayed recurrent neural networks with ring structure and multi-step piecewise linear activation functions. Sufficient criteria are obtained to check the existence of multiple equilibria. A lemma is proposed to explore the number and the cross-direction of purely imaginary roots for the characteristic equation, which corresponds to the neural network model. Stability of all of equilibria is investigated. The work improves and extends the existing stability results in the literature. Finally, two examples are given to illustrate the effectiveness of the obtained results.
Wei, Heming; Krishnaswamy, Sridhar
2017-05-01
Fiber Bragg grating (FBG) dynamic strain sensors using both an erbium-based fiber ring laser configuration and a reflective semiconductor optical amplifier (RSOA)-based linear laser configuration are investigated theoretically and experimentally. Fiber laser models are first presented to analyze the output characteristics of both fiber laser configurations when the FBG sensor is subjected to dynamic strains at high frequencies. Due to differences in the transition times of erbium and the semiconductor (InP/InGaAsP), erbium-doped fiber amplifier (EDFA)- and RSOA-based fiber lasers exhibit different responses and regimes of stability when the FBG is subjected to dynamic strains. The responses of both systems are experimentally verified using an adaptive photorefractive two-wave mixing (TWM) spectral demodulation technique. The experimental results show that the RSOA-FBG fiber linear cavity laser is stable and can stably respond to dynamic strains at high frequencies. An example application using a multiplexed TWM interferometer to demodulate multiple FBG sensors is also discussed.
Temporally Dynamic, Spatially Static, Cobble Bedforms In Reversing Subtidal Currents
Abdulkade, Akirat; Carling, Paul; Zong, Quanli; Leyland, Julian; Thompson, Charlie
2016-04-01
Cobble bedforms, transverse to the reversing tidal currents, are exposed at extreme low-water Spring tides on an inter-tidal bedrock shelf in the macro-tidal Severn Estuary, UK. Near-bed flow velocities during Spring tides can exceed 1.5m/s, with water depths varying from zero to in excess of 10m. During neap tides the bedforms are not exposed, and sediment is expected to be of limited mobility. When exposed, the bedform geometry tends to be asymmetric; orientated down estuary with the ebb current. During Spring tides, vigorous bedload transport of gravel (including large cobbles) occurs during both flood and ebb over the crests and yet, despite this temporal dynamism, the bedforms remain spatially static over long time periods or show weak down-estuary migration. Stasis implies that the tidal bedload transport vectors are essentially in balance. Near-bed shear stress and bed roughness values vary systematically with the Spring-tide current speeds and the predicted grain-size of the bed load using the Shields criterion is in accord with observed coarser grain-sizes in transport. These hydrodynamic data, delimited by estimates of the threshold of motion, and integrated over either flood or ebb tides are being used to explain the apparent stability of the bedforms. The bulk hydraulic data are supplemented by particle tracer studies and laser-scanning of bed configurations between tides. The high-energy environment results in two forms of armouring. Pronounced steep imbrication of platy-cobbles visible on the exposed up-estuary side of dunes is probably disrupted during flood tides leading to rapid reworking of the toe deposits facing up-estuary. In contrast, some crest and leeside locations have been stable for prolonged periods such that closely-fitted fabrics result; these portions of the bedforms are static and effectively are 'armour-plated'. Ebb-tide deposits of finer, ephemeral sandy-units occur on the down estuary side of the bedforms. Sandy-units (although
The Nonlinear Dynamics of Time Dependent Subcritical Baroclinic Currents
Pedlosky, J.; Flierl, G. R.
2006-12-01
The nonlinear dynamics of baroclinically unstable waves in a time dependent zonal shear flow is considered in the framework of the two-layer Phillips model on the beta plane. In most cases considered in this study the amplitude of the shear is well below the critical value of the steady shear version of the model. Nevertheless, the time dependent problem in which the shear oscillates periodically is unstable, and the unstable waves grow to substantial amplitudes, in some cases with strongly nonlinear and turbulent characteristics. For very small values of the shear amplitude in the presence of dissipation an analytical, asymptotic theory predicts a self-sustained wave whose amplitude undergoes a nonlinear oscillation whose period is amplitude dependent. There is a sensitive amplitude dependence of the wave on the frequency of the oscillating shear when the shear amplitude is small. This behavior is also found in a truncated model of the dynamics, and that model is used to examine larger shear amplitudes. When there is a mean value of the shear in addition to the oscillating component, but such that the total shear is still subcritical, the resulting nonlinear states exhibit a rectified horizontal buoyancy flux with a nonzero time average as a result of the instability of the oscillating shear. For higher, still subcritical, values of the shear we have detected a symmetry breaking in which a second cross-stream mode is generated through an instability of the unstable wave although this second mode would by itself be stable on the basic time dependent current. For shear values that are substantially subcritical but of order of the critical shear, calculations with a full quasi-geostrophic numerical model reveal a turbulent flow generated by the instability. If the beta effect is disregarded the inviscid, linear problem is formally stable. However, our calculations show that a small degree of nonlinearity is enough to destabilize the flow leading to large amplitude
Notes on the nonlinear beam dynamics with strong damping in the CLIC Damping Ring
Levichev, Eugene; Shatilov, Dmitry
2010-01-01
The beam is injected into the CLIC damping ring with the relatively large emittance and energy spread and then is damped to the extremely low phase volume. During the damping process the betatron frequency of each particle changes due to the space charge tune shift and nonlinear dependence of the betatron tune on the amplitude. This nonlinearity is produced by the strong chromatic sextupoles, wiggler nonlinear field components and, again, by the space charge force. During the damping, the particle cross resonances, which can trap some fraction of the beam, cause the loss of intensity, the beam blow up and degrade the beam quality. In this paper we study the evolution of the beam distribution in time during the damping for the original lattice of the CLIC DR (May 2005). Geneva, Switzerland June 2010 CLIC – Note – 850
Rampino, Sergio
2016-01-01
Thermal rate coefficients for the astrochemical reaction C + CH$^+$ $\\to$ C$_2^+$ + H were computed in the temperature range 20-300 K by using novel rate theory based on ring polymer molecular dynamics (RPMD) on a recently published bond-order based potential energy surface and compared with previous Langevin capture model (LCM) and quasi-classical trajectory (QCT) calculations. Results show that there is a significant discrepancy between the RPMD rate coefficients and the previous theoretical results which can lead to overestimation of the rate coefficients for the title reaction by several orders of magnitude at very low temperatures. We argue that this can be attributed to a very challenging energy profile along the reaction coordinate for the title reaction, not taken into account in extenso by either the LCM or QCT approximation. In the absence of any rigorous quantum mechanical or experimental results, the computed RPMD rate coefficients represent state-of-the-art estimates to be included in astrochemic...
M. Giovannozzi
2012-02-01
Full Text Available A scaling law for the time dependence of the dynamic aperture, i.e., the region of phase space where stable motion occurs, has been proposed in previous papers [M. Giovannozzi, W. Scandale, E. Todescoand , Part. Accel. 56, 195 (1996PLACBD0031-2460; M. Giovannozzi, W. Scandale, and E. Todesco, in Proceedings of the 1997 Particle Accelerator Conference, edited by M. Comyn, M. K. Craddock, M. Reiser, and J. Thomson (IEEE Service Center, Piscataway, NJ, 1997, p. 1445; M. Giovannozzi, W. Scandale, and E. Todesco, Phys. Rev. E 57, 3432 (1998PLEEE81063-651X10.1103/PhysRevE.57.3432]. This law, based on the analysis of numerical simulations data, is not entirely phenomenological, but motivated by some fundamental theorems of the theory of dynamical systems and indicates that the dynamic aperture has a logarithmic dependence on time. This result is used in turn as a basis for deriving a scaling law for the intensity evolution in hadron storage rings. This relationship is presented and discussed in detail in this paper. Furthermore, experimental data were compared to the predictions of this law and showed a remarkable agreement.
HE Guang-Ping; LI Hua-Zhong; MA Zhong-Shui
2001-01-01
We propose an effective description of the interaction between the nearest-neighboring particles in a continuum theory. The contributions of the electron-electron interaction to the persistent current in 1D strongly correlating mesoscopic rings with or without impurities are analyzed. It is shown that the nearest-neighborhood int eraction gives significant contributions to the current and correlation functions. The enhance of the theoretical value of current magnitude is observed at finite temperature in the presence of the impurity scattering. The statistical property of the persistent current over random impurity distribution is also discussed. It is found that the exponential law of the persistent current for a non-interacting system will remain in an interacting one, as long as the interactions between nonnearest-neighborhoods are excluded.
Ruetzel, Stefan; Diekmann, Meike; Nuernberger, Patrick; Walter, Christof; Engels, Bernd; Brixner, Tobias
2014-06-01
Upon ultraviolet excitation, photochromic spiropyran compounds can be converted by a ring-opening reaction into merocyanine molecules, which in turn can form several isomers differing by cis and trans configurations in the methine bridge. Whereas the spiropyran-merocyanine conversion reaction of the nitro-substituted indolinobenzopyran 6-nitro-1',3',3'-trimethylspiro[2H-1-benzopyran-2,2'-indoline] (6-nitro BIPS) has been studied extensively in theory and experiments, little is known about photoisomerization among the merocyanine isomers. In this article, we employ femtosecond transient absorption spectroscopy with variable excitation wavelengths to investigate the excited-state dynamics of the merocyanine in acetonitrile at room temperature, where exclusively the trans-trans-cis (TTC) and trans-trans-trans (TTT) isomers contribute. No photochemical ring-closure pathways exist for the two isomers. Instead, we found that (18±4)% of excited TTC isomers undergo an ultrafast excited-state cis→trans photoisomerization to TTT within 200 fs, while the excited-state lifetime of TTC molecules that do not isomerize is 35 ps. No photoisomerization was detected for the TTT isomer, which relaxes to the ground state with a lifetime of roughly 160 ps. Moreover, signal oscillations at 170 cm-1 and 360 cm-1 were observed, which can be ascribed to excited-state wave-packet dynamics occurring in the course of the TTC→TTT isomerization. The results of high-level time-dependent density functional theory in conjunction with polarizable continuum models are presented in the subsequent article [C. Walter, S. Ruetzel, M. Diekmann, P. Nuernberger, T. Brixner, and B. Engels, J. Chem. Phys. 140, 224311 (2014)].
Saha, Madhumita; Maiti, Santanu K.
2016-10-01
The interplay between Hubbard interaction, long-range hopping and disorder on persistent current in a mesoscopic one-dimensional conducting ring threaded by a magnetic flux ϕ is analyzed in detail. Two different methods, exact numerical diagonalization and Hartree-Fock mean field theory, are used to obtain numerical results from the many-body Hamiltonian. The current in a disordered ring gets enhanced as a result of electronic correlation and it becomes more significant when contributions from higher order hoppings, even if they are too small compared to nearest-neighbor hopping, are taken into account. Certainly this can be an interesting observation in the era of long-standing controversy between theoretical and experimental results of persistent current amplitudes. Along with these we also find half-flux quantum periodic current for some typical electron fillings and kink-like structures at different magnetic fluxes apart from ϕ = 0 and ±ϕ0 / 2. The scaling behavior of current is also discussed for the sake of completeness of our present analysis.
Persistent currents in mesoscopic graphene rings with armchair edges%扶手椅型石墨烯介观环中的持续电流∗
代楠; 邓文基
2015-01-01
Based on the tight-binding model, the energy spectrum and persistent currents of mesoscopic graphene rings with armchair edges are studied analytically and numerically. Characters of the persistent currents changing with Aharonov-Bohm (A-B) magnetic flux in rings in different geometry are investigated in datail. The periodicity and special symmetry of energy spectrum and persistent currents changing with the magnetic flux are revealed. It is demonstrated that the persistent currents are determined by the geometric structures of the rings;the quantum states with small eigen-energies may carry much larger currents than those quantum states with eigen-energies far away from zero.%在紧束缚近似下，解析求解了扶手椅型边界石墨烯介观环的能量本征值问题，计算和讨论了不同大小尺寸的介观环中持续电流随Aharonov-Bohm (A-B)磁通的变化，并证明了能级和持续电流关于磁通变化的周期性和特殊对称性。研究表明，持续电流显著地依赖于介观环的几何结构；零能量附近的能级可以承载较大的持续电流，而远离零能量的其他能级对持续电流的贡献很小。
MOLECULAR-DYNAMICS SIMULATION ON AN I860 BASED RING ARCHITECTURE
BEKKER, H; DIJKSTRA, EJ; BERENDSEN, HJC
1993-01-01
Molecular Dynamics (M.D.) simulation is a widely used computational technique to study the properties of many-body (atom) systems. Because the number or particles in these simulations is large, and many time steps are required to cover the minimal time span on which biomolecular processes take place
Implications and applications of current-induced dynamics in molecular junctions.
Jorn, Ryan; Seideman, Tamar
2010-09-21
Instances of strongly nonadiabatic electronic-vibrational energy transfer have been studied since the early days of quantum mechanics and remain a topic of fundamental interest. Often such transfers are associated with electronic resonances, temporary states where transient localization of charge on the molecule provides a mechanism for channeling electronic energy into vibrational excitation. Extensively studied in the gas phase, electron resonance scattering also occurs with surface adsorbed molecules, where it manifests itself in broadened cross sections and desorption of adsorbates from metal surfaces. In this Account, we focus on a related topic: the implications of nonadiabatic, resonance-mediated scattering to the exciting field of molecular electronics. In this context, researchers can induce directed nuclear dynamics and control these processes in single molecules in contact with metallic and semiconducting electrodes. We discuss a variety of consequences and applications of current-driven nuclear excitation in molecular devices, ranging from the design of new forms of molecular machines to surface chemistry at the single-molecule level and atom-resolved lithography. We highlight two specific examples of molecular nanomachines. In the first, a Au-C(60)-Au transistor, the current induces the oscillatory motion of the center-of-mass coordinate of the C(60). The second, a zwitterion-based rattle, demonstrates excitation of intramolecular motion as the positively charged moiety is threaded back and forth through the negatively charged carbon ring. Finally, we discuss the current-induced desorption of organic molecules from Si(100) both to suggest the potential for controlled surface nanochemistry and to develop guidelines for the design of stable molecular junctions. Modeling the exchange of energy between tunneling electrons and the vibrational degrees of freedom of a target molecule subject to bias voltage, open boundary conditions in the electronic subspace
George D. Papadopoulos
2016-08-01
Full Text Available We have performed molecular dynamics (MD simulations of melt systems consisting of a small number of long ring poly(ethylene oxide (PEO probes immersed in a host matrix of linear PEO chains and have studied their microscopic dynamics and topology as a function of the molecular length of the host linear chains. Consistent with a recent neutron spin echo spectroscopy study (Goossen et al., Phys. Rev. Lett. 2015, 115, 148302, we have observed that the segmental dynamics of the probe ring molecules is controlled by the length of the host linear chains. In matrices of short, unentangled linear chains, the ring probes exhibit a Rouse-like dynamics, and the spectra of their dynamic structure factor resemble those in their own melt. In striking contrast, in matrices of long, entangled linear chains, their dynamics is drastically altered. The corresponding dynamic structure factor spectra exhibit a steep initial decay up to times on the order of the entanglement time τe of linear PEO at the same temperature but then they become practically time-independent approaching plateau values. The plateau values are different for different wavevectors; they also depend on the length of the host linear chains. Our results are supported by a geometric analysis of topological interactions, which reveals significant threading of all ring molecules by the linear chains. In most cases, each ring is simultaneously threaded by several linear chains. As a result, its dynamics at times longer than a few τe should be completely dictated by the release of the topological restrictions imposed by these threadings (interpenetrations. Our topological analysis did not indicate any effect of the few ring probes on the statistical properties of the network of primitive paths of the host linear chains.
Craig, Ian R; Manolopoulos, David E
2004-08-22
We propose an approximate method for calculating Kubo-transformed real-time correlation functions involving position-dependent operators, based on path integral (Parrinello-Rahman) molecular dynamics. The method gives the exact quantum mechanical correlation function at time zero, exactly satisfies the quantum mechanical detailed balance condition, and for correlation functions of the form C(Ax)(t) and C(xB)(t) it gives the exact result for a harmonic potential. It also works reasonably well at short times for more general potentials and correlation functions, as we illustrate with some example calculations. The method provides a consistent improvement over purely classical molecular dynamics that is most apparent in the low-temperature regime.
A mollified numerical integrator of ring polymer Hamiltonian dynamics with constraints
Xiong, Yunfeng
2014-01-01
In this paper, a symplectic and time-reversible integrator is proposed of simulating the Hamiltonian dynamics with constraints in path integral molecular dynamics. The constraints are tackled by Matrix Inverted Linearized Constraint algorithm (MILC), while a slight modification is requested under normal mode representation, and the slow potential is mollified by Equilibrium method (Equilibrium MOLLY) to ameliorate the numerical resonance. It is demonstrated that the slow force impulse can be evaluated only at the centroid of beads, instead of being evaluated at the positions of each bead independently. Therefore, it not only allows longer time step but also reduces the complexity of computation. The numerical experiment is performed using SPC/E model in 298K with eight beads. Further discussion will involve the application of Equilibrium MOLLY in flexible bond model.
Simulation of crystalline beams in storage rings using molecular dynamics technique
Meshkov, I.; Katayama, T.; Sidorin, A.; Smirnov, A.; Syresin, E.; Trubnikov, G.; Tsutsui, H.
2006-03-01
Achieving very low temperatures in the beam rest frame can present new possibilities in accelerator physics. Increasing luminosity in the collider and in experiments with targets is a very important asset for investigating rare radioactive isotopes. The ordered state of circulating ion beams was observed at several storage rings: NAP-M [Budker, et al., in: Proceedings of the 4th All-Union Conference on Charged-Particle Accelerators [in Russian], vol. 2, Nauka, Moscow, 1975, p. 309; Budker et al., Part. Accel. 7 (1976) 197; Budker et al., At. Energ. 40 (1976) 49. E. Dementev, N. Dykansky, A. Medvedko et al., Prep. CERN/PS/AA 79-41, Geneva, 1979] (Novosibirsk), ESR [M. Steck et al., Phys. Rev. Lett. 77 (1996) 3803] and SIS [Hasse and Steck, Ordered ion beams, in: Proceeding of EPAC '2000] (Darmstadt), CRYRING [Danared et al., Observation of ordered ion beams in CRYRING, in: Proceeding of PAC '2001] (Stockholm) and PALLAS [Schramm et al., in: J.L. Duggan (Eds.), Proceedings of the Conference on Appl. of Acc. in Research and Industry AIP Conference Proceedings, p. 576 (to be published)] (Munich). In this report, the simulation of 1D crystalline beams with BETACOOL code is presented. The sudden reduction of momentum spread in the ESR experiment is described with this code. Simulation shows good agreement with experimental results and also with the intrabeam scattering (IBS) theory [Martini, Intrabeam scattering in the ACOOL-AA machines, CERN PS/84-9 AA, Geneva, 1984]. The code was used to calculate characteristics of the ordered state of ion beams for the TARN-II [Katayama, TARN II project, in: Proceedings of the IUCF workshop on nuclear physics with stored cooled beams, Spencer, IN, USA, 1984].
... subclavian and left ligamentum ateriosus; Congenital heart defect - vascular ring; Birth defect heart - vascular ring ... Vascular ring is rare. It accounts for less than 1% of all congenital heart problems. The condition ...
Maxwell, Justin T.; Harley, Grant L.
2016-10-01
Understanding the historic variability in the hydroclimate provides important information on possible extreme dry or wet periods that in turn inform water management plans. Tree rings have long provided historical context of hydroclimate variability of the U.S. However, the tree-ring network used to create these countrywide gridded reconstructions is sparse in certain locations, such as the Midwest. Here, we increase (n = 20) the spatial resolution of the tree-ring network in southern Indiana and compare a summer (June-August) Palmer Drought Severity Index (PDSI) reconstruction to existing gridded reconstructions of PDSI for this region. We find both droughts and pluvials that were previously unknown that rival the most intense PDSI values during the instrumental period. Additionally, historical drought occurred in Indiana that eclipsed instrumental conditions with regard to severity and duration. During the period 1962-2004 CE, we find that teleconnections of drought conditions through the Atlantic Meridional Overturning Circulation have a strong influence (r = -0.60, p tree growth in this region for the late spring-early summer season. These findings highlight the importance of continuing to increase the spatial resolution of the tree-ring network used to infer past climate dynamics to capture the sub-regional spatial variability. Increasing the spatial resolution of the tree-ring network for a given region can better identify sub-regional variability, improve the accuracy of regional tree-ring PDSI reconstructions, and provide better information for climatic teleconnections.
Welsch, Dominic Markus
2010-03-10
The High-Energy Storage Ring (HESR) is part of the upcoming Facility for Antiproton and Ion Research (FAIR) which is planned as a major extension to the present facility of the Helmholtzzentrum fuer Schwerionenforschung (GSI) in Darmstadt. The HESR will provide antiprotons in the momentum range from 1.5 to 15 GeV/c for the internal target experiment PANDA. The demanding requirements of PANDA in terms of beam quality and luminosity together with a limited production rate of antiprotons call for a long beam life time and a minimum of beam loss. Therefore, an effective closed orbit correction and a sufficiently large dynamic aperture of the HESR are crucial. With this thesis I present my work on both of these topics. The expected misalignments of beam guiding magnets have been estimated and used to simulate the closed orbit in the HESR. A closed orbit correction scheme has been developed for different ion optical settings of the HESR and numerical simulations have been performed to validate the scheme. The proposed closed orbit correction method which uses the orbit response matrix has been benchmarked at the Cooler Synchrotron COSY of the Forschungszentrum Juelich. A chromaticity correction scheme for the HESR consisting of sextupole magnets has been developed to reduce tune spread and thus to minimize the emittance growth caused by betatron resonances. The chromaticity correction scheme has been optimized through dynamic aperture calculations. The estimated field errors of the HESR dipole and quadrupole magnets have been included in the non-linear beam dynamics studies. Investigations concerning their optimization have been carried out. The ion optical settings of the HESR have been improved using dynamic aperture calculations and the technique of frequency map analysis. The related diffusion coefficient was also used to predict long-term stability based on short-term particle tracking. With a reasonable reduction of the quadrupole magnets field errors and a
Borderies, Nicole
1989-01-01
Theoretical models of planetary-ring dynamics are examined in a brief analytical review. The mathematical description of streamlines and streamline interactions is outlined; the redistribution of angular momentum due to collisions between particles is explained; and problems in the modeling of broad, narrow, and arc rings are discussed.
Verbiscer, Anne J; Skrutskie, Michael F; Hamilton, Douglas P
2009-10-22
Most planetary rings in the Solar System lie within a few radii of their host body, because at these distances gravitational accelerations inhibit satellite formation. The best known exceptions are Jupiter's gossamer rings and Saturn's E ring, broad sheets of dust that extend outward until they fade from view at five to ten planetary radii. Source satellites continuously supply the dust, which is subsequently lost in collisions or by radial transport. Here we report that Saturn has an enormous ring associated with its outer moon Phoebe, extending from at least 128R(S) to 207R(S) (Saturn's radius R(S) is 60,330 km). The ring's vertical thickness of 40R(S) matches the range of vertical motion of Phoebe along its orbit. Dynamical considerations argue that these ring particles span the Saturnian system from the main rings to the edges of interplanetary space. The ring's normal optical depth of approximately 2 x 10(-8) is comparable to that of Jupiter's faintest gossamer ring, although its particle number density is several hundred times smaller. Repeated impacts on Phoebe, from both interplanetary and circumplanetary particle populations, probably keep the ring populated with material. Ring particles smaller than centimetres in size slowly migrate inward and many of them ultimately strike the dark leading face of Iapetus.
Dynamic phase-control of a rising sun magnetron using modulated and continuous current
Fernandez-Gutierrez, Sulmer, E-mail: sulmer.a.fernandez.gutierrez@intel.com [Intel Corporation, 2111 NE 25th Ave, Hillsboro, Oregon 97214 (United States); Browning, Jim [Department of Electrical and Computer Engineering, Boise State University, Boise, Idaho 83725 (United States); Lin, Ming-Chieh [Department of Electrical and Biomedical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Smithe, David N. [Tech-X Corporation, 5621 Arapahoe Ave, Boulder, Colorado 80303 (United States); Watrous, Jack [Confluent Sciences, LLC, Albuquerque, New Mexico 87111 (United States)
2016-01-28
Phase-control of a magnetron is studied via simulation using a combination of a continuous current source and a modulated current source. The addressable, modulated current source is turned ON and OFF at the magnetron operating frequency in order to control the electron injection and the spoke phase. Prior simulation work using a 2D model of a Rising Sun magnetron showed that the use of 100% modulated current controlled the magnetron phase and allowed for dynamic phase control. In this work, the minimum fraction of modulated current source needed to achieve a phase control is studied. The current fractions (modulated versus continuous) were varied from 10% modulated current to 100% modulated current to study the effects on phase control. Dynamic phase-control, stability, and start up time of the device were studied for all these cases showing that with 10% modulated current and 90% continuous current, a phase shift of 180° can be achieved demonstrating dynamic phase control.
Experimental study of the dynamics of a thin current sheet
Gekelman, W.; DeHaas, T.; Van Compernolle, B.; Daughton, W.; Pribyl, P.; Vincena, S.; Hong, D.
2016-05-01
Many plasmas in natural settings or in laboratory experiments carry currents. In magnetized plasmas the currents can be narrow field-aligned filaments as small as the electron inertial length ≤ft(\\tfrac{c}{{ω }pe}\\right) in the transverse dimension or fill the entire plasma column. Currents can take the form of sheets, again with the transverse dimension the narrow one. Are laminar sheets of electric current in a magnetized plasma stable? This became an important issue in the 1960s when current-carrying plasmas became key in the quest for thermonuclear fusion. The subject is still under study today. The conditions necessary for the onset for tearing are known, the key issue is that of the final state. Is there a final state? One possibility is a collection of stable tubes of current. On the other hand, is the interaction between the current filaments which are the byproduct endless, or does it go on to become chaotic? The subject of three-dimensional current systems is intriguing, rich in a variety of phenomena on multiple scale sizes and frequencies, and relevant to fusion studies, solar physics, space plasmas and astrophysical phenomena. In this study a long (δz = 11 m) and narrow (δx = 1 cm, δy = 20 cm) current sheet is generated in a background magnetoplasma capable of supporting Alfvén waves. The current is observed to rapidly tear into a series of magnetic islands when viewed in a cross-sectional plane, but they are in essence three-dimensional flux ropes. At the onset of the current, magnetic field line reconnection is observed between the flux ropes. The sheet on the whole is kink-unstable, and after kinking exhibits large-scale, low-frequency (f ≪ f ci ) rotation about the background field with an amplitude that grows with distance from the source of the current. Three-dimensional data of the magnetic and electric fields is acquired throughout the duration of the experiment and the parallel resistivity is derived from it. The parallel
Wei, Xu; Sen-Lin, Huang; Wu, W Z; Hao, H; Wang, P; Wu, Y K
2013-01-01
The Duke storage ring is a dedicated driver for the storage ring based oscillator free-electron lasers (FELs), and the High Intensity Gamma-ray Source (HIGS). It is operated with a beam current ranging from about 1 mA to 100 mA per bunch for various operations and accelerator physics studies. High performance operations of the FEL and gamma-ray source require a stable electron beam orbit, which has been realized by the global orbit feedback system. As a critical part of the orbit feedback system, the electron beam position monitors (BPMs) are required to be able to precisely measure the electron beam orbit in a wide range of the single-bunch current. However, the high peak voltage of the BPM pickups associated with high single-bunch current degrades the performance of the BPM electronics, and can potentially damage the BPM electronics. A signal conditioning method using low pass filters is developed to reduce the peak voltage to protect the BPM electronics, and to make the BPMs capable of working with a wide ...
Brandt, P. C.; Mitchell, D. G.; Ohtani, S.
2006-05-01
The 20 November, 2003 and the 24 August, 2005 geomagnetic storms were both driven by an interplantery magnetic field (IMF) down to approximately -60 nT. Although, the minimum SYM-H (or Dst)depression on ground reached about -500 nT for the 20 November, 2003 storm, but not even -200 nT for the 24 August, 2005 storm. There can be several reasons for this outstanding difference: the meaning of the SYMH index and the relative tail-current contribution; the duration of the southward IMF was relatively short (~1 h) for the 24 August, 2005 storm. Did this imply less time for substorms to inject fresh plasma (especially O+) into the ring current?; Cold and dense plasmasheet. We discuss the composition and intensity of the global ring current during these two storms, by using energetic neutral atom (ENA) data from the Medium- and High Energy Neutral Atom (MENA and HENA) imagers onboard the IMAGE satellite. While at first glance the strength of the ENA images in the 10-200 keV hydrogen and oxygen are comparable for the two storms, we investigate indications that the <10 keV hydrogen data is slightly enhanced for the 20 November, 2003 storm. We will re analyze the HENA images (H and O) in more detail to retrieve the parent ion intensity and investigate the effect of substorms.
GONG Yue-Feng; LING Yun; SONG Zhi-Tang; FENG Song-Lin
2008-01-01
A three-dimensional finite element models for phase change random access memory (PCRAM) is established to simulate thermal and electrical behaviours during RESET operation. The RESET behaviours of the conventional structure (CS) and the ring-type contact in bottom electrode (RIB) are compared with each other. The simulation results indicate that the RIB cell has advantages of high heat efficiency for melting phase change material in cell,reduction of contact area and lower RESET current with maintaining good resistance contrast. The RESET current decreases from 1.26mA to 1.2mA and the heat consumption in GST material during programming increases from 12% to 37% in RIB structure. Thus the RIB structure PCRAM cell is suitable for future device with high heat efficiency and smaller RESET current.
The Dynamical Generation of Current Sheets in Astrophysical Plasma Turbulence
Howes, Gregory G
2016-01-01
Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here we present evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfven waves, or strong Alfven wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear...
Fluid dynamics in airway bifurcations: II. Secondary currents.
Martonen, T B; Guan, X; Schreck, R M
2001-04-01
As the second component of a systematic investigation on flows in bifurcations reported in this journal, this work focused on secondary currents. The first article addressed primary flows and the third discusses localized conditions (both in this issue). Secondary flow patterns were studied in two lung bifurcation models (Schreck, 1972) using FIDAP with the Cray T90 supercomputer. The currents were examined at different prescribed distances distal to the carina. Effects of inlet conditions, Reynolds numbers, and diameter ratios and orientations of airways were addressed. The secondary currents caused by the presence of the carina and inclination of the daughter tubes exhibited symmetric, multivortex patterns. The intensities of the secondary currents became stronger for larger Reynolds numbers and larger angles of bifurcation.
X-ray imaging of spin currents and magnetisation dynamics at the nanoscale
Bonetti, Stefano
2017-04-01
Understanding how spins move in time and space is the aim of both fundamental and applied research in modern magnetism. Over the past three decades, research in this field has led to technological advances that have had a major impact on our society, while improving the understanding of the fundamentals of spin physics. However, important questions still remain unanswered, because it is experimentally challenging to directly observe spins and their motion with a combined high spatial and temporal resolution. In this article, we present an overview of the recent advances in x-ray microscopy that allow researchers to directly watch spins move in time and space at the microscopically relevant scales. We discuss scanning x-ray transmission microscopy (STXM) at resonant soft x-ray edges, which is available at most modern synchrotron light sources. This technique measures magnetic contrast through the x-ray magnetic circular dichroism (XMCD) effect at the resonant absorption edges, while focusing the x-ray radiation at the nanometre scale, and using the intrinsic pulsed structure of synchrotron-generated x-rays to create time-resolved images of magnetism at the nanoscale. In particular, we discuss how the presence of spin currents can be detected by imaging spin accumulation, and how the magnetisation dynamics in thin ferromagnetic films can be directly imaged. We discuss how a direct look at the phenomena allows for a deeper understanding of the the physics at play, that is not accessible to other, more indirect techniques. Finally, we present an overview of the exciting opportunities that lie ahead to further understand the fundamentals of novel spin physics, opportunities offered by the appearance of diffraction limited storage rings and free electron lasers.
John, Christopher; Spura, Thomas; Habershon, Scott; Kühne, Thomas D.
2016-04-01
We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems.
John, Chris; Habershon, Scott; Kühne, Thomas D
2015-01-01
We present a simple and accurate computational method, which facilitates ab-initio path-integral molecular dynamics simulations, where the quantum mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions. This development permits to routinely include nuclear quantum effects in ab-initio molecular dynamics simulations.
Intrinsic structure in Saturn's rings
Albers, N.
2015-10-01
Saturn's rings are the most prominent in our Solar system and one example of granular matter in space. Dominated by tides and inelastic collisions the system is highly flattened being almost 300000km wide while only tens of meters thick. Individual particles are composed of primarily water ice and range from microns to few tens of meters in size. Apparent patterns comprise ringlets, gaps, kinematic wakes, propellers, bending waves, and the winding spiral arms of density waves. These large-scale structures are perturbations foremost created by external as well as embedded moons. Observations made by the Cassini spacecraft currently in orbit around Saturn show these structures in unprecedented detail. But high-resolution measurements reveal the presence of small-scale structures throughout the system. These include self-gravity wakes (50-100m), overstable waves (100-300m), subkm structure at the A and B ring edges, "straw" and "ropy" structures (1-3km), and the C ring "ghosts". Most of these had not been anticipated and are found in perturbed regions, driven by resonances with external moons, where the system undergoes periodic phases of compression and relaxation that correlate with the presence of structure. High velocity dispersion and the presence of large clumps imply structure formation on time scales as short as one orbit (about 10 hours). The presence of these intrinsic structures is seemingly the response to varying local conditions such as internal density, optical depth, underlying particle size distribution, granular temperature, and distance from the central planet. Their abundance provides evidence for an active and dynamic ring system where aggregation and fragmentation are ongoing on orbital timescales. Thus a kinetic description of the rings may be more appropriate than the fluid one. I will present Cassini Ultraviolet Spectrometer (UVIS) High Speed Photometer (HSP) occultations, Voyager 1 and 2 Imaging Science Subsystem (ISS), and high
Dynamic of Current Sheets and Their Associated Particle Energization
Li, Hui [Los Alamos National Laboratory; Guo, Fan [Los Alamos National Laboratory; Makwan, Kirit [Univ. Chicago; Li, Xiaocan [Los Alamos National Laboratory; Zhandrin, Vladimir [Univ. Washington; Daughton, William Scott [Los Alamos National Laboratory
2015-08-19
Magnetic reconnection in current sheets has relevance to Earth's magnetosphere, solar flares, high-energy astrophysics (pulsar wind nebula (e.g. Crab Nebula), gamma-ray bursts, black hole jets), and laboratory plasma/fusion. Data are shown for several cases with varying values of configuration energy E_{c} and β. Several conclusions were drawn: Depending on the “configuration energy”, the formation, shape, and lifetime of current sheets can vary. Plasma condition (configuration, β, driving, etc.) strongly affect the efficiency of particle acceleration. For low β and general “configuration energy”, particle heating is expected. For low β, large and long-lived current sheets, it is possible to produce highly non-thermal particles via collisionless plasmoid reconnection.
Gardner, A. B.; Howard, S.; Waddington, T. C.; Richardson, R. M.; Tomkinson, J.
1981-05-01
Incoherent quasi-elastic neutron scattering has been used to study the reorientational motions of the cyclopentadienyl rings in ferrocene, nickelocene and ruthenocene. The results for ferrocene show that the activation energy for ring rotation drops above the 164 K phase transition to 4.4 ± 0.5 kJ mol-1 (which is approximately half its low temperature value) but the rings still appear to jump between only five orientations on the observable time scale. At room temperature, the rings in nickelocene appear to behave the same as in ferrocene but in ruthenocene they reorientate much less frequently and resemble those in ferrocene below 164 K.
Tri-State Current Source Inverter With Improved Dynamic Performance
Blaabjerg, Frede; Loh, Poh Chiang; Wong, Chow Pang
2008-01-01
Traditional dc-ac current source inverter (CSI) has a right-half-plane (RHP) zero in its control-to-output transfer function. This RHP zero causes the inverter output to fall before rising when a step increase in command reference is required (commonly known as non-minimum-phase effect). To achieve...... sequence, the inductive boosting and discharging intervals can be decoupled, allowing the RHP zero to be eliminated with only minor circuit modifications (high level control schemes like predictive and multiloop voltage/current control remain unchanged). The designed inverter can be controlled using...
WANG Longkai; BIN Guangfu; LI Xuejun; LIU Dingqu
2016-01-01
For the high-speed gasoline engine turbocharger rotor, due to the heterogeneity of multiple parts material, manufacturing and assembly errors, running wear in impeller and uneven carbon of turbine, the random unbalance usually can be developed which will induce excessive rotor vibration, and even lead to nonlinear vibration accidents. However, the investigation of unbalance location on the nonlinear high-speed turbocharger rotordynamic characteristics is less. In order to discuss the rotor unbalance location effects of turbocharger with nonlinear floating ring bearings(FRBs), the realistic turbocharger of gasoline engine is taken as a research object. The rotordynamic equations of motion under the condition of unbalance are derived by applied unbalance force and nonlinear oil film force of FRBs. The FE model of turbocharger rotor-bearing system is modeled which includes the unbalance excitation and nonlinear FRBs. Under the conditions of four different applied locations of unbalance, the nonlinear transient analyses are performed based on the rotor FEM. The differences of dynamic behavior are obvious to the turbocharger rotor systems for four conditions, and the bifurcation phenomena are different. From the results of waterfall and transient response analysis, the speed for the appearance of fractional frequency is not identical and the amplitude magnitude is different from the different unbalance locations, and the non-synchronous vibration does not occur in the turbocharger and the amplitude is relative stable and minimum under the condition 4. The turbocharger vibration and non-synchronous components could be reduced or suppressed by controlling the applied location of unbalance, which is helpful for the dynamic design, fault diagnosis and vibration control of the high-speed gasoline engine turbochargers.
Nakahara, Y.; Okamura, T.; Takahashi, M. (Fuji Electric Co. Ltd., Tokyo (Japan))
1991-06-10
Features, structures and several products of ring blowers were outlined. The ring blower is featured by its medium characteristics because it is higher in air pressure than a turboblower and larger in airflow than a vane blower, and it is applicable flexibly to not only air blasting but various industrial fields such as suction transfer. As several products corresponding to various fields, the followings were outlined: the low noise type with optimum shapes of inlet, outlet and casing cover for reducing noises by 10 dB or more, the heat resistant, water-tight and explosion-proof types suitable for severe environmental conditions, the multi-voltage type for every country served at different voltages, the high air pressure type with two pressure rise stages, and the large airflow type with a wide impeller. In addition, as special use products, the glass fiber reinforced unsatulated polyester ring blower for respiration apparatus, and the variable speed blushless DC motor-driven one for medical beds were outlined. 2 refs., 9 figs., 1 tab.
Dynamic range of low-voltage cascode current mirrors
Bruun, Erik; Shah, Peter Jivan
1995-01-01
Low-voltage cascode current mirrors are reviewed with respect to the design limitations imposed if all transistors in the mirror are required to operate in the saturation region. It is found that both a lower limit and an upper limit exist for the cascode transistor bias voltage. Further, the use...
The Dynamics of Flat Surface Internal Geophysical Waves with Currents
Compelli, Alan; Ivanov, Rossen I.
2016-08-01
A two-dimensional water wave system is examined consisting of two discrete incompressible fluid domains separated by a free common interface. In a geophysical context this is a model of an internal wave, formed at a pycnocline or thermocline in the ocean. The system is considered as being bounded at the bottom and top by a flatbed and wave-free surface respectively. A current profile with depth-dependent currents in each domain is considered. The Hamiltonian of the system is determined and expressed in terms of canonical wave-related variables. Limiting behaviour is examined and compared to that of other known models. The linearised equations as well as long-wave approximations are presented.
The Dynamics of Flat Surface Internal Geophysical Waves with Currents
Compelli, Alan
2016-01-01
A two-dimensional water wave system is examined consisting of two discrete incompressible fluid domains separated by a free common interface. In a geophysical context this is a model of an internal wave, formed at a pycnocline or thermocline in the ocean. The system is considered as being bounded at the bottom and top by a flatbed and wave-free surface respectively. A current profile with depth-dependent currents in each domain is considered. The Hamiltonian of the system is determined and expressed in terms of canonical wave-related variables. Limiting behaviour is examined and compared to that of other known models. The linearised equations as well as long-wave approximations are presented.
Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. W.
2007-01-01
It is well-known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wavenormal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and[ particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002, 2006, 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. Thome and Home [2007] (hereafter referred to as TH2007) call the Khazanov et al. [2002, 2006] results into question in their Comment. The points in contention can be summarized as follows. TH2007 claim that: (1) "the important damping of waves by thermal heavy ions is completely ignored", and Landau damping during resonant interaction with thermal electrons is not included in our model; (2) EMIC wave damping due to RC O + is not included in our simulation; (3) non-linear processes limiting EMIC wave amplitude are not included in our model; (4) growth of the background fluctuations to a physically significantamplitude"must occur during a single transit of the unstable region" with subsequent damping below bi-ion latitudes,and consequently"the bounce averaged wave kinetic equation employed in the code contains a physically erroneous 'assumption". Our reply will address each of these points as well as other criticisms mentioned in the Comment. TH2007 are focused on two of our papers that are separated by four years. Significant progress in the self-consistent treatment of the RC-EMIC wave system has been achieved during those years. The paper by Khazanov et al. [2006] presents the latest version of our model, and in
TOPICAL REVIEW: Current-driven dynamics in molecular-scale devices
Seideman, Tamar
2003-04-01
We review recent theoretical work on current-triggered processes in molecular-scale devices - a field at the interface between solid state physics and chemical dynamics with potential applications in diverse areas, including artificial molecular machines, unimolecular transport, surface nanochemistry and nanolithography. The qualitative physics underlying current-triggered dynamics is first discussed and placed in context with several well-studied phenomena with which it shares aspects. A theory for modelling these dynamics is next formulated within a time-dependent scattering approach. Our end result provides useful insight into the system properties that determine the reaction outcome as well as a computationally convenient framework for numerical realization. The theory is applied to study single-molecule surface reactions induced by a scanning tunnelling microscope and current-triggered dynamics in single-molecule transistors. We close with a discussion of several potential applications of current-induced dynamics in molecular devices and several opportunities for future research.
Current expertise location by exploiting the dynamics of knowledge
Josef Nozicka
2012-10-01
Full Text Available Systems for expertise location are either very expensive in terms of the costs of maintenance or they tend to become obsolete or incomplete during the time. This article presents a new approach to knowledge mapping/expertise location allowing reducing the costs of knowledge mapping by maintaining the accuracy of the knowledge map. The efficiency of the knowledge map is achieved by introducing the knowledge estimation measures analysing the dynamics of knowledge of company employees and their textual results of work. Finding an expert with most up-to date knowledge is supported by focusing publishing history analysis. The efficiency of proposed measures within various timeframes of publishing history is evaluated by evaluation method introduced within the article. The evaluation took place in the environment of a middle-sized software company allowing seeing directly a practical usability of the expertise location technique. The results form various implications deployment of knowledge map within the company.
Parallel Computational Fluid Dynamics: Current Status and Future Requirements
Simon, Horst D.; VanDalsem, William R.; Dagum, Leonardo; Kutler, Paul (Technical Monitor)
1994-01-01
One or the key objectives of the Applied Research Branch in the Numerical Aerodynamic Simulation (NAS) Systems Division at NASA Allies Research Center is the accelerated introduction of highly parallel machines into a full operational environment. In this report we discuss the performance results obtained from the implementation of some computational fluid dynamics (CFD) applications on the Connection Machine CM-2 and the Intel iPSC/860. We summarize some of the experiences made so far with the parallel testbed machines at the NAS Applied Research Branch. Then we discuss the long term computational requirements for accomplishing some of the grand challenge problems in computational aerosciences. We argue that only massively parallel machines will be able to meet these grand challenge requirements, and we outline the computer science and algorithm research challenges ahead.
Hart, S C; Classen, A T
2003-03-01
Numerous researchers have used the isotopic signatures of C, H, and O in tree rings to provide a long-term record of changes in the physiological status, climate, or water-source use of trees. The frequently limiting element N is also found in tree rings, and variation in its isotopic signature may provide insight into long-term changes in soil N availability of a site. However, research has suggested that N is readily translocated among tree ring of different years; such infidelity between the isotopic compositions of the N taken up from the soil and the N contained in the ring of that growth year would obscure the long-term N isotopic record. We used a 15-year 15N-tracer study to assess the degree of N translocation among tree rings in ponderosa pine (Pinus ponderosa) trees growing in a young, mixed-conifer plantation. We also measured delta13C and delta15N values in unlabeled trees to assess the degree of their covariance in wood tissue, and to explore the potential for a biological linkage between them. We found that the maximum delta15N values in rings from the labeled trees occurred in the ring formed one-year after the 15N was applied to the roots. The delta15N value of rings from labeled trees declined exponentially and bidirectionally from this maximum peak, toward younger and older rings. The unlabeled trees showed considerable interannual variation in the delta15N values of their rings (up to 3 and 5 per thousand), but these values correlated poorly between trees over time and differed by as much as 6 per thousand. Removal of extractives from the wood reduced their delta15N value, but the change was fairly small and consistent among unlabeled trees. The delta13C and delta15N values of tree rings were correlated over time in only one of the unlabeled trees. Across all trees, both delta13C values of tree rings and annual stem wood production were well correlated with annual precipitation, suggesting that soil water balance is an important environmental
Uckan, N.A. (ed.)
1980-04-01
This workshop attempted to evaluate the status of the current experimental and theoretical understanding of hot electron ring properties. The dominant physical processes that influence ring formation, scaling, and their optimal behavior are also studied. Separate abstracts were prepared for each of the 27 included papers. (MOW)
Physics and Dynamics of Current Sheets in Pulsed Plasma Thrusters
2007-11-02
pulsed plasma thruster. A simple experiment would involve measuring the impulse bit of a coaxial gas-fed pulsed plasma thruster operated in both positive...Princeton, NJ, 2002. [2] J. Marshal. Performance of a hydromagnetic plasma gun . The Physics of Fluids, 3(1):134–135, January-February 1960. [3] R.G. Jahn...Jahn and K.E. Clark. A large dielecteic vacuum facility. AIAA Jour- nal, 1966. [16] L.C. Burkhardt and R.H. Lovberg. Current sheet in a coaxial plasma
Keika, K.; Seki, K.; Nose, M.; Machida, S.; Miyoshi, Y.; Lanzerotti, L. J.; Mitchell, D. G.; Gkioulidou, M.; Gerrard, A. J.; Manweiler, J. W.
2015-12-01
We investigate enhancements and losses of energetic (~50-~500 keV) protons and oxygen ions during two intense storms on January 7 and March 17 in 2015. We use proton and oxygen ion data from RBSPICE onboard Van Allen Probes. During the January 7 storm (Dstmin = -99 nT), Van Allen Probes explored the inner magnetosphere on the night side, with both spacecraft located around midnight at apogee. Their orbits were in opposite phase. RBSPICE data are available from both spacecraft during the rapid recovery of the storm. We analyze energy spectra of both species to identify whether the ring current is symmetric or not, and determine the dominant loss process. During the March 17 storm (Dstmin = -223 nT), Van Allen Probes traveled in the pre-midnight sector during the outbound paths and around midnight during the inbound path. The orbits of the two spacecraft were in opposite phase. The Dst index during the storm showed a two-step decrease with the first minimum at 9 UT and the second at 22 UT. Enhancements of ring current ions began at RBSPICE-B at ~7 UT, and RBSPICE-A entered the ring current region at ~9 UT. The RBSPICE data show penetration of energetic protons (μ~0.1 keV/nT) down to L~4 during the first storm development. Protons penetrated more deeply (as low as L~3) during the second enhancement. The protons, which we confirmed made a dominant contribution to energy density at L = 3-4, are more enhanced in flux around the storm maximum. The flux of 200-400 keV oxygen ions was enhanced and localized around midnight near the end of the first storm development. Oxygen ion enhancements during the second development were seen in a wide range of MLT (pre-midnight to midnight). We examine the evolution of ion energy spectra to identify whether each phase of the multi-step storm development was due to deep penetration of transport/injections, density enhancements, or/and non-adiabatic acceleration of protons and oxygen ions.
2014-01-01
Mechanical behavior of low strength materials and elements at high strain rates was studied using a drop tower at UCSD. A commercial drop tower was modified to conduct high strain-rate impact compression tests. Instrumentations including strain gauges, accelerometers and a high speed camera were used to establish equilibrium conditions and stress strain relation of samples with high accuracy. Dynamic response of strongly nonlinear, viscoelastic toroidal rubber elements (o-rings) is studied. N...
Frank, T D
2015-01-01
A potential dynamics approach is developed to determine the periodic standing and traveling wave patterns associated with self-propelling camphor objects floating on ring-shaped water channels. Exact solutions of the wave patterns are derived. The bifurcation diagram describing the transition between the immobile and self-propelling modes of camphor objects is derived semi-analytically. The bifurcation is of a pitchfork type which is consistent with earlier theoretical work in which natural boundary conditions have been considered.
Odd-parity currents induced by dynamic deformations in graphene-like systems
Zhang, Kai; Zhang, Erhu; Chen, Huawei; Zhang, Shengli
2016-11-01
Reduced (3 + 1)-dimensional Dirac systems with inter-pseudo-spin and inter-valley scattering are employed to investigate current responses to (chiral) gauge fields in graphene-like systems. From (chiral) current—(chiral) current correlation functions, we derive the current responses. Except for electric currents induced by external gauge fields, we find the inter-valley scattering can break the topological nature of odd-parity currents. Given the proper conditions, this property can help us realize valley-polarized electric currents. Through the dynamic deformations generating the chiral gauge fields, we find the vortex-like currents while their profiles can be tuned by superposition of some deformations. In particular, we find a more manageable approach to realize the topological electric current by choosing a linear dynamic deformation.
Akhmetov, D.G. [Lavrentiev Institute of Hydrodynamics, Novosibirsk (Russian Federation)
2009-07-01
This book presents a comprehensive coverage of the wide field of vortex rings. The book presents the results of systematic experimental investigations, theoretical foundation, as well as the practical applications of vortex rings, such as the extinction of fires at gushing gas and oil wells. All the basic properties of vortex rings as well as their hydrodynamic structures are presented. Special attention is paid to the formation and motion of turbulent vortex rings. (orig.)
Argon metastable dynamics and lifetimes in a direct current microdischarge
Stefanović, Ilija; Kuschel, Thomas; Schröter, Sandra; Böke, Marc
2014-09-01
In this paper we study the properties of a pulsed dc microdischarge with the continuous flow of argon. Argon metastable lifetimes are measured by tunable diode laser absorption spectroscopy (TDLAS) and are compared with calculated values which yield information about excitation and de-excitation processes. By increasing the gas flow-rate about 5 times from 10 to 50 sccm, the Arm lifetime increases from 1 to 5 μs due to the reduction of metastable quenching with gas impurities. Optical emission spectroscopy reveals nitrogen and water molecules as the main gas impurities. The estimated N2 density [N2] = 0.1% is too low to explain the measured metastable lifetimes. Water impurity was found to be the main de-excitation source of argon metastable atoms due to high quenching coefficients. The water impurity level of [H2O] = 0.15% to 1% is sufficient to bring calculated metastable lifetimes in line with experiments. The maximum value of water content in the discharge compared to the argon atoms is estimated to approximately 6%, due to the large surface to volume ratio of the microdischarge. The current pulse releases the water molecules from the electrode surface and they are either re-adsorbed in the time between 0.4 ms for [H2O] = 1% and 2.6 ms for [H2O] = 0.15% or pumped out of the discharge with the speed equal to the gas flow-rate. Depending on its partial pressure, the water impurity re-adsorption time is of the order of magnitude or less then the argon gas residence time.
Argon metastable dynamics and lifetimes in a direct current microdischarge
Stefanović, Ilija [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Kuschel, Thomas; Schröter, Sandra; Böke, Marc [Ruhr-Universität Bochum, Institute for Experimental Physics II, Universitätsstraße 150, 44780 Bochum (Germany)
2014-09-21
In this paper we study the properties of a pulsed dc microdischarge with the continuous flow of argon. Argon metastable lifetimes are measured by tunable diode laser absorption spectroscopy (TDLAS) and are compared with calculated values which yield information about excitation and de-excitation processes. By increasing the gas flow-rate about 5 times from 10 to 50 sccm, the Ar{sup m} lifetime increases from 1 to 5 μs due to the reduction of metastable quenching with gas impurities. Optical emission spectroscopy reveals nitrogen and water molecules as the main gas impurities. The estimated N₂ density [N₂]=0.1% is too low to explain the measured metastable lifetimes. Water impurity was found to be the main de-excitation source of argon metastable atoms due to high quenching coefficients. The water impurity level of [H₂O]=0.15% to 1% is sufficient to bring calculated metastable lifetimes in line with experiments. The maximum value of water content in the discharge compared to the argon atoms is estimated to approximately 6%, due to the large surface to volume ratio of the microdischarge. The current pulse releases the water molecules from the electrode surface and they are either re-adsorbed in the time between 0.4 ms for [H₂O]=1% and 2.6 ms for [H₂O]=0.15% or pumped out of the discharge with the speed equal to the gas flow-rate. Depending on its partial pressure, the water impurity re-adsorption time is of the order of magnitude or less then the argon gas residence time.
Rosing-Asvid, A.
2006-01-01
Unusually high polar bear (Ursus maritimus Phipps, 1774) predation on ringed seal (Pusa hispida (Schreber, 1775)) pups and increased survival of polar bear cubs during mild springs is documented in published articles. Strong predation on newborn ringed seal pups in early spring, however, is likely...... to lower the overall energy intake of polar bears if ringed seal pups are their main food, because the energetic value of ringed seal pups increases 7-8 times during the 6 week lactation period. So although hunting success in early spring increases cub survival during the period after den emergence......,when they are most vulnerable, it is likely to increase the number of starving bears later in the season. This negative-feedback effect of strong spring predation will not occur in areas where other seal species are abundant during summer, and polar bears in such areas are likely to exhibit population growth during...
Current-current interactions, dynamical symmetry-breaking, and quantum chromodynamics
Neuenschwander, D.E. Jr.
1983-01-01
Quantum Chromodynamics with massive gluons (gluon mass triple bond xm/sub p/) in a contact-interaction limit called CQCD (strong coupling g..-->..infinity; x..-->..infinity), despite its non-renormalizability and lack of hope of confinement, is nevertheless interesting for at least two reasons. Some authors have suggested a relation between 4-Fermi and Yang-Mills theories. If g/x/sup 2/ much less than 1, then CQCD is not merely a 4-Fermi interaction, but includes 4,6,8 etc-Fermi non-Abelian contact interactions. With possibility of infrared slavery, perturbative evaluation of QCD in the infrared is a dubious practice. However, if g/sup 2//x/sup 2/ much less than 1 in CQCD, then the simplest 4-Fermi interaction is dominant, and CQCD admits perturbative treatment, but only in the infrared. With the dominant interaction, a dynamical Nambu-Goldstone realization of chiral symmetry-breaking (XSB) is found. Although in QCD the relation between confinement and XSB is controversial, XSB occurs in CQCD provided confinement is sacrificed.
The influence of dense gas rings on the dynamics of a stellar disk in the Galactic center
Trani, Alessandro Alberto; Bressan, Alessandro; Pelupessy, Federico Inti; van Elteren, Arjen; Zwart, Simon Portegies
2015-01-01
The Galactic center hosts several hundred early-type stars, about 20% of which lie in the so-called clockwise disk, while the remaining 80% do not belong to any disks. The circumnuclear ring (CNR), a ring of molecular gas that orbits the supermassive black hole (SMBH) with a radius of 1.5 pc, has been claimed to induce precession and Kozai-Lidov oscillations onto the orbits of stars in the innermost parsec. We investigate the perturbations exerted by a gas ring on a nearly-Keplerian stellar disk orbiting a SMBH by means of combined direct N-body and smoothed particle hydrodynamics simulations. We simulate the formation of gas rings through the infall and disruption of a molecular gas cloud, adopting different inclinations between the infalling gas cloud and the stellar disk. We find that a CNR-like ring is not efficient in affecting the stellar disk on a timescale of 3 Myr. In contrast, a gas ring in the innermost 0.5 pc induces precession of the longitude of the ascending node Omega, significantly affecting ...
López-Permouth, Sergio
1990-01-01
The papers of this volume share as a common goal the structure and classi- fication of noncommutative rings and their modules, and deal with topics of current research including: localization, serial rings, perfect endomorphism rings, quantum groups, Morita contexts, generalizations of injectivitiy, and Cartan matrices.
Rowen, Louis H
1991-01-01
This is an abridged edition of the author's previous two-volume work, Ring Theory, which concentrates on essential material for a general ring theory course while ommitting much of the material intended for ring theory specialists. It has been praised by reviewers:**""As a textbook for graduate students, Ring Theory joins the best....The experts will find several attractive and pleasant features in Ring Theory. The most noteworthy is the inclusion, usually in supplements and appendices, of many useful constructions which are hard to locate outside of the original sources....The audience of non
Filip, B; Scarpa, M; Cavallin, F; Cagol, M; Alfieri, R; Saadeh, L; Ancona, E; Castoro, C
2015-06-01
Several prognostic scores were designed in order to estimate the risk of postoperative adverse events. None of them includes a component directly associated to the nutritional status. The aims of the study were the evaluation of performance of risk-adjusted models for early outcomes after oesophagectomy and to develop a score for severe complication prediction with special consideration regarding nutritional status. A comparison of POSSUM and Charlson score and their derivates, ASA, Lagarde score and nutritional index (PNI) was performed on 167 patients undergoing oesophagectomy for cancer. A logistic regression model was also estimated to obtain a new prognostic score for severe morbidity prediction. Overall morbidity was 35.3% (59 cases), severe complications (grade III-V of Clavien-Dindo classification) occurred in 20 cases. Discrimination was poor for all the scores. Multivariable analysis identified pulse, connective tissue disease, PNI and potassium as independent predictors of severe morbidity. This model showed good discrimination and calibration. Internal validation using standard bootstrapping techniques confirmed the good performance. Nutrition could be an independent risk factor for major complications and a nutritional status coefficient could be included in current prognostic scores to improve risk estimation of major postoperative complications after oesophagectomy for cancer. Copyright © 2015. Published by Elsevier Ltd.
Commissioning of the University of Maryland Electron Ring (UMER)
Bernal, Santiago; Feldman, Donald; Feldman, Renee; Godlove, Terry; Haber, Irving; Harris, John R; Holloway, Mike; Kishek, Rami A; Neumann, Jonathan G; Papadopoulos, Christos; Quinn, Bryan; Reiser, Martin; Stratakis, Diktys; Thangaraj, Jayakar C T; Tian, Kai; Walter, Mark; Wilson, Mark C
2005-01-01
The University of Maryland electron ring (UMER) is a low-energy, high current recirculator for beam physics research. The ring is completed for multi-turn operation of beams over a broad range of intensities and initial conditions. UMER is addressing issues in beam physics with relevance to many applications that rely on intense beams of high quality. Examples are advanced accelerators, FEL's, spallation neutron sources and future heavy-ion drivers for inertial fusion. We review the motivation, ring layout and operating conditions of UMER. Further, we present a summary of beam physics areas that UMER is currently investigating and others that are part of the commissioning plan: from transverse beam dynamics (matching, halo formation, strongly asymmetric beams, space-charge waves, etc), longitudinal dynamics (bunch capture/shaping, evolution of energy spread, longitudinal space-charge waves, etc.) to future upgrades and planned research (acceleration and resonance traversal, modeling of galactic dynamics, etc....
Ring autosomes: some unexpected findings.
Caba, L; Rusu, C; Plăiaşu; Gug, G; Grămescu, M; Bujoran, C; Ochiană, D; Voloşciuc, M; Popescu, R; Braha, E; Pânzaru, M; Butnariu, L; Sireteanu, A; Covic, M; Gorduza, Ev
2012-12-01
Ring chromosomes are rare entities, usually associated with phenotypic abnormalities in correlation with the loss of genetic material. There are various breakpoints and sometimes there is a dynamic mosaicism that is reflected in clinical features. Most of the ring chromosomes are de novo occurrences. Our study reflects the experience of three Romanian cytogenetic laboratories in the field of ring chromosomes. We present six cases with ring chromosomes involving chromosomes 5, 13, 18, and 21. All ring chromosomes were identified after birth in children with plurimalformative syndromes. The ring chromosome was present in mosaic form in three cases, and this feature reflects the ring's instability. In case of ring chromosome 5, we report a possible association with oculo-auriculo-vertebral spectrum.
Dynamic response of jetting and cementing bucket platform to wave and current loading
Wang Hu; Wang Deyu
2006-01-01
The jetting and cementing bucket platform (JCBP) is a new type offshore oil-drilling platform. This paper aims to establish an analysis method for calculating the dynamic response of this platform. Based on the theory of elastic half space, the dynamic stiffness and damping of the platform's foundation were obtained and attached to the end of the platform's main jackets as a boundary condition. Then using finite element method (FEM), the dynamic response of the platform due to wave and current loading was calculated. Furthermore, the whole platform's finite element model was established and the dynamic response of the platform was calculated. The numerical results demonstrate that the present method by the usage of elastic half space theory and FEM is simple and it is reliable and efficient to calculate dynamic behavior of the platform in response to wave and current loading.
Pérez, Alejandro; Tuckerman, Mark E.; Müser, Martin H.
2009-05-01
The problems of ergodicity and internal consistency in the centroid and ring-polymer molecular dynamics methods are addressed in the context of a comparative study of the two methods. Enhanced sampling in ring-polymer molecular dynamics (RPMD) is achieved by first performing an equilibrium path integral calculation and then launching RPMD trajectories from selected, stochastically independent equilibrium configurations. It is shown that this approach converges more rapidly than periodic resampling of velocities from a single long RPMD run. Dynamical quantities obtained from RPMD and centroid molecular dynamics (CMD) are compared to exact results for a variety of model systems. Fully converged results for correlations functions are presented for several one dimensional systems and para-hydrogen near its triple point using an improved sampling technique. Our results indicate that CMD shows very similar performance to RPMD. The quality of each method is further assessed via a new χ2 descriptor constructed by transforming approximate real-time correlation functions from CMD and RPMD trajectories to imaginary time and comparing these to numerically exact imaginary time correlation functions. For para-hydrogen near its triple point, it is found that adiabatic CMD and RPMD both have similar χ2 error.
Manista, E. J.
1972-01-01
The effect of collector, guard-ring potential imbalance on the observed collector-current-density J, collector-to-emitter voltage V characteristic was evaluated in a planar, fixed-space, guard-ringed thermionic converter. The J,V characteristic was swept in a period of 15 msec by a variable load. A computerized data acquisition system recorded test parameters. The results indicate minimal distortion of the J,V curve in the power output quadrant for the nominal guard-ring circuit configuration. Considerable distortion, along with a lowering of the ignited-mode striking voltage, was observed for the configuration with the emitter shorted to the guard ring. A limited-range performance map of an etched-rhenium, niobium, planar converter was obtained by using an improved computer program for the data acquisition system.
Investigations of Beam Dynamics Issues at Current and Future Hadron Accelerators
Ellison, James [Univ. of New Mexico, Albuquerque, NM (United States); Lau, Stephen [Univ. of New Mexico, Albuquerque, NM (United States); Heinemann, Klaus [Univ. of New Mexico, Albuquerque, NM (United States); Bizzozero, David [Univ. of New Mexico, Albuquerque, NM (United States)
2015-03-12
Final Report Abstract for DE-FG02-99ER4110, May 15, 2011- October 15, 2014 There is a synergy between the fields of Beam Dynamics (BD) in modern particle accelerators and Applied Mathematics (AMa). We have formulated significant problems in BD and have developed and applied tools within the contexts of dynamical systems, topological methods, numerical analysis and scientific computing, probability and stochastic processes, and mathematical statistics. We summarize the three main areas of our AMa work since 2011. First, we continued our study of Vlasov-Maxwell systems. Previously, we developed a state of the art algorithm and code (VM3@A) to calculate coherent synchrotron radiation in single pass systems. In this cycle we carefully analyzed the major expense, namely the integral-over-history (IOH), and developed two approaches to speed up integration. The first strategy uses a representation of the Bessel function J0 in terms of exponentials. The second relies on “local sequences” developed recently for radiation boundary conditions, which are used to reduce computational domains. Although motivated by practicality, both strategies involve interesting and rather deep analysis and approximation theory. As an alternative to VM3@A, we are integrating Maxwell’s equations by a time-stepping method, bypass- ing the IOH, using a Discontinuous Galerkin (DG) method. DG is a generalization of Finite Element and Finite Volume methods. It is spectrally convergent, unlike the commonly used Finite Difference methods, and can handle complicated vacuum chamber geometries. We have applied this in several contexts and have obtained very nice results including an explanation of an experiment at the Canadian Light Source, where the geometry is quite complex. Second, we continued our study of spin dynamics in storage rings. There is much current and proposed activity where spin polarized beams are being used in testing the Standard Model and its modifications. Our work has focused
Investigations of Beam Dynamics Issues at Current and Future Hadron Accelerators
Ellison, James [Univ. of New Mexico, Albuquerque, NM (United States); Lau, Stephen [Univ. of New Mexico, Albuquerque, NM (United States); Heinemann, Klaus [Univ. of New Mexico, Albuquerque, NM (United States); Bizzozero, David [Univ. of New Mexico, Albuquerque, NM (United States)
2015-03-12
Final Report Abstract for DE-FG02-99ER4110, May 15, 2011- October 15, 2014 There is a synergy between the fields of Beam Dynamics (BD) in modern particle accelerators and Applied Mathematics (AMa). We have formulated significant problems in BD and have developed and applied tools within the contexts of dynamical systems, topological methods, numerical analysis and scientific computing, probability and stochastic processes, and mathematical statistics. We summarize the three main areas of our AMa work since 2011. First, we continued our study of Vlasov-Maxwell systems. Previously, we developed a state of the art algorithm and code (VM3@A) to calculate coherent synchrotron radiation in single pass systems. In this cycle we carefully analyzed the major expense, namely the integral-over-history (IOH), and developed two approaches to speed up integration. The first strategy uses a representation of the Bessel function J0 in terms of exponentials. The second relies on “local sequences” developed recently for radiation boundary conditions, which are used to reduce computational domains. Although motivated by practicality, both strategies involve interesting and rather deep analysis and approximation theory. As an alternative to VM3@A, we are integrating Maxwell’s equations by a time-stepping method, bypass- ing the IOH, using a Discontinuous Galerkin (DG) method. DG is a generalization of Finite Element and Finite Volume methods. It is spectrally convergent, unlike the commonly used Finite Difference methods, and can handle complicated vacuum chamber geometries. We have applied this in several contexts and have obtained very nice results including an explanation of an experiment at the Canadian Light Source, where the geometry is quite complex. Second, we continued our study of spin dynamics in storage rings. There is much current and proposed activity where spin polarized beams are being used in testing the Standard Model and its modifications. Our work has focused
Saturn's ``Gossamer'' Ring: The F Ring's Inner Sheet
Showalter, M. R.; Burns, J. A.; Hamilton, D. P.
1998-09-01
Recent Galileo and Earth-based images have revealed for the first time that Jupiter's ``gossamer'' ring is actually composed of two rings, one bounded at the outer edge by Amalthea and the other bounded by Thebe. Dynamical models suggest that these rings are composed of dust grains ejected off the surfaces of the two moons, which then evolve inward under Poynting-Robertson drag. A very faint sheet of material filling the region between Saturn's A and F Rings reported by Burns et al. (BAAS 15, 1013--1014, 1983) may be a dynamically analogous system, in which dust escapes from the F Ring and evolves inward to the A Ring. Unlike Jupiter's gossamer rings, however, the inner sheet of Saturn's F Ring has been well observed from a large range of phase angles and visual wavelengths by Voyager. Voyager images reveal that this faint ring shows a tenfold increase in brightness between phase angles of 125(deg) and 165(deg) , indicating that it is composed of fine dust microns in size. Preliminary estimates of the normal optical depth fall in the range 1--2*E(-4) , depending on the dust size distribution assumed. Initial spectrophotometry reveals that the ring is neutral in color. The ring is uniform in brightness over the entire region between the two rings, with no evidence for internal structure associated with Prometheus and Atlas, suggesting that neither of these embedded moons acts as either a source or a sink. We will refine the aforementioned measurements and develop photometric models to better constrain the properties of the dust in this ring. This will enable us to relate the dust population to that in the F Ring proper, and to better explore the dynamical processes at work.
Pérez de Tudela, Ricardo; Aoiz, F J; Suleimanov, Yury V; Manolopoulos, David E
2012-02-16
A fundamental issue in the field of reaction dynamics is the inclusion of the quantum mechanical (QM) effects such as zero point energy (ZPE) and tunneling in molecular dynamics simulations, and in particular in the calculation of chemical reaction rates. In this work we study the chemical reaction between a muonium atom and a hydrogen molecule. The recently developed ring polymer molecular dynamics (RPMD) technique is used, and the results are compared with those of other methods. For this reaction, the thermal rate coefficients calculated with RPMD are found to be in excellent agreement with the results of an accurate QM calculation. The very minor discrepancies are within the convergence error even at very low temperatures. This exceptionally good agreement can be attributed to the dominant role of ZPE in the reaction, which is accounted for extremely well by RPMD. Tunneling only plays a minor role in the reaction.
The bacterial divisome: more than a ring?
Söderström, Bill; Daley, Daniel O
2017-05-01
Bacterial cells are critically dependent on their ability to divide. The process of division is carried out by a large and highly dynamic molecular machine, known as the divisome. An understanding of the divisomes' architecture is highly sought after, as it is essential for understanding molecular mechanisms and potentially designing antibiotic molecules that curb bacterial growth. Our current view, which is mainly based on high-resolution imaging of Escherichia coli, is that it is a patchy ring or toroid structure. However, recent super-resolution imaging has shown that the toroid structure contains at least three concentric rings, each containing a different set of proteins. Thus, the emerging picture is that the divisome has different functional modules that are spatially separated in concentric rings.
Dynamical skyrmion state in a spin current nano-oscillator with perpendicular magnetic anisotropy.
Liu, R H; Lim, W L; Urazhdin, S
2015-04-03
We study the spectral characteristics of spin current nano-oscillators based on the Pt/[Co/Ni] magnetic multilayer with perpendicular magnetic anisotropy. By varying the applied magnetic field and current, both localized and propagating spin wave modes of the oscillation are achieved. At small fields, we observe an abrupt onset of the modulation sidebands. We use micromagnetic simulations to identify this state as a dynamical magnetic skyrmion stabilized in the active device region by spin current injection, whose current-induced dynamics is accompanied by the gyrotropic motion of the core due to the skew deflection. Our results demonstrate a practical route for controllable skyrmion manipulation by spin current in magnetic thin films.
Structure, stratigraphy, and eruption dynamics of a young tuff ring: Hanauma Bay, O'ahu, Hawai'i
Rottas, K. M.; Houghton, B. F.
2012-09-01
The Hanauma Bay-Koko Head complex is one of several young volcanic landforms along the Koko fissure, in southeastern O'ahu. The Hanauma Bay region of the complex comprises two nested tuff rings, inner and outer Hanauma Bay, and multiple smaller vents. The internal structure of the inner tuff ring, well exposed due to subsequent breaching by the ocean and wave erosion, indicates that it formed during a minimum of five distinct phases of deposition that produced five mappable units. Significant inward collapses generated major unconformities that separate the units exposed in the inner wall. The planes of failure are cut by narrow steep-walled, locally overhung channels and gullies, suggesting that the collapse events were each followed by short time breaks during which the deposits were eroded by rainfall runoff. Within each pyroclastic unit, there are many local slump scars and unconformities, suggesting that minor instability of the inner wall was a near-constant feature. From bedding sags and surge bed forms, it is apparent that the vent shifted at least twice during tuff ring growth. Ballistic blocks in the youngest unit indicate that the eruption overlapped in time with a separate eruption to the north, most likely to be that of the Kahauloa tuff ring 880 m away.
Conrad, A. H.; Stephens, A. P.; Paulsen, A. Q.; Schwarting, S. S.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)
1994-01-01
The terminal phase of cell division involves tight constriction of the cleavage furrow contractile ring, stabilization/elongation of the intercellular bridge, and final separation of the daughter cells. At first cleavage, the fertilized eggs of the mollusk, Ilyanassa obsoleta, form two contractile rings at right angles to each other in the same cytoplasm that constrict to tight necks and partition the egg into a trefoil shape. The cleavage furrow contractile ring (CF) normally constricts around many midbody microtubules (MTs) and results in cleavage; the polar lobe constriction contractile ring (PLC) normally constricts around very few MTs and subsequently relaxes without cleavage. In the presence of Ag+ ions, the PLC 1) begins MT-dependent rapid constriction sooner than controls, 2) encircles more MTs than control egg PLCs, 3) elongates much more than control PLCs, and 4) remains tightly constricted and effectively cleaves the polar lobe from the egg. If Ag(+)-incubated eggs are returned to normal seawater at trefoil, tubulin fluorescence disappears from the PLC neck and the neck relaxes. If nocodazole, a drug that depolymerizes MTs, is added to Ag(+)-incubated eggs during early PLC constriction, the PLC is not stabilized and eventually relaxes. However, if nocodazole is added to Ag(+)-incubated eggs at trefoil, tubulin fluorescence disappears from the PLC neck but the neck remains constricted. These results suggest that Ag+ accelerates and gradually stabilizes the PLC constriction by a mechanism that is initially MT-dependent, but that progressively becomes MT-independent.
Design of a novel electrostatic ion storage ring at KACST
El Ghazaly, M.O.A., E-mail: maelghazaly@kacst.edu.sa [National Center for Mathematics and Physics (NCMP), King Abdulaziz City for Sciences and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Alshammari, S.M. [National Center for Mathematics and Physics (NCMP), King Abdulaziz City for Sciences and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Welsch, C.P. [Cockcroft Institute and the University of Liverpool (United Kingdom); Alharbi, H.H. [National Center for Mathematics and Physics (NCMP), King Abdulaziz City for Sciences and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia)
2013-05-01
A new electrostatic storage ring for beams at energies up to 30 keV·q is currently under development at the National Centre for Mathematics and Physics (NCMP), King Abdulaziz City for Science and Technology (KACST). The ring design is based on the existing electrostatic storage rings, but stretches significantly beyond them in that it shall form the core of a unique flexible experimental facility at KACST. The lattice of this ring has been designed in a way that enables the use of state-of-the-art experimental methods to study electron–ion, laser-ion, and ion-neutral beams interactions. The lattice design also allows for a future upgrade of the ring to a double storage ring structure that would enable ion–ion beam interactions to be performed. In this paper, we present the design of this ring with a focus on beam dynamics calculations for the 7° single-bend racetrack layout. The study is principally based on the SIMION8 program. We complemented this study further by using purpose-written routine and MAD-X simulation code. An in-depth investigation into beam stability under consideration of non-linear field components in the electrostatic optical elements, is presented. Finally, different working points and stability regions are discussed. -- Highlights: ► The design for a highly flexible electrostatic storage ring is carried out. ► It is shown this design can be upgraded to a double storage ring structure. ► SIMION can be used in ray-tracing simulations to compute aberrations in the ring. ► Non-linear effects in an electrostatic ring can potentially disturb the stored beam. ► An electrostatic ring can store low-energy beams in spite of existing fringe fields.
Ginzburg-Landau vortex dynamics driven by an applied boundary current
Tice, Ian
2009-01-01
In this paper we study the time-dependent Ginzburg-Landau equations on a smooth, bounded domain $\\Omega \\subset \\Rn{2}$, subject to both an applied magnetic field and an applied boundary current. We model the boundary current by a gauge invariant inhomogeneous Neumann boundary condition. After proving well-posedness of the equations with this boundary condition, we study the evolution of the energy of the solutions, deriving an upper bound for the energy growth. We then turn to the study of the dynamics of the vortices of the solutions in the limit $\\ep \\to 0$. We first consider the original time scale, in which the vortices do not move and the solutions undergo a ``phase relaxation.'' Then we study an accelerated time scale in which the vortices move according to a derived dynamical law. In the dynamical law, we identify a novel Lorentz force term induced by the applied boundary current.
Dynamics of Instantaneous Condensation in the ZRP Conditioned on an Atypical Current
Rosemary J. Harris
2013-11-01
Full Text Available Using a generalized Doob’s h-transform we consider the zero-range process (ZRP conditioned to carry an atypical current, with focus on the regime where the Gallavotti-Cohen symmetry loses its validity. For a single site we compute explicitly the boundary injection and absorption rates of an effective process which maps to a biased random walk. Our approach provides a direct probabilistic confirmation of the theory of “instantaneous condensation” which was proposed some while ago to explain the dynamical origin of the the failure of the Gallavotti-Cohen symmetry for high currents in the ZRP. However, it turns out that for stochastic dynamics with infinite state space care needs to be taken in the application of the Doob’s transform—we discuss in detail the sense in which the effective dynamics can be interpreted as “typical” for different regimes of the current phase diagram.
Fast electron dynamics in lower hybrid current drive experiment on HT-7 tokamak
Shi Yue-Jiang; Kuang Gang-Li; Li Jian-Gang; HT-7 Team; Wan Bao-Nian; Chen Zhong-Yong; Hu Li-Qun; Lin Shi-Yao; Ruan Huai-Lin; Qian Jin-Ping; Zhen Xiang-Jun; Ding Bo-Jiang
2005-01-01
The dynamic behaviour of fast electron in lower hybrid current drive (LHCD) experiments is a crucial issue in the sense of enhancing plasma performance. A new hard x-ray diagnostic system on HT-7 allows the investigation of the lower hybrid wave dynamics. The behaviour of fast electron is studied in several kinds of LHCD experiments, including long pulse discharges, high performance discharges and counter-LHCD experiments.
The Design of a Large Booster Ring for the Medium Energy Electron-Ion Collider at Jlab
Edward Nissen, Todd Satogata, Yuhong Zhang
2012-07-01
In this paper, we present the current design of the large booster ring for the Medium energy Electron-Ion Collider at Jefferson Lab. The booster ring takes 3 GeV protons or ions of equivalent rigidity from a pre-booster ring, and accelerates them to 20 GeV for protons or equivalent energy for light to heavy ions before sending them to the ion collider ring. The present design calls for a figure-8 shape of the ring for superior preservation of ion polarization. The ring is made of warm magnets and shares a tunnel with the two collider rings. Acceleration is achieved by warm RF systems. The linear optics has been designed with the transition energy above the highest beam energy in the ring so crossing of transition energy will be avoided. Preliminary beam dynamics studies including chromaticity compensation are presented in this paper.
Dynamic causal models of neural system dynamics: current state and future extensions
Klaas E Stephan; Lee M Harrison; Stefan J Kiebel; Olivier David; Will D Penny; Karl J Friston
2007-01-01
Complex processes resulting from interaction of multiple elements can rarely be understood by analytical scientific approaches alone; additional, mathematical models of system dynamics are required. This insight, which disciplines like physics have embraced for a long time already, is gradually gaining importance in the study of cognitive processes by functional neuroimaging. In this field, causal mechanisms in neural systems are described in terms of effective connectivity. Recently, dynamic causal modelling (DCM) was introduced as a generic method to estimate effective connectivity from neuroimaging data in a Bayesian fashion. One of the key advantages of DCM over previous methods is that it distinguishes between neural state equations and modality-specific forward models that translate neural activity into a measured signal. Another strength is its natural relation to Bayesian model selection (BMS) procedures. In this article, we review the conceptual and mathematical basis of DCM and its implementation for functional magnetic resonance imaging data and event-related potentials. After introducing the application of BMS in the context of DCM, we conclude with an outlook to future extensions of DCM. These extensions are guided by the long-term goal of using dynamic system models for pharmacological and clinical applications, particularly with regard to synaptic plasticity.
RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS
Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)
2015-12-15
We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.
Tsyganenko, N. A.; Brandt, P. C.; Khurana, K. K.; Dougherty, M. K.
2010-12-01
periodically injected energetic (>2 keV) particles that form a partial ring current (PRC) co-rotating with the planet. Plasma pressures inferred from the Cassini Plasma Spectrometer (CAPS) (2 keV) will be used to compute the currents and their associated magnetic field perturbations. The distribution of the "hot" (>2 keV)plasma pressure is derived from Energetic Neutral Atom (ENA) images, obtained by the Ion Neutral Camera (INCA) and in-situ spectral measurements.
Kernel representations for behaviors over finite rings
Kuijper, M.; Pinto, R.; Polderman, J.W.; Yamamoto, Y.
2006-01-01
In this paper we consider dynamical systems finite rings. The rings that we study are the integers modulo a power of a given prime. We study the theory of representations for such systems, in particular kernel representations.
Dynamics of electron currents in nanojunctions with time-varying components and interactions
Cuansing, Eduardo C.; Bayocboc, Francis A.; Laurio, Christian M.
2017-08-01
We study the dynamics of the electron current in nanodevices where there are time-varying components and interactions. These devices are a nanojunction attached to heat baths and with dynamical electron-phonon interactions, and a nanojunction with photon beams incident and reflected at the channel. We use the two-time nonequilibrium Green's functions technique to calculate the time-dependent electron current flowing across the devices. We find that whenever a sudden change occurs in the device, the current takes time to react to the abrupt change, overshoots, oscillates, and eventually settles down to a steady value. With dynamical electron-phonon interactions, the interaction gives rise to a net resistance that reduces the flow of current across the device when a source-drain bias potential is attached. In the presence of dynamical electron-photon interactions, the photons drive the electrons to flow. The direction of flow, however, depends on the frequencies of the incident photons. Furthermore, the direction of electron flow in one lead is exactly opposite to the direction of flow in the other lead thereby resulting in no net change in current flowing across the device.
Richter, Kornel; Krone, Andrea; Mawass, Mohamad-Assaad; Krüger, Benjamin; Weigand, Markus; Stoll, Hermann; Schütz, Gisela; Kläui, Mathias
2016-07-01
We report time-resolved observations of field-induced domain wall nucleation in asymmetric ferromagnetic rings using single direction field pulses and rotating fields. We show that the asymmetric geometry of a ring allows for controlling the position of nucleation events, when a domain wall is nucleated by a rotating magnetic field. Direct observation by scanning transmission x-ray microscopy (STXM) reveals that the nucleation of domain walls occurs through the creation of transient ripplelike structures. This magnetization state is found to exhibit a surprisingly high reproducibility even at room temperature and we determine the combinations of field strengths and field directions that allow for reliable nucleation of domain walls and directly quantify the stability of the magnetic states. Our analysis of the processes occurring during field induced domain wall nucleation shows how the effective fields determine the nucleation location reproducibly, which is a key prerequisite toward using domain walls for spintronic devices.
Sundqvist, Lisa; Harkonen, Tero; Svensson, Carl Johan; Harding, Karin C
2012-12-01
A global trend of a warming climate may seriously affect species dependent on sea ice. We investigated the impact of climate on the Baltic ringed seals (Phoca hispida botnica), using historical and future climatological time series. Availability of suitable breeding ice is known to affect pup survival. We used detailed information on how winter temperatures affect the extent of breeding ice and a climatological model (RCA3) to project the expected effects on the Baltic ringed seal population. The population comprises of three sub-populations, and our simulations suggest that all of them will experience severely hampered growth rates during the coming 90 years. The projected 30, 730 seals at the end of the twenty-first century constitutes only 16 % of the historical population size, and thus reduced ice cover alone will severely limit their growth rate. This adds burden to a species already haunted by other anthropogenic impacts.
Li, Yongle; Suleimanov, Yury V; Green, William H; Guo, Hua
2014-03-20
Thermal rate coefficients and kinetic isotope effect have been calculated for prototypical heavy-light-heavy polyatomic bimolecular reactions Cl + CH4/CD4 → HCl/DCl + CH3/CD3, using a recently proposed quantum dynamics approach: ring polymer molecular dynamics (RPMD). Agreement with experimental rate coefficients, which are quite scattered, is satisfactory. However, differences up to 50% have been found between the RPMD results and those obtained from the harmonic variational transition-state theory on one of the two full-dimensional potential energy surfaces used in the calculations. Possible reasons for such discrepancy are discussed. The present work is an important step in a series of benchmark studies aimed at assessing accuracy for RPMD for chemical reaction rates, which demonstrates that this novel method is a quite reliable alternative to previously developed techniques based on transition-state theory.
Patra, Moumita; Maiti, Santanu K.
2016-12-01
In the present work we investigate the behavior of all three components of persistent spin current in a quasi-periodic Fibonacci ring subjected to Rashba and Dresselhaus spin-orbit interactions. Analogous to persistent charge current in a conducting ring where electrons gain a Berry phase in presence of magnetic flux, spin Berry phase is associated during the motion of electrons in presence of a spin-orbit field which is responsible for the generation of spin current. The interplay between two spin-orbit fields along with quasi-periodic Fibonacci sequence on persistent spin current is described elaborately, and from our analysis, we can estimate the strength of any one of two spin-orbit couplings together with on-site energy, provided the other is known.
Some effects of topological torsion currents on spacecraft dynamics and the flyby anomaly
Pinheiro, Mario J.
2016-10-01
The modified dynamical equation of motions obtained by means of topological torsion currents predicts a so-far unforeseen anomalous acceleration detected in spacecrafts during close planetary flybys in retrograde direction, and a null-effect when spacecrafts approach the planet in the posigrade direction with respect to the planetary sense of rotation.
Isovector meson-exchange currents in the light-front dynamics
Desplanques, B. [Grenoble-1 Univ., 38 (France). Inst. des Sciences Nucleaires; Karmanov, V.A. [Grenoble-1 Univ., 38 (France). Inst. des Sciences Nucleaires; Mathiot, J.F. [Division de Physique Theorique, Institut de Physique Nucleaire, F-91406 Orsay Cedex (France)
1995-07-17
In the light-front dynamics, there is no pair term that plays the role of the dominant isovector pion exchange current. This current gives rise to the large and experimentally observed contribution to the deuteron electrodisintegration cross-section near threshold for pseudo-scalar {pi}NN coupling. We show analytically that in leading 1/m order the amplitude in the light-front dynamics coincides, however, with the one given by the pair term. At high Q{sup 2}, it consists of two equal parts. One comes from extra components of the deuteron and final state relativistic wave functions. The other results from the contact NN{pi}{gamma} interaction which appears in the light-front dynamics. This provides a transparent link between relativistic and non-relativistic approaches. ((orig.)).
Brand, Brittany D.; Clarke, Amanda B.
2012-10-01
Multiple, highly erosive base surges of the Table Rock Complex tuff ring (TRC2), Oregon, produced dune-bedded deposits with crest to crest bedform wavelengths up to 200 m, which are amongst the largest ever recognized in the deposits of pyroclastic density currents. Here we use bedform wavelength, surmounted obstacles, and a large chute-and-pool feature to estimate near-source velocities (118-233 m s- 1), lower-bound velocities at radial distances of 1.6, 2 and 4.7 km from source (34, 29 and 20 m s- 1, respectively), and corresponding column collapse heights (up to 2.8 km). This paper represents one of the few studies that attempt to quantify flow characteristics, such as emplacement velocities at different distances from source, eruption column collapse height, and eruptive energy, based on deposit characteristics.
Rajesh G
2011-11-01
Full Text Available Supra mitral ring is a rare cause for congenital mitral valve obstr uction. The reported incidence of supramitral ring is 0.2-0.4% in general population and 8% in patients with congenital mitral valve disease. The condition is characterized by an abnormal ridge of connective tissue often circumferential in shape ,on the atrial side of the mitral valve encroaching on the orifice of the mitral valve. It may adhere to the leaflets of the valve and restrict their movements. Although a supramitral ring may be rarely nonobstructive, it often results in mitral valve inflow obstruction.
Particle Currents in a Fluid—Dynamical Description of Two Trapped Fermion Species
Hernández, E. S.; Capuzzi, P.; Szybisz, L.
2011-02-01
We apply a recent generalization of the fluid-dynamical scheme of nuclear physics that includes the pair density and current of superfluids, to trace the particle transition currents of an unpolarized fermion system in a harmonic trap. These current fluctuations are driven by the equilibrium density and gap and by the oscillations in the particle densities. We analize the velocity portraits of either species for the lowest multipolar excitations employing different equations of state of the unperturbed fluids, in order to establish the role of the equilibrium gap.
Computational studies of carbodiimide rings.
Damrauer, Robert; Lin, Hai; Damrauer, Niels H
2014-05-02
Computational studies of alicyclic carbodiimides (RN═C═NR) (rings five through twelve) at the MP2/6-31G(d,p)//MP2/6-31G(d,p) level of theory were conducted to locate the transition states between carbodiimides isomers. Transition states for rings six through twelve were found. The RNCNR dihedral angle is ∼0° for even-numbered rings, but deviates from 0° for rings seven, nine, eleven, and twelve. The even- and odd-numbered ring transition states have different symmetry point groups. Cs transition states (even rings) have an imaginary frequency mode that transforms as the asymmetric irreducible representation of the group. C2 transition states (odd rings) have a corresponding mode that transforms as the totally symmetric representation. Intrinsic reaction coordinate analyses followed by energy minimization along the antisymmetric pathways led to enantiomeric pairs. The symmetric pathways give diastereomeric isomers. The five-membered ring carbodiimide is a stable structure, possibly isolable. A twelve-membered ring transition state was found only without applying symmetry constraints (C1). Molecular mechanics and molecular dynamics studies of the seven-, eight-, and nine-membered rings gave additional structures, which were then minimized using ab initio methods. No structures beyond those found from the IRC analyses described were found. The potential for optical resolution of the seven-membered ring is discussed.
Frankowski, Marek, E-mail: mfrankow@agh.edu.pl; Czapkiewicz, Maciej; Skowronski, Witold; Stobiecki, Tomasz
2014-02-15
We present a model introducing the Landau–Lifshitz–Gilbert equation with a Slonczewski's Spin-Transfer-Torque (STT) component in order to take into account spin polarized current influence on the magnetization dynamics, which was developed as an Object Oriented MicroMagnetic Framework extension. We implement the following computations: magnetoresistance of vertical channels is calculated from the local spin arrangement, local current density is used to calculate the in-plane and perpendicular STT components as well as the Oersted field, which is caused by the vertical current flow. The model allows for an analysis of all listed components separately, therefore, the contribution of each physical phenomenon in dynamic behavior of Magnetic Tunnel Junction (MTJ) magnetization is discussed. The simulated switching voltage is compared with the experimental data measured in MTJ nanopillars.
Bogoslovskiy, Nikita; Tsendin, Konstantin
2017-03-01
In the phase-change memory (PCM) crystallization occurs in the high-current filament which forms during switching to the conductive state. In the present paper we conduct a numerical modeling of the current filament formation dynamics in thin chalcogenide films using an electronic-thermal model based on negative-U centers tunnel ionization and Joule heating. The key role of inhomogeneities in the filament formation process is shown. Steady-state filament parameters were obtained from the analysis of the stationary heat conduction equation. The filament formation dynamics and the steady-state filament radius and temperature could be controlled by material parameters and contact resistance. Consequently it is possible to control the size of the region wherein crystallization occurs. A good agreement with numerous experimental data leads to the conclusion that thermal effects play a significant role in CGS conduction and high-current filament formation while switching.
Perez, J. D.; Goldstein, J.; McComas, D. J.; Valek, P. W.; Fok, M. C. H.; Hwang, K. J.
2015-12-01
On 17-18 March 2015, there was a large (minimum SYM/H ENA magnetospheric imager, provides global images of the inner magnetosphere from which global distributions of ion flux, energy spectra, and pitch angle distributions are obtained. We will show how the observed ion pressure correlates with SYM/H. Examples of multiple peaks in the ion spatial distribution which may be due to multiple injections and/or energy and pitch angle dependent drift will be illustrated. Energy spectra will be shown to be non-Maxwellian, frequently having two peaks, one in the 10 keV range and another near 40 keV. Pitch angle distributions will be shown to have generally perpendicular anisotropy and that this can be time, space and energy dependent. The results are consistent with Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model simulations.
Bruns, Winfried
1988-01-01
Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. Their study has attracted many prominent researchers and has motivated the creation of theories which may now be considered part of general commutative ring theory. The book gives a first coherent treatment of the structure of determinantal rings. The main approach is via the theory of algebras with straightening law. This approach suggest (and is simplified by) the simultaneous treatment of the Schubert subvarieties of Grassmannian. Other methods have not been neglected, however. Principal radical systems are discussed in detail, and one section is devoted to each of invariant and representation theory. While the book is primarily a research monograph, it serves also as a reference source and the reader requires only the basics of commutative algebra together with some supplementary material found in the appendix. The text may be useful for seminars following a course in commutative ring theory since a ...
Impact of currents on surface fluxes computation and their feedback on coastal dynamics
A. Olita
2015-01-01
Full Text Available A twin numerical experiment was conducted in the seas of Sardinia (Western Mediterranean to assess the impact, at coastal scales, of the use of relative winds (i.e. taking into account ocean surface currents in the computation of heat and momentum fluxes through bulk formulas. The model, the Regional Ocean Modeling System (ROMS, was implemented at 2 km of resolution in order to well resolve (sub-mesoscale dynamics. Small changes (1–2% in terms of spatially-averaged fluxes correspond to quite large spatial differences of such quantities (up to 15–20% and to comparably significant differences in terms of mean velocities of the surface currents. Wind power input of the wind stress to the ocean surface P results also reduced by a 15%, especially where surface currents are stronger. Quantitative validation with satellite SST suggests that such a modification on the fluxes improves the model solution especially in areas of cyclonic circulation, where the heat fluxes correction is predominant in respect to the dynamical correction. Surface currents changes above all in their fluctuating part, while the stable part of the flow show changes mainly in magnitude and less in its path. Both total and eddy kinetic energies of the surface current field results reduced in the experiment where fluxes took into account for surface currents. Dynamically, the largest correction is observed in the SW area where anticyclonic eddies approach the continental slope. This reduction also impacts the vertical dynamics and specifically the local upwelling that results diminished both in spatial extension as well in magnitude. Simulations suggest that, even at local scales and in temperate regions, it is preferable to take into account for such a component in fluxes computation. Results also confirm the tight relationship between local coastal upwelling and eddy-slope interactions in the area.
A season in Saturn's rings: Cycling, recycling and ring history
Esposito, L. W.; Meinke, B. K.; Albers, N.; Sremcevic, M.
2012-04-01
Cassini experiments have watched Saturn's ring system evolve before our eyes. Images and occultations show changes and transient events. The rings are a dynamic and complex geophysical system, incompletely modeled as a single-phase fluid. Key Cassini observations: High resolution images show straw, propellers, embedded moonlets, and F ring objects. Multiple UVIS, RSS and VIMS occutlations indicate multimodal ringlet and edge structure, including free and forced modes along with stochastic perturbations that are most likely caused by nearby mass concentrations. Vertical excursions are evident at ring edges and in other perturbed regions. The rings are occasionally hit by meteorites that leave a signature that may last centuries; meteoritic dust pollutes the rings. Temperature, reflectance and transmission spectra are influenced by the dynamical state of the ring particles. Saturn's Equinox 2009: Oblique lighting exposed vertical structure and embedded objects. The rings were the coldest ever. Images inspired new occultation and spectral analysis that show abundant structure in the perturbed regions. The rings are more variable and complex than we had expected prior to this seasonal viewing geometry. Sub-kilometer structure in power spectral analysis: Wavelet analysis shows features in the strongest density waves and at the shepherded outer edge of the B ring. Edges are variable as shown by multiple occultations and occultations of double stars. F ring kittens: 25 features seen in the first 102 occultations show a weak correlation with Prometheus location. We interpret these features as temporary aggregations. Simulation results indicate that accretion must be enhanced to match the kittens' size distribution. Images show that Prometheus triggers the formation of transient objects. Propellers and ghosts: Occulations and images provide evidence for small moonlets in the A, B and C rings. These indicate accretion occurs inside the classical Roche limit. Implications
NONLINEAR DYNAMICS RESPONSE OF CASING PIPE UNDER COMBINED WAVE-CURRENT
TANG You-gang; GU Jia-yang; ZUO Jian-li; MIN Jian-qin
2005-01-01
The vortex-induced nonlinear vibration of casing pipes in the deep water was studied considering the loads of current and combined wave-current. The vortex-induced vibration equation of a casing pipe was set up considering the beam mode and Morison's nonlinear fluid loads as well as the vortex-excited loads. The approach of calculating vortex-excited nonlinear vibration by Galerkin's method was proposed. The natural vibration frequencies and modes were obtained, and the response including primary resonance induced by current and the composite resonance under combined wave-current for the 170 m long casing pipe in the 160 m depth of water were investigated. The results show that the dynamics response of casing pipe obviously increases, and the complicated response behaviors of casing pipe are described under combined wave-current.
Dynamics of the Plasmoid-unstable Regime in Different Multiple-current Plasmas
Nemati, M. J.; Wang, Zheng-Xiong; Wei, Lai
2017-02-01
The dynamics of plasmoid instability in multiple-current plasmas with different system sizes is investigated by means of resistive magnetohydrodynamic simulations. As the system size is increased, the secondary current sheets become very long, producing more plasmoids. It is found that the dependence on resistivity η of the number of plasmoids changes from no clear scaling for small system size, to scaling in ∼ {η }-1 for large system size. Moreover, increasing the current length of the system weakens the negative dependence of the early growth rate of the monster plasmoid on η. This is qualitatively different from the reconnection rate for a single-current sheet, where it usually has a positive dependence on η or is independent of η. In addition, increasing the current length significantly increases the maximum width of the monster plasmoid in the low-η regime, manifesting a scaling ∼ {η }-0.4.
2010-10-13
hypothesis, that cave rings are formed in the same manner as coffee rings[3], that is, due to the enhanced deposition at the edges of sessile drops ...ring’ is the deposit formed when a sessile drop of a solution containing dissolved particles, such as coffee or salt, dries. This was investigated by...who expanded on Deegan et al.[3] to find an exact form for the evaporation flux over a sessile drop . It turns out that solving 179 for the flux is
Design studies for the electron storage ring EUTERPE
Xi Boling
1995-05-18
The 400 MeV electron storage ring EUTERPE is under construction at Eindhoven University of Technology. The ring is to be used as an experimental tool for accelerator physics studies and synchroton radiation applications. The main task of the current research work is the electron optical design of the ring. Lattice design is a basis for machine design as a whole. Design aspects regarding the basic lattice, based on single particle dynamics, include determination of the equilibrium beam size and bunch length, design of achromatic bending sections, selection of tune values, correction of chromaticity, and minimization of the natural emittance in the ring. The basic lattice designed for the EUTERPE ring has a high flexibility so that different electron optical modes can be realized easily. In low energy storage rings with a high beam current, collective effects can cause a significant change in the bunch length, the transverse emittance and the beam lifetime. In order to ensure a good optical performance for the ring, the choice of suitable parameters concerning the vacuum and RF system are essential as far as collective effects are concerned. An estimation of the collective effects in the ring is given. The injector for EUTERPE is a 75 MeV racetrack microtron which is injected from a 10 MeV linac. In order to get sufficient beam current in the ring, a special procedure of continuous injection with an adjustable locally shifted closed orbit has been presented. Details of the injection procedure and numerical simulations are given. (orig./HSI).
Numerical methods in vehicle system dynamics: state of the art and current developments
Arnold, M.; Burgermeister, B.; Führer, C.; Hippmann, G.; Rill, G.
2011-07-01
introduced and illustrated by a well-known benchmark problem from rail vehicle simulation. Over the last few decades, the complexity of high-end applications in vehicle system dynamics has frequently given a fresh impetus for substantial improvements of numerical methods and for the development of novel methods for new problem classes. In the present paper, we address three of these challenging problems of current interest that are today still beyond the mainstream of numerical mathematics: (i) modelling and simulation of contact problems in multibody dynamics, (ii) real-time capable numerical simulation techniques in vehicle system dynamics and (iii) modelling and time integration of multidisciplinary problems in system dynamics including co-simulation techniques.
Altucci, C.; Velotta, R.; Marangos, J. P.
2010-06-01
In this review we attempt to sketch an overview of the various methods currently being used or under development to enable ultra-fast dynamic imaging of matter. We concentrate on those techniques which combine atomic scale spatial resolution and femtosecond or even sub-femtosecond temporal resolution. In part this review was inspired and informed by the material presented at the 'Ultrafast Dynamic Imaging II' workshop held in Ischia, Italy in April 2009, but we also have drawn on a wider background of material especially when discussing the emerging laser-based methods.
Dynamics of the plasma current sheath in plasma focus discharges in different gases
Vinogradov, V. P.; Krauz, V. I., E-mail: krauz-vi@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation); Mokeev, A. N. [Project Center ITER (Russian Federation); Myalton, V. V.; Kharrasov, A. M. [National Research Center Kurchatov Institute (Russian Federation)
2016-12-15
The shape of the plasma current sheath (PCS) in the final stage of its radial compression, the dynamics of pinching, and the subsequent pinch decay in plasma focus (PF) discharges in different gases are studied using an improved multichannel system of electron-optical plasma photography and a newly elaborated synchronization system. The PCS structure in discharges in heavy gases (Ne, Ar) is found to differ significantly from that in discharges in hydrogen and deuterium. The influence of a heavy gas (Xe) additive to hydrogen and deuterium on the structure and compression dynamics of the PCS is investigated.
Wide dynamic range 500 fA sensitivity current measurement instrument
Pelemeshko Anatoly
2017-01-01
Full Text Available Main technical features of Low Energy Charged Particle Sensor (LECPS are described, taking into account LECPS high sensitivity, wide dynamic range, and conditions of in-flight operation on-board a satellite. LECPS input cascade is capable of current measurement as low as 1 pA within a 120 dB dynamic range, providing error level below 20%. Statistical calculations of acquired data, measuring time considerations and implementation of input cascade auto-calibration technique were applied to gain the best possible stability and accuracy over −20° to +50°C operation temperature.
Magnetization of two coupled rings
Avishai, Y [Department of Physics and Ilse Katz Center for Nanotechnology, Ben Gurion University, Beer Sheva 84105 (Israel); Luck, J M [Institut de Physique Theorique, IPhT, CEA Saclay, and URA 2306, CNRS, 91191 Gif-sur-Yvette cedex (France)], E-mail: yshai@bgu.ac.il, E-mail: jean-marc.luck@cea.fr
2009-05-01
We investigate the persistent currents and magnetization of a mesoscopic system consisting of two clean metallic rings sharing a single contact point in a magnetic field. Many novel features with respect to the single-ring geometry are underlined, including the explicit dependence of wavefunctions on the Aharonov-Bohm fluxes, the complex pattern of two-fold and three-fold degeneracies, the key role of length and flux commensurability, and in the case of commensurate ring lengths the occurrence of idle levels which do not carry any current. Spin-orbit interactions, induced by the electric fields of charged wires threading the rings, give rise to a peculiar version of the Aharonov-Casher effect where, unlike for a single ring, spin is not conserved. Remarkably enough, this can only be realized when the Aharonov-Bohm fluxes in both rings are neither integer nor half-integer multiples of the flux quantum.
Tang, Weiwei; Wang, Lin; Chen, Xiaoshuang; Liu, Changlong; Yu, Anqi; Lu, Wei
2016-08-18
Structured plasmonic metamaterials offer a new way to design functionalized optical and electrical components, since they can be size-scaled for operation across the whole electromagnetic spectrum. Here, we theoretically investigated electrical active split ring resonators based on graphene metamaterials on a SiO2/Si substrate that shows tunable frequency and amplitude modulation. For the symmetrical structure, the modulation depth of the frequency and amplitude can reach 58.58% and 99.35%, and 59.53% and 97.7% respectively in the two crossed-polarization orientations. Once asymmetry is introduced in the structure, the higher order mode which is inaccessible in the symmetrical structure can be excited, and a strong interaction among the modes in the split ring resonator forms a transparency window in the absorption band of the dipole resonance. Such metamaterials could facilitate the design of active modulation, and slow light effect for terahertz waves. Potential outcomes such as higher sensing abilities and higher-Q resonances at terahertz frequencies are demonstrated through numerical simulations with realistic parameters.
Flavio eFrohlich
2013-11-01
Full Text Available Transcranial current stimulation (TCS is a promising method of non-invasive brain stimulation to modulate cortical network dynamics. Preliminary studies have demonstrated the ability of TCS to enhance cognition and reduce symptoms in both neurological and psychiatric illnesses. Despite the encouraging results of these studies, the mechanisms by which TCS and endogenous network dynamics interact remain poorly understood. Here, we propose that the development of the next generation of TCS paradigms with increased efficacy requires such mechanistic understanding of how weak electric fields imposed by TCS interact with the nonlinear dynamics of large-scale cortical networks. We highlight key recent advances in the study of the interaction dynamics between TCS and cortical network activity. In particular, we demonstrate the opportunities provided by an interdisciplinary approach that bridges neurobiology and electrical engineering. We discuss the use of (1 hybrid biological-electronic experimental approaches to disentangle feedback interactions, (2 large-scale computer simulations for the study of weak global perturbations imposed by TCS, and (3 optogenetic manipulations informed by dynamics systems theory to probe network dynamics. Together, we here provide the foundation for the use of rational design for the development of the next generation of TCS neurotherapeutics.
Vidal L., Francisco V.; Vidal L., Victor M. V.; Molero, José María Pérez
Surface and deep circulation of the central and western Gulf of Mexico is controlled by interactions of rings of water pinched from the gulf's Loop Current. The discovery was made by Mexican oceanographers who are preparing a full-color, 8-volume oceanographic atlas of the gulf.Anticyclonic warm-core rings pinch off the Loop Current at a rate of about one to two per year, the scientists of the Grupo de Estudios Oceanográficos of the Instituto de Investigaciones Eléctricas (GEO-IIE) found. The rings migrate west until they collide with the continental shelf break of the western gulf, almost always between 22° and 23°N latitude. On their westward travel they transfer angular momentum and vorticity to the surrounding water, generating cyclonic circulations and vortex pairs that completely dominate the entire surface and deep circulation of the central and western gulf.
Brandt, P. C.; Mitchell, D. G.; Gurnett, D. A.; Persoon, A. M.; Tsyganenko, N. A.
2012-04-01
It has been know for some time that the large-scale energetic particle injections (~3-200 keV) on the nigh side of Saturn observed by Cassini/INCA are closely tracked by the periodic Saturn Kilometric Radiation (SKR). The resulting energetic particle pressure is comparable to that of the colder plasma and it therefore distorts the global magnetic field significantly as the energetic particle population drifts around Saturn. In this presentation we discuss the important consequences this has for the large-scale dynamics and configuration of the entire inner magnetosphere of Saturn. We begin by reviewing the observational correlations between remote, global INCA observations of energetic particles, magnetic field distortions, and radio emissions. We present examples of how the magnetic field measurements and the INCA observations show direct implications of a rotating 3D electrical current system associated with, not only, the energetic particle pressure, but also with an interhemispheric field-aligned current (FAC) system. Recently, we found an intriguing high correlation also between the periodic motion of the high-latitude plasmapause-like boundary reported by Gurnett et al. [2011] and the energetic particles observed remotely by INCA that are periodically injected on the night side and then drift around Saturn according to their energy. In our preliminary analysis we see a direct correlation in at least 75% of the case with the center of drifting energetic particle distribution [Brandt et al., 2010] and the encounter with the rotating plasmapause-like density boundary [Gurnett et al., 2011]. However, the remaining, low-correlation cases suggest that we do not fully understand the global, 3D current system that produces the periodic perturbations in Saturn's magnetosphere. We will use these observations to constrain the underlying 3D current system and in particular, assess the role of interhemispheric FACs in reproducing the observations.
The coupling of mechanical dynamics and induced currents in plates and surfaces
Weissenburger, D.W.; Bialek, J.M.
1986-10-01
Significant mechanical reactions and deflections may be produced when electrical eddy currents induced in a conducting structure by transformer-like electromotive forces interact with background magnetic fields. Additional eddy currents induced by structural motion through the background fields modify both the mechanical and electrical dynamic behavior of the system. The observed effects of these motional eddy currents are sometimes referred to as magnetic damping and magnetic stiffness. This paper addresses the coupled structural deformation and eddy currents in flat plates and simple two-dimensional surfaces in three-space. A coupled system of equations has been formulated using finite element techniques for the mechanical aspects and a mesh network method for the electrical aspects of the problem.
Impact of currents on surface flux computations and their feedback on dynamics at regional scales
Olita, A.; Iermano, I.; Fazioli, L.; Ribotti, A.; Tedesco, C.; Pessini, F.; Sorgente, R.
2015-08-01
A twin numerical experiment was conducted in the seas around the island of Sardinia (Western Mediterranean) to assess the impact, at regional and coastal scales, of the use of relative winds (i.e., taking into account ocean surface currents) in the computation of heat and momentum fluxes through standard (Fairall et al., 2003) bulk formulas. The Regional Ocean Modelling System (ROMS) was implemented at 3 km resolution in order to well resolve mesoscale processes, which are known to have a large influence in the dynamics of the area. Small changes (few percent points) in terms of spatially averaged fluxes correspond to quite large differences of such quantities (about 15 %) in spatial terms and in terms of kinetics (more than 20 %). As a consequence, wind power input P is also reduced by ~ 14 % on average. Quantitative validation with satellite SST suggests that such a modification of the fluxes improves the model solution especially in the western side of the domain, where mesoscale activity (as suggested by eddy kinetic energy) is stronger. Surface currents change both in their stable and fluctuating part. In particular, the path and intensity of the Algerian Current and of the Western Sardinia Current (WSC) are impacted by the modification in fluxes. Both total and eddy kinetic energies of the surface current field are reduced in the experiment where fluxes took into account the surface currents. The main dynamical correction is observed in the SW area, where the different location and strength of the eddies influence the path and intensity of the WSC. Our results suggest that, even at local scales and in temperate regions, it would be preferable to take into account such a contribution in flux computations. The modification of the original code, substantially cost-less in terms of numerical computation, improves the model response in terms of surface fluxes (SST validated) and it also likely improves the dynamics as suggested by qualitative comparison with
Dynamic Software Updating with Gosh! Current Status and the Road Ahead
Gregersen, Allan Raundahl; Rasmussen, Michael; Jørgensen, Bo Nørregaard
2013-01-01
Any non-trivial software system has to be upgraded regularly to incorporate bug fixes and security patches or simply to keep up with the inevitable evolution in end-user requirements. Software upgrading is challenging, especially when it comes to online upgrading of running systems. In this paper......, we present the current status of Gosh!, a dynamic-software-updating system for Java, which provides comprehensive support for changing class definitions of live objects, including adding, removing and moving fields, methods, classes and interfaces anywhere in the inheritance hierarchy. Prior...... to the acquisition by zeroturnaround.com, Gosh! was known as Javeleon. In this paper we demonstrate the capabilities of Gosh! by performing a dynamic updating experiment on five consecutive revisions of the classical arcade game Breakout. Based on the result of this experiment we show that dynamic updating of class...
Sentchev, Alexei; Forget, Philippe; Fraunié, Philippe
2017-02-01
Ocean surface boundary layer dynamics off the southern coast of France in the NW Mediterranean is investigated by using velocity observations by high-frequency (HF) radars, surface drifting buoys and a downward-looking drifting acoustic Doppler current profiler (ADCP). The analysis confirms that velocities measured by HF radars correspond to those observed by an ADCP at the effective depth z f = k -1, where k is wavenumber of the radio wave emitted by the radar. The radials provided by the radars were in a very good agreement with in situ measurements, with the relative errors of 1 and 9 % and root mean square (RMS) differences of 0.02 and 0.04 m/s for monostatic and bistatic radar, respectively. The total radar-based velocities appeared to be slightly underestimated in magnitude and somewhat biased in direction. At the end of the survey period, the difference in the surface current direction, based on HF radar and ADCP data, attained 10°. It was demonstrated that the surface boundary layer dynamics cannot be reconstructed successfully without taking into the account velocity variation with depth. A significant misalignment of ˜30° caused by the sea breeze was documented between the HF radar (HFR-derived) surface current and the background current. It was also found that the ocean response to a moderate wind forcing was confined to the 4-m-thick upper layer. The respective Ekman current attained the maximum value of 0.15 m/s, and the current rotation was found to be lagging the wind by approximately 40 min, with the current vector direction being 15-20° to the left of the wind. The range of velocity variability due to wind forcing was found comparable with the magnitude of the background current variability.
Nano-electron beam induced current and hole charge dynamics through uncapped Ge nanocrystals
Marchand, A.; El Hdiy, A.; Troyon, M. [Laboratoire de Recherche en Nanosciences, Bat. 6, case no 15, UFR Sciences, Universite de Reims Champagne Ardenne, 51687 Reims Cedex 2 (France); Amiard, G.; Ronda, A.; Berbezier, I. [IM2NP, Faculte des Sciences et Techniques, Campus de Saint Jerome - Case 142, Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20 (France)
2012-04-16
Dynamics of hole storage in spherical Ge nanocrystals (NCs) formed by a two step dewetting/nucleation process on an oxide layer grown on an n-doped <001> silicon substrate is studied using a nano-electron beam induced current technique. Carrier generation is produced by an electron beam irradiation. The generated current is collected by an atomic force microscope--tip in contact mode at a fixed position away from the beam spot of about 0.5 {mu}m. This distance represents the effective diffusion length of holes. The time constants of holes charging are determined and the effect of the NC size is underlined.
Kuznetsova, M. M.; Hesse, M.; Rastaetter, L.; Toth, G.; DeZeeuw, D. L.; Gombosi, T. I.
2008-01-01
Magnetotail current sheet thinning and magnetic reconnection are key elements of magnetospheric substorms. We utilized the global MHD model BATS-R-US with Adaptive Mesh Refinement developed at the University of Michigan to investigate the formation and dynamic evolution of the magnetotail thin current sheet. The BATSRUS adaptive grid structure allows resolving magnetotail regions with increased current density up to ion kinetic scales. We investigated dynamics of magnetotail current sheet thinning in response to southwards IMF turning. Gradual slow current sheet thinning during the early growth phase become exponentially fast during the last few minutes prior to nightside reconnection onset. The later stage of current sheet thinning is accompanied by earthward flows and rapid suppression of normal magnetic field component $B-z$. Current sheet thinning set the stage for near-earth magnetic reconnection. In collisionless magnetospheric plasma, the primary mechanism controlling the dissipation in the vicinity of the reconnection site is non-gyrotropic effects with spatial scales comparable with the particle Larmor radius. One of the major challenges in global MHD modeling of the magnetotail magnetic reconnection is to reproduce fast reconnection rates typically observed in smallscale kinetic simulations. Bursts of fast reconnection cause fast magnetic field reconfiguration typical for magnetospheric substorms. To incorporate nongyritropic effects in diffusion regions we developed an algorithm to search for magnetotail reconnection sites, specifically where the magnetic field components perpendicular to the local current direction approaches zero and form an X-type configuration. Spatial scales of the diffusion region and magnitude of the reconnection electric field are calculated self-consistently using MHD plasma and field parameters in the vicinity of the reconnection site. The location of the reconnection sites and spatial scales of the diffusion region are updated
Ginzburg-Landau vortex dynamics with pinning and strong applied currents
Serfaty, Sylvia
2010-01-01
We study a mixed heat and Schr\\"odinger Ginzburg-Landau evolution equation on a bounded two-dimensional domain with an electric current applied on the boundary and a pinning potential term. This is meant to model a superconductor subjected to an applied electric current and electromagnetic field and containing impurities. Such a current is expected to set the vortices in motion, while the pinning term drives them toward minima of the pinning potential and "pins" them there. We derive the limiting dynamics of a finite number of vortices in the limit of a large Ginzburg-Landau parameter, or $\\ep \\to 0$, when the intensity of the electric current and applied magnetic field on the boundary scale like $\\lep$. We show that the limiting velocity of the vortices is the sum of a Lorentz force, due to the current, and a pinning force. We state an analogous result for a model Ginzburg-Landau equation without magnetic field but with forcing terms. Our proof provides a unified approach to various proofs of dynamics of Gin...
A Versatile Control Scheme For Dynamic Voltage Restorer To Limit Downstream Fault Currents
A.Nagendra
2014-12-01
Full Text Available The Dynamic Voltage Restorer (DVR is a custom power device utilized to counteract voltage sags. It injects controlled three-phase ac voltages in series with the supply voltage, subsequent to voltage sag, to enhance voltage quality by adjusting the voltage magnitude, wave shape, and phase angle. The DVR is conventionally bypassed during a downstream fault to prevent potential adverse impacts on the fault and to protect the DVR components against the fault current. This paper proposes an augmented control strategy for the DVR that provides:1 voltage-sag compensation under balanced and unbalanced conditions and 2 a fault current interruption (FCI function. This paper introduces and evaluates an auxiliary control strategy for downstream fault current interruption in a radial distribution line by means of a dynamic voltage restorer (DVR. The proposed controller supplements the voltage-sag compensation control of the DVR. It does not require phaselocked loop and independently controls the magnitude and phase angle of the injected voltage for each phase. Fast least error squares digital filters are used to estimate the magnitude and phase of the measured voltages and effectively reduce the impacts of noise, harmonics, and disturbances on the estimated phasor parameters, and this enables effective fault current interrupting even under arcing fault conditions. The performance of the DVR for fault current interruption is analyzed by using MATLAB/SIMULINK software.
Simin, A. A.; Fridman, A. M.; Haud, U. A.
1991-09-01
A Galaxy model in which the surface density of the gas component has a sharp (two orders of magnitude) jump in the region of the outer radius of the molecular ring is constructed on the basis of observational data. This model is used to calculate the contributions of each population to the model curve of Galactic rotation. The value of the dimensionless increment of hydrodynamical instability for the gas component, being much less than 1, coincides with a similar magnitude for the same gas in the gravity field of the entire Galaxy. It is concluded that the unstable gas component of the Galaxy lies near the limit of the hydrodynamical instability, which is in accordance with the Le Chatelier principle. The stellar populations of the Galaxy probably do not affect the generation of the spiral structure in the gaseous component.
Araki, Suguru
1991-01-01
The kinetic theory of planetary rings developed by Araki and Tremaine (1986) and Araki (1988) is extended and refined, with a focus on the implications of finite particle size: (1) nonlocal collisions and (2) finite filling factors. Consideration is given to the derivation of the equations for the local steady state, the low-optical-depth limit, and the steady state at finite filling factors (including the effects of collision inelasticity, spin degrees of freedom, and self-gravity). Numerical results are presented in extensive graphs and characterized in detail. The importance of distinguishing effects (1) and (2) at low optical depths is stressed, and the existence of vertical density profiles with layered structures at high filling factors is demonstrated.
刘丹; 张树波; 刘庆河
2013-01-01
The eddy current distribution and eddy current loss of turbine generator retaining ring are analysed by analytical method in this paper. The common formula to calculate the eddy current loss is obtained.% 本文用解析法分析了汽轮发电机转子护环涡流分布及其涡流损耗，得出了计算汽轮发电机转子护环涡流损耗的一般公式。
Adelnia, Fatemeh [Dipartimento di Fisica, Università degli Studi di Milano and INSTM, I-20133 Milano (Italy); Dipartimento di Fisica, Università degli Studi di Pavia and INSTM, I-27100 Pavia (Italy); Chiesa, Alessandro; Bordignon, Sara; Carretta, Stefano [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Parma, I-43124 Parma (Italy); Ghirri, Alberto; Candini, Andrea [CNR Institute Nanosciences S3, I- 41125 Modena (Italy); Cervetti, Christian [Dipartimento di Scienze Fisiche, Informatiche, Matematiche, Università di Modena e Reggio Emilia, I-41125 Modena (Italy); Evangelisti, Marco [CNR Institute Nanosciences S3, I- 41125 Modena (Italy); Dipartimento di Scienze Fisiche, Informatiche, Matematiche, Università di Modena e Reggio Emilia, I-41125 Modena (Italy); Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain); Affronte, Marco [CNR Institute Nanosciences S3, I- 41125 Modena (Italy); Dipartimento di Scienze Fisiche, Informatiche, Matematiche, Università di Modena e Reggio Emilia, I-41125 Modena (Italy); Sheikin, Ilya [Grenoble High Magnetic Field Laboratory, CNRS-LNCMI, 25, B.P. 166, 38042 Grenoble Cedex 9 (France); Winpenny, Richard; Timco, Grigore [The Lewis Magnetism Laboratory, The University of Manchester, M13 9PL Manchester (United Kingdom); Borsa, Ferdinando [Dipartimento di Fisica, Università degli Studi di Pavia and INSTM, I-27100 Pavia (Italy); and others
2015-12-28
A detailed experimental investigation of the effects giving rise to the magnetic energy level structure in the vicinity of the level crossing (LC) at low temperature is reported for the open antiferromagnetic molecular ring Cr{sub 8}Zn. The study is conducted by means of thermodynamic techniques (torque magnetometry, magnetization and specific heat measurements) and microscopic techniques (nuclear magnetic resonance line width, nuclear spin lattice, and spin-spin relaxation measurements). The experimental results are shown to be in excellent agreement with theoretical calculations based on a minimal spin model Hamiltonian, which includes a Dzyaloshinskii-Moriya interaction. The first ground state level crossing at μ{sub 0}H{sub c1} = 2.15 T is found to be an almost true LC while the second LC at μ{sub 0}H{sub c2} = 6.95 T has an anti-crossing gap of Δ{sub 12} = 0.19 K. In addition, both NMR and specific heat measurements show the presence of a level anti-crossing between excited states at μ{sub 0}H = 4.5 T as predicted by the theory. In all cases, the fit of the experimental data is improved by introducing a distribution of the isotropic exchange couplings (J), i.e., using a J strain model. The peaks at the first and second LCs in the nuclear spin-lattice relaxation rate are dominated by inelastic scattering and a value of Γ ∼ 10{sup 10} rad/s is inferred for the life time broadening of the excited state of the open ring, due to spin phonon interaction. A loss of NMR signal (wipe-out effect) is observed for the first time at LC and is explained by the enhancement of the spin-spin relaxation rate due to the inelastic scattering.
Current perspectives on the dynamics of antibiotic resistance in different reservoirs
Eduarda Gomes-Neves
2015-01-01
Antibiotic resistance consists of a dynamic web. In this review, we describe the path by which different antibiotic residues and antibioticresistance genes disseminate among relevant reservoirs (human, animal, and environmental settings), evaluating how these events contribute tothe current scenario of antibiotic resistance. The relationship between the spread of resistance and the contribution of different genetic elementsand events is revisited, exploring examples of the processes by which ...
Filipp, N.D.; Blaunshtein, N.SH.; Erukhimov, L.M.; Ivanov, V.A.; Uriadov, V.P.
1991-01-01
Current experimental and theoretical data relevant to the study of dynamic processes in the ionospheric plasma using state-of-the-art methods are summarized. The methods used include linear FM sounding, partial radio wave reflection, oblique-incidence radio wave scattering, radio wave heating of the ionosphere, plasma injection, and computer simulation of physical processes. For each specific method, experimental data are compared against theoretical predictions and numerical calculations. 251 refs.
Dynamics at Solid State Surfaces and Interfaces, Volume 1 Current Developments
Bovensiepen, Uwe; Wolf, Martin
2010-01-01
This two-volume work covers ultrafast structural and electronic dynamics of elementary processes at solid surfaces and interfaces, presenting the current status of photoinduced processes. Providing valuable introductory information for newcomers to this booming field of research, it investigates concepts and experiments, femtosecond and attosecond time-resolved methods, as well as frequency domain techniques. The whole is rounded off by a look at future developments.
Twisted Grosse-Wulkenhaar $\\phi^{\\star 4}$ model: dynamical noncommutativity and Noether currents
Hounkonnou, Mahouton Norbert
2009-01-01
This paper addresses the computation of Noether currrents for the renormalizable Grosse-Wulkenhaar (GW) $\\phi^{\\star 4}$ model subjected to a dynamical noncomutativity realized through a twisted Moyal product. The noncommutative (NC) energy-momentum tensor (EMT), angular momentum tensor (AMT) and the dilatation current (DC) are explicitly derived. The breaking of translation and rotation invariances has been avoided via a constraint equation.
High-accuracy current measurement with low-cost shunts by means of dynamic error correction
Weßkamp, Patrick; Melbert, Joachim
2016-01-01
Measurement of electrical current is often performed by using shunt resistors. Thermal effects due to self-heating and ambient temperature variation limit the achievable accuracy, especially if low-cost shunt resistors with increased temperature coefficients are utilized. In this work, a compensation method is presented which takes static and dynamic temperature drift effects into account and provides a significant reduction of measurement error. A thermal model of the shunt...
Design of a novel electrostatic ion storage ring at KACST
Ghazaly, M O A El; Welsch, C P; Alharbi, H H
2013-01-01
A new electrostatic storage ring for beams at energies up to 30keV.q is currently under development at the National Centre for Mathematics and Physics (NCMP), King Abdulaziz City for Science and Technology (KACST). The ring design is based on the existing electrostatic storage rings, but stretches significantly beyond them in that it shall form the core of a unique flexible experimental facility at KACST. The lattice of this ring has been designed in a way that enables the use of state-of-the-art experimental methods to study electron-ion, laser-ion, and ion-neutral beams interactions. The lattice design also allows for a future upgrade of the ring to a double storage ring structure that would enable ion-ion beam interactions to be performed. In this paper, we present the design of this ring with a focus on beam dynamics calculations for the 7o single-bend racetrack layout. The study is principally based on the SIMION8 program. We complemented this study further by using purpose-written routine and MAD-X simu...
Saraga, F; Skinner, F K
2002-01-01
Recent experimental and model work indicates that slowly inactivating potassium currents might play critical roles in generating population rhythms. In particular, slow (hippocampus correlate with oscillatory behaviors in interneurons in this frequency range. Limiting the ion channels to the traditional Hodgkin-Huxley sodium and potassium currents, a persistent sodium current, and a slowly inactivating potassium current, we explore the role of slowly inactivating conductances in a multi-compartmental interneuronal model. We find a rich repertoire of tonic and bursting behaviors depending on the distribution, density and kinetics of this conductance. Specifically, burst frequencies of appropriate frequencies could be obtained for certain distributions and kinetics of this conductance. Robust (with respect to injected currents) regimes of tonic firing and bursting behaviors are uncovered. In addition, we find a bistable tonic firing pattern that depends on the slowly inactivating potassium current. Therefore, this work shows ways in which different channel distributions and heterogeneities could produce variable signal outputs. We suggest that an understanding of the dynamical profiles of inhibitory neurons based on the density and distribution of their currents is helpful in dissecting out the complex roles played by this heterogeneous group of cells.
Dynamic Processes of Cross-Tail Current in the Near-Earth Magnetotail
LU Xing-Qiang; MA Zhi-Wei
2009-01-01
Current dynamic processes in realistic magnetotail geometry are studied by Hall magnetohydrodynamic (MHD)simulations under various driven conditions and Hall effects. Associated with the external driving force, a thin current sheet with a broad extent is built up in the near-Earth magnetotail. The time evolution for the formation of the current sheet comprises two phases: slow growth and a fast impulsive phase before the near-Earth disruption of the current sheet resulting from the fast magnetic reconnection. The simulation results indicate that as the external driving force increases, the site and the tailward speed of the near-Earth current disruption region are closer to the Earth and faster, respectively. Whether the near-Earth disruption of the current sheet takes place or not is mainly controlled by Hall effects. It is found that there is no sudden disruption of the current sheet in the near-Earth region if the ion inertial length is below di = 0.04.
Cascaded uncoupled dual-ring modulator
Gu, Tingyi; Wong, Chee Wei; Dong, Po
2014-01-01
We demonstrate that by coherent driving two uncoupled rings in same direction, the effective photon circulating time in the dual ring modulator is reduced, with increased modulation quality. The inter-ring detuning dependent photon dynamics, Q-factor, extinction ratio and optical modulation amplitude of two cascaded silicon ring resonators are studied and compared with that of a single ring modulator. Experimentally measured eye diagrams, together with coupled mode theory simulations, demonstrate the enhancement of dual ring configuration at 20 Gbps with a Q ~ 20,000.
Wells, Frederick S.; Pan, Alexey V.; Golovchanskiy, Igor A.; Fedoseev, Sergey A.; Rozenfeld, Anatoly
2017-01-01
The dynamics of transient current distributions in superconducting YBa2Cu3O7−δ thin films were investigated during and immediately following an external field ramp, using high-speed (real-time) Magneto-Optical Imaging and calculation of dynamic current profiles. A number of qualitatively unique and previously unobserved features are seen in this novel analysis of the evolution of supercurrent during penetration. As magnetic field ramps up from zero, the dynamic current profile is characterized by strong peaks, the magnitude of which exceed the conventional critical current density (as determined from static current profiles). These peaks develop close to the sample edges, initially resembling screening currents but quickly growing in intensity as the external field increases. A discontinuity in field and current behaviour is newly observed, indicating a novel transition from increasing peak current toward relaxation behaviour. After this transition, the current peaks move toward the centre of the sample while reducing in intensity as magnetic vortices penetrate inward. This motion slows exponentially with time, with the current distribution in the long-time limit reducing to the expected Kim-model profile. PMID:28067331
Wells, Frederick S; Pan, Alexey V; Golovchanskiy, Igor A; Fedoseev, Sergey A; Rozenfeld, Anatoly
2017-01-09
The dynamics of transient current distributions in superconducting YBa2Cu3O7-δ thin films were investigated during and immediately following an external field ramp, using high-speed (real-time) Magneto-Optical Imaging and calculation of dynamic current profiles. A number of qualitatively unique and previously unobserved features are seen in this novel analysis of the evolution of supercurrent during penetration. As magnetic field ramps up from zero, the dynamic current profile is characterized by strong peaks, the magnitude of which exceed the conventional critical current density (as determined from static current profiles). These peaks develop close to the sample edges, initially resembling screening currents but quickly growing in intensity as the external field increases. A discontinuity in field and current behaviour is newly observed, indicating a novel transition from increasing peak current toward relaxation behaviour. After this transition, the current peaks move toward the centre of the sample while reducing in intensity as magnetic vortices penetrate inward. This motion slows exponentially with time, with the current distribution in the long-time limit reducing to the expected Kim-model profile.
Wells, Frederick S.; Pan, Alexey V.; Golovchanskiy, Igor A.; Fedoseev, Sergey A.; Rozenfeld, Anatoly
2017-01-01
The dynamics of transient current distributions in superconducting YBa2Cu3O7‑δ thin films were investigated during and immediately following an external field ramp, using high-speed (real-time) Magneto-Optical Imaging and calculation of dynamic current profiles. A number of qualitatively unique and previously unobserved features are seen in this novel analysis of the evolution of supercurrent during penetration. As magnetic field ramps up from zero, the dynamic current profile is characterized by strong peaks, the magnitude of which exceed the conventional critical current density (as determined from static current profiles). These peaks develop close to the sample edges, initially resembling screening currents but quickly growing in intensity as the external field increases. A discontinuity in field and current behaviour is newly observed, indicating a novel transition from increasing peak current toward relaxation behaviour. After this transition, the current peaks move toward the centre of the sample while reducing in intensity as magnetic vortices penetrate inward. This motion slows exponentially with time, with the current distribution in the long-time limit reducing to the expected Kim-model profile.
Effect of Upward Internal Flow on Dynamics of Riser Model Subject to Shear Current
CHEN Zheng-shou; KIM Wu-joan; XIONG Cong-bo
2012-01-01
Numerical study about vortex-induced vibration (VIV) related to a flexible riser model in consideration of internal flow progressing inside has been performed.The main objective of this work is to investigate the coupled fluid-structure interaction (FSI) taking place between tensioned riser model,external shear current and upward-progressing internal flow (from ocean bottom to surface).A CAE technology behind the current research which combines structural softwàre with the CFD technology has been proposed.According to the result from dynamic analysis,it has been found that the existence of upward-progressing internal flow does play an important role in determining the vibration mode (/dominant frequency),vibration intensity and the magnitude of instantaneous vibration amplitude,when the velocity ratio of internal flow against external current is relatively high.As a rule,the larger the velocity of internal flow is,the more it contributes to the dynamic vibration response of the flexible riser model.In addition,multi-modal vibration phenomenon has been widely observed,for asymmetric curvature along the riser span emerges in the case of external shear current being imposed.
Dissipative particle dynamics simulation for the density currents of polymer fluids
Li, Yanggui; Geng, Xingguo; Liu, Zhijun; Liu, Qingsheng; Ouyang, Jie
2016-11-01
In this work, the two-dimensional lock-exchange density currents of polymer fluids are numerically investigated using dissipative particle dynamics (DPD) at the mesoscale particle level. A modified finitely extensible nonlinear elastic (FENE) chain model is chosen to describe the polymer system, which perfectly depicts not only the elastic tension but also the elastic repulsion between the adjacent beads with bond length as the equilibrium length of one segment. Through the model and numerical simulation, we analyze the dynamics behavior of the density currents of polymer fluids. A comparison with its Newtonian counterpart suggests that the interface between two polymer fluids is more smoothed, and the front structure is different from the Newtonian case because the Kelvin-Helmholtz instability and cleft instability are suppressed by the polymer. Besides, we also probe the influences of polymer volume concentration, chain length and extensibility on the density currents. These simulation results show that increasing any of the parameters, concentration, chain length, and extensibility, the inhibiting effect of polymer on the density currents becomes more significant.
A 155-dB Dynamic Range Current Measurement Front End for Electrochemical Biosensing.
Dai, Shanshan; Perera, Rukshan T; Yang, Zi; Rosenstein, Jacob K
2016-10-01
An integrated current measurement system with ultra wide dynamic range is presented and fabricated in a 180-nm CMOS technology. Its dual-mode design provides concurrent voltage and frequency outputs, without requiring an external clock source. An integrator-differentiator core provides a voltage output with a noise floor of 11.6 fA/ [Formula: see text] and a -3 dB cutoff frequency of 1.4 MHz. It is merged with an asynchronous current-to-frequency converter, which generates an output frequency linearly proportional to the input current. Together, the voltage and frequency outputs yield a current measurement range of 155 dB, spanning from 204 fA (100 Hz) or 1.25 pA (10 kHz) to 11.6 μA. The proposed architecture's low noise, wide bandwidth, and wide dynamic range make it ideal for measurements of highly nonlinear electrochemical and electrophysiological systems.
Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows
Matsuoka, C.; Nishihara, K.; Sano, T.
2016-10-01
A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.
Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows
Matsuoka, C.; Nishihara, K.; Sano, T.
2017-04-01
A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.
国欣涛
2011-01-01
Tricuspid valve disease is a common heart valve disease, among which tricuspid regurgitation is more common than tricuspid stenosis, especially the functional tricuspid regurgitation.Surgical treatment of tricuspid insufficiency experienced suture annuloplasty to the hard artificial valve ring plasty and the soft artificial valve ring then to the current three-dimensional Edwards MC3 valve ring plasty procedure with constant improvement.Here is mainly to introduce the application of tricuspid forning ring in rheumatic tricuspid valve disease-tricuspid insufficiency.%三尖瓣疾病是一种常见的心脏瓣膜疾病,其中三尖瓣关闭不全较三尖瓣狭窄更为常见,尤其是功能性的三尖瓣关闭不全.三尖瓣关闭不全的外科治疗经历了从缝线成形术到人造硬质瓣环成形术和人造软质瓣环成形术最后改进至目前的三维Edwards MC3瓣环成形术的过程.现主要介绍三尖瓣成形环在风湿性瓣膜病三尖瓣关闭不全中的应用.
Malykin, Grigorii B; Zhurov, Alexei
2013-01-01
This monograph is devoted to the creation of a comprehensive formalism for quantitative description of polarized modes' linear interaction in modern single-mode optic fibers. The theory of random connections between polarized modes, developed in the monograph, allows calculations of the zero shift deviations for a fiber ring interferometer. The monograph addresses also the
Magnetization dynamics under heat current in metallic spin valves and in insulators
Yu, Haiming
Spin caloritronics, an emerging branch of spintronics, studying the addition of thermal effects to the electrical and magnetic properties of nanostructures, has recently seen a rapid development. It has been predicted by Hatami et al. that a heat current can exert a spin torque on the magnetization in a nanostructure, analogous to the well-known spin-transfer torque induced by an electrical current. We provided the experimental evidence for the thermal spin-transfer torque effect in spin valves, showing the switching field change with heat current. I will present measurements of the second harmonic voltage response of Co-Cu-Co pseudo-spinvalves deposited in the middle of Cu nanowires. Both the magnitude of the second harmonic response of the spin valve and the field value of the maximum response are found to be dependent on the heat current. Both effects show that the magnetization dynamics of the pseudo-spinvalves is influenced by the heat current. Thus, the data provide a quantitative estimate of the thermal spin torque exerted on the magnetization of the Co layers. In addition, I will present recent study on the magnetization dynamics in a magnetic insulator YIG film under in-plane heat current. The ferromagnetic resonance linewidth is found to be tuned by the applied temperature gradient, i.e. narrowing and broadening. This suggests that the Gilbert damping parameter is compensated or reinforced by the applied temperature gradient in respective direction. These observations can be understood as a heat-driven spin torque in magnetic insulators.
Horvath, Balazs; Banyasz, Tamas; Jian, Zhong; Hegyi, Bence; Kistamas, Kornel; Nanasi, Peter P; Izu, Leighton T; Chen-Izu, Ye
2013-11-01
The objective of this work is to examine the contribution of late Na(+) current (INa,L) to the cardiac action potential (AP) and arrhythmogenic activities. In spite of the rapidly growing interest toward this current, there is no publication available on experimental recording of the dynamic INa,L current as it flows during AP with Ca(2+) cycling. Also unknown is how the current profile changes when the Ca(2+)-calmodulin dependent protein kinase II (CaMKII) signaling is altered, and how the current contributes to the development of arrhythmias. In this study we use an innovative AP-clamp Sequential Dissection technique to directly record the INa,L current during the AP with Ca(2+) cycling in the guinea pig ventricular myocytes. First, we found that the magnitude of INa,L measured under AP-clamp is substantially larger than earlier studies indicated. CaMKII inhibition using KN-93 significantly reduced the current. Second, we recorded INa,L together with IKs, IKr, and IK1 in the same cell to understand how these currents counterbalance to shape the AP morphology. We found that the amplitude and the total charge carried by INa,L exceed that of IKs. Third, facilitation of INa,L by Anemone toxin II prolonged APD and induced Ca(2+) oscillations that led to early and delayed afterdepolarizations and triggered APs; these arrhythmogenic activities were eliminated by buffering Ca(2+) with BAPTA. In conclusion, INa,L contributes a significantly large inward current that prolongs APD and unbalances the Ca(2+) homeostasis to cause arrhythmogenic APs.
Horvath, Balazs; Banyasz, Tamas; Jian, Zhong; Hegyi, Bence; Kistamas, Kornel; Nanasi, Peter P.; Izu, Leighton T.; Chen-Izu, Ye
2013-01-01
The objective of this work is to examine the contribution of late Na+ current (INa,L) to the cardiac action potential (AP) and arrhythmogenic activities. In spite of the rapidly growing interest toward this current, there is no publication available on experimental recording of the dynamic INa,L current as it flows during AP with Ca2+ cycling. Also unknown is how the current profile changes when the Ca2+-calmodulin dependent protein kinase II (CaMKII) signaling is altered, and how the current contributes to the development of arrhythmias. In this study we use an innovative AP-clamp Sequential Dissection technique to directly record the INa,L current during the AP with Ca2+ cycling in the guinea pig ventricular myocytes. First, we found that the magnitude of INa,L measured under AP-clamp is substantially larger than earlier studies indicated. CaMKII inhibition using KN-93 significantly reduced the current. Second, we recorded INa,L together with IKs, IKr, and IK1 in the same cell to understand how these currents counterbalance to shape the AP morphology. We found that the amplitude and the total charge carried by INa,L exceed that of IKs. Third, facilitation of INa,L by Anemone toxin II prolonged APD and induced Ca2+ oscillations that led to early and delayed afterdepolarizations and triggered APs; these arrhythmogenic activities were eliminated by buffering Ca2+ with BAPTA. In conclusion, INa,L contributes a significantly large inward current that prolongs APD and unbalances the Ca2+ homeostasis to cause arrhythmogenic APs. PMID:24012538
Hape, M; Ricken, W
2005-01-01
The GSI-FAIR project (facility for antiprotons and ion research) will comprehend DC currents up to around 5 A in the SIS 100 synchrotron and after bunch compression down to 50 ns pulse length the peak currents will reach up to 100 A. To meet these higher demands of beam current measurements new sensor techniques are foreseen. The measurement device itself will be designed in form of a clip-on ampere-meter. The air gap of the flux concentrator is assumed to be around 5 mm and thus, the estimated maximum field therein is around 30 mT for a beam current of 100 A peak. The resolution of this device is aimed to be 1 mA in beam current, corresponding to a system dynamic of around 105. This high demands of beam current measurement require more sophisticated sensor types than just using a Hall probe. The characteristics of AMR (anisotropic magneto-resistance), GMR (giant magneto-resistance) and GMI (giant magneto-impedance) sensors like hysteresis, linearity and sensitivity have been measured within the magnetic fiel...
The eRHIC Ring-Ring Collider Design
Wang, Fuhua; Beebe-Wang, Joanne; Deshpande, Abhay A; Farkhondeh, Manouchehr; Franklin, Wilbur; Graves, William; Litvinenko, Vladimir N; MacKay, William W; Milner, Richard; Montag, Christoph; Ozaki, Satoshi; Parker, Brett; Peggs, Steve; Ptitsyn, Vadim; Roser, Thomas; Tepikian, Steven; Trbojevic, Dejan; Tschalär, C; Wang, Dong; Zolfaghari, Abbasali; Zwart, Townsend; van der Laan, Jan
2005-01-01
The eRHIC ring-ring collider is the main design option of the future lepton-ion collider at Brookhaven National Laboratory. We report the revisions of the ring-ring collider design features to the baseline design presented in the eRHIC Zeroth Design Report (ZDR). These revisions have been made during the past year. They include changes of the interaction region which are required from the modifications in the design of the main detector. They also include changes in the lepton storage ring for high current operations as a result of better understandings of beam-beam interaction effects. The updated collider luminosity and beam parameters also take into account a more accurate picture of current and future operational aspects of RHIC.
Traer, M. M.; Hilley, G. E.; Fildani, A.
2009-12-01
Submarine turbidity currents derive their momentum from gravity acting upon the density contrast between sediment-laden and clear water, and so unlike fluvial systems, the dynamics of such flows are inextricably linked to the rates at which they deposit and entrain sediment. We have analyzed the sensitivity of the growth and maintenance of turbidity currents to sediment entrainment and deposition using the layer-averaged equations of conservation of fluid and sediment mass, and conservation of momentum and turbulent kinetic energy. Our model results show that the dynamics of turbidity currents are extremely sensitive to the functional form and empirical constants of the relationship between sediment entrainment and friction velocity. Data on the relationship between sediment entrainment and friction velocity for submarine density flows are few and as a result, entrainment formulations are populated with data from sub-aerial flows not driven by the density contrast between clear and turbid water. If we entertain the possibility that sediment entrainment in sub-aerial rivers is different than in dense underflows, flow parameters such as velocity, height, and concentration were found nearly impossible to predict beyond a few hundred meters based on the limited laboratory data available that constrain the sediment entrainment process in turbidity currents. The sensitivity of flow dynamics to the functional relationship between friction velocity and sediment entrainment indicates that independent calibration of a sediment entrainment law in the submarine environment is necessary to realistically predict the dynamics of these flows and the resulting patterns of erosion and deposition. To calibrate such a relationship, we have developed an inverse methodology that utilizes existing submarine channel morphology as a means of constraining the sediment entrainment function parameters. We use a Bayesian Metropolis-Hastings sampler to determine the sediment entrainment
Wen, Hao; Jin, Dongping; Hu, Haiyan
2016-12-01
The concept of space tether has found a great deal of promising applications in space engineering. A prerequisite of any space tether mission is to deploy its tether to a commanded length. This paper aims to achieving the three-dimensional deployment of an electro-dynamic tether system in a propellant-free manner via the feedback control of the tension and electric current in the tether. The proposed controller is formulated in an analytical form with an extremely low level of computational load, and can explicitly account for the physical bounds of the tether tension and electric current by using a pair of strictly increasing saturation functions. In addition, the Lyapunov analysis is made to gain an insight into the stability characteristics of the proposed control strategy. To facilitate the theoretical analysis, the dynamic model of the system is developed under the widely used dumbbell assumption, along with the geomagnetic field modeled using a tilted dipole approximation. Finally, numerical case studies on a representative electro-dynamic tether system are conducted to evaluate the performance of the proposed controller and the influence of the actuating conditions and orbital inclinations.
Current driven magnetization dynamics of a self-polarised synthetic ferrimagnet
Jenkins, A. S.; Lacoste, B.; Geranton, G.; Gusakova, D.; Dieny, B.; Ebels, U.; Buda-Prejbeanu, L. D. [SPINTEC, UMR-8191, CNRS/CEA-INAC/UJF-Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)
2014-02-28
Spin torque driven excitations in spin valves and tunnel junctions are often investigated for a two magnetic layer system for which a polarizer (fixed magnetization) and a free layer can be distinguished. In the search for improved microwave properties and to understand the role of different coupling mechanisms between the magnetic layers, here, the excitation spectrum of an exchange coupled two layer synthetic ferrimagnet (SyF) system is investigated numerically with spin momentum transfer acting on both layers simultaneously. This self-polarised two layer system does not contain an external polarizer, and excitation of coupled modes arises due to the mutual spin transfer torque and the Ruderman-Kittel-Kasuya-Yosida interlayer exchange coupling. The current-field state diagrams of static and dynamic states are reported as a function of the interlayer exchange coupling strength. The numerically determined critical boundaries are well reproduced by an analytical stability analysis. The dynamic steady states reveal an optic-like mode at low magnetic fields, which becomes progressively acoustic-like for increased magnetic fields and currents. The frequency of these modes can be tuned by the film thickness and the strength of the interlayer exchange interaction. The results presented here will provide an important guide for designing spin torque oscillators that exploit the dynamic coupling between layers and, furthermore, they will provide a basis to test analytical models of spin torque driven coupled excitations.
Posterior α EEG Dynamics Dissociate Current from Future Goals in Working Memory-Guided Visual Search
2017-01-01
in working memory. However, working memory not only serves current goals, but also future goals, with differential impact upon visual selection. Little is known about how the brain differentiates between current and future goals. Here we show, for the first time, that modulations of brain oscillations in the EEG α frequency band in posterior cortex can dissociate current from future search goals in working memory. Moreover, the dynamics of these oscillations uncover how we flexibly switch focus between memory representations. Together, we reveal how the brain assigns priority for selection. PMID:28069918
de Vries, Ingmar E J; van Driel, Joram; Olivers, Christian N L
2017-02-08
working memory. However, working memory not only serves current goals, but also future goals, with differential impact upon visual selection. Little is known about how the brain differentiates between current and future goals. Here we show, for the first time, that modulations of brain oscillations in the EEG α frequency band in posterior cortex can dissociate current from future search goals in working memory. Moreover, the dynamics of these oscillations uncover how we flexibly switch focus between memory representations. Together, we reveal how the brain assigns priority for selection.
Beam Comissioning of the PEP-II High Energy Ring
Wienands, U.; Anderson, S.; Assmann, R.; Bharadwaj, V.; Cai, Y.; Clendenin, J.; Corredoura, P.; Decker, F.J.; Donald, M.; Ecklund, S.; Emma, P.; Erickson, R.; Fox, J.; Fieguth, T.; Fisher, A.; Heifets,, S.; Hill, A.; Himel, T.; Iverson, R.; Johnson, R.; Judkins, J.; Krejcik, P.; Kulikov, A.; Lee, M.; Mattison, T.; Minty, M.; Nosochkov, Y.; Phinney, N.; Placidi, M.; Prabhakar, S.; Ross, M.; Smith, S.; Schwarz, H.; Stanek, M.; Teytelman, D.; Traller, R.; Turner, J.; Zimmermann, F.; Barry, W.; Chattopadhyay, S.; Corlett, J.; Decking, W.; Furman, M.; Nishimura, H.; Portmann, G.; Rimmer, R.; Zholents, A.; Zisman, M.; Kozanecki, W.; Hofmann, A.; Zotter, B.; Steier, C.; Bialowons, W.; Lomperski, M.; Lumpkin, A.; Reichel, I.; Safranek, J.; Smith, V.; Tighe, R.; Sullivan, M.; Byrd, J.; Li, D.
1998-11-12
The PEP-II High Energy Ring (HER), a 9 GeV electron storage ring, has been in commissioning since spring 1997. Initial beam commissioning activities focused on systems checkout and commissioning and on determining the behavior of the machine systems at high beam currents. This phase culminated with the accumulation of 0.75 A of stored beam-sufficient to achieve design luminosity--in January 1998 after 3.5 months of beam time. Collisions with the 3 GeV positron beam of the Low Energy Ring (LER) were achieved in Summer of 1998. At high beam currents, collective instabilities have been seen. Since then, commissioning activities for the HER have shifted in focus towards characterization of the machine and a rigorous program to understand the machine and the beam dynamics is presently underway.
Zhixiang, Wu
2006-01-01
The rings whose simple right modules are absolutely pure are called right $SAP$-rings. We give a new characterization of right $SAP$ rings, right $V$ rings, and von Neumann regular rings. We also obtain a new decomposition theory of right selfinjective von Neumann regular rings. The relationships between $SAP$-rings, $V$-rings, and von Neumann regular rings are explored. Some recent results obtained by Faith are generalized and the results of Wu-Xia are strengthened.
Lęski, Szymon; Kublik, Ewa; Swiejkowski, Daniel A; Wróbel, Andrzej; Wójcik, Daniel K
2010-12-01
Local field potentials have good temporal resolution but are blurred due to the slow spatial decay of the electric field. For simultaneous recordings on regular grids one can reconstruct efficiently the current sources (CSD) using the inverse Current Source Density method (iCSD). It is possible to decompose the resultant spatiotemporal information about the current dynamics into functional components using Independent Component Analysis (ICA). We show on test data modeling recordings of evoked potentials on a grid of 4 × 5 × 7 points that meaningful results are obtained with spatial ICA decomposition of reconstructed CSD. The components obtained through decomposition of CSD are better defined and allow easier physiological interpretation than the results of similar analysis of corresponding evoked potentials in the thalamus. We show that spatiotemporal ICA decompositions can perform better for certain types of sources but it does not seem to be the case for the experimental data studied. Having found the appropriate approach to decomposing neural dynamics into functional components we use the technique to study the somatosensory evoked potentials recorded on a grid spanning a large part of the forebrain. We discuss two example components associated with the first waves of activation of the somatosensory thalamus. We show that the proposed method brings up new, more detailed information on the time and spatial location of specific activity conveyed through various parts of the somatosensory thalamus in the rat.
Dynamic Memory Cells Using MoS2 Field-Effect Transistors Demonstrating Femtoampere Leakage Currents.
Kshirsagar, Chaitanya U; Xu, Weichao; Su, Yang; Robbins, Matthew C; Kim, Chris H; Koester, Steven J
2016-09-27
Two-dimensional semiconductors such as transition-metal dichalcogenides (TMDs) are of tremendous interest for scaled logic and memory applications. One of the most promising TMDs for scaled transistors is molybdenum disulfide (MoS2), and several recent reports have shown excellent performance and scalability for MoS2 MOSFETs. An often overlooked feature of MoS2 is that its wide band gap (1.8 eV in monolayer) and high effective masses should lead to extremely low off-state leakage currents. These features could be extremely important for dynamic memory applications where the refresh rate is the primary factor affecting the power consumption. Theoretical predictions suggest that leakage currents in the 10(-18) to 10(-15) A/μm range could be possible, even in scaled transistor geometries. Here, we demonstrate the operation of one- and two-transistor dynamic memory circuits using MoS2 MOSFETs. We characterize the retention times in these circuits and show that the two-transistor memory cell reveals MoS2 MOSFETs leakage currents as low as 1.7 × 10(-15) A/μm, a value that is below the noise floor of conventional DC measurements. These results have important implications for the future use of MoS2 MOSFETs in low-power circuit applications.
Mercury's Magnetospheric Cusps and Cross-Tail Current Sheet: Structure and Dynamics
Poh, Gang Kai
Mercury has proven to be a unique natural laboratory for space plasma processes. Mercury's magnetosphere is formed by the interaction between its intrinsic planetary magnetic field and the supersonic solar wind. The structure of Mercury's magnetosphere is very similar to Earth's; yet the results from the MESSENGER mission to Mercury have shown that the spatial and temporal scales of magnetospheric processes are very different at Mercury. In this thesis, we analyze in situ observations from the MESSENGER spacecraft to characterize and understand the dynamic physical plasma processes occurring in Mercury's magnetosphere. We identified and analyzed 345 plasma filaments in Mercury's northern magnetospheric cusp to determine their physical properties. Cusp plasma filaments are magnetic structures that are identified on the basis of their characteristic 2-3 seconds long decrease in magnetic field intensity. Our analysis indicates that these cusp filaments are cylindrical flux tubes filled with plasma, which causes a diamagnetic decrease in the magnetic field inside the flux tube. MESSENGER observations of flux transfer events (FTEs) and cusp filament suggests that cusp filaments properties are the low-altitude extension of FTEs formed at Mercury's dayside magnetopause. We examined 319 central plasma sheet crossings observed by MESSENGER. Using a Harris model, we determined the physical properties of Mercury's cross-tail current sheet. Analysis of BZ in the current sheet indicated that MESSENGER usually crossed the current sheet sunward of the Near Mercury Neutral Line. Magnetohydrodynamics-based analysis using the MESSENGER magnetic field and plasma measurements suggests that heavy planetary ions and/or ion temperature anisotropy may be important in maintaining radial stress balance within Mercury's central plasma sheet. We report the observation of significant dawn-dusk variation in Mercury's cross-tail current sheet with thicker, lower plasma beta dawn side current
Formation of polar ring galaxies
Bournaud, F
2003-01-01
Polar ring galaxies are peculiar systems in which a gas rich, nearly polar ring surrounds an early-type or elliptical host galaxy. Two formation scenarios for these objects have been proposed: they are thought to form either in major galaxy mergers or by tidal accretion of the polar material from a gas rich donor galaxy. Both scenarios are studied through N-body simulations including gas dynamics and star formation. Constraints on physical parameters are drawn out, in order to determine which scenario is the most likely to occur. Polar ring galaxies from each scenario are compared with observations and we discuss whether the accretion scenario and the merging scenario account for observational properties of polar ring galaxies. The conclusion of this study is that the accretion scenario is both the most likely and the most supported by observations. Even if the merging scenario is rather robust, most polar ring galaxies are shown to be the result of tidal gas accretion events.
Plaza, Michael J; Yepes, Monica
2012-03-01
Breast fibromatosis is a rare entity responsible for 0.2% of all solid breast tumors. It has been associated with scars, pregnancy, implants, and familial adenomatous polyposis. We present an interesting case of breast fibromatosis in a 29 year old woman which encroached upon her saline implant and subsequently filled its cavity once the implant was removed. The patient was put on tamoxifen therapy and at 14 month follow-up there was a significant decrease in the size of the mass. Dynamic MRI images are offered for review and current treatment options are discussed.
Predator-Prey Model for Haloes in Saturn's Rings
Esposito, Larry W.; Colwell, Joshua; Sremcevic, Miodrag; Madhusudhanan, Prasanna
Particles in Saturn’s rings have a tripartite nature: (1) a broad distribution of fragments from the disruption of a previous moon that accrete into (2) transient aggregates, resembling piles of rubble, covered by a (3) regolith of smaller grains that result from collisions and meteoritic grinding. Evidence for this triple architecture of ring particles comes from a multitude of Cassini observations. In a number of ring locations (including Saturn’s F ring, the shepherded outer edges of rings A and B and at the locations of the strongest density waves) aggregation and dis-aggregation are operating now. ISS, VIMS, UVIS spectroscopy and occultations show haloes around the strongest density waves. Based on a predator-prey model for ring dynamics, we offer the following explanation: •Cyclic velocity changes cause the perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; •This forms a bright halo around the ILR, if the forcing is strong enough; •Surrounding particles diffuse back too slowly to erase the effect; they diffuse away to form the halo. The most rapid time scale is for forcing/aggregate growth/disaggregation; then irreversible regolith erosion; diffusion and/or ballistic transport; and slowest, meteoritic pollution/darkening. We observe both smaller and larger particles at perturbed regions. Straw, UVIS power spectral analysis, kittens and equinox objects show the prey (mass aggregates); while the haloes’ VIMS spectral signature, correlation length and excess variance are created by the predators (velocity dispersion) in regions stirred in the rings. Moon forcing triggers aggregation to create longer-lived aggregates that protect their interiors from meteoritic darkening and recycle the ring material to maintain the current purity of the rings. It also provides a mechanism for creation of new moons at resonance locations in the Roche zone, as proposed by Charnoz etal and
An objective reference system for studying rings in the ocean
Castelão, Guilherme P.; Irber, Luiz C.; Villas Boas, Ana B. M.
2013-12-01
Rings are marine vortices with a scale of hundreds of kilometers that can last for months, whose associated transport and mixing play an important role in the ocean dynamics. Such features are traditionally treated as a geostrophic flow, but since the centrifugal acceleration is not negligible in the inner core, the cyclo-geostrophic balance is a better approximation for the rings. In the present work, we describe a novel objective technique to identify the ring center, which is used as the origin of a convenient framework to handle rings under the cyclo-geostrophic balance. Furthermore, we correct the velocity field by the translation to isolate the swirl movement, a procedure ignored by other methodologies. We show that the lack of such correction would lead to an error of 30 km on the center definition of a ship surveyed North Brazil Current Ring with 160 km of radius. Another distinct characteristic of our approach is the flexibility in the spatio-temporal structure of the data, because it allows for ungridded data, an important ability for in situ observations. That also enables the use of a hybrid dataset composed from different instruments. The error on the Monte Carlo experiments to identify the center of the propagating ring is less than 10 km, and depends on the level of noise, sampling strategy, and strength of the ring, among other factors. This technique was fully implemented in PyRings, an open Python library with a collection of procedures to handle oceanic rings and mesoscale eddies in general.
Li, Yanggui; Geng, Xingguo; Wang, Heping; Zhuang, Xin; Ouyang, Jie
2016-06-01
The frontal instability of lock-exchange density currents is numerically investigated using dissipative particle dynamics (DPD) at the mesoscopic particle level. For modeling two-phase flow, the “color” repulsion model is adopted to describe binary fluids according to Rothman-Keller method. The present DPD simulation can reproduce the flow phenomena of lock-exchange density currents, including the lobe-and-cleft instability that appears at the head, as well as the formation of coherent billow structures at the interface behind the head due to the growth of Kelvin-Helmholtz instability. Furthermore, through the DPD simulation, some small-scale characteristics can be observed, which are difficult to be captured in macroscopic simulation and experiment.
Barker, Joseph; Tretiakov, Oleg A.
2016-04-01
Skyrmions are topologically protected entities in magnetic materials which have the potential to be used in spintronics for information storage and processing. However, Skyrmions in ferromagnets have some intrinsic difficulties which must be overcome to use them for spintronic applications, such as the inability to move straight along current. We show that Skyrmions can also be stabilized and manipulated in antiferromagnetic materials. An antiferromagnetic Skyrmion is a compound topological object with a similar but of opposite sign spin texture on each sublattice, which, e.g., results in a complete cancellation of the Magnus force. We find that the composite nature of antiferromagnetic Skyrmions gives rise to different dynamical behavior due to both an applied current and temperature effects.
Skyrmion dynamics in a chiral magnet driven by periodically varying spin currents*
Zhu, Rui; Zhang, Yin-Yan
2016-12-01
In this work, we investigated the spin dynamics in a slab of chiral magnets induced by an alternating (ac) spin current. Periodic trajectories of the skyrmion in real space are discovered under the ac current as a result of the Magnus and viscous forces, which originate from the Gilbert damping, the spin transfer torque, and the β-nonadiabatic torque effects. The results are obtained by numerically solving the Landau-Lifshitz-Gilbert equation and can be explained by the Thiele equation characterizing the skyrmion core motion. Supplementary material in the form of one avi file available from the Journal web page at: http://dx.doi.org/10.1140/epjb/e2016-70467-9
Particle dynamics in the electron current layer in collisionless magnetic reconnection
Zenitani, Seiji
2016-01-01
Particle dynamics in the electron current layer in collisionless magnetic reconnection is investigated by using a particle-in-cell simulation. Electron motion and velocity distribution functions are studied by tracking self-consistent trajectories. New classes of electron orbits are discovered: figure-eight-shaped regular orbits inside the electron jet, noncrossing regular orbits on the jet flanks, noncrossing Speiser orbits, and nongyrotropic electrons in the downstream of the jet termination region. Properties of a super-Alfv\\'{e}nic outflow jet are attributed to an ensemble of electrons traveling through Speiser orbits. Noncrossing orbits are mediated by the polarization electric field near the electron current layer, and it turns out that they are non-negligible in number density. The impact of these new orbits to electron mixing, spatial distribution of energetic electrons, and observational signatures, is presented.
Mendoza, C.; Mancho, A. M.; Rio, M.-H.
2010-03-01
In this article we explore the utility of dynamical systems tools for visualizing transport in oceanic flows described by data sets measured from satellites. In particular we have found the geometrical skeleton of some transport processes in the Kuroshio region. To this end we have computed the special hyperbolic trajectories, and identified them as distinguished hyperbolic trajectories, that act as organizing centres of the flow. We have computed their stable and unstable manifolds, and they reveal that the turnstile mechanism is at work during several spring months in the year 2003 across the Kuroshio current. We have found that near the hyperbolic trajectories takes place a filamentous transport front-cross the current that mixes waters from both sides.
Coupled Dzyaloshinskii walls and their current-induced dynamics by the spin Hall effect
Martínez, Eduardo, E-mail: edumartinez@usal.es [Dpto. de Fisica Aplicada, Universidad de Salamanca, Plaza de los Caídos s/n, E-37008 Salamanca (Spain); Alejos, Óscar [Dpto. de Electricidad y Electrónica, Universidad de Valladolid, Paseo de Belén, 7, E-47011 Valladolid (Spain)
2014-07-14
The nucleation of domain walls in ultrathin ferromagnetic/heavy-metal bilayers is studied by means of micromagnetic simulations. In the presence of interfacial Dzyaloshinskii-Moriya interaction, the nucleated walls naturally adopt a homochiral configuration with internal magnetization pointing antiparallely. The interaction between these walls was analyzed and described in terms of a classical dipolar force between the magnetic moments of the walls, which couples their dynamics. Additionally, the current-induced motion of two homochiral walls in the presence of longitudinal fields was also studied by means of a simple one-dimensional model and micromagnetic modeling, considering both one free-defect strip and another one with random edge roughness. It is evidenced that in the presence of pinning due to edge roughness, the in-plane longitudinal field introduces an asymmetry in the current-induced depinning, in agreement with recent experimental results.
Luis E. Ramos-Santiago
2014-06-01
Full Text Available The loss of green areas and vegetation in suburban neighborhoods poses short- and long-term consequences associated with environmental changes and socioeconomic decline that can propel such developments to an unsustainable state. We summarize an interdisciplinary investigation aimed at identifying the drivers of green area loss, green cover loss, and quantifying the impact on three inner-ring suburban neighborhoods located along the Rio Piedras watershed in San Juan, Puerto Rico. An inductive approach to social-ecological research was undertaken because it provides a flexible platform for interdisciplinary collaboration on this complex and dynamic subject. The three developments selected for the study were constructed in the mid-20th century under paradigms of modernity that included providing conditions for a better and more dignified way of living, among which green areas played a central role. The green area change analysis was undertaken first, by way of using building footprint growth as a proxy, which represents a minimal estimate of change, and transferring the information from aerial photographs, original development plans, construction drawings, and GIS maps to AutoCAD to quantify building footprint change for each neighborhood. The period of analysis started from the time of the construction of each development to the year 2010. The second estimation was performed using orthorectified infrared aerial imagery to quantify green cover in year 2008 and contrast that information with the conditions at the time the developments were constructed. Green-gray area dynamics were thus analyzed together with longitudinal socioeconomic data to help in the assessment of effects. The investigation revealed long-term socioeconomic declining trends in two of the neighborhoods, weak governance of the built environment, substantial increase in automobile ownership, and distinct physical-spatial characteristics as drivers behind the changes observed. The
Dynamical charge and pseudospin currents in graphene and possible Cooper pair formation
Morawetz, K.
2016-10-01
Based on the quantum kinetic equations for systems with SU(2) structure, regularization-free density and pseudospin currents are calculated in graphene realized as the infinite-mass limit of electrons with quadratic dispersion and a proper spin-orbit coupling. Correspondingly the currents possess no quasiparticle part but only anomalous parts. The intraband and interband conductivities are discussed with respect to magnetic fields and magnetic domain puddles. It is found that the magnetic field and mean field of domains can be represented by an effective Zeeman field. For large Zeeman fields the dynamical conductivities become independent of the density and are universal in this sense. The different limits of vanishing density, relaxation, frequency, and Zeeman field are not interchangeable. The optical conductivity agrees well with the experimental values using screened impurity scattering and an effective Zeeman field. The universal value of Hall conductivity is shown to be modified due to the Zeeman field. The pseudospin current reveals an anomaly since a quasiparticle part appears though it vanishes for particle currents. The density and pseudospin response functions to an external electric field are calculated and the dielectric function is discussed with respect to collective excitations. A frequency and wave-vector range is identified where the dielectric function changes sign and the repulsive Coulomb potential becomes effectively attractive allowing Cooper pairing.
Structural dynamics of microsystems—current state of research and future directions
Lin, R. M.; Wang, W. J.
2006-07-01
Microsystems or micro-electro-mechanical systems (MEMS), as a newly emerged revolutionary enabling technology, has brought both opportunities and challenges to the field of structural dynamics in a different scale, owing primarily to its interdisciplinary nature of research and extremely small feature size. This paper seeks to present a comprehensive yet critical review on some of the major issues that need to be tackled in the successful realisation of microsystems, with an ultimate objective of further developing and improving the current design capabilities of these systems. The electro-mechanical coupling of typical MEMS devices is first defined and introduced, followed by an in-depth review of the various existing modeling and simulation techniques. Special requirements are discussed when typical MEMS devices need to be tested and existing vibration testing techniques are reviewed. Of particular interest to MEMS devices, structural damping has become a major issue affecting dynamic performance due to the various energy dissipation mechanisms involved. These damping mechanisms have been examined, together with methods developed to model them. Finally, conclusions are made on what have been achieved to date and future prospects of structural dynamics of Microsystems are identified with an intention to stimulate further concerted research in this important emerging area.
Dynamics of turbulent western-boundary currents at low latitude in a shallow-water model
Akuetevi, C. Q. C.; Wirth, A.
2015-06-01
The dynamics of low latitude turbulent western-boundary currents (WBCs) crossing the Equator are considered using numerical results from integrations of a reduced-gravity shallow-water model. For viscosity values of 1000 m2 s-1 and greater, the boundary layer dynamics compares well to the analytical Munk-layer solution. When the viscosity is reduced, the boundary layer becomes turbulent and coherent structures in the form of anticyclonic eddies, bursts (violent detachments of the viscous sub-layer, VSL) and dipoles appear. Three distinct boundary layers emerge, the VSL, the advective boundary layer and the extended boundary layer. The first is characterized by a dominant vorticity balance between the viscous transport and the advective transport of vorticity; the second by a balance between the advection of planetary vorticity and the advective transport of relative vorticity. The extended boundary layer is the area to which turbulent motion from the boundary extends. The scaling of the three boundary layer thicknesses with viscosity is evaluated. Characteristic scales of the dynamics and dissipation are determined. A pragmatic approach to determine the eddy viscosity diagnostically for coarse-resolution numerical models is proposed.
Dynamics of turbulent western boundary currents at low latitude in a shallow water model
C. Q. C. Akuetevi
2014-11-01
Full Text Available The dynamics of low latitude turbulent western boundary currents crossing the equator is considered using numerical results from integrations of a reduced gravity shallow-water model. For viscosity values of 1000 m2 s−1 and more, the boundary layer dynamics compares well to the analytical Munk-layer solution. When the viscosity is reduced, the boundary layer becomes turbulent and coherent structures in form of anticyclonic eddies, bursts (violent detachments of the viscous sub-layer and dipoles appear. Three distinct boundary layers emerge, the viscous sub-layer, the advective boundary layer and the extended boundary layer. The first is characterized by a dominant vorticity balance between the viscous transport and the advective transport of vorticity. The second by a balance between the advection of planetary vorticity and the advective transport of relative vorticity. The extended boundary layer is the area to which turbulent motion from the boundary extends. The scaling of the three boundary layer thicknesses with viscosity is evaluated. Characteristic scales of the dynamics and dissipation are determined. A pragmatic approach to determine the eddy viscosity diagnostically for coarse resolution numerical models is proposed.
Slaby, Isabella; Holmes, Amanda; Moran, Joseph M; Eddy, Marianna D; Mahoney, Caroline R; Taylor, Holly A; Brunyé, Tad T
2015-11-11
The aim of this study was to evaluate the influence of transcranial direct current stimulation targeting the left temporoparietal junction (TPJ) on humor appreciation during a dynamic video rating task. In a within-participants design, we targeted the left TPJ with anodal, cathodal, or no transcranial direct current stimulation, centered at electrode site C3 using a 4×1 targeted stimulation montage. During stimulation, participants dynamically rated a series of six stand-up comedy videos for perceived humor. We measured event-related (time-locked to crowd laughter) modulation of humor ratings as a function of stimulation condition. Results showed decreases in rated humor during anodal (vs. cathodal or none) stimulation; this pattern was evident for the majority of videos and was only partially predicted by individual differences in humor style. We discuss the possibility that upregulation of neural circuits involved in the theory of mind and empathizing with others may reduce appreciation of aggressive humor. In conclusion, the present data show that neuromodulation of the TPJ can alter the mental processes underlying humor appreciation, suggesting critical involvement of this cortical region in detecting, comprehending, and appreciating humor.
Quantum ring states in magnetic field and delayed half-cycle pulses
KRITI BATRA; HIRA JOSHI; VINOD PRASAD
2016-08-01
The present work is dedicated to the time evolution of excitation of a quantum ring in external electric and magnetic fields. Such a ring of mesoscopic dimensions in an external magnetic field is known to exhibit a wide variety of interesting physical phenomena. We have studied the dynamics of the single electron quantum ring in the presence of a static magnetic field and a combination of delayed half-cycle pulse pair. Detailed calculations have been worked out and the impact on dynamics by variation in the ring radius, intensity of external electric field, delay between the two pulses, and variation in magnetic field have been reported. A total of 19 states have been taken and the population transfer in the single electron quantum ring is studied by solving the time-dependent Schrödinger equation (TDSE), using the efficient fourth-order Runge--Kutta method. Many interesting features have been observed in the transition probabilities with the variation of magnetic field, delay between pulses and ring dimensions. A very important aspect of the present work is the persistent current generation in a quantum ring in the presence of external magnetic flux and its periodic variation with the magnetic flux, ring dimensions and pulse delay.
Warm Saturns: On the Nature of Rings around Extrasolar Planets that Reside Inside the Ice Line
Schlichting, Hilke E
2011-01-01
We discuss the nature of rings that may exist around extrasolar planets. Taking the general properties of rings around the gas giants in the Solar System, we infer the likely properties of rings around exoplanets that reside inside the ice line. Due to their proximity to their host star, rings around such exoplanets must primarily consist of rocky materials. However, we find that despite the higher densities of rock compared to ice, most of the observed extrasolar planets with reliable radii measurements have sufficiently large Roche radii to support rings. For the currently known transiting extrasolar planets, Poynting-Robertson drag is not effective in significantly altering the dynamics of individual ring particles over a time span of $10^8$ years provided that they exceed about 1 m in size. In addition, we show that significantly smaller ring particles can exist in optically thick rings, for which we find typical ring lifetimes ranging from a few times $10^6$ to a few times $10^9$ years. Most interestingl...
Fault diagnosis of motor drives using stator current signal analysis based on dynamic time warping
Zhen, D.; Wang, T.; Gu, F.; Ball, A. D.
2013-01-01
Electrical motor stator current signals have been widely used to monitor the condition of induction machines and their downstream mechanical equipment. The key technique used for current signal analysis is based on Fourier transform (FT) to extract weak fault sideband components from signals predominated with supply frequency component and its higher order harmonics. However, the FT based method has limitations such as spectral leakage and aliasing, leading to significant errors in estimating the sideband components. Therefore, this paper presents the use of dynamic time warping (DTW) to process the motor current signals for detecting and quantifying common faults in a downstream two-stage reciprocating compressor. DTW is a time domain based method and its algorithm is simple and easy to be embedded into real-time devices. In this study DTW is used to suppress the supply frequency component and highlight the sideband components based on the introduction of a reference signal which has the same frequency component as that of the supply power. Moreover, a sliding window is designed to process the raw signal using DTW frame by frame for effective calculation. Based on the proposed method, the stator current signals measured from the compressor induced with different common faults and under different loads are analysed for fault diagnosis. Results show that DTW based on residual signal analysis through the introduction of a reference signal allows the supply components to be suppressed well so that the fault related sideband components are highlighted for obtaining accurate fault detection and diagnosis results. In particular, the root mean square (RMS) values of the residual signal can indicate the differences between the healthy case and different faults under varying discharge pressures. It provides an effective and easy approach to the analysis of motor current signals for better fault diagnosis of the downstream mechanical equipment of motor drives in the time
A SIMPLIFIED MODEL OF THREE-PHASE BANK OF CURRENT TRANSFORMERS IN THE DYNAMIC SIMULATION SYSTEM
I. V. Novash
2015-01-01
Full Text Available The article presents and substantiates a simplified mathematical simulation model realization technique for a three-phase bank of current transformers (CT based on their nameplate data. The secondary windings and load of the current transformers form a Y-connected circuit with neutral conductor. Consistent with the presented technique the simplified mathematical simulation realizes in the dynamic-modeling environment of MatLab–Simulink–SimPowerSystems. This simulation allows obtaining the secondary current curve shape entering only the nameplate data of the CT being simulated. Thus, the simulation under consideration enables the assessment of technical feasibility of the CT from viewpoint of correct functioning of the relay protective devices during transient processes in the electric energy systems.Employing the model, the authors conduct computational experiments simulating the CT typical operating modes: short-circuit current passage with presence/absence of the direct component and short-circuit current passage with presence of the direct component and residual magnetic induction of the CT. The paper examines the modes of automatic re-closing failure at different stages of the breaker closure with oscillograms drawn illustrating each characteristic case.The authors compare two methods for the CT iron magnetization-curve assigning: manual approximation and the Ollendorf-formula approximation. Relying on this comparison they conclude on feasability of application of the magnetization-curve approximating function for the CT operating analysis during transient processes in the electric energy systems. An elaborated user-friendly graphic interface provides a means of visual assigning the CT nominal parameters, the residual magnetic induction, and the method of the transformer iron magnetization curve approximation. The results of conducted computational experiments prove feasibility of the CT-bank simulation model.
Sharma, Amalendu; Patidar, Chirag Bhai; Pal, Mukesh Kumar; Kulkarni, Nita; Goyal, Pradeep Kumar; Jana, Prasanta Kumar; Gaur, Rahul; Prakash, Ram; Dhingra, Rinky; Singh, Urmila; Kumar, Vinit
2016-01-01
As a part of the ongoing plan project titled 'R&D activities for high energy proton linac based spallation neutron source', the work on physics design of various subsystems of the injector linac and accumulator ring has been taken up. For the 1 GeV H- injector linac, physics design studies of individual systems have been completed, and the end to end beam dynamics simulation studies have been performed to ensure that the stringent beam dynamics criteria are satisfied for the optimized lattice. Physics design studies to optimize the linear lattice of the accumulator ring have also been completed. The design studies for the beam transport lines from the injector linac to the accumulator ring, and from the accumulator ring to target are currently in progress. This report describes the physics design of various systems of the injector linac and the accumulator ring.
Kohler, Susanna
2016-09-01
Weve recently discovered narrow sets of rings around two minor planets orbiting in our solar system. How did these rings form? A new study shows that they could be a result of close encounters between the minor planets and giants like Jupiter or Neptune.Unexpected Ring SystemsPositions of the centaurs in our solar system (green). Giant planets (red), Jupiter trojans (grey), scattered disk objects (tan) and Kuiper belt objects (blue) are also shown. [WilyD]Centaurs are minor planets in our solar system that orbit between Jupiter and Neptune. These bodies of which there are roughly 44,000 with diameters larger than 1 km have dynamically unstable orbits that cross paths with those of one or more giant planets.Recent occultation observations of two centaurs, 10199 Chariklo and 2060 Chiron, revealed that these bodies both host narrow ring systems. Besides our four giant planets, Chariklo and Chiron are the only other bodies in the solar system known to have rings. But how did these rings form?Scientists have proposed several models, implicating collisions, disruption of a primordial satellite, or dusty outgassing. But a team of scientists led by Ryuki Hyodo (Paris Institute of Earth Physics, Kobe University) has recently proposed an alternative scenario: what if the rings were formed from partial disruption of the centaur itself, after it crossed just a little too close to a giant planet?Tidal Forces from a GiantHyodo and collaborators first used past studies of centaur orbits to estimate that roughly 10% of centaurs experience close encounters (passing within a distance of ~2x the planetary radius) with a giant planet during their million-year lifetime. The team then performed a series of simulations of close encounters between a giant planet and a differentiated centaur a body in which the rocky material has sunk to form a dense silicate core, surrounded by an icy mantle.Some snapshots of simulation outcomes (click for a closer look!) for different initial states of
Hele, Timothy J H; Althorpe, Stuart C
2013-02-28
Surprisingly, there exists a quantum flux-side time-correlation function which has a non-zero t → 0+ limit and thus yields a rigorous quantum generalization of classical transition-state theory (TST). In this Part I of two articles, we introduce the new time-correlation function and derive its t → 0+ limit. The new ingredient is a generalized Kubo transform which allows the flux and side dividing surfaces to be the same function of path-integral space. Choosing this function to be a single point gives a t → 0+ limit which is identical to an expression introduced on heuristic grounds by Wigner in 1932; however, this expression does not give positive-definite quantum statistics, causing it to fail while still in the shallow-tunnelling regime. Positive-definite quantum statistics is obtained only if the dividing surface is invariant to imaginary-time translation, in which case the t → 0+ limit is identical to ring-polymer molecular dynamics (RPMD) TST. The RPMD-TST rate is not a strict upper bound to the exact quantum rate, but is a good approximation to one if real-time coherence effects are small. Part II will show that the RPMD-TST rate is equal to the exact quantum rate in the absence of recrossing.
Li, Yongle; Suleimanov, Yury V; Li, Jun; Green, William H; Guo, Hua
2013-03-07
The thermal rate coefficients and kinetic isotope effects have been calculated using ring polymer molecular dynamics (RPMD) for the prototypical reactions between methane and several hydrogen isotopes (H, D, and Mu). The excellent agreement with the theoretical rate coefficients of the H + CH4 reaction obtained previously from a multi-configuration time-dependent Hartree calculation on the same potential energy surface provides strong evidence for the accuracy of the RPMD approach. These quantum mechanical rate coefficients are also in good agreement with the results obtained previously using the transition-state theory with semi-classical tunneling corrections for the H∕D + CH4 reactions. However, it is shown that the RPMD rate coefficients for the ultralight Mu reaction with CH4 are significantly smaller than the experimental data, presumably suggesting inaccuracies in the potential energy surface and∕or experimental errors. Significant discrepancies between the RPMD and transition-state theory results have also been found for this challenging system.