WorldWideScience

Sample records for ring collapse events

  1. Influences of magma chamber ellipticity on ring fracturing and eruption at collapse calderas

    International Nuclear Information System (INIS)

    Holohan, Eoghan P; Walsh, John J; Vries, Benjamin van Wyk de; Troll, Valentin R; Walter, Thomas R

    2008-01-01

    Plan-view ellipticity of a pre-caldera magma reservoir, and its influence on the development of caldera ring fracturing and eruptive behaviour, have not previously been subjected to dedicated evaluation. We experimentally simulated caldera collapse into elliptical magma chambers and found that collapse into highly-elliptical chambers produced a characteristic pattern of ring-fault localization and lateral propagation. Although results are preliminary, the general deformation pattern for elliptical resurgence shows strong similarities to elliptical collapse. Ring faults accommodating uplift again initiate around the chamberos short axis and are reverse, but dip inward. Field and geophysical observations at several elliptical calderas of varying scale (e.g. Long Valley, Katmai, and Rabaul calderas) are consistent with a control from elliptical magma chamber geometry on ring fracturing and eruption, as predicted from our experiments.

  2. Influences of magma chamber ellipticity on ring fracturing and eruption at collapse calderas

    Energy Technology Data Exchange (ETDEWEB)

    Holohan, Eoghan P; Walsh, John J [Fault Analysis Group, School of Geological Sciences, University College Dublin, Belfield, Dublin 4 (Ireland); Vries, Benjamin van Wyk de [Laboratoire Magmas et Volcans, 5 rue Kessler, 63038 Clermont-Ferrand (France); Troll, Valentin R [Department of Earth Sciences, Uppsala University, SE-752 36, Uppsala (Sweden); Walter, Thomas R [GFZ Potsdam, Telegrafenberg, Potsdam, D-14473 (Germany)], E-mail: Eoghan.Holohan@ucd.ie

    2008-10-01

    Plan-view ellipticity of a pre-caldera magma reservoir, and its influence on the development of caldera ring fracturing and eruptive behaviour, have not previously been subjected to dedicated evaluation. We experimentally simulated caldera collapse into elliptical magma chambers and found that collapse into highly-elliptical chambers produced a characteristic pattern of ring-fault localization and lateral propagation. Although results are preliminary, the general deformation pattern for elliptical resurgence shows strong similarities to elliptical collapse. Ring faults accommodating uplift again initiate around the chamberos short axis and are reverse, but dip inward. Field and geophysical observations at several elliptical calderas of varying scale (e.g. Long Valley, Katmai, and Rabaul calderas) are consistent with a control from elliptical magma chamber geometry on ring fracturing and eruption, as predicted from our experiments.

  3. Predicting mining collapse: Superjerks and the appearance of record-breaking events in coal as collapse precursors

    Science.gov (United States)

    Jiang, Xiang; Liu, Hanlong; Main, Ian G.; Salje, Ekhard K. H.

    2017-08-01

    The quest for predictive indicators for the collapse of coal mines has led to a robust criterion from scale-model tests in the laboratory. Mechanical collapse under uniaxial stress forms avalanches with a power-law probability distribution function of radiated energy P ˜E-ɛ , with exponent ɛ =1.5 . Impending major collapse is preceded by a reduction of the energy exponent to the mean-field value ɛ =1.32 . Concurrently, the crackling noise increases in intensity and the waiting time between avalanches is reduced when the major collapse is approaching. These latter criteria were so-far deemed too unreliable for safety assessments in coal mines. We report a reassessment of previously collected extensive collapse data sets using "record-breaking analysis," based on the statistical appearance of "superjerks" within a smaller spectrum of collapse events. Superjerks are defined as avalanche signals with energies that surpass those of all previous events. The final major collapse is one such superjerk but other "near collapse" events equally qualify. In this way a very large data set of events is reduced to a sparse sequence of superjerks (21 in our coal sample). The main collapse can be anticipated from the sequence of energies and waiting times of superjerks, ignoring all weaker events. Superjerks are excellent indicators for the temporal evolution, and reveal clear nonstationarity of the crackling noise at constant loading rate, as well as self-similarity in the energy distribution of superjerks as a function of the number of events so far in the sequence Es j˜nδ with δ =1.79 . They are less robust in identifying the precise time of the final collapse, however, than the shift of the energy exponents in the whole data set which occurs only over a short time interval just before the major event. Nevertheless, they provide additional diagnostics that may increase the reliability of such forecasts.

  4. A short review of our current understanding of the development of ring faults during collapse caldera formation

    Directory of Open Access Journals (Sweden)

    Adelina eGeyer

    2014-09-01

    Full Text Available The term collapse caldera refers to those volcanic depressions resulting from the sinking of the chamber roof due to the rapid withdrawal of magma during the course of an eruption. During the last three decades, collapse caldera dynamics has been the focus of attention of numerous, theoretical, numerical and experimental studies. Nonetheless, even if there is a tendency to go for a general and comprehensive caldera dynamics model, some key aspects remain unclear, controversial or completely unsolved. This is the case of ring fault nucleation points and propagation and dip direction. Since direct information on calderas’ deeper structure comes mainly from partially eroded calderas or few witnessed collapses, ring faults layout at depth remains still uncertain. This has generated a strong debate over the detailed internal fault and fracture configuration of a caldera collapse and, in more detail, how ring faults initiate and propagate. We offer here a very short description of the main results obtained by those analogue and theoretical/mathematical models applied to the study of collapse caldera formation. We place special attention on those observations related to the nucleation and propagation of the collapse-controlling ring faults. This summary is relevant to understand the current state-of-the-art of this topic and it should be taken under consideration in future works dealing with collapse caldera dynamics.

  5. Effects of host rock stratigraphy on the formation of ring-faults and the initiation of collapse calderas

    International Nuclear Information System (INIS)

    Kinvig, H S; Geyer, A; Gottsmann, J

    2008-01-01

    Most collapse calderas can be attributed to subsidence of the magma chamber roof along bounding sub-vertical normal faults (ring-faults) after a decompression of the magma chamber, following eruption. Here, we present new numerical models that use a Finite Element Method to investigate the effects of variable crustal stratigraphy (lithology/thickness/order of strata) above a magma chamber, on local stress field distribution and how these in turn compare with existing criteria for ring-fault initiation. Results indicate that the occurrence and relative distribution of mechanically different lithologies may be influential in generating or inhibiting caldera collapse.

  6. Effects of host rock stratigraphy on the formation of ring-faults and the initiation of collapse calderas

    Energy Technology Data Exchange (ETDEWEB)

    Kinvig, H S; Geyer, A; Gottsmann, J [Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen' s Road, BS8 1RJ, Bristol (United Kingdom)

    2008-10-01

    Most collapse calderas can be attributed to subsidence of the magma chamber roof along bounding sub-vertical normal faults (ring-faults) after a decompression of the magma chamber, following eruption. Here, we present new numerical models that use a Finite Element Method to investigate the effects of variable crustal stratigraphy (lithology/thickness/order of strata) above a magma chamber, on local stress field distribution and how these in turn compare with existing criteria for ring-fault initiation. Results indicate that the occurrence and relative distribution of mechanically different lithologies may be influential in generating or inhibiting caldera collapse.

  7. Ground Deformation Related to Caldera Collapse and Ring-Fault Activity

    KAUST Repository

    Liu, Yuan-Kai

    2018-05-01

    Volcanic subsidence, caused by partial emptying of magma in the subsurface reservoir has long been observed by spaceborne radar interferometry. Monitoring long-term crustal deformation at the most notable type of volcanic subsidence, caldera, gives us insights of the spatial and hazard-related information of subsurface reservoir. Several subsiding calderas, such as volcanoes on the Galapagos islands have shown a complex ground deformation pattern, which is often composed of a broad deflation signal affecting the entire edifice and a localized subsidence signal focused within the caldera floor. Although numerical or analytical models with multiple reservoirs are proposed as the interpretation, geologically and geophysically evidenced ring structures in the subsurface are often ignored. Therefore, it is still debatable how deep mechanisms relate to the observed deformation patterns near the surface. We aim to understand what kind of activities can lead to the complex deformation. Using two complementary approaches, we study the three-dimensional geometry and kinematics of deflation processes evolving from initial subsidence to later collapse of calderas. Firstly, the analog experiments analyzed by structure-from-motion photogrammetry (SfM) and particle image velocimetry (PIV) helps us to relate the surface deformation to the in-depth structures. Secondly, the numerical modeling using boundary element method (BEM) simulates the characteristic deformation patterns caused by a sill-like source and a ring-fault. Our results show that the volcano-wide broad deflation is primarily caused by the emptying of the deep magma reservoir, whereas the localized deformation on the caldera floor is related to ring-faulting at a shallower depth. The architecture of the ring-fault to a large extent determines the deformation localization on the surface. Since series evidence for ring-faulting at several volcanoes are provided, we highlight that it is vital to include ring

  8. Ground Deformation Related to Caldera Collapse and Ring-Fault Activity

    KAUST Repository

    Liu, Yuan-Kai

    2018-01-01

    Volcanic subsidence, caused by partial emptying of magma in the subsurface reservoir has long been observed by spaceborne radar interferometry. Monitoring long-term crustal deformation at the most notable type of volcanic subsidence, caldera, gives us insights of the spatial and hazard-related information of subsurface reservoir. Several subsiding calderas, such as volcanoes on the Galapagos islands have shown a complex ground deformation pattern, which is often composed of a broad deflation signal affecting the entire edifice and a localized subsidence signal focused within the caldera floor. Although numerical or analytical models with multiple reservoirs are proposed as the interpretation, geologically and geophysically evidenced ring structures in the subsurface are often ignored. Therefore, it is still debatable how deep mechanisms relate to the observed deformation patterns near the surface. We aim to understand what kind of activities can lead to the complex deformation. Using two complementary approaches, we study the three-dimensional geometry and kinematics of deflation processes evolving from initial subsidence to later collapse of calderas. Firstly, the analog experiments analyzed by structure-from-motion photogrammetry (SfM) and particle image velocimetry (PIV) helps us to relate the surface deformation to the in-depth structures. Secondly, the numerical modeling using boundary element method (BEM) simulates the characteristic deformation patterns caused by a sill-like source and a ring-fault. Our results show that the volcano-wide broad deflation is primarily caused by the emptying of the deep magma reservoir, whereas the localized deformation on the caldera floor is related to ring-faulting at a shallower depth. The architecture of the ring-fault to a large extent determines the deformation localization on the surface. Since series evidence for ring-faulting at several volcanoes are provided, we highlight that it is vital to include ring

  9. Delay-time distribution of core-collapse supernovae with late events resulting from binary interaction

    Science.gov (United States)

    Zapartas, E.; de Mink, S. E.; Izzard, R. G.; Yoon, S.-C.; Badenes, C.; Götberg, Y.; de Koter, A.; Neijssel, C. J.; Renzo, M.; Schootemeijer, A.; Shrotriya, T. S.

    2017-05-01

    Most massive stars, the progenitors of core-collapse supernovae, are in close binary systems and may interact with their companion through mass transfer or merging. We undertake a population synthesis study to compute the delay-time distribution of core-collapse supernovae, that is, the supernova rate versus time following a starburst, taking into account binary interactions. We test the systematic robustness of our results by running various simulations to account for the uncertainties in our standard assumptions. We find that a significant fraction, %, of core-collapse supernovae are "late", that is, they occur 50-200 Myr after birth, when all massive single stars have already exploded. These late events originate predominantly from binary systems with at least one, or, in most cases, with both stars initially being of intermediate mass (4-8 M⊙). The main evolutionary channels that contribute often involve either the merging of the initially more massive primary star with its companion or the engulfment of the remaining core of the primary by the expanding secondary that has accreted mass at an earlier evolutionary stage. Also, the total number of core-collapse supernovae increases by % because of binarity for the same initial stellar mass. The high rate implies that we should have already observed such late core-collapse supernovae, but have not recognized them as such. We argue that φ Persei is a likely progenitor and that eccentric neutron star - white dwarf systems are likely descendants. Late events can help explain the discrepancy in the delay-time distributions derived from supernova remnants in the Magellanic Clouds and extragalactic type Ia events, lowering the contribution of prompt Ia events. We discuss ways to test these predictions and speculate on the implications for supernova feedback in simulations of galaxy evolution.

  10. Phase behaviour of polyethylene knotted ring chains

    International Nuclear Information System (INIS)

    Wen Xiao-Hui; Xia A-Gen; Chen Hong-Ping; Zhang Lin-Xi

    2011-01-01

    The phase behaviour of polyethylene knotted ring chains is investigated by using molecular dynamics simulations. In this paper, we focus on the collapse of the polyethylene knotted ring chain, and also present the results of linear and ring chains for comparison. At high temperatures, a fully extensive knot structure is observed. The mean-square radius of gyration per bond (S 2 )/(Nb 2 ) and the shape factor (δ*) depend on not only the chain length but also the knot type. With temperature decreasing, chain collapse is observed, and the collapse temperature decreases with the chain length increasing. The actual collapse transition can be determined by the specific heat capacity C v , and the knotted ring chain undergoes gas—liquid—solid-like transition directly. The phase transition of a knotted ring chain is only one-stage collapse, which is different from the polyethylene linear and ring chains. This investigation can provide some insights into the statistical properties of knotted polymer chains. (condensed matter: structural, mechanical, and thermal properties)

  11. Alternate Explosions: Collapse and Accretion Events with Red Holes instead of Black Holes

    OpenAIRE

    Graber, James S.

    1999-01-01

    A red hole is "just like a black hole" except it lacks an event horizon and a singularity. As a result, a red hole emits much more energy than a black hole during a collapse or accretion event. We consider how a red hole solution can solve the "energy crisis" and power extremely energetic gamma ray bursts and hypernovae.

  12. Parametric analysis of lava dome-collapse events and pyroclastic deposits at Shiveluch volcano, Kamchatka, using visible and infrared satellite data

    Science.gov (United States)

    Krippner, Janine B.; Belousov, Alexander B.; Belousova, Marina G.; Ramsey, Michael S.

    2018-04-01

    For the years 2001 to 2013 of the ongoing eruption of Shiveluch volcano, a combination of different satellite remote sensing data are used to investigate the dome-collapse events and the resulting pyroclastic deposits. Shiveluch volcano in Kamchatka, Russia, is one of the world's most active dome-building volcanoes, which has produced some of the largest known historical block-and-ash flows (BAFs). Globally, quantitative data for deposits resulting from such large and long-lived dome-forming eruptions, especially like those at Shiveluch, are scarce. We use Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared (TIR), shortwave infrared (SWIR), and visible-near infrared (VNIR) data to analyze the dome-collapse scars and BAF deposits that were formed during eruptions and collapse events in 2001, 2004, 2005, 2007, 2009, 2010, and two events in 2013. These events produced flows with runout distances of as far as 19 km from the dome, and with aerial extents of as much as 22.3 km2. Over the 12 years of this period of investigation, there is no trend in deposit area or runout distances of the flows through time. However, two potentially predictive features are apparent in our data set: 1) the largest dome-collapse events occurred when the dome exceeded a relative height (from dome base to top) of 500 m; 2) collapses were preceded by thermal anomalies in six of the cases in which ASTER data were available, although the areal extent of these precursory thermal areas did not generally match the size of the collapse events as indicated by scar area (volumes are available for three collapse events). Linking the deposit distribution to the area, location, and temperature profiles of the dome-collapse scars provides a basis for determining similar future hazards at Shiveluch and at other dome-forming volcanoes. Because of these factors, we suggest that volcanic hazard analysis and mitigation at volcanoes with similar BAF emplacement behavior may

  13. A Model of Dust-like Spherically Symmetric Gravitational Collapse without Event Horizon Formation

    Directory of Open Access Journals (Sweden)

    Piñol M.

    2015-10-01

    Full Text Available Some dynamical aspects of gravitational collapse are explored in this paper. A time- dependent spherically symmetric metric is proposed and the corresponding Einstein field equations are derived. An ultrarelativistic dust-like stress-momentum tensor is considered to obtain analytical solutions of these equations, with the perfect fluid con- sisting of two purely radial fluxes — the inwards flux of collapsing matter and the outwards flux of thermally emitted radiation. Thermal emission is calculated by means of a simplistic but illustrative model of uninteracting collapsing shells. Our results show an asymptotic approach to a maximal space-time deformation without the formation of event horizons. The size of the body is slightly larger than the Schwarzschild radius during most of its lifetime, so that there is no contradiction with either observations or previous theorems on black holes. The relation of the latter with our results is scruti- nized in detail.

  14. Acoustic emission events from sodium vapour bubble collapsing: a stochastic model

    Energy Technology Data Exchange (ETDEWEB)

    Colombino, A; Dentico, G; Pacilio, N; Papalia, B; Taglienti, S; Tosi, V; Vigo, A [Comitato Nazionale per l' Energia Nucleare, Casaccia (Italy). Centro di Studi Nucleari; Galli, C [Rome Univ. (Italy). Ist. di Matematica

    1981-01-01

    The forward Kolomogorov equation method has been applied to a zero-dimensional model which describes the time distribution of acoustic emissions from sodium vapour bubble collapsing. Processes taken into account as components for outlining the upstated phenomenon are: energy generation, energy dissipation, bubble creation, acoustic emission and energy release from bubble collapsing. Processes involve affect or are induced by a population of particles (bubbles, acoustic pulses) and pseudoparticles (energetic units). A formulation is obtained for the expected values of some stochastic indicators, i.e., factorial moments and cumulants, autocorrelation functions, waiting time distribution between contiguous events, of the time series consisting of acoustic emission pulses as detected by a suitable sensor. Preliminary, but promising, validation of the model and a sound prelude to effective boiling regime diagnosing is obtained by processing data from the out-of-pile CFNa loop in Grenoble, France. Data are collected from a piezoelectric accelerometer located nearby the circuit.

  15. Extreme Drought Events Revealed in Amazon Tree Ring Records

    Science.gov (United States)

    Jenkins, H. S.; Baker, P. A.; Guilderson, T. P.

    2010-12-01

    The Amazon basin is a center of deep atmospheric convection and thus acts as a major engine for global hydrologic circulation. Yet despite its significance, a full understanding of Amazon rainfall variability remains elusive due to a poor historical record of climate. Temperate tree rings have been used extensively to reconstruct climate over the last thousand years, however less attention has been given to the application of dendrochronology in tropical regions, in large part due to a lower frequency of tree species known to produce annual rings. Here we present a tree ring record of drought extremes from the Madre de Dios region of southeastern Peru over the last 190 years. We confirm that tree ring growth in species Cedrela odorata is annual and show it to be well correlated with wet season precipitation. This correlation is used to identify extreme dry (and wet) events that have occurred in the past. We focus on drought events identified in the record as drought frequency is expected to increase over the Amazon in a warming climate. The Cedrela chronology records historic Amazon droughts of the 20th century previously identified in the literature and extends the record of drought for this region to the year 1816. Our analysis shows that there has been an increase in the frequency of extreme drought (mean recurrence interval = 5-6 years) since the turn of the 20th century and both Atlantic and Pacific sea surface temperature (SST) forcing mechanisms are implicated.

  16. Hydroacoustic monitoring of a salt cavity: an analysis of precursory events of the collapse

    Science.gov (United States)

    Lebert, F.; Bernardie, S.; Mainsant, G.

    2011-09-01

    One of the main features of "post mining" research relates to available methods for monitoring mine-degradation processes that could directly threaten surface infrastructures. In this respect, GISOS, a French scientific interest group, is investigating techniques for monitoring the eventual collapse of underground cavities. One of the methods under investigation was monitoring the stability of a salt cavity through recording microseismic-precursor signals that may indicate the onset of rock failure. The data were recorded in a salt mine in Lorraine (France) when monitoring the controlled collapse of 2 000 000 m3 of rocks surrounding a cavity at 130 m depth. The monitoring in the 30 Hz to 3 kHz frequency range highlights the occurrence of events with high energy during periods of macroscopic movement, once the layers had ruptured; they appear to be the consequence of the post-rupture rock movements related to the intense deformation of the cavity roof. Moreover the analysis shows the presence of some interesting precursory signals before the cavity collapsed. They occurred a few hours before the failure phases, when the rocks were being weakened and damaged. They originated from the damaging and breaking process, when micro-cracks appear and then coalesce. From these results we expect that deeper signal analysis and statistical analysis on the complete event time distribution (several millions of files) will allow us to finalize a complete typology of each signal families and their relations with the evolution steps of the cavity over the five years monitoring.

  17. Two-phase, reciprocal, double trapdoor collapse at Hannegan caldera, North Cascades, Washington, USA

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, David S [Mount Baker Volcano Research Center Geology Department Western Washington University 516 High Street Bellingham, Washington 98225-9080 (United States)], E-mail: DaveTucker@mbvo.wwu.edu

    2008-10-01

    The intracaldera Hannegan volcanics were erupted during two collapse episodes of the Hannegan caldera in the North Cascade mountains of Washington State. The first eruption yielded a down-to-the-north trapdoor style collapse at 3.722 {+-} 0.020 Ma (40Ar/39Ar) that is bounded by a horseshoe-shaped ring fault. The second collapse, most probably also trapdoor style, followed a short period of sedimentation, and completed the elliptical ring fault around the southern margin of the caldera. Post caldera plutons, with U-Pb ages of 3.42 {+-} 0.10 and 3.36 {+-} 0.20 Ma, intruded the intracaldera ignimbrite.

  18. βp-collapse-induced vertical displacement event in high βp tokamak disruption

    International Nuclear Information System (INIS)

    Nakamura, Y.; Yoshino, R.; Pomphrey, N.; Jardin, S.C.

    1996-01-01

    Extremely fast vertical displacement events (VDEs) induced by a strong β p collapse were found in a vertically elongated (κ ∼ 1.5), high β p (β p ∼ 1.7) tokamak with a resistive shell through computer simulations using the tokamak simulation code. Although the plasma current quench which has been shown to be the prime cause of VDEs in a relatively low β p tokamak (β p ∼ 0.2) (Nakamura Y et al 1996 Nucl. Fusion 36 643), was not observed during the VDE evolution, the observed growth rate of VDEs was almost five times (γ ∼ 655 s -1 ) faster than the growth rate of the usual positional instability (γ ∼ 149 s -1 ). The essential mechanism of the β p -collapse-induced VDE was clarified to be the intense enhancement of positional instability due to a large and sudden degradation of the magnetic field decay n-index in addition to the significant destabilization due to a reduction in the stability index n s . The radial shift of the magnetic axis caused by the β p collapse induces eddy currents on the resistive shell, and these eddy currents produce a large degradation of the n-index. (author)

  19. Plastic collapse of tubes submitted to a ring load by optimization

    International Nuclear Information System (INIS)

    Zouain, N.

    1982-05-01

    The limit analysis of a tube with finite lenght, made of a rigid - plastic material, is considered for the case of an internal load uniformely distributed in a cross section of the tube. The exact creep law is calculated for several qualitatively differents cases, namely different tube lenghts. The corresponding stress and collapse mechanisms are given so that they can be compared to the approximations developed here. The static and kinematic theorems on plastic collapse are used for establishing two numerical methods of resolution, specifically mathematical programming and finite element method. These mathematical methods are applied to collapse load for the considered tube. (E.G.) [pt

  20. Computational models of stellar collapse and core-collapse supernovae

    International Nuclear Information System (INIS)

    Ott, Christian D; O'Connor, Evan; Schnetter, Erik; Loeffler, Frank; Burrows, Adam; Livne, Eli

    2009-01-01

    Core-collapse supernovae are among Nature's most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of galaxies and life in the universe, the details of the core-collapse supernova explosion mechanism remain in the dark and pose a daunting computational challenge. We outline the multi-dimensional, multi-scale, and multi-physics nature of the core-collapse supernova problem and discuss computational strategies and requirements for its solution. Specifically, we highlight the axisymmetric (2D) radiation-MHD code VULCAN/2D and present results obtained from the first full-2D angle-dependent neutrino radiation-hydrodynamics simulations of the post-core-bounce supernova evolution. We then go on to discuss the new code Zelmani which is based on the open-source HPC Cactus framework and provides a scalable AMR approach for 3D fully general-relativistic modeling of stellar collapse, core-collapse supernovae and black hole formation on current and future massively-parallel HPC systems. We show Zelmani's scaling properties to more than 16,000 compute cores and discuss first 3D general-relativistic core-collapse results.

  1. Six collapses

    International Nuclear Information System (INIS)

    Miller, R.H.; Smith, B.F.

    1979-01-01

    The self-consistent dynamical development of six stellar systems, started from rotating spherical configurations, has been studied by means of a fully three-dimensional n-body integration. The six examples had different initial angular velocities and velocity dispersions. All settled down into prolate bars rotating about a short axis within two initial rotation periods. The bars are long-lived, robust, and stable. Bars are the natural form toward which rapidly rotating stellar dynamical systems develop, instead of the flattened axisymmetric disks that had been expected.The early stages of each collapse are reasonably well described by a theoretical model according to which a collapse passes through a sequence of rigidly rotating, uniform-density spheroids. The first significant departures from spheroidal form were axisymmetric in all cases. Rings formed in some examples, sheets in others, with transition cases between these extremes. Nonaxisymmetry forms developed from these intermediate stages

  2. Protostellar formation in rotation interstellar clouds. III. Nonaxisymmetric collapse

    International Nuclear Information System (INIS)

    Boss, A.P.

    1980-01-01

    A full three spatial-dimension gravitational hydrodynamics code has been used to follow the collapse of isothermal rotating clouds subjected to various nonaxialy symmetric perturbations (NAP). An initially axially symmetric cloud collapsed to form a ring which then fragmented into a binary protostellar system. A low thermal energy cloud with a large bar-shaped NAP collapsed and fragmented directly into a binary; higher thermal energy clouds damp out such NAPs while higher rotational rotational energy clouds produce binaries with wider separations. Fragmentation into single and binary systems has been seen. The tidal effects of other nearby protostellar clouds are shown to have an important effect upon the collapse and should not be neglected. The three-dimensional calculations indicate that isothermal interstellar clouds may fragment (with or without passing through a transitory ring phase) into protostellar objects while still in the isothermal regime. The fragments obtained have masses and specific spin angular momenta roughly a 10th that of the original cloud. Interstellar clouds and their fragments may pass through successive collapse phases with fragmentation and reduction of spin angular momentum (by conversion to orbital angular momentum and preferential accretion of low angular momentum matter) terminating in the formation of pre--main-sequence stars with the observed pre--main-sequence rotation rates

  3. Computational models of stellar collapse and core-collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Christian D; O' Connor, Evan [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA (United States); Schnetter, Erik; Loeffler, Frank [Center for Computation and Technology, Louisiana State University, Baton Rouge, LA (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ (United States); Livne, Eli, E-mail: cott@tapir.caltech.ed [Racah Institute of Physics, Hebrew University, Jerusalem (Israel)

    2009-07-01

    Core-collapse supernovae are among Nature's most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of galaxies and life in the universe, the details of the core-collapse supernova explosion mechanism remain in the dark and pose a daunting computational challenge. We outline the multi-dimensional, multi-scale, and multi-physics nature of the core-collapse supernova problem and discuss computational strategies and requirements for its solution. Specifically, we highlight the axisymmetric (2D) radiation-MHD code VULCAN/2D and present results obtained from the first full-2D angle-dependent neutrino radiation-hydrodynamics simulations of the post-core-bounce supernova evolution. We then go on to discuss the new code Zelmani which is based on the open-source HPC Cactus framework and provides a scalable AMR approach for 3D fully general-relativistic modeling of stellar collapse, core-collapse supernovae and black hole formation on current and future massively-parallel HPC systems. We show Zelmani's scaling properties to more than 16,000 compute cores and discuss first 3D general-relativistic core-collapse results.

  4. STELLAR TIDAL DISRUPTION EVENTS BY DIRECT-COLLAPSE BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Kashiyama, Kazumi [Theoretical Astrophysics Center, Department of Astronomy, University of California, Berkeley, Berkeley, CA 94720 (United States); Inayoshi, Kohei, E-mail: kashiyama@berkeley.edu, E-mail: inayoshi@astro.columbia.edu [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

    2016-07-20

    We analyze the early growth stage of direct-collapse black holes (DCBHs) with ∼10{sup 5} M {sub ⊙}, which are formed by collapse of supermassive stars in atomic-cooling halos at z ≳ 10. A nuclear accretion disk around a newborn DCBH is gravitationally unstable and fragments into clumps with a few × 10 M {sub ⊙} at ∼0.01–0.1 pc from the center. Such clumps evolve into massive Population III stars with a few × 10–10{sup 2} M {sub ⊙} via successive gas accretion, and a nuclear star cluster is formed. Radiative and mechanical feedback from an inner slim disk and the star cluster will significantly reduce the gas accretion rate onto the DCBH within ∼10{sup 6} yr. Some of the nuclear stars can be scattered onto the loss cone orbits also within ≲10{sup 6} yr and tidally disrupted by the central DCBH. The jet luminosity powered by such tidal disruption events can be L {sub j} ≳ 10{sup 50} erg s{sup 1}. The prompt emission will be observed in X-ray bands with a peak duration of δt {sub obs} ∼ 10{sup 5–6}(1 + z ) s followed by a tail ∝ t {sub obs} {sup 5/3}, which can be detectable by Swift BAT and eROSITA even from z ∼ 20. Follow-up observations of the radio afterglows with, e.g., eVLA and the host halos with James Webb Space Telescope could probe the earliest active galactic nucleus feedback from DCBHs.

  5. Mechanisms of cascade collapse

    International Nuclear Information System (INIS)

    Diaz de la Rubia, T.; Smalinskas, K.; Averback, R.S.; Robertson, I.M.; Hseih, H.; Benedek, R.

    1988-12-01

    The spontaneous collapse of energetic displacement cascades in metals into vacancy dislocation loops has been investigated by molecular dynamics (MD) computer simulation and transmission electron microscopy (TEM). Simulations of 5 keV recoil events in Cu and Ni provide the following scenario of cascade collapse: atoms are ejected from the central region of the cascade by replacement collision sequences; the central region subsequently melts; vacancies are driven to the center of the cascade during resolidification where they may collapse into loops. Whether or not collapse occurs depends critically on the melting temperature of the metal and the energy density and total energy in the cascade. Results of TEM are presented in support of this mechanism. 14 refs., 4 figs., 1 tab

  6. Flood-Ring Formation and Root Development in Response to Experimental Flooding of Young Quercus robur Trees

    Science.gov (United States)

    Copini, Paul; den Ouden, Jan; Robert, Elisabeth M. R.; Tardif, Jacques C.; Loesberg, Walter A.; Goudzwaard, Leo; Sass-Klaassen, Ute

    2016-01-01

    Spring flooding in riparian forests can cause significant reductions in earlywood-vessel size in submerged stem parts of ring-porous tree species, leading to the presence of ‘flood rings’ that can be used as a proxy to reconstruct past flooding events, potentially over millennia. The mechanism of flood-ring formation and the relation with timing and duration of flooding are still to be elucidated. In this study, we experimentally flooded 4-year-old Quercus robur trees at three spring phenophases (late bud dormancy, budswell, and internode expansion) and over different flooding durations (2, 4, and 6 weeks) to a stem height of 50 cm. The effect of flooding on root and vessel development was assessed immediately after the flooding treatment and at the end of the growing season. Ring width and earlywood-vessel size and density were measured at 25- and 75-cm stem height and collapsed vessels were recorded. Stem flooding inhibited earlywood-vessel development in flooded stem parts. In addition, flooding upon budswell and internode expansion led to collapsed earlywood vessels below the water level. At the end of the growing season, mean earlywood-vessel size in the flooded stem parts (upon budswell and internode expansion) was always reduced by approximately 50% compared to non-flooded stem parts and 55% compared to control trees. This reduction was already present 2 weeks after flooding and occurred independent of flooding duration. Stem and root flooding were associated with significant root dieback after 4 and 6 weeks and mean radial growth was always reduced with increasing flooding duration. By comparing stem and root flooding, we conclude that flood rings only occur after stem flooding. As earlywood-vessel development was hampered during flooding, a considerable number of narrow earlywood vessels present later in the season, must have been formed after the actual flooding events. Our study indicates that root dieback, together with strongly reduced hydraulic

  7. The Alabama, U.S.A., seismic event and strata collapse of May 7, 1986

    Science.gov (United States)

    Long, L.T.; Copeland, C.W.

    1989-01-01

    On May 7, 1986, the residents of Tuscaloosa, Alabama, felt a seismic event of local magnitude 3.6 that occurred at the same time as a rock burst and roof collapse in an active longwall coal mine. Visual inspection of the seismograms reveals a deficiency in energy at frequencies above 20 Hz compared to tectonic earthquakes or surface blasts. The predominance of energy below 5 Hz may explain reports of body wave magnitudes (mb) greater than 4.2. Also, 1.0 Hz surface waves were more strongly excited than body waves and may explain local felt effects more typically associated with greater epicentral distances. All recorded first motions were dilatational. The concentration of stations in the northern hemisphere allows reverse motion on an east-trending near-vertical plane or strike-slip motion on northwest or southeast trending planes. The reverse focal mechanism is preferred, because the area of roof collapse and the area of active longwall mining are located between two east-striking loose vertical fracture zones. The characteristics of the seismic event suggest that it might have been sudden shear failure resulting from accumulated strain energy in overlying strata behind an active longwall. Although an alternate interpretation of the focal mechanism as an implosion or shear failure in the strata above previously mined out areas is also allowed by the first motion data, this alternate intepretation is not supported by geological data. ?? 1989 Birkha??user Verlag.

  8. The K-PG boundary: how geological events lead to collapse of marine primary producers

    Science.gov (United States)

    Hir guillaume, Le; frederic, Fluteau; yves, Goddéris

    2017-04-01

    The cause(s) of Cretaceous/Paleogene (K-Pg) mass extinction event is a matter of debate since three decades. A first scenario connects the K-Pg crisis with the Chicxulub impact while the second scenario evokes the emplacement of the Deccan traps in India as the cause for the K-Pg biodiversity collapse. Pierazzo et al. (1998) estimated that the extraterrestrial bolide lead to an instantaneously CO2 degassing ranging from 880 Gt to 2,960 Gt into the atmosphere, together with a massive release of SO2 ranging from 150 to 460 Gt.. Self et al. (2006, 2008) and Chenet et al. (2009) suggested that the emplacement of the Deccan traps released 15,000 Gt to 35,000 Gt of CO2 and 6,800 Gt to 17,000 Gt of SO2 over a 250 kyr-long period (Schoene et al., 2015). To decipher and quantify the long term environmental consequences of both events, we tested different scenarios: a pulse-like magmatic degassing, a bolide impact, and a combination of both. To understand the environmental changes and quantify biodiversity responses, we improve GEOCLIM, a coupled climate-carbon numerical model, by implementing a biodiversity model in which marine species are described by specific death/born rates, sensitivity to abiotic factors (temperature, pH, dissolved O2, calcite saturation state) and feeding relationships, each of these characteristics is assigned randomly. Preliminary simulations accounting for the eruption of the Deccan traps show that successive cooling events (S-aerosols effect) combined with a progressive acidification of surface water (caused by CO2 and SO2 injections) cause a major collapse of the marine biomass. Additional simulations in which Chicxulub impact, different community structures of primary producers will be discussed.

  9. Neutrinos from gravitational collapse

    International Nuclear Information System (INIS)

    Mayle, R.; Wilson, J.R.; Schramm, D.N.

    1986-05-01

    Detailed calculations are made of the neutrino spectra emitted during gravitational collapse events (Type II supernovae). Those aspects of the neutrino signal which are relatively independent of the collapse model and those aspects which are sensitive to model details are discussed. The easier-to-detect high energy tail of the emitted neutrinos has been calculated using the Boltzmann equation which is compared with the result of the traditional multi-group flux limited diffusion calculations. 8 figs., 28 refs

  10. Collapse Mechanisms Of Masonry Structures

    International Nuclear Information System (INIS)

    Zuccaro, G.; Rauci, M.

    2008-01-01

    The paper outlines a possible approach to typology recognition, safety check analyses and/or damage measuring taking advantage by a multimedia tool (MEDEA), tracing a guided procedure useful for seismic safety check evaluation and post event macroseismic assessment. A list of the possible collapse mechanisms observed in the post event surveys on masonry structures and a complete abacus of the damages are provided in MEDEA. In this tool a possible combination between a set of damage typologies and each collapse mechanism is supplied in order to improve the homogeneity of the damages interpretation. On the other hand recent researches of one of the author have selected a number of possible typological vulnerability factors of masonry buildings, these are listed in the paper and combined with potential collapse mechanisms to be activated under seismic excitation. The procedure takes place from simple structural behavior models, derived from the Umbria-Marche earthquake observations, and tested after the San Giuliano di Puglia event; it provides the basis either for safety check analyses of the existing buildings or for post-event structural safety assessment and economic damage evaluation. In the paper taking advantage of MEDEA mechanisms analysis, mainly developed for the post event safety check surveyors training, a simple logic path is traced in order to approach the evaluation of the masonry building safety check. The procedure starts from the identification of the typological vulnerability factors to derive the potential collapse mechanisms and their collapse multipliers and finally addresses the simplest and cheapest strengthening techniques to reduce the original vulnerability. The procedure has been introduced in the Guide Lines of the Regione Campania for the professionals in charge of the safety check analyses and the buildings strengthening in application of the national mitigation campaign introduced by the Ordinance of the Central Government n. 3362

  11. Extremely fast vertical displacement event induced by a plasma βp collapse in high βp tokamak disruptions

    International Nuclear Information System (INIS)

    Nakamura, Yukiharu; Yoshino, Ryuji; Pomphrey, N.; Jardin, S.C.

    1996-05-01

    In a vertically elongated (κ ∼ 1.5), high β p (β p ∼ 1.7) tokamak with a resistive shell, extremely fast vertical displacement events (VDE's) induced by a model of strong β p collapse were found through computer simulations using the Tokamak Simulation Code. Although the plasma current quench, which had been shown to be the prime cause of VDE's in a relatively low β p tokamak (β p ∼ 0.2), was not observed during the VDE evolution, the observed growth rate of VDE's was almost five times (γ ∼ 655 sec -1 ) faster than the growth rate of the usual positional instability (γ ∼ 149 sec -1 ). The essential mechanism of the β p collapse-induced VDE was clarified to be the significant destabilization of positional instability due to a large and sudden degradation of the decay n-index in addition to a reduction of the stability index n s . It is pointed out that the shell-geometry characterizes the VDE dynamics, and that the VDE rate depends strongly both on the magnitude of the β p collapse and the n-index of the equilibria just before the β p collapse occurs. A new guide line for designing the fusion reactor is proposed with considering the impact of disruptions. (author)

  12. The Mechanics of Peak-Ring Impact Crater Formation from the IODP-ICDP Expedition 364

    Science.gov (United States)

    Melosh, H.; Collins, G. S.; Morgan, J. V.; Gulick, S. P. S.

    2017-12-01

    The Chicxulub impact crater is one of very few peak-ring impact craters on Earth. While small (less than 3 km on Earth) impact craters are typically bowl-shaped, larger craters exhibit central peaks, which in still larger (more than about 100 km on Earth) craters expand into mountainous rings with diameters close to half that of the crater rim. The origin of these peak rings has been contentious: Such craters are far too large to create in laboratory experiments and remote sensing of extraterrestrial examples has not clarified the mechanics of their formation. Two principal models of peak ring formation are currently in vogue, the "nested crater" model, in which the peak ring originates at shallow depths in the target, and the "dynamic collapse" model in which the peak ring is uplifted at the base of a collapsing, over-steepened central peak and its rocks originate at mid-crustal depths. IODP-ICDP Expedition 364 sought to elucidate, among other important goals, the mechanics of peak ring formation in the young (66 Myr), fresh, but completely buried Chicxulub impact crater. The cores from this borehole now show unambiguously that the rocks in the Chicxulub peak ring originated at mid-crustal depths, apparently ruling out the nested crater model. These rocks were shocked to pressures on the order of 10-35 GPa and were so shattered that their densities and seismic velocities now resemble those of sedimentary rocks. The morphology of the final crater, its structure as revealed in previous seismic imaging, and the results from the cores are completely consistent with modern numerical models of impact crater excavation and collapse that incorporate a model for post-impact weakening. Subsequent to the opening of a ca. 100 km diameter and 30 km deep transient crater, this enormous hole in the crust collapsed over a period of about 10 minutes. Collapse was enabled by movement of the underlying rocks, which briefly behaved in the manner of a high-viscosity fluid, a brittle

  13. Missing rings in Pinus halepensis – the missing link to relate the tree-ring record to extreme climatic events

    Science.gov (United States)

    Klemen Novak; Martin de Luis; Miguel A. Saz; Luis A. Longares; Roberto Serrano-Notivoli; Josep Raventos; Katarina Cufar; Jozica Gricar; Alfredo Di Filippo; Gianluca Piovesan; Cyrille B.K. Rathgeber; Andreas Papadopoulos; Kevin T. Smith

    2016-01-01

    Climate predictions for the Mediterranean Basin include increased temperatures, decreased precipitation, and increased frequency of extreme climatic events (ECE). These conditions are associated with decreased tree growth and increased vulnerability to pests and diseases. The anatomy of tree rings responds to these environmental conditions. Quantitatively, the width of...

  14. Black rings

    International Nuclear Information System (INIS)

    Emparan, Roberto; Reall, Harvey S

    2006-01-01

    A black ring is a five-dimensional black hole with an event horizon of topology S 1 x S 2 . We provide an introduction to the description of black rings in general relativity and string theory. Novel aspects of the presentation include a new approach to constructing black ring coordinates and a critical review of black ring microscopics. (topical review)

  15. On the quantum corrected gravitational collapse

    International Nuclear Information System (INIS)

    Torres, Ramón; Fayos, Francesc

    2015-01-01

    Based on a previously found general class of quantum improved exact solutions composed of non-interacting (dust) particles, we model the gravitational collapse of stars. As the modeled star collapses a closed apparent 3-horizon is generated due to the consideration of quantum effects. The effect of the subsequent emission of Hawking radiation related to this horizon is taken into consideration. Our computations lead us to argue that a total evaporation could be reached. The inferred global picture of the spacetime corresponding to gravitational collapse is devoid of both event horizons and shell-focusing singularities. As a consequence, there is no information paradox and no need of firewalls

  16. On the quantum corrected gravitational collapse

    Directory of Open Access Journals (Sweden)

    Ramón Torres

    2015-07-01

    Full Text Available Based on a previously found general class of quantum improved exact solutions composed of non-interacting (dust particles, we model the gravitational collapse of stars. As the modeled star collapses a closed apparent 3-horizon is generated due to the consideration of quantum effects. The effect of the subsequent emission of Hawking radiation related to this horizon is taken into consideration. Our computations lead us to argue that a total evaporation could be reached. The inferred global picture of the spacetime corresponding to gravitational collapse is devoid of both event horizons and shell-focusing singularities. As a consequence, there is no information paradox and no need of firewalls.

  17. On the quantum corrected gravitational collapse

    Science.gov (United States)

    Torres, Ramón; Fayos, Francesc

    2015-07-01

    Based on a previously found general class of quantum improved exact solutions composed of non-interacting (dust) particles, we model the gravitational collapse of stars. As the modeled star collapses a closed apparent 3-horizon is generated due to the consideration of quantum effects. The effect of the subsequent emission of Hawking radiation related to this horizon is taken into consideration. Our computations lead us to argue that a total evaporation could be reached. The inferred global picture of the spacetime corresponding to gravitational collapse is devoid of both event horizons and shell-focusing singularities. As a consequence, there is no information paradox and no need of firewalls.

  18. Post-collapse evolution of a coastal caldera system: Insights from a 3D multichannel seismic survey from the Campi Flegrei caldera (Italy)

    Science.gov (United States)

    Steinmann, Lena; Spiess, Volkhard; Sacchi, Marco

    2018-01-01

    In this study we present the first 3D high-resolution multichannel seismic dataset from a (partly) submerged caldera setting, the Campi Flegrei caldera (CFc). Our work aims at examining the spatial and temporal evolution of the CFc since the last caldera-forming event, the Neapolitan Yellow Tuff (NYT, 15 ka) eruption. The main objectives are to investigate the caldera's shallow ( 200 m) outer caldera ring-fault zone. The seismic data revealed that the NYT collapse occurred exclusively along the inner caldera ring-fault and that the related NYT caldera depression is filled with on average 61 m of sediment deposited between 15 and 8.6 ka. The geometry of the inner ring-fault, consisting of four fault segments, seems to be strongly influenced by regional NW-SE and NE SW-trending faults. Furthermore, we found that the ring-faults have acted as pathway for the recent (Bank (10.3-9.5 ka), Nisida Island ( 3.98 ka), and Capo Miseno (3.7 ka) eruptions, yielding DRE values of 0.15 km3, 0.1 km3, and 0.08 km3, respectively, and an explosive magnitude of at least moderate-large scale (VEI 3). Our findings highlight that eruption volumes may be underestimated by 3 to 4 times if the submerged portion of a (partly) submerged caldera is not considered, implying severe consequences for the hazard and risk evaluation. The spatial response of the post-collapse (< 15 ka) depositional environment to volcanic activity, deformational processes and sea-level variations is presented in a comprehensive 3D evolutionary model.

  19. Vibrational collapse of boroxol rings in compacted B2O3 glasses: a study of Raman scattering and low temperature specific heat

    Science.gov (United States)

    Carini, Giovanni, Jr.; Carini, Giuseppe; D’Angelo, Giovanna; Federico, Mauro; Romano, Valentino

    2018-05-01

    Low and high frequency Raman scattering of B2O3 glasses, compacted under GPa pressures, has been performed to investigate structural changes due to increasing atomic packing. Compacted glasses, annealed at ambient temperature and pressure, experience a time-dependent decrease of the density to a smaller constant value over a period of few months, displaying a permanent plastic deformation. Increasing densification determines a parallel and progressive decrease of the intensity of the Boson peak and the main band at 808 cm‑1, both these modes arising from localized vibrations involving planar boroxol rings (B3O6), the glassy units formed from three basic BO3 triangles. The 808 cm‑1 mode preserves its frequency, while the BP evidences a well-defined frequency increase. The high-frequency multicomponent band between 1200 and 1600 cm‑1 also changes with increasing densification, disclosing a decreasing intensity of the 1260 cm‑1 mode due to oxygen vibrations of BO3 units bridging boroxol rings. This indicates the gradual vibrational collapse of groups formed from rings connected by more complex links than a single bridging oxygen. The observed behaviours suggest that glass compaction causes severe deformation of boroxol rings, determining a decrease of groups which preserve unaltered their vibrational activity. Growing glass densification stiffens the network and leads to a decrease of the excess heat capacity over the Debye prediction below 20 K, which is not accounted for by the hardening of the elastic continuum. By using the low-frequency Raman scattering to determine the temperature dependence of the heat capacity, it has been evaluated the density of low-frequency vibrational states which discloses a significant reduction of excess modes with increasing density.

  20. Missing rings in Pinus halepensis – the missing link to relate the tree-ring record to extreme climatic events

    Directory of Open Access Journals (Sweden)

    Klemen eNovak

    2016-05-01

    Full Text Available Climate predictions for the Mediterranean Basin include increased temperatures, decreased precipitation, and increased frequency of extreme climatic events (ECE. These conditions are associated with decreased growth of trees and their increased vulnerability to pests and diseases. The anatomy of tree rings is responsive to these environmental conditions. Quantitatively, the width of a tree ring is largely determined by the rate and duration of cell division by the vascular cambium. In the Mediterranean climate, cambial cell division may occur throughout almost the entire year. Alternatively, cell division may stop during relatively cool and dry winters, only to resume in the same year with milder temperatures and increased availability of water. Under particularly adverse conditions, no xylem may be produced in parts of the stem, resulting in a missing ring (MR, which can link tree-ring anatomy to the occurrence of extreme events. A dendrochronological network of Pinus halepensis, a widespread tree species in the Mediterranean basin, was used to determine the relationship of MR to ECE. The network consisted of 113 sites throughout its distribution range. Binomial logistic regression analysis of 2595 MR series determined that MR increased in frequency with increased cambial age. Spatial analysis indicated that the geographic areas of southeastern Spain and northern Algeria contained the greatest frequency of MR. Further regression analysis indicated that the relationship of MR to total monthly precipitation and mean temperature was non-linear. In this first determination of climatic influences on MR, the formation of MR was most strongly associated with the combination of monthly mean temperature above 10°C from previous October till current February and total precipitation below 50 mm from previous September till current May. This conclusion is global and can be applied to every site across the distribution area. Rather than simply being a

  1. The terminal Eocene event - Formation of a ring system around the earth

    Science.gov (United States)

    Okeefe, J. A.

    1980-01-01

    It is suggested that the formation of a ring system about the earth by particles and debris related to the North American strewn tektite field is responsible for the terminal Eocene event of 34 million years ago, in which severe climatic changes accompanied by widespread biological extinctions occurred. Botanical data is cited which implies a 20-C decrease in winter temperature with no change in summer temperature, and evidence of the correlation of the North American tektite fall, which is estimated to have a total mass of 10 to the 9th to 10 to the 10th tons, with the disappearance of five of the most abundant species of radiolaria is presented. The possible connection between the tektites and climatic change is argued to result from the screening of sunlight by an equatorial ring of trapped particles of extraterrestrial origin in geocentric orbit which would cut off sunlight only in the winter months. Such a ring, located at a distance of between 1.5 and 2.5 earth radii (the Roche limit) is estimated to have a lifetime of a few million years.

  2. A novel animal model for hyperdynamic airway collapse.

    Science.gov (United States)

    Tsukada, Hisashi; O'Donnell, Carl R; Garland, Robert; Herth, Felix; Decamp, Malcolm; Ernst, Armin

    2010-12-01

    Tracheobronchomalacia (TBM) is increasingly recognized as a condition associated with significant pulmonary morbidity. However, treatment is invasive and complex, and because there is no appropriate animal model, novel diagnostic and treatment strategies are difficult to evaluate. We endeavored to develop a reliable airway model to simulate hyperdynamic airway collapse in humans. Seven 20-kg male sheep were enrolled in this study. Tracheomalacia was created by submucosal resection of > 50% of the circumference of 10 consecutive cervical tracheal cartilage rings through a midline cervical incision. A silicone stent was placed in the trachea to prevent airway collapse during recovery. Tracheal collapsibility was assessed at protocol-specific time points by bronchoscopy and multidetector CT imaging while temporarily removing the stent. Esophageal pressure and flow data were collected to assess flow limitation during spontaneous breathing. All animals tolerated the surgical procedure well and were stented without complications. One sheep died at 2 weeks because of respiratory failure related to stent migration. In all sheep, near-total forced inspiratory airway collapse was observed up to 3 months postprocedure. Esophageal manometry demonstrated flow limitation associated with large negative pleural pressure swings during rapid spontaneous inhalation. Hyperdynamic airway collapse can reliably be induced with this technique. It may serve as a model for evaluation of novel diagnostic and therapeutic strategies for TBM.

  3. Cardiopulmonary Collapse during Labour

    Directory of Open Access Journals (Sweden)

    Vasilis Sitras

    2010-01-01

    Full Text Available Cardiopulmonary collapse during labour is a catastrophic event caused by various medical, surgical and obstetrical conditions. It is an emergency that threatens the life of the mother and her unborn child. We present a case of a pregnant woman who suffered from preeclampsia and underwent induction of labour. Severe lung edema occurred early in labour that caused cardiopulmonary collapse. Advanced heart-lung resuscitation was established immediately and continued until an emergency cesarean section was performed few minutes later. The outcome was favourable for both mother and child. We further discuss some aspects of the pathophysiology and appropriate treatment of cardiorespiratory arrest during labour, which involves the coordinated action of the obstetric, pediatric and surgical ward personnel.

  4. Multiple edifice-collapse events in the Eastern Mexican Volcanic Belt: The role of sloping substrate and implications for hazard assessment

    Science.gov (United States)

    Carrasco-Nunez, Gerardo; Diaz-Castellon, Rodolfo; Siebert, L.; Hubbard, B.; Sheridan, M.F.; Rodriguez, Sergio R.

    2006-01-01

    Belt. However, critical pore water pressure from extraordinary amounts of rainfall associated with hurricanes or other meteorological perturbation cannot be ruled out, particularly for smaller volume collapses. There are examples in the area of small seismogenic debris flows that have occurred in historical times, showing that these processes are not uncommon. Assessing the stability conditions of major volcanic edifices that have experienced catastrophic sector collapses is crucial for forecasting future events. This is particularly true for the Eastern Mexican Volcanic Belt, where in many cases no magmatic activity was associated with the collapse. Therefore, edifice failure could occur again without any precursory warning. ?? 2006 Elsevier B.V. All rights reserved.

  5. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging.

    Science.gov (United States)

    Ben-Zvi, Anat; Miller, Elizabeth A; Morimoto, Richard I

    2009-09-01

    Protein damage contributes prominently to cellular aging. To address whether this occurs at a specific period during aging or accumulates gradually, we monitored the biochemical, cellular, and physiological properties of folding sensors expressed in different tissues of C. elegans. We observed the age-dependent misfolding and loss of function of diverse proteins harboring temperature-sensitive missense mutations in all somatic tissues at the permissive condition. This widespread failure in proteostasis occurs rapidly at an early stage of adulthood, and coincides with a severely reduced activation of the cytoprotective heat shock response and the unfolded protein response. Enhancing stress responsive factors HSF-1 or DAF-16 suppresses misfolding of these metastable folding sensors and restores the ability of the cell to maintain a functional proteome. This suggests that a compromise in the regulation of proteostatic stress responses occurs early in adulthood and tips the balance between the load of damaged proteins and the proteostasis machinery. We propose that the collapse of proteostasis represents an early molecular event of aging that amplifies protein damage in age-associated diseases of protein conformation.

  6. Material toughness, internal structure, and caldera-collapse frequencies in basaltic and composite edifices

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, Agust [Department of Earth Sciences, Queen' s Building, Royal Holloway University of London, Egham TW20 OEX (United Kingdom)], E-mail: a.gudmundsson@es.rhul.ac.uk

    2008-10-01

    Formation of, and slip on existing, collapse calderas is much more common in basaltic edifices than in composite edifices. I suggest that this difference is partly due to the composite edifices being tougher and more resistant to ring-fault formation than a basaltic edifices. The high matieral toughness of composite edifices is related to their being composed of rock layers with widely different elastic properties, the elastic mismatch promoting deflection and/or arrest of potential ring faults at layer contacts.

  7. Analysis of power system collapse risk

    International Nuclear Information System (INIS)

    Eleschova, Z.; Belan, A.; Cintula, B.; Smitkova, M.

    2012-01-01

    In this paper are analysed the initialization events with considering different scenarios and their impact on the power system transient stability. As an initialization event is considered a short circuit at various places of power line. In each scenario are considered protection failures (backup protection), circuit-breaker failures (breaker failure relay activation). The individual states are analysed and the power system collapse risk assessed based on the simulation experiments results (Authors)

  8. Moment tensor analysis of the 3 September 2017 DPRK announced nuclear explosion and collapse aftershock

    Science.gov (United States)

    Ichinose, G. A.; Ford, S. R.; Chiang, A.; Walter, W. R.; Dreger, D. S.

    2017-12-01

    The Democratic People's Republic of Korea (DPRK) conducted its sixth announced nuclear test on 3 September 2017, 03:30:00 with a magnitude of 6.1 (IDC mb). At 03:38:27, there was an aftershock of magnitude 4.1 (IDC mb). Moment tensor analysis using regional long-period surface waves was performed to identify the source type of these two events. The first event was an explosive isotropic source with total seismic moment magnitude of Mw 5.34 (Mo=1.16e+17 Nm) with strong 66% isotropic component (eigenvalues: 1.30e+17, 0.75e+17, 0.44e+17 Nm). The second event was a closing crack source with an Mw 4.64 (Mo=1.04e+17 Nm) also with a strong 68% isotropic component (eigenvalues: -4.82e+16, -5.33e+16, -10.93e+16 Nm). We used the same stations within 360-1140 km for inversion of both events (stations: IC.MDJ, IC.BJT, IC.HIA) and predict the long-period displacements at KG.TJN and IU.INCN. We used a 1-D velocity model appropriate for active tectonic regions and band pass the data between periods of 20 and 100 sec. Waveform time-shifts were incorporated from previous event-station pairs to account for velocity model inadequacies. Both DPRK events source-types plot within the population of other NNSS nuclear and western US collapse events (Ford et al., 2009) on the fundamental lune (Tape and Tape, 2012). The DPRK collapse event is similar to the hole collapse 0h21m26s after the 5 September 1982 Atrisco shot at NNSS (Springer et al., 2002; DOE NV-209). The DPRK collapse could be explained by a complete or partial apical cavity collapse. The estimated collapse volume is 122000-277000 m3 and crack radius is 30-40 m given the seismic moment, elastic moduli for granite and a closing crack model (Mueller, 2001). In comparison to Denny and Johnson (1994) cavity-yield scaling in granite, the cavity radius ranges from 40 to 60 m given an explosion yield range of 140-400 kT. This collapse event is noteworthy because large aftershocks are rare in nuclear testing and even more rare are

  9. Gravitational collapse of charged dust shell and maximal slicing condition

    International Nuclear Information System (INIS)

    Maeda, Keiichi

    1980-01-01

    The maximal slicing condition is a good time coordinate condition qualitatively when pursuing the gravitational collapse by the numerical calculation. The analytic solution of the gravitational collapse under the maximal slicing condition is given in the case of a spherical charged dust shell and the behavior of time slices with this coordinate condition is investigated. It is concluded that under the maximal slicing condition we can pursue the gravitational collapse until the radius of the shell decreases to about 0.7 x (the radius of the event horizon). (author)

  10. Reliability-based failure cause assessment of collapsed bridge during construction

    International Nuclear Information System (INIS)

    Choi, Hyun-Ho; Lee, Sang-Yoon; Choi, Il-Yoon; Cho, Hyo-Nam; Mahadevan, Sankaran

    2006-01-01

    Until now, in many forensic reports, the failure cause assessments are usually carried out by a deterministic approach so far. However, it may be possible for the forensic investigation to lead to unreasonable results far from the real collapse scenario, because the deterministic approach does not systematically take into account any information on the uncertainties involved in the failures of structures. Reliability-based failure cause assessment (reliability-based forensic engineering) methodology is developed which can incorporate the uncertainties involved in structural failures and structures, and to apply them to the collapsed bridge in order to identify the most critical failure scenario and find the cause that triggered the bridge collapse. Moreover, to save the time and cost of evaluation, an algorithm of automated event tree analysis (ETA) is proposed and possible to automatically calculate the failure probabilities of the failure events and the occurrence probabilities of failure scenarios. Also, for reliability analysis, uncertainties are estimated more reasonably by using the Bayesian approach based on the experimental laboratory testing data in the forensic report. For the applicability, the proposed approach is applied to the Hang-ju Grand Bridge, which collapsed during construction, and compared with deterministic approach

  11. Missing Rings in Pinus halepensis - The Missing Link to Relate the Tree-Ring Record to Extreme Climatic Events.

    Science.gov (United States)

    Novak, Klemen; de Luis, Martin; Saz, Miguel A; Longares, Luis A; Serrano-Notivoli, Roberto; Raventós, Josep; Čufar, Katarina; Gričar, Jožica; Di Filippo, Alfredo; Piovesan, Gianluca; Rathgeber, Cyrille B K; Papadopoulos, Andreas; Smith, Kevin T

    2016-01-01

    Climate predictions for the Mediterranean Basin include increased temperatures, decreased precipitation, and increased frequency of extreme climatic events (ECE). These conditions are associated with decreased tree growth and increased vulnerability to pests and diseases. The anatomy of tree rings responds to these environmental conditions. Quantitatively, the width of a tree ring is largely determined by the rate and duration of cell division by the vascular cambium. In the Mediterranean climate, this division may occur throughout almost the entire year. Alternatively, cell division may cease during relatively cool and dry winters, only to resume in the same calendar year with milder temperatures and increased availability of water. Under particularly adverse conditions, no xylem may be produced in parts of the stem, resulting in a missing ring (MR). A dendrochronological network of Pinus halepensis was used to determine the relationship of MR to ECE. The network consisted of 113 sites, 1,509 trees, 2,593 cores, and 225,428 tree rings throughout the distribution range of the species. A total of 4,150 MR were identified. Binomial logistic regression analysis determined that MR frequency increased with increased cambial age. Spatial analysis indicated that the geographic areas of south-eastern Spain and northern Algeria contained the greatest frequency of MR. Dendroclimatic regression analysis indicated a non-linear relationship of MR to total monthly precipitation and mean temperature. MR are strongly associated with the combination of monthly mean temperature from previous October till current February and total precipitation from previous September till current May. They are likely to occur with total precipitation lower than 50 mm and temperatures higher than 5°C. This conclusion is global and can be applied to every site across the distribution area. Rather than simply being a complication for dendrochronology, MR formation is a fundamental response of trees

  12. Light-Ring Stability for Ultracompact Objects

    Science.gov (United States)

    Cunha, Pedro V. P.; Berti, Emanuele; Herdeiro, Carlos A. R.

    2017-12-01

    We prove the following theorem: axisymmetric, stationary solutions of the Einstein field equations formed from classical gravitational collapse of matter obeying the null energy condition, that are everywhere smooth and ultracompact (i.e., they have a light ring) must have at least two light rings, and one of them is stable. It has been argued that stable light rings generally lead to nonlinear spacetime instabilities. Our result implies that smooth, physically and dynamically reasonable ultracompact objects are not viable as observational alternatives to black holes whenever these instabilities occur on astrophysically short time scales. The proof of the theorem has two parts: (i) We show that light rings always come in pairs, one being a saddle point and the other a local extremum of an effective potential. This result follows from a topological argument based on the Brouwer degree of a continuous map, with no assumptions on the spacetime dynamics, and, hence, it is applicable to any metric gravity theory where photons follow null geodesics. (ii) Assuming Einstein's equations, we show that the extremum is a local minimum of the potential (i.e., a stable light ring) if the energy-momentum tensor satisfies the null energy condition.

  13. Multi-stage volcanic island flank collapses with coeval explosive caldera-forming eruptions

    OpenAIRE

    Hunt, James E.; Cassidy, Michael; Talling, Peter J.

    2018-01-01

    Volcanic flank collapses and explosive eruptions are among the largest and most destructive processes on Earth. Events at Mount St. Helens in May 1980 demonstrated how a relatively small (<5 km3) flank collapse on a terrestrial volcano could immediately precede a devastating eruption. The lateral collapse of volcanic island flanks, such as in the Canary Islands, can be far larger (>300 km3), but can also occur in complex multiple stages. Here, we show that multistage retrogressive lands...

  14. Hydromagnetic instabilities and magnetic field amplification in core collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Cerda-Duran, P; Obergaulinger, M; Mueller, E [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-st. 1, 85748 Garching (Germany); Aloy, M A; Font, J A, E-mail: cerda@mpa-garching.mpg.de [Departamento de Astronomia y Astrofisica, Universidad de Valencia, 46100 Burjassot, Valencia (Spain)

    2011-09-22

    Some of the most violent events in the universe, the gamma ray burst, could be related to the gravitational collapse of massive stellar cores. The recent association of long GRBs to some class of type Ic supernova seems to support this view. In such scenario fast rotation, strong magnetic fields and general relativistic effects are key ingredients. It is thus important to understand the mechanism that amplifies the magnetic field under that conditions. I present global simulations of the magneto-rotational collapse of stellar cores in general relativity and semi-global simulations of hydromagnetic instabilities under core collapse conditions. I discuss effect of the magneto-rotational instability and the magnetic field amplification during the collapse, the uncertainties in this process and the dynamical effects in the supernova explosion.

  15. Missing Rings in Pinus halepensis – The Missing Link to Relate the Tree-Ring Record to Extreme Climatic Events

    Science.gov (United States)

    Novak, Klemen; de Luis, Martin; Saz, Miguel A.; Longares, Luis A.; Serrano-Notivoli, Roberto; Raventós, Josep; Čufar, Katarina; Gričar, Jožica; Di Filippo, Alfredo; Piovesan, Gianluca; Rathgeber, Cyrille B. K.; Papadopoulos, Andreas; Smith, Kevin T.

    2016-01-01

    Climate predictions for the Mediterranean Basin include increased temperatures, decreased precipitation, and increased frequency of extreme climatic events (ECE). These conditions are associated with decreased tree growth and increased vulnerability to pests and diseases. The anatomy of tree rings responds to these environmental conditions. Quantitatively, the width of a tree ring is largely determined by the rate and duration of cell division by the vascular cambium. In the Mediterranean climate, this division may occur throughout almost the entire year. Alternatively, cell division may cease during relatively cool and dry winters, only to resume in the same calendar year with milder temperatures and increased availability of water. Under particularly adverse conditions, no xylem may be produced in parts of the stem, resulting in a missing ring (MR). A dendrochronological network of Pinus halepensis was used to determine the relationship of MR to ECE. The network consisted of 113 sites, 1,509 trees, 2,593 cores, and 225,428 tree rings throughout the distribution range of the species. A total of 4,150 MR were identified. Binomial logistic regression analysis determined that MR frequency increased with increased cambial age. Spatial analysis indicated that the geographic areas of south-eastern Spain and northern Algeria contained the greatest frequency of MR. Dendroclimatic regression analysis indicated a non-linear relationship of MR to total monthly precipitation and mean temperature. MR are strongly associated with the combination of monthly mean temperature from previous October till current February and total precipitation from previous September till current May. They are likely to occur with total precipitation lower than 50 mm and temperatures higher than 5°C. This conclusion is global and can be applied to every site across the distribution area. Rather than simply being a complication for dendrochronology, MR formation is a fundamental response of trees

  16. Space shuttle solid rocket booster water entry cavity collapse loads

    Science.gov (United States)

    Keefe, R. T.; Rawls, E. A.; Kross, D. A.

    1982-01-01

    Solid rocket booster cavity collapse flight measurements included external pressures on the motor case and aft skirt, internal motor case pressures, accelerometers located in the forward skirt, mid-body area, and aft skirt, as well as strain gages located on the skin of the motor case. This flight data yielded applied pressure longitudinal and circumferential distributions which compare well with model test predictions. The internal motor case ullage pressure, which is below atmospheric due to the rapid cooling of the hot internal gas, was more severe (lower) than anticipated due to the ullage gas being hotter than predicted. The structural dynamic response characteristics were as expected. Structural ring and wall damage are detailed and are considered to be attributable to the direct application of cavity collapse pressure combined with the structurally destabilizing, low internal motor case pressure.

  17. Avoiding steam-bubble-collapse-induced water hammers in piping systems

    International Nuclear Information System (INIS)

    Chou, Y.; Griffith, P.

    1989-10-01

    In terms of the frequency of occurrence, steam bubble collapse in subcooled water is the dominant initiating mechanism for water hammer events in nuclear power plants. Water hammer due to steam bubble collapse occurs when water slug forms in stratified horizontal flow, or when steam bubble is trapped at the end of the pipe. These types of water hammer events have been studied experimentally and analytically in order to develop stability maps showing those combinations of filling velocities and liquid subcooling that cause water hammer and those which don't. In developing the stability maps, experiments with different piping orientations were performed in a low pressure laboratory apparatus. Details of these experiments are described, including piping arrangement, test procedures, and test results. Visual tests using a transparent Lexan pipe are also performed to study the flow regimes accompanying the water hammer events. All analytical models were tested by comparison with the corresponding experimental results. Based on these models, and step-by-step approach for each flow geometry is presented for plant designers and engineers to follow in avoiding water hammer induced by steam bubble collapse when admitting cold water into pipes filled with steam. 37 refs., 54 figs., 2 tabs

  18. CT of lobar collapse

    International Nuclear Information System (INIS)

    Suh, D. C.; Im, J. G.; Park, J. H.; Han, M. C.

    1987-01-01

    The computed tomographic (CT) findings of labor collapse are analysed in an attempt to evaluate the patterns of labor collapse and to get the helpful signs in differentiation between benign and malignant causes of collapse. 43 cases of labor collapse with or without endobronchial obstruction were reviewed. In 29 of 43 cases the collapses were caused by lung cancer. Benign causes of labor collapse included tuberculosis(10), broncholith(2), organizing pneumonia(1) and hamartoma(1). The helpful signs favoring malignant cause of the labor collapse were proximal bulging of the collapsed lobe, low density mass within the collapsed lung, and endobronchial lesion. Above described differential findings were especially applicable in cases of upper lobe collapse

  19. Rotating circular strings, and infinite non-uniqueness of black rings

    International Nuclear Information System (INIS)

    Emparan, Roberto

    2004-01-01

    We present new self-gravitating solutions in five dimensions that describe circular strings, i.e., rings, electrically coupled to a two-form potential (as e.g., fundamental strings do), or to a dual magnetic one-form. The rings are prevented from collapsing by rotation, and they create a field analogous to a dipole, with no net charge measured at infinity. They can have a regular horizon, and we show that this implies the existence of an infinite number of black rings, labeled by a continuous parameter, with the same mass and angular momentum as neutral black rings and black holes. We also discuss the solution for a rotating loop of fundamental string. We show how more general rings arise from intersections of branes with a regular horizon (even at extremality), closely related to the configurations that yield the four-dimensional black hole with four charges. We reproduce the Bekenstein-Hawking entropy of a large extremal ring through a microscopic calculation. Finally, we discuss some qualitative ideas for a microscopic understanding of neutral and dipole black rings. (author)

  20. White Ring; White ring

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, H.; Yuzawa, H. [Nikken Sekkei Ltd., Osaka (Japan)

    1998-01-05

    White Ring is a citizen`s gymnasium used for figure skating and short track speed skating games of 18th Winter Olympic Games in 1998. White Ring is composed of a main-arena and a sub-arena. For the main-arena with an area 41mtimes66m, an ice link can be made by disengaging the potable floor and by flowing brine in the bridged polystyrene pipes embedded in the concrete floor. Due to the fortunate groundwater in this site, well water is used for the outside air treatment energy in 63% during heating and in 35% during cooling. Ammonia is used as a cooling medium for refrigerating facility. For the heating of audience area in the large space, heat load from the outside is reduced by enhancing the heat insulation performance of the roof of arena. The audience seats are locally heated using heaters. For the White Ring, high quality environment is realized for games through various functions of the large-scale roof of the large space. Success of the big event was expected. 15 figs., 4 tabs.

  1. Identifying bubble collapse in a hydrothermal system using hidden Markov models

    Science.gov (United States)

    Dawson, P.B.; Benitez, M.C.; Lowenstern, J. B.; Chouet, B.A.

    2012-01-01

    Beginning in July 2003 and lasting through September 2003, the Norris Geyser Basin in Yellowstone National Park exhibited an unusual increase in ground temperature and hydrothermal activity. Using hidden Markov model theory, we identify over five million high-frequency (>15Hz) seismic events observed at a temporary seismic station deployed in the basin in response to the increase in hydrothermal activity. The source of these seismic events is constrained to within ???100 m of the station, and produced ???3500-5500 events per hour with mean durations of ???0.35-0.45s. The seismic event rate, air temperature, hydrologic temperatures, and surficial water flow of the geyser basin exhibited a marked diurnal pattern that was closely associated with solar thermal radiance. We interpret the source of the seismicity to be due to the collapse of small steam bubbles in the hydrothermal system, with the rate of collapse being controlled by surficial temperatures and daytime evaporation rates. copyright 2012 by the American Geophysical Union.

  2. Identifying bubble collapse in a hydrothermal system using hiddden Markov models

    Science.gov (United States)

    Dawson, Phillip B.; Benitez, M.C.; Lowenstern, Jacob B.; Chouet, Bernard A.

    2012-01-01

    Beginning in July 2003 and lasting through September 2003, the Norris Geyser Basin in Yellowstone National Park exhibited an unusual increase in ground temperature and hydrothermal activity. Using hidden Markov model theory, we identify over five million high-frequency (>15 Hz) seismic events observed at a temporary seismic station deployed in the basin in response to the increase in hydrothermal activity. The source of these seismic events is constrained to within ~100 m of the station, and produced ~3500–5500 events per hour with mean durations of ~0.35–0.45 s. The seismic event rate, air temperature, hydrologic temperatures, and surficial water flow of the geyser basin exhibited a marked diurnal pattern that was closely associated with solar thermal radiance. We interpret the source of the seismicity to be due to the collapse of small steam bubbles in the hydrothermal system, with the rate of collapse being controlled by surficial temperatures and daytime evaporation rates.

  3. Upper limits on gravitational-wave bursts radiated from stellar-core collapses in our galaxy

    International Nuclear Information System (INIS)

    Ando, Masaki; Akutsu, Tomomi; Akutsu, Tomotada

    2005-01-01

    We present the results of observations with the TAMA300 gravitational-wave detector, targeting burst signals from stellar-core collapse events. We used an excess-power filter to extract gravitational-wave candidates, and developed two methods to reduce fake events caused by non-stationary noises of the detector. These analysis methods were applied to real data from the TAMA300 interferometric gravitational wave detector. We compared the data-processed results with those of a Monte Carlo simulation with an assumed galactic-event distribution model and with burst waveforms expected from numerical simulations of stellar-core collapses, in order to interpret the event candidates from an astronomical viewpoint. We set an upper limit of 5.0 x 10 3 events s -1 on the burst gravitational-wave event rate in our galaxy with a confidence level of 90%

  4. Tracing footprints of environmental events in tree ring chemistry using neutron activation analysis

    Science.gov (United States)

    Sahin, Dagistan

    The aim of this study is to identify environmental effects on tree-ring chemistry. It is known that industrial pollution, volcanic eruptions, dust storms, acid rain and similar events can cause substantial changes in soil chemistry. Establishing whether a particular group of trees is sensitive to these changes in soil environment and registers them in the elemental chemistry of contemporary growth rings is the over-riding goal of any Dendrochemistry research. In this study, elemental concentrations were measured in tree-ring samples of absolutely dated eleven modern forest trees, grown in the Mediterranean region, Turkey, collected and dated by the Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology laboratory at Cornell University. Correlations between measured elemental concentrations in the tree-ring samples were analyzed using statistical tests to answer two questions. Does the current concentration of a particular element depend on any other element within the tree? And, are there any elements showing correlated abnormal concentration changes across the majority of the trees? Based on the detailed analysis results, the low mobility of sodium and bromine, positive correlations between calcium, zinc and manganese, positive correlations between trace elements lanthanum, samarium, antimony, and gold within tree-rings were recognized. Moreover, zinc, lanthanum, samarium and bromine showed strong, positive correlations among the trees and were identified as possible environmental signature elements. New Dendrochemistry information found in this study would be also useful in explaining tree physiology and elemental chemistry in Pinus nigra species grown in Turkey. Elemental concentrations in tree-ring samples were measured using Neutron Activation Analysis (NAA) at the Pennsylvania State University Radiation Science and Engineering Center (RSEC). Through this study, advanced methodologies for methodological, computational and

  5. 3-D collapse of rotating stars to Kerr black holes

    International Nuclear Information System (INIS)

    Baiotti, L; Hawke, I; Montero, P J; Loeffler, F L; Rezzolla, L; Stergioulas, N; Font, J A; Seidel, E

    2005-01-01

    We study gravitational collapse of uniformly rotating neutron stars to Kerr black holes, using a new three-dimensional, fully general relativistic hydrodynamics code, which uses high-resolution shock-capturing techniques and a conformal traceless formulation of the Einstein equations. We investigate the gravitational collapse by carefully studying not only the dynamics of the matter, but also that of the trapped surfaces, i.e. of both the apparent and event horizons formed during the collapse. The use of these surfaces, together with the dynamical horizon framework, allows for a precise measurement of the black-hole mass and spin. The ability to successfully perform these simulations for sufficiently long times relies on excising a region of the computational domain which includes the singularity and is within the apparent horizon. The dynamics of the collapsing matter is strongly influenced by the initial amount of angular momentum in the progenitor star and, for initial models with sufficiently high angular velocities, the collapse can lead to the formation of an unstable disc in differential rotation

  6. The role of fluid viscosity in an immersed granular collapse

    Science.gov (United States)

    Yang, Geng Chao; Kwok, Chung Yee; Sobral, Yuri Dumaresq

    2017-06-01

    Instabilities of immersed slopes and cliffs can lead to catastrophic events that involve a sudden release of huge soil mass. The scaled deposit height and runout distance are found to follow simple power laws when a granular column collapses on a horizontal plane. However, if the granular column is submerged in a fluid, the mobility of the granular collapse due to high inertia effects will be reduced by fluid-particle interactions. In this study, the effects of fluid viscosity on granular collapse is investigated qualitatively by adopting a numerical approach based on the coupled lattice Boltzmann method (LBM) and discrete element method (DEM). It is found that the granular collapse can be dramatically slowed down due to the presence of viscous fluids. For the considered granular configuration, when the fluid viscosity increases. the runout distance decreases and the final deposition shows a larger deposit angle.

  7. The role of fluid viscosity in an immersed granular collapse

    Directory of Open Access Journals (Sweden)

    Yang Geng Chao

    2017-01-01

    Full Text Available Instabilities of immersed slopes and cliffs can lead to catastrophic events that involve a sudden release of huge soil mass. The scaled deposit height and runout distance are found to follow simple power laws when a granular column collapses on a horizontal plane. However, if the granular column is submerged in a fluid, the mobility of the granular collapse due to high inertia effects will be reduced by fluid-particle interactions. In this study, the effects of fluid viscosity on granular collapse is investigated qualitatively by adopting a numerical approach based on the coupled lattice Boltzmann method (LBM and discrete element method (DEM. It is found that the granular collapse can be dramatically slowed down due to the presence of viscous fluids. For the considered granular configuration, when the fluid viscosity increases. the runout distance decreases and the final deposition shows a larger deposit angle.

  8. On the Magnitude and Orientation of Stress during Shock Metamorphism: Understanding Peak Ring Formation by Combining Observations and Models.

    Science.gov (United States)

    Rae, A.; Poelchau, M.; Collins, G. S.; Timms, N.; Cavosie, A. J.; Lofi, J.; Salge, T.; Riller, U. P.; Ferrière, L.; Grieve, R. A. F.; Osinski, G.; Morgan, J. V.; Expedition 364 Science Party, I. I.

    2017-12-01

    Shock metamorphism occurs during the earliest moments after impact. The magnitude and orientation of shock leaves recordable signatures in rocks, which spatially vary across an impact structure. Consequently, observations of shock metamorphism can be used to understand deformation and its history within a shock wave, and to examine subsequent deformation during crater modification. IODP-ICDP Expedition 364 recovered nearly 600 m of shocked target rocks from the peak ring of the Chicxulub Crater. Samples from the expedition were used to measure the magnitude and orientation of shock in peak ring materials, and to determine the mechanism of peak-ring emplacement. Here, we present the results of petrographic analyses of the shocked granitic target rocks of the Chicxulub peak ring; using universal-stage optical microscopy, back-scattered electron images, and electron back-scatter diffraction. Deformation microstructures in quartz include planar deformation features (PDFs), feather features (FFs), which are unique to shock conditions, as well as planar fractures and crystal-plastic deformation bands. The assemblage of PDFs in quartz suggest that the peak-ring rocks experienced shock pressures of 15 GPa throughout the recovered drill core, and that the orientation of FFs are consistent with the present-day orientation of the maximum principal stress direction during shock is close to vertical. Numerical impact simulations of the impact event were run to determine the magnitude and orientation of principal stresses during shock and track those orientations throughout crater formation. Our results are remarkably consistent with the geological data, and accurately predict both the shock-pressure magnitudes, and the final near-vertical orientation of the direction of maximum principal stress in the shock wave. Furthermore, analysis of the state of stress throughout the impact event can be used to constrain the timing of fracture and fault orientations observed in the core

  9. Collapsing stellar cores and supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, R J [Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark); Noorgaard, H [Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark); Chicago Univ., IL (USA). Enrico Fermi Inst.); Bond, J R [Niels Bohr Institutet, Copenhagen (Denmark); California Inst. of Tech., Pasadena (USA). W.K. Kellogg Radiation Lab.)

    1979-05-01

    The evolution of a stellar core is studied during its final quasi-hydrostatic contraction. The core structure and the (poorly known) properties of neutron rich matter are parametrized to include most plausible cases. It is found that the density-temperature trajectory of the material in the central part of the core (the core-center) is insensitive to nearly all reasonable parameter variations. The central density at the onset of the dynamic phase of the collapse (when the core-center begins to fall away from the rest of the star) and the fraction of the emitted neutrinos which are trapped in the collapsing core-center depend quite sensitively on the properties of neutron rich matter. We estimate that the amount of energy Ecm which is imparted to the core-mantle by the neutrinos which escape from the imploded core-center can span a large range of values. For plausible choices of nuclear and model parameters Ecm can be large enough to yield a supernova event.

  10. Review of collapse triggering mechanism of collapsible soils due to wetting

    Directory of Open Access Journals (Sweden)

    Ping Li

    2016-04-01

    Full Text Available Loess soil deposits are widely distributed in arid and semi-arid regions and constitute about 10% of land area of the world. These soils typically have a loose honeycomb-type meta-stable structure that is susceptible to a large reduction in total volume or collapse upon wetting. Collapse characteristics contribute to various problems to infrastructures that are constructed on loess soils. For this reason, collapse triggering mechanism for loess soils has been of significant interest for researchers and practitioners all over the world. This paper aims at providing a state-of-the-art review on collapse mechanism with special reference to loess soil deposits. The collapse mechanism studies are summarized under three different categories, i.e. traditional approaches, microstructure approach, and soil mechanics-based approaches. The traditional and microstructure approaches for interpreting the collapse behavior are comprehensively summarized and critically reviewed based on the experimental results from the literature. The soil mechanics-based approaches proposed based on the experimental results of both compacted soils and natural loess soils are reviewed highlighting their strengths and limitations for estimating the collapse behavior. Simpler soil mechanics-based approaches with less parameters or parameters that are easy-to-determine from conventional tests are suggested for future research to better understand the collapse behavior of natural loess soils. Such studies would be more valuable for use in conventional geotechnical engineering practice applications.

  11. When the firm prevents the crash: Avoiding market collapse with partial control.

    Science.gov (United States)

    Levi, Asaf; Sabuco, Juan; A F Sanjuán, Miguel

    2017-01-01

    Market collapse is one of the most dramatic events in economics. Such a catastrophic event can emerge from the nonlinear interactions between the economic agents at the micro level of the economy. Transient chaos might be a good description of how a collapsing market behaves. In this work, we apply a new control method, the partial control method, with the goal of avoiding this disastrous event. Contrary to common control methods that try to influence the system from the outside, here the market is controlled from the bottom up by one of the most basic components of the market-the firm. This is the first time that the partial control method is applied on a strictly economical system in which we also introduce external disturbances. We show how the firm is capable of controlling the system avoiding the collapse by only adjusting the selling price of the product or the quantity of production in accordance to the market circumstances. Additionally, we demonstrate how a firm with a large market share is capable of influencing the demand achieving price stability across the retail and wholesale markets. Furthermore, we prove that the control applied in both cases is much smaller than the external disturbances.

  12. Types of collapse calderas

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre-Diaz, Gerardo J [Centro de Geociencias, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Queretaro, Qro., 76230 (Mexico)], E-mail: ger@geociencias.unam.mx

    2008-10-01

    Three main types of collapse calderas can be defined, 1) summit caldera: those formed at the top of large volcanoes, 2) classic caldera: semi-circular to irregular-shaped large structures, several km in diameter and related to relatively large-volume pyroclastic products, and 3) graben caldera: explosive volcano-tectonic collapse structures from which large-volume, ignimbrite-forming eruptions occurred through several fissural vents along the graben master faults and the intra-graben block faults. These in turn can collapse at least with three styles: 1) Piston: when the collapse occurs as a single crustal block; 2) Trap-door: when collapse occurs unevenly along one side while the opposite side remains with no collapse; 3) Piece-meal: when collapse occurs as broken pieces of the crust on top of the magma chamber.

  13. The Tunguska event and Cheko Lake origin: dendrochronological analysis

    Czech Academy of Sciences Publication Activity Database

    Fantucci, R.; Serra, R.; Kletetschka, Günther; Di Martino, M.

    2015-01-01

    Roč. 14, č. 3 SI (2015), s. 345-357 ISSN 1473-5504 Institutional support: RVO:67985831 Keywords : cosmic body impact * collapse crater * dendrochronology * Tunguska * tree rings * Russia * Siberia Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.184, year: 2015

  14. Backreaction of Hawking radiation on a gravitationally collapsing star I: Black holes?

    International Nuclear Information System (INIS)

    Mersini-Houghton, Laura

    2014-01-01

    Particle creation leading to Hawking radiation is produced by the changing gravitational field of the collapsing star. The two main initial conditions in the far past placed on the quantum field from which particles arise, are the Hartle–Hawking vacuum and the Unruh vacuum. The former leads to a time-symmetric thermal bath of radiation, while the latter to a flux of radiation coming out of the collapsing star. The energy of Hawking radiation in the interior of the collapsing star is negative and equal in magnitude to its value at future infinity. This work investigates the backreaction of Hawking radiation on the interior of a gravitationally collapsing star, in a Hartle–Hawking initial vacuum. It shows that due to the negative energy Hawking radiation in the interior, the collapse of the star stops at a finite radius, before the singularity and the event horizon of a black hole have a chance to form. That is, the star bounces instead of collapsing to a black hole. A trapped surface near the last stage of the star's collapse to its minimum size may still exist temporarily. Its formation depends on the details of collapse. Results for the case of Hawking flux of radiation with the Unruh initial state, will be given in a companion paper II

  15. Extremely rare collapse and build-up of turbulence in stochastic models of transitional wall flows.

    Science.gov (United States)

    Rolland, Joran

    2018-02-01

    This paper presents a numerical and theoretical study of multistability in two stochastic models of transitional wall flows. An algorithm dedicated to the computation of rare events is adapted on these two stochastic models. The main focus is placed on a stochastic partial differential equation model proposed by Barkley. Three types of events are computed in a systematic and reproducible manner: (i) the collapse of isolated puffs and domains initially containing their steady turbulent fraction; (ii) the puff splitting; (iii) the build-up of turbulence from the laminar base flow under a noise perturbation of vanishing variance. For build-up events, an extreme realization of the vanishing variance noise pushes the state from the laminar base flow to the most probable germ of turbulence which in turn develops into a full blown puff. For collapse events, the Reynolds number and length ranges of the two regimes of collapse of laminar-turbulent pipes, independent collapse or global collapse of puffs, is determined. The mean first passage time before each event is then systematically computed as a function of the Reynolds number r and pipe length L in the laminar-turbulent coexistence range of Reynolds number. In the case of isolated puffs, the faster-than-linear growth with Reynolds number of the logarithm of mean first passage time T before collapse is separated in two. One finds that ln(T)=A_{p}r-B_{p}, with A_{p} and B_{p} positive. Moreover, A_{p} and B_{p} are affine in the spatial integral of turbulence intensity of the puff, with the same slope. In the case of pipes initially containing the steady turbulent fraction, the length L and Reynolds number r dependence of the mean first passage time T before collapse is also separated. The author finds that T≍exp[L(Ar-B)] with A and B positive. The length and Reynolds number dependence of T are then discussed in view of the large deviations theoretical approaches of the study of mean first passage times and

  16. Extremely rare collapse and build-up of turbulence in stochastic models of transitional wall flows

    Science.gov (United States)

    Rolland, Joran

    2018-02-01

    This paper presents a numerical and theoretical study of multistability in two stochastic models of transitional wall flows. An algorithm dedicated to the computation of rare events is adapted on these two stochastic models. The main focus is placed on a stochastic partial differential equation model proposed by Barkley. Three types of events are computed in a systematic and reproducible manner: (i) the collapse of isolated puffs and domains initially containing their steady turbulent fraction; (ii) the puff splitting; (iii) the build-up of turbulence from the laminar base flow under a noise perturbation of vanishing variance. For build-up events, an extreme realization of the vanishing variance noise pushes the state from the laminar base flow to the most probable germ of turbulence which in turn develops into a full blown puff. For collapse events, the Reynolds number and length ranges of the two regimes of collapse of laminar-turbulent pipes, independent collapse or global collapse of puffs, is determined. The mean first passage time before each event is then systematically computed as a function of the Reynolds number r and pipe length L in the laminar-turbulent coexistence range of Reynolds number. In the case of isolated puffs, the faster-than-linear growth with Reynolds number of the logarithm of mean first passage time T before collapse is separated in two. One finds that ln(T ) =Apr -Bp , with Ap and Bp positive. Moreover, Ap and Bp are affine in the spatial integral of turbulence intensity of the puff, with the same slope. In the case of pipes initially containing the steady turbulent fraction, the length L and Reynolds number r dependence of the mean first passage time T before collapse is also separated. The author finds that T ≍exp[L (A r -B )] with A and B positive. The length and Reynolds number dependence of T are then discussed in view of the large deviations theoretical approaches of the study of mean first passage times and multistability

  17. Investigation of Seismic Waves from Non-Natural Sources: A Case Study for Building Collapse and Surface Explosion

    Science.gov (United States)

    Houng, S.; Hong, T.

    2013-12-01

    The nature and excitation mechanism of incidents or non-natural events have been widely investigated using seismological techniques. With introduction of dense seismic networks, small-sized non-natural events such as building collapse and chemical explosions are well recorded. Two representative non-natural seismic sources are investigated. A 5-story building in South Korea, Sampoong department store, was collapsed in June 25, 1995, causing casualty of 1445. This accident is known to be the second deadliest non-terror-related building collapse in the world. The event was well recorded by a local station in ~ 9 km away. P and S waves were recorded weak, while monotonic Rayleigh waves were observed well. The origin time is determined using surface-wave arrival time. The magnitude of event is determined to be 1.2, which coincides with a theoretical estimate based on the mass and volume of building. Synthetic waveforms are modeled for various combinations of velocity structures and source time functions, which allow us to constrain the process of building collapse. It appears that the building was collapsed once within a couple of seconds. We also investigate a M2.1 chemical explosion at a fertilizer plant in Texas on April 18, 2013. It was reported that more than one hundred people were dead or injured by the explosion. Seismic waveforms for nearby stations are collected from Incorporated Research Institution of Seismology (IRIS). The event was well recorded at stations in ~500 km away from the source. Strong acoustic signals were observed at stations in a certain great-circle direction. This observation suggests preferential propagation of acoustic waves depending on atmospheric environment. Waveform cross-correlation, spectral analysis and waveform modeling are applied to understand the source physics. We discuss the nature of source and source excitation mechanism.

  18. Detection of collapsed buildings from lidar data due to the 2016 Kumamoto earthquake in Japan

    Directory of Open Access Journals (Sweden)

    L. Moya

    2018-01-01

    Full Text Available The 2016 Kumamoto earthquake sequence was triggered by an Mw 6.2 event at 21:26 on 14 April. Approximately 28 h later, at 01:25 on 16 April, an Mw 7.0 event (the mainshock followed. The epicenters of both events were located near the residential area of Mashiki and affected the region nearby. Due to very strong seismic ground motion, the earthquake produced extensive damage to buildings and infrastructure. In this paper, collapsed buildings were detected using a pair of digital surface models (DSMs, taken before and after the 16 April mainshock by airborne light detection and ranging (lidar flights. Different methods were evaluated to identify collapsed buildings from the DSMs. The change in average elevation within a building footprint was found to be the most important factor. Finally, the distribution of collapsed buildings in the study area was presented, and the result was consistent with that of a building damage survey performed after the earthquake.

  19. Topographic stress and catastrophic collapse of volcanic islands

    Science.gov (United States)

    Moon, S.; Perron, J. T.; Martel, S. J.

    2017-12-01

    Flank collapse of volcanic islands can devastate coastal environments and potentially induce tsunamis. Previous studies have suggested that factors such as volcanic eruption events, gravitational spreading, the reduction of material strength due to hydrothermal alteration, steep coastal cliffs, or sea level change may contribute to slope instability and induce catastrophic collapse of volcanic flanks. In this study, we examine the potential influence of three-dimensional topographic stress perturbations on flank collapses of volcanic islands. Using a three-dimensional boundary element model, we calculate subsurface stress fields for the Canary and Hawaiian islands to compare the effects of stratovolcano and shield volcano shapes on topographic stresses. Our model accounts for gravitational stresses from the actual shapes of volcanic islands, ambient stress in the underlying plate, and the influence of pore water pressure. We quantify the potential for slope failure of volcanic flanks using a combined model of three-dimensional topographic stress and slope stability. The results of our analysis show that subsurface stress fields vary substantially depending on the shapes of volcanoes, and can influence the size and spatial distribution of flank failures.

  20. The rings of Uranus

    Science.gov (United States)

    Elliot, J. L.; Dunham, E.; Mink, D.

    1977-01-01

    A description is given of the observation of five brief occultations of the star SAO 158687 which occurred both before and after its occultation by Uranus on March 10, 1977. The events were observed with a three-channel occultation photometer, attached to a 91-cm telescope. The observations indicate that at least five rings encircle the planet Uranus. Possible reasons for the narrowness of the Uranus rings are discussed.

  1. Selective Tree-ring Models: A Novel Method for Reconstructing Streamflow Using Tree Rings

    Science.gov (United States)

    Foard, M. B.; Nelson, A. S.; Harley, G. L.

    2017-12-01

    Surface water is among the most instrumental and vulnerable resources in the Northwest United States (NW). Recent observations show that overall water quantity is declining in streams across the region, while extreme flooding events occur more frequently. Historical streamflow models inform probabilities of extreme flow events (flood or drought) by describing frequency and duration of past events. There are numerous examples of tree-rings being utilized to reconstruct streamflow in the NW. These models confirm that tree-rings are highly accurate at predicting streamflow, however there are many nuances that limit their applicability through time and space. For example, most models predict streamflow from hydrologically altered rivers (e.g. dammed, channelized) which may hinder our ability to predict natural prehistoric flow. They also have a tendency to over/under-predict extreme flow events. Moreover, they often neglect to capture the changing relationships between tree-growth and streamflow over time and space. To address these limitations, we utilized national tree-ring and streamflow archives to investigate the relationships between the growth of multiple coniferous species and free-flowing streams across the NW using novel species-and site-specific streamflow models - a term we coined"selective tree-ring models." Correlation function analysis and regression modeling were used to evaluate the strengths and directions of the flow-growth relationships. Species with significant relationships in the same direction were identified as strong candidates for selective models. Temporal and spatial patterns of these relationships were examined using running correlations and inverse distance weighting interpolation, respectively. Our early results indicate that (1) species adapted to extreme climates (e.g. hot-dry, cold-wet) exhibit the most consistent relationships across space, (2) these relationships weaken in locations with mild climatic variability, and (3) some

  2. The 16 November 2006 flank collapse of the south-east crater at Mount Etna, Italy: Study of the deposit and hazard assessment

    Science.gov (United States)

    Norini, Gianluca; de Beni, Emanuela; Andronico, Daniele; Polacci, Margherita; Burton, Mike; Zucca, Francesco

    2009-02-01

    On 16 November 2006 a flank collapse affected the unstable eastern slope of the South-East Crater (SEC) of Mount Etna. The collapse occurred during one of the paroxysmal events with sustained strombolian activity that characterized the August-December 2006 eruption and was triggered by erosion of loose, hydrothermally altered material of the steep south-east sector of SEC from the outpour of lava. The collapse produced a debris avalanche that involved both lithic and juvenile material and resulted in a deposit emplaced on the eastern flank of the volcano up to 1.2 km away from the source. The total volume of the deposit was estimated to be in the order of 330,000-413,000 m3. The reconstruction of the collapse event was simulated using TITAN2D software designed to model granular avalanches and landslides. This approach can be used to estimate areas that may be affected by similar collapse events in the future. The area affected by the 16 November 2006 lateral collapse of SEC was a small portion of the Mount Etna summit area, but the fact that no one was killed or injured should be considered fortuitous. The summit and adjacent areas of the volcano, in fact, are usually visited by many tourists who are not prepared to face this type of danger. The 16 November 2006 collapse points to the need to be prepared for similar events through scientific investigation (analysis of flank instability, numerical simulation of flows) and development of specific civil protection plans.

  3. Paleo-event data standards for dendrochronology

    Science.gov (United States)

    Elaine Kennedy Sutherland; P. Brewer; W. Gross

    2017-01-01

    Extreme environmental events, such as storm winds, landslides, insect infestations, and wildfire, cause loss of life, resources, and human infrastructure. Disaster riskreduction analysis can be improved with information about past frequency, intensity, and spatial patterns of extreme events. Tree-ring analyses can provide such information: tree rings reflect events as...

  4. Prevention of gravitational collapse

    International Nuclear Information System (INIS)

    Moffat, J.W.; Taylor, J.G.

    1981-01-01

    We apply a new theory of gravitation to the question of gravitational collapse to show that collapse is prevented in this theory under very reasonable conditions. This result also extends to prevent ultimate collapse of the Universe. (orig.)

  5. Non-singular Brans–Dicke collapse in deformed phase space

    Energy Technology Data Exchange (ETDEWEB)

    Rasouli, S.M.M., E-mail: mrasouli@ubi.pt [Departamento de Física, Universidade da Beira Interior, Rua Marquês d’Avila e Bolama, 6200 Covilhã (Portugal); Centro de Matemática e Aplicações (CMA - UBI), Universidade da Beira Interior, Rua Marquês d’Avila e Bolama, 6200 Covilhã (Portugal); Physics Group, Qazvin Branch, Islamic Azad University, Qazvin (Iran, Islamic Republic of); Ziaie, A.H., E-mail: ah_ziaie@sbu.ac.ir [Department of Physics, Shahid Beheshti University, G. C., Evin, 19839 Tehran (Iran, Islamic Republic of); Department of Physics, Shahid Bahonar University, PO Box 76175, Kerman (Iran, Islamic Republic of); Jalalzadeh, S., E-mail: shahram.jalalzadeh@unila.edu.br [Federal University of Latin-American Integration, Technological Park of Itaipu PO box 2123, Foz do Iguaçu-PR, 85867-670 (Brazil); Moniz, P.V., E-mail: pmoniz@ubi.pt [Departamento de Física, Universidade da Beira Interior, Rua Marquês d’Avila e Bolama, 6200 Covilhã (Portugal); Centro de Matemática e Aplicações (CMA - UBI), Universidade da Beira Interior, Rua Marquês d’Avila e Bolama, 6200 Covilhã (Portugal)

    2016-12-15

    We study the collapse process of a homogeneous perfect fluid (in FLRW background) with a barotropic equation of state in Brans–Dicke (BD) theory in the presence of phase space deformation effects. Such a deformation is introduced as a particular type of non-commutativity between phase space coordinates. For the commutative case, it has been shown in the literature (Scheel, 1995), that the dust collapse in BD theory leads to the formation of a spacetime singularity which is covered by an event horizon. In comparison to general relativity (GR), the authors concluded that the final state of black holes in BD theory is identical to the GR case but differs from GR during the dynamical evolution of the collapse process. However, the presence of non-commutative effects influences the dynamics of the collapse scenario and consequently a non-singular evolution is developed in the sense that a bounce emerges at a minimum radius, after which an expanding phase begins. Such a behavior is observed for positive values of the BD coupling parameter. For large positive values of the BD coupling parameter, when non-commutative effects are present, the dynamics of collapse process differs from the GR case. Finally, we show that for negative values of the BD coupling parameter, the singularity is replaced by an oscillatory bounce occurring at a finite time, with the frequency of oscillation and amplitude being damped at late times.

  6. Non-singular Brans–Dicke collapse in deformed phase space

    International Nuclear Information System (INIS)

    Rasouli, S.M.M.; Ziaie, A.H.; Jalalzadeh, S.; Moniz, P.V.

    2016-01-01

    We study the collapse process of a homogeneous perfect fluid (in FLRW background) with a barotropic equation of state in Brans–Dicke (BD) theory in the presence of phase space deformation effects. Such a deformation is introduced as a particular type of non-commutativity between phase space coordinates. For the commutative case, it has been shown in the literature (Scheel, 1995), that the dust collapse in BD theory leads to the formation of a spacetime singularity which is covered by an event horizon. In comparison to general relativity (GR), the authors concluded that the final state of black holes in BD theory is identical to the GR case but differs from GR during the dynamical evolution of the collapse process. However, the presence of non-commutative effects influences the dynamics of the collapse scenario and consequently a non-singular evolution is developed in the sense that a bounce emerges at a minimum radius, after which an expanding phase begins. Such a behavior is observed for positive values of the BD coupling parameter. For large positive values of the BD coupling parameter, when non-commutative effects are present, the dynamics of collapse process differs from the GR case. Finally, we show that for negative values of the BD coupling parameter, the singularity is replaced by an oscillatory bounce occurring at a finite time, with the frequency of oscillation and amplitude being damped at late times.

  7. Gravitational Waves from Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    Chris L. Fryer

    2011-01-01

    Full Text Available Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  8. Gravitational waves from gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory

    2008-01-01

    Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.

  9. Gravitational Waves from Gravitational Collapse.

    Science.gov (United States)

    Fryer, Chris L; New, Kimberly C B

    2011-01-01

    Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars. Supplementary material is available for this article at 10.12942/lrr-2011-1.

  10. Catch history of ringed seals (Phoca hispida in Canada

    Directory of Open Access Journals (Sweden)

    Randall R Reeves

    1998-06-01

    Full Text Available The ringed seal (Phoca hispida has always been a staple in the diet and household economy of Inuit in Canada. The present paper was prepared at the request of the NAMMCO Scientific Committee to support their assessment of ringed seal stocks in the North Atlantic Basin and adjacent arctic and subarctic waters. Specifically, our objective was to evaluate recent and current levels of use of ringed seals by Canadian Inuit. Annual removals probably were highest (possibly greater than 100,000 in the 1960s and 1970s, a period when sealskin prices were particularly strong. Catches declined substantially in the 1980s following a collapse in sealskin prices, presumably related to the European trade ban on skins from newborn harp and hooded seals (Phoca groenlandica and Cystophora cristata, respectively. Recent catch levels throughout Canada (1980s and early 1990s are believed to be in the order of 50,000 to 65,000 ringed seals, with a total average annual kill (including hunting loss in the high tens of thousands. No reliable system is in place to monitor catches of ringed seals, so any estimate must be derived from a heterogeneous array of sources.

  11. Postoperative pulmonary complication after neurosurgery: A case of unilateral lung collapse.

    Science.gov (United States)

    Misra, Shilpi

    2016-01-01

    Pulmonary complications, especially postoperative pulmonary complications, are an important cause of morbidity and mortality in neurosurgical patients. Hypoxemia due to mucus plug causing lung collapse is a rare event. We report a case of a 40-year-old female with right cerebellopontine angle space occupying lesion, scheduled for elective craniotomy and tumor excision. The patient underwent surgery uneventfully and was shifted to Intensive Care Unit (ICU) for monitoring. Eight hours after extubation, she developed hypoxemia due to mucus plug resulting in left lung collapse. She was intubated, and mucus plug was aspirated through sterile endobronchial tube suction which resulted in reexpansion of the collapsed lung. The patient was managed with postural drainage, chest physiotherapy, and antibiotics and extubated after 24 h. This type of pulmonary complication may have a catastrophic course, especially in neurosurgical patients, if not diagnosed and managed in time.

  12. Wetland succession in a permafrost collapse: interactions between fire and thermokarst

    Directory of Open Access Journals (Sweden)

    I. H. Myers-Smith

    2008-09-01

    Full Text Available To determine the influence of fire and thermokarst in a boreal landscape, we investigated peat cores within and adjacent to a permafrost collapse feature on the Tanana River Floodplain of Interior Alaska. Radioisotope dating, diatom assemblages, plant macrofossils, charcoal fragments, and carbon and nitrogen content of the peat profile indicate ~600 years of vegetation succession with a transition from a terrestrial forest to a sedge-dominated wetland over 100 years ago, and to a Sphagnum-dominated peatland in approximately 1970. The shift from sedge to Sphagnum, and a decrease in the detrended tree-ring width index of black spruce trees adjacent to the collapse coincided with an increase in the growing season temperature record from Fairbanks. This concurrent wetland succession and reduced growth of black spruce trees indicates a step-wise ecosystem-level response to a change in regional climate. In 2001, fire was observed coincident with permafrost collapse and resulted in lateral expansion of the peatland. These observations and the peat profile suggest that future warming and/or increased fire disturbance could promote permafrost degradation, peatland expansion, and increase carbon storage across this landscape; however, the development of drought conditions could reduce the success of both black spruce and Sphagnum, and potentially decrease the long-term ecosystem carbon storage.

  13. Mechanism of the 2016 giant twin glacier collapse in Aru range, Tibet

    Science.gov (United States)

    Gilbert, A.; Leinss, S.; Kääb, A.; Kargel, J. S.; Yao, T.; Gascoin, S.; Leonard, G. J.; Berthier, E.; Karki, A.

    2017-12-01

    In northwestern Tibet (34.0°N, 82.2°E) near lake Aru Co, the entire ablation area of two unnamed glaciers (Aru-1 and Aru-2) suddenly collapsed on 17 July 2016 and 21 September 2016 and transformed into a mass flow that ran out over a distance of over several km, killing nine people. These two events are unique and defined a new kind of glacier behavior almost never observed before. The only similar event currently documented is the 2002 Kolka Glacier mass flow (Caucasus Mountains). Using remote sensing observations and 3D thermo-mechanical modeling of the two glaciers, we reconstructed glacier thermal regime, thickness, basal friction evolution and ice damaging state prior to the collapse. We show that frictional change leading to the collapse occurred in the temperate areas of a polythermal structure that is likely close to equilibrium with the local climate. The collapses were driven by a fast and sustained friction change in the temperate part of the glacier for which the glacier shape was not able to adjust due to the cold-based parts providing strong resisting force to sliding. This led to high stresses on the cold margins of the glacier where ice deformation became partially accommodated by fracturing until the final collapse occurred. Field investigations reveal that those two glaciers are flowing on a soft and fine-grained sedimentary lithology prone to landslide activity in the presence of water. This suggests that fast friction change in the temperate part of the glacier is linked to shear strength weakening in the sediment and till underneath the glacier in response to increasing water pore pressure at the glacier base. The Kolka Glacier mass flow also occurred on pyroclastic rocks well known for their landslide activities. This suggests that the three gigantic glacier collapses documented to date involve specific bedrock lithology where failure is driven by shear strength weakening in the glacier till in a landslide-like process. Contrary to a

  14. Steady finite-Reynolds-number flows in three-dimensional collapsible tubes

    Science.gov (United States)

    Hazel, Andrew L.; Heil, Matthias

    2003-07-01

    A fully coupled finite-element method is used to investigate the steady flow of a viscous fluid through a thin-walled elastic tube mounted between two rigid tubes. The steady three-dimensional Navier Stokes equations are solved simultaneously with the equations of geometrically nonlinear Kirchhoff Love shell theory. If the transmural (internal minus external) pressure acting on the tube is sufficiently negative then the tube buckles non-axisymmetrically and the subsequent large deformations lead to a strong interaction between the fluid and solid mechanics. The main effect of fluid inertia on the macroscopic behaviour of the system is due to the Bernoulli effect, which induces an additional local pressure drop when the tube buckles and its cross-sectional area is reduced. Thus, the tube collapses more strongly than it would in the absence of fluid inertia. Typical tube shapes and flow fields are presented. In strongly collapsed tubes, at finite values of the Reynolds number, two ’jets‘ develop downstream of the region of strongest collapse and persist for considerable axial distances. For sufficiently high values of the Reynolds number, these jets impact upon the sidewalls and spread azimuthally. The consequent azimuthal transport of momentum dramatically changes the axial velocity profiles, which become approximately uTheta-shaped when the flow enters the rigid downstream pipe. Further convection of momentum causes the development of a ring-shaped velocity profile before the ultimate return to a parabolic profile far downstream.

  15. Texture collapse

    International Nuclear Information System (INIS)

    Prokopec, T.; Sornborger, A.; Brandenberger, R.H.

    1992-01-01

    We study single-texture collapse using a leapfrog discretization method on a 30x30x30 spatial lattice. We investigate the influence of boundary conditions, physical size of the lattice, type of space-time background (flat, i.e., nonexpanding, vs radiation-dominated and matter-dominated universes), and spatial distribution of the initial texture configuration on collapse time and critical winding. For a spherically symmetric initial configuration of size equal to the horizon size on a lattice containing 12 (30) horizon volumes, the critical winding is found to be 0.621±0.001 (0.602±0.003) (flat case), 0.624±0.002 (0.604±0.005) (radiation era), 0.628±0.002 (0.612±0.003) (matter era). The larger the physical size of the lattice (in units of the horizon size), the smaller is the critical winding, and in the limit of an infinite lattice, we argue that the critical winding approaches 0.5. For radially asymmetric cases, contraction of one axis ( /Ipancake case) slightly reduces collapse time and critical winding, and contraction of two axes (d/Icigar case) reduces collapse time and critical winding significantly

  16. On the possibility of a two-bang supernova collapse

    International Nuclear Information System (INIS)

    Berezinsky, V.S.; Castagnoli, C.; Dokuchaev, V.I.; Galeotti, P.

    1988-01-01

    The possibility of a two-bang stellar collapse originating SN 1987a, and having the characteristics of the events recorded in Mont Blanc and Kamiokande, is discussed here. According to the ''standard'' collapse models of nonrotating stars, which predict the formation of a neutrino-sphere with a nondegenerate neutrino gas inside the star, the Mont Blanc and kamiokande data for the first burst give a too large stellar mass. On the contrary, a degenerate neutrino gas with low temperature T ∼ 0.5 MeV, and chemical potential μ ∼ (12-15), predicts a relatively low total energy outflow W ν ∼ (2-6) x 10 54 erg, and a small number of expected interactions in Kamiokande. A possible scenario is suggested: a massive (M ∼ 20M o ) rotating star is fragmented into two pieces, one light and the other heavy, at the onset of the collapse.The massive component collapses to a black hole, and produces the first burst. Neutrinos are trapped inside the collapsing star because of elastic scattering in the outer core off heavy nuclei, with A ∼ 300. It is shown that neutrinos fill up the quantum states, producing a degenerate neutrino gas. The second burst is explained by coalescence of the light fragment (M ∼ (1-3)M o ) onto the massive black hole. The time delay between the two observed bursts (4.7h) is mostly connected with gravitational braking, when the light fragment falls down onto the black hole, with an accompanying emission of gravitational waves for times of order of hours

  17. Ring recognition in the CBM RICH detector

    International Nuclear Information System (INIS)

    Lebedev, S.; Ososkov, G.; Hoehne, C.

    2007-01-01

    Two algorithms of ring recognition, a standalone ring finder (using only RICH information) and an algorithm based on the information from vertex tracks are described. The fake ring problem and its solution using a set of two-dimensional cuts or an artificial neural network are discussed. Results of a comparative study are given. All developed algorithms were tested on large statistics of simulated events and were then included into the CBM framework for common use

  18. Ring-fault activity at subsiding calderas studied from analogue experiments and numerical modeling

    Science.gov (United States)

    Liu, Y. K.; Ruch, J.; Vasyura-Bathke, H.; Jonsson, S.

    2017-12-01

    Several subsiding calderas, such as the ones in the Galápagos archipelago and the Axial seamount in the Pacific Ocean have shown a complex but similar ground deformation pattern, composed of a broad deflation signal affecting the entire volcanic edifice and of a localized subsidence signal focused within the caldera. However, it is still debated how deep processes at subsiding calderas, including magmatic pressure changes, source locations and ring-faulting, relate to this observed surface deformation pattern. We combine analogue sandbox experiments with numerical modeling to study processes involved from initial subsidence to later collapse of calderas. The sandbox apparatus is composed of a motor driven subsiding half-piston connected to the bottom of a glass box. During the experiments the observation is done by five digital cameras photographing from various perspectives. We use Photoscan, a photogrammetry software and PIVLab, a time-resolved digital image correlation tool, to retrieve time-series of digital elevation models and velocity fields from acquired photographs. This setup allows tracking the processes acting both at depth and at the surface, and to assess their relative importance as the subsidence evolves to a collapse. We also use the Boundary Element Method to build a numerical model of the experiment setup, which comprises contracting sill-like source in interaction with a ring-fault in elastic half-space. We then compare our results from these two approaches with the examples observed in nature. Our preliminary experimental and numerical results show that at the initial stage of magmatic withdrawal, when the ring-fault is not yet well formed, broad and smooth deflation dominates at the surface. As the withdrawal increases, narrower subsidence bowl develops accompanied by the upward propagation of the ring-faulting. This indicates that the broad deflation, affecting the entire volcano edifice, is primarily driven by the contraction of the

  19. An event database for rotational seismology

    Science.gov (United States)

    Salvermoser, Johannes; Hadziioannou, Celine; Hable, Sarah; Chow, Bryant; Krischer, Lion; Wassermann, Joachim; Igel, Heiner

    2016-04-01

    The ring laser sensor (G-ring) located at Wettzell, Germany, routinely observes earthquake-induced rotational ground motions around a vertical axis since its installation in 2003. Here we present results from a recently installed event database which is the first that will provide ring laser event data in an open access format. Based on the GCMT event catalogue and some search criteria, seismograms from the ring laser and the collocated broadband seismometer are extracted and processed. The ObsPy-based processing scheme generates plots showing waveform fits between rotation rate and transverse acceleration and extracts characteristic wavefield parameters such as peak ground motions, noise levels, Love wave phase velocities and waveform coherence. For each event, these parameters are stored in a text file (json dictionary) which is easily readable and accessible on the website. The database contains >10000 events starting in 2007 (Mw>4.5). It is updated daily and therefore provides recent events at a time lag of max. 24 hours. The user interface allows to filter events for epoch, magnitude, and source area, whereupon the events are displayed on a zoomable world map. We investigate how well the rotational motions are compatible with the expectations from the surface wave magnitude scale. In addition, the website offers some python source code examples for downloading and processing the openly accessible waveforms.

  20. The f electron collapse revisited

    International Nuclear Information System (INIS)

    Bennett, B.I.

    1987-03-01

    A reexamination of the collapse of 4f and 5f electrons in the lanthanide and actinide series is presented. The calculations show the well-known collapse of the f electron density at the thresholds of these series along with an f 2 collapse between thorium and protactinium. The collapse is sensitive to the choice of model for the exchange-correlation potential and the behavior of the potential at large radius

  1. The importance of pelvic ring stabilization as a life-saving measure in pre-hospital - A case report commented by autopsy.

    Science.gov (United States)

    Durão, Carlos; Alves, Magda; Barros, André; Pedrosa, Frederico

    2017-08-01

    Hip fractures with unstable pelvic ring have great morbidity and mortality rates. These fractures result from high energy trauma such as falls from heights, road accidents and collapsing structures or other similar mechanisms of action. We report the case of a 63 years old man, construction worker, who stood inside a ditch during a wall construction when he was surprised by this collapse, which resulted in direct trauma to the right thigh and pelvis. The autopsy revealed diaphysis fracture of the right femur with an open book pelvic fracture with severe hemorrhagic infiltration and hematoma of the pelvic muscles without arterial injury. Bone bleeding and the vascular damage associated with disruption of the sacroiliac ligaments promote a very significant bleeding. Simple maneuvers such as sheet circumferential compression to promote pelvic ring closure are effective on stabilizing and closure of the sacroiliac joint. Hip manipulation of the fracture was performed during the necropsy to demonstrate and prove how a simple sheet contention can promote stabilization of the pelvic ring by closing the sacroiliac joints in open book fractures.

  2. CORE-COLLAPSE SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: INDICATIONS FOR A DIFFERENT POPULATION IN DWARF GALAXIES

    International Nuclear Information System (INIS)

    Arcavi, Iair; Gal-Yam, Avishay; Kasliwal, Mansi M.; Quimby, Robert M.; Ofek, Eran O.; Kulkarni, Shrinivas R.; Law, Nicholas; Cooke, Jeff; Nugent, Peter E.; Poznanski, Dovi; Cenko, S. Bradley; Bloom, Joshua S.; Filippenko, Alexei V.; Sullivan, Mark; Hook, Isobel; Joensson, Jakob; Blake, Sarah; Howell, D. Andrew; Dekany, Richard; Rahmer, Gustavo

    2010-01-01

    We use the first compilation of 72 core-collapse supernovae (SNe) from the Palomar Transient Factory (PTF) to study their observed subtype distribution in dwarf galaxies compared to giant galaxies. Our sample is the largest single-survey, untargeted, spectroscopically classified, homogeneous collection of core-collapse events ever assembled, spanning a wide host-galaxy luminosity range (down to M r ∼ -14 mag) and including a substantial fraction (>20%) of dwarf (M r ≥ -18 mag) hosts. We find more core-collapse SNe in dwarf galaxies than expected and several interesting trends emerge. We use detailed subclassifications of stripped-envelope core-collapse SNe and find that all Type I core-collapse events occurring in dwarf galaxies are either SNe Ib or broad-lined SNe Ic (SNe Ic-BL), while 'normal' SNe Ic dominate in giant galaxies. We also see a significant excess of SNe IIb in dwarf hosts. We hypothesize that in lower metallicity hosts, metallicity-driven mass loss is reduced, allowing massive stars that would have appeared as 'normal' SNe Ic in metal-rich galaxies to retain some He and H, exploding as Ib/IIb events. At the same time, another mechanism allows some stars to undergo extensive stripping and explode as SNe Ic-BL (and presumably also as long-duration gamma-ray bursts). Our results are still limited by small-number statistics, and our measurements of the observed N(Ib/c)/N(II) number ratio in dwarf and giant hosts (0.25 +0.3 -0.15 and 0.23 +0.11 -0.08 , respectively; 1σ uncertainties) are consistent with previous studies and theoretical predictions. As additional PTF data accumulate, more robust statistical analyses will be possible, allowing the evolution of massive stars to be probed via the dwarf-galaxy SN population.

  3. Ear canal collapse prevalence and associated factors among users of a center of prevention and rehabilitation for disabilities

    Directory of Open Access Journals (Sweden)

    Elisana Costa Dourado

    Full Text Available ABSTRACT Purpose: to investigate the prevalence of the ear canal collapse when using supra-aural earphones and to verify if this event is influenced by sex, age, color of the skin and prominent ear. Methods: the collapse was assessed by a visual inspection after the positioning of a detached cushion, pressured against the external ear. Results: a total of 436 individuals, aged 3 to 97 years, participated in the study. Ear canal collapse was observed in 11.4% of the subjects, being mostly bilateral (90.0%. The prevalence ranged from 6.3% to 36.6% across age groups. Males, aged 65 years or above and presence of prominent ear were independently identified as associated factors for the occurrence of ear canal collapse (p<0.05. Despite a higher prevalence for those self-identified as white skinned when compared to non-whites, the difference was not statistically significant. Conclusion: the ear canal collapse, when supra-aural earphones are used, is more likely to occur in men, in elderly people, and among those with prominent ears. The prevalence of the event in this population raises the necessity of a careful examination, previous to any evaluation using supra-aural earphones.

  4. Observation results by the TAMA300 detector on gravitational wave bursts from stellar-core collapses

    International Nuclear Information System (INIS)

    Ando, Masaki; Aso, Youichi; Iida, Yukiyoshi; Nishi, Yuhiko; Otsuka, Shigemi; Seki, Hidetsugu; Soida, Kenji; Taniguchi, Shinsuke; Tochikubo, Kuniharu; Tsubono, Kimio; Yoda, Tatsuo; Arai, Koji; Beyersdorf, Peter; Kawamura, Seiji; Sato, Shuichi; Takahashi, Ryutaro; Tatsumi, Daisuke; Tsunesada, Yoshiki; Zhu, Zong-Hong; Fujimoto, Masa-Katsu

    2005-01-01

    We present data-analysis schemes and results of observations with the TAMA300 gravitational wave detector, targeting burst signals from stellar-core collapse events. In analyses for burst gravitational waves, the detection and fake-reduction schemes are different from well-investigated ones for a chirp wave analysis, because precise waveform templates are not available. We used an excess -power filter for the extraction of gravitational wave candidates, and developed two methods for the reduction of fake events caused by nonstationary noises of the detector. These analysis schemes were applied to real data from the TAMA300 interferometric gravitational wave detector. As a result, fake events were reduced by a factor of about 1000 in the best cases. In addition, in order to interpret the event candidates from an astronomical viewpoint, we performed a Monte-Carlo simulation with an assumed Galactic event distribution model and with burst waveforms obtained from numerical simulations of stellar-core collapses. We set an upper limit of 5.0x10 3 events/sec on the burst gravitational wave event rate in our Galaxy with a confidence level of 90%. This work shows prospects on the search for burst gravitational waves, by establishing an analysis scheme for the observation data from an interferometric gravitational wave detector

  5. Geotechnical properties of Egyptian collapsible soils

    Directory of Open Access Journals (Sweden)

    Khaled E. Gaaver

    2012-09-01

    Full Text Available The risk of constructing structures on collapsible soils presents significant challenges to geotechnical engineers due to sudden reduction in volume upon wetting. Identifying collapsible soils when encountered in the field and taking the needed precautions should substantially reduce the risk of such problems usually reported in buildings and highways. Collapsible soils are those unsaturated soils that can withstand relatively high pressure without showing significant change in volume, however upon wetting; they are susceptible to a large and sudden reduction in volume. Collapsible soils cover significant areas around the world. In Egypt, collapsible soils were observed within the northern portion of the western desert including Borg El-Arab region, and around the city of Cairo in Six-of-October plateau, and Tenth-of-Ramadan city. Settlements associated with development on untreated collapsible soils usually lead to expensive repairs. One method for treating collapsible soils is to densify their structure by compaction. The ongoing study presents the effect of compaction on the geotechnical properties of the collapsible soils. Undisturbed block samples were recovered from test pits at four sites in Borg El-Arab district, located at about 20 km west of the city of Alexandria, Egypt. The samples were tested in both unsoaked and soaked conditions. Influence of water inundation on the geotechnical properties of collapsible soils was demonstrated. A comparative study between natural undisturbed and compacted samples of collapsible soils was performed. An attempt was made to relate the collapse potential to the initial moisture content. An empirical correlation between California Bearing Ratio of the compacted collapsible soils and liquid limit was adopted. The presented simple relationships should enable the geotechnical engineers to estimate the complex parameters of collapsible soils using simple laboratory tests with a reasonable accuracy.

  6. Explosive X-point collapse in relativistic magnetically dominated plasma

    Science.gov (United States)

    Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver

    2017-12-01

    The extreme properties of the gamma-ray flares in the Crab nebula present a clear challenge to our ideas on the nature of particle acceleration in relativistic astrophysical plasma. It seems highly unlikely that standard mechanisms of stochastic type are at work here and hence the attention of theorists has switched to linear acceleration in magnetic reconnection events. In this series of papers, we attempt to develop a theory of explosive magnetic reconnection in highly magnetized relativistic plasma which can explain the extreme parameters of the Crab flares. In the first paper, we focus on the properties of the X-point collapse. Using analytical and numerical methods (fluid and particle-in-cell simulations) we extend Syrovatsky's classical model of such collapse to the relativistic regime. We find that the collapse can lead to the reconnection rate approaching the speed of light on macroscopic scales. During the collapse, the plasma particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For sufficiently high magnetizations and vanishing guide field, the non-thermal particle spectrum consists of two components: a low-energy population with soft spectrum that dominates the number census; and a high-energy population with hard spectrum that possesses all the properties needed to explain the Crab flares.

  7. Deposits from the 12 July Dome Collapse and Explosive Activity at Soufriere Hills Volcano, 12-15 July 2003

    Science.gov (United States)

    Edmonds, M.; Herd, R.; Strutt, M.; Mann, C.

    2003-12-01

    A large dome collapse took place on 12-13 July 2003 at Soufriere Hills Volcano. This event was the largest in magnitude during the 1995-2003 eruption and involved over 120 million m3 andesite dome and talus material. The collapse took place over 18 hours and culminated in an explosive phase that continued intermittently until 15 July 2003. Prior to the collapse, the total volume of the dome was 230 million m3 and was made up of remnants of lava erupted 1997-2001, talus material and fresh andesite dome lava erupted during the last two years. Talus made up around 50% of the total dome volume. This paper describes and interprets the pyroclastic flow and airfall deposits from this event, using other monitoring data and empirical evidence to reconstruct the dome collapse. The airfall and pyroclastic flow deposits were studied in detail over the weeks following the collapse. Airfall deposits were studied at 45 locations around the island and 75 samples were collected for analysis. The surge deposit stretched over 10 km2 on land and 35 pits were dug at intervals through it. The sections were described and sampled, yielding a further 60 samples for grain size analysis. Further sampling was carried out on the block and ash deposits in the Tar River Valley and on the Tar River Fan. Pumices from the post-collapse explosion sequence were collected and their densities measured and mass coverage estimated. Deposit maps for airfall, lithics and pumices were constructed for all of the individual events and a map to show the distribution of the main surge unit was generated. The collapse was monitored in real-time using the MVO seismic network and observations from the field. The sequence of events was as follows. From 09:00 to 18:00, low-energy pyroclastic flows took place, confined to the Tar River Valley, which reached the sea at the mouth of Tar River. These flows gradually increased in energy throughout the day but were not associated with energetic, large surges. By 18:00 the

  8. The 9.2 ka event in Asian summer monsoon area: the strongest millennial scale collapse of the monsoon during the Holocene

    Science.gov (United States)

    Zhang, Wenchao; Yan, Hong; Dodson, John; Cheng, Peng; Liu, Chengcheng; Li, Jianyong; Lu, Fengyan; Zhou, Weijian; An, Zhisheng

    2018-04-01

    Numerous Holocene paleo-proxy records exhibit a series of centennial-millennial scale rapid climatic events. Unlike the widely acknowledged 8.2 ka climate anomaly, the likelihood of a significant climate excursion at around 9.2 cal ka BP, which has been notably recognized in some studies, remains to be fully clarified in terms of its magnitude and intensity, as well as its characteristics and spatial distributions in a range of paleoclimatic records. In this study, a peat sediment profile from the Dajiuhu Basin in central China was collected with several geochemical proxies and a pollen analysis carried out to help improve understanding of the climate changes around 9.2 cal ka BP. The results show that the peat development was interrupted abruptly at around 9.2 cal ka BP, when the chemical weathering strength decreased and the tree-pollen declined. This suggests that a strong drier regional climatic event occurred at around 9.2 cal ka BP in central China, which was, in turn, probably connected to the rapid 9.2 ka climate event co-developing worldwide. In addition, based on the synthesis of our peat records and the other Holocene hydrological records from Asian summer monsoon (ASM) region, we further found that the 9.2 ka event probably constituted the strongest abrupt collapse of the Asian monsoon system during the full Holocene interval. The correlations between ASM and the atmospheric 14C production rate, the North Atlantic drift ice records and Greenland temperature indicated that the weakened ASM event at around 9.2 cal ka BP could be interpreted by the co-influence of external and internal factors, related to the changes of the solar activity and the Atlantic Meridional Overturning Circulation (AMOC).

  9. Estimating the collapse of aggregated fine soil structure in a mountainous forested catchment.

    Science.gov (United States)

    Mouri, Goro; Shinoda, Seirou; Golosov, Valentin; Chalov, Sergey; Shiiba, Michiharu; Hori, Tomoharu; Oki, Taikan

    2014-06-01

    This paper describes the relationship of forest soil dryness and antecedent rainfall with suspended sediment (SS) yield due to extreme rainfall events and how this relationship affects the survival of forest plants. Several phenomena contribute to this relationship: increasing evaporation (amount of water vapour discharged from soil) due to increasing air temperature, decreasing moisture content in the soil, the collapse of aggregates of fine soil particles, and the resulting effects on forest plants. To clarify the relationships among climate variation, the collapse of soil particle aggregates, and rainfall-runoff processes, a numerical model was developed to reproduce such aggregate collapse in detail. The validity of the numerical model was confirmed by its application to the granitic mountainous catchment of the Nagara River basin in Japan and by comparison with observational data. The simulation suggests that important problems, such as the collapse of forest plants in response to decreases in soil moisture content and antecedent rainfall, will arise if air temperature continues to increase. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Seismicity associated with dome growth and collapse at the Soufriere Hills Volcano, Montserrat

    Science.gov (United States)

    Miller, A.D.; Stewart, R.C.; White, R.A.; Luckett, R.; Baptie, B.J.; Aspinall, W.P.; Latchman, J.L.; Lynch, L.L.; Voight, B.

    1998-01-01

    Varied seismicity has accompanied growth and collapse of the lava dome of the Soufriere Hills Volcano, Montserrat. Earthquakes have been classified as either volcano-tectonic, long-period or hybrid, and daily variations in the numbers of events have mapped changes in the style of eruption. Repetitive hybrid earthquakes were common during the first months of dome growth. In July 1996 the style of seismicity changed and regular short-lived hybrid earthquake swarms became common. This change was probably caused by an increase in the magma flux. Earthquake swarms have preceded almost all major dome collapses, and have accompanied cyclical deformation, thought to be due to a built-up of pressure in the upper conduit which is later released by magma moving into the dome.Varied seismicity has accompanied growth and collapse of the lava dome of the Soufriere Hills Volcano, Montserrat. Earthquakes have been classified as either volcano-tectonic, long-period or hybrid, and daily variations in the numbers of events have mapped changes in the style of eruption. Repetitive hybrid earthquakes were common during the first months of dome growth. In July 1996 the style of seismicity changed and regular, short-lived hybrid earthquake swarms became common. This change was probably caused by an increase in the magma flux. Earthquake swarms have preceded almost all major dome collapses, and have accompanied cyclical deformation, thought to be due to a build-up of pressure in the upper conduit which is later released by magma moving into the dome.

  11. Numerical simulations of stellar collapse in scalar-tensor theories of gravity

    International Nuclear Information System (INIS)

    Gerosa, Davide; Sperhake, Ulrich; Ott, Christian D

    2016-01-01

    We present numerical-relativity simulations of spherically symmetric core collapse and compact-object formation in scalar-tensor theories of gravity. The additional scalar degree of freedom introduces a propagating monopole gravitational-wave mode. Detection of monopole scalar waves with current and future gravitational-wave experiments may constitute smoking gun evidence for strong-field modifications of general relativity. We collapse both polytropic and more realistic pre-supernova profiles using a high-resolution shock-capturing scheme and an approximate prescription for the nuclear equation of state. The most promising sources of scalar radiation are protoneutron stars collapsing to black holes. In case of a galactic core collapse event forming a black hole, Advanced LIGO may be able to place independent constraints on the parameters of the theory at a level comparable to current solar-system and binary-pulsar measurements. In the region of the parameter space admitting spontaneously scalarised stars, transition to configurations with prominent scalar hair before black-hole formation further enhances the emitted signal. Although a more realistic treatment of the microphysics is necessary to fully investigate the occurrence of spontaneous scalarisation of neutron star remnants, we speculate that formation of such objects could constrain the parameters of the theory beyond the current bounds obtained with solar-system and binary-pulsar experiments. (paper)

  12. Spherical dust collapse in higher dimensions

    International Nuclear Information System (INIS)

    Goswami, Rituparno; Joshi, Pankaj S.

    2004-01-01

    We consider here whether it is possible to recover cosmic censorship when a transition is made to higher-dimensional spacetimes, by studying the spherically symmetric dust collapse in an arbitrary higher spacetime dimension. It is pointed out that if only black holes are to result as the end state of a continual gravitational collapse, several conditions must be imposed on the collapsing configuration, some of which may appear to be restrictive, and we need to study carefully if these can be suitably motivated physically in a realistic collapse scenario. It would appear, that, in a generic higher-dimensional dust collapse, both black holes and naked singularities would develop as end states as indicated by the results here. The mathematical approach developed here generalizes and unifies the earlier available results on higher-dimensional dust collapse as we point out. Further, the dependence of black hole or naked singularity end states as collapse outcomes on the nature of the initial data from which the collapse develops is brought out explicitly and in a transparent manner as we show here. Our method also allows us to consider here in some detail the genericity and stability aspects related to the occurrence of naked singularities in gravitational collapse

  13. Spherically symmetric radiation in gravitational collapse

    International Nuclear Information System (INIS)

    Bridy, D.J.

    1983-01-01

    This paper investigates a previously neglected mode by which a star may lose energy in the late stages of gravitational collapse to the black hole state. A model consisting of a Schwarzschild exterior matched to a Friedman interior of collapsing pressureless dust is studied. The matter of the collapsing star is taken as the source of a massive vector boson field and a detailed boundary value problem is carried out. Vector mesons are strongly coupled to all nucleons and will be radiated by ordinary matter during the collapse. The time dependent coupling between interior and exterior modes matched across the moving boundary of the collapsing star and the presence of the gravitational fields and their gradients in the field equations may give rise to a parametric amplification mechanism and permit the gravitational field to pump energy into the boson field, greatly enhancing the amount of boson radiation. The significance of a radiative mechanism driven by collapse is that it can react back upon the collapsing source and deprive it of some of the very mass that drives the collapse via its self gravitation. If the mass loss is great enough, this may provide a mechanism to slow or even halt gravitational collapse in some cases

  14. Spherical Collapse in Chameleon Models

    CERN Document Server

    Brax, Ph; Steer, D A

    2010-01-01

    We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse depends on the initial comoving size of the inhomogeneity.

  15. Spherical collapse in chameleon models

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Ph. [Institut de Physique Théorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex (France); Rosenfeld, R. [Instituto de Física Teórica, Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, 01140-070, São Paulo (Brazil); Steer, D.A., E-mail: brax@spht.saclay.cea.fr, E-mail: rosenfel@ift.unesp.br, E-mail: daniele.steer@apc.univ-paris7.fr [APC, UMR 7164, CNRS, Université Paris 7, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France)

    2010-08-01

    We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse in principle depends on the initial comoving size of the inhomogeneity.

  16. Spherical collapse in chameleon models

    International Nuclear Information System (INIS)

    Brax, Ph.; Rosenfeld, R.; Steer, D.A.

    2010-01-01

    We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse in principle depends on the initial comoving size of the inhomogeneity

  17. Tracheal collapse in two cats

    International Nuclear Information System (INIS)

    Hendricks, J.C.; O'Brien, J.A.

    1985-01-01

    Two cats examined bronchoscopically to discover the cause of tracheal collapse were found to have tracheal obstruction cranial to the collapse. Cats with this unusual sign should be examined bronchoscopically to ascertain whether there is an obstruction, as the cause in these 2 cats was distinct from the diffuse airway abnormality that causes tracheal collapse in dogs

  18. Asymmetric growth of collapsed caldera by oblique subsidence during the 2000 eruption of Miyakejima, Japan

    Science.gov (United States)

    Geshi, Nobuo

    2009-04-01

    Oblique development of the ring faults reflecting the structural heterogeneities inside the volcano formed many asymmetric structures of Miyakejima 2000 AD caldera. The asymmetry includes (a) offset location of the ring faults with respect to the associated shallow magma chamber, (b) unequal outward migration of the caldera wall 600 m at the southeastern rim but only 200 m at the northwestern rim, (c) development of tilted terrace only at the southeastern caldera margin, (d) eruption sites and fumaroles being confined to the southern part of the caldera. Geophysical data, including ground deformation and seismic activity, indicates the offset of the location of the magma chamber about 2 km south of the caldera center on the surface. The ring faults propagated from the deflating magma chamber obliquely about 30 degrees toward the summit. The oblique subsidence of the cylindrical block formed a wider instable zone, particularly in the southeastern side of the ring fault that enhanced the larger outward migration of the caldera rim and also caused the formation of the outer half-ring fault bordering the tilting slope at the southern part. Ascending pass of the buoyant magma along the tilted ring faults was concentrated in the southern half of the caldera and consequently the distributions of the eruption sites and fumaroles are localized in the southern-half part of the caldera. The structure of the Miyakejima 2000 caldera with complete development of the ring faults, its high roof aspect ratio and oblique subsidence is clearly distinguishable from trapdoor-type caldera. The oblique development of the ring faults can be controlled by the mechanical contrast between the solidified conduits and surrounding fragile volcanic edifice. Asymmetric development of the Miyakejima caldera shows that the collapsed calderas are potential indicators of the heterogeneous structures inside of the volcano, particularly in the case of small-size caldera.

  19. Multiple-event probability in general-relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Hellmann, Frank; Mondragon, Mauricio; Perez, Alejandro; Rovelli, Carlo

    2007-01-01

    We discuss the definition of quantum probability in the context of 'timeless' general-relativistic quantum mechanics. In particular, we study the probability of sequences of events, or multievent probability. In conventional quantum mechanics this can be obtained by means of the 'wave function collapse' algorithm. We first point out certain difficulties of some natural definitions of multievent probability, including the conditional probability widely considered in the literature. We then observe that multievent probability can be reduced to single-event probability, by taking into account the quantum nature of the measuring apparatus. In fact, by exploiting the von-Neumann freedom of moving the quantum/classical boundary, one can always trade a sequence of noncommuting quantum measurements at different times, with an ensemble of simultaneous commuting measurements on the joint system+apparatus system. This observation permits a formulation of quantum theory based only on single-event probability, where the results of the wave function collapse algorithm can nevertheless be recovered. The discussion also bears on the nature of the quantum collapse

  20. State-of-the-Art-Review of Collapsible Soils

    Directory of Open Access Journals (Sweden)

    A. A. AL-Rawas

    2000-12-01

    Full Text Available Collapsible soils are encountered in arid and semi-arid regions. Such soils cause potential construction problems due to their collapse upon wetting. The collapse phenomenon is primarily related to the open structure of the soil. Several soil collapse classifications based on parameters such as moisture content, dry density, Atterberg limits and clay content have been proposed in the literature as indicators of the soil collapse potential. Direct measurement of the magnitude of collapse, using laboratory and/or field tests, is essential once a soil showed indications of collapse potential. Treatment methods such as soil replacement, compaction control and chemical stabilization showed significant reduction in the settlement of collapsible soils. The design of foundations on collapsible soils depends on the depth of the soil, magnitude of collapse and economics of the design. Strip foundations are commonly used when collapsing soil extends to a shallow depth while piles and drilled piers are recommended in cases where the soil extends to several meters. This paper provides a comprehensive review of collapsible soils. These include the different types of collapsible soils, mechanisms of collapse, identification and classification methods, laboratory and field testing, treatment methods and guidelines for foundation design.

  1. Collapse of large extra dimensions

    International Nuclear Information System (INIS)

    Geddes, James

    2002-01-01

    In models of spacetime that are the product of a four-dimensional spacetime with an 'extra' dimension, there is the possibility that the extra dimension will collapse to zero size, forming a singularity. We ask whether this collapse is likely to destroy the spacetime. We argue, by an appeal to the four-dimensional cosmic censorship conjecture, that--at least in the case when the extra dimension is homogeneous--such a collapse will lead to a singularity hidden within a black string. We also construct explicit initial data for a spacetime in which such a collapse is guaranteed to occur and show how the formation of a naked singularity is likely avoided

  2. Collapse risk of buildings in the Pacific Northwest region due to subduction earthquakes

    Science.gov (United States)

    Raghunandan, Meera; Liel, Abbie B.; Luco, Nicolas

    2015-01-01

    Subduction earthquakes similar to the 2011 Japan and 2010 Chile events will occur in the future in the Cascadia subduction zone in the Pacific Northwest. In this paper, nonlinear dynamic analyses are carried out on 24 buildings designed according to outdated and modern building codes for the cities of Seattle, Washington, and Portland, Oregon. The results indicate that the median collapse capacity of the ductile (post-1970) buildings is approximately 40% less when subjected to ground motions from subduction, as compared to crustal earthquakes. Buildings are more susceptible to earthquake-induced collapse when shaken by subduction records (as compared to crustal records of the same intensity) because the subduction motions tend to be longer in duration due to their larger magnitude and the greater source-to-site distance. As a result, subduction earthquakes are shown to contribute to the majority of the collapse risk of the buildings analyzed.

  3. Cylindrical collapse and gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, L [Escuela de FIsica, Faculdad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela (Venezuela); Santos, N O [Universite Pierre et Marie Curie, CNRS/FRE 2460 LERMA/ERGA, Tour 22-12, 4eme etage, BoIte 142, 4 place Jussieu, 75252 Paris Cedex 05 (France); Laboratorio Nacional de Computacao Cientifica, 25651-070 Petropolis RJ (Brazil); Centro Brasileiro de Pesquisas Fisicas, 22290-180 Rio de Janeiro RJ (Brazil)

    2005-06-21

    We study the matching conditions for a collapsing anisotropic cylindrical perfect fluid, and we show that its radial pressure is non-zero on the surface of the cylinder and proportional to the time-dependent part of the field produced by the collapsing fluid. This result resembles the one that arises for the radiation-though non-gravitational-in the spherically symmetric collapsing dissipative fluid, in the diffusion approximation.

  4. Collapse models with non-white noises

    International Nuclear Information System (INIS)

    Adler, Stephen L; Bassi, Angelo

    2007-01-01

    We set up a general formalism for models of spontaneous wavefunction collapse with dynamics represented by a stochastic differential equation driven by general Gaussian noises, not necessarily white in time. In particular, we show that the non-Schroedinger terms of the equation induce the collapse of the wavefunction to one of the common eigenstates of the collapsing operators, and that the collapse occurs with the correct quantum probabilities. We also develop a perturbation expansion of the solution of the equation with respect to the parameter which sets the strength of the collapse process; such an approximation allows one to compute the leading-order terms for the deviations of the predictions of collapse models with respect to those of standard quantum mechanics. This analysis shows that to leading order, the 'imaginary noise' trick can be used for non-white Gaussian noise

  5. Tracheal ceramic rings for tracheomalacia: a review after 17 years.

    Science.gov (United States)

    Göbel, Gyula; Karaiskaki, Niki; Gerlinger, Imre; Mann, Wolf J

    2007-10-01

    Despite different support techniques, the surgical management of tracheomalacia is still a challenging problem. Satisfactory results after internal stenting are above 80%, whereas, when performing external stenting using biocompatible ceramic rings, results are reported at over 90%. The purpose of this study was to examine the efficiency of surgical treatment in patients with segmentary tracheomalacia using external ceramic ring grafts. In this retrospective study, we collected data from 12 patients who underwent surgery during the last 17 years for symptomatic segmentary tracheomalacia by use of biocompatible aluminum-oxide ceramic rings. All except one patient had undergone previous tracheostomy, six had a history of long-term intubation, two had previous trauma, and two patients had previous cancer treatment including radiotherapy. One of the patients still had an existing tracheostoma, which was closed when a ceramic ring was implanted. Tracheal wall collapse with pseudoglottis formation or flattened anterior-posterior tracheal diameter was documented with fiberoscopy at rest, and both pre- and postoperative airway resistance measurements were performed in all 12 patients using a spirometer. After malacic segments were found to be expandable using rigid tracheoscopy while the patient was under general anesthesia, preparation of the trachea was performed using a midline vertical incision in the neck. Subsequently, the malacic trachea was expanded by placing and suturing proper-sized ceramic ring(s) around it. In all patients, surgical expansion of the malacic segment using ceramic rings was successfully carried out without major complications while inspiratory stridor was resolved. Airway resistance decreased significantly from an average of 0.62 to 0.385 kPascal. Although the results of applying internal tracheal stents are encouraging, complications such as stent migration, granulation tissue and fistula formation, and mucociliary transport arrest are possible

  6. Focusing patterns of seismicity with relocation and collapsing

    Science.gov (United States)

    Li, Ka Lok; Gudmundsson, Ólafur; Tryggvason, Ari; Bödvarsson, Reynir; Brandsdóttir, Bryndís

    2016-07-01

    Seismicity is generally concentrated on faults or in fault zones of varying, sometimes complex geometry. An earthquake catalog, compiled over time, contains useful information about this geometry, which can help understanding the tectonics of a region. Interpreting the geometrical distribution of events in a catalog is often complicated by the diffuseness of the earthquake locations. Here, we explore a number of strategies to reduce this diffuseness and hence simplify the seismicity pattern of an earthquake catalog. These strategies utilize information about event locations contained in their overall catalog distribution. They apply this distribution as an a priori constraint on relocations of the events, or as an attractor for each individual event in a collapsing scheme, and thereby focus the locations. The latter strategy is not a relocation strategy in a strict sense, although event foci are moved, because the movements are not driven by data misfit. Both strategies simplify the seismicity pattern of the catalog and may help to interpret it. A synthetic example and a real-data example from an aftershock sequence in south west Iceland are presented to demonstrate application of the strategies. Entropy is used to quantify their effect.

  7. High-resolution simulations of cylindrical void collapse in energetic materials: Effect of primary and secondary collapse on initiation thresholds

    Science.gov (United States)

    Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.

    2017-04-01

    Void collapse in energetic materials leads to hot spot formation and enhanced sensitivity. Much recent work has been directed towards simulation of collapse-generated reactive hot spots. The resolution of voids in calculations to date has varied as have the resulting predictions of hot spot intensity. Here we determine the required resolution for reliable cylindrical void collapse calculations leading to initiation of chemical reactions. High-resolution simulations of collapse provide new insights into the mechanism of hot spot generation. It is found that initiation can occur in two different modes depending on the loading intensity: Either the initiation occurs due to jet impact at the first collapse instant or it can occur at secondary lobes at the periphery of the collapsed void. A key observation is that secondary lobe collapse leads to large local temperatures that initiate reactions. This is due to a combination of a strong blast wave from the site of primary void collapse and strong colliding jets and vortical flows generated during the collapse of the secondary lobes. The secondary lobe collapse results in a significant lowering of the predicted threshold for ignition of the energetic material. The results suggest that mesoscale simulations of void fields may suffer from significant uncertainty in threshold predictions because unresolved calculations cannot capture the secondary lobe collapse phenomenon. The implications of this uncertainty for mesoscale simulations are discussed in this paper.

  8. Stress evolution during caldera collapse

    Science.gov (United States)

    Holohan, E. P.; Schöpfer, M. P. J.; Walsh, J. J.

    2015-07-01

    The mechanics of caldera collapse are subject of long-running debate. Particular uncertainties concern how stresses around a magma reservoir relate to fracturing as the reservoir roof collapses, and how roof collapse in turn impacts upon the reservoir. We used two-dimensional Distinct Element Method models to characterise the evolution of stress around a depleting sub-surface magma body during gravity-driven collapse of its roof. These models illustrate how principal stress orientations rotate during progressive deformation so that roof fracturing transitions from initial reverse faulting to later normal faulting. They also reveal four end-member stress paths to fracture, each corresponding to a particular location within the roof. Analysis of these paths indicates that fractures associated with ultimate roof failure initiate in compression (i.e. as shear fractures). We also report on how mechanical and geometric conditions in the roof affect pre-failure unloading and post-failure reloading of the reservoir. In particular, the models show how residual friction within a failed roof could, without friction reduction mechanisms or fluid-derived counter-effects, inhibit a return to a lithostatically equilibrated pressure in the magma reservoir. Many of these findings should be transferable to other gravity-driven collapse processes, such as sinkhole formation, mine collapse and subsidence above hydrocarbon reservoirs.

  9. Fire-induced collapses of steel structures

    DEFF Research Database (Denmark)

    Dondera, Alexandru; Giuliani, Luisa

    Single-story steel buildings such as car parks and industrial halls are often characterised by stiff beams and flexible columns and may experience an outward (sway) collapse during a fire, endangering people and properties outside the building. It is therefore a current interest of the research...... to investigate the collapse behaviour of single-story steel frames and identify relevant structural characteristics that influence the collapse mode. In this paper, a parametric study on the collapse a steel beam-column assembly with beam hinged connection and fixed column support is carried out under...... on the beam. By means of those tables, a simple method for the assessment and the countermeasure of unsafe collapse mode of single-story steel buildings can be derived....

  10. Granular Silo collapse: an experimental study

    Science.gov (United States)

    Clement, Eric; Gutierriez, Gustavo; Boltenhagen, Philippe; Lanuza, Jose

    2008-03-01

    We present an experimental work that develop some basic insight into the pre-buckling behavior and the buckling transition toward plastic collapse of a granular silo. We study different patterns of deformation generated on thin paper cylindrical shells during granular discharge. We study the collapse threshold for different bed height, flow rates and grain sizes. We compare the patterns that appear during the discharge of spherical beads, with those obtained in the axially compressed cylindrical shells. When the height of the granular column is close to the collapse threshold, we describe a ladder like pattern that rises around the cylinder surface in a spiral path of diamond shaped localizations, and develops into a plastic collapsing fold that grows around the collapsing silo.

  11. Tree-ring analysis of winter climate variability and ENSO in Mediterranean California

    International Nuclear Information System (INIS)

    Woodhouse, C.A.; Univ. of Colorado, Boulder

    2006-01-01

    The feasibility of using tree-ring data as a proxy for regional precipitation and ENSO events in the Mediterranean region of California is explored. A transect of moisture-sensitive tree-ring sites, extending from southwestern to north-central California, documents regional patterns of winter precipitation and replicates the regional response to ENSO events in the 20. century. Proxy records of ENSO were used with the tree-ring data to examine precipitation/ENSO patterns in the 18. and 19. centuries. Results suggest some temporal and spatial variability in the regional precipitation response to ENSO over the last three centuries

  12. Geophysical observations at cavity collapse

    Science.gov (United States)

    Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe

    2010-05-01

    In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to detect potential precursors and understand processes associated with such collapses, a wide series of monitoring techniques including micro seismics, broad-band seismology, hydro-acoustic, electromagnetism, gas probing, automatic leveling, continuous GPS, continuous gravity and borehole extensometry was set-up in the frame of an in-situ study carried out by the "Research Group for the Impact and Safety of Underground Works" (GISOS, France). Equipments were set-up well before the final collapse, giving a unique opportunity to analyze a great deal of information prior to and during the collapse process which has been successfully achieved on February the 13th, 2009 by controlling the cavity internal pressure. In this work, we present the results of data recorded by a network of 3 broadband seismometers, 2 accelerometers, 2 tilt-meters and a continuously gravity meter. We relate the variations of the brine pumping rate with the evolutions of the induced geophysical signals and finally we propose a first mechanical model for describing the controlled collapse. Beyond the studied case, extrapolation of the results obtained might contribute to the understanding of uncontrolled cavity collapses, such as pit-craters or calderas at volcanoes.

  13. TREE SELECTING AND TREE RING MEASURING IN DENDROCHRONOLOGICAL INVESTIGATIONS

    Directory of Open Access Journals (Sweden)

    Sefa Akbulut

    2004-04-01

    Full Text Available Dendrochronology is a method of dating which makes use of the annual nature of tree growth. Dendrochronology may be divided into a number of subfields, each of which covers one or more aspects of the use of tree ring data: dendroclimatology, dendrogeomorphology, dendrohydrology, dendroecology, dendroarchaelogy, and dendrogylaciology. Basic of all form the analysis of the tree rings. The wood or tree rings can aid to dating past events about climatology, ecology, geology, hydrology. Dendrochronological studies are conducted either on increment cores or on discs. It may be seen abnormalities on tree rings during the measurement like that false rings, missing rings, reaction wood. Like that situation, increment cores must be extracted from four different sides of each tree and be studied as more as on tree.

  14. Probabilistic assessment of steel moment frames incremental collapse (ordinary, intermediate and special under earthquake

    Directory of Open Access Journals (Sweden)

    Kourosh Mehdizadeh

    2017-11-01

    Full Text Available Building collapse is a level of the structure performance in which the amount of financial and life loss is maximized, so this event could be the worst incident in the construction. Regarding to the possibility of destructive earthquakes in different parts of the world, detailed assessment of the structure's collapse has been one of the major challenges of the structural engineering. In this regard, offering models based on laboratory studies, considering the effective parameters and appropriate earthquakes could be a step towards achieving this goal. In this research, a five-story steel structure with a system of ordinary, intermediate and special moment frame (low, intermediate and high ductility has been designed based on the local regulations. In this study, the effect of resistance and stiffness deterioration of the structural elements based on the results of the laboratory models have been considered and the ductility role in the collapse capacity of steel moment frames has been investigated as probabilistic matter. For this purpose, incremental dynamic analysis has been done under 50 pairs of earthquake records proposing FEMA P695 instruction and fragility curves of various performance levels are developed. Results showed higher collapse capacity of special moment steel frame than the intermediate and ordinary moment frames. In the 50 percent probability level, the collapse capacity of special moment frame increased 34 % compared to the intermediate moment frame and 66 % to the ordinary moment frame. Also, the results showed that for different collapse spectral accelerations, the use of special moment frame instead of intermediate and ordinary moment frames reduces the collapse probability to 30 and 50 % respectively.

  15. High energy radiation precursors to the collapse of black holes binaries based on resonating plasma modes

    Science.gov (United States)

    Coppi, B.

    2018-05-01

    The presence of well organized plasma structures around binary systems of collapsed objects [1,2] (black holes and neutron stars) is proposed in which processes can develop [3] leading to high energy electromagnetic radiation emission immediately before the binary collapse. The formulated theoretical model supporting this argument shows that resonating plasma collective modes can be excited in the relevant magnetized plasma structure. Accordingly, the collapse of the binary approaches, with the loss of angular momentum by emission of gravitational waves [2], the resonance conditions with vertically standing plasma density and magnetic field oscillations are met. Then, secondary plasma modes propagating along the magnetic field are envisioned to be sustained with mode-particle interactions producing the particle populations responsible for the observable electromagnetic radiation emission. Weak evidence for a precursor to the binary collapse reported in Ref. [2], has been offered by the Agile X-γ-ray observatory [4] while the August 17 (2017) event, identified first by the LIGO-Virgo detection of gravitational waves and featuring the inferred collapse of a neutron star binary, improves the evidence of such a precursor. A new set of experimental observations is needed to reassess the presented theory.

  16. Shake Table Test for the Collapse Investigation of a Typical Multi-Story Reinforced Concrete Frame Structure in the Meizoseismal Area

    Directory of Open Access Journals (Sweden)

    Weixiao Xu

    2017-06-01

    Full Text Available According to statistics from past earthquakes, it is observed that multi-story reinforced concrete (RC frames represent a large proportion of the structural failures or collapses in seismic events. Hence, research on seismic collapse mechanisms and risks of RC frame structures subjected to extreme earthquakes is of foremost importance. Both experimental and numerical studies have been substantially carried out in this field. In order to represent an actual process of structural damage in an actual seismic event and provide a calibration test for numerical studies, a shake table collapse test of a typical multi-story RC frame structural model, which is scaled from a nearly collapsed building in the 2010 Ms 7.1 Yushu earthquake in China, was performed. Both the test and earthquake field investigation indicate that severe damage mainly occurred at the column ends. As dual structural systems, i.e., systems combining frames and additional members that mainly carry seismic loading, could be a better way to solve the unexpected damage mechanism of RC frames, a practical stiffness iteration design method based on the nonlinear static analysis to obtain the optimal stiffness demanding of the lateral load-resisting members in each story is proposed. This approach aims to control the structural deformation pattern along the height. The outcome of this study provides some intrinsic understanding of the inherent collapse mechanisms of similar RC frames during strong earthquakes. It also offers a practical design method to improve the seismic collapse resistance of RC frames.

  17. Unifying Research on Social-Ecological Resilience and Collapse.

    Science.gov (United States)

    Cumming, Graeme S; Peterson, Garry D

    2017-09-01

    Ecosystems influence human societies, leading people to manage ecosystems for human benefit. Poor environmental management can lead to reduced ecological resilience and social-ecological collapse. We review research on resilience and collapse across different systems and propose a unifying social-ecological framework based on (i) a clear definition of system identity; (ii) the use of quantitative thresholds to define collapse; (iii) relating collapse processes to system structure; and (iv) explicit comparison of alternative hypotheses and models of collapse. Analysis of 17 representative cases identified 14 mechanisms, in five classes, that explain social-ecological collapse. System structure influences the kind of collapse a system may experience. Mechanistic theories of collapse that unite structure and process can make fundamental contributions to solving global environmental problems. Copyright © 2017. Published by Elsevier Ltd.

  18. Collapse settlement in compacted soils

    CSIR Research Space (South Africa)

    Booth, AR

    1977-01-01

    Full Text Available Research into collapse settlement in compacted soils is described, with special reference to recent cases in Southern Africa where collapse settlement occurred in road embankments following wetting of the soil. The laboratory work described...

  19. Entanglement entropy production in gravitational collapse: covariant regularization and solvable models

    Science.gov (United States)

    Bianchi, Eugenio; De Lorenzo, Tommaso; Smerlak, Matteo

    2015-06-01

    We study the dynamics of vacuum entanglement in the process of gravitational collapse and subsequent black hole evaporation. In the first part of the paper, we introduce a covariant regularization of entanglement entropy tailored to curved spacetimes; this regularization allows us to propose precise definitions for the concepts of black hole "exterior entropy" and "radiation entropy." For a Vaidya model of collapse we find results consistent with the standard thermodynamic properties of Hawking radiation. In the second part of the paper, we compute the vacuum entanglement entropy of various spherically-symmetric spacetimes of interest, including the nonsingular black hole model of Bardeen, Hayward, Frolov and Rovelli-Vidotto and the "black hole fireworks" model of Haggard-Rovelli. We discuss specifically the role of event and trapping horizons in connection with the behavior of the radiation entropy at future null infinity. We observe in particular that ( i) in the presence of an event horizon the radiation entropy diverges at the end of the evaporation process, ( ii) in models of nonsingular evaporation (with a trapped region but no event horizon) the generalized second law holds only at early times and is violated in the "purifying" phase, ( iii) at late times the radiation entropy can become negative (i.e. the radiation can be less correlated than the vacuum) before going back to zero leading to an up-down-up behavior for the Page curve of a unitarily evaporating black hole.

  20. Entanglement entropy production in gravitational collapse: covariant regularization and solvable models

    International Nuclear Information System (INIS)

    Bianchi, Eugenio; Lorenzo, Tommaso De; Smerlak, Matteo

    2015-01-01

    We study the dynamics of vacuum entanglement in the process of gravitational collapse and subsequent black hole evaporation. In the first part of the paper, we introduce a covariant regularization of entanglement entropy tailored to curved spacetimes; this regularization allows us to propose precise definitions for the concepts of black hole “exterior entropy” and “radiation entropy.” For a Vaidya model of collapse we find results consistent with the standard thermodynamic properties of Hawking radiation. In the second part of the paper, we compute the vacuum entanglement entropy of various spherically-symmetric spacetimes of interest, including the nonsingular black hole model of Bardeen, Hayward, Frolov and Rovelli-Vidotto and the “black hole fireworks” model of Haggard-Rovelli. We discuss specifically the role of event and trapping horizons in connection with the behavior of the radiation entropy at future null infinity. We observe in particular that (i) in the presence of an event horizon the radiation entropy diverges at the end of the evaporation process, (ii) in models of nonsingular evaporation (with a trapped region but no event horizon) the generalized second law holds only at early times and is violated in the “purifying” phase, (iii) at late times the radiation entropy can become negative (i.e. the radiation can be less correlated than the vacuum) before going back to zero leading to an up-down-up behavior for the Page curve of a unitarily evaporating black hole.

  1. Spherically symmetric scalar field collapse

    Indian Academy of Sciences (India)

    2013-03-01

    Mar 1, 2013 ... The very recent interest in scalar field collapse stems from a cosmological ... The objective of the present investigation is to explore the collapsing modes of a simple ..... The authors thank the BRNS (DAE) for financial support.

  2. Progressive Collapse of High-Rise Buildings from Fire

    Directory of Open Access Journals (Sweden)

    Pershakov Valerii

    2016-01-01

    Full Text Available Considers ensuring the stability of structures of high-rise buildings against progressive collapse due to fire, proposed measures to ensure the stability of high-rise buildings due to progressive collapse. The analysis of large fires in high-rise buildings with progressive collapse and review of the literature on the issue of progressive collapse. The analysis of the Ukrainian normative documents on progressive collapse resistance.

  3. Use of tree-ring chemistry to document historical ground-water contamination events

    Science.gov (United States)

    Vroblesky, Don A.; Yanosky, Thomas M.

    1990-01-01

    The annual growth rings of tulip trees (Liriodendron tulipifera L.) appear to preserve a chemical record of ground-water contamination at a landfill in Maryland. Zones of elevated iron and chlorine concentrations in growth rings from trees immediately downgradient from the landfill are closely correlated temporally with activities in the landfill expected to generate iron and chloride contamination in the ground water. Successively later iron peaks in trees increasingly distant from the landfill along the general direction of ground-water flow imply movement of iron-contaminated ground water away from the landfill. The historical velocity of iron movement (2 to 9 m/yr) and chloride movement (at least 40 m/yr) in ground water at the site was estimated from element-concentration trends of trees at successive distances from the landfill. The tree-ring-derived chloride-transport velocity approximates the known ground-water velocity (30 to 80 m/yr). A minimum horizontal hydraulic conductivity (0.01 to .02 cm/s) calculated from chloride velocity agrees well with values derived from aquifer tests (about 0.07 cm/s) and from ground-water modeling results (0.009 to 0.04 cm/s).

  4. Hazard Potential of Volcanic Flank Collapses Raised by New Megatsunami Evidence

    Science.gov (United States)

    Ramalho, R. S.; Winckler, G.; Madeira, J.; Helffrich, G. R.; Hipólito, A.; Quartau, R.; Adena, K.; Schaefer, J. M.

    2015-12-01

    Large-scale gravitational flank collapses of steep volcanic islands are hypothetically capable of triggering megatsunamis with highly catastrophic effects. Yet evidence for the existence and impact of collapsed-triggered megatsunamis and their run-up heights remains scarce and/or is highly contentious. Therefore a considerable debate still exists over the potential magnitude of collapse-triggered tsunamis and their inherent hazard. In particular, doubts still remain whether or not large-scale flank failures typically generate enough volume flux to result in megatsunamis, or alternatively operate by slow-moving or multiple smaller episodic failures with much lower tsunamigenic potential. Here we show that one of the tallest and most active oceanic volcanoes on Earth - Fogo, in the Cape Verde Islands - collapsed catastrophically and triggered a megatsunami with devastating near-field effects ~73,000 years ago. Our deductions are based on the recent discovery and cosmogenic 3He dating of tsunamigenic deposits - comprising fields of stranded megaclasts, chaotic conglomerates, and sand sheets - found on the adjacent Santiago Island, which attest to the impact of this megatsunami and document wave run-up heights exceeding 270 m. The evidence reported here implies that Fogo's flank failure involved at least one sudden and voluminous event that resulted in a megatsunami, in contrast to what has been suggested before. Our work thus provides another line of evidence that large-scale flank failures at steep volcanic islands may indeed happen catastrophically and are capable of triggering tsunamis of enormous height and energy. This new line of evidence therefore reinforces the hazard potential of volcanic island collapses and stands as a warning that such hazard should not be underestimated, particularly in areas where volcanic island edifices are close to other islands or to highly populated continental margins.

  5. The detection of sodium vapor bubble collapse in a liquid metal fast breeder reactor

    International Nuclear Information System (INIS)

    Carey, W.M.; Gavin, A.P.; Bobis, J.P.; Sheen, S.H.; Anderson, T.T.; Doolittle, R.D.; Albrecht, R.W.

    1977-01-01

    Sodium boiling detection utilizing the sound pressure emanated during the collapse of a sodium vapour bubble in a subcooled media is discussed in terms of the sound characteristic, the reactor ambient noise background, transmission loss considerations and performance criteria. Data obtained in several loss of flow experiments on Fast Test Reactor Fuel Elements indicate that the collapse of the sodium vapour bubble depends on the presence of a subcooled structure or sodium. The collapse pressure pulse was observed in all cases to be on the order of a kPa, indicating a soft type of cavitational collapse. Spectral examination of the pulses indicates the response function of the test structure and geometry is important. The sodium boiling observed in these experiments was observed to occur at a low ( 0 C) liquid superheat with the rate of occurrence of sodium vapor bubble collapse in the 3 to 30 Hz range. Reactor ambient noise data were found to be due to machinery induced vibrations flow induced vibrations, and flow noise. These data were further found to be weakly stationary enhancing the possibility of acoustic surveillance of an operating Liquid Metal Fast Breeder Reactor. Based on these noise characteristics and extrapolating the noise measurements from the Fast Flux Test Facility Pump (FFTP), one would expect a signal to noise ratio of up to 20 dB in the absence of transmission loss. The requirement of a low false alarm probability is shown to necessitate post detection analysis of the collapse event sequence and the cross correlation with the second derivative of the neutronic boiling detection signal. Sodium boiling detection using the sounds emitted during sodium vapor bubble collapse are shown to be feasible but a need for in-reactor demonstration is necessary. (author)

  6. Black hole formation in perfect fluid collapse

    International Nuclear Information System (INIS)

    Goswami, Rituparno; Joshi, Pankaj S

    2004-01-01

    We construct here a special class of perfect fluid collapse models which generalizes the homogeneous dust collapse solution in order to include nonzero pressures and inhomogeneities into evolution. It is shown that a black hole is necessarily generated as the end product of continued gravitational collapse, rather than a naked singularity. We examine the nature of the central singularity forming as a result of endless collapse and it is shown that no nonspacelike trajectories can escape from the central singularity. Our results provide some insights into how the dynamical collapse works and into the possible formulations of the cosmic censorship hypothesis, which is as yet a major unsolved problem in black hole physics

  7. SUPERNOVA 2003ie WAS LIKELY A FAINT TYPE IIP EVENT

    Energy Technology Data Exchange (ETDEWEB)

    Arcavi, Iair; Gal-Yam, Avishay [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Sergeev, Sergey G., E-mail: iair.arcavi@weizmann.ac.il [Crimean Astrophysical Observatory, P/O Nauchny, Crimea 98409 (Ukraine)

    2013-04-15

    We present new photometric observations of supernova (SN) 2003ie starting one month before discovery, obtained serendipitously while observing its host galaxy. With only a weak upper limit derived on the mass of its progenitor (<25 M{sub Sun }) from previous pre-explosion studies, this event could be a potential exception to the ''red supergiant (RSG) problem'' (the lack of high-mass RSGs exploding as Type IIP SNe). However, this is true only if SN2003ie was a Type IIP event, something which has never been determined. Using recently derived core-collapse SN light-curve templates, as well as by comparison to other known SNe, we find that SN2003ie was indeed a likely Type IIP event. However, with a plateau magnitude of {approx} - 15.5 mag, it is found to be a member of the faint Type IIP class. Previous members of this class have been shown to arise from relatively low-mass progenitors (<12 M{sub Sun }). It therefore seems unlikely that this SN had a massive RSG progenitor. The use of core-collapse SN light-curve templates is shown to be helpful in classifying SNe with sparse coverage. These templates are likely to become more robust as large homogeneous samples of core-collapse events are collected.

  8. Gravitational collapse and the vacuum energy

    International Nuclear Information System (INIS)

    Campos, M

    2014-01-01

    To explain the accelerated expansion of the universe, models with interacting dark components (dark energy and dark matter) have been considered recently in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy of the all fields that fill the universe. As the other side of the same coin, the influence of the vacuum energy on the gravitational collapse is of great interest. We study such collapse adopting different parameterizations for the evolution of the vacuum energy. We discuss the homogeneous collapsing star fluid, that interacts with a vacuum energy component, using the stiff matter case as example. We conclude this work with a discussion of the Cahill-McVittie mass for the collapsed object.

  9. Simple Analytic Models of Gravitational Collapse

    Energy Technology Data Exchange (ETDEWEB)

    Adler, R.

    2005-02-09

    Most general relativity textbooks devote considerable space to the simplest example of a black hole containing a singularity, the Schwarzschild geometry. However only a few discuss the dynamical process of gravitational collapse, by which black holes and singularities form. We present here two types of analytic models for this process, which we believe are the simplest available; the first involves collapsing spherical shells of light, analyzed mainly in Eddington-Finkelstein coordinates; the second involves collapsing spheres filled with a perfect fluid, analyzed mainly in Painleve-Gullstrand coordinates. Our main goal is pedagogical simplicity and algebraic completeness, but we also present some results that we believe are new, such as the collapse of a light shell in Kruskal-Szekeres coordinates.

  10. On the Induced Gravitational Collapse

    Directory of Open Access Journals (Sweden)

    M. Becerra Laura

    2018-01-01

    Full Text Available The induced gravitational collapse (IGC paradigm has been applied to explain the long gamma ray burst (GRB associated with type Ic supernova, and recently the Xray flashes (XRFs. The progenitor is a binary systems of a carbon-oxygen core (CO and a neutron star (NS. The CO core collapses and undergoes a supernova explosion which triggers the hypercritical accretion onto the NS companion (up to 10-2 M⊙s-1. For the binary driven hypernova (BdHNe, the binary system is enough bound, the NS reach its critical mass, and collapse to a black hole (BH with a GRB emission characterized by an isotropic energy Eiso > 1052 erg. Otherwise, for binary systems with larger binary separations, the hypercritical accretion onto the NS is not sufficient to induced its gravitational collapse, a X-ray flash is produced with Eiso < 1052 erg. We’re going to focus in identify the binary parameters that limits the BdHNe systems with the XRFs systems.

  11. Gravity induced wave function collapse

    Science.gov (United States)

    Gasbarri, G.; Toroš, M.; Donadi, S.; Bassi, A.

    2017-11-01

    Starting from an idea of S. L. Adler [in Quantum Nonlocality and Reality: 50 Years of Bell's Theorem, edited by M. Bell and S. Gao (Cambridge University Press, Cambridge, England 2016)], we develop a novel model of gravity induced spontaneous wave function collapse. The collapse is driven by complex stochastic fluctuations of the spacetime metric. After deriving the fundamental equations, we prove the collapse and amplification mechanism, the two most important features of a consistent collapse model. Under reasonable simplifying assumptions, we constrain the strength ξ of the complex metric fluctuations with available experimental data. We show that ξ ≥10-26 in order for the model to guarantee classicality of macro-objects, and at the same time ξ ≤10-20 in order not to contradict experimental evidence. As a comparison, in the recent discovery of gravitational waves in the frequency range 35 to 250 Hz, the (real) metric fluctuations reach a peak of ξ ˜10-21.

  12. Nonlinear wave collapse and strong turbulence

    International Nuclear Information System (INIS)

    Robinson, P.A.

    1997-01-01

    The theory and applications of wave self-focusing, collapse, and strongly nonlinear wave turbulence are reviewed. In the last decade, the theory of these phenomena and experimental realizations have progressed rapidly. Various nonlinear wave systems are discussed, but the simplest case of collapse and strong turbulence of Langmuir waves in an unmagnetized plasma is primarily used in explaining the theory and illustrating the main ideas. First, an overview of the basic physics of linear waves and nonlinear wave-wave interactions is given from an introductory perspective. Wave-wave processes are then considered in more detail. Next, an introductory overview of the physics of wave collapse and strong turbulence is provided, followed by a more detailed theoretical treatment. Later sections cover numerical simulations of Langmuir collapse and strong turbulence and experimental applications to space, ionospheric, and laboratory plasmas, including laser-plasma and beam-plasma interactions. Generalizations to self-focusing, collapse, and strong turbulence of waves in other systems are also discussed, including nonlinear optics, solid-state systems, magnetized auroral and astrophysical plasmas, and deep-water waves. The review ends with a summary of the main ideas of wave collapse and strong-turbulence theory, a collection of open questions in the field, and a brief discussion of possible future research directions. copyright 1997 The American Physical Society

  13. Neutrinos and supernova collapse

    International Nuclear Information System (INIS)

    Colgate, S.A.; Petschek, A.G.

    1980-01-01

    The neutrino emission resulting from stellar collapse and supernova formation is reviewed. The electron capture and consequent neutronization of the collapsing stellar matter at the end of evolution determines both the initial adiabat of core collapse as well as the trapped lepton fraction. The initial lepton fraction, Y/sub l/ = .48 supplies the pressure for neutral support of the star at the Chandrasekhar limit. High trapping values, Y/sub l/ = .4, lead to soft core collapses; low values to harder collapses. The value of Y/sub l/ is presently in dispute. The neutrino emission from initial electron capture is relatively small. A strong core-bounce shock releases both electron neutrino as well as thermal muon and tau neutrinos. Subsequent neutrino emission and cooling can sometimes lead to an unstable buoyancy gradient in the core in which case unstable core overturn is expected. Calculations have already shown the importance of the largest possible eddy or equivalently the lowest mode of overturn. Present models of low lepton trapping ratio lead to high entropy creation by the reflected shock and the stabilization of the core matter against overturn. In such cases the exterior matter must cool below an entropy of approximately s/k approx. = 2 to become unstable. This may require too long a time approximately one second for neutrino cooling from a neutrinosphere at rho approx. = 2 x 10 12 g cm -3 . On the other hand, high values of Y/sub l/ such as .4 lead to softer bounces at lower density and values of the critical stabilizing entropy of 3 or higher. Under such circumstances, core overturn can still occur

  14. Self-similar spherical gravitational collapse and the cosmic censorship hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Ori, A.; Piran, T.

    1988-01-01

    The authors show that a self-similar general relativistic spherical collapse of a perfect fluid with an adiabatic equation of state p = (lambda -1)rho and low enough lambda values, results in a naked singularity. The singularity is tangent to an event horizon which surrounds a massive singularity and the redshift along a null geodesic from the singularity to an external observer is infinite. The authors believe that this is the most serious counter example to cosmic censorship obtained so far.

  15. Multi-stage volcanic island flank collapses with coeval explosive caldera-forming eruptions.

    Science.gov (United States)

    Hunt, James E; Cassidy, Michael; Talling, Peter J

    2018-01-18

    Volcanic flank collapses and explosive eruptions are among the largest and most destructive processes on Earth. Events at Mount St. Helens in May 1980 demonstrated how a relatively small (300 km 3 ), but can also occur in complex multiple stages. Here, we show that multistage retrogressive landslides on Tenerife triggered explosive caldera-forming eruptions, including the Diego Hernandez, Guajara and Ucanca caldera eruptions. Geochemical analyses were performed on volcanic glasses recovered from marine sedimentary deposits, called turbidites, associated with each individual stage of each multistage landslide. These analyses indicate only the lattermost stages of subaerial flank failure contain materials originating from respective coeval explosive eruption, suggesting that initial more voluminous submarine stages of multi-stage flank collapse induce these aforementioned explosive eruption. Furthermore, there are extended time lags identified between the individual stages of multi-stage collapse, and thus an extended time lag between the initial submarine stages of failure and the onset of subsequent explosive eruption. This time lag succeeding landslide-generated static decompression has implications for the response of magmatic systems to un-roofing and poses a significant implication for ocean island volcanism and civil emergency planning.

  16. Statistical analysis of hydrodynamic cavitation events

    Science.gov (United States)

    Gimenez, G.; Sommer, R.

    1980-10-01

    The frequency (number of events per unit time) of pressure pulses produced by hydrodynamic cavitation bubble collapses is investigated using statistical methods. The results indicate that this frequency is distributed according to a normal law, its parameters not being time-evolving.

  17. Shake Table Test for the Collapse Investigation of a Typical Multi-Story Reinforced Concrete Frame Structure in the Meizoseismal Area

    OpenAIRE

    Weixiao Xu; Weisong Yang; Chunwei Zhang; Dehu Yu

    2017-01-01

    According to statistics from past earthquakes, it is observed that multi-story reinforced concrete (RC) frames represent a large proportion of the structural failures or collapses in seismic events. Hence, research on seismic collapse mechanisms and risks of RC frame structures subjected to extreme earthquakes is of foremost importance. Both experimental and numerical studies have been substantially carried out in this field. In order to represent an actual process of structural damage in an ...

  18. DETECTION OF COLLAPSED BUILDINGS BY CLASSIFYING SEGMENTED AIRBORNE LASER SCANNER DATA

    Directory of Open Access Journals (Sweden)

    S. O. Elberink

    2012-09-01

    Full Text Available Rapid mapping of damaged regions and individual buildings is essential for efficient crisis management. Airborne laser scanner (ALS data is potentially able to deliver accurate information on the 3D structures in a damaged region. In this paper we describe two different strategies how to process ALS point clouds in order to detect collapsed buildings automatically. Our aim is to detect collapsed buildings using post event data only. The first step in the workflow is the segmentation of the point cloud detecting planar regions. Next, various attributes are calculated for each segment. The detection of damaged buildings is based on the values of these attributes. Two different classification strategies have been applied in order to test whether the chosen strategy is capable of detect- ing collapsed buildings. The results of the classification are analysed and assessed for accuracy against a reference map in order to validate the quality of the rules derived. Classification results have been achieved with accuracy measures from 60–85% complete- ness and correctness. It is shown that not only the classification strategy influences the accuracy measures; also the validation meth- odology, including the type and accuracy of the reference data, plays a major role.

  19. Investigating collapse structures in oceanic islands using magnetotelluric surveys: The case of Fogo Island in Cape Verde

    Science.gov (United States)

    Martínez-Moreno, F. J.; Monteiro Santos, F. A.; Madeira, J.; Pous, J.; Bernardo, I.; Soares, A.; Esteves, M.; Adão, F.; Ribeiro, J.; Mata, J.; Brum da Silveira, A.

    2018-05-01

    One of the most remarkable natural events on Earth are the large lateral flank collapses of oceanic volcanoes, involving volumes of rock exceeding tens of km3. These collapses are relatively frequent in recent geological times as supported by evidence found in the geomorphology of volcanic island edifices and associated debris flows deposited on the proximal ocean floor. The Island of Fogo in the Cape Verde archipelago is one of the most active and prominent oceanic volcanoes on Earth. The island has an average diameter of 25 km and reaches a maximum elevation of 2829 m above sea level (m a.s.l.) at Pico do Fogo, a young stratovolcano located within a summit depression open eastward due to a large lateral flank collapse. The sudden collapse of the eastern flank of Fogo Island produced a megatsunami 73 ky ago. The limits of the flank collapse were deduced as well from geomorphologic markers within the island. The headwall of the collapse scar is interpreted as either being located beneath the post-collapse volcanic infill of the summit depression or located further west, corresponding to the Bordeira wall that partially surrounds it. The magnetotelluric (MT) method provides a depth distribution of the ground resistivity obtained by the simultaneous measurement of the natural variations of the electric and magnetic field of the Earth. Two N-S magnetotelluric profiles were acquired across the collapsed area to determine its geometry and boundaries. The acquired MT data allowed the determination of the limits of the collapsed area more accurately as well as its morphology at depth and thickness of the post-collapse infill. According to the newly obtained MT data and the bathymetry of the eastern submarine flank of Fogo, the volume involved in the flank collapse is estimated in 110 km3. This volume -the first calculated onshore- stands between the previously published more conservative and excessive calculations -offshore- that were exclusively based in geomorphic

  20. Karst collapse in cities and mining areas, China

    International Nuclear Information System (INIS)

    Jian Chen

    1988-01-01

    Karst collapse is a dynamic geological phenomenon, in which the rock mass or deposits overlying the karstified zone subsides down along the karst cavity, resulting in a collapse pit or sinkhole. After discussing the typical examples of collapse emerging in the karst cities and mines in provinces and regions of South China, such as Guangdong, Guangxi, Hunan, Hubei, Zhejiang, Yunnan, Guizhou, and Jiangxi, it is considered that human activities of economy and production have become a major effect in causing karst collapse. Man-made collapses make 66.4 percent of the total, whereas natural ones 33.6 percent. Most of the collapses occurred to the area with soil overburden (96.7 percent), only a few in areas of bedrock overburden (3.3 percent). The karst collapses have a close relationship with the extent of karst development, the character and the thickness of overburden, and the dynamic condition of underground water. Collapse usually occurs in those parts of an area that are more intensely karstified, with soil thickness less than 5 m and a high amplitude of water table fluctuation. Many kinds of mechanical effects are caused by pumping or draining on the over-burden and destroying its equilibrium, leading to the collapse. These effects included the support loss and load-added effect, penetrating suffusion, gas explosion, water-hammer, suction pressure erosion, and liquefaction effects. The collapses are the result of varied comprehensive effects, particularly the support loss and load-added, and penetrating suffusion

  1. Numerical Tests of the Cosmic Censorship Conjecture via Event-Horizon Finding

    Science.gov (United States)

    Okounkova, Maria; Ott, Christian; Scheel, Mark; Szilagyi, Bela

    2015-04-01

    We present the current state of our research on the possibility of naked singularity formation in gravitational collapse, numerically testing both the cosmic censorship conjecture and the hoop conjecture. The former of these posits that all singularities lie behind an event horizon, while the later conjectures that this is true if collapse occurs from an initial configuration with all circumferences C <= 4 πM . We reconsider the classical Shapiro & Teukolsky (1991) prolate spheroid naked singularity scenario. Using the exponentially error-convergent Spectral Einstein Code (SpEC) we simulate the collapse of collisionless matter and probe for apparent horizons. We propose a new method to probe for the existence of an event horizon by following characteristic from regions near the singularity, using methods commonly employed in Cauchy characteristic extraction. This research was partially supported by NSF under Award No. PHY-1404569.

  2. Developing empirical collapse fragility functions for global building types

    Science.gov (United States)

    Jaiswal, K.; Wald, D.; D'Ayala, D.

    2011-01-01

    Building collapse is the dominant cause of casualties during earthquakes. In order to better predict human fatalities, the U.S. Geological Survey’s Prompt Assessment of Global Earthquakes for Response (PAGER) program requires collapse fragility functions for global building types. The collapse fragility is expressed as the probability of collapse at discrete levels of the input hazard defined in terms of macroseismic intensity. This article provides a simple procedure for quantifying collapse fragility using vulnerability criteria based on the European Macroseismic Scale (1998) for selected European building types. In addition, the collapse fragility functions are developed for global building types by fitting the beta distribution to the multiple experts’ estimates for the same building type (obtained from EERI’s World Housing Encyclopedia (WHE)-PAGER survey). Finally, using the collapse probability distributions at each shaking intensity level as a prior and field-based collapse-rate observations as likelihood, it is possible to update the collapse fragility functions for global building types using the Bayesian procedure.

  3. Four tails problems for dynamical collapse theories

    Science.gov (United States)

    McQueen, Kelvin J.

    2015-02-01

    The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But many authors dismiss the problem without considering the more severe formulations. Here I distinguish four distinct tails problems. The first (bare tails problem) and second (structured tails problem) exist in the literature. I argue that while the first is a pseudo-problem, the second has not been adequately addressed. The third (multiverse tails problem) reformulates the second to account for recently discovered dynamical consequences of collapse. Finally the fourth (tails problem dilemma) shows that solving the third by replacing the Gaussian with a non-Gaussian collapse function introduces new conflict with relativity theory.

  4. Bird feeders may sustain feral Rose-ringed parakeets Psittacula krameri in temperate Europe

    OpenAIRE

    Clergeau , Philippe; Vergnes , Alan

    2011-01-01

    International audience; The Rose-ringed parakeet Psittacula krameri, a bird species of subtropical origin, has established feral populations in temperate Europe. We analysed the feeding habits of Rose-ringed parakeets near Paris, France, in order to assess if food provided by humans might contribute to the success of this invasive bird species. We considered 87 feeding events performed during 2002 -2007 and 247 feeding events performed during March -November 2008. We recorded the consumption ...

  5. The collapse of interstellar gas clouds

    International Nuclear Information System (INIS)

    McNally, D.; Settle, J.J.

    1980-01-01

    The stability of spherically symmetric free-fall collapse to small radial perturbations is examined for non-uniform clouds. It is concluded that fragmentation of the central region of a collapsing gas cloud is possible if: (a) the density distribution is sufficiently smooth; and (b) the collapse is nearly free fall. Generally, perturbations enjoy only finite amplification during the collapse, and the amplification tends to decrease with increasing distance from the centre of the cloud. Unlimited amplification occurs only for uniform density clouds. Fragmentation is therefore unlikely to result from dynamical instability in the outer parts of a non-uniform cloud. Isothermal clouds are also briefly considered and, while it is argued that an earlier suggestion of their instability to fragmentation is unfounded, no general conclusion on the instability of such clouds could be drawn. (author)

  6. Creep collapse of TAPS fuel cladding

    International Nuclear Information System (INIS)

    Chaudhry, S.M.; Anand, A.K.

    1975-01-01

    Densification of UO 2 can cause axial gaps between fuel pelets and cladding in unsupported (internally) at these regions. An analysis is carried out regarding the possibility of creep collapse in these regions. The analysis is based on Timoshenko's theory of collapse. At various times during the residence of fuel in reactor following parameters are calculated : (1) inelastic collapse of perfectly circular tubes (2) plastic instability in oval tubes (3) effect of creep on ovality. Creep is considered to be a non-linear combination of the following : (a) thermal creep (b) intresenic creep (c) stress aided radiation enhanced (d) stress free growth (4) Critical pressure ratio. The results obtained are compared with G.E. predictions. The results do not predict collapse of TAPS fuel cladding for five year residence time. (author)

  7. Search for stellar collapse with the MACRO detector at Gran Sasso

    International Nuclear Information System (INIS)

    1989-01-01

    The first MACRO supermodule commenced data taking in February 1989. Two complementary trigger and readout systems have been used to monitor the horizontal scintillation counters, which contain 42 tonnes (∼1 ktonne for the full MACRO detector) of liquid scintillator, for bursts of low energy anti-neutrinos from gravitational stellar collapses. This paper reports on an initial search and discusses the present as well as ultimate sensitivity of MACRO to this class of events. 4 figs

  8. Collapse of nonlinear Langmuir waves

    International Nuclear Information System (INIS)

    Malkin, V.M.

    1986-01-01

    The dispersion of sufficiently intensive Langmuir waves is determined by intrinsic (electron) nonlinearity. During Langmuir collapse the wave energy density required for the appearance of electron nonlinearity is attained, generally speaking, prior to the development of dissipative processes. Up to now, the effect of electron nonlinearity on the collapse dynamics and spectrum of strong Langmuir turbulence ( which may be very appreciable ) has not been studied extensively because of the difficulty of describing nonlinear Langmuir waves. In the present paper the positive determinacy of the electron nonlinear hamiltonian is proven, the increment of modulation instability of a nonlinear Langmuir wave cluster localized in a cavity is calculated, and the universal law of their collapse is found

  9. Financial market response to extreme events indicating climatic change

    Science.gov (United States)

    Anttila-Hughes, J. K.

    2016-05-01

    A variety of recent extreme climatic events are considered to be strong evidence that the climate is warming, but these incremental advances in certainty often seem ignored by non-scientists. I identify two unusual types of events that are considered to be evidence of climate change, announcements by NASA that the global annual average temperature has set a new record, and the sudden collapse of major polar ice shelves, and then conduct an event study to test whether news of these events changes investors' valuation of energy companies, a subset of firms whose future performance is closely tied to climate change. I find evidence that both classes of events have influenced energy stock prices since the 1990s, with record temperature announcements on average associated with negative returns and ice shelf collapses associated with positive returns. I identify a variety of plausible mechanisms that may be driving these differential responses, discuss implications for energy markets' views on long-term regulatory risk, and conclude that investors not only pay attention to scientifically significant climate events, but discriminate between signals carrying different information about the nature of climatic change.

  10. Ultimate strength analysis of ring-stiffened cylinders subjected to hydrostatic pressure

    International Nuclear Information System (INIS)

    Park, Chi Mo

    1990-01-01

    In this study, ultimate strength analysis of ring-stiffened cylinders have been performed, considering the elasto-plastic large deflection. In the elasto-plastic analysis, von Mises yield criteria, the plastic flow theory and the layered approach have been adopted. In order to take into account the follower force effect of the hydrostatic pressure, the incremental load components have been updated at every loading step. As collapse modes, axisymmetric yielding, interframe shell buckling and general buckling are considered, while local buckling of ring-stiffener is not considered. Initial shape imperfection is assumed to be the elastic buckling mode to obtain the lower bound of the ultimate strength. Results of numerical analysis are compared with the experimental results to show the validity of the present approach. It has been drawn that the present numerical results are closely correlated with the experimental results. On the other hand, the effects of initial shape imperfection and condition on the ultimate strength have been investigated. (Author)

  11. Oxygen Issue in Core Collapse Supernovae

    Science.gov (United States)

    Elmhamdi, A.

    2011-06-01

    We study the spectroscopic properties of a selected sample of 26 events within Core Collapse Supernovae (CCSNe) family. Special attention is paid to the nebular oxygen forbidden line [OI] 6300, 6364 Å doublet. We analyze the line flux ratio F6300/F6364 and infer information about the optical depth evolution, densities, volume-filling factors in the oxygen emitting zones. The line luminosity is measured for the sample events and its evolution is discussed on the basis of the bolometric light curve properties in type II and in type Ib-c SNe. The luminosities are then translated into oxygen abundances using two different methods. The results are combined with the determined 56Ni masses and compared with theoretical models by means of the [O/Fe] vs. Mms diagram. Two distinguishable and continuous populations, corresponding to Ib-c and type II SNe, are found. The higher mass nature of the ejecta in type II objects is also imprinted in the [CaII] 7291, 7324Å to [OI] 6300, 6364Å luminosity ratios. Our results may be used as input parameters for theoretical models studying the chemical enrichment of galaxies.

  12. Nonlinear unitary quantum collapse model with self-generated noise

    Science.gov (United States)

    Geszti, Tamás

    2018-04-01

    Collapse models including some external noise of unknown origin are routinely used to describe phenomena on the quantum-classical border; in particular, quantum measurement. Although containing nonlinear dynamics and thereby exposed to the possibility of superluminal signaling in individual events, such models are widely accepted on the basis of fully reproducing the non-signaling statistical predictions of quantum mechanics. Here we present a deterministic nonlinear model without any external noise, in which randomness—instead of being universally present—emerges in the measurement process, from deterministic irregular dynamics of the detectors. The treatment is based on a minimally nonlinear von Neumann equation for a Stern–Gerlach or Bell-type measuring setup, containing coordinate and momentum operators in a self-adjoint skew-symmetric, split scalar product structure over the configuration space. The microscopic states of the detectors act as a nonlocal set of hidden parameters, controlling individual outcomes. The model is shown to display pumping of weights between setup-defined basis states, with a single winner randomly selected and the rest collapsing to zero. Environmental decoherence has no role in the scenario. Through stochastic modelling, based on Pearle’s ‘gambler’s ruin’ scheme, outcome probabilities are shown to obey Born’s rule under a no-drift or ‘fair-game’ condition. This fully reproduces quantum statistical predictions, implying that the proposed non-linear deterministic model satisfies the non-signaling requirement. Our treatment is still vulnerable to hidden signaling in individual events, which remains to be handled by future research.

  13. Collapsed Dark Matter Structures

    Science.gov (United States)

    Buckley, Matthew R.; DiFranzo, Anthony

    2018-02-01

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  14. Collapsed Dark Matter Structures.

    Science.gov (United States)

    Buckley, Matthew R; DiFranzo, Anthony

    2018-02-02

    The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.

  15. Dynamic Control of Collapse in a Vortex Airy Beam

    Science.gov (United States)

    Chen, Rui-Pin; Chew, Khian-Hooi; He, Sailing

    2013-01-01

    Here we study systematically the self-focusing dynamics and collapse of vortex Airy optical beams in a Kerr medium. The collapse is suppressed compared to a non-vortex Airy beam in a Kerr medium due to the existence of vortex fields. The locations of collapse depend sensitively on the initial power, vortex order, and modulation parameters. The collapse may occur in a position where the initial field is nearly zero, while no collapse appears in the region where the initial field is mainly distributed. Compared with a non-vortex Airy beam, the collapse of a vortex Airy beam can occur at a position away from the area of the initial field distribution. Our study shows the possibility of controlling and manipulating the collapse, especially the precise position of collapse, by purposely choosing appropriate initial power, vortex order or modulation parameters of a vortex Airy beam. PMID:23518858

  16. Pressure and tension waves from bubble collapse near a solid boundary: A numerical approach.

    Science.gov (United States)

    Lechner, Christiane; Koch, Max; Lauterborn, Werner; Mettin, Robert

    2017-12-01

    The acoustic waves being generated during the motion of a bubble in water near a solid boundary are calculated numerically. The open source package OpenFOAM is used for solving the Navier-Stokes equation and extended to include nonlinear acoustic wave effects via the Tait equation for water. A bubble model with a small amount of gas is chosen, the gas obeying an adiabatic law. A bubble starting from a small size with high internal pressure near a flat, solid boundary is studied. The sequence of events from bubble growth via axial microjet formation, jet impact, annular nanojet formation, torus-bubble collapse, and bubble rebound to second collapse is described. The different pressure and tension waves with their propagation properties are demonstrated.

  17. Positron annihilation imaging device using multiple offset rings of detectors

    International Nuclear Information System (INIS)

    Thompson, C.J.

    1982-01-01

    A means is provided for recording more than one tomographic image simultaneously through different cross-sections of a patient, using positron emission tomography. Separate rings of detectors are used to construct every odd-numbered slice, and coincident events that occur between adjacent rings of detectors provide a center or even-numbered slice. Detector rings are offset with respect to one another by half the angular separation of the detectors, allowing an image to be reconstructed from the central slice without the necessity of physically rotating the detector array while accumulating data

  18. Is the bell ringing?

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    During the Nobel prize-winning UA1 experiment, scientists in the control room used to ring a bell if a particularly interesting event had occurred. Today, the “CMS Exotica hotline” routine produces a daily report that lists the exotic events that were recorded the day before.   Display of an event selected by the Exotica routine. Take just a very small fraction of the available data (max. 5%); define the events that you want to keep and set the parameters accordingly; run the Exotica routine and only look at the very few images that the system has selected for you. This is the recipe that a small team of CMS researchers has developed to identify the signals coming from possible new physics processes. “This approach does not replace the accurate data analysis on the whole set of data. However, it is a very fast and effective way to focus on just a few events that are potentially very interesting”, explains Maurizio Pierini (CERN), who developed the...

  19. Sharper criteria for the wave collapse

    DEFF Research Database (Denmark)

    Kuznetsov, E.A.; Juul Rasmussen, J.; Rypdal, K.

    1995-01-01

    Sharper criteria for three-dimensional wave collapse described by the Nonlinear Schrodinger Equation (NLSE) are derived. The collapse threshold corresponds to the ground state soliton which is known to be unstable. Thus, for nonprefocusing distributions this represents the separatrix between...

  20. Contingency Analysis of Cascading Line Outage Events

    Energy Technology Data Exchange (ETDEWEB)

    Thomas L Baldwin; Magdy S Tawfik; Miles McQueen

    2011-03-01

    As the US power systems continue to increase in size and complexity, including the growth of smart grids, larger blackouts due to cascading outages become more likely. Grid congestion is often associated with a cascading collapse leading to a major blackout. Such a collapse is characterized by a self-sustaining sequence of line outages followed by a topology breakup of the network. This paper addresses the implementation and testing of a process for N-k contingency analysis and sequential cascading outage simulation in order to identify potential cascading modes. A modeling approach described in this paper offers a unique capability to identify initiating events that may lead to cascading outages. It predicts the development of cascading events by identifying and visualizing potential cascading tiers. The proposed approach was implemented using a 328-bus simplified SERC power system network. The results of the study indicate that initiating events and possible cascading chains may be identified, ranked and visualized. This approach may be used to improve the reliability of a transmission grid and reduce its vulnerability to cascading outages.

  1. Collapsing dynamics of attractive Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Bergé, L.; Juul Rasmussen, J.

    2002-01-01

    The self-similar collapse of 3D and quasi-2D atom condensates with negative scattering length is examined. 3D condensates are shown to blow up following the scenario of weak collapse, for which 3-body recombination weakly dissipates the atoms. In contrast, 2D condensates undergo a strong collapse......, that absorbs a significant amount of particles. (C) 2002 Elsevier Science B.V. All rights reserved....

  2. First law of black ring thermodynamics in higher dimensional Chern-Simons gravity

    International Nuclear Information System (INIS)

    Rogatko, Marek

    2007-01-01

    The physical process version and the equilibrium state version of the first law of black ring thermodynamics in n-dimensional Einstein gravity with Chern-Simons term were derived. This theory constitutes the simplest generalization of the five-dimensional one admitting a stationary black ring solution. The equilibrium state version of the first law of black ring mechanics was achieved by choosing any cross section of the event horizon to the future of the bifurcation surface

  3. Finite element analysis of the collapse and post-collapse behavior of steel pipes applications to the oil industry

    CERN Document Server

    Dvorkin, Eduardo N

    2013-01-01

    This book presents a detailed discussion of the models that were developed to simulate the collapse and post-collapse behavior of steel pipes. The finite element method offers to engineers the possibility of developing models to simulate the collapse behavior of casings inside oil wells and the collapse behavior of deepwater pipelines. However, if technological decisions are going to be reached from these model results, with implications for the economic success of industrial operations, for the occupational safety and health and for the environment, the engineering models need to be highly reliable. Using these models engineers can quantify the effect of manufacturing tolerances, wear, corrosion, etc. This book describes in great details the experimental programs that are developed to validate the numerical results.

  4. Collapse of Electrostatic Waves in Magnetoplasmas

    DEFF Research Database (Denmark)

    Shukla, P. K.; Yu, M. Y.; Juul Rasmussen, Jens

    1984-01-01

    The two-fluid model is employed to investigate the collapse of electrostatic waves in magnetized plasmas. It is found that nonlinear interaction of ion cyclotron, upper-, and lower-hybrid waves with adiabatic particle motion along the external magnetic field can cause wave-field collapse....

  5. Hubble again views Saturn's Rings Edge-on

    Science.gov (United States)

    1995-01-01

    Saturn's magnificent ring system is seen tilted edge-on -- for the second time this year -- in this NASA Hubble Space Telescope picture taken on August 10, 1995, when the planet was 895 million miles (1,440 million kilometers) away. Hubble snapped the image as Earth sped back across Saturn's ring plane to the sunlit side of the rings. Last May 22, Earth dipped below the ring plane, giving observers a brief look at the backlit side of the rings. Ring-plane crossing events occur approximately every 15 years. Earthbound observers won't have as good a view until the year 2038. Several of Saturn's icy moons are visible as tiny starlike objects in or near the ring plane. They are from left to right, Enceladus, Tethys, Dione and Mimas. 'The Hubble data shows numerous faint satellites close to the bright rings, but it will take a couple of months to precisely identify them,' according to Steve Larson (University of Arizona). During the May ring plane crossing, Hubble detected two, and possibly four, new moons orbiting Saturn. These new observations also provide a better view of the faint E ring, 'to help determine the size of particles and whether they will pose a collision hazard to the Cassini spacecraft,' said Larson. The picture was taken with Hubble's Wide Field Planetary Camera 2 in wide field mode. This image is a composite view, where a long exposure of the faint rings has been combined with a shorter exposure of Saturn's disk to bring out more detail. When viewed edge-on, the rings are so dim they almost disappear because they are very thin -- probably less than a mile thick.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  6. Gravitational radiation from stellar collapse: The initial burst

    International Nuclear Information System (INIS)

    Shapiro, S.L.

    1977-01-01

    The burst of gravitational radiation emitted during the initial collapse and rebound of a homogeneous, uniformly rotating spheroid with internal pressure is analyzed numerically. The surface of the collapsing spheroid is assumed to start at rest from infinity with negligible eccentricity (''zero-energy collapse''). The adopted internal pressure function is constant on self-similar spheroidal surfaces, and its central value is described by a polytropic law with index n< or =3. The Newtonian equations of motion are integrated numerically to follow the initial collapse and rebound of the configuration for the special case in which the collapse is time-reversal invariant about the moment of maximum compression, and the total energy and frequency spectrum of the emitted quadrupole radiation are computed. The results are employed to estimate the (approx.minimum) total energy and frequency distribution of the initial burst of gravitational radiation emitted during the formation of low-mass (Mapproximately-less-thanM/sub sun/) neutron stars and during the collapse of supermassive gas clouds

  7. Ring Theory

    CERN Document Server

    Jara, Pascual; Torrecillas, Blas

    1988-01-01

    The papers in this proceedings volume are selected research papers in different areas of ring theory, including graded rings, differential operator rings, K-theory of noetherian rings, torsion theory, regular rings, cohomology of algebras, local cohomology of noncommutative rings. The book will be important for mathematicians active in research in ring theory.

  8. Application of the collapsing method to acoustic emissions in a rock salt sample during a triaxial compression experiment

    International Nuclear Information System (INIS)

    Manthei, G.; Eisenblaetter, J.; Moriya, H.; Niitsuma, H.; Jones, R.H.

    2003-01-01

    Collapsing is a relatively new method. It is used for detecting patterns and structures in blurred and cloudy pictures of multiple soundings. In the case described here, the measurements were made in a very small region with a length of only a few decimeters. The events were registered during a triaxial compression experiment on a compact block of rock salt. The collapsing method showed a cellular structure of the salt block across the whole length of the test piece. The cells had a length of several cm, enclosing several grains of salt with an average grain size of less than one cm. In view of the fact that not all cell walls corresponded to acoustic emission events, it was assumed that only those grain boundaries are activated that are oriented at a favourable angle to the field of tension of the test piece [de

  9. Current status of relativistic core collapse simulations

    Energy Technology Data Exchange (ETDEWEB)

    Font, Jose A [Departamento de Astronomia y Astrofisica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)

    2007-05-15

    With the first generation of ground-based gravitational wave laser interferometers already taking data, the availability of reliable waveform templates from astrophysical sources, which may help extract the signal from the anticipated noisy data, is urgently required. Gravitational stellar core collapse supernova has traditionally been considered among the most important astrophysical sources of potentially detectable gravitational radiation. Only very recently the first multidimensional simulations of relativistic rotational core collapse have been possible (albeit for models with simplified input physics), thanks to the use of conservative formulations of the hydrodynamics equations and advanced numerical methodology, as well as stable formulations of Einstein's equations. In this paper, the current status of relativistic core collapse simulations is discussed, with the emphasis given to the modelling of the collapse dynamics and to the computation of the gravitational radiation in the existing numerical approaches. Work employing the conformally-flat approximation (CFC) of the 3+1 Einstein's equations is reported, as well as extensions of this approximation (CFC+) and investigations within the framework of the so-called BSSN formulation of the 3+1 gravitational field equations (with no approximation for the spacetime dynamics). On the other hand, the incorporation of magnetic fields and the MHD equations in numerical codes to improve the realism of core collapse simulations in general relativity, is currently an emerging field where significant progress is bound to be soon achieved. The paper also contains a brief discussion of magneto-rotational simulations of core collapse, aiming at addressing the effects of magnetic fields on the collapse dynamics and on the gravitational waveforms.

  10. Current status of relativistic core collapse simulations

    International Nuclear Information System (INIS)

    Font, Jose A

    2007-01-01

    With the first generation of ground-based gravitational wave laser interferometers already taking data, the availability of reliable waveform templates from astrophysical sources, which may help extract the signal from the anticipated noisy data, is urgently required. Gravitational stellar core collapse supernova has traditionally been considered among the most important astrophysical sources of potentially detectable gravitational radiation. Only very recently the first multidimensional simulations of relativistic rotational core collapse have been possible (albeit for models with simplified input physics), thanks to the use of conservative formulations of the hydrodynamics equations and advanced numerical methodology, as well as stable formulations of Einstein's equations. In this paper, the current status of relativistic core collapse simulations is discussed, with the emphasis given to the modelling of the collapse dynamics and to the computation of the gravitational radiation in the existing numerical approaches. Work employing the conformally-flat approximation (CFC) of the 3+1 Einstein's equations is reported, as well as extensions of this approximation (CFC+) and investigations within the framework of the so-called BSSN formulation of the 3+1 gravitational field equations (with no approximation for the spacetime dynamics). On the other hand, the incorporation of magnetic fields and the MHD equations in numerical codes to improve the realism of core collapse simulations in general relativity, is currently an emerging field where significant progress is bound to be soon achieved. The paper also contains a brief discussion of magneto-rotational simulations of core collapse, aiming at addressing the effects of magnetic fields on the collapse dynamics and on the gravitational waveforms

  11. Search for neutrinos from core-collapse supernova from the global network of detectors

    Energy Technology Data Exchange (ETDEWEB)

    Habig, Alec, E-mail: ahabig@umn.ed [University of Minnesota Duluth, Physics Department, 10 University Dr., Duluth, MN 55812 (United States)

    2010-01-01

    The Supernova Early Warning System (SNEWS) is a cooperative effort between the world's neutrino detection experiments to spread the news that a star in our galaxy has just experienced a core-collapse event and is about to become a Type II Supernova. This project exploits the {approx}hours time difference between neutrinos promptly escaping the nascent supernova and photons which originate when the shock wave breaks through the stellar photosphere, to give the world a chance to get ready to observe such an exciting event at the earliest possible time. A coincidence trigger between experiments is used to eliminate potential local false alarms, allowing a rapid, automated alert.

  12. Second-order Monte Carlo wave-function approach to the relaxation effects on ringing revivals in a molecular system interacting with a strongly squeezed coherent field

    International Nuclear Information System (INIS)

    Nakano, Masayoshi; Kishi, Ryohei; Nitta, Tomoshige; Yamaguchi, Kizashi

    2004-01-01

    We investigate the relaxation effects on the quantum dynamics in a two-state molecular system interacting with a single-mode strongly amplitude-squeezed coherent field using the second-order Monte Carlo wave-function method. The molecular population inversion (collapse-revival behavior of Rabi oscillations) is known to show the echoes after each revival, which are referred to as ringing revivals, in the case of strongly squeezed coherent fields with oscillatory photon-number distributions due to the phase-space interference effect. Two types of relaxation effects, i.e., cavity relaxation (the dissipation of an internal single mode to outer mode) and molecular coherent (phase) relaxation caused by nuclear vibrations on ringing revivals are investigated from the viewpoint of the quantum-phase dynamics using the quasiprobability (Q function) distribution of a single-mode field and the off-diagonal molecular density matrix ρ elec1,2 (t). It turns out that the molecular phase relaxation attenuates both the entire revival-collapse behavior and the increase in ρ elec1,2 (t) during the quiescent region, whereas a very slight cavity relaxation particularly suppresses the echoes in ringing revivals more significantly than the first revival but hardly changes a primary variation in envelope of ρ elec1,2 (t) in the nonrelaxation case

  13. Contagious cooperation, temptation, and ecosystem collapse

    NARCIS (Netherlands)

    Richter, A.; van Soest, D.P.; Grasman, J.

    2013-01-01

    Real world observations suggest that social norms of cooperation can be effective in overcoming social dilemmas such as the joint management of a common pool resource—but also that they can be subject to slow erosion and sudden collapse. We show that these patterns of erosion and collapse emerge

  14. Forced in-plane vibration of a thick ring on a unilateral elastic foundation

    Science.gov (United States)

    Wang, Chunjian; Ayalew, Beshah; Rhyne, Timothy; Cron, Steve; Dailliez, Benoit

    2016-10-01

    Most existing studies of a deformable ring on elastic foundation rely on the assumption of a linear foundation. These assumptions are insufficient in cases where the foundation may have a unilateral stiffness that vanishes in compression or tension such as in non-pneumatic tires and bushing bearings. This paper analyzes the in-plane dynamics of such a thick ring on a unilateral elastic foundation, specifically, on a two-parameter unilateral elastic foundation, where the stiffness of the foundation is treated as linear in the circumferential direction but unilateral (i.e. collapsible or tensionless) in the radial direction. The thick ring is modeled as an orthotropic and extensible circular Timoshenko beam. An arbitrarily distributed time-varying in-plane force is considered as the excitation. The Equations of Motion are explicitly derived and a solution method is proposed that uses an implicit Newmark scheme for the time domain solution and an iterative compensation approach to determine the unilateral zone of the foundation at each time step. The dynamic axle force transmission is also analyzed. Illustrative forced vibration responses obtained from the proposed model and solution method are compared with those obtained from a finite element model.

  15. How summit calderas collapse on basaltic volcanoes: new insights from the April 2007 caldera collapse of Piton de la Fournaise volcano

    Energy Technology Data Exchange (ETDEWEB)

    Michon, Laurent; Catry, Thibault; Merle, Olivier [Laboratoire GeoSciences Reunion, Universite de la Reunion, Institut de Physique du Globe de Paris, CNRS, UMR 7154 - Geologie des Systemes Volcaniques, 15 avenue Rene Cassin, 97715 Saint Denis (France); Villeneuve, Nicolas [Institut de Recherche pour le Developpement, US 140, BP172, 97492 Sainte-Clotilde cedex (France)], E-mail: laurent.michon@univ-reunion.fr

    2008-10-01

    In April 2007, Piton de la Fournaise volcano experienced a caldera collapse during its largest historical eruption. We present here the resulting deformation and a synthesis of the seismicity recorded during recent caldera collapses. It allows us to propose a unifying mechanism that explains the pulsating collapse dynamics.

  16. HIERARCHICAL GRAVITATIONAL FRAGMENTATION. I. COLLAPSING CORES WITHIN COLLAPSING CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Naranjo-Romero, Raúl; Vázquez-Semadeni, Enrique; Loughnane, Robert M. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 3-72, Morelia, Michoacán, 58089, México (Mexico)

    2015-11-20

    We investigate the Hierarchical Gravitational Fragmentation scenario through numerical simulations of the prestellar stages of the collapse of a marginally gravitationally unstable isothermal sphere immersed in a strongly gravitationally unstable, uniform background medium. The core developes a Bonnor–Ebert (BE)-like density profile, while at the time of singularity (the protostar) formation the envelope approaches a singular-isothermal-sphere (SIS)-like r{sup −2} density profile. However, these structures are never hydrostatic. In this case, the central flat region is characterized by an infall speed, while the envelope is characterized by a uniform speed. This implies that the hydrostatic SIS initial condition leading to Shu's classical inside-out solution is not expected to occur, and therefore neither should the inside-out solution. Instead, the solution collapses from the outside-in, naturally explaining the observation of extended infall velocities. The core, defined by the radius at which it merges with the background, has a time-variable mass, and evolves along the locus of the ensemble of observed prestellar cores in a plot of M/M{sub BE} versus M, where M is the core's mass and M{sub BE} is the critical BE mass, spanning the range from the “stable” to the “unstable” regimes, even though it is collapsing at all times. We conclude that the presence of an unstable background allows a core to evolve dynamically from the time when it first appears, even when it resembles a pressure-confined, stable BE-sphere. The core can be thought of as a ram-pressure confined BE-sphere, with an increasing mass due to the accretion from the unstable background.

  17. Timescales of isotropic and anisotropic cluster collapse

    Science.gov (United States)

    Bartelmann, M.; Ehlers, J.; Schneider, P.

    1993-12-01

    From a simple estimate for the formation time of galaxy clusters, Richstone et al. have recently concluded that the evidence for non-virialized structures in a large fraction of observed clusters points towards a high value for the cosmological density parameter Omega0. This conclusion was based on a study of the spherical collapse of density perturbations, assumed to follow a Gaussian probability distribution. In this paper, we extend their treatment in several respects: first, we argue that the collapse does not start from a comoving motion of the perturbation, but that the continuity equation requires an initial velocity perturbation directly related to the density perturbation. This requirement modifies the initial condition for the evolution equation and has the effect that the collapse proceeds faster than in the case where the initial velocity perturbation is set to zero; the timescale is reduced by a factor of up to approximately equal 0.5. Our results thus strengthens the conclusion of Richstone et al. for a high Omega0. In addition, we study the collapse of density fluctuations in the frame of the Zel'dovich approximation, using as starting condition the analytically known probability distribution of the eigenvalues of the deformation tensor, which depends only on the (Gaussian) width of the perturbation spectrum. Finally, we consider the anisotropic collapse of density perturbations dynamically, again with initial conditions drawn from the probability distribution of the deformation tensor. We find that in both cases of anisotropic collapse, in the Zel'dovich approximation and in the dynamical calculations, the resulting distribution of collapse times agrees remarkably well with the results from spherical collapse. We discuss this agreement and conclude that it is mainly due to the properties of the probability distribution for the eigenvalues of the Zel'dovich deformation tensor. Hence, the conclusions of Richstone et al. on the value of Omega0 can be

  18. Thermal duality and gravitational collapse

    International Nuclear Information System (INIS)

    Hewitt, Michael

    2015-01-01

    Thermal duality is a relationship between the behaviour of heterotic string models of the E(8)×E(8) or SO(32) types at inversely related temperatures, a variant of T duality in the Euclidean regime. This duality would have consequences for the nature of the Hagedorn transition in these string models. We propose that the vacuum admits a family of deformations in situations where there are closed surfaces of constant area but high radial acceleration (a string regularized version of a Penrose trapped surface), such as would be formed in situations of extreme gravitational collapse. This would allow a radical resolution of the firewall paradox by allowing quantum effects to significantly modify the spacetime geometry around a collapsed object. A string bremsstrahlung process would convert the kinetic energy of infalling matter in extreme gravitational collapse to form a region of the deformed vacuum, which would be equivalent to forming a high temperature string phase. A heuristic criterion for the conversion process is presented, relating Newtonian gravity to the string tension, suggesting an upper limit to the strength of the gravitational interaction. This conversion process might have observable consequences for charged particles falling into a rotating collapsed object by producing high energy particles via a variant of the Penrose process. (paper)

  19. Hydrogen-Poor Core-Collapse Supernovae

    Science.gov (United States)

    Pian, Elena; Mazzali, Paolo A.

    Hydrogen-poor core-collapse supernovae (SNe) signal the explosive death of stars more massive than the progenitors of hydrogen-rich core-collapse supernovae, i.e., approximately in the range 15-50 M⊙ in main sequence. Since hydrogen-poor core-collapse supernovae include those that accompany gamma-ray bursts (GRBs), which were all rigorously identified with type Ic supernovae, their explosion energies cover almost two decades. The light curves and spectra are consequently very heterogeneous and often bear the signature of an asymmetric, i.e., aspherical, explosion. Asphericity is best traced by early-time (within days of the explosion) optical spectropolarimetry and by late-epoch (more than ˜ 100 days after explosion) low-resolution spectroscopy. While the relationship between hydrogen-poor core-collapse supernovae to hydrogen-poor super-luminous supernovae is not understood, a known case of association between an ultra-long gamma-ray burst and a very luminous hydrogen-poor supernova may help unraveling the connection. This is tantalizingly pointing to a magnetar powering source for both phenomena, although this scenario is still highly speculative. Host galaxies of hydrogen-poor supernovae are always star forming; in those of completely stripped supernovae and gamma-ray burst supernovae, the spatial distribution of the explosions follows the blue/ultraviolet light, with a correlation that is more than linear.

  20. Understanding Core-Collapse Supernovae

    Science.gov (United States)

    Hix, W. R.; Lentz, E. J.; Baird, M.; Messer, O. E. B.; Mezzacappa, A.; Lee, C.-T.; Bruenn, S. W.; Blondin, J. M.; Marronetti, P.

    2010-03-01

    Our understanding of core-collapse supernovae continues to improve as better microphysics is included in increasingly realistic neutrino-radiationhydrodynamic simulations. Recent multi-dimensional models with spectral neutrino transport, which slowly develop successful explosions for a range of progenitors between 12 and 25 solar mass, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progresses on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.

  1. Report of the eRHIC Ring-Ring Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Aschenauer, E. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brennan, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Palmer, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Parker, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Peggs, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Willeke, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-10-13

    This report evaluates the ring-ring option for eRHIC as a lower risk alternative to the linac-ring option. The reduced risk goes along with a reduced initial luminosity performance. However, a luminosity upgrade path is kept open. This upgrade path consists of two branches, with the ultimate upgrade being either a ring-ring or a linac-ring scheme. The linac-ring upgrade could be almost identical to the proposed linac-ring scheme, which is based on an ERL in the RHIC tunnel. This linac-ring version has been studied in great detail over the past ten years, and its significant risks are known. On the other hand, no detailed work on an ultimate performance ring-ring scenario has been performed yet, other than the development of a consistent parameter set. Pursuing the ring-ring upgrade path introduces high risks and requires significant design work that is beyond the scope of this report.

  2. Magnetic tension and gravitational collapse

    International Nuclear Information System (INIS)

    Tsagas, Christos G

    2006-01-01

    The gravitational collapse of a magnetized medium is investigated by studying qualitatively the convergence of a timelike family of non-geodesic worldlines in the presence of a magnetic field. Focusing on the field's tension, we illustrate how the winding of the magnetic forcelines due to the fluid's rotation assists the collapse, while shear-like distortions in the distribution of the field's gradients resist contraction. We also show that the relativistic coupling between magnetism and geometry, together with the tension properties of the field, lead to a magneto-curvature stress that opposes the collapse. This tension stress grows stronger with increasing curvature distortion, which means that it could potentially dominate over the gravitational pull of the matter. If this happens, a converging family of non-geodesic worldlines can be prevented from focusing without violating the standard energy conditions

  3. Tulsa Oklahoma Oktoberfest Tent Collapse Report

    Directory of Open Access Journals (Sweden)

    Kelly E. Deal

    2012-01-01

    Full Text Available Background. On October 17, 2007, a severe weather event collapsed two large tents and several smaller tents causing 23 injuries requiring evacuation to emergency departments in Tulsa, OK. Methods. This paper is a retrospective analysis of the regional health system’s response to this event. Data from the Tulsa Fire Department, The Emergency Medical Services Authority (EMSA, receiving hospitals and coordinating services were reviewed and analyzed. EMS patient care reports were reviewed and analyzed using triage designators assigned in the field, injury severity scores, and critical mortality. Results. EMT's and paramedics from Tulsa Fire Department and EMSA provided care at the scene under unified incident command. Of the 23 patients transported by EMS, four were hospitalized, one with critical spinal injury and one with critical head injury. One patient is still in ongoing rehabilitation. Discussion. Analysis of the 2007 Tulsa Oktoberfest mass casualty incident revealed rapid police/fire/EMS response despite challenges of operations at dark under severe weather conditions and the need to treat a significant number of injured victims. There were no fatalities. Of the patients transported by EMS, a minority sustained critical injuries, with most sustaining injuries amenable to discharge after emergency department care.

  4. Exact solutions for shells collapsing towards a pre-existing black hole

    International Nuclear Information System (INIS)

    Liu Yuan; Zhang Shuangnan

    2009-01-01

    The gravitational collapse of a star is an important issue both for general relativity and astrophysics, which is related to the well-known 'frozen star' paradox. This paradox has been discussed intensively and seems to have been solved in the comoving-like coordinates. However, to a real astrophysical observer within a finite time, this problem should be discussed in the point of view of the distant rest-observer, which is the main purpose of this Letter. Following the seminal work of Oppenheimer and Snyder (1939), we present the exact solution for one or two dust shells collapsing towards a pre-existing black hole. We find that the metric of the inner region of the shell is time-dependent and the clock inside the shell becomes slower as the shell collapses towards the pre-existing black hole. This means the inner region of the shell is influenced by the property of the shell, which is contrary to the result in Newtonian theory. It does not contradict the Birkhoff's theorem, since in our case we cannot arbitrarily select the clock inside the shell in order to ensure the continuity of the metric. This result in principle may be tested experimentally if a beam of light travels across the shell, which will take a longer time than without the shell. It can be considered as the generalized Shapiro effect, because this effect is due to the mass outside, but not inside as the case of the standard Shapiro effect. We also found that in real astrophysical settings matter can indeed cross a black hole's horizon according to the clock of an external observer and will not accumulate around the event horizon of a black hole, i.e., no 'frozen star' is formed for an external observer as matter falls towards a black hole. Therefore, we predict that only gravitational wave radiation can be produced in the final stage of the merging process of two coalescing black holes. Our results also indicate that for the clock of an external observer, matter, after crossing the event horizon

  5. Shock-induced nanobubble collapse and its applications

    Science.gov (United States)

    Vedadi, Mohammad Hossein

    The shock-induced collapse of nanobubbles in water is investigated using molecular dynamics simulations based on a reactive force field. Monitoring the collapse of a cavitation nanobubble, we observe a focused nanojet at the onset of bubble shrinkage and a water hammer shock wave upon bubble collapse. The nanojet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. The shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of approximately 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. Moreover, a substantial number of positive and negative ions appear when the nanojet hits the distal side of the nanobubble and the water hammer shock forms. Furthermore, two promising applications of shock-induced nanobubble collapse have been explored. Our simulations of poration in lipid bilayers due to shock-induced collapse of nanobubbles reveal penetration of nanojets into lipid bilayers. The nanojet impact generates shear flow of water on bilayer leaflets and pressure gradients across them, which transiently enhance the bilayer permeability by creating nanopores through which water molecules translocate across the bilayer. The effects of nanobubble size and temperature on the porosity of lipid bilayers are examined. Finally, the shock-induced collapse of CO2-filled nanobubbles in water is investigated. The energetic nanojet and high-pressure water hammer shock formed during and after collapse of the nanobubble trigger mechano-chemical H2O-CO2 reactions, some of which lead to splitting of water molecules. The dominant pathways through which splitting of water molecules occur are identified.

  6. CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE II SUPERNOVAE: EVIDENCE FOR THREE DISTINCT PHOTOMETRIC SUBTYPES

    Energy Technology Data Exchange (ETDEWEB)

    Arcavi, Iair; Gal-Yam, Avishay; Yaron, Ofer [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Cenko, S. Bradley; Becker, Adam B. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Fox, Derek B. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Leonard, Douglas C. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Moon, Dae-Sik [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Sand, David J. [Las Cumbres Observatory Global Telescope Network, Santa Barbara, CA 93117 (United States); Soderberg, Alicia M. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Kiewe, Michael [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Scheps, Raphael [King' s College, University of Cambridge, Cambridge CB2 1ST (United Kingdom); Birenbaum, Gali [12 Amos St, Ramat Chen, Ramat Gan 52233 (Israel); Chamudot, Daniel [20 Chen St, Petach Tikvah 49520 (Israel); Zhou, Jonathan, E-mail: iair.arcavi@weizmann.ac.il [101 Dunster Street, Box 398, Cambridge, MA 02138 (United States)

    2012-09-10

    We present R-band light curves of Type II supernovae (SNe) from the Caltech Core-Collapse Project (CCCP). With the exception of interacting (Type IIn) SNe and rare events with long rise times, we find that most light curve shapes belong to one of three apparently distinct classes: plateau, slowly declining, and rapidly declining events. The last class is composed solely of Type IIb SNe which present similar light curve shapes to those of SNe Ib, suggesting, perhaps, similar progenitor channels. We do not find any intermediate light curves, implying that these subclasses are unlikely to reflect variance of continuous parameters, but rather might result from physically distinct progenitor systems, strengthening the suggestion of a binary origin for at least some stripped SNe. We find a large plateau luminosity range for SNe IIP, while the plateau lengths seem rather uniform at approximately 100 days. As analysis of additional CCCP data goes on and larger samples are collected, demographic studies of core-collapse SNe will likely continue to provide new constraints on progenitor scenarios.

  7. Lung lobe collapse: pathophysiology and radiologic significance

    International Nuclear Information System (INIS)

    Lord, P.F.; Gomez, J.A.

    1985-01-01

    The radiographic changes caused by collapse of lung lobes in pulmonary disease, pneumothorax, and pleural effusion depend on the lobar recoiling force and local pleural pressure. Differences in the tendency of normal lung lobes or regions to collapse depend on the relative surface-to-volume ratio, determined by shape and size of the region or lobe. This ratio affects the physiologic parameters of pulmonary interdependence, compliance, and collateral air flow. Pulmonary surfactant increases compliance, particularly at low volumes, maintains alveolar stability, and assists in maintaining capillary patency and preventing pulmonary edema. Its loss due to lung injury increases collapsing forces. In the presence of pneumothorax or pleural effusion, diseases that cause lobar collapse produce localized air or fluid entrapment that is a diagnostic sign of the presence of the underlying pulmonary disease

  8. Collapse and stability of single- and multi-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Xiao, J; Liu, B; Huang, Y; Zuo, J; Hwang, K-C; Yu, M-F

    2007-01-01

    The collapse and stability of carbon nanotubes (CNTs) have important implications for their synthesis and applications. While nanotube collapse has been observed experimentally, the conditions for the collapse, especially its dependence on tube structures, are not clear. We have studied the energetics of the collapse of single- and multi-wall CNTs via atomistic simulations. The collapse is governed by the number of walls and the radius of the inner-most wall. The collapsed structure is energetically favored about a certain diameter, which is 4.12, 4.96 and 5.76 nm for single-, double- and triple-wall CNTs, respectively. The CNT chirality also has a strong influence on the collapsed structure, leading to flat, warped and twisted CNTs, depending on the chiral angle

  9. Abrupt climatic changes as triggering mechanisms of massive volcanic collapses: examples from Mexico (Invited)

    Science.gov (United States)

    Capra, L.

    2010-12-01

    Climate changes have been considered to be a triggering mechanism for large magmatic eruptions. However they can also trigger volcanic collapses, phenomena that cause the destruction of the entire sector of a volcano, including its summit. During the past 30 ka, major volcanic collapses occurred just after main glacial peaks that ended with a rapid deglaciation. Glacial debuttressing, load discharge and fluid circulation coupled with the post-glacial increase of humidity and heavy rains can activate the failure of unstable edifices. Looking at the synchronicity of the maximum glaciations during the late Pleistocene and Holocene in the northern and southern hemispheres it is evident that several volcanic collapses are absent during a glacial climax, but start immediately after it during a period of rapid retreat. Several examples can be detected around the world and Mexico is not an exception. The 28 ka Nevado de Toluca volcanic collapse occurred during an intraglacial stage, under humid conditions as evidenced by paleoclimatic studies on lacustrine sediments of the area. The debris avalanche deposit associated to this event clearly shows evidence of a large amount of water into the mass previous to the failure that enhanced its mobility. It also contains peculiar, plastically deformed, m-sized fragment of lacustrine sediments eroded from glacial berms. The 17 ka BP collapse of the Colima Volcano corresponds to the initial stage of glacial retreat in Mexico after the Last Glacial Maximum (22-17.5ka). Also in this case the depositional sequence reflects high humidity conditions with voluminous debris flow containing a large amount logs left by pine trees. The occurrence of cohesive debris flows originating from the failure of a volcanic edifice can also reflect the climatic conditions, indicating important hydrothermal alteration and fluid circulation from ice-melting at an ice-capped volcano, as observed for example at the Pico de Orizaba volcano for the Tetelzingo

  10. Causal quantum theory and the collapse locality loophole

    International Nuclear Information System (INIS)

    Kent, Adrian

    2005-01-01

    Causal quantum theory is an umbrella term for ordinary quantum theory modified by two hypotheses: state vector reduction is a well-defined process, and strict local causality applies. The first of these holds in some versions of Copenhagen quantum theory and need not necessarily imply practically testable deviations from ordinary quantum theory. The second implies that measurement events which are spacelike separated have no nonlocal correlations. To test this prediction, which sharply differs from standard quantum theory, requires a precise definition of state vector reduction. Formally speaking, any precise version of causal quantum theory defines a local hidden variable theory. However, causal quantum theory is most naturally seen as a variant of standard quantum theory. For that reason it seems a more serious rival to standard quantum theory than local hidden variable models relying on the locality or detector efficiency loopholes. Some plausible versions of causal quantum theory are not refuted by any Bell experiments to date, nor is it evident that they are inconsistent with other experiments. They evade refutation via a neglected loophole in Bell experiments--the collapse locality loophole--which exists because of the possible time lag between a particle entering a measurement device and a collapse taking place. Fairly definitive tests of causal versus standard quantum theory could be made by observing entangled particles separated by ≅0.1 light seconds

  11. COMMUNISM AND THE TRAUMA OF ITS COLLAPSE REVISITED.

    Science.gov (United States)

    Schmidt-Löw-Beer, Catherine; Atria, Moira; Davar, Elisha

    2015-12-01

    This paper focuses on the intertwinement of society and the psyche as a consequence of 70 years of Communist rule and the trauma of its collapse in the 90's. The trauma had profound effects on the psyche. An empirical study that was carried out in 1996/1997, which compared the personality structure of adolescents from Russia and Austria, and a research dialogue in 1999, has been re-evaluated in the light of current political events. One aim that we had was to find out whether we could discover characteristic personality features, resulting from the Communist totalitarian society in Russia, as well as from the trauma of its collapse. This led to the development of the concepts of the "impersonal self" and the "denial mode". The Russians seemed to be frozen in a protective shell with "flat" affects. They were anxious, conflict avoidant, and somewhat lost. Ideas about missing adolescence and the importance of privacy are discussed. Society was shown to not only have intruded into the individual psyche, but also into the members of the intercultural research team in the form of projective identification. The importance of the interaction between society and the individual as a basic psychoanalytic concept dating back to Freud is elaborated. Finally, considerations pertaining to mental health and democracy are presented.

  12. Field Experiment on Soaking Characteristics of Collapsible Loess

    Directory of Open Access Journals (Sweden)

    Zhichao Wang

    2017-01-01

    Full Text Available In collapsible loess area, migration of soil moisture often causes the temporal discontinuity and spatial nonuniformity of collapsibility, which leads to great damage for infrastructures. Therefore, the research on water infiltration is the key to solving the problem of collapsibility. The aim of this paper is to investigate the spatiotemporal evolution of infiltration characteristics of collapsible loess. A field soaking experiment was conducted on collapsible loess in western China, in which a soaking pool with diameter of 15 m was built. Time-Domain-Reflectometry (TDR system and soil sampling were employed to measure the water content within the depth of 12 m. Then the saturation isograms were drawn for visualization of the process of infiltration. Also, a pilot tunnel was excavated to investigate how the free face can affect the infiltration behaviors. The experimental results revealed the characteristics of infiltration in both horizontal and vertical directions. Moreover, the response of free face on infiltration behaviors was also found. These findings of research could provide the data for the infiltration laws of unsaturated loess and thereby provide the basis for integrated treatment of collapsible loess.

  13. Correlated random walks induced by dynamical wavefunction collapse

    Science.gov (United States)

    Bedingham, Daniel

    2015-03-01

    Wavefunction collapse models modify Schrödinger's equation so that it describes the collapse of a superposition of macroscopically distinguishable states as a genuine physical process [PRA 42, 78 (1990)]. This provides a basis for the resolution of the quantum measurement problem. An additional generic consequence of the collapse mechanism is that it causes particles to exhibit a tiny random diffusive motion. Furthermore, the diffusions of two sufficiently nearby particles are positively correlated -- it is more likely that the particles diffuse in the same direction than would happen if they behaved independently [PRA 89, 032713 (2014)]. The use of this effect is proposed as an experimental test of wave function collapse models in which pairs of nanoparticles are simultaneously released from nearby traps and allowed a brief period of free fall. The random displacements of the particles are then measured. The experiment must be carried out at sufficiently low temperature and pressure for the collapse effects to dominate over the ambient environmental noise. It is argued that these constraints can be satisfied by current technologies for a large class of viable wavefunction collapse models. Work supported by the Templeton World Charity Foundation.

  14. Cooperation, cheating, and collapse in biological populations

    Science.gov (United States)

    Gore, Jeff

    2014-03-01

    Natural populations can collapse suddenly in response to small changes in environmental conditions, and recovery from such a collapse can be difficult. We have used laboratory microbial ecosystems to directly measure theoretically proposed early warning signals of impending population collapse. Yeast cooperatively break down the sugar sucrose, meaning that below a critical size the population cannot sustain itself. We have demonstrated experimentally that changes in the fluctuations of the population size can serve as an early warning signal that the population is close to collapse. The cooperative nature of yeast growth on sucrose suggests that the population may be susceptible to ``cheater'' cells, which do not contribute to the public good and instead merely take advantage of the cooperative cells. We confirm this possibility experimentally and find that such social parasitism decreases the resilience of the population.

  15. Sediment-induced amplification and the collapse of the Nimitz Freeway

    Science.gov (United States)

    Hough, S.E.; Friberg, P.A.; Busby, R.; Field, E.F.; Jacob, K.H.; Borcherdt, R.D.

    1990-01-01

    THE amplification of ground motion by low-seismic-velocity surface sediments is an important factor in determining the seismic hazard specific to a given site. The Ms = 7.1 Loma Prieta earthquake of 17 October 1989 was the largest event in the contiguous United States in 37 years, and yielded an unparalleled volume of seismic data from the main shock and aftershock sequence1. These data can be used to image the seismic source, to study detailed Earth structure, and to study the propagation of seismic waves both through bedrock at depth and through sediment layers near the surface. Near the edge of San Francisco Bay, site conditions vary considerably on scales of hundreds of metres. The collapsed section of the two-tiered Nimitz Freeway in Oakland was built on San Francisco Bay mud, whereas stiffer alluvial sediments underlie a southern section that was damaged but did not collapse. Here we analyse high-quality, digital aftershock recordings from several sites near the Nimitz Freeway, and conclude that soil conditions and resulting ground-motion amplification may have contributed significantly to the failure of the structure.

  16. The onset of coherence collapse in DBR lasers

    International Nuclear Information System (INIS)

    Woodward, S.L.; Koch, T.L.; Koren, U.

    1990-01-01

    The authors investigate how the onset of coherence collapse depends on laser output power. The lasers were three-section multiquantum-well distributed-Bragg-reflector (MQW-DBR) lasers. The fraction of light reflected back into the lasing mode was varied, and the point at which the transition to coherence collapse occurred was measured. This feedback level varies approximately linearly with laser output power. For these lasers, when the output power is 1 mW, the transition to coherence collapse beings when the optical feedback into the lasing mode is below - 40 dBm; when the feedback power is - 35 dBm the laser line is completely collapsed

  17. Galileon radiation from a spherical collapsing shell

    Energy Technology Data Exchange (ETDEWEB)

    Martín-García, Javier [Instituto de Física Teórica UAM/CSIC,C/ Nicolás Cabrera 15, E-28049 Madrid (Spain); Vázquez-Mozo, Miguel Á. [Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM),Universidad de Salamanca, Plaza de la Merced s/n, E-37008 Salamanca (Spain)

    2017-01-17

    Galileon radiation in the collapse of a thin spherical shell of matter is analyzed. In the framework of a cubic Galileon theory, we compute the field profile produced at large distances by a short collapse, finding that the radiated field has two peaks traveling ahead of light fronts. The total energy radiated during the collapse follows a power law scaling with the shell’s physical width and results from two competing effects: a Vainshtein suppression of the emission and an enhancement due to the thinness of the shell.

  18. The collapse of acoustic waves in dispersive media

    International Nuclear Information System (INIS)

    Kuznetsov, E.A.; Musher, S.L.; Shafarenko, A.V.

    1983-01-01

    The existence of the collapse of acoustic waves with a positive dispersion is demonstrated. A qualitative description of wave collapse, based on the analysis of invariants, is proposed. Through the use of a numerical simulation, it is established that, in the Kadomtsev-Petviashvili three-dimensional equation, collapse is accompanied by the formation of a weakly turbulent background by the wave radiation from the cavity

  19. The combined vaginal contraceptive ring, nuvaring, and cerebral venous sinus thrombosis: a case report and review of the literature.

    Science.gov (United States)

    Kolacki, Christian; Rocco, Vito

    2012-04-01

    Combined oral contraceptives are known to confer a risk of venous thromboembolism, including cerebral venous sinus thrombosis (CVST), to otherwise healthy women. NuvaRing (Organon USA, Inc., Roseland, NJ) is a contraceptive vaginal ring that delivers 120 μg of etonogestrel and 15 μg of ethinyl estradiol per day. Its use has been associated with rare venous thromboembolic events, but few cases of CVST associated with NuvaRing have been reported. To describe a case that illustrates the increased risk of CVST associated with use of NuvaRing. We describe the case of a NuvaRing user who presented to our emergency department with a headache, who was diagnosed with CVST. Evidence suggests that NuvaRing has at least as much prothrombotic potential as combined oral contraceptives. Thus, emergency physicians should suspect serious venous thromboembolic events, including CVST, deep venous thrombosis, and pulmonary embolism, in NuvaRing users in the proper clinical setting. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. ASSOCIATIVE RINGS SOLVED AS LIE RINGS

    Directory of Open Access Journals (Sweden)

    M. B. Smirnov

    2011-01-01

    Full Text Available The paper has proved that an associative ring which is solvable of a n- class as a Lie ring has a nilpotent ideal of the nilpotent class not more than 3×10n–2  and a corresponding quotient ring satisfies an identity [[x1, x2, [x3, x4

  1. Homoclinic phenomena in the gravitational collapse

    International Nuclear Information System (INIS)

    Koiller, J.; Mello Neto, J.R.T. de; Soares, I.D.

    1984-01-01

    A class of Bianchi IX cosmological models is shown to have chaotic gravitational collapse, due to Poincare's homoclinic phenomena. Such models can be programmed so that for any given positive integer N (N=infinity included) the universe undergoes N non-periodic oscillations (each oscillation requiring a long time) before collapsing. For N=infinity the universe undergoes periodic oscillations. (Author) [pt

  2. Non explosive collapse of white dwarfs

    International Nuclear Information System (INIS)

    Canal, R.; Schatzmann, E.

    1976-01-01

    We show that if a sufficiently cold carbon-oxygen white dwarf, close to the critical mass, accretes matter from a companion in a binary system, the time scale of collapse is long enough to allow neutronization before the onset of pycnonuclear reactions. This can possibly lead to the formation of X-ray sources by a non explosive collapse. (orig.) [de

  3. Tree-ring based reconstruction of the seasonal timing, major events and origin of rockfall on a case-study slope in the Swiss Alps

    Directory of Open Access Journals (Sweden)

    D. M. Schneuwly

    2008-03-01

    Full Text Available Tree-ring analysis has been used to reconstruct 22 years of rockfall behavior on an active rockfall slope near Saas Balen (Swiss Alps. We analyzed 32 severely injured trees (L. decidua, P. abies and P. cembra and investigated cross-sections of 154 wounds.

    The intra-annual position of callus tissue and of tangential rows of traumatic resin ducts was determined in order to reconstruct the seasonality of past rockfall events. Results indicate strong intra- and inter-annual variations of rockfall activity, with a peak (76% observed in the dormant season (early October – end of May. Within the growth season, rockfall regularly occurs between the end of May and mid July (21.4%, whereas events later in the season appear to be quite rare (2.6%. Findings suggest that rockfall activity at the study site is driven by annual thawing processes and the circulation of melt water in preexisting fissures. Data also indicate that 43% of all rockfall events occurred in 1995, when two major precipitation events are recorded in nearby meteorological stations. Finally, data on impact angles are in very good agreement with the geomorphic situation in the field.

  4. Non-Spherical Gravitational Collapse of Strange Quark Matter

    Institute of Scientific and Technical Information of China (English)

    Zade S S; Patil K D; Mulkalwar P N

    2008-01-01

    We study the non-spherical gravitational collapse of the strange quark null fluid.The interesting feature which emerges is that the non-spherical collapse of charged strange quark matter leads to a naked singularity whereas the gravitational collapse of neutral quark matter proceeds to form a black hole.We extend the earlier work of Harko and Cheng[Phys.Lett.A 266 (2000) 249]to the non-spherical case.

  5. General relativistic collapse of rotating stars

    International Nuclear Information System (INIS)

    Nakamura, T.

    1984-01-01

    When a rotating star begins to collapse, the gravity becomes so strong that there appears a region from which even a photon cannot escape. After the distortion of space-time is radiated as gravitational waves, a Kerr black hole is formed finally. One of the main goals for numerical relativity is to simulate the collapse of a rotating star under realistic conditions. However, to know both the dynamics of matter and the propagation of gravitational radiation seems to be very difficult. Therefore, in this paper the problem is divided into 4 stages. They are: (1) The time evolution of pure gravitational waves is calculated in a 2-D code. (2) In this stage, the author tries to understand the dynamics of a collapsing, rotating star in 2D code. (3) Combining the techniques from stages 1, 2, the author tries to know both the dynamics of matter and the propagation of gravitational waves generated by the nonspherical motion of matter. (4) The author simulates the gravitational collapse of a rotating star to a black hole in 3D. 25 references, 12 figures, 1 table

  6. Non-linear general instability of ring-stiffened conical shells under external hydrostatic pressure

    International Nuclear Information System (INIS)

    Ross, C T F; Kubelt, C; McLaughlin, I; Etheridge, A; Turner, K; Paraskevaides, D; Little, A P F

    2011-01-01

    The paper presents the experimental results for 15 ring-stiffened circular steel conical shells, which failed by non-linear general instability. The results of these investigations were compared with various theoretical analyses, including an ANSYS eigen buckling analysis and another ANSYS analysis; which involved a step-by-step method until collapse; where both material and geometrical nonlinearity were considered. The investigation also involved an analysis using BS5500 (PD 5500), together with the method of Ross of the University of Portsmouth. The ANSYS eigen buckling analysis tended to overestimate the predicted buckling pressures; whereas the ANSYS nonlinear results compared favourably with the experimental results. The PD5500 analysis was very time consuming and tended to grossly underestimate the experimental buckling pressures and in some cases, overestimate them. In contrast to PD5500 and ANSYS, the design charts of Ross of the University of Portsmouth were the easiest of all these methods to use and generally only slightly underestimated the experimental collapse pressures. The ANSYS analyses gave some excellent graphical displays.

  7. The covariant entropy bound in gravitational collapse

    International Nuclear Information System (INIS)

    Gao, Sijie; Lemos, Jose P. S.

    2004-01-01

    We study the covariant entropy bound in the context of gravitational collapse. First, we discuss critically the heuristic arguments advanced by Bousso. Then we solve the problem through an exact model: a Tolman-Bondi dust shell collapsing into a Schwarzschild black hole. After the collapse, a new black hole with a larger mass is formed. The horizon, L, of the old black hole then terminates at the singularity. We show that the entropy crossing L does not exceed a quarter of the area of the old horizon. Therefore, the covariant entropy bound is satisfied in this process. (author)

  8. Scalar field collapse in Gauss-Bonnet gravity

    Science.gov (United States)

    Banerjee, Narayan; Paul, Tanmoy

    2018-02-01

    We consider a "scalar-Einstein-Gauss-Bonnet" theory in four dimension, where the scalar field couples non-minimally with the Gauss-Bonnet (GB) term. This coupling with the scalar field ensures the non-topological character of the GB term. In this scenario, we examine the possibility for collapsing of the scalar field. Our result reveals that such a collapse is possible in the presence of Gauss-Bonnet gravity for suitable choices of parametric regions. The singularity formed as a result of the collapse is found to be a curvature singularity which is hidden from the exterior by an apparent horizon.

  9. Self-similar Langmuir collapse at critical dimension

    International Nuclear Information System (INIS)

    Berge, L.; Dousseau, Ph.; Pelletier, G.; Pesme, D.

    1991-01-01

    Two spherically symmetric versions of a self-similar collapse are investigated within the framework of the Zakharov equations, namely, one relative to a vectorial electric field and the other corresponding to a scalar modeling of the Langmuir field. Singular solutions of both of them depend on a linear time contraction rate ξ(t) = V(t * -t), where t * and V = -ξ denote, respectively, the collapse time and the constant collapse velocity. It is shown that under certain conditions, only the scalar model admits self-similar solutions, varying regularly as a function of the control parameter V from the subsonic (V >1) regime. (author)

  10. Core-Collapse Supernovae, Neutrinos, and Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Ott, C.D. [TAPIR, California Institute of Technology, Pasadena, California (United States); Kavli Institute for the Physics and Mathematics of the Universe, Kashiwa, Chiba (Japan); O' Connor, E.P. [Canadian Institute for Theoretical Astrophysics, Toronto, Ontario (Canada); Gossan, S.; Abdikamalov, E.; Gamma, U.C.T. [TAPIR, California Institute of Technology, Pasadena, California (United States); Drasco, S. [Grinnell College, Grinnell, Iowa (United States); TAPIR, California Institute of Technology, Pasadena, California (United States)

    2013-02-15

    Core-collapse supernovae are among the most energetic cosmic cataclysms. They are prodigious emitters of neutrinos and quite likely strong galactic sources of gravitational waves. Observation of both neutrinos and gravitational waves from the next galactic or near extragalactic core-collapse supernova will yield a wealth of information on the explosion mechanism, but also on the structure and angular momentum of the progenitor star, and on aspects of fundamental physics such as the equation of state of nuclear matter at high densities and low entropies. In this contribution to the proceedings of the Neutrino 2012 conference, we summarize recent progress made in the theoretical understanding and modeling of core-collapse supernovae. In this, our emphasis is on multi-dimensional processes involved in the explosion mechanism such as neutrino-driven convection and the standing accretion shock instability. As an example of how supernova neutrinos can be used to probe fundamental physics, we discuss how the rise time of the electron antineutrino flux observed in detectors can be used to probe the neutrino mass hierarchy. Finally, we lay out aspects of the neutrino and gravitational-wave signature of core-collapse supernovae and discuss the power of combined analysis of neutrino and gravitational wave data from the next galactic core-collapse supernova.

  11. Core-Collapse Supernovae, Neutrinos, and Gravitational Waves

    International Nuclear Information System (INIS)

    Ott, C.D.; O'Connor, E.P.; Gossan, S.; Abdikamalov, E.; Gamma, U.C.T.; Drasco, S.

    2013-01-01

    Core-collapse supernovae are among the most energetic cosmic cataclysms. They are prodigious emitters of neutrinos and quite likely strong galactic sources of gravitational waves. Observation of both neutrinos and gravitational waves from the next galactic or near extragalactic core-collapse supernova will yield a wealth of information on the explosion mechanism, but also on the structure and angular momentum of the progenitor star, and on aspects of fundamental physics such as the equation of state of nuclear matter at high densities and low entropies. In this contribution to the proceedings of the Neutrino 2012 conference, we summarize recent progress made in the theoretical understanding and modeling of core-collapse supernovae. In this, our emphasis is on multi-dimensional processes involved in the explosion mechanism such as neutrino-driven convection and the standing accretion shock instability. As an example of how supernova neutrinos can be used to probe fundamental physics, we discuss how the rise time of the electron antineutrino flux observed in detectors can be used to probe the neutrino mass hierarchy. Finally, we lay out aspects of the neutrino and gravitational-wave signature of core-collapse supernovae and discuss the power of combined analysis of neutrino and gravitational wave data from the next galactic core-collapse supernova

  12. Skin patch and vaginal ring versus combined oral contraceptives for contraception.

    Science.gov (United States)

    Lopez, Laureen M; Grimes, David A; Gallo, Maria F; Stockton, Laurie L; Schulz, Kenneth F

    2013-04-30

    likely to have missed days of therapy (OR 0.36; 95% CI 0.25 to 0.51). Of four vaginal ring trials, one found ring users had more noncompliance (OR 3.99; 95% CI 1.87 to 8.52), while another showed more compliance with the regimen (OR 1.67; 95% CI 1.04 to 2.68).More patch users discontinued early than COC users. ORs from two meta-analyses were 1.59 (95% CI 1.26 to 2.00) and 1.56 (95% CI 1.18 to 2.06) and another trial showed OR 2.57 (95% CI 0.99 to 6.64). Patch users also had more discontinuation due to adverse events than COC users. Users of the norelgestromin-containing patch reported more breast discomfort, dysmenorrhea, nausea, and vomiting. In the levonorgestrel-containing patch trial, patch users reported less vomiting, headaches, and fatigue.Of 11 ring trials with discontinuation data, two showed the ring group discontinued less than the COC group: OR 0.32 (95% CI 0.16 to 0.66) and OR 0.52 (95% CI 0.31 to 0.88). Ring users were less likely to discontinue due to adverse events in one study (OR 0.32; 95% CI 0.15 to 0.70). Compared to the COC users, ring users had more vaginitis and leukorrhea but less vaginal dryness. Ring users also reported less nausea, acne, irritability, depression, and emotional lability than COC users.For cycle control, only one trial study showed a significant difference. Women in the patch group were less likely to have breakthrough bleeding and spotting. Seven ring studies had bleeding data; four trials showed the ring group generally had better cycle control than the COC group. Effectiveness was not significantly different for the methods compared. Pregnancy data were available from half of the patch trials but two-thirds of ring trials. The patch could lead to more discontinuation than the COC. The patch group had better compliance than the COC group. Compliance data came from half of the patch studies and one-third of the ring trials. Patch users had more side effects than the COC group. Ring users generally had fewer adverse events than

  13. Mapping Ring Particle Cooling across Saturn's Rings with Cassini CIRS

    Science.gov (United States)

    Brooks, Shawn M.; Spilker, L. J.; Edgington, S. G.; Pilorz, S. H.; Deau, E.

    2010-10-01

    Previous studies have shown that the rings' thermal inertia, a measure of their response to changes in the thermal environment, varies from ring to ring. Thermal inertia can provide insight into the physical structure of Saturn's ring particles and their regoliths. Low thermal inertia and quick temperature responses are suggestive of ring particles that have more porous or fluffy regoliths or that are riddled with cracks. Solid, coherent particles can be expected to have higher thermal inertias (Ferrari et al. 2005). Cassini's Composite Infrared Spectrometer has recorded millions of spectra of Saturn's rings since its arrival at Saturn in 2004 (personal communication, M. Segura). CIRS records far infrared radiation between 10 and 600 cm-1 (16.7 and 1000 µm) at focal plane 1 (FP1), which has a field of view of 3.9 mrad. Thermal emission from Saturn's rings peaks in this wavelength range. FP1 spectra can be used to infer ring temperatures. By tracking how ring temperatures vary, we can determine the thermal inertia of the rings. In this work we focus on CIRS observations of the shadowed portion of Saturn's rings. The thermal budget of the rings is dominated by the solar radiation absorbed by its constituent particles. When ring particles enter Saturn's shadow this source of energy is abruptly cut off. As a result, ring particles cool as they traverse Saturn's shadow. From these shadow observations we can create cooling curves at specific locations across the rings. We will show that the rings' cooling curves and thus their thermal inertia vary not only from ring to ring, but by location within the individual rings. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

  14. Collapse of the wave function models, ontology, origin, and implications

    CERN Document Server

    2018-01-01

    This is the first single volume about the collapse theories of quantum mechanics, which is becoming a very active field of research in both physics and philosophy. In standard quantum mechanics, it is postulated that when the wave function of a quantum system is measured, it no longer follows the Schrödinger equation, but instantaneously and randomly collapses to one of the wave functions that correspond to definite measurement results. However, why and how a definite measurement result appears is unknown. A promising solution to this problem are collapse theories in which the collapse of the wave function is spontaneous and dynamical. Chapters written by distinguished physicists and philosophers of physics discuss the origin and implications of wave-function collapse, the controversies around collapse models and their ontologies, and new arguments for the reality of wave function collapse. This is an invaluable resource for students and researchers interested in the philosophy of physics and foundations of ...

  15. Heinrich Events: An Unintentional Discovery And Possible Consequences For The Future

    Science.gov (United States)

    Heinrich, H.

    2017-12-01

    Heinrich Events: An Unintentional Discovery And Its Possible Consequences For The FutureIn the mid 80ties an environmental impact assessment in relation to deep-sea dumping of medium-to-high level radioactive waste was carried out in the eastern margins of the Mid Atlantic Ridge next to the Bay of Biscaye. In one of the box corers recovered for radionuclide analysis a volcanic rock was found that triggered interest because of an unexpected geochemical feature on its surface. Subsequent investigations on the bordering sediment layer revealed hints on a massive ice rafting event possibly released from rapidly collapsing circum-Atlantic ice shields. The search for more of these events in numerous sediment cores exhibited a total of 11 layers since the end of the Saalian/Illinoian glaciation (OIS 6/5 to 2/1). The six events identified in the period OIS 4 to 2 indicated oceanographic conditions in the Northeast Atlantic Ocean that were different to those that prevailed during most time of this glacial period. Later, several authors proposed mechanisms that could have triggered the collapses, e.g. the Binge-Purge model (MacAyeal, 1993) or, access of relatively warm water to the grounding lines in conjunction with isostatic movements (Bassis, 2017). One of the consequences of rapid ice shield collapses is sea level rise. Paleo data report rates of up to several meters per century over a period of several centuries. The process described by Bassis et al. resembles to what nowadays can be observed along the ice margins of Greenland and the Antarctic where (man-made) warmed ocean water attacks the grounding lines. If this initiates something similar to a Heinrich event this is of widespread consequence for coasts, from displacement of populations to marine pollution. Thus, research on past Heinrich Events is important for understanding the future developments of the existing ice shields and climate change.

  16. Moduli destabilization via gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dong-il [Sogang Univ., Seoul (Korea, Republic of). Center for Quantum Spacetime; Pedro, Francisco G. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; Yeom, Dong-han [Sogang Univ., Seoul (Korea, Republic of). Center for Quantum Spacetime; Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics

    2013-06-15

    We examine the interplay between gravitational collapse and moduli stability in the context of black hole formation. We perform numerical simulations of the collapse using the double null formalism and show that the very dense regions one expects to find in the process of black hole formation are able to destabilize the volume modulus. We establish that the effects of the destabilization will be visible to an observer at infinity, opening up a window to a region in spacetime where standard model's couplings and masses can differ significantly from their background values.

  17. Did mud contribute to freeway collapse?

    Science.gov (United States)

    Hough, Susan E.; Friberg, Paul A.; Busby, Robert; Field, Edward F.; Jacob, Klaus H.; Borcherdt, Roger D.

    At least 41 people were killed October 17 when the upper tier of the Nimitz Freeway in Oakland, Calif., collapsed during the Ms = 7.1 Loma Prieta earthquake. Seismologists studying aftershocks concluded that soil conditions and resulting ground motion amplification were important in the failure of the structure and should be considered in the reconstruction of the highway.Structural design weaknesses in the two-tiered freeway, known as the Cypress structure, had been identified before the tragedy. The seismologists, from Lamont Doherty Geological Observatory in Palisades, N.Y., and the U.S. Geological Survey in Menlo Park, Calif., found that the collapsed section was built on fill over Bay mud. A southern section of the Cypress structure built on alluvium of Quaternary age did not collapse (see Figure 1).

  18. An iterative method for the analysis of Cherenkov rings in the HERA-B RICH

    International Nuclear Information System (INIS)

    Staric, M.; Krizan, P.

    1999-01-01

    A new method is presented for the analysis of data recorded with a Ring Imaging Cherenkov (RICH) counter. The method, an iterative sorting of hits on the photon detector, is particularly useful for events where rings overlap considerably. The algorithm was tested on simulated data for the HERA-B experiment

  19. mode of collapse of square single panel reinforced concrete space

    African Journals Online (AJOL)

    The models were loaded directly till collapse. The estimated and actual collapse loads of the five models were compared. The estimated collapse load for the slab was 35 kN/m2. Also, the numerical estimate of the collapse load for the beam was 10.2kN/m (with an equivalent slab load of 40.8kN/m2), while the shear capacity ...

  20. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability

    Science.gov (United States)

    Kääb, Andreas; Leinss, Silvan; Gilbert, Adrien; Bühler, Yves; Gascoin, Simon; Evans, Stephen G.; Bartelt, Perry; Berthier, Etienne; Brun, Fanny; Chao, Wei-An; Farinotti, Daniel; Gimbert, Florent; Guo, Wanqin; Huggel, Christian; Kargel, Jeffrey S.; Leonard, Gregory J.; Tian, Lide; Treichler, Désirée; Yao, Tandong

    2018-02-01

    Surges and glacier avalanches are expressions of glacier instability, and among the most dramatic phenomena in the mountain cryosphere. Until now, the catastrophic collapse of a glacier, combining the large volume of surges and mobility of ice avalanches, has been reported only for the 2002 130 × 106 m3 detachment of Kolka Glacier (Caucasus Mountains), which has been considered a globally singular event. Here, we report on the similar detachment of the entire lower parts of two adjacent glaciers in western Tibet in July and September 2016, leading to an unprecedented pair of giant low-angle ice avalanches with volumes of 68 ± 2 × 106 m3 and 83 ± 2 × 106 m3. On the basis of satellite remote sensing, numerical modelling and field investigations, we find that the twin collapses were caused by climate- and weather-driven external forcing, acting on specific polythermal and soft-bed glacier properties. These factors converged to produce surge-like enhancement of driving stresses and massively reduced basal friction connected to subglacial water and fine-grained bed lithology, to eventually exceed collapse thresholds in resisting forces of the tongues frozen to their bed. Our findings show that large catastrophic instabilities of low-angle glaciers can happen under rare circumstances without historical precedent.

  1. Study of film boiling collapse behavior during vapor explosion

    International Nuclear Information System (INIS)

    Yagi, Masahiro; Yamano, Norihiro; Sugimoto, Jun; Abe, Yutaka; Adachi, Hiromichi; Kobayashi, Tomoyoshi.

    1996-06-01

    Possible large scale vapor explosions are safety concern in nuclear power plants during severe accident. In order to identify the occurrence of the vapor explosion and to estimate the magnitude of the induced pressure pulse, it is necessary to investigate the triggering condition for the vapor explosion. As a first step of this study, scooping analysis was conducted with a simulation code based on thermal detonation model. It was found that the pressure at the collapse of film boiling much affects the trigger condition of vapor explosion. Based on this analytical results, basic experiments were conducted to clarify the collapse conditions of film boiling on a high temperature solid ball surface. Film boiling condition was established by flooding water onto a high temperature stainless steel ball heated by a high frequency induction heater. After the film boiling was established, the pressure pulse generated by a shock tube was applied to collapse the steam film on the ball surface. As the experimental boundary conditions, materials and size of the balls, magnitude of pressure pulse and initial temperature of the carbon and stainless steel balls were varied. The transients of pressure and surface temperature were measured. It was found that the surface temperature on the balls sharply decreased when the pressure wave passed through the film on balls. Based on the surface temperature behavior, the film boiling collapse pattern was found to be categorized into several types. Especially, the pattern for stainless steel ball was categorized into three types; no collapse, collapse and reestablishment after collapse. It was thus clarified that the film boiling collapse behavior was identified by initial conditions and that the pressure required to collapse film boiling strongly depended on the initial surface temperature. The present results will provide a useful information for the analysis of vapor explosions based on the thermal detonation model. (J.P.N.)

  2. Plastic collapse load of corroded steel plates

    Indian Academy of Sciences (India)

    Keywords. Corroded steel plate; plastic collapse; FEM; rough surface. ... The main aim of present work is to study plastic collapse load of corroded steel plates with irregular surfaces under tension. Non-linear finite element method ... Department of Ocean Engineering, AmirKabir University of Technology, 15914 Tehran, Iran ...

  3. Tree-ring proxies of larch bud moth defoliation: latewood width and blue intensity are more precise than tree-ring width.

    Science.gov (United States)

    Arbellay, Estelle; Jarvis, Ingrid; Chavardès, Raphaël D; Daniels, Lori D; Stoffel, Markus

    2018-05-19

    Reconstructions of defoliation by larch bud moth (LBM, Zeiraphera diniana Gn.) based on European larch (Larix decidua Mill.) tree rings have unraveled outbreak patterns over exceptional temporal and spatial scales. In this study, we conducted tree-ring analyses on 105 increment cores of European larch from the Valais Alps, Switzerland. The well-documented history of LBM outbreaks in Valais provided a solid baseline for evaluating the LBM defoliation signal in multiple tree-ring parameters. First, we used tree-ring width measurements along with regional records of LBM outbreaks to reconstruct the occurrence of these events at two sites within the Swiss Alps. Second, we measured earlywood width, latewood width and blue intensity, and compared these parameters with tree-ring width to assess the capacity of each proxy to detect LBM defoliation. A total of six LBM outbreaks were reconstructed for the two sites between AD 1850 and 2000. Growth suppression induced by LBM was, on average, highest in latewood width (59%), followed by total ring width (54%), earlywood width (51%) and blue intensity (26%). We show that latewood width and blue intensity can improve the temporal accuracy of LBM outbreak reconstructions, as both proxies systematically detected LBM defoliation in the first year it occurred, as well as the differentiation between defoliation and non-defoliation years. This study introduces blue intensity as a promising new proxy of insect defoliation and encourages its use in conjunction with latewood width.

  4. GASP. V. Ram-pressure stripping of a ring Hoag's-like galaxy in a massive cluster

    Science.gov (United States)

    Moretti, A.; Poggianti, B. M.; Gullieuszik, M.; Mapelli, M.; Jaffé, Y. L.; Fritz, J.; Biviano, A.; Fasano, G.; Bettoni, D.; Vulcani, B.; D'Onofrio, M.

    2018-04-01

    Through an ongoing MUSE program dedicated to study gas removal processes in galaxies (GAs Stripping Phenomena in galaxies with MUSE, GASP), we have obtained deep and wide integral field spectroscopy of the galaxy JO171. This galaxy resembles the Hoag's galaxy, one of the most spectacular examples of ring galaxies, characterized by a completely detached ring of young stars surrounding a central old spheroid. At odds with the isolated Hoag's galaxy, JO171 is part of a dense environment, the cluster Abell 3667, which is causing gas stripping along tentacles. Moreover, its ring counter-rotates with respect to the central spheroid. The joint analysis of the stellar populations and the gas/stellar kinematics shows that the origin of the ring was not due to an internal mechanism, but was related to a gas accretion event that happened in the distant past, prior to accretion on to Abell 3667, most probably within a filament. More recently, since infall in the cluster, the gas in the ring has been stripped by ram pressure, causing the quenching of star formation in the stripped half of the ring. This is the first observed case of ram-pressure stripping in action in a ring galaxy, and MUSE observations are able to reveal both of the events (accretion and stripping) that caused dramatic transformations in this galaxy.

  5. Constraining quantum collapse inflationary models with CMB data

    Energy Technology Data Exchange (ETDEWEB)

    Benetti, Micol; Alcaniz, Jailson S. [Departamento de Astronomia, Observatório Nacional, 20921-400, Rio de Janeiro, RJ (Brazil); Landau, Susana J., E-mail: micolbenetti@on.br, E-mail: slandau@df.uba.ar, E-mail: alcaniz@on.br [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, PabI, Buenos Aires 1428 (Argentina)

    2016-12-01

    The hypothesis of the self-induced collapse of the inflaton wave function was proposed as responsible for the emergence of inhomogeneity and anisotropy at all scales. This proposal was studied within an almost de Sitter space-time approximation for the background, which led to a perfect scale-invariant power spectrum, and also for a quasi-de Sitter background, which allows to distinguish departures from the standard approach due to the inclusion of the collapse hypothesis. In this work we perform a Bayesian model comparison for two different choices of the self-induced collapse in a full quasi-de Sitter expansion scenario. In particular, we analyze the possibility of detecting the imprint of these collapse schemes at low multipoles of the anisotropy temperature power spectrum of the Cosmic Microwave Background (CMB) using the most recent data provided by the Planck Collaboration. Our results show that one of the two collapse schemes analyzed provides the same Bayesian evidence of the minimal standard cosmological model ΛCDM, while the other scenario is weakly disfavoured with respect to the standard cosmology.

  6. 3D visualization of liquefaction-induced dune collapse in the Navajo Sandstone, Utah, USA

    Science.gov (United States)

    Ford, Colby; Nick, Kevin; Bryant, Gerald

    2015-04-01

    The eolian Navajo Sandstone outcrop on the Canyon Overlook Trail in Zion National Park in Southern Utah is dissected by modern erosion in a way which reveals a great deal of the three-dimensional architecture of a major soft-sediment deformation event. The feature is bounded below by a well-developed interdune complex made up of two superimposed carbonate lenses, above by an irregular truncational surface, and incorporates 3 - 10 m of sandstone over an approximately 2 km area. The material above the deformed interval is undeformed cross-bedded sandstone, with crossbeds downlapping onto the surface of truncation. The stratigraphic confinement of deformation and the irregularity of the upper bounding surface suggests a deformation process which created topography, which was in turn covered by the next upwind dune before it could be eroded flat. The deformed material itself is laterally segmented by a stacked succession of shear surfaces, which all strike approximately perpendicular to the paleo-wind direction and dip at decreasing angles in the down paleo-wind direction. These factors point to the collapse of a major dune into the downwind interdune area, likely initiated by liquefaction in the interdune complex. The foundering of the dune's toe into the liquefied area created a powerful lateral stress field which did not extend significantly into the subsurface. The dune collapse process has been used in the past to describe other soft-sediment deformation features in the Navajo Sandstone, but this site provides a wealth of physical details which were not previously associated with dune collapse. Shear surfaces originate in the interdune deposit as slip between laminae, then the cohesive muds provided support as they were thrust upward to angles of up to 50 degrees. The margins of the site also contain important paleoenvironmental indicators. Dinosaur tracks are exposed both at the extreme upwind and downwind margins of the interdune deposit in and slightly above

  7. Scalar field collapse in Gauss-Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Narayan [Indian Institute of Science Education and Research Kolkata, Department of Physical Sciences, Nadia, West Bengal (India); Paul, Tanmoy [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)

    2018-02-15

    We consider a ''scalar-Einstein-Gauss-Bonnet'' theory in four dimension, where the scalar field couples non-minimally with the Gauss-Bonnet (GB) term. This coupling with the scalar field ensures the non-topological character of the GB term. In this scenario, we examine the possibility for collapsing of the scalar field. Our result reveals that such a collapse is possible in the presence of Gauss-Bonnet gravity for suitable choices of parametric regions. The singularity formed as a result of the collapse is found to be a curvature singularity which is hidden from the exterior by an apparent horizon. (orig.)

  8. Static end-expiratory and dynamic forced expiratory tracheal collapse in COPD

    International Nuclear Information System (INIS)

    O'Donnell, C.R.; Bankier, A.A.; O'Donnell, D.H.; Loring, S.H.; Boiselle, P.M.

    2014-01-01

    Aim: To determine the range of tracheal collapse at end-expiration among chronic obstructive pulmonary disease (COPD) patients and to compare the extent of tracheal collapse between static end-expiratory and dynamic forced-expiratory multidetector-row computed tomography (MDCT). Materials and methods: After institutional review board approval and obtaining informed consent, 67 patients meeting the National Heart, Lung, and Blood Institute (NHLBI)/World Health Organization (WHO) Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria for COPD were sequentially imaged using a 64-detector-row CT machine at end-inspiration, during forced expiration, and at end-expiration. Standardized respiratory coaching and spirometric monitoring were employed. Mean percentage tracheal collapse at end-expiration and forced expiration were compared using correlation analysis, and the power of end-expiratory cross-sectional area to predict excessive forced-expiratory tracheal collapse was computed following construction of receiver operating characteristic (ROC) curves. Results: Mean percentage expiratory collapse among COPD patients was 17 ± 18% at end-expiration compared to 62 ± 16% during forced expiration. Over the observed range of end-expiratory tracheal collapse (approximately 10–50%), the positive predictive value of end-expiratory collapse to predict excessive (≥80%) forced expiratory tracheal collapse was <0.3. Conclusion: COPD patients demonstrate a wide range of end-expiratory tracheal collapse. The magnitude of static end-expiratory tracheal collapse does not predict excessive dynamic expiratory tracheal collapse

  9. Simulation of weak and strong Langmuir collapse regimes

    International Nuclear Information System (INIS)

    Hadzievski, L.R.; Skoric, M.M.; Kono, M.; Sato, T.

    1998-01-01

    In order to check the validity of the self-similar solutions and the existence of weak and strong collapse regimes, direct two dimensional simulation of the time evolution of a Langmuir soliton instability is performed. Simulation is based on the Zakharov model of strong Langmuir turbulence in a weakly magnetized plasma accounting for the full ion dynamics. For parameters considered, agreement with self-similar dynamics of the weak collapse type is found with no evidence of the strong Langmuir collapse. (author)

  10. Collapse of Incoherent Light Beams in Inertial Bulk Kerr Media

    DEFF Research Database (Denmark)

    Bang, Ole; Edmundson, Darran; Królikowski, Wieslaw

    1999-01-01

    We use the coherent density function theory to show that partially coherent beams are unstable and may collapse in inertial bulk Kerr media. The threshold power for collapse, and its dependence on the degree of coherence, is found analytically and checked-numerically. The internal dynamics of the...... of the walk-off modes is illustrated for collapsing and diffracting partially coherent beams.......We use the coherent density function theory to show that partially coherent beams are unstable and may collapse in inertial bulk Kerr media. The threshold power for collapse, and its dependence on the degree of coherence, is found analytically and checked-numerically. The internal dynamics...

  11. Gravitational collapse from smooth initial data with vanishing radial pressure

    International Nuclear Information System (INIS)

    Mahajan, Ashutosh; Goswami, Rituparno; Joshi, Pankaj S

    2005-01-01

    We study here the spherical gravitational collapse assuming initial data to be necessarily smooth, as motivated by requirements based on physical reasonableness. A tangential pressure model is constructed and analysed in order to understand the final fate of collapse explicitly in terms of the density and pressure parameters at the initial epoch from which the collapse develops. It is seen that both black holes and naked singularities are produced as collapse end states even when the initial data are smooth. We show that the outcome is decided entirely in terms of the initial data, as given by density, pressure and velocity profiles at the initial epoch, from which the collapse evolves

  12. Identification and behavior of collapsible soils : [technical summary].

    Science.gov (United States)

    2011-01-01

    Collapsible soils are susceptible to large volumetric strains when they become saturated. Numerous soil types : fall in the general category of collapsible soils, including : loess, a well-known aeolian deposit, present throughout : most of Indiana. ...

  13. Experimental buckling investigation of ring-stiffened cylindrical shells under unsymmetrical axial loads

    International Nuclear Information System (INIS)

    Baker, W.E.; Babock, C.D.; Bennett, J.G.

    1983-01-01

    Six steel shells having nuclear containment-like features were fabricated and loaded to failure with an offset axial load. The shells of R/t = 500 buckled plastically. Four of the shells had reinforced circular cutouts. These penetrations were sized to cut no ring-stiffener, a single, two- or three-ring stiffeners. Reinforcing and framing around the penetrations were based upon the area-replacement rule of the applicable portion of the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code and were of a design to stimulate actual practice for nuclear steel containments. Prior to testing, imperfections were measured and strain gages were applied to determine information on load distribution at the ends of the cylinder and strain fields at areas likely to buckle. Buckling loads were determined for an axial load applied with an eccentricity of R/2 where R is the cylinder radius. The results showed that the buckling load and mode for the shell having a penetration that did not cut a ring stiffener were essentially the same as those for the unpenetrated shell. The buckling loads for the penetrated shells in which stiffeners were interrupted were less than that for the unpenetrated shells. Results of all tests are compared to numerical solutions carried out using a nonlinear collapse analysis and to the predictions of ASME Code Case N-284

  14. Electron capture and stellar collapse

    International Nuclear Information System (INIS)

    Chung, K.C.

    1979-01-01

    In order, to investigate the function of electron capture in the phenomenon of pre-supernovae gravitacional collapse, an hydrodynamic caculation was carried out, coupling capture, decay and nuclear reaction equation system. A star simplified model (homogeneous model) was adopted using fermi ideal gas approximation for tthe sea of free electrons and neutrons. The non simplified treatment from quasi-static evolution to collapse is presented. The capture and beta decay rates, as wellas neutron delayed emission, were calculated by beta decay crude theory, while the other reaction rates were determined by usual theories. The preliminary results are presented. (M.C.K.) [pt

  15. Collapse, environment, and society

    Science.gov (United States)

    2012-01-01

    Historical collapse of ancient states poses intriguing social-ecological questions, as well as potential applications to global change and contemporary strategies for sustainability. Five Old World case studies are developed to identify interactive inputs, triggers, and feedbacks in devolution. Collapse is multicausal and rarely abrupt. Political simplification undermines traditional structures of authority to favor militarization, whereas disintegration is preconditioned or triggered by acute stress (insecurity, environmental or economic crises, famine), with breakdown accompanied or followed by demographic decline. Undue attention to stressors risks underestimating the intricate interplay of environmental, political, and sociocultural resilience in limiting the damages of collapse or in facilitating reconstruction. The conceptual model emphasizes resilience, as well as the historical roles of leaders, elites, and ideology. However, a historical model cannot simply be applied to contemporary problems of sustainability without adjustment for cumulative information and increasing possibilities for popular participation. Between the 14th and 18th centuries, Western Europe responded to environmental crises by innovation and intensification; such modernization was decentralized, protracted, flexible, and broadly based. Much of the current alarmist literature that claims to draw from historical experience is poorly focused, simplistic, and unhelpful. It fails to appreciate that resilience and readaptation depend on identified options, improved understanding, cultural solidarity, enlightened leadership, and opportunities for participation and fresh ideas. PMID:22371579

  16. Gravitational wave generation by stellar core collapse

    International Nuclear Information System (INIS)

    Moore, T.A.

    1981-01-01

    Stars which have masses greater than 5 to 8 solar masses are thought to undergo a stage of catastrophic core collapse and subsequent supernova explosion at the end of their lives. If the core is not spherically symmetric, the bounce which halts its collapse at transnuclear densities will generate a pulse of gravitational waves. This thesis presents a fully relativistic model of core collapse which treats deviations from spherical symmetry as small perturbations on a spherical background. This model may be used to predict qualitative and quantitative features of the gravitational radiation emitted by stellar cores with odd-parity, axisymmetric fluid perturbations, and represents a first step in the application of perturbative methods to more general asymmetries. The first chapter reviews the present consensus on the physics of core collapse and outlines the important features, assumptions, and limitations of the model. A series of model runs are presented and discussed. Finally, several proposals for future research are presented. Subsequent chapters explore in detail the mathematical features of the present model and its realization on the computer

  17. Newton force from wave function collapse: speculation and test

    International Nuclear Information System (INIS)

    Diósi, Lajos

    2014-01-01

    The Diosi-Penrose model of quantum-classical boundary postulates gravity-related spontaneous wave function collapse of massive degrees of freedom. The decoherence effects of the collapses are in principle detectable if not masked by the overwhelming environmental decoherence. But the DP (or any other, like GRW, CSL) spontaneous collapses are not detectable themselves, they are merely the redundant formalism of spontaneous decoherence. To let DP collapses become testable physics, recently we extended the DP model and proposed that DP collapses are responsible for the emergence of the Newton gravitational force between massive objects. We identified the collapse rate, possibly of the order of 1/ms, with the rate of emergence of the Newton force. A simple heuristic emergence (delay) time was added to the Newton law of gravity. This non-relativistic delay is in peaceful coexistence with Einstein's relativistic theory of gravitation, at least no experimental evidence has so far surfaced against it. We derive new predictions of such a 'lazy' Newton law that will enable decisive laboratory tests with available technologies. The simple equation of 'lazy' Newton law deserves theoretical and experimental studies in itself, independently of the underlying quantum foundational considerations.

  18. Prediction of the wetting-induced collapse behaviour using the soil-water characteristic curve

    Science.gov (United States)

    Xie, Wan-Li; Li, Ping; Vanapalli, Sai K.; Wang, Jia-Ding

    2018-01-01

    Collapsible soils go through three distinct phases in response to matric suction decrease during wetting: pre-collapse phase, collapse phase and post-collapse phase. It is reasonable and conservative to consider a strain path that includes a pre-collapse phase in which constant volume is maintained and a collapse phase that extends to the final matric suction to be experienced by collapsible soils during wetting. Upon this assumption, a method is proposed for predicting the collapse behaviour due to wetting. To use the proposed method, two parameters, critical suction and collapse rate, are required. The former is the suction value below which significant collapse deformations take place in response to matric suction decease, and the later is the rate at which void ratio reduces with matric suction in the collapse phase. The value of critical suction can be estimated from the water-entry value taking account of both the microstructure characteristics and collapse mechanism of fine-grained collapsible soils; the wetting soil-water characteristic curve thus can be used as a tool. Five sets of data of wetting tests on both compacted and natural collapsible soils reported in the literature were used to validate the proposed method. The critical suction values were estimated from the water-entry value with parameter a that is suggested to vary between 0.10 and 0.25 for compacted soils and to be lower for natural collapsible soils. The results of a field permeation test in collapsible loess soils were also used to validate the proposed method. The relatively good agreement between the measured and estimated collapse deformations suggests that the proposed method can provide reasonable prediction of the collapse behaviour due to wetting.

  19. Noncrossing timelike singularities of irrotational dust collapse

    International Nuclear Information System (INIS)

    Liang, E.P.T.

    1979-01-01

    Known naked singularities in spherical dust collapse are either due to shell-crossing or localized to the central world line. They will probably be destroyed by pressure gradients or blue-shift instabilities. To violate the cosmic censorship hypothesis in a more convincing and general context, collapse solutions with naked singularities that are at least nonshell-crossing and nonlocalized need to be constructed. Some results concerning the probable structure of a class of nonshellcrossing and nonlocalized timelike singularities are reviewed. The cylindrical dust model is considered but this model is not asymptotically flat. To make these noncrossing singularities viable counter examples to the cosmic censorship hypothesis, the occurrence of such singularities in asymptotically flat collapse needs to be demonstrated. (UK)

  20. Steroid-associated hip joint collapse in bipedal emus.

    Directory of Open Access Journals (Sweden)

    Li-Zhen Zheng

    Full Text Available In this study we established a bipedal animal model of steroid-associated hip joint collapse in emus for testing potential treatment protocols to be developed for prevention of steroid-associated joint collapse in preclinical settings. Five adult male emus were treated with a steroid-associated osteonecrosis (SAON induction protocol using combination of pulsed lipopolysaccharide (LPS and methylprednisolone (MPS. Additional three emus were used as normal control. Post-induction, emu gait was observed, magnetic resonance imaging (MRI was performed, and blood was collected for routine examination, including testing blood coagulation and lipid metabolism. Emus were sacrificed at week 24 post-induction, bilateral femora were collected for micro-computed tomography (micro-CT and histological analysis. Asymmetric limping gait and abnormal MRI signals were found in steroid-treated emus. SAON was found in all emus with a joint collapse incidence of 70%. The percentage of neutrophils (Neut % and parameters on lipid metabolism significantly increased after induction. Micro-CT revealed structure deterioration of subchondral trabecular bone. Histomorphometry showed larger fat cell fraction and size, thinning of subchondral plate and cartilage layer, smaller osteoblast perimeter percentage and less blood vessels distributed at collapsed region in SAON group as compared with the normal controls. Scanning electron microscope (SEM showed poor mineral matrix and more osteo-lacunae outline in the collapsed region in SAON group. The combination of pulsed LPS and MPS developed in the current study was safe and effective to induce SAON and deterioration of subchondral bone in bipedal emus with subsequent femoral head collapse, a typical clinical feature observed in patients under pulsed steroid treatment. In conclusion, bipedal emus could be used as an effective preclinical experimental model to evaluate potential treatment protocols to be developed for prevention of

  1. Collapse Scenarios of High-Rise Buildings Using Plastic Limit Analysis

    Directory of Open Access Journals (Sweden)

    G. Liu

    2009-01-01

    Full Text Available The Twin Towers of the World Trade Center (WTC in New York, USA collapsed on 11 September, 2001. The incident is regarded as the most severe disaster for high-rise buildings in history. Investigations into the collapse scenarios are still being conducted. Possible collapse scenarios assessed by local and international experts were reported. Another possible collapse scenario of the WTC based on two hypotheses was proposed in this paper, and the idea of plastic limit analysis was applied to evaluate the approximate limit load. According to the theory analysis and numerical calculations, a conclusion can be drawn that the large fires, aroused by the terrorist attack, play a significant role on the collapse of the WTC.

  2. Conceptual design of a moving-ring reactor

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.; Ashworth, C.P.; Abreu, K.E.

    1983-01-01

    A design of a prototype Moving-Ring Reactor has been completed. The fusion fuel is confined in current-carrying rings of magnetically field-reversed plasma (''compact toroids''). The plasma rings, formed by a coaxial plasma gun, undergo adiabatic magnetic compression to ignition temperature while they are being injected into the reactor's burner section. The cylindrical burner chamber is divided into three ''burn stations''. Separator coils and a slight axial guide-field gradient are used to shuttle the ignited toroids rapidly from one burn station to the next, pausing for one third of the total burn time at each station. D-T- 3 He ice pellets refuel the rings at a rate which maintains constant radiated power. The first wall and tritium breeding blanket designs make credible use of helium cooling, SiC and Li 2 O to minimize structural radioactivity. ''Hands-on'' maintenance is possible on all reactor components outside the blanket. The first wall and blanket are designed to shut the reactor down passively in the event of a loss-of-coolant or loss-of-flow accident. Helium removes heat from the first wall, blanket and shield, and is used in a closed-cycle gas turbine to produce electricity. Energy residing in the plasma ring at the end of the burn is recovered via magnetic expansion. Electrostatic direct conversion is not used in this design. The reactor produces a constant net power of 99 MW(e). (author)

  3. Almagest, a new trackless ring finding algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lamanna, G., E-mail: gianluca.lamanna@cern.ch

    2014-12-01

    A fast ring finding algorithm is a crucial point to allow the use of RICH in on-line trigger selection. The present algorithms are either too slow (with respect to the incoming data rate) or need the information coming from a tracking system. Digital image techniques, assuming limited computing power (as for example Hough transform), are not perfectly robust for what concerns the noise immunity. We present a novel technique based on Ptolemy's theorem for multi-ring pattern recognition. Starting from purely geometrical considerations, this algorithm (also known as “Almagest”) allows fast and trackless rings reconstruction, with spatial resolution comparable with other offline techniques. Almagest is particularly suitable for parallel implementation on multi-cores machines. Preliminary tests on GPUs (multi-cores video card processors) show that, thanks to an execution time smaller than 10 μs per event, this algorithm could be employed for on-line selection in trigger systems. The user case of the NA62 RICH trigger, based on GPU, will be discussed. - Highlights: • A new algorithm for fast multiple ring searching in RICH detectors is presented. • The Almagest algorithm exploits the computing power of Graphics processers (GPUs). • A preliminary implementation for on-line triggering in the NA62 experiment shows encouraging results.

  4. Collapse arresting in an inhomogeneous two-dimensional nonlinear Schrodinger model

    DEFF Research Database (Denmark)

    Schjødt-Eriksen, Jens; Gaididei, Yuri Borisovich; Christiansen, Peter Leth

    2001-01-01

    Collapse of (2 + 1)-dimensional beams in the inhomogeneous two-dimensional cubic nonlinear Schrodinger equation is analyzed numerically and analytically. It is shown that in the vicinity of a narrow attractive inhomogeneity, the collapse of beams that in a homogeneous medium would collapse may...

  5. On the collapse of iron stellar cores

    International Nuclear Information System (INIS)

    Barkat, Z.; Rakavy, G.; Reiss, Y.; Wilson, J.R.

    1975-01-01

    The collapse of iron stellar cores is investigated to see whether the outward shock produced by the bounce at neutron star density is sufficient to burn appreciable amounts of the envelope around the iron core. Several models were tried, and in all cases no appreciable burn took place; hence no explosion results from the collapse of these models

  6. The Collapse of the 'Celtic Tiger' Narrative

    DEFF Research Database (Denmark)

    Böss, Michael

    2011-01-01

    An account of the factors that led to the collapse of the 'Celtic Tiger' economy in 2008 and an explanation of the political effects and implications for Irish identity.......An account of the factors that led to the collapse of the 'Celtic Tiger' economy in 2008 and an explanation of the political effects and implications for Irish identity....

  7. Seeking for toroidal event horizons from initially stationary BH configurations

    International Nuclear Information System (INIS)

    Ponce, Marcelo; Lousto, Carlos; Zlochower, Yosef

    2011-01-01

    We construct and evolve non-rotating vacuum initial data with a ring singularity, based on a simple extension of the standard Brill-Lindquist multiple BH initial data, and search for event horizons with spatial slices that are toroidal when the ring radius is sufficiently large. While evolutions of the ring singularity are not numerically feasible for large radii, we find some evidence, based on configurations of multiple BHs arranged in a ring, that this configuration leads to singular limit where the horizon width has zero size, possibly indicating the presence of a naked singularity, when the radius of the ring is sufficiently large. This is in agreement with previous studies that have found that there is no apparent horizon surrounding the ring singularity when the ring's radius is larger than about twice its mass.

  8. Environmental consequences of the Retsof Salt Mine roof collapse

    Science.gov (United States)

    Yager, Richard M.

    2013-01-01

    In 1994, the largest salt mine in North America, which had been in operation for more than 100 years, catastrophically flooded when the mine ceiling collapsed. In addition to causing the loss of the mine and the mineral resources it provided, this event formed sinkholes, caused widespread subsidence to land, caused structures to crack and subside, and changed stream flow and erosion patterns. Subsequent flooding of the mine drained overlying aquifers, changed the groundwater salinity distribution (rendering domestic wells unusable), and allowed locally present natural gas to enter dwellings through water wells. Investigations including exploratory drilling, hydrologic and water-quality monitoring, geologic and geophysical studies, and numerical simulation of groundwater flow, salinity, and subsidence have been effective tools in understanding the environmental consequences of the mine collapse and informing decisions about management of those consequences for the future. Salt mines are generally dry, but are susceptible to leaks and can become flooded if groundwater from overlying aquifers or surface water finds a way downward into the mined cavity through hundreds of feet of rock. With its potential to flood the entire mine cavity, groundwater is a constant source of concern for mine operators. The problem is compounded by the viscous nature of salt and the fact that salt mines commonly lie beneath water-bearing aquifers. Salt (for example halite or potash) deforms and “creeps” into the mined openings over time spans that range from years to centuries. This movement of salt can destabilize the overlying rock layers and lead to their eventual sagging and collapse, creating permeable pathways for leakage of water and depressions or openings at land surface, such as sinkholes. Salt is also highly soluble in water; therefore, whenever water begins to flow into a salt mine, the channels through which it flows increase in diameter as the surrounding salt dissolves

  9. Managing the effects of accelerated glacial melting on volcanic collapse and debris flows: Planchon-Peteroa Volcano, Southern Andes

    Science.gov (United States)

    Tormey, Daniel

    2010-11-01

    Glaciated mountains are among the most sensitive environments to climatic changes, and recent work has shown that large-scale glacial melting, including at the end of the Pleistocene, caused a significant increase in the incidence of large volcanic sector collapse and debris flows on then-active volcanoes. With current accelerated rates of glacial melting, glaciated active volcanoes are at an increasing risk of sector collapse, debris flow and landslide. These catastrophic events are Earth's most damaging erosion phenomenon, causing extensive property damage and loss of life. This paper illustrates these effects in well-studied settings, focusing on the end-Pleistocene to Holocene glaciovolcanic growth and destruction of the cone of the active volcano Planchon-Peteroa in the Andean Southern Volcanic Zone at latitude 35° 15' S, along the border between Chile and Argentina. The development of the volcano over the last 14,000 years illustrates how glacial melting and magmatic activity can trigger landslides and sector collapses. Planchon had a large sector collapse that produced a highly mobile and erosive debris avalanche 11,000 years BP, and other slope instabilities during the end-Pleistocene/early Holocene deglaciation. The summit amphitheater left after the sector collapse was subject to alternating periods of glaciation and melting-induced lake formation. Breaching of the moraine dams then formed lahars and landslides originating at the western edge of the summit amphitheater, and the deposits are preserved along the western flank of the volcano. Deep incision of moraine deposits further down the western slope of the volcano indicates that the lahars and landslides were water-rich and had high erosive power. As illustrated by Planchon-Peteroa, the interplay among glacial growth and melting, magmatic activity, and slope stability is complex, but must be accounted for in volcanic hazard assessment. Planchon-Peteroa currently has the southernmost temperate zone

  10. Sonographic Analysis of the Collapsed Gall Bladder

    International Nuclear Information System (INIS)

    Han, Sang Suk; Choi, Jae Young; Choi, Seok Jin; Eun, Chung Ki; Nam, Kyung Jin; Lee, Jeong Mi

    1996-01-01

    This study was done to find answers for further following questions in cases of the collapsed gallbladder (GB) : What is the probability of the presence of stone when stony echo is visible in GB area? What is the probability of the presence of stone when only acoustic shadow is visible from GB area? What are the associated GB pathologies except stone or cholecystitis in previously mentioned situations and is it possible to differentiate them? What are the underlying pathologies of GB collapse without stony echo or acoustic shadow and is it possible to differentiate them sonographic ally? What are the rate and causes of re-expansion of the collapsed GB on follow-up study? Prospective study was done in 157 cases of collapsed GB with no visible or nearly no visible bile filled lumen in recent 3 years. Sonographic analysis for GB lesions was done in 61 confirmed cases. Changing pattern of GB lumen on follow-up study and their underlying pathologies were analyzed in 28 cases. Initial sonographic examination was done with 3 or 3.5 MHz transducer. No other transducer was used in cases showing stony echo or acoustic shadow in GB area, but additional examination was done with 5 or 7-4 MHz transducer in cases without stony echo or acoustic shadow. Among 31 cases, which showed stony echo, stone was found in 30 cases and milk of calcium bile in one case. Stone was present in all of the 11 cases which showed only acoustic shadow from the collapsed GB without stony echo. GB cancer was accompanied in 2 cases among upper 42 cases, and its possibility could be suspected sonographic ally. Underlying pathologies of the 19cases without stony echo or acoustic shadow were as follows : GB stone (3), cholecystitis (6), GB cancer (1), bile plug syndrome (1), hepatitis (5), and ascites (3). And sonographic differentiation of the underlying causes for the collapse was possible in only 1 case of GB cancer. Among 28 cases of the follow-up study, 20 cases showed re-expansion of the GB lumen and

  11. Brief communication: 3-D reconstruction of a collapsed rock pillar from Web-retrieved images and terrestrial lidar data - the 2005 event of the west face of the Drus (Mont Blanc massif)

    Science.gov (United States)

    Guerin, Antoine; Abellán, Antonio; Matasci, Battista; Jaboyedoff, Michel; Derron, Marc-Henri; Ravanel, Ludovic

    2017-07-01

    In June 2005, a series of major rockfall events completely wiped out the Bonatti Pillar located in the legendary Drus west face (Mont Blanc massif, France). Terrestrial lidar scans of the west face were acquired after this event, but no pre-event point cloud is available. Thus, in order to reconstruct the volume and the shape of the collapsed blocks, a 3-D model has been built using photogrammetry (structure-from-motion (SfM) algorithms) based on 30 pictures collected on the Web. All these pictures were taken between September 2003 and May 2005. We then reconstructed the shape and volume of the fallen compartment by comparing the SfM model with terrestrial lidar data acquired in October 2005 and November 2011. The volume is calculated to 292 680 m3 (±5.6 %). This result is close to the value previously assessed by Ravanel and Deline (2008) for this same rock avalanche (265 000 ± 10 000 m3). The difference between these two estimations can be explained by the rounded shape of the volume determined by photogrammetry, which may lead to a volume overestimation. However it is not excluded that the volume calculated by Ravanel and Deline (2008) is slightly underestimated, the thickness of the blocks having been assessed manually from historical photographs.

  12. Collapse above the world's largest potash mine (Ural, Russia.

    Directory of Open Access Journals (Sweden)

    Andrejchuk Vjacheslav

    2002-01-01

    Full Text Available This paper reports the results of the study of a huge collapse that occurred in June 1986 within the area of the 3rd Berezniki potash mine (the Verkhnekamsky potash deposit, Ural. Processes that took place between the first appearance of a water inflow through the mine roof and the eventual collapse are reconstructed in detail. The origin and development of a cavity that induced the collapse are revealed. Two factors played a major role in the formation of the collapse: the presence of a tectonic fold/rupture zone with in both the salt sequence and the overburden (the zone of crush and enhanced permeability, and the ductile pillars mining system.

  13. Variations in Ring Particle Cooling across Saturn's Rings with Cassini CIRS

    Science.gov (United States)

    Brooks, S. M.; Spilker, L. J.; Pilorz, S.; Edgington, S. G.; Déau, E.; Altobelli, N.

    2010-12-01

    Cassini's Composite Infrared Spectrometer has recorded over two million of spectra of Saturn's rings in the far infrared since arriving at Saturn in 2004. CIRS records far infrared radiation between 10 and 600 cm-1 ( 16.7 and 1000 μ {m} ) at focal plane 1 (FP1), which has a field of view of 3.9 mrad. Thermal emission from Saturn’s rings peaks in this wavelength range. Ring temperatures can be inferred from FP1 data. By tracking how ring temperatures vary, we can determine the thermal inertia of the rings. Previous studies have shown that the rings' thermal inertia, a measure of their response to changes in the thermal environment, varies from ring to ring. Thermal inertia can provide insight into the physical structure of Saturn's ring particles and their regoliths. Low thermal inertia and rapidly changing temperatures are suggestive of ring particles that have more porous or fluffy regoliths or that are riddled with cracks. Solid particles can be expected to have higher thermal inertias. Ferrari et al. (2005) fit thermal inertia values of 5218 {Jm)-2 {K}-1 {s}-1/2 to their B ring data and 6412 {Jm)-2 {K}-1 {s}-1/2 to their C ring data. In this work we focus on CIRS observations of the shadowed portion of Saturn's rings. The rings’ thermal budget is dominated by its absorption of solar radiation. As a result, ring particles abruptly cool as they traverse Saturn's shadow. From these shadow observations we can create cooling curves at specific locations across the rings. We will show that the rings' cooling curves and thus their thermal inertia vary not only from ring to ring, but by location within the individual rings. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.

  14. Inertial collapse of bubble pairs near a solid surface

    Science.gov (United States)

    Alahyari Beig, Shahaboddin; Johnsen, Eric

    2017-11-01

    Cavitation occurs in a variety of applications ranging from naval structures to biomedical ultrasound. One important consequence is structural damage to neighboring surfaces following repeated inertial collapse of vapor bubbles. Although the mechanical loading produced by the collapse of a single bubble has been widely investigated, less is known about the detailed dynamics of the collapse of multiple bubbles. In such a problem, the bubble-bubble interactions typically affect the dynamics, e.g., by increasing the non-sphericity of the bubbles and amplifying/hindering the collapse intensity depending on the flow parameters. Here, we quantify the effects of bubble-bubble interactions on the bubble dynamics, as well as the pressures/temperatures produced by the collapse of a pair of gas bubbles near a rigid surface. We perform high-resolution simulations of this problem by solving the three-dimensional compressible Navier-Stokes equations for gas/liquid flows. The results are used to investigate the non-spherical bubble dynamics and characterize the pressure and temperature fields based on the relevant parameters entering the problem: stand-off distance, geometrical configuration (angle, relative size, distance), collapse strength. This research was supported in part by ONR Grant N00014-12-1-0751 and NSF Grant CBET 1253157.

  15. The Collapse of Ecosystem Engineer Populations

    Directory of Open Access Journals (Sweden)

    José F. Fontanari

    2018-01-01

    Full Text Available Humans are the ultimate ecosystem engineers who have profoundly transformed the world’s landscapes in order to enhance their survival. Somewhat paradoxically, however, sometimes the unforeseen effect of this ecosystem engineering is the very collapse of the population it intended to protect. Here we use a spatial version of a standard population dynamics model of ecosystem engineers to study the colonization of unexplored virgin territories by a small settlement of engineers. We find that during the expansion phase the population density reaches values much higher than those the environment can support in the equilibrium situation. When the colonization front reaches the boundary of the available space, the population density plunges sharply and attains its equilibrium value. The collapse takes place without warning and happens just after the population reaches its peak number. We conclude that overpopulation and the consequent collapse of an expanding population of ecosystem engineers is a natural consequence of the nonlinear feedback between the population and environment variables.

  16. Structure and origin of Australian ring and dome features with reference to the search for asteroid impact events

    Science.gov (United States)

    Glikson, Andrew

    2018-01-01

    Ring, dome and crater features on the Australian continent and shelf include (A) 38 structures of confirmed or probable asteroid and meteorite impact origin and (B) numerous buried and exposed ring, dome and crater features of undefined origin. A large number of the latter include structural and geophysical elements consistent with impact structures, pending test by field investigations and/or drilling. This paper documents and briefly describes 43 ring and dome features with the aim of appraising their similarities and differences from those of impact structures. Discrimination between impact structures and igneous plugs, volcanic caldera and salt domes require field work and/or drilling. Where crater-like morphological patterns intersect pre-existing linear structural features and contain central morphological highs and unique thrust and fault patterns an impact connection needs to tested in the field. Hints of potential buried impact structures may be furnished by single or multi-ring TMI patterns, circular TMI quiet zones, corresponding gravity patterns, low velocity and non-reflective seismic zones.

  17. Can a collapse of global civilization be avoided?

    OpenAIRE

    Ehrlich, Paul R.; Ehrlich, Anne H.

    2013-01-01

    Environmental problems have contributed to numerous collapses of civilizations in the past. Now, for the first time, a global collapse appears likely. Overpopulation, overconsumption by the rich and poor choices of technologies are major drivers; dramatic cultural change provides the main hope of averting calamity.

  18. Can a collapse of global civilization be avoided?

    Science.gov (United States)

    Ehrlich, Paul R; Ehrlich, Anne H

    2013-03-07

    Environmental problems have contributed to numerous collapses of civilizations in the past. Now, for the first time, a global collapse appears likely. Overpopulation, overconsumption by the rich and poor choices of technologies are major drivers; dramatic cultural change provides the main hope of averting calamity.

  19. Nonlinear Progressive Collapse Analysis Including Distributed Plasticity

    Directory of Open Access Journals (Sweden)

    Mohamed Osama Ahmed

    2016-01-01

    Full Text Available This paper demonstrates the effect of incorporating distributed plasticity in nonlinear analytical models used to assess the potential for progressive collapse of steel framed regular building structures. Emphasis on this paper is on the deformation response under the notionally removed column, in a typical Alternate Path (AP method. The AP method employed in this paper is based on the provisions of the Unified Facilities Criteria – Design of Buildings to Resist Progressive Collapse, developed and updated by the U.S. Department of Defense [1]. The AP method is often used for to assess the potential for progressive collapse of building structures that fall under Occupancy Category III or IV. A case study steel building is used to examine the effect of incorporating distributed plasticity, where moment frames were used on perimeter as well as the interior of the three dimensional structural system. It is concluded that the use of moment resisting frames within the structural system will enhance resistance to progressive collapse through ductile deformation response and that it is conserative to ignore the effects of distributed plasticity in determining peak displacement response under the notionally removed column.

  20. MUSE observations of the counter-rotating nuclear ring in NGC 7742

    Science.gov (United States)

    Martinsson, Thomas P. K.; Sarzi, Marc; Knapen, Johan H.; Coccato, Lodovico; Falcón-Barroso, Jesús; Elmegreen, Bruce G.; de Zeeuw, Tim

    2018-04-01

    Aims: We present results from MUSE observations of the nearly face-on disk galaxy NGC 7742. This galaxy hosts a spectacular nuclear ring of enhanced star formation, which is unusual in that it is hosted by a non-barred galaxy, and because this star formation is most likely fuelled by externally accreted gas that counter-rotates with respect to its main stellar body. Methods: We used the MUSE data to derive the star-formation history (SFH) and accurately measure the stellar and ionized-gas kinematics of NGC 7742 in its nuclear, bulge, ring, and disk regions. Results: We have mapped the previously known gas counter-rotation well outside the ring region and deduce the presence of a slightly warped inner disk, which is inclined at approximately 6° compared to the outer disk. The gas-disk inclination is well constrained from the kinematics; the derived inclination 13.7° ± 0.4° agrees well with that derived from photometry and from what one expects using the inverse Tully-Fisher relation. We find a prolonged SFH in the ring with stellar populations as old as 2-3 Gyr and an indication that the star formation triggered by the minor merger event was delayed in the disk compared to the ring. There are two separate stellar components: an old population that counter-rotates with the gas, and a young one, concentrated to the ring, that co-rotates with the gas. We recover the kinematics of the old stars from a two-component fit, and show that combining the old and young stellar populations results in the erroneous average velocity of nearly zero found from a one-component fit. Conclusions: The spatial resolution and field of view of MUSE allow us to establish the kinematics and SFH of the nuclear ring in NGC 7742. We show further evidence that this ring has its origin in a minor merger event, possibly 2-3 Gyr ago. Data used for the flux and kinematic maps (Figs. 1 and 3-5) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or

  1. THE PROGENITOR DEPENDENCE OF THE PRE-EXPLOSION NEUTRINO EMISSION IN CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    O'Connor, Evan; Ott, Christian D.

    2013-01-01

    We perform spherically symmetric general-relativistic simulations of core collapse and the postbounce pre-explosion phase in 32 presupernova stellar models of solar metallicity with zero-age main-sequence masses of 12-120 M ☉ . Using energy-dependent three-species neutrino transport in the two-moment approximation with an analytic closure, we show that the emitted neutrino luminosities and spectra follow very systematic trends that are correlated with the compactness (∼M/R) of the progenitor star's inner regions via the accretion rate in the pre-explosion phase. We find that these qualitative trends depend only weakly on the nuclear equation of state (EOS), but quantitative observational statements will require independent constraints on the EOS and the rotation rate of the core as well as a more complete understanding of neutrino oscillations. We investigate the simulated response of water Cherenkov detectors to the electron antineutrino fluxes from our models and find that the large statistics of a galactic core collapse event may allow robust conclusions on the inner structure of the progenitor star.

  2. THE PROGENITOR DEPENDENCE OF THE PRE-EXPLOSION NEUTRINO EMISSION IN CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Evan; Ott, Christian D., E-mail: evanoc@tapir.caltech.edu, E-mail: cott@tapir.caltech.edu [TAPIR, California Institute of Technology, Mailcode 350-17, Pasadena, CA 91125 (United States)

    2013-01-10

    We perform spherically symmetric general-relativistic simulations of core collapse and the postbounce pre-explosion phase in 32 presupernova stellar models of solar metallicity with zero-age main-sequence masses of 12-120 M {sub Sun }. Using energy-dependent three-species neutrino transport in the two-moment approximation with an analytic closure, we show that the emitted neutrino luminosities and spectra follow very systematic trends that are correlated with the compactness ({approx}M/R) of the progenitor star's inner regions via the accretion rate in the pre-explosion phase. We find that these qualitative trends depend only weakly on the nuclear equation of state (EOS), but quantitative observational statements will require independent constraints on the EOS and the rotation rate of the core as well as a more complete understanding of neutrino oscillations. We investigate the simulated response of water Cherenkov detectors to the electron antineutrino fluxes from our models and find that the large statistics of a galactic core collapse event may allow robust conclusions on the inner structure of the progenitor star.

  3. Static axisymmetric discs and gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Chamorro, A.; Gregory, R.; Stewart, J.M.

    1987-09-08

    Regular static axisymmetric vacuum solutions of Einstein's field equations representing the exterior field of a finite thin disc are found. These are used to describe the slow collapse of a disc-like object. If no conditions are placed on the matter, a naked singularity is formed and the cosmic censorship hypothesis would be violated. Imposition of the weak energy condition, however, prevents slow collapse to a singularity and preserves the validity of this hypothesis. The validity of the hoop conjecture is also discussed.

  4. Alternative loop rings

    CERN Document Server

    Goodaire, EG; Polcino Milies, C

    1996-01-01

    For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri

  5. Primitivity and weak distributivity in near rings and matrix near rings

    International Nuclear Information System (INIS)

    Abbasi, S.J.

    1993-08-01

    This paper shows the structure of matrix near ring constructed over a weakly distributive and primative near ring. It is proved that a weakly distributive primitive near ring is a ring and the matrix near rings constructed over it is also a bag. (author). 14 refs

  6. Strengths and strain energies of volcanic edifices: implications for eruptions, collapse calderas, and landslides

    Directory of Open Access Journals (Sweden)

    A. Gudmundsson

    2012-07-01

    Full Text Available Natural hazards associated with volcanic edifices depend partly on how fracture resistant the edifices are, i.e. on their strengths. Observations worldwide indicate that large fluid-driven extension fractures (dikes, inclined sheets, shear fractures (landslides, and mixed-mode fractures (ring dikes and ring faults normally propagate more easily in a basaltic edifice (shield volcano than in a stratovolcano. For example, dike-fed eruptions occur once every few years in many basaltic edifices but once every 102-3 yr in many stratovolcanoes. Large landslides and caldera collapses also appear to be more common in a typical basaltic edifice/shield volcano than in a typical stratovolcano. In contrast to a basaltic edifice, a stratovolcano is composed of mechanically dissimilar rock layers, i.e. layers with mismatching elastic properties (primarily Young's modulus. Elastic mismatch encourages fracture deflection and arrest at contacts and increases the amount of energy needed for a large-scale edifice failure. Fracture-related hazards depend on the potential energy available to propagate the fractures which, in turn, depends on the boundary conditions during fracture propagation. Here there are two possible scenarios: one in which the outer boundary of the volcanic edifice or rift zone does not move during the fracture propagation (constant displacement; the other in which the boundary moves (constant load. In the former, the total potential energy is the strain energy stored in the volcano before fracture formation; in the latter, the total potential energy is the strain energy plus the work done by the forces moving the boundary. Constant-displacement boundary conditions favor small eruptions, landslides, and caldera collapses, whereas constant-load conditions favor comparatively large eruptions, landslides, and collapses. For a typical magma chamber (sill-like with a diameter of 8 km, the strain energy change due to magma-chamber inflation

  7. Vapour and air bubble collapse analysis in viscous compressible water

    Directory of Open Access Journals (Sweden)

    Gil Bazanini

    2001-01-01

    Full Text Available Numerical simulations of the collapse of bubbles (or cavities are shown, using the finite difference method, taking into account the compressibility of the liquid, expected to occur in the final stages of the collapse process. Results are compared with experimental and theoretical data for incompressible liquids, to see the influence of the compressibility of the water in the bubble collapse. Pressure fields values are calculated in an area of 800 x 800 mm, for the case of one bubble under the hypothesis of spherical symmetry. Results are shown as radius versus time curves for the collapse (to compare collapse times, and pressure curves in the plane, for pressure fields. Such calculations are new because of their general point of view, since the existing works do not take into account the existence of vapour in the bubble, neither show the pressure fields seen here. It is also expected to see the influence of the compressibility of the water in the collapse time, and in the pressure field, when comparing pressure values.

  8. Large-scale Instability during Gravitational Collapse with Neutrino Transport and a Core-Collapse Supernova

    Science.gov (United States)

    Aksenov, A. G.; Chechetkin, V. M.

    2018-04-01

    Most of the energy released in the gravitational collapse of the cores of massive stars is carried away by neutrinos. Neutrinos play a pivotal role in explaining core-collape supernovae. Currently, mathematical models of the gravitational collapse are based on multi-dimensional gas dynamics and thermonuclear reactions, while neutrino transport is considered in a simplified way. Multidimensional gas dynamics is used with neutrino transport in the flux-limited diffusion approximation to study the role of multi-dimensional effects. The possibility of large-scale convection is discussed, which is interesting both for explaining SN II and for setting up observations to register possible high-energy (≳10MeV) neutrinos from the supernova. A new multi-dimensional, multi-temperature gas dynamics method with neutrino transport is presented.

  9. Inflationary gravitational waves in collapse scheme models

    Energy Technology Data Exchange (ETDEWEB)

    Mariani, Mauro, E-mail: mariani@carina.fcaglp.unlp.edu.ar [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, 1900 La Plata (Argentina); Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); León, Gabriel, E-mail: gleon@df.uba.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria – Pab. I, 1428 Buenos Aires (Argentina)

    2016-01-10

    The inflationary paradigm is an important cornerstone of the concordance cosmological model. However, standard inflation cannot fully address the transition from an early homogeneous and isotropic stage, to another one lacking such symmetries corresponding to our present universe. In previous works, a self-induced collapse of the wave function has been suggested as the missing ingredient of inflation. Most of the analysis regarding the collapse hypothesis has been solely focused on the characteristics of the spectrum associated to scalar perturbations, and within a semiclassical gravity framework. In this Letter, working in terms of a joint metric-matter quantization for inflation, we calculate, for the first time, the tensor power spectrum and the tensor-to-scalar ratio corresponding to the amplitude of primordial gravitational waves resulting from considering a generic self-induced collapse.

  10. Self-Gravitating Stellar Collapse: Explicit Geodesics and Path Integration

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishna, Jayashree [Department of Mathematics and Natural Sciences, College of Arts and Sciences, Harris-Stowe State University, St. Louis, MO (United States); Bondarescu, Ruxandra [Department of Physics, University of Zurich, Zurich (Switzerland); Moran, Christine C., E-mail: corbett@tapir.caltech.edu [TAPIR, Department of Theoretical Astrophysics, California Institute of Technology, Pasadena, CA (United States)

    2016-11-25

    We extend the work of Oppenheimer and Synder to model the gravitational collapse of a star to a black hole by including quantum mechanical effects. We first derive closed-form solutions for classical paths followed by a particle on the surface of the collapsing star in Schwarzschild and Kruskal coordinates for space-like, time-like, and light-like geodesics. We next present an application of these paths to model the collapse of ultra-light dark matter particles, which necessitates incorporating quantum effects. To do so we treat a particle on the surface of the star as a wavepacket and integrate over all possible paths taken by the particle. The waveform is computed in Schwarzschild coordinates and found to exhibit an ingoing and an outgoing component, where the former contains the probability of collapse, while the latter contains the probability that the star will disperse. These calculations pave the way for investigating the possibility of quantum collapse that does not lead to black hole formation as well as for exploring the nature of the wavefunction inside r = 2M.

  11. Self-Gravitating Stellar Collapse: Explicit Geodesics and Path Integration

    International Nuclear Information System (INIS)

    Balakrishna, Jayashree; Bondarescu, Ruxandra; Moran, Christine C.

    2016-01-01

    We extend the work of Oppenheimer and Synder to model the gravitational collapse of a star to a black hole by including quantum mechanical effects. We first derive closed-form solutions for classical paths followed by a particle on the surface of the collapsing star in Schwarzschild and Kruskal coordinates for space-like, time-like, and light-like geodesics. We next present an application of these paths to model the collapse of ultra-light dark matter particles, which necessitates incorporating quantum effects. To do so we treat a particle on the surface of the star as a wavepacket and integrate over all possible paths taken by the particle. The waveform is computed in Schwarzschild coordinates and found to exhibit an ingoing and an outgoing component, where the former contains the probability of collapse, while the latter contains the probability that the star will disperse. These calculations pave the way for investigating the possibility of quantum collapse that does not lead to black hole formation as well as for exploring the nature of the wavefunction inside r = 2M.

  12. Underlying Event Studies for LHC Energies

    International Nuclear Information System (INIS)

    Barnafoeldi, Gergely Gabor; Levai, Peter; Agocs, Andras G.

    2011-01-01

    Underlying event was originally defined by the CDF collaboration decades ago. Here we improve the original definition to extend our analysis for events with multiple-jets. We introduce a definition for surrounding rings/belts and based on this definition the jet- and surrounding-belt-excluded areas will provide a good underlying event definition. We inverstigate our definition via the multiplicity in the defined geometry. In parallel, mean transverse momenta of these areas also studied in proton-proton collisions at √(s) = 7 TeV LHC energy.

  13. Storm-time ring current: model-dependent results

    Directory of Open Access Journals (Sweden)

    N. Yu. Ganushkina

    2012-01-01

    Full Text Available The main point of the paper is to investigate how much the modeled ring current depends on the representations of magnetic and electric fields and boundary conditions used in simulations. Two storm events, one moderate (SymH minimum of −120 nT on 6–7 November 1997 and one intense (SymH minimum of −230 nT on 21–22 October 1999, are modeled. A rather simple ring current model is employed, namely, the Inner Magnetosphere Particle Transport and Acceleration model (IMPTAM, in order to make the results most evident. Four different magnetic field and two electric field representations and four boundary conditions are used. We find that different combinations of the magnetic and electric field configurations and boundary conditions result in very different modeled ring current, and, therefore, the physical conclusions based on simulation results can differ significantly. A time-dependent boundary outside of 6.6 RE gives a possibility to take into account the particles in the transition region (between dipole and stretched field lines forming partial ring current and near-Earth tail current in that region. Calculating the model SymH* by Biot-Savart's law instead of the widely used Dessler-Parker-Sckopke (DPS relation gives larger and more realistic values, since the currents are calculated in the regions with nondipolar magnetic field. Therefore, the boundary location and the method of SymH* calculation are of key importance for ring current data-model comparisons to be correctly interpreted.

  14. Intracapsular implant rupture: MR findings of incomplete shell collapse.

    Science.gov (United States)

    Soo, M S; Kornguth, P J; Walsh, R; Elenberger, C; Georgiade, G S; DeLong, D; Spritzer, C E

    1997-01-01

    The objective of this study was to determine the frequency and significance of the MR findings of incomplete shell collapse for detecting implant rupture in a series of surgically removed breast prostheses. MR images of 86 breast implants in 44 patients were studied retrospectively and correlated with surgical findings at explantation. MR findings included (a) complete shell collapse (linguine sign), 21 implants; (b) incomplete shell collapse (subcapsular line sign, teardrop sign, and keyhole sign), 33 implants; (c) radial folds, 31 implants; and (d) normal, 1 implant. The subcapsular line sign was seen in 26 implants, the teardrop sign was seen in 27 implants, and the keyhole sign was seen in 23 implants. At surgery, 48 implants were found to be ruptured and 38 were intact. The MR findings of ruptured implants showed signs of incomplete collapse in 52% (n = 25), linguine sign in 44% (n = 21), and radial folds in 4% (n = 2). The linguine sign perfectly predicted implant rupture, but sensitivity was low. Findings of incomplete shell collapse improved sensitivity and negative predictive values, and the subcapsular line sign produced a significant incremental increase in predictive ability. MRI signs of incomplete shell collapse were more common than the linguine sign in ruptured implants and are significant contributors to the high sensitivity and negative predictive values of MRI for evaluating implant integrity.

  15. Spherical top-hat collapse of a viscous unified dark fluid

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei [Bohai University, Department of Physics, Jinzhou (China); Dalian University of Technology, Institute of Theoretical Physics, Dalian (China); Xu, Lixin [Dalian University of Technology, Institute of Theoretical Physics, Dalian (China)

    2014-05-15

    In this paper, we test the spherical collapse of a viscous unified dark fluid (VUDF) which has constant adiabatic sound speed and show the nonlinear collapse for VUDF, baryons, and darkmatter, which are important in forming the large-scale structure of our Universe. By varying the values of the model parameters α and ζ{sub 0}, we discuss their effects on the nonlinear collapse of the VUDF model, and we compare its result to the ΛCDM model. The results of the analysis show that, within the spherical top-hat collapse framework, larger values of α and smaller values of ζ{sub 0} make the structure formation earlier and faster, and the other collapse curves are almost distinguished with the curve of ΛCDM model if the bulk viscosity coefficient ζ{sub 0} is less than 10{sup -3}. (orig.)

  16. Phase 1 Safety, Pharmacokinetics, and Pharmacodynamics of Dapivirine and Maraviroc Vaginal Rings: A Double-Blind Randomized Trial.

    Science.gov (United States)

    Chen, Beatrice A; Panther, Lori; Marzinke, Mark A; Hendrix, Craig W; Hoesley, Craig J; van der Straten, Ariane; Husnik, Marla J; Soto-Torres, Lydia; Nel, Annalene; Johnson, Sherri; Richardson-Harman, Nicola; Rabe, Lorna K; Dezzutti, Charlene S

    2015-11-01

    Variable adherence limits effectiveness of daily oral and intravaginal tenofovir-containing pre-exposure prophylaxis. Monthly vaginal antiretroviral rings are one approach to improve adherence and drug delivery. MTN-013/IPM 026, a multisite, double-blind, randomized, placebo-controlled trial in 48 HIV-negative US women, evaluated vaginal rings containing dapivirine (DPV) (25 mg) and maraviroc (MVC) (100 mg), DPV only, MVC only, and placebo used continuously for 28 days. Safety was assessed by adverse events. Drug concentrations were quantified in plasma, cervicovaginal fluid (CVF), and cervical tissue. Cervical biopsy explants were challenged with HIV ex vivo to evaluate pharmacodynamics. There was no difference in related genitourinary adverse events between treatment arms compared with placebo. DPV and MVC concentrations rose higher initially before falling more rapidly with the combination ring compared with relatively stable concentrations with the single-drug rings. DPV concentrations in CVF were 1 and 5 log10 greater than cervical tissue and plasma for both rings. MVC was consistently detected only in CVF. DPV and MVC CVF and DPV tissue concentrations dropped rapidly after ring removal. Cervical tissue showed a significant inverse linear relationship between HIV replication and DPV levels. In this first study of a combination microbicide vaginal ring, all 4 rings were safe and well tolerated. Tissue DPV concentrations were 1000 times greater than plasma concentrations and single drug rings had more stable pharmacokinetics. DPV, but not MVC, demonstrated concentration-dependent inhibition of HIV-1 infection in cervical tissue. Because MVC concentrations were consistently detectable only in CVF and not in plasma, improved drug release of MVC rings is needed.

  17. Endograft Collapse After Endovascular Treatment for Thoracic Aortic Disease

    International Nuclear Information System (INIS)

    Bandorski, Dirk; Brueck, Martin; Guenther, Hans-Ulrich; Manke, Christoph

    2010-01-01

    Endovascular treatment is an established therapy for thoracic aortic disease. Collapse of the endograft is a potentially fatal complication. We reviewed 16 patients with a thoracic endograft between 2001 and 2006. Medical records of the treated patients were studied. Data collected include age, gender, diagnosis, indication for endoluminal treatment, type of endograft, and time of follow up. All patients (n = 16; mean age, 61 years; range, 21-82 years) underwent computed tomography (CT) for location of the lesion and planning of the intervention. Time of follow-up with CT scan ranged from 1 to 61 months. Indications for endovascular treatment were degenerative aneurysm (n = 7; 44%), aortic dissection (n = 2; 12%), perforated aortic ulcer (n = 4; 25%), and traumatic aortic injury (n = 3; 19%). Three patients suffered from a collapse of the endograft (one patient distal, two patients proximal) between 3 and 8 days after endovascular treatment. These patients were younger (mean age, 37 ± 25 years vs. 67 ± 16 years; P 0.05]; distal, 45 ± 23.5% vs. 38 ± 21.7% [P > 0.05]). Proximal collapse was corrected by placing a bare stent. In conclusion, risk factors for stent-graft collapse are a small lumen of the aorta and a small radius of the aortic arch curvature (young patients), as well as oversizing, which is an important risk factor and is described for different types of endografts and protheses (Gore TAG and Cook Zenith). Dilatation of the collapsed stent-graft is not sufficient. Following therapy implantation of a second stent or surgery is necessary in patients with a proximal endograft collapse. Distal endograft collapse can possibly be treated conservatively under close follow-up.

  18. Interaction of ring dark solitons with ring impurities in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Xue Jukui

    2005-01-01

    The interaction of ring dark solitons/vortexes with the ring-shaped repulsive and attractive impurities in two-dimensional Bose-Einstein condensates is investigated numerically. Very rich interaction phenomena are obtained, i.e., not only the interaction between the ring soliton and the impurity, but also the interaction between vortexes and the impurity. The interaction characters, i.e., snaking of ring soliton, quasitrapping or reflection of ring soliton and vortexes by the impurity, strongly depend on initial ring soliton velocity, impurity strength, initial position of ring soliton and impurity. The numerical results also reveal that ring dark solitons/vortexes can be trapped and dragged by an adiabatically moving attractive ring impurity

  19. Shock waves from non-spherically collapsing cavitation bubbles

    Science.gov (United States)

    Supponen, Outi; Obreschkow, Danail; Farhat, Mohamed

    2017-11-01

    Combining simultaneous high-speed imaging and hydrophone measurements, we uncover details of the multiple shock wave emission from laser-induced cavitation bubbles collapsing in a non-spherical way. For strongly deformed bubbles collapsing near a free surface, we identify the distinct shock waves caused by the jet impact onto the opposite bubble wall and by the individual collapses of the remaining bubble segments. The energy carried by each of these shocks depends on the level of bubble deformation, quantified by the anisotropy parameter ζ, the dimensionless equivalent of the Kelvin impulse. For jetting bubbles, at ζ water hammer as ph = 0.45 (ρc2 Δp) 1 / 2ζ-1 .

  20. Acceleration mechanism of vertical displacement event and its amelioration in tokamak disruptions

    International Nuclear Information System (INIS)

    Nakamura, Yukiharu; Yoshino, Ryuji; Pomphrey, N.; Jardin, S.C.

    1996-01-01

    Vertical displacement events (VDEs), which are frequently observed in disruptive discharges of elongated tokamaks, are investigated using the Tokamak Simulation Code. We show that disruption events such as a sudden plasma pressure drop (β p collapse) and the subsequent plasma current quench (I p quench) can accelerate VDEs due to the adverse destabilizing effect of the resistive shell, which has previously been thought to stabilize VDEs. In a tokamak with a surrounding shell which is asymmetric with respect to the geometric midplane, the I p quench also causes an additional VDE acceleration due to the vertical imbalance of the attractive force. While the shell-geometry characterizes the VDE dynamics, the growth rate of VDEs depends strongly on the magnitude of the β p collapse, the speed of the I p quench and the n-index of the plasma equilibrium just before the disruption. An amelioration of I p quench-induced VDEs was experimentally established in the JT-60U tokamak by optimizing the vertical location of the plasma just prior to the disruption. The JT-60U vacuum vessel is shown to be suitable for preventing the β p collapse-induced VDE. (author)

  1. Storage Rings

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Storage rings are circular machines that store particle beams at a constant energy. Beams are stored in rings without acceleration for a number of reasons (Tab. 1). Storage rings are used in high-energy, nuclear, atomic, and molecular physics, as well as for experiments in chemistry, material and life sciences. Parameters for storage rings such as particle species, energy, beam intensity, beam size, and store time vary widely depending on the application. The beam must be injected into a storage ring but may not be extracted (Fig. 1). Accelerator rings such as synchrotrons are used as storage rings before and after acceleration. Particles stored in rings include electrons and positrons; muons; protons and anti-protons; neutrons; light and heavy, positive and negative, atomic ions of various charge states; molecular and cluster ions, and neutral polar molecules. Spin polarized beams of electrons, positrons, and protons were stored. The kinetic energy of the stored particles ranges from 10 -6 eV to 3.5 x 10 12 eV (LHC, 7 x 10 12 eV planned), the number of stored particles from one (ESR) to 1015 (ISR). To store beam in rings requires bending (dipoles) and transverse focusing (quadrupoles). Higher order multipoles are used to correct chromatic aberrations, to suppress instabilities, and to compensate for nonlinear field errors of dipoles and quadrupoles. Magnetic multipole functions can be combined in magnets. Beams are stored bunched with radio frequency systems, and unbunched. The magnetic lattice and radio frequency system are designed to ensure the stability of transverse and longitudinal motion. New technologies allow for better storage rings. With strong focusing the beam pipe dimensions became much smaller than previously possible. For a given circumference superconducting magnets make higher energies possible, and superconducting radio frequency systems allow for efficient replenishment of synchrotron radiation losses of large current electron or positron beams

  2. Earth's Largest Terrestrial Landslide (The Markagunt Gravity Slide of Southwest Utah): Insights from the Catastrophic Collapse of a Volcanic Field

    Science.gov (United States)

    Hacker, D. B.; Biek, R. F.; Rowley, P. D.

    2015-12-01

    The newly discovered Miocene Markagunt gravity slide (MGS; Utah, USA) represents the largest volcanic landslide structure on Earth. Recent geologic mapping of the MGS indicates that it was a large contiguous volcanic sheet of allochthonous andesitic mudflow breccias and lava flows, volcaniclastic rocks, and intertonguing regional ash-flow tuffs that blanketed an area of at least 5000 km2 with an estimated volume of ~3000 km3. From its breakaway zone in the Tushar and Mineral Mountains to its southern limits, the MGS is over 95 km long and at least 65 km wide. The MGS consists of four distinct structural segments: 1) a high-angle breakaway segment, 2) a bedding-plane segment, ~60 km long and ~65 km wide, typically located within the volcaniclastic Eocene-Oligocene Brian Head Formation, 3) a ramp segment ~1-2 km wide where the slide cuts upsection, and 4) a former land surface segment where the upper-plate moved at least 35 km over the Miocene landscape. The presence of basal and lateral cataclastic breccias, clastic dikes, jigsaw puzzle fracturing, internal shears, pseudotachylytes, and the overall geometry of the MGS show that it represents a single catastrophic emplacement event. The MGS represents gravitationally induced collapse of the southwest sector of the Oligocene to Miocene Marysvale volcanic field. We suggest that continuous growth of the Marysvale volcanic field, loading more volcanic rocks on a structurally weak Brian Head basement, created conditions necessary for gravity sliding. In addition, inflation of the volcanic pile due to multiple magmatic intrusions tilted the strata gently southward, inducing lateral spreading of the sub-volcanic rocks prior to failure. Although similar smaller-scale failures have been recognized from individual volcanoes, the MGS represents a new class of low frequency but high impact hazards associated with catastrophic sector collapse of large volcanic fields containing multiple volcanoes. The relationship of the MGS to

  3. Multi-temporal SAR interferometry reveals acceleration of bridge sinking before collapse

    Science.gov (United States)

    Sousa, J. J.; Bastos, L.

    2013-03-01

    On the night of 4 March 2001, at Entre-os-Rios (Northern Portugal), the Hintze Ribeiro centennial bridge collapsed killing 59 people traveling in a bus and three cars that were crossing the Douro River. According to the national authorities, the collapse was due to two decades of uncontrolled sand extraction which compromised the stability of the bridge's pillars, together with underestimating the warnings from divers and technicians. In this work we do not intend to corroborate or contradict the official version of the accident's causes, but only demonstrate the potential of Multi-Temporal Interferometric techniques for detection and monitoring of deformations in structures such as bridges, and consequently the usefulness of the derived information in some type of early warning system to help prevent new catastrophic events. Based on the analysis of 52 ERS-1/2 covering the period from May 1995 to the fatal occurrence, we were able to detect significant movements, reaching rates of 20 mm yr-1, in the section of the bridge that fell into the Douro River, which are obvious signs of the bridge's instability. These promising results demonstrate that with the new high-resolution synthetic aperture radar satellite scenes it is possible to develop interferometric based methodologies for structural health monitoring.

  4. An Overview on Impact Behaviour and Energy Absorption of Collapsible Metallic and Non-Metallic Energy Absorbers used in Automotive Applications

    Science.gov (United States)

    Shinde, R. B.; Mali, K. D.

    2018-04-01

    Collapsible impact energy absorbers play an important role of protecting automotive components from damage during collision. Collision of the two objects results into the damage to one or both of them. Damage may be in the form of crack, fracture and scratch. Designers must know about how the material and object behave under impact event. Owing to above reasons different types of collapsible impact energy absorbers are developed. In the past different studies were undertaken to improve such collapsible impact energy absorbers. This article highlights such studies on common shapes of collapsible impact energy absorber and their impact behaviour under the axial compression. The literature based on studies and analyses of effects of different geometrical parameters on the crushing behaviour of impact energy absorbers is presented in detail. The energy absorber can be of different shape such as circular tube, square tube, and frustums of cone and pyramids. The crushing behaviour of energy absorbers includes studies on crushing mechanics, modes of deformation, energy absorbing capacity, effect on peak and mean crushing load. In this work efforts are made to cover major outcomes from past studies on such behavioural parameters. Even though the major literature reviewed is related to metallic energy absorbers, emphasis is also laid on covering literature on use of composite tube, fiber metal lamination (FML) member, honeycomb plate and functionally graded thickness (FGT) tube as a collapsible impact energy absorber.

  5. The 13 ka Pelée-Type Dome Collapse at Nevado de Toluca Volcano, México.

    Science.gov (United States)

    D'Antonio, M.; Capra, L.; Sarocchi, D.; Bellotti, F.

    2007-05-01

    The Nevado de Toluca is an active volcano located in the central sector of the Trans-Mexican Volcanic Belt, 80 km southwest of Mexico City. Activity at this andesitic to dacitic stratovolcano began ca. 2.6 Ma ago. During the last 42 ka, the volcano has been characterized by different eruptive styles, including five dome collapses dated at 37, 32, 28, 26, and 13 ka and five Plinian eruptions at 42 ka, 36 ka, 21.7 ka, 12.1 ka and 10.5 ka. The 13 ka dome collapse is the youngest event of this type, and originated a 0.11 km3 block-and-ash flow deposit on the north-eastern sector of the volcano. The deposit consists of two facies: channel-like, 10 m thick, monolitologic, that is composed of up to five units, with decimetric dacitic clasts set in a sandy matrix; and a lateral facies that consists of a gray, sandy horizon, up to 4 m thick, with a 30 cm-thick surge layer at the base. The main component is a dacitic lava, with different degree of vesciculation, with mineral association of Pl-Hbl-Opx. Plagioclases show two different textures: in equilibrium, with normal zoning (core = An37-64.3, rim = An30.7-45.8) or with spongy cellular texture with inverse zoning (core = An38-43.5, rim = An45-51.2). Hornblende is normally light green, barren of oxidation. The rock matrix contains up to 53 perc. of glass with abundant microlites, indicating over-pressure on the crystallizing magma and a rapid expulsion. All these stratigraphic and petrographic features indicate that the dome was quickly extruded on the summit of the volcano, probably triggered by a magma mixing process, and its collapse was accompanied by an explosive component, being classified as a Pelée-type event.

  6. Titan2D simulations of dome-collapse pyroclastic flows for crisis assessments on Montserrat

    Science.gov (United States)

    Widiwijayanti, C.; Voight, B.; Hidayat, D.; Patra, A.; Pitman, E.

    2010-12-01

    The Soufriere Hills Volcano (SHV), Montserrat, has experienced numerous episodes of lava dome collapses since 1995. Collapse volumes range from small rockfalls to major dome collapses (as much as ~200 M m3). Problems arise in hazards mitigation, particularly in zoning for populated areas. Determining the likely extent of flowage deposits in various scenarios is important for hazards zonation, provision of advice by scientists, and decision making by public officials. Towards resolution of this issue we have tested the TITAN2D code, calibrated parameters for an SHV database, and using updated topography have provided flowage maps for various scenarios and volume classes from SHV, for use in hazards assessments. TITAN2D is a map plane (depth averaged) simulator of granular flow and yields mass distributions over a DEM. Two Coulomb frictional parameters (basal and internal frictions) and initial source conditions (volume, source location, and source geometry) of single or multiple pulses in a dome-collapse type event control behavior of the flow. Flow kinematics are captured, so that the dynamics of flow can be examined spatially from frame to frame, or as a movie. Our hazard maps include not only the final deposit, but also areas inundated by moving debris prior to deposition. Simulations from TITAN2D were important for analysis of crises in the period 2007-2010. They showed that any very large mass released on the north slope would be strongly partitioned by local topography, and thus it was doubtful that flows of very large size (>20 M m3) could be generated in the Belham River drainage. This partitioning effect limited runout toward populated areas. These effects were interpreted to greatly reduce the down-valley risk of ash-cloud surges.

  7. Langmuir field structures favored in wave collapse

    International Nuclear Information System (INIS)

    Robinson, P.A.; Wouters, M.J.; Broderick, N.G.

    1996-01-01

    Study of Langmuir collapse thresholds shows that they have little polarization dependence and that moving packets have the lowest thresholds in the undamped case. However, incorporation of damping into the density response inhibits collapse of packets moving at more than a small fraction of the sound speed. Investigation of energy transfer to packets localized in density wells emdash the nucleation process emdash shows that at most a few trapped states can exist and that energy transfer is most effective when there is a single barely-trapped state. Coupled with an argument that closely packed wave packets have lower collapse thresholds, this argument yields an estimate of the number density of localized nucleating states in a turbulent plasma. It also leads to a simple and direct semiquantitative estimate of the collapse threshold. All these results are in accord with previous numerical simulations incorporating ion-sound damping, which show a preponderance of slow-moving or stationary packets with little or no intrinsic polarization dependence of thresholds. Likewise, the number densities obtained are in good agreement with simulation values, and the simple estimate of the threshold is semiquantitatively correct. The extent of the agreement supports the nucleation scenario with close-packed nucleation sites in the turbulent state. copyright 1996 American Institute of Physics

  8. Search for stellar gravitational collapses with the MACRO detector

    CERN Document Server

    Ambrosio, M; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bloise, C; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Campana, D; Carboni, M; Cecchini, S; Cei, F; Chiarella, V; Choudhary, B C; Coutu, S; Cozzi, M; De Cataldo, G; De Marzo, C; De Mitri, I; De Vincenzi, M; Dekhissi, H; Derkaoui, J; Di Credico, A; Favuzzi, C; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Grillo, A; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Iarocci, E; Katsavounidis, E; Katsavounidis, I; Kearns, E; Kim, H; Kyriazopoulou, S; Lamanna, E; Lane, C; Levin, D S; Lipari, P; Longley, N P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Mazziotta, M N; Michael, D G; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S; Musser, J; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Popa, V; Raino, J A; Reynoldson, J; Ronga, F; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Sioli, M; Sirri, G; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, L R; Surdo, A; Tarle, G; Togo, V; Vakili, M; Walter, C W; Webb, R; 10.1140/epjc/s2004-01981-3

    2004-01-01

    We present the final results of the search for stellar gravitational collapses obtained by the MACRO experiment. The detector was active for a stellar collapse search for more than 11 years and it was sensitive to collapses occurring all over in our galaxy for 8.6 years. A real time system for a prompt recognition of neutrino bursts was developed and was operating on-line for almost the whole life of the experiment. No signal compatible with a neutrino burst from a galactic supernova was observed.

  9. Rings in drugs.

    Science.gov (United States)

    Taylor, Richard D; MacCoss, Malcolm; Lawson, Alastair D G

    2014-07-24

    We have analyzed the rings, ring systems, and frameworks in drugs listed in the FDA Orange Book to understand the frequency, timelines, molecular property space, and the application of these rings in different therapeutic areas and target classes. This analysis shows that there are only 351 ring systems and 1197 frameworks in drugs that came onto the market before 2013. Furthermore, on average six new ring systems enter drug space each year and approximately 28% of new drugs contain a new ring system. Moreover, it is very unusual for a drug to contain more than one new ring system and the majority of the most frequently used ring systems (83%) were first used in drugs developed prior to 1983. These observations give insight into the chemical novelty of drugs and potentially efficient ways to assess compound libraries and develop compounds from hit identification to lead optimization and beyond.

  10. Uranium mobility across annual growth rings in three deciduous tree species.

    Science.gov (United States)

    McHugh, Kelly C; Widom, Elisabeth; Spitz, Henry B; Wiles, Gregory C; Glover, Sam E

    2018-02-01

    Black walnut (Juglans nigra), slippery elm (Ulmus rubra), and white ash (Fraxinus americana) trees were evaluated as potential archives of past uranium (U) contamination. Like other metals, U mobility in annual growth rings of trees is dependent on the tree species. Uranium concentrations and isotopic compositions (masses 234, 235, 236, and 238) were analyzed by thermal ionization mass spectrometry to test the efficacy of using tree rings to retroactively monitor U pollution from the FFMPC, a U purification facility operating from 1951 to 1989. This study found non-natural U (depleted U and detectable 236 U) in growth rings of all three tree species that pre-dated the start of operations at FFMPC and compositional trends that did not correspond with known contamination events. Therefore, the annual growth rings of these tree species cannot be used to reliably monitor the chronology of U contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Naked singularity in the global structure of critical collapse spacetimes

    International Nuclear Information System (INIS)

    Frolov, Andrei V.; Pen, U.-L.

    2003-01-01

    We examine the global structure of scalar field critical collapse spacetimes using a characteristic double-null code. It can integrate past the horizon without any coordinate problems, due to the careful choice of constraint equations used in the evolution. The limiting sequence of sub- and supercritical spacetimes presents an apparent paradox in the expected Penrose diagrams, which we address in this paper. We argue that the limiting spacetime converges pointwise to a unique limit for all r>0, but not uniformly. The r=0 line is different in the two limits. We interpret that the two different Penrose diagrams differ by a discontinuous gauge transformation. We conclude that the limiting spacetime possesses a singular event, with a future removable naked singularity

  12. The Abort Kicker System for the PEP-II Storage Rings at SLAC.

    CERN Document Server

    Delamare, J E

    2003-01-01

    The PEP-II project has two storage rings. The HER (High Energy Ring) has up to 1.48 A of election beam at 9 GeV, and the LER (Low Energy Ring) has up to 2.14 A of positron beam at 3.1 GeV. To protect the HER and LER beam lines in the event of a ring component failure, each ring has an abort kicker system which directs the beam into a dump when a failure is detected. Due to the high current of the beams, the beam kick is tapered from 100% to 80% in 7.33 (micro)S (the beam transit time around the ring). This taper distributes the energy evenly across the window which separates the ring from the beam dump such that the window is not damaged. The abort kicker trigger is synchronized with the ion clearing gap of the beam allowing for the kicker field to rise from 0-80% while there is no beam in the kicker magnet. Originally the kicker system was designed for a rise time of 370nS [1], but because the ion clearing gap was reduced in half, so was the rise time requirement for the kicker. This report discusses the des...

  13. Tracheal collapse diagnosed by multidetector computed tomography: evaluation of different image analysis methods

    DEFF Research Database (Denmark)

    Nygaard, Mette; Bendstrup, Elisabeth; Dahl, Ronald

    2017-01-01

    diseases when using an expiratory collapse of = 50% as a threshold. The four methods were comparable with highly significant Pearsons correlation coefficients (0.764-0.856). However, the four methods identified different patients with collapse of = 50 There was no correlation between symptoms...... and the degree of collapse. Conclusion: The different methods identify tracheal collapse in different patients. Hence, the diagnosis of excessive tracheal collapse can not rely solely on MDCT images. Generally, there is a poor correlation between symptoms and the degree of collapse in the different methods....... However, when using the maximal collapse, there is some correlation with symptoms. When in doubt regarding the diagnosis, further investigations, such as bronchoscopy, should be carried out....

  14. Rotating collapse of stellar iron cores in general relativity

    International Nuclear Information System (INIS)

    Ott, C D; Dimmelmeier, H; Marek, A; Janka, H-T; Zink, B; Hawke, I; Schnetter, E

    2007-01-01

    We present results from the first 2 + 1 and 3 + 1 simulations of the collapse of rotating stellar iron cores in general relativity employing a finite-temperature equation of state and an approximate treatment of deleptonization during collapse. We compare full 3 + 1 and conformally-flat spacetime evolution methods and find that the conformally-flat treatment is sufficiently accurate for the core-collapse supernova problem. We focus on the gravitational wave (GW) emission from rotating collapse, core bounce and early postbounce phases. Our results indicate that the GW signature of these phases is much more generic than previously estimated. In addition, we track the growth of a nonaxisymmetric instability of dominant m = 1 character in two of our models that leads to prolonged narrow-band GW emission at ∼920-930 Hz over several tens of milliseconds

  15. Measurement of variable magnetic reversal paths in electrically contacted pseudo-spin-valve rings

    International Nuclear Information System (INIS)

    Hayward, T J; Llandro, J; Schackert, F D O; Morecroft, D; Balsod, R B; Bland, J A C; Castano, F J; Ross, C A

    2007-01-01

    In this work we show that the measurement of single magnetic reversal events is of critical importance in order to correctly characterize the switching of magnetic microstructures. Magnetoresistance measurements are performed on two pseudo-spin-valve ring structures with high enough signal to noise to allow the probing of single reversal events. Using this technique we acquire 'switching spectra' which demonstrate that the rings exhibit a range of variable reversal paths, including a bistable reversal mechanism of the hard layer, where the two switching routes have substantially different switching fields. The signature of the variable reversal paths would have been obscured in field cycle averaged data and in the bistable case would cause a fundamental misinterpretation of the reversal behaviour

  16. Crystallite structure formation at the collapse pressure of fatty acid Langmuir films

    International Nuclear Information System (INIS)

    Valdes-Covarrubias, M A; Cadena-Nava, R D; Vasquez-MartInez, E; Valdez-Perez, D; Ruiz-GarcIa, J

    2004-01-01

    We report isotherm and atomic force microscopy studies of collapsed Langmuir monolayers of fatty acids. The Langmuir monolayers were overcompressed in the range 7-40 deg. C and transferred onto mica after the sharp pressure drop when the collapse pressure was reached. Collapsed material was observed by AFM, which revealed that the multilayers are indeed three-dimensional crystallites. We found that the shape of the crystallites depends on the collapse temperature, the phase from which the collapse occurs and/or the chain length. However, at higher temperatures the collapsed films no longer show a well defined crystallite formation, but rather a more heterogeneous melt-like pattern. We associated the crystallite formation with known bulk crystal phases of the fatty acids

  17. Collapse of thin wall tubes small initial ovality

    International Nuclear Information System (INIS)

    Moreno, A.

    1977-01-01

    In this work a simple model of creep collapse of tubes based on the bending theory of curved beams, is developed. The model is compared with more complex models. The main result of this work is the definition of a new model of creep collapse of tubes with a minimum of limitative hypothesis. (Author) 6 refs

  18. Intense electromagnetic outbursts from collapsing hypermassive neutron stars

    Science.gov (United States)

    Lehner, Luis; Palenzuela, Carlos; Liebling, Steven L.; Thompson, Christopher; Hanna, Chad

    2012-11-01

    We study the gravitational collapse of a magnetized neutron star using a novel numerical approach able to capture both the dynamics of the star and the behavior of the surrounding plasma. In this approach, a fully general relativistic magnetohydrodynamics implementation models the collapse of the star and provides appropriate boundary conditions to a force-free model which describes the stellar exterior. We validate this strategy by comparing with known results for the rotating monopole and aligned rotator solutions and then apply it to study both rotating and nonrotating stellar collapse scenarios and contrast the behavior with what is obtained when employing the electrovacuum approximation outside the star. The nonrotating electrovacuum collapse is shown to agree qualitatively with a Newtonian model of the electromagnetic field outside a collapsing star. We illustrate and discuss a fundamental difference between the force-free and electrovacuum solutions, involving the appearance of large zones of electric-dominated field in the vacuum case. This provides a clear demonstration of how dissipative singularities appear generically in the nonlinear time evolution of force-free fluids. In both the rotating and nonrotating cases, our simulations indicate that the collapse induces a strong electromagnetic transient, which leaves behind an uncharged, unmagnetized Kerr black hole. In the case of submillisecond rotation, the magnetic field experiences strong winding, and the transient carries much more energy. This result has important implications for models of gamma-ray bursts. Even when the neutron star is surrounded by an accretion torus (as in binary merger and collapsar scenarios), a magnetosphere may emerge through a dynamo process operating in a surface shear layer. When this rapidly rotating magnetar collapses to a black hole, the electromagnetic energy released can compete with the later output in a Blandford-Znajek jet. Much less electromagnetic energy is

  19. Construction of an Unstable Ring-X Chromosome Bearing the Autosomal Dopa Decarboxylase Gene in Drosophila melanogaster and Analysis of Ddc Mosaics

    OpenAIRE

    Gailey, Donald A.; Bordne, Deborah L.; Vallés, Ana Maria; Hall, Jeffrey C.; White, Kalpana

    1987-01-01

    An unstable Ring-X chromosome, Ddc+- Ring-X carrying a cloned Dopa decarboxylase (Ddc) encoding segment was constructed. The construction involved a double recombination event between the unstable Ring-X, R(1)wvC and a Rod-X chromosome which contained a P-element mediated Ddc + insert. The resulting Ddc+-Ring-X chromosome behaves similarly to the parent chromosome with respect to somatic instability. The Ddc+-Ring-X chromosome was used to generate Ddc mosaics. Analyses of Ddc mosaics reveal...

  20. PREFACE: Collapse Calderas Workshop

    Science.gov (United States)

    Gottsmann, Jo; Aguirre-Diaz, Gerardo

    2008-10-01

    Caldera-formation is one of the most awe-inspiring and powerful displays of nature's force. Resultant deposits may cover vast areas and significantly alter the immediate topography. Post-collapse activity may include resurgence, unrest, intra-caldera volcanism and potentially the start of a new magmatic cycle, perhaps eventually leading to renewed collapse. Since volcanoes and their eruptions are the surface manifestation of magmatic processes, calderas provide key insights into the generation and evolution of large-volume silicic magma bodies in the Earth's crust. Despite their potentially ferocious nature, calderas play a crucial role in modern society's life. Collapse calderas host essential economic deposits and supply power for many via the exploitation of geothermal reservoirs, and thus receive considerable scientific, economic and industrial attention. Calderas also attract millions of visitors world-wide with their spectacular scenic displays. To build on the outcomes of the 2005 calderas workshop in Tenerife (Spain) and to assess the most recent advances on caldera research, a follow-up meeting was proposed to be held in Mexico in 2008. This abstract volume presents contributions to the 2nd Calderas Workshop held at Hotel Misión La Muralla, Querétaro, Mexico, 19-25 October 2008. The title of the workshop `Reconstructing the evolution of collapse calderas: Magma storage, mobilisation and eruption' set the theme for five days of presentations and discussions, both at the venue as well as during visits to the surrounding calderas of Amealco, Amazcala and Huichapan. The multi-disciplinary workshop was attended by more than 40 scientist from North, Central and South America, Europe, Australia and Asia. Contributions covered five thematic topics: geology, geochemistry/petrology, structural analysis/modelling, geophysics, and hazards. The workshop was generously supported by the International Association of Volcanology and the Chemistry of The Earth's Interior

  1. Mapping the Thermal Inertia of Saturn’s Rings with Cassini CIRS

    Science.gov (United States)

    Brooks, Shawn M.; Spilker, L. J.; PIlorz, S. H.; Showalter, M. R.

    2013-10-01

    We use data from Cassini's Composite Infrared Spectrometer to map out the thermal response of Saturn's ring particles passing through Saturn's shadow and to determine variations in ring thermal inertia. CIRS records far infrared radiation in three separate detectors, each of which covers a distinct wavelength range. In this work, we analyze rings spectra recorded at focal plane 1 (FP1), as its wavelength response (16.7-1000 microns) is well suited to detecting direct thermal emission from Saturn's rings. The thermal budget of the rings is typically dominated by solar radiation. When ring particles enter Saturn’s shadow this source of energy is abruptly cut off with a consequential drop in ring temperature. Likewise, temperatures rebound when particles exit the shadow. To characterize these heating and cooling events, FP1 was repeatedly scanned across the main rings. Each scan was offset from either the ingress or egress shadow boundary by an amount corresponding to a fraction of a Keplerian orbit. By resampling these scans onto a common radial grid, we can map out the rings’ response to the abrupt changes in insolation at shadow ingress and egress. Periods near equinox represent a unique situation. During this time the Sun's disk crosses the ring plane and its rays strike the rings at zero incidence. Solar heating is virtually absent, and thermal radiation from Saturn and sunlight reflected by Saturn dominate the thermal environment. While ring temperature variations at equinox are much more subtle, they represent temperature contrasts that vary at the unique timescale corresponding to variations in Saturn contributions to the rings’ thermal budget. By analyzing CIRS data at a variety of locations and epochs, we will map out thermal inertia across the rings and attempt to tease out structural information about the particles which comprise Saturn’s rings. This presentation will report upon our progress towards these ends. This research was carried out at the

  2. Study of creep collapse of tubes subject to external pressure at elevated temperature

    International Nuclear Information System (INIS)

    Takikawa, N.

    1982-01-01

    Intermediate heat exchanger (IHX) tubes of VHTR form the boundary between the primary and secondary coolants of the reactor. The tubes are subject to external pressures at a postulated secondary coolant depressurization accident, which might lead to creep collapse. Therefore, it is necessary to ensure the integrity against creep collapse by analysis. The objective of this work is to study a simplified analytical method for predicting collapse time of a curved tube subjected to an external pressure. The study is made based on the comparison of experimental collapse time of curved and straight tubes. Creep collapse tests were conducted under an elevated temperature and an external pressure. Test results showed that curved tubes had longer collapse time than straight tubes with the same cross sectional ovality. The simplified analytical method for a curved tube is proposed in this report, which is to compute collapse time of a straight tube with the same ovality. And in this method the computed time is considered as collapse time of the curved tube. The above test results show that this simplified method gives the conservative collapse time. And it is confirmed by additional IHX tube tests that the method is applicable to creep collapse analysis of IHX tubes

  3. Structural elements of collapses in shallow water flows with horizontally nonuniform density

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, V. P., E-mail: v.goncharov@rambler.ru [Russian Academy of Sciences, Obukhov Institute of Atmospheric Physics (Russian Federation); Pavlov, V. I., E-mail: Vadim.Pavlov@univ-lille1.fr [Universite de Lille 1, UFR de Mathematiques Pures et Appliquees-LML UMR 8107 (France)

    2013-10-15

    The mechanisms and structural elements of instability whose evolution results in the occurrence of the collapse are studied in the scope of the rotating shallow water model with a horizontally nonuniform density. The diagram stability based on the integral collapse criterion is suggested to explain system behavior in the space of constants of motion. Analysis of the instability shows that two collapse scenarios are possible. One scenario implies anisotropic collapse during which the contact area of a collapsing drop-like fragment with the bottom contracts into a rotating segment. The other implies isotropic contraction of the area into a point.

  4. Simulation of the Tornado Event of 22 March, 2013 over ...

    Indian Academy of Sciences (India)

    2013-03-22

    Mar 22, 2013 ... nagar and Akhaura upazila of Brahmanbaria district (DMIC 2013). Other damages of this tor- nado event were the damages and/or collapses of electric lines and poles, boundary wall, entrance gate, communication systems, breaking down of numerous trees, etc. The location of Brahmanbaria. (23.95.

  5. Selected event reconstruction algorithms for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Lebedev, Semen; Höhne, Claudia; Lebedev, Andrey; Ososkov, Gennady

    2014-01-01

    Development of fast and efficient event reconstruction algorithms is an important and challenging task in the Compressed Baryonic Matter (CBM) experiment at the future FAIR facility. The event reconstruction algorithms have to process terabytes of input data produced in particle collisions. In this contribution, several event reconstruction algorithms are presented. Optimization of the algorithms in the following CBM detectors are discussed: Ring Imaging Cherenkov (RICH) detector, Transition Radiation Detectors (TRD) and Muon Chamber (MUCH). The ring reconstruction algorithm in the RICH is discussed. In TRD and MUCH track reconstruction algorithms are based on track following and Kalman Filter methods. All algorithms were significantly optimized to achieve maximum speed up and minimum memory consumption. Obtained results showed that a significant speed up factor for all algorithms was achieved and the reconstruction efficiency stays at high level.

  6. Transitioning Traditions: Rectifying an Ontario Camp's Indian Council Ring

    Science.gov (United States)

    Wilkes, Taylor

    2011-01-01

    Council Ring has always been a very special event, remembered fondly by generations of campers. Taylor Statten Camps (TSC) are not the only camps to cherish such an activity. Across Canada there are dozens of camps that have supported "Indian" assemblies in the past, but a select few still do. Most organizations abandoned them during the…

  7. Token Ring Project

    Directory of Open Access Journals (Sweden)

    Adela Ionescu

    2007-01-01

    Full Text Available Ring topology is a simple configuration used to connect processes that communicate among themselves. A number of network standards such as token ring, token bus, and FDDI are based on the ring connectivity. This article will develop an implementation of a ring of processes that communicate among themselves via pipe links. The processes are nodes in the ring. Each process reads from its standard input and writes in its standard output. N-1 process redirects the its standard output to a standard input of the process through a pipe. When the ring-structure is designed, the project can be extended to simulate networks or to implement algorithms for mutual exclusion

  8. Safety of a silicone elastomer vaginal ring as potential microbicide delivery method in African women: A Phase 1 randomized trial.

    Science.gov (United States)

    Nel, Annaléne; Martins, Janine; Bekker, Linda-Gail; Ramjee, Gita; Masenga, Gileard; Rees, Helen; van Niekerk, Neliëtte

    2018-01-01

    Women in sub-Saharan Africa are in urgent need of female-initiated human immunodeficiency virus (HIV) preventative methods. Vaginal rings are one dosage form in development for delivery of HIV microbicides. However, African women have limited experience with vaginal rings. This Phase I, randomized, crossover trial assessed and compared the safety, acceptability and adherence of a silicone elastomer placebo vaginal ring, intended as a microbicide delivery method, inserted for a 12-week period in healthy, HIV-negative, sexually active women in South Africa and Tanzania. 170 women, aged 18 to 35 years were enrolled with 88 women randomized to Group A, using a placebo vaginal ring for 12 weeks followed by a 12-week safety observation period. 82 women were randomized to Group B and observed for safety first, followed by a placebo vaginal ring for 12 weeks. Safety was assessed by clinical laboratory assessments, pelvic/colposcopy examinations and adverse events. Possible carry-over effect was addressed by ensuring no signs or symptoms of genital irritation at crossover. No safety concerns were identified for any safety variables assessed during the trial. No serious adverse events were reported considered related to the placebo vaginal ring. Vaginal candidiasis was the most common adverse event occurring in 11% of participants during each trial period. Vaginal discharge (2%), vaginal odour (2%), and bacterial vaginitis (2%) were assessed as possibly or probably related to the vaginal ring. Thirty-four percent of participants had sexually transmitted infections (STIs) at screening, compared to 12% of participants who tested positive for STIs at crossover and the final trial visit. Three participants (2%) tested HIV positive during the trial. The silicone elastomer vaginal ring had no safety concerns, demonstrating a profile favorable for further development for topical release of antiretroviral-based microbicides.

  9. Flow-induced plastic collapse of stacked fuel plates

    Energy Technology Data Exchange (ETDEWEB)

    Davis, D C; Scarton, H A

    1985-03-01

    Flow-induced plastic collapse of stacked fuel plate assemblies was first noted in experimental reactors such as the ORNL High Flux Reactor Assembly and the Engineering Test Reactor (ETR). The ETR assembly is a stack of 19 thin flat rectangular fuel plates separated by narrow channels through which a coolant flows to remove the heat generated by fission of the fuel within the plates. The uranium alloyed plates have been noted to buckle laterally and plastically collapse at the system design coolant flow rate of 10.7 m/s, thus restricting the coolant flow through adjacent channels. A methodology and criterion are developed for predicting the plastic collapse of ETR fuel plates. The criterion is compared to some experimental results and the Miller critical velocity theory.

  10. Semi-algebraic function rings and reflectors of partially ordered rings

    CERN Document Server

    Schwartz, Niels

    1999-01-01

    The book lays algebraic foundations for real geometry through a systematic investigation of partially ordered rings of semi-algebraic functions. Real spectra serve as primary geometric objects, the maps between them are determined by rings of functions associated with the spectra. The many different possible choices for these rings of functions are studied via reflections of partially ordered rings. Readers should feel comfortable using basic algebraic and categorical concepts. As motivational background some familiarity with real geometry will be helpful. The book aims at researchers and graduate students with an interest in real algebra and geometry, ordered algebraic structures, topology and rings of continuous functions.

  11. Collapse arresting in an inhomogeneous quintic nonlinear Schrodinger model

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Schjødt-Eriksen, Jens; Christiansen, Peter Leth

    1999-01-01

    Collapse of (1 + 1)-dimensional beams in the inhomogeneous one-dimensional quintic nonlinear Schrodinger equation is analyzed both numerically and analytically. It is shown that in the vicinity of a narrow attractive inhomogeneity, the collapse of beams in which the homogeneous medium would blow up...

  12. A DARK ENERGY CAMERA SEARCH FOR MISSING SUPERGIANTS IN THE LMC AFTER THE ADVANCED LIGO GRAVITATIONAL-WAVE EVENT GW150914

    Energy Technology Data Exchange (ETDEWEB)

    Annis, J.; Soares-Santos, M.; Diehl, H. T.; Drlica-Wagner, A.; Finley, D. A.; Flaugher, B.; Frieman, J.; Herner, K. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Berger, E.; Cowperthwaite, P. S.; Drout, M. R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Brout, D. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Chen, H.; Doctor, Z.; Farr, B.; Holz, D.; Kessler, R. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Chornock, R. [Astrophysical Institute, Department of Physics and Astronomy, Ohio University, 251B Clippinger Lab, Athens, OH 45701 (United States); Foley, R. J.; Gruendl, R. A. [Department of Astronomy, University of Illinois, 1002 W. Green Street, Urbana, IL 61801 (United States); Collaboration: DES Collaboration; and others

    2016-06-01

    The collapse of a stellar core is expected to produce gravitational waves (GWs), neutrinos, and in most cases a luminous supernova. Sometimes, however, the optical event could be significantly less luminous than a supernova and a direct collapse to a black hole, where the star just disappears, is possible. The GW event GW150914 was detected by the LIGO Virgo Collaboration via a burst analysis that gave localization contours enclosing the Large Magellanic Cloud (LMC). Shortly thereafter, we used DECam to observe 102 deg{sup 2} of the localization area, including 38 deg{sup 2} on the LMC for a missing supergiant search. We construct a complete catalog of LMC luminous red supergiants, the best candidates to undergo invisible core collapse, and collected catalogs of other candidates: less luminous red supergiants, yellow supergiants, blue supergiants, luminous blue variable stars, and Wolf–Rayet stars. Of the objects in the imaging region, all are recovered in the images. The timescale for stellar disappearance is set by the free-fall time, which is a function of the stellar radius. Our observations at 4 and 13 days after the event result in a search sensitive to objects of up to about 200 solar radii. We conclude that it is unlikely that GW150914 was caused by the core collapse of a relatively compact supergiant in the LMC, consistent with the LIGO Collaboration analyses of the gravitational waveform as best interpreted as a high mass binary black hole merger. We discuss how to generalize this search for future very nearby core-collapse candidates.

  13. A Dark Energy Camera Search for Missing Supergiants in the LMC After the Advanced LIGO Gravitational-Wave Event GW150914

    Science.gov (United States)

    Annis, J.; Soares-Santos, M.; Berger, E.; Brout, D.; Chen, H.; Chornock, R.; Cowperthwaite, P. S.; Diehl, H. T.; Doctor, Z.; Cenko, S. B.

    2016-01-01

    The collapse of a stellar core is expected to produce gravitational waves (GWs), neutrinos, and in most cases a luminous supernova. Sometimes, however, the optical event could be significantly less luminous than a supernova and a direct collapse to a black hole, where the star just disappears, is possible. The GW event GW150914 was detected by the LIGO Virgo Collaboration via a burst analysis that gave localization contours enclosing the Large Magellanic Cloud (LMC). Shortly thereafter, we used DECam to observe 102 deg(exp.2) of the localization area,including 38 deg(exp. 2) on the LMC for a missing supergiant search. We construct a complete catalog of LMC luminous red supergiants, the best candidates to undergo invisible core collapse, and collected catalogs of other candidates:less luminous red supergiants, yellow supergiants, blue supergiants, luminous blue variable stars, and Wolf-Rayet stars. Of the objects in the imaging region, all are recovered in the images. The timescale for stellar disappearance is set by the free-fall time, which is a function of the stellar radius. Our observations at 4 and 13 days after the event result in a search sensitive to objects of up to about 200 solar radii. We conclude that it is unlikely that GW150914 was caused by the core collapse of a relatively compact supergiant in the LMC, consistent with the LIGO Collaboration analyses of the gravitational waveform as best interpreted as a high mass binary black hole merger. We discuss how to generalize this search for future very nearby core-collapse candidates.

  14. The Seneca effect why growth is slow but collapse is rapid

    CERN Document Server

    Bardi, Ugo

    2017-01-01

    The essence of this book can be found in a line written by the ancient Roman Stoic Philosopher Lucius Annaeus Seneca: "Fortune is of sluggish growth, but ruin is rapid". This sentence summarizes the features of the phenomenon that we call "collapse," which is typically sudden and often unexpected, like the proverbial "house of cards." But why are such collapses so common, and what generates them? Several books have been published on the subject, including the well-known "Collapse" by Jared Diamond (2005), "The collapse of complex societies" by Joseph Tainter (1998) and "The Tipping Point," by Malcom Gladwell (2000). Why The Seneca Effect? This book is an ambitious attempt to pull these various strands together by describing collapse from a multi-disciplinary viewpoint. The reader will discover how collapse is a collective phenomenon that occurs in what we call today "complex systems," with a special emphasis on system dynamics and t he concept of "feedback." From this foundation, Bardi applies the...

  15. Long gamma-ray bursts and core-collapse supernovae have different environments.

    Science.gov (United States)

    Fruchter, A S; Levan, A J; Strolger, L; Vreeswijk, P M; Thorsett, S E; Bersier, D; Burud, I; Castro Cerón, J M; Castro-Tirado, A J; Conselice, C; Dahlen, T; Ferguson, H C; Fynbo, J P U; Garnavich, P M; Gibbons, R A; Gorosabel, J; Gull, T R; Hjorth, J; Holland, S T; Kouveliotou, C; Levay, Z; Livio, M; Metzger, M R; Nugent, P E; Petro, L; Pian, E; Rhoads, J E; Riess, A G; Sahu, K C; Smette, A; Tanvir, N R; Wijers, R A M J; Woosley, S E

    2006-05-25

    When massive stars exhaust their fuel, they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration gamma-ray burst. One would then expect that these long gamma-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the gamma-ray bursts are far more concentrated in the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long gamma-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration gamma-ray bursts are associated with the most extremely massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long gamma-ray bursts are relatively rare in galaxies such as our own Milky Way.

  16. Hamiltonian treatment of the gravitational collapse of thin shells

    International Nuclear Information System (INIS)

    Crisostomo, Juan; Olea, Rodrigo

    2004-01-01

    A Hamiltonian treatment of the gravitational collapse of thin shells is presented. The direct integration of the canonical constraints reproduces the standard shell dynamics for a number of known cases. The formalism is applied in detail to three-dimensional spacetime and the properties of the (2+1)-dimensional charged black hole collapse are further elucidated. The procedure is also extended to deal with rotating solutions in three dimensions. The general form of the equations providing the shell dynamics implies the stability of black holes, as they cannot be converted into naked singularities by any shell collapse process

  17. Research on Collapse Process of Cable-Stayed Bridges under Strong Seismic Excitations

    Directory of Open Access Journals (Sweden)

    Xuewei Wang

    2017-01-01

    Full Text Available In order to present the collapse process and failure mechanism of long-span cable-stayed bridges under strong seismic excitations, a rail-cum-road steel truss cable-stayed bridge was selected as engineering background, the collapse failure numerical model of the cable-stayed bridge was established based on the explicit dynamic finite element method (FEM, and the whole collapse process of the cable-stayed bridge was analyzed and studied with three different seismic waves acted in the horizontal longitudinal direction, respectively. It can be found from the numerical simulation analysis that the whole collapse failure process and failure modes of the cable-stayed bridge under three different seismic waves are similar. Furthermore, the piers and the main pylons are critical components contributing to the collapse of the cable-stayed bridge structure. However, the cables and the main girder are damaged owing to the failure of piers and main pylons during the whole structure collapse process, so the failure of cable and main girder components is not the main reason for the collapse of cable-stayed bridge. The analysis results can provide theoretical basis for collapse resistance design and the determination of critical damage components of long-span highway and railway cable-stayed bridges in the research of seismic vulnerability analysis.

  18. Rotating ring-ring electrode theory and experiment

    NARCIS (Netherlands)

    Kuiken, H.K.; Bakkers, E.P.A.M.; Ligthart, H.; Kellyb, J.J.

    2000-01-01

    A model is presented for the rotating ring-ring electrode. Although the electrode is defined by four characteristic lengths, it is shown that the collection efficiency depends on only two dimensionless parameters. A simple relationship between these and the corresponding parameters for the rotating

  19. Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy

    Science.gov (United States)

    Kilburn, Christopher R. J.; Petley, David N.

    2003-08-01

    Rapid, giant landslides, or sturzstroms, are among the most powerful natural hazards on Earth. They have minimum volumes of ˜10 6-10 7 m 3 and, normally preceded by prolonged intervals of accelerating creep, are produced by catastrophic and deep-seated slope collapse (loads ˜1-10 MPa). Conventional analyses attribute rapid collapse to unusual mechanisms, such as the vaporization of ground water during sliding. Here, catastrophic collapse is related to self-accelerating rock fracture, common in crustal rocks at loads ˜1-10 MPa and readily catalysed by circulating fluids. Fracturing produces an abrupt drop in resisting stress. Measured stress drops in crustal rock account for minimum sturzstrom volumes and rapid collapse accelerations. Fracturing also provides a physical basis for quantitatively forecasting catastrophic slope failure.

  20. Weak-interaction processes in stars: applications to core-collapse supernovae

    International Nuclear Information System (INIS)

    Martinez-Pinedo, G.

    2003-01-01

    The role of weak-interaction processes in core collapse and neutrino nucleosynthesis is reviewed. Recent calculations of the electron capture rates for nuclei with mass numbers A=65-112 show that, contrarily to previous assumptions, during core collapse electron capture is dominated by captures on heavy nuclei. Astrophysical simulations demonstrate that these rates have an important impact on the collapse. Neutrinos emitted by the collapsing core can interact with the overlying shells of the star producing substantial nuclear transmutations. This process known as ν-process seems to be responsible for the production of 138 La by charged current neutrino interactions with 138 Ba. The ν-process is then sensitive to the spectra of different neutrino species and to neutrino oscillations. (orig.)

  1. Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness

    Science.gov (United States)

    Zhai, Zirui; Wang, Yong; Jiang, Hanqing

    2018-03-01

    Origami has been employed to build deployable mechanical metamaterials through folding and unfolding along the crease lines. Deployable metamaterials are usually flexible, particularly along their deploying and collapsing directions, which unfortunately in many cases leads to an unstable deployed state, i.e., small perturbations may collapse the structure along the same deployment path. Here we create an origami-inspired mechanical metamaterial with on-demand deployability and selective collapsibility through energy analysis. This metamaterial has autonomous deployability from the collapsed state and can be selectively collapsed along two different paths, embodying low stiffness for one path and substantially high stiffness for another path. The created mechanical metamaterial yields load-bearing capability in the deployed direction while possessing great deployability and collapsibility. The principle in this work can be utilized to design and create versatile origami-inspired mechanical metamaterials that can find many applications.

  2. Detection of Collapse and Crystallization of Saccharide, Protein and Mannitol Formulations by Optical Fibers in Lyophilization

    Science.gov (United States)

    Horn, Jacqueline; Friess, Wolfgang

    2018-01-01

    The collapse temperature (Tc) and the glass transition temperature of freeze-concentrated solutions (Tg’) as well as the crystallization behavior of excipients are important physicochemical characteristics which guide the cycle development in freeze-drying. The most frequently used methods to determine these values are differential scanning calorimetry (DSC) and freeze-drying microscopy (FDM). The objective of this study was to evaluate the optical fiber system (OFS) unit as alternative tool for the analysis of Tc, Tg’ and crystallization events. The OFS unit was also tested as a potential online monitoring tool during freeze-drying. Freeze/thawing and freeze-drying experiments of sucrose, trehalose, stachyose, mannitol and highly concentrated IgG1 and lysozyme solutions were carried out and monitored by the OFS. Comparative analyses were performed by DSC and FDM. OFS and FDM results correlated well. The crystallization behavior of mannitol could be monitored by the OFS during freeze/thawing as it can be done by DSC. Online monitoring of freeze-drying runs detected collapse of amorphous saccharide matrices. The OFS unit enabled the analysis of both Tc and crystallization processes, which is usually carried out by FDM and DSC. The OFS can hence be used as novel measuring device. Additionally, detection of these events during lyophilization facilitate online-monitoring. Thus the OFS is a new beneficial tool for the development and monitoring of freeze-drying processes.

  3. Explosive eruptive history of Pantelleria, Italy: Repeated caldera collapse and ignimbrite emplacement at a peralkaline volcano

    Science.gov (United States)

    Jordan, Nina J.; Rotolo, Silvio G.; Williams, Rebecca; Speranza, Fabio; McIntosh, William C.; Branney, Michael J.; Scaillet, Stéphane

    2018-01-01

    A new, pre-Green Tuff (46 ka) volcanic stratigraphy is presented for the peralkaline Pantelleria Volcano, Italy. New 40Ar/39Ar and paleomagnetic data are combined with detailed field studies to develop a comprehensive stratigraphic reconstruction of the island. We find that the pre-46 ka succession is characterised by eight silica-rich peralkaline (trachyte to pantellerite) ignimbrites, many of which blanketed the entire island. The ignimbrites are typically welded to rheomorphic, and are commonly associated with lithic breccias and/or pumice deposits. They record sustained radial pyroclastic density currents fed by low pyroclastic fountains. The onset of ignimbrite emplacement is typically preceded (more rarely followed) by pumice fallout with limited dispersal, and some eruptions lack any associated pumice fall deposit, suggesting the absence of tall eruption columns. Particular attention is given to the correlation of well-developed lithic breccias in the ignimbrites, interpreted as probable tracers of caldera collapses. They record as many as five caldera collapse events, in contrast to the two events reported to date. Inter-ignimbrite periods are characterised by explosive and effusive eruptions with limited dispersal, such as small pumice cones, as well as pedogenesis. These periods have similar characteristics as the current post-Green Tuff activity on the island, and, while not imminent, it is reasonable to postulate the occurrence of another ignimbrite-forming eruption sometime in the future.

  4. Detection of Collapse and Crystallization of Saccharide, Protein, and Mannitol Formulations by Optical Fibers in Lyophilization

    Directory of Open Access Journals (Sweden)

    Jacqueline Horn

    2018-01-01

    Full Text Available The collapse temperature (Tc and the glass transition temperature of freeze-concentrated solutions (Tg' as well as the crystallization behavior of excipients are important physicochemical characteristics which guide the cycle development in freeze-drying. The most frequently used methods to determine these values are differential scanning calorimetry (DSC and freeze-drying microscopy (FDM. The objective of this study was to evaluate the optical fiber system (OFS unit as alternative tool for the analysis of Tc, Tg' and crystallization events. The OFS unit was also tested as a potential online monitoring tool during freeze-drying. Freeze/thawing and freeze-drying experiments of sucrose, trehalose, stachyose, mannitol, and highly concentrated IgG1 and lysozyme solutions were carried out and monitored by the OFS. Comparative analyses were performed by DSC and FDM. OFS and FDM results correlated well. The crystallization behavior of mannitol could be monitored by the OFS during freeze/thawing as it can be done by DSC. Online monitoring of freeze-drying runs detected collapse of amorphous saccharide matrices. The OFS unit enabled the analysis of both Tc and crystallization processes, which is usually carried out by FDM and DSC. The OFS can hence be used as novel measuring device. Additionally, detection of these events during lyophilization facilitates online-monitoring. Thus the OFS is a new beneficial tool for the development and monitoring of freeze-drying processes.

  5. Matter and gravitons in the gravitational collapse

    Directory of Open Access Journals (Sweden)

    Roberto Casadio

    2016-12-01

    Full Text Available We consider the effects of gravitons in the collapse of baryonic matter that forms a black hole. We first note that the effective number of (soft off-shell gravitons that account for the (negative Newtonian potential energy generated by the baryons is conserved and always in agreement with Bekenstein's area law of black holes. Moreover, their (positive interaction energy reproduces the expected post-Newtonian correction and becomes of the order of the total ADM mass of the system when the size of the collapsing object approaches its gravitational radius. This result supports a scenario in which the gravitational collapse of regular baryonic matter produces a corpuscular black hole without central singularity, in which both gravitons and baryons are marginally bound and form a Bose–Einstein condensate at the critical point. The Hawking emission of baryons and gravitons is then described by the quantum depletion of the condensate and we show the two energy fluxes are comparable, albeit negligibly small on astrophysical scales.

  6. Matter and gravitons in the gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Casadio, Roberto, E-mail: casadio@bo.infn.it [Dipartimento di Fisica e Astronomia, Alma Mater Universià di Bologna, via Irnerio 46, 40126 Bologna (Italy); I.N.F.N., Sezione di Bologna, IS FLAG, viale B. Pichat 6/2, I-40127 Bologna (Italy); Giugno, Andrea, E-mail: A.Giugno@physik.uni-muenchen.de [Arnold Sommerfeld Center, Ludwig-Maximilians-Universität, Theresienstraße 37, 80333 München (Germany); Giusti, Andrea, E-mail: andrea.giusti@bo.infn.it [Dipartimento di Fisica e Astronomia, Alma Mater Universià di Bologna, via Irnerio 46, 40126 Bologna (Italy); I.N.F.N., Sezione di Bologna, IS FLAG, viale B. Pichat 6/2, I-40127 Bologna (Italy)

    2016-12-10

    We consider the effects of gravitons in the collapse of baryonic matter that forms a black hole. We first note that the effective number of (soft off-shell) gravitons that account for the (negative) Newtonian potential energy generated by the baryons is conserved and always in agreement with Bekenstein's area law of black holes. Moreover, their (positive) interaction energy reproduces the expected post-Newtonian correction and becomes of the order of the total ADM mass of the system when the size of the collapsing object approaches its gravitational radius. This result supports a scenario in which the gravitational collapse of regular baryonic matter produces a corpuscular black hole without central singularity, in which both gravitons and baryons are marginally bound and form a Bose–Einstein condensate at the critical point. The Hawking emission of baryons and gravitons is then described by the quantum depletion of the condensate and we show the two energy fluxes are comparable, albeit negligibly small on astrophysical scales.

  7. Precombination Cloud Collapse and Baryonic Dark Matter

    Science.gov (United States)

    Hogan, Craig J.

    1993-01-01

    A simple spherical model of dense baryon clouds in the hot big bang 'strongly nonlinear primordial isocurvature baryon fluctuations' is reviewed and used to describe the dependence of cloud behavior on the model parameters, baryon mass, and initial over-density. Gravitational collapse of clouds before and during recombination is considered including radiation diffusion and trapping, remnant type and mass, and effects on linear large-scale fluctuation modes. Sufficiently dense clouds collapse early into black holes with a minimum mass of approx. 1 solar mass, which behave dynamically like collisionless cold dark matter. Clouds below a critical over-density, however, delay collapse until recombination, remaining until then dynamically coupled to the radiation like ordinary diffuse baryons, and possibly producing remnants of other kinds and lower mass. The mean density in either type of baryonic remnant is unconstrained by observed element abundances. However, mixed or unmixed spatial variations in abundance may survive in the diffuse baryon and produce observable departures from standard predictions.

  8. Structural characteristics and collapse mechanism of the late Cretaceous Geumseongsan Caldera, SE Korea

    Science.gov (United States)

    Lee, S.; Cheon, Y.; Lee, Y.; Son, M.

    2017-12-01

    The Geumseongsan caldera provides an opportunity to understand the structural evolution of volcanic collapse and the role of paleostress. We focus on structural elements of the exhumed caldera floor to interpret the collapse mechanism. The caldera shows an NNW-trending elliptical shape (8×12 km). Basaltic and rhyolitic rocks are situated in the central high of the caldera, while pre-volcanic sedimentary rocks in the perimetric lowland of the volcanic rocks. Stratal attitudes change sharply from the outside to the inside of caldera bounded with a sub-vertical ring fault. The outside strata show a homocline toward SE about 15°, whereas the inside is divided into four structural domains (NE-, NW-, SE-, and SW-domains) based on the changing attitudes. The strata in NW- and SE-domains dip toward SE and NW, respectively, making an overall synclinal fold. While NE- and SW-domains comprise re-oriented, folded strata, which generally have NE- and SW-trending axes plunging toward the center. In addition, extensional and contractional structures occur distinctively in NW- and SE-domains and in NE- and SW-domains, respectively, indicating an axisymmetric deformation around NE-SW axis. The results indicate that higher horizontal mass movement toward the center occurred in NW- and SE-domains than in NE- and SW-domains while vertical mass movement was more active in the latter. This axisymmetric deformation could be produced by regional stress during the volcanic activity, which affected the collapse pattern of caldera floor. The regional stress field during the late Cretaceous is known as NW-SE horizontal maximum and NE-SW horizontal minimum stresses due to the oblique subduction of proto-Pacific Plate underneath Eurasian Plate. NNW-trending elliptical shape of the caldera is interpreted to have formed under the influence of this stresses, like a tension gash. The NW-SE maximum stress possibly acted to resist vertical displacement along the marginal fault of NW- and SE

  9. The influence of collapse wall on self-excited oscillation pulsed jet nozzle performance

    International Nuclear Information System (INIS)

    Fang, Z L; Kang, Y; Yang, X F; Yuan, B; Li, D

    2012-01-01

    The self-excited oscillation pulsed jet (SOPJ) is widely used owing to its simple structure and good separation of pressure source and system. The structure of nozzle is one of the main factors that influence the performance of the SOPJ nozzle. Upper collapse wall and lower collapse wall is important to the formation and transmission of eddy in oscillation cavity. In this paper, the influence of collapse wall on SOPJ nozzle was analyzed by numerical simulation. The LES algorithm was used to simulate the flow of different combinations of collapse wall. The result showed that when both collapse walls are of the same type, the SOPJ nozzle will have a good performance; the influence of upper collapse wall is more obvious than lower one; model of two-semi-circle upper collapse wall is the first choice when we design SOPJ nozzle.

  10. Probing spontaneous wave-function collapse with entangled levitating nanospheres

    Science.gov (United States)

    Zhang, Jing; Zhang, Tiancai; Li, Jie

    2017-01-01

    Wave-function collapse models are considered to be the modified theories of standard quantum mechanics at the macroscopic level. By introducing nonlinear stochastic terms in the Schrödinger equation, these models (different from standard quantum mechanics) predict that it is fundamentally impossible to prepare macroscopic systems in macroscopic superpositions. The validity of these models can only be examined by experiments, and hence efficient protocols for these kinds of experiments are greatly needed. Here we provide a protocol that is able to probe the postulated collapse effect by means of the entanglement of the center-of-mass motion of two nanospheres optically trapped in a Fabry-Pérot cavity. We show that the collapse noise results in a large reduction of the steady-state entanglement, and the entanglement, with and without the collapse effect, shows distinguishable scalings with certain system parameters, which can be used to determine unambiguously the effect of these models.

  11. Topological ring currents in the "empty" ring of benzo-annelated perylenes.

    Science.gov (United States)

    Dickens, Timothy K; Mallion, Roger B

    2011-01-27

    Cyclic conjugation in benzo-annelated perylenes is examined by means of the topological π-electron ring currents calculated for each of their constituent rings, in a study that is an exact analogy of a recent investigation by Gutman et al. based on energy-effect values for the corresponding rings in each of these structures. "Classical" approaches, such as Kekulé structures, Clar "sextet" formulas, and circuits of conjugation, predict that the central ring in perylene is "empty" and thus contributes negligibly to cyclic conjugation. However, conclusions from the present calculations of topological ring currents agree remarkably with those arising from the earlier study involving energy-effect values in that, contrary to what would be predicted from the classical approaches, rings annelated in an angular fashion relative to the central ring of these perylene structures materially increase the extent of that ring's involvement in cyclic conjugation. It is suggested that such close quantitative agreement between the predictions of these two superficially very different indices (energy effect and topological ring current) might be due to the fact that, ultimately, both depend, albeit in ostensibly quite different ways, only on an adjacency matrix that contains information about the carbon-carbon connectivity of the conjugated system in question.

  12. Bridge Collapse Revealed By Multi-Temporal SAR Interferometry

    Science.gov (United States)

    Sousa, Joaquim; Bastos, Luisa

    2013-12-01

    On the night of March 4, 2001, the Hintze Ribeiro centennial Bridge, made of steel and concrete, collapsed in Entre-os-Rios (Northern Portugal), killing 59 people, including those in a bus and three cars that were attempting to reach the other side of the Douro River. It still remains the most serious road accident in the Portuguese history. In this work we do not intend to corroborate or contradict the official version of the accident causes, but only demonstrate the potential of Multi-Temporal Interferometric (MTI-InSAR) techniques for detection and monitoring of deformations in structures such as bridges, helping to prevent new catastrophic events. Based on the analysis of 57 ERS-1/2 covering the period from December 1992 to the fatality occurrence, we were able to detect significant movements (up to 20 mm/yr) in the section of the bridge that fell in the Douro River, obvious signs of the bridge instability.

  13. The Abort Kicker System for the PEP-II Storage Rings at SLAC

    International Nuclear Information System (INIS)

    Delamare, Jeffrey E

    2003-01-01

    The PEP-II project has two storage rings. The HER (High Energy Ring) has up to 1.48 A of election beam at 9 GeV, and the LER (Low Energy Ring) has up to 2.14 A of positron beam at 3.1 GeV. To protect the HER and LER beam lines in the event of a ring component failure, each ring has an abort kicker system which directs the beam into a dump when a failure is detected. Due to the high current of the beams, the beam kick is tapered from 100% to 80% in 7.33 (micro)S (the beam transit time around the ring). This taper distributes the energy evenly across the window which separates the ring from the beam dump such that the window is not damaged. The abort kicker trigger is synchronized with the ion clearing gap of the beam allowing for the kicker field to rise from 0-80% while there is no beam in the kicker magnet. Originally the kicker system was designed for a rise time of 370nS [1], but because the ion clearing gap was reduced in half, so was the rise time requirement for the kicker. This report discusses the design of the system interlocks, diagnostics, and modulator with the modifications necessary to accommodate an ion clearing gap of 185nS

  14. Two-dimensional collapse calculations of cylindrical clouds

    International Nuclear Information System (INIS)

    Bastien, P.; Mitalas, R.

    1979-01-01

    A two-dimensional hydrodynamic computer code has been extensively modified and expanded to study the collapse of non-rotating interstellar clouds. The physics and the numerical methods involved are discussed. The results are presented and discussed in terms of the Jeans number. The critical Jeans number for collapse of non-rotating cylindrical clouds whose length is the same as their diameter is 1.00. No evidence for fragmentation has been found for these clouds, but fragmentation seems quite likely for more elongated cylindrical clouds. (author)

  15. The collapsed football pla yer

    African Journals Online (AJOL)

    Football is the most popular sport in the world, played by over 265 ... FIFA Medical Officer and Honorary Part-time Lecturer, Wits Centre for Exercise Science and Sports Medicine, Johannesburg .... Management of a collapsed player does not.

  16. Omnidirectional piezo-optical ring sensor for enhanced guided wave structural health monitoring

    International Nuclear Information System (INIS)

    Giurgiutiu, Victor; Roman, Catalin; Lin, Bin; Frankforter, Erik

    2015-01-01

    This paper presents a novel method for the detection of ultrasonic waves from acoustic emission events using piezoelectric wafer ac3tive sensors (PWAS) and optical fiber Bragg grating (FBG) sensing combined with mechanical resonance amplification principles. The method is best suited for detecting the out-of-plane motion of the AE wave with preference for a certain frequency that can be adjusted by design. Several issues are discussed: (a) study the mode shapes of the sensors under different resonance frequencies in order to understand the behavior of the ring in a frequency band of interest; (b) comparison of analytical results and mode shapes with FEM predictions; (c) choice of the final piezo-optical ring sensor shape; (d) testing of the piezo-optical ring sensor prototype; (e) discussion of the ring-sensor test results in comparison with conventional results from PWAS and FBG sensors mounted directly on the test structure. The paper ends with summary, conclusions, and suggestions for further work. (paper)

  17. The 2016 gigantic twin glacier collapses in Tibet: towards an improved understanding of large glacier instabilities and their potential links to climate change

    Science.gov (United States)

    Gilbert, Adrien; Leinss, Silvan; Evans, Steve; Tian, Lide; Kääb, Andreas; Kargel, Jeffrey; Gimbert, Florent; Chao, Wei-An; Gascoin, Simon; Bueler, Yves; Berthier, Etienne; Yao, Tandong; Huggel, Christian; Farinotti, Daniel; Brun, Fanny; Guo, Wanqin; Leonard, Gregory

    2017-04-01

    In northwestern Tibet (34.0°N, 82.2°E) near lake Aru Co, the entire ablation area of an unnamed glacier (Aru-1) suddenly collapsed on 17 July 2016 and transformed into a mass flow that ran out over a distance of over 8 km, killing nine people and hundreds of cattle. Remarkably, a second glacier detachment with similar characteristics (Aru-2) took place 2.6 km south of the July event on 21 September 2016. These two events are unique in several aspects: their massive volumes (66 and 83 Mm3 respectively), the low slope angles ( 200 km h-1) and their close timing within two months. The only similar event currently documented is the 2002 Kolka Glacier mass flow (Caucasus Mountains). The uncommon occurrence of such large glacier failures suggest that such events require very specific conditions that could be linked to glacier thermal regime, bedrock lithology and morphology, geothermal activity or a particular climate setting. Using field and remote sensing observations, retrospective climate analysis, mass balance and thermo-mechanical modeling of the two glaciers in Tibet, we investigate the processes involved in the twin collapses. It appears that both, mostly cold-based glaciers, started to surge about 7-8 years ago, possibly in response to a long period of positive mass balance (1995-2005) followed by a sustained increase of melt water delivery to the glacier bed in the polythermal lower accumulation zone (1995-2016). Inversion of friction conditions at the base of the glacier constrained by surface elevation change rate for both glaciers shows a zone of very low basal friction progressively migrating downward until the final collapse. We interpret this to be the signature of the presence of high-pressure water dammed at the bed by the glacier's frozen periphery and toe. Large areas of low friction at the bed led to high shear stresses along the frozen side walls as evident in surface ice cracking patterns observed on satellite imagery. This process progressively

  18. Children Studying in a Wrong Language: Russian-Speaking Children in Estonian School Twenty Years after the Collapse of the Soviet Union

    Science.gov (United States)

    Toomela, Aaro, Ed.; Kikas, Eve, Ed.

    2012-01-01

    The Soviet Union collapsed more than 20 years ago, but the traces left in occupied countries by this monstrous system still affect the lives of millions of people. Under the glittering surface of newsworthy events that regularly appear in the mass media, there are many other wounds hard to heal. The system of education is one of the social…

  19. Kayser-Fleischer Rings

    Science.gov (United States)

    ... Support Contacts Lab Tracker/Copper Calculator Stories Programs & Research ... About Everything you need to know about Wilson Disease Kayser-Fleischer Rings Definition Kayser-Fleischer Ring: Clinical sign. Brownish-yellow ring visible around the corneo- ...

  20. Localized microjetting in the collapse of surface macrocavities

    Science.gov (United States)

    Olney, K. L.; Chiu, P.-H.; Benson, D. J.; Higgins, A.; Serge, M.; Nesterenko, V. F.

    2015-02-01

    This paper focuses on the multiscale mechanism of collapse of hemicylindrical annular surface macrocavities in steel caused by high-strain, high-strain rate plastic flow of copper. Experiments and simulations revealed that a two-stage process is responsible for the observed microjetting phenomena: the formation of lateral copper microjets from the localized shear flow in copper at the interface during the filling of the cavity, and their subsequent collision at the apex of the macrocavity generating two additional horizontal microjets. The lengths of these microjets were an order of magnitude smaller than the cavity size but linearly scaled with the cavity radius. This process of microjet development is sensitive to the cavity geometry and is unlike the previously observed jetting phenomena in cavitation, impact crater collapse, or shock-induced cavity collapse.

  1. Planetary Rings

    Science.gov (United States)

    Nicholson, P. D.

    2001-11-01

    A revolution in the studies in planetary rings studies occurred in the period 1977--1981, with the serendipitous discovery of the narrow, dark rings of Uranus, the first Voyager images of the tenuous jovian ring system, and the many spectacular images returned during the twin Voyager flybys of Saturn. In subsequent years, ground-based stellar occultations, HST observations, and the Voyager flybys of Uranus (1986) and Neptune (1989), as well as a handful of Galileo images, provided much additional information. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto parent bodies. Perhaps most puzzling is Saturn's multi-stranded, clumpy F ring, which continues to defy a simple explanation 20 years after it was first glimpsed in grainy images taken by Pioneer 11. Voyager and HST images reveal a complex, probably chaotic, dynamical interaction between unseen parent bodies within this ring and its two shepherd satellites, Pandora and Prometheus. The work described here reflects contributions by Joe Burns, Jeff Cuzzi, Luke Dones, Dick French, Peter Goldreich, Colleen McGhee, Carolyn Porco, Mark Showalter, and Bruno Sicardy, as well as those of the author. This research has been supported by NASA's Planetary Geology and Geophysics program and the

  2. THE BLUE STRAGGLER STAR POPULATION IN NGC 1261: EVIDENCE FOR A POST-CORE-COLLAPSE BOUNCE STATE

    International Nuclear Information System (INIS)

    Simunovic, Mirko; Puzia, Thomas H.; Sills, Alison

    2014-01-01

    We present a multi-passband photometric study of the Blue Straggler Star (BSS) population in the Galactic globular cluster (GC) NGC 1261, using available space- and ground-based survey data. The inner BSS population is found to have two distinct sequences in the color-magnitude diagram (CMD), similar to double BSS sequences detected in other GCs. These well defined sequences are presumably linked to single short-lived events such as core collapse, which are expected to boost the formation of BSSs. In agreement with this, we find a BSS sequence in NGC 1261 which can be well reproduced individually by a theoretical model prediction of a 2 Gyr old population of stellar collision products, which are expected to form in the denser inner regions during short-lived core contraction phases. Additionally, we report the occurrence of a group of BSSs with unusually blue colors in the CMD, which are consistent with a corresponding model of a 200 Myr old population of stellar collision products. The properties of the NGC 1261 BSS populations, including their spatial distributions, suggest an advanced dynamical evolutionary state of the cluster, but the core of this GC does not show the classical signatures of core collapse. We argue that these apparent contradictions provide evidence for a post-core-collapse bounce state seen in dynamical simulations of old GCs

  3. The Blue Straggler Star Population in NGC 1261: Evidence for a Post-core-collapse Bounce State

    Science.gov (United States)

    Simunovic, Mirko; Puzia, Thomas H.; Sills, Alison

    2014-11-01

    We present a multi-passband photometric study of the Blue Straggler Star (BSS) population in the Galactic globular cluster (GC) NGC 1261, using available space- and ground-based survey data. The inner BSS population is found to have two distinct sequences in the color-magnitude diagram (CMD), similar to double BSS sequences detected in other GCs. These well defined sequences are presumably linked to single short-lived events such as core collapse, which are expected to boost the formation of BSSs. In agreement with this, we find a BSS sequence in NGC 1261 which can be well reproduced individually by a theoretical model prediction of a 2 Gyr old population of stellar collision products, which are expected to form in the denser inner regions during short-lived core contraction phases. Additionally, we report the occurrence of a group of BSSs with unusually blue colors in the CMD, which are consistent with a corresponding model of a 200 Myr old population of stellar collision products. The properties of the NGC 1261 BSS populations, including their spatial distributions, suggest an advanced dynamical evolutionary state of the cluster, but the core of this GC does not show the classical signatures of core collapse. We argue that these apparent contradictions provide evidence for a post-core-collapse bounce state seen in dynamical simulations of old GCs.

  4. THE BLUE STRAGGLER STAR POPULATION IN NGC 1261: EVIDENCE FOR A POST-CORE-COLLAPSE BOUNCE STATE

    Energy Technology Data Exchange (ETDEWEB)

    Simunovic, Mirko; Puzia, Thomas H. [Institute of Astrophysics, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436 Macul, Santiago (Chile); Sills, Alison, E-mail: msimunov@astro.puc.cl, E-mail: tpuzia@astro.puc.cl, E-mail: asills@mcmaster.ca [Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1 (Canada)

    2014-11-01

    We present a multi-passband photometric study of the Blue Straggler Star (BSS) population in the Galactic globular cluster (GC) NGC 1261, using available space- and ground-based survey data. The inner BSS population is found to have two distinct sequences in the color-magnitude diagram (CMD), similar to double BSS sequences detected in other GCs. These well defined sequences are presumably linked to single short-lived events such as core collapse, which are expected to boost the formation of BSSs. In agreement with this, we find a BSS sequence in NGC 1261 which can be well reproduced individually by a theoretical model prediction of a 2 Gyr old population of stellar collision products, which are expected to form in the denser inner regions during short-lived core contraction phases. Additionally, we report the occurrence of a group of BSSs with unusually blue colors in the CMD, which are consistent with a corresponding model of a 200 Myr old population of stellar collision products. The properties of the NGC 1261 BSS populations, including their spatial distributions, suggest an advanced dynamical evolutionary state of the cluster, but the core of this GC does not show the classical signatures of core collapse. We argue that these apparent contradictions provide evidence for a post-core-collapse bounce state seen in dynamical simulations of old GCs.

  5. Modelling of cladding creep collapse

    International Nuclear Information System (INIS)

    Koundy, V.; Forgeron, T.; Hivroz, J.

    1993-01-01

    The effects of the initial ovality and pressure level on the collapse time of Zircaloy-4 tubing subjected to uniform external pressure were examined experimentally and analytically. Experiments were performed on end closed tubes with two metallurgical states: stress relieved and recrystallized. Numerical simulations were accomplished with a specific computer program based on an analytical approach and the calculated results were compared with the experimental ones. As a comparison, the finite element method is also partially examined in this analysis. Numerical collapse times are in good agreement with regard to experimental results in the case of stress relieved structure. They seem to be too conservative in the case of a recrystallized metallurgical state and the use of the anisotropic option ameliorates numerical results. Sensibility of numerical solutions to the formulation of primary creep laws are presented

  6. Efficiency criterion for teleportation via channel matrix, measurement matrix and collapsed matrix

    Directory of Open Access Journals (Sweden)

    Xin-Wei Zha

    Full Text Available In this paper, three kinds of coefficient matrixes (channel matrix, measurement matrix, collapsed matrix associated with the pure state for teleportation are presented, the general relation among channel matrix, measurement matrix and collapsed matrix is obtained. In addition, a criterion for judging whether a state can be teleported successfully is given, depending on the relation between the number of parameter of an unknown state and the rank of the collapsed matrix. Keywords: Channel matrix, Measurement matrix, Collapsed matrix, Teleportation

  7. The physics interests of a 10 TeV proton synchrotron, 400 x 400 GeV2 proton storage rings, and electron-proton storage rings

    International Nuclear Information System (INIS)

    Camilleri, L.

    1976-01-01

    This report consists of a collection of documents produced by two Study Groups, one on a multi-TeV Proton Synchrotron and the other on 400 x 400 GeV 2 Proton Storage Rings. In both studies the reactions of interest in the weak, electromagnetic and strong interactions are discussed. The technical feasibility of the relevant experiments is investigated by attempting. in each case, the design of an experimental set-up. Event rates are estimated using currently p revailing theoretical models and by extrapolation of results at present accelerators. In addition to the work of the two Study Groups, a section on the physics interests and technical problems of ep Storage Rings is included. (author)

  8. Asymmetric explosion of core-collapse supernovae

    International Nuclear Information System (INIS)

    Kazeroni, Remi

    2016-01-01

    A core-collapse supernova represents the ultimate stage of the evolution of massive stars.The iron core contraction may be followed by a gigantic explosion which gives birth to a neutron star.The multidimensional dynamics of the innermost region, during the first hundreds milliseconds, plays a decisive role on the explosion success because hydrodynamical instabilities are able to break the spherical symmetry of the collapse. Large scale transverse motions generated by two instabilities, the neutrino-driven convection and the Standing Accretion Shock Instability (SASI),increase the heating efficiency up to the point of launching an asymmetric explosion and influencing the birth properties of the neutron star. In this thesis, hydrodynamical instabilities are studied using numerical simulations of simplified models. These models enable a wide exploration of the parameter space and a better physical understanding of the instabilities, generally inaccessible to realistic models.The non-linear regime of SASI is analysed to characterize the conditions under which a spiral mode prevails and to assess its ability to redistribute angular momentum radially.The influence of rotation on the shock dynamics is also addressed. For fast enough rotation rates, a corotation instability overlaps with SASI and greatly impacts the dynamics. The simulations enable to better constrain the effect of non-axisymmetric modes on the angular momentum budget of the iron core collapsing into a neutron star. SASI may under specific conditions spin up or down the pulsar born during the explosion. Finally, an idealised model of the heating region is studied to characterize the non-linear onset of convection by perturbations such as those produced by SASI or pre-collapse combustion inhomogeneities. The dimensionality issue is examined to stress the beneficial consequences of the three-dimensional dynamics on the onset of the explosion. (author) [fr

  9. Can static regular black holes form from gravitational collapse?

    International Nuclear Information System (INIS)

    Zhang, Yiyang; Zhu, Yiwei; Modesto, Leonardo; Bambi, Cosimo

    2015-01-01

    Starting from the Oppenheimer-Snyder model, we know how in classical general relativity the gravitational collapse of matter forms a black hole with a central spacetime singularity. It is widely believed that the singularity must be removed by quantum-gravity effects. Some static quantum-inspired singularity-free black hole solutions have been proposed in the literature, but when one considers simple examples of gravitational collapse the classical singularity is replaced by a bounce, after which the collapsing matter expands for ever. We may expect three possible explanations: (i) the static regular black hole solutions are not physical, in the sense that they cannot be realized in Nature, (ii) the final product of the collapse is not unique, but it depends on the initial conditions, or (iii) boundary effects play an important role and our simple models miss important physics. In the latter case, after proper adjustment, the bouncing solution would approach the static one. We argue that the ''correct answer'' may be related to the appearance of a ghost state in de Sitter spacetimes with super Planckian mass. Our black holes have indeed a de Sitter core and the ghost would make these configurations unstable. Therefore we believe that these black hole static solutions represent the transient phase of a gravitational collapse but never survive as asymptotic states. (orig.)

  10. Naked singularities in self-similar spherical gravitational collapse

    International Nuclear Information System (INIS)

    Ori, A.; Piran, T.

    1987-01-01

    We present general-relativistic solutions of self-similar spherical collapse of an adiabatic perfect fluid. We show that if the equation of state is soft enough (Γ-1<<1), a naked singularity forms. The singularity resembles the shell-focusing naked singularities that arise in dust collapse. This solution increases significantly the range of matter fields that should be ruled out in order that the cosmic-censorship hypothesis will hold

  11. Central regions of LIRGs: rings, hidden starbursts, Supernovae and star clusters

    International Nuclear Information System (INIS)

    Väisänen, Petri; Randriamanakoto, Zara; Escala, Andres; Kankare, Erkki; Mattila, Seppo; Reunanen, Juha; Kotilainen, Jari; Rajpaul, Vinesh; Ryder, Stuart; Zijlstra, Albert

    2012-01-01

    We study star formation (SF) in very active environments, in luminous IR galaxies, which are often interacting. A variety of phenomena are detected, such as central starbursts, circumnuclear SF, obscured SNe tracing the history of recent SF, massive super star clusters, and sites of strong off-nuclear SF. All of these can be ultimately used to define the sequence of triggering and propagation of star-formation and interplay with nuclear activity in the lives of gas rich galaxy interactions and mergers. In this paper we present analysis of high-spatial resolution integral field spectroscopy of central regions of two interacting LIRGs. We detect a nuclear 3.3 μm PAH ring around the core of NGC 1614 with thermal-IR IFU observations. The ring's characteristics and relation to the strong star-forming ring detected in recombination lines are presented, as well as a scenario of an outward expanding starburst likely initiated with a (minor) companion detected within a tidal feature. We then present NIR IFU observations of IRAS 19115-2124, aka the Bird, which is an intriguing triple encounter. The third component is a minor one, but, nevertheless, is the source of 3/4 of the SFR of the whole system. Gas inflows and outflows are detected in their nuclei locations. Finally, we briefly report on our on-going NIR adaptive optics imaging survey of several dozen LIRGs. We have detected highly obscured core-collapse SNe in the central kpc, and discuss the statistics of 'missing SNe' due to dust extinction. We are also determining the characteristics of hundreds of super star clusters in and around the core regions of LIRGs, as a function of host-galaxy properties.

  12. Collapse and equilibrium of rotating, adiabatic clouds

    International Nuclear Information System (INIS)

    Boss, A.P.

    1980-01-01

    A numerical hydrodynamics computer code has been used to follow the collapse and establishment of equilibrium of adiabatic gas clouds restricted to axial symmetry. The clouds are initially uniform in density and rotation, with adiabatic exponents γ=5/3 and 7/5. The numerical technique allows, for the first time, a direct comparison to be made between the dynamic collapse and approach to equilibrium of unconstrained clouds on the one hand, and the results for incompressible, uniformly rotating equilibrium clouds, and the equilibrium structures of differentially rotating polytropes, on the other hand

  13. Preparation for electron ring - plasma ring merging experiments in RECE-MERGE

    International Nuclear Information System (INIS)

    Taggart, D.; Sekiguchi, A.; Fleischmann, H.H.

    1986-01-01

    The formation of a mixed-CT using relativistic electron rings and gun-produced plasma rings by MERGE-ing them axially is simulated. This process is similar to the axial stacking of relativistic electron rings in RECE-Christa. The results of their first plasm production experiment are reported here. After study of the gun-produced plasma's properties is completed, the gun will be mounted at the downstream end of the vacuum tank and the source of relativistic electron rings will be at the upstream end. The two rings, formed at opposite ends of the tank, will be translated axially and merged

  14. Gravitational collapse and supernovae

    International Nuclear Information System (INIS)

    Lattimer, J.M.

    1989-01-01

    The collapse of the core of a massive star and the subsequent birth of a neutron star in a supernova explosion are discussed, and a model of the supernova mechanism is developed. The basic theory is then compared with the particular case of SN1987A, whose emitted neutrinos permitted the first direct test of the model. (author)

  15. Collapse of thin wall tubes with small initial ovality

    International Nuclear Information System (INIS)

    Moreno, A.

    1977-01-01

    A simple model of creep collapse of tubes based on the bending theory of curved beams is developed. The model is compared with more complex models. The main result of this study is the definition of a new model of creep collapse of tubes with a minimum of limited hypothesis. (author) [es

  16. Important Details in Performing and Interpreting the Scratch Collapse Test.

    Science.gov (United States)

    Kahn, Lorna C; Yee, Andrew; Mackinnon, Susan E

    2018-02-01

    The utility of the scratch collapse test has been demonstrated in examination of patients with carpal and cubital tunnel syndromes and long thoracic and peroneal nerve compressions. In the authors' clinic, this lesser known test plays a key role in peripheral nerve examination where localization of the nerve irritation or injury is not fully understood. Test utility and accuracy in patients with more challenging presentations likely correlate with tester understanding and experience. This article offers a clear outline of all stages of the test to improve interrater reliability. The nuances of test performance are described, including a description of situations where the scratch collapse test is deemed inappropriate. Four clinical scenarios where the scratch collapse test may be useful are included. Corresponding video content is provided to improve performance and interpretation of the scratch collapse test. Diagnostic, V.

  17. Recoverable and Programmable Collapse from Folding Pressurized Origami Cellular Solids.

    Science.gov (United States)

    Li, S; Fang, H; Wang, K W

    2016-09-09

    We report a unique collapse mechanism by exploiting the negative stiffness observed in the folding of an origami solid, which consists of pressurized cells made by stacking origami sheets. Such a collapse mechanism is recoverable, since it only involves rigid folding of the origami sheets and it is programmable by pressure control and the custom design of the crease pattern. The collapse mechanism features many attractive characteristics for applications such as energy absorption. The reported results also suggest a new branch of origami study focused on its nonlinear mechanics associated with folding.

  18. Three-dimensional simulations of void collapse in energetic materials

    Science.gov (United States)

    Rai, Nirmal Kumar; Udaykumar, H. S.

    2018-03-01

    The collapse of voids in porous energetic materials leads to hot-spot formation and reaction initiation. This work advances the current knowledge of the dynamics of void collapse and hot-spot formation using 3D reactive void collapse simulations in HMX. Four different void shapes, i.e., sphere, cylinder, plate, and ellipsoid, are studied. For all four shapes, collapse generates complex three-dimensional (3D) baroclinic vortical structures. The hot spots are collocated with regions of intense vorticity. The differences in the vortical structures for the different void shapes are shown to significantly impact the relative sensitivity of the voids. Voids of high surface area generate hot spots of greater intensity; intricate, highly contorted vortical structures lead to hot spots of corresponding tortuosity and therefore enhanced growth rates of reaction fronts. In addition, all 3D voids are shown to be more sensitive than their two-dimensional (2D) counterparts. The results provide physical insights into hot-spot formation and growth and point to the limitations of 2D analyses of hot-spot formation.

  19. Cooperation, cheating, and collapse in microbial populations

    Science.gov (United States)

    Gore, Jeff

    2012-02-01

    Natural populations can suffer catastrophic collapse in response to small changes in environmental conditions, and recovery after such a collapse can be exceedingly difficult. We have used laboratory yeast populations to study proposed early warning signals of impending extinction. Yeast cooperatively breakdown the sugar sucrose, meaning that there is a minimum number of cells required to sustain the population. We have demonstrated experimentally that the fluctuations in the population size increase in magnitude and become slower as the population approaches collapse. The cooperative nature of yeast growth on sucrose suggests that the population may be susceptible to cheater cells, which do not contribute to the public good and instead merely take advantage of the cooperative cells. We have confirmed this possibility experimentally by using a cheater yeast strain that lacks the gene encoding the cooperative behavior [1]. However, recent results in the lab demonstrate that the presence of a bacterial competitor may drive cooperation within the yeast population.[4pt] [1] Gore et al, Nature 459, 253 -- 256 (2009)

  20. Transport in the Sawtooth Collapse

    International Nuclear Information System (INIS)

    Wesson, J.A.; Alper, B.; Edwards, A.W.; Gill, R.D.

    1997-01-01

    The rapid temperature collapse in tokamak sawtooth oscillations having incomplete magnetic reconnection is generally thought to occur through ergodization of the magnetic field. An experiment in JET using injected nickel indicates that this explanation is improbable. copyright 1997 The American Physical Society

  1. Collapse dynamics of ultrasound contrast agent microbubbles

    Science.gov (United States)

    King, Daniel Alan

    Ultrasound contrast agents (UCAs) are micron-sized gas bubbles encapsulated with thin shells on the order of nanometers thick. The damping effects of these viscoelastic coatings are widely known to significantly alter the bubble dynamics for linear and low-amplitude behavior; however, their effects on strongly nonlinear and destruction responses are much less studied. This dissertation examines the behaviors of single collapsing shelled microbubbles using experimental and theoretical methods. The study of their dynamics is particularly relevant for emerging experimental uses of UCAs which seek to leverage localized mechanical forces to create or avoid specialized biomedical effects. The central component in this work is the study of postexcitation rebound and collapse, observed acoustically to identify shell rupture and transient inertial cavitation of single UCA microbubbles. This time-domain analysis of the acoustic response provides a unique method for characterization of UCA destruction dynamics. The research contains a systematic documentation of single bubble postexcitation collapse through experimental measurement with the double passive cavitation detection (PCD) system at frequencies ranging from 0.9 to 7.1 MHz and peak rarefactional pressure amplitudes (PRPA) ranging from 230 kPa to 6.37 MPa. The double PCD setup is shown to improve the quality of collected data over previous setups by allowing symmetric responses from a localized confocal region to be identified. Postexcitation signal percentages are shown to generally follow trends consistent with other similar cavitation metrics such as inertial cavitation, with greater destruction observed at both increased PRPA and lower frequency over the tested ranges. Two different types of commercially available UCAs are characterized and found to have very different collapse thresholds; lipid-shelled Definity exhibits greater postexcitation at lower PRPAs than albumin-shelled Optison. Furthermore, by altering

  2. A ring image Cerenkov detector for the CERN Omega Spectrometer

    International Nuclear Information System (INIS)

    Davenport, M.; Deol, R.S.; Flower, P.S.

    1983-05-01

    A development program has been undertaken to produce a large ring image Cerenkov detector (RICH) for use at the CERN Omega Spectrometer. A prototype Cerenkov counter has been constructed and successfully operated in a high energy particle beam, Cerenkov rings having been observed in an experimental time projection chamber (TPC) using the photoionising agents Triethylamine (TEA) and Tetrakis (dimethylamine) ethylene (TMAE). Systematic measurements have been made of the optical properties of window materials and reflecting surfaces in the vacuum ultraviolet region. Results of these tests are presented, and the design of the large detector based on these experiences together with Monte Carlo simulations of the events expected in the WA69 experiment, is discussed. (author)

  3. Ring faults and ring dikes around the Orientale basin on the Moon.

    Science.gov (United States)

    Andrews-Hanna, Jeffrey C; Head, James W; Johnson, Brandon; Keane, James T; Kiefer, Walter S; McGovern, Patrick J; Neumann, Gregory A; Wieczorek, Mark A; Zuber, Maria T

    2018-08-01

    The Orientale basin is the youngest and best-preserved multiring impact basin on the Moon, having experienced only modest modification by subsequent impacts and volcanism. Orientale is often treated as the type example of a multiring basin, with three prominent rings outside of the inner depression: the Inner Rook Montes, the Outer Rook Montes, and the Cordillera. Here we use gravity data from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission to reveal the subsurface structure of Orientale and its ring system. Gradients of the gravity data reveal a continuous ring dike intruded into the Outer Rook along the plane of the fault associated with the ring scarp. The volume of this ring dike is ~18 times greater than the volume of all extrusive mare deposits associated with the basin. The gravity gradient signature of the Cordillera ring indicates an offset along the fault across a shallow density interface, interpreted to be the base of the low-density ejecta blanket. Both gravity gradients and crustal thickness models indicate that the edge of the central cavity is shifted inward relative to the equivalent Inner Rook ring at the surface. Models of the deep basin structure show inflections along the crust-mantle interface at both the Outer Rook and Cordillera rings, indicating that the basin ring faults extend from the surface to at least the base of the crust. Fault dips range from 13-22° for the Cordillera fault in the northeastern quadrant, to 90° for the Outer Rook in the northwestern quadrant. The fault dips for both outer rings are lowest in the northeast, possibly due to the effects of either the direction of projectile motion or regional gradients in pre-impact crustal thickness. Similar ring dikes and ring faults are observed around the majority of lunar basins.

  4. Magmatic development of the outer Vøring Margin

    Science.gov (United States)

    Breivik, Asbjorn; Faleide, Jan Inge; Mjelde, Rolf; Flueh, Ernst; Murai, Yoshio

    2013-04-01

    The Vøring Plateau off mid-Norway is a volcanic passive margin, located north of the East Jan Mayen Fracture Zone (EJMFZ). Large volumes of magmatic rocks were emplaced during Early Eocene margin formation. In 2003, an ocean bottom seismometer survey was acquired on the Vøring and Lofoten margins. One profile crosses from the Vøring Plateau to the Vøring Spur, an oceanic plateau north of the EJMFZ. The P-wave data were modeled by ray-tracing in a 2D velocity model of the crust. The process behind the excess magmatism can be estimated by comparing seismic velocity (VP) with igneous thickness (H). This profile and two other profiles farther north show a positive H-VP correlation, consistent with a hot mantle reservoir of finite extent under the margin at breakup. However, during the first two million years, magma production appears to be augmented by a secondary process. By 51-51.5 Ma melting may be caused by elevated mantle temperature alone. Seismic stratigraphy around the Vøring Spur shows at least two inversion events, with the main episode tentatively in the Upper Miocene, apparently through igneous growth to create the up to 15 km crustal thickness. The H-VP correlation of the spur is low, indicating constant and moderate-degree mantle melting not tied to the breakup magmatism. The admittance function between bathymetry and free-air gravity shows that the high is near local isostatic equilibrium, discounting that compressional flexure at the EJMFZ shaped the high. We also find no evidence for the proposed Early Eocene triple junction in the area.

  5. Groups, rings, modules

    CERN Document Server

    Auslander, Maurice

    2014-01-01

    This classic monograph is geared toward advanced undergraduates and graduate students. The treatment presupposes some familiarity with sets, groups, rings, and vector spaces. The four-part approach begins with examinations of sets and maps, monoids and groups, categories, and rings. The second part explores unique factorization domains, general module theory, semisimple rings and modules, and Artinian rings. Part three's topics include localization and tensor products, principal ideal domains, and applications of fundamental theorem. The fourth and final part covers algebraic field extensions

  6. Saturn's Rings Edge-on

    Science.gov (United States)

    1995-01-01

    In one of nature's most dramatic examples of 'now-you see-them, now-you-don't', NASA's Hubble Space Telescope captured Saturn on May 22, 1995 as the planet's magnificent ring system turned edge-on. This ring-plane crossing occurs approximately every 15 years when the Earth passes through Saturn's ring plane.For comparison, the top picture was taken by Hubble on December 1, 1994 and shows the rings in a more familiar configuration for Earth observers.The bottom picture was taken shortly before the ring plane crossing. The rings do not disappear completely because the edge of the rings reflects sunlight. The dark band across the middle of Saturn is the shadow of the rings cast on the planet (the Sun is almost 3 degrees above the ring plane.) The bright stripe directly above the ring shadow is caused by sunlight reflected off the rings onto Saturn's atmosphere. Two of Saturn's icy moons are visible as tiny starlike objects in or near the ring plane. They are, from left to right, Tethys (slightly above the ring plane) and Dione.This observation will be used to determine the time of ring-plane crossing and the thickness of the main rings and to search for as yet undiscovered satellites. Knowledge of the exact time of ring-plane crossing will lead to an improved determination of the rate at which Saturn 'wobbles' about its axis (polar precession).Both pictures were taken with Hubble's Wide Field Planetary Camera 2. The top image was taken in visible light. Saturn's disk appears different in the bottom image because a narrowband filter (which only lets through light that is not absorbed by methane gas in Saturn's atmosphere) was used to reduce the bright glare of the planet. Though Saturn is approximately 900 million miles away, Hubble can see details as small as 450 miles across.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and

  7. Collapse models and perceptual processes

    International Nuclear Information System (INIS)

    Ghirardi, Gian Carlo; Romano, Raffaele

    2014-01-01

    Theories including a collapse mechanism have been presented various years ago. They are based on a modification of standard quantum mechanics in which nonlinear and stochastic terms are added to the evolution equation. Their principal merits derive from the fact that they are mathematically precise schemes accounting, on the basis of a unique universal dynamical principle, both for the quantum behavior of microscopic systems as well as for the reduction associated to measurement processes and for the classical behavior of macroscopic objects. Since such theories qualify themselves not as new interpretations but as modifications of the standard theory they can be, in principle, tested against quantum mechanics. Recently, various investigations identifying possible crucial test have been discussed. In spite of the extreme difficulty to perform such tests it seems that recent technological developments allow at least to put precise limits on the parameters characterizing the modifications of the evolution equation. Here we will simply mention some of the recent investigations in this direction, while we will mainly concentrate our attention to the way in which collapse theories account for definite perceptual process. The differences between the case of reductions induced by perceptions and those related to measurement procedures by means of standard macroscopic devices will be discussed. On this basis, we suggest a precise experimental test of collapse theories involving conscious observers. We make plausible, by discussing in detail a toy model, that the modified dynamics can give rise to quite small but systematic errors in the visual perceptual process.

  8. The Rotating Ring-Ring Electrode. Theory and Experiment

    NARCIS (Netherlands)

    Kuiken, H.K.; Bakkers, E.P.A.M.; Ligthart, H.; Kelly, J.J.

    2000-01-01

    A model is presented for the rotating ring-ring electrode. Although the electrode is defined by four characteristic lengths, it is shown that the collection efficiency depends on only two dimensionless parameters. A simple relationship between these and the corresponding parameters for the rotating

  9. Dynamics of bubble collapse under vessel confinement in 2D hydrodynamic experiments

    Science.gov (United States)

    Shpuntova, Galina; Austin, Joanna

    2013-11-01

    One trauma mechanism in biomedical treatment techniques based on the application of cumulative pressure pulses generated either externally (as in shock-wave lithotripsy) or internally (by laser-induced plasma) is the collapse of voids. However, prediction of void-collapse driven tissue damage is a challenging problem, involving complex and dynamic thermomechanical processes in a heterogeneous material. We carry out a series of model experiments to investigate the hydrodynamic processes of voids collapsing under dynamic loading in configurations designed to model cavitation with vessel confinement. The baseline case of void collapse near a single interface is also examined. Thin sheets of tissue-surrogate polymer materials with varying acoustic impedance are used to create one or two parallel material interfaces near the void. Shadowgraph photography and two-color, single-frame particle image velocimetry quantify bubble collapse dynamics including jetting, interface dynamics and penetration, and the response of the surrounding material. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading.''

  10. Does Pressure Accentuate General Relativistic Gravitational Collapse and Formation of Trapped Surfaces?

    Science.gov (United States)

    Mitra, Abhas

    2013-04-01

    It is widely believed that though pressure resists gravitational collapse in Newtonian gravity, it aids the same in general relativity (GR) so that GR collapse should eventually be similar to the monotonous free fall case. But we show that, even in the context of radiationless adiabatic collapse of a perfect fluid, pressure tends to resist GR collapse in a manner which is more pronounced than the corresponding Newtonian case and formation of trapped surfaces is inhibited. In fact there are many works which show such collapse to rebound or become oscillatory implying a tug of war between attractive gravity and repulsive pressure gradient. Furthermore, for an imperfect fluid, the resistive effect of pressure could be significant due to likely dramatic increase of tangential pressure beyond the "photon sphere." Indeed, with inclusion of tangential pressure, in principle, there can be static objects with surface gravitational redshift z → ∞. Therefore, pressure can certainly oppose gravitational contraction in GR in a significant manner in contradiction to the idea of Roger Penrose that GR continued collapse must be unstoppable.

  11. Fractional conductance oscillations in quantum rings: wave packet picture of transport in a few-electron system

    International Nuclear Information System (INIS)

    Chwiej, T; Szafran, B

    2013-01-01

    We study electron transfer across a two-terminal quantum ring using a time-dependent description of the scattering process. For the considered scattering event the quantum ring is initially charged with one or two electrons, with another electron incident to the ring from the input channel. We study the electron transfer probability (T) as a function of the external magnetic field. We determine the periodicity of T for a varied number of electrons confined within the ring. For that purpose we develop a method to describe the wave packet dynamics for a few electrons participating in the scattering process, taking into full account the electron–electron correlations. We find that electron transfer across the quantum ring initially charged by a single electron acquires a distinct periodicity of half of the magnetic flux quantum (Φ 0 /2), corresponding to the formation of a transient two-electron state inside the ring. In the case of a three-electron scattering problem with two electrons initially occupying the ring, a period of Φ 0 /3 for T is formed in the limit of thin channels. The effect of disorder present in the confinement potential of the ring is also discussed. (paper)

  12. Fractional conductance oscillations in quantum rings: wave packet picture of transport in a few-electron system.

    Science.gov (United States)

    Chwiej, T; Szafran, B

    2013-04-17

    We study electron transfer across a two-terminal quantum ring using a time-dependent description of the scattering process. For the considered scattering event the quantum ring is initially charged with one or two electrons, with another electron incident to the ring from the input channel. We study the electron transfer probability (T) as a function of the external magnetic field. We determine the periodicity of T for a varied number of electrons confined within the ring. For that purpose we develop a method to describe the wave packet dynamics for a few electrons participating in the scattering process, taking into full account the electron-electron correlations. We find that electron transfer across the quantum ring initially charged by a single electron acquires a distinct periodicity of half of the magnetic flux quantum (Φ0/2), corresponding to the formation of a transient two-electron state inside the ring. In the case of a three-electron scattering problem with two electrons initially occupying the ring, a period of Φ0/3 for T is formed in the limit of thin channels. The effect of disorder present in the confinement potential of the ring is also discussed.

  13. Weak Interaction processes in core-collapse supernova

    International Nuclear Information System (INIS)

    Martinez-Pinedo, Gabriel

    2008-01-01

    In this manuscript we review the role that weak interaction processes play in supernova. This includes electron captures and inelastic neutrino-nucleus scattering (INNS). Electron captures during the collapse occur mainly in heavy nuclei, however the proton contribution is responsible for the convergence of different models to a 'norm' stellar trajectory. Neutrino-nucleus cross sections at supernova neutrino energies can be determined from precise data on the magnetic dipole strength. The results agree well with large-scale shell-model calculations. When incorporated in core-collapse simulations INNS increases the neutrino opacities noticeably and strongly reduces the high-energy part of the supernova spectrum

  14. Relativistic collapse using Regge calculus: Pt. 1

    International Nuclear Information System (INIS)

    Dubal, M.R.; Leicester Univ.

    1989-01-01

    Regge calculus is used to simulate the dynamical collapse of model stars. In this paper we describe the general methodology of including a perfect fluid in dynamical Regge calculus spacetimes. The Regge-Einstein equations for spherical collapse are obtained and are then specialised to mimic a particular continuum gauge. The equivalent continuum problem is also set up. This is to be solved using standard numerical techniques (i.e. the method of finite difference). A subsequent paper will consider the solution of the equations presented here and will use the continuum problem for comparison purposes in order to check the Regge calculus results. (author)

  15. Growing quasi-modes in dynamics of supersonic collapse

    International Nuclear Information System (INIS)

    Malkin, V.M.; Khudik, V.N.

    1989-01-01

    The hypothesis of globally stable self-similar regimes existence for supersonic Langmuir collapse plays a significant role in the attempts to construct a theory of strong Langmuir turbulence. A possibility for destruction of the stable against infinitely small perturbations self-similar regime of supersonic collapse by growing quasi-modes is demonstrated via the numerical solution of Cauchi problem for Zakharov equations. The quantitative criterion for the destruction of self-similar regimes is formulated. 9 refs.; 5 figs

  16. Wear Analysis of Top Piston Ring to Reduce Top Ring Reversal Bore Wear

    Directory of Open Access Journals (Sweden)

    P. Ilanthirayan

    2017-12-01

    Full Text Available The piston rings are the most important part in engine which controls the lubricating oil consumption and blowby of the gases. The lubricating film of oil is provided to seal of gases towards crankcase and also to give smooth friction free translatory motion between rings and liner. Of the three rings present top ring is more crucial as it does the main work of restricting gases downwards the crankcase. Boundary lubrication is present at the Top dead centre (TDC and Bottom dead centre (BDC of the liner surface. In addition to this, top ring is exposed to high temperature gases which makes the oil present near the top ring to get evaporated and decreasing its viscosity, making metal-metal contact most of the time. Due to this at TDC, excess wear happens on the liner which is termed as Top ring reversal bore wear. The wear rate depends upon many parameters such as lubrication condition, viscosity index, contact type, normal forces acting on ring, geometry of ring face, surface roughness, material property. The present work explores the wear depth for different geometries of barrel ring using Finite Element model with the help of Archard wear law and the same is validated through experimentation. The study reveals that Asymmetric barrel rings have less contact pressure which in turn reduces the wear at Top dead centre.

  17. Colliding and merging galaxies. II. S0 galaxies with polar rings

    International Nuclear Information System (INIS)

    Schweizer, F.; Whitmore, B.D.; Rubin, V.C.

    1983-01-01

    We first present a detailed optical study of A0136-0801, a 16 1/2 -mag ''spindle'' galaxy girdled by a ring of gas, dust, and young stars. The spindle is a normal S0 disk seen nearly edge-on, as shown by its photometric profile and fast rotation (v/sub rot//sigma/sub v/ = 2.2); a prolate structure seems to be ruled out. The surrounding ring runs over the poles of this S0 disk and serves as a probe of the vertical potential. The ring motions suggest that a massive halo extends far beyond the S0 disk (out to 3R 25 ) and that this halo is more nearly spherical than flat. We then list 22 related galaxies and derive that a few percent of all field S0's possess near-polar rings or disks. We suggest that these structures are due to a second event, most likely the transfer of mass from a companion galaxy during a close encounter and occasionally also the merger of a companion. Although accretion occurs presumably at random angles, polar rings are favored statistically because of their slow differential precession and consequent longevity. Alternate evolutionary schemes are also discussed. Finally, we suggest that M82 may be forming a polar ring from former M81 material, and predict that the ''tilted bulge'' of UGC 7576 is an S0 disk seen nearly edge-on

  18. Production Potential Of Nchanga Underground Mines Collapsed Blocks

    Directory of Open Access Journals (Sweden)

    Eugie Kabwe

    2015-08-01

    Full Text Available Abstract the main purpose of this study is to recommend modification to block caving at Nchanga ensure that it meets anticipated production levels and address the adverse ground conditions of the intensely fractured orebody. Excavations of current methods are driven close to the incompetent orebody. Determination of the appropriate method based on criteria of selection techniques together with the analysis of operating costs and safety. Reclamation of ore in the collapsed blocks entirely depended on maximizing revenue recovery of the mineral and safe working environment for equipment and personnel. On recommendation of a suitable method extent of the collapsed blocks was another aspect considered. The proposed methods of extraction were variants of block caving further shortlisted based on the extent of collapse. Economic appraisal of both the recommended and current mining methods employed included extraction recovery development reclamation costs revenue estimation and revenue raised from finished copper.

  19. PREFACE: Special section on vortex rings Special section on vortex rings

    Science.gov (United States)

    Fukumoto, Yasuhide

    2009-10-01

    This special section of Fluid Dynamics Research includes five articles on vortex rings in both classical and quantum fluids. The leading scientists of the field describe the trends in and the state-of-the-art development of experiments, theories and numerical simulations of vortex rings. The year 2008 was the 150th anniversary of 'vortex motion' since Hermann von Helmholtz opened up this field. In 1858, Helmholtz published a paper in Crelle's Journal which put forward the concept of 'vorticity' and made the first analysis of vortex motion. Fluid mechanics before that was limited to irrotational motion. In the absence of vorticity, the motion of an incompressible homogeneous fluid is virtually equivalent to a rigid-body motion in the sense that the fluid motion is determined once the boundary configuration is specified. Helmholtz proved, among other things, that, without viscosity, a vortex line is frozen into the fluid. This Helmholtz's law immediately implies the preservation of knots and links of vortex lines and its implication is enormous. One of the major trends of fluid mechanics since the latter half of the 20th century is to clarify the topological meaning of Helmholtz's law and to exploit it to develop theoretical and numerical methods to find the solutions of the Euler equations and to develop experimental techniques to gain an insight into fluid motion. Vortex rings are prominent coherent structures in a variety of fluid motions from the microscopic scale, through human and mesoscale to astrophysical scales, and have attracted people's interest. The late professor Philip G Saffman (1981) emphasized the significance of studies on vortex rings. One particular motion exemplifies the whole range of problems of vortex motion and is also a commonly known phenomenon, namely the vortex ring or smoke ring. Vortex rings are easily produced by dropping drops of one liquid into another, or by puffing fluid out of a hole, or by exhaling smoke if one has the skill

  20. Core-Collapse Supernova Progenitors In The Era Of Untargeted Transient Searches

    Science.gov (United States)

    Sanders, Nathan Edward

    2014-04-01

    Core-collapse supernovae (SNe) are the highly energetic explosions of massive stars (≳ 8 M⊙) that are pervasive in their influence throughout astrophysics. They are the phenomenon with primary responsibility for enriching the universe with many of the heavy elements (like carbon and oxygen) that are needed for life, provide a critical feedback pressure which helps to shape the galaxies that host them, and are the likely formation mechanism for stellar mass black holes. In the past decade, the study of these explosions has been revolutionized by the advent of wide field, untargeted transient searches like Pan-STARRS1 (PS1). These new searches permit the discovery of SNe at unprecedented rates, and absent of many of the selection effects that have enforced biases on past, targeted transient searches. This thesis presents a broad survey of core-collapse SN phenomenology exhibited in the discoveries of untargeted searches, and statistically quantifies population properties of these explosions that link them to distinct classes of progenitor stars. Through studies of the host galaxy and explosion properties of extreme PS1-discovered events, and controlled samples of specific classes of core-collapse objects, we constrain the effect of progenitor star chemical composition (metallicity) on their eventual death states. We provide a new observational, photometric tool which lowers the cost of precisely and accurately measuring the metallicities of distant galaxies and supernova host environments. Moreover, we develop and apply a novel, multi-level Bayesian model for optical transient light curves which we apply to simultaneously interpret more than 20,000 PS1 images. This study illustrates how population-level modeling of data from large photometric surveys can yield improved physical inference on their progenitor stars through comparison to physical models. In the coming era, as next-generation facilities like the Large Synoptic Survey Telescope come online, the

  1. Earthquakes as collapse precursors at the Han-sur-Lesse Cave in the Belgian Ardennes

    Science.gov (United States)

    Camelbeeck, Thierry; Quinif, Yves; Verheyden, Sophie; Vanneste, Kris; Knuts, Elisabeth

    2018-05-01

    Collapse activation is an ongoing process in the evolution of karstic networks related to the weakening of cave vaults. Because collapses are infrequent, few have been directly observed, making it challenging to evaluate the role of external processes in their initiation and triggering. Here, we study the two most recent collapses in the Dôme chamber of the Han-sur-Lesse Cave (Belgian Ardenne) that occurred on or shortly after 3rd December 1828 and between the 13th and 14th of March 1984. Because of the low probability that the two earthquakes that generated the strongest ground motions in Han-sur-Lesse since 1800, on 23rd February 1828 (Mw = 5.1 in Central Belgium) and 8th November 1983 (Mw = 4.8 in Liège) occurred by coincidence less than one year before these collapses, we suggest that the collapses are related to these earthquakes. We argue that the earthquakes accelerated the cave vault instability, leading to the collapses by the action of other factors weakening the host rock. In particular, the 1828 collapse was likely triggered by a smaller Mw = 4.2 nearby earthquake. The 1984 collapse followed two months of heavy rainfall that would have increased water infiltration and pressure in the rock mass favoring destabilization of the cave ceiling. Lamina counting of a stalagmite growing on the 1828 debris dates the collapse at 1826 ± 9 CE, demonstrating the possibility of dating previous collapses with a few years of uncertainty. Furthermore, our study opens new perspectives for studying collapses and their chronology both in the Han-sur-Lesse Cave and in other karstic networks. We suggest that earthquake activity could play a stronger role than previously thought in initiating cave collapses.

  2. Vortex rings

    CERN Document Server

    Akhmetov, D G

    2009-01-01

    This text on vortex rings covers their theoretical foundation, systematic investigations, and practical applications such as the extinction of fires at gushing oil wells. It pays special attention to the formation and motion of turbulent vortex rings.

  3. Coexistence of collapse and stable spatiotemporal solitons in multimode fibers

    Science.gov (United States)

    Shtyrina, Olga V.; Fedoruk, Mikhail P.; Kivshar, Yuri S.; Turitsyn, Sergei K.

    2018-01-01

    We analyze spatiotemporal solitons in multimode optical fibers and demonstrate the existence of stable solitons, in a sharp contrast to earlier predictions of collapse of multidimensional solitons in three-dimensional media. We discuss the coexistence of blow-up solutions and collapse stabilization by a low-dimensional external potential in graded-index media, and also predict the existence of stable higher-order nonlinear waves such as dipole-mode spatiotemporal solitons. To support the main conclusions of our numerical studies we employ a variational approach and derive analytically the stability criterion for input powers for the collapse stabilization.

  4. Bose-Einstein condensate collapse: A comparison between theory and experiment

    International Nuclear Information System (INIS)

    Savage, C.M.; Robins, N.P.; Hope, J.J.

    2003-01-01

    We solve the Gross-Pitaevskii equation numerically for the collapse induced by a switch from positive to negative scattering lengths. We compare our results with experiments performed with Bose-Einstein condensates of 85 Rb, in which the scattering length was controlled using a Feshbach resonance. Building on previous theoretical work we identify quantitative differences between the predictions of mean-field theory and the results of the experiments. In addition to the previously reported difference between the predicted and observed critical atom number for collapse, we also find that the predicted collapse times systematically exceed those observed experimentally

  5. Collapse in a forced three-dimensional nonlinear Schrodinger equation

    DEFF Research Database (Denmark)

    Lushnikov, P.M.; Saffman, M.

    2000-01-01

    We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation.......We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation....

  6. Shearfree cylindrical gravitational collapse

    International Nuclear Information System (INIS)

    Di Prisco, A.; Herrera, L.; MacCallum, M. A. H.; Santos, N. O.

    2009-01-01

    We consider diagonal cylindrically symmetric metrics, with an interior representing a general nonrotating fluid with anisotropic pressures. An exterior vacuum Einstein-Rosen spacetime is matched to this using Darmois matching conditions. We show that the matching conditions can be explicitly solved for the boundary values of metric components and their derivatives, either for the interior or exterior. Specializing to shearfree interiors, a static exterior can only be matched to a static interior, and the evolution in the nonstatic case is found to be given in general by an elliptic function of time. For a collapsing shearfree isotropic fluid, only a Robertson-Walker dust interior is possible, and we show that all such cases were included in Cocke's discussion. For these metrics, Nolan and Nolan have shown that the matching breaks down before collapse is complete, and Tod and Mena have shown that the spacetime is not asymptotically flat in the sense of Berger, Chrusciel, and Moncrief. The issues about energy that then arise are revisited, and it is shown that the exterior is not in an intrinsic gravitational or superenergy radiative state at the boundary.

  7. FUZZY RINGS AND ITS PROPERTIES

    Directory of Open Access Journals (Sweden)

    Karyati Karyati

    2017-01-01

      One of algebraic structure that involves a binary operation is a group that is defined  an un empty set (classical with an associative binary operation, it has identity elements and each element has an inverse. In the structure of the group known as the term subgroup, normal subgroup, subgroup and factor group homomorphism and its properties. Classical algebraic structure is developed to algebraic structure fuzzy by the researchers as an example semi group fuzzy and fuzzy group after fuzzy sets is introduced by L. A. Zadeh at 1965. It is inspired of writing about semi group fuzzy and group of fuzzy, a research on the algebraic structure of the ring is held with reviewing ring fuzzy, ideal ring fuzzy, homomorphism ring fuzzy and quotient ring fuzzy with its properties. The results of this study are obtained fuzzy properties of the ring, ring ideal properties fuzzy, properties of fuzzy ring homomorphism and properties of fuzzy quotient ring by utilizing a subset of a subset level  and strong level  as well as image and pre-image homomorphism fuzzy ring.   Keywords: fuzzy ring, subset level, homomorphism fuzzy ring, fuzzy quotient ring

  8. Spherical collapse model in time varying vacuum cosmologies

    International Nuclear Information System (INIS)

    Basilakos, Spyros; Plionis, Manolis; Sola, Joan

    2010-01-01

    We investigate the virialization of cosmic structures in the framework of flat Friedmann-Lemaitre-Robertson-Walker cosmological models, in which the vacuum energy density evolves with time. In particular, our analysis focuses on the study of spherical matter perturbations, as they decouple from the background expansion, 'turn around', and finally collapse. We generalize the spherical collapse model in the case when the vacuum energy is a running function of the Hubble rate, Λ=Λ(H). A particularly well-motivated model of this type is the so-called quantum field vacuum, in which Λ(H) is a quadratic function, Λ(H)=n 0 +n 2 H 2 , with n 0 ≠0. This model was previously studied by our team using the latest high quality cosmological data to constrain its free parameters, as well as the predicted cluster formation rate. It turns out that the corresponding Hubble expansion history resembles that of the traditional ΛCDM cosmology. We use this Λ(t)CDM framework to illustrate the fact that the properties of the spherical collapse model (virial density, collapse factor, etc.) depend on the choice of the considered vacuum energy (homogeneous or clustered). In particular, if the distribution of the vacuum energy is clustered, then, under specific conditions, we can produce more concentrated structures with respect to the homogeneous vacuum energy case.

  9. Temperature evolution during dissipative collapse

    Indian Academy of Sciences (India)

    Abstract. We investigate the gravitational collapse of a radiating sphere evolving into a final static configuration described by the interior Schwarzschild solution. The temperature profiles of this par- ticular model are obtained within the framework of causal thermodynamics. The overall temperature evolution is enhanced by ...

  10. A Mathematical Model Development for the Lateral Collapse of Octagonal Tubes

    Science.gov (United States)

    Ghazali Kamardan, M.; Sufahani, Suliadi; Othman, M. Z. M.; Che-Him, Norziha; Khalid, Kamil; Roslan, Rozaini; Ali, Maselan; Zaidi, A. M. A.

    2018-04-01

    Many researches has been done on the lateral collapse of tube. However, the previous researches only focus on cylindrical and square tubes. Then a research has been done discovering the collapse behaviour of hexagonal tube and the mathematic model of the deformation behaviour had been developed [8]. The purpose of this research is to study the lateral collapse behaviour of symmetric octagonal tubes and hence to develop a mathematical model of the collapse behaviour of these tubes. For that, a predictive mathematical model was developed and a finite element analysis procedure was conducted for the lateral collapse behaviour of symmetric octagonal tubes. Lastly, the mathematical model was verified by using the finite element analysis simulation results. It was discovered that these tubes performed different deformation behaviour than the cylindrical tube. Symmetric octagonal tubes perform 2 phases of elastic - plastic deformation behaviour patterns. The mathematical model had managed to show the fundamental of the deformation behaviour of octagonal tubes. However, further studies need to be conducted in order to further improve on the proposed mathematical model.

  11. Collapse and dispersal of a homogeneous spin fluid in Einstein-Cartan theory

    Science.gov (United States)

    Hashemi, M.; Jalalzadeh, S.; Ziaie, A. H.

    2015-02-01

    In the present work, we revisit the process of gravitational collapse of a spherically symmetric homogeneous dust fluid which is described by the Oppenheimer-Snyder (OS) model (Oppenheimer and Snyder in Phys Rev D 56:455, 1939). We show that such a scenario would not end in a spacetime singularity when the spin degrees of freedom of fermionic particles within the collapsing cloud are taken into account. To this purpose, we take the matter content of the stellar object as a homogeneous Weyssenhoff fluid. Employing the homogeneous and isotropic FLRW metric for the interior spacetime setup, it is shown that the spin of matter, in the context of a negative pressure, acts against the pull of gravity and decelerates the dynamical evolution of the collapse in its later stages. Our results show a picture of gravitational collapse in which the collapse process halts at a finite radius, whose value depends on the initial configuration. We thus show that the spacetime singularity that occurs in the OS model is replaced by a non-singular bounce beyond which the collapsing cloud re-expands to infinity. Depending on the model parameters, one can find a minimum value for the boundary of the collapsing cloud or correspondingly a threshold value for the mass content below which the horizon formation can be avoided. Our results are supported by a thorough numerical analysis.

  12. Collapse and dispersal of a homogeneous spin fluid in Einstein-Cartan theory

    International Nuclear Information System (INIS)

    Hashemi, M.; Jalalzadeh, S.; Ziaie, A.H.

    2015-01-01

    In the present work, we revisit the process of gravitational collapse of a spherically symmetric homogeneous dust fluid which is described by the Oppenheimer-Snyder (OS) model (Oppenheimer and Snyder in Phys Rev D 56:455, 1939). We show that such a scenario would not end in a spacetime singularity when the spin degrees of freedom of fermionic particles within the collapsing cloud are taken into account. To this purpose, we take the matter content of the stellar object as a homogeneous Weyssenhoff fluid. Employing the homogeneous and isotropic FLRW metric for the interior spacetime setup, it is shown that the spin of matter, in the context of a negative pressure, acts against the pull of gravity and decelerates the dynamical evolution of the collapse in its later stages. Our results show a picture of gravitational collapse in which the collapse process halts at a finite radius, whose value depends on the initial configuration. We thus show that the spacetime singularity that occurs in the OS model is replaced by a non-singular bounce beyond which the collapsing cloud re-expands to infinity. Depending on the model parameters, one can find a minimum value for the boundary of the collapsing cloud or correspondingly a threshold value for the mass content below which the horizon formation can be avoided. Our results are supported by a thorough numerical analysis. (orig.)

  13. Many missing rings in old Canary pines can be related with age, fires and traditional uses

    Energy Technology Data Exchange (ETDEWEB)

    Génova, M.; Santana, C.; Martínez, B.

    2017-11-01

    Aim and area of study: In the present paper we estimated the age of four monumental Pinus canariensis of Gran Canaria (Canary Islands, Spain) by means of tree-ring analysis. Many tree-ring series have been accurately studied and many missing rings have been determined. Material and methods: The trees were dead and the samples analysed were big disks. We measured numerous radii and crossdated the individual tree-ring series, paying particular attention to the existence and location of missing rings. We have distinguished between missing outer rings (MORs) and missing inner rings (MIRs) and analysed the possible causes of both. Main results: We determined an average of 8.8% total missing rings (MRs) for these long-lived trees, with a maximum of 96 MRs in a series of over 500. We have tried to establish a tree-ring chronology on Gran Canaria Island, also having the tree-ring series from Inagua site, but the long individual tree-ring series analysed do not crossdate between them. Research highlights: We consider the Canary pine a species hard to conducting dendroecological studies, especially if the samples come from managed old trees, in which a large amount of known and potentially unknown missing rings can hampered dating. Even knowing the difficulties involved in dendrochronological analyses of P. canariensis, we can confirm that it is a long-lived species, which can grow to over 500 years, and some of whose growth changes could be associated with certain historical and ecological events.

  14. Many missing rings in old Canary pines can be related with age, fires and traditional uses

    International Nuclear Information System (INIS)

    Génova, M.; Santana, C.; Martínez, B.

    2017-01-01

    Aim and area of study: In the present paper we estimated the age of four monumental Pinus canariensis of Gran Canaria (Canary Islands, Spain) by means of tree-ring analysis. Many tree-ring series have been accurately studied and many missing rings have been determined. Material and methods: The trees were dead and the samples analysed were big disks. We measured numerous radii and crossdated the individual tree-ring series, paying particular attention to the existence and location of missing rings. We have distinguished between missing outer rings (MORs) and missing inner rings (MIRs) and analysed the possible causes of both. Main results: We determined an average of 8.8% total missing rings (MRs) for these long-lived trees, with a maximum of 96 MRs in a series of over 500. We have tried to establish a tree-ring chronology on Gran Canaria Island, also having the tree-ring series from Inagua site, but the long individual tree-ring series analysed do not crossdate between them. Research highlights: We consider the Canary pine a species hard to conducting dendroecological studies, especially if the samples come from managed old trees, in which a large amount of known and potentially unknown missing rings can hampered dating. Even knowing the difficulties involved in dendrochronological analyses of P. canariensis, we can confirm that it is a long-lived species, which can grow to over 500 years, and some of whose growth changes could be associated with certain historical and ecological events

  15. RADIO TRANSIENTS FROM THE ACCRETION-INDUCED COLLAPSE OF WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Piro, Anthony L.; Kulkarni, S. R., E-mail: piro@caltech.edu [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2013-01-10

    It has long been expected that in some scenarios when a white dwarf (WD) grows to the Chandrasekhar limit, it can undergo an accretion-induced collapse (AIC) to form a rapidly rotating neutron star. Nevertheless, the detection of such events has so far evaded discovery, likely because the optical, supernova-like emission is expected to be dim and short-lived. Here we propose a novel signature of AIC: a transient radio source lasting for a few months. Rapid rotation along with flux freezing and dynamo action can grow the WD's magnetic field to magnetar strengths during collapse. The spin-down of this newly born magnetar generates a pulsar wind nebula (PWN) within the {approx}10{sup -3}-10{sup -1} M{sub Sun} of ejecta surrounding it. Our calculations show that synchrotron emission from the PWN may be detectable in the radio, even if the magnetar has a rather modest magnetic field of {approx}2 Multiplication-Sign 10{sup 14} G and an initial spin period of {approx}10 ms. An all-sky survey with a detection limit of 1 mJy at 1.4 GHz would see {approx}4(f/10{sup -2}) above threshold at any given time, where f is the ratio of the AIC rate to Type Ia supernova rate. A similar scenario may result from binary neutron stars if some mergers produce massive neutron stars rather than black holes. We conclude with a discussion of the detectability of these types of transient radio sources in an era of facilities with high mapping speeds.

  16. Wave function collapse implies divergence of average displacement

    OpenAIRE

    Marchewka, A.; Schuss, Z.

    2005-01-01

    We show that propagating a truncated discontinuous wave function by Schr\\"odinger's equation, as asserted by the collapse axiom, gives rise to non-existence of the average displacement of the particle on the line. It also implies that there is no Zeno effect. On the other hand, if the truncation is done so that the reduced wave function is continuous, the average coordinate is finite and there is a Zeno effect. Therefore the collapse axiom of measurement needs to be revised.

  17. Polarization Insensitivity in Double-Split Ring and Triple-Split Ring Terahertz Resonators

    International Nuclear Information System (INIS)

    Wu Qian-Nan; Lan Feng; Tang Xiao-Pin; Yang Zi-Qiang

    2015-01-01

    A modified double-split ring resonator and a modified triple-split ring resonator, which offer polarization-insensitive performance, are investigated, designed and fabricated. By displacing the two gaps of the conventional double-split ring resonator away from the center, the second resonant frequency for the 0° polarized wave and the resonant frequency for the 90° polarized wave become increasingly close to each other until they are finally identical. Theoretical and experimental results show that the modified double-split ring resonator and the modified triple-split ring resonator are insensitive to different polarized waves and show strong resonant frequency dips near 433 and 444 GHz, respectively. The results of this work suggest new opportunities for the investigation and design of polarization-dependent terahertz devices based on split ring resonators. (paper)

  18. Transition from phreatic to phreatomagmatic explosive activity of Zhupanovsky volcano (Kamchatka) in 2013-2016 due to volcanic cone collapse

    Science.gov (United States)

    Gorbach, Natalia; Plechova, Anastasiya; Portnyagin, Maxim

    2017-04-01

    Zhupanovsky volcano, situated 70 km north from Petropavlovsk-Kamchatsky city, resumed its activity in October 2013 [3]. In 2014 and in the first half of 2015, episodic explosions with ash plumes rising up to 6-8 km above sea level occurred on Priemish cone - one of four cones on the Zhupanovsky volcanic edifice [1]. In July 2015 after a series of seismic and explosive events, the southern sector of the active cone collapsed. The landslide and lahar deposits resulted from the collapse formed a large field on the volcano slopes [2]. In November 2015 and January-March 2016, a series of powerful explosions took place sending ash up to 8-10 km above sea level. No pure magmatic, effusive or extrusive, activity has been observed on Zhupanovsky in 2013-2016. We have studied the composition, morphology and textural features of ash particles produced by the largest explosive events of Zhupanovsky in the period from October 2013 to March 2016. The main components of the ash were found to be hydrothermally altered particles and lithics, likely originated by the defragmentation of rocks composing the volcanic edifice. Juvenile glass fragments occur in very subordinate quantities. The maximum amount of glass particles (up to 7%) was found in the ash erupted in January-March 2016, after the cone collapse. We suggest that the phreatic to phreatomagmatic explosive activity of Zhupanovsky volcano in 2013-2016 was initially caused by the intrusion of a new magma batch under the volcano. The intrusion and associated degassing of magma led to heating, overpressure and instability in the hydrothermal system of the volcano, causing episodic, predominantly phreatic explosions. Decompression of the shallow magmatic and hydrothermal system of the volcano due to the cone collapse in July 2015 facilitated a larger involvement of the magmatic component in the eruption and more powerful explosions. [1] Girina O.A. et al., 2016 Geophysical Research Abstracts Vol. 18, EGU2016-2101, doi: 10

  19. Multidimensional simulations of core-collapse supernovae with CHIMERA

    Science.gov (United States)

    Lentz, Eric J.; Bruenn, S. W.; Yakunin, K.; Endeve, E.; Blondin, J. M.; Harris, J. A.; Hix, W. R.; Marronetti, P.; Messer, O. B.; Mezzacappa, A.

    2014-01-01

    Core-collapse supernovae are driven by a multidimensional neutrino radiation hydrodynamic (RHD) engine, and full simulation requires at least axisymmetric (2D) and ultimately symmetry-free 3D RHD simulation. We present recent and ongoing work with our multidimensional RHD supernova code CHIMERA to understand the nature of the core-collapse explosion mechanism and its consequences. Recently completed simulations of 12-25 solar mass progenitors(Woosley & Heger 2007) in well resolved (0.7 degrees in latitude) 2D simulations exhibit robust explosions meeting the observationally expected explosion energy. We examine the role of hydrodynamic instabilities (standing accretion shock instability, neutrino driven convection, etc.) on the explosion dynamics and the development of the explosion energy. Ongoing 3D and 2D simulations examine the role that simulation resolution and the removal of the imposed axisymmetry have in the triggering and development of an explosion from stellar core collapse. Companion posters will explore the gravitational wave signals (Yakunin et al.) and nucleosynthesis (Harris et al.) of our simulations.

  20. Indicators of collapse in systems undergoing unsustainable growth.

    Science.gov (United States)

    Ridolfi, Luca; D'Odorico, Paolo; Laio, Francesco

    2015-02-01

    Unsustainable growth is typical of systems that rely on a finite pool of non-renewable resources that are tapped until they are depleted. The decrease in resource availability eventually leads these systems to a decline. Here we investigate the dynamics of systems that exhibit unsustainable growth and are prone to a collapse to an alternative ("degraded") state. For these systems the possible imminent occurrence of a collapse is difficult to avert because they keep growing as they approach the transition point. It is therefore important to identify some early warning signs that can be used to predict whether the system is approaching a critical and likely irreversible transition to an undesired and degraded state. This study evaluates whether existing theories of precursors of phase transitions based on the critical slowing down phenomenon are applicable as leading indicators of state shift in unsustainable growth dynamics. It is found that such indicators fail to serve as reliable early warning signs of the system's collapse.

  1. Gravitational instability in a primordial collapsing gas cloud

    International Nuclear Information System (INIS)

    Lacey, C.G.

    1989-01-01

    This paper presents an analysis of the linear evolution of short-wavelength perturbations in a background fluid flow which is undergoing gravitational collapse on large scales. Local evolution equations for perturbations to an arbitrary flow are derived in the linear regime and the short-wavelength limit. Local perturbation behavior in an inhomogeneous flow is found to be the same as that in a homogeneous anisotropic flow having the same local velocity field. Background flows in which the scale factors vary as power laws in time are considered to illustrate the relative effects of self-gravity, pressure and kinematics of the background flow on the density perturbation evolution. Perturbation analyses are then presented for more realistic background flows arising from the evolution into the nonlinear regime of initially small density perturbations in an isotropically expanding cosmological model. For low-pressure, inhomogeneous collapses, kinematic effects tend to dominate over self-gravity in driving perturbation growth as the collapse proceeds. 28 references

  2. a Statistical Texture Feature for Building Collapse Information Extraction of SAR Image

    Science.gov (United States)

    Li, L.; Yang, H.; Chen, Q.; Liu, X.

    2018-04-01

    Synthetic Aperture Radar (SAR) has become one of the most important ways to extract post-disaster collapsed building information, due to its extreme versatility and almost all-weather, day-and-night working capability, etc. In view of the fact that the inherent statistical distribution of speckle in SAR images is not used to extract collapsed building information, this paper proposed a novel texture feature of statistical models of SAR images to extract the collapsed buildings. In the proposed feature, the texture parameter of G0 distribution from SAR images is used to reflect the uniformity of the target to extract the collapsed building. This feature not only considers the statistical distribution of SAR images, providing more accurate description of the object texture, but also is applied to extract collapsed building information of single-, dual- or full-polarization SAR data. The RADARSAT-2 data of Yushu earthquake which acquired on April 21, 2010 is used to present and analyze the performance of the proposed method. In addition, the applicability of this feature to SAR data with different polarizations is also analysed, which provides decision support for the data selection of collapsed building information extraction.

  3. De Novo Collapsing Glomerulopathy in a Renal Allograft Recipient

    Directory of Open Access Journals (Sweden)

    Kanodia K

    2008-01-01

    Full Text Available Collapsing glomerulopathy (CG, characterized histologically by segmental/global glomerular capillary collapse, podocyte hypertrophy and hypercellularity and tubulo-interstitial injury; is characterized clinically by massive proteinuria and rapid progressive renal failure. CG is known to recur in renal allograft and rarely de novo. We report de novo CG 3 years post-transplant in a patient who received renal allograft from haplo-identical type donor.

  4. Collapse postulate for observables with continuous area

    International Nuclear Information System (INIS)

    Srinivas, M.D.

    1979-03-01

    In order to provide a mathematical framework for discussing the statistical correlations between the outcomes, when an arbitrary sequence of observables are measured, it is necessary to generalize the conventional von Neumann-Lueders collapse postulate to observables with a continuous spectrum. It is shown that the standard prescription in conventional quantum theory for the joint probabilities of compatible observables is sufficient to characterize, more or less completely, the appropriate ''generalized collapse postulate'' which associates with each observable a unique ''finitely additive expectation valued measure''. An interesting feature of the collapse associated with observables with continuous spectra, which again follows from the basic principles of conventional quantum theory, is that it must be formulated in terms of the so-called non-normal conditional expectations, which implies that the joint probabilities associated with successive observations of such observables are not in general σ-additive. The implications of this non-σ-additivity on the determination of expectation values, correlation functions etc., are also investigated. It is demonstrated that the basic prescriptions introduced in this paper constitute a natural completion of the framework of conventional quantum theory for discussing the statistics of an arbitrary sequence of observations

  5. Collapse of experimental capsules under external pressure

    International Nuclear Information System (INIS)

    Simonen, F.A.; Shippell, R.J. Jr.

    1980-01-01

    Stress analyses and developmental tests of capsules fabricated from thick-walled tubing were performed for an external pressure design condition. In the design procedure no credit was taken for the expected margin in pressure between yielding of the capsule wall and catastrophic collapse or flattening. In tests of AISI-1018 low carbon steel capsules, a significant margin was seen between yield and collapse pressure. However, the experimental yield pressures were significantly below predictions, essentially eliminating the safety margin present in the conservative design approach. The differences between predictions and test results are attributed to deficiencies in the plasticity theories commonly in use for engineering stress analyses. The results of this study show that the von Mises yield condition does not accurately describe the yield behavior of the AISI-1018 steel tubing material for the triaxial stress conditions of interest. Finite element stress analyses successfully predicted the transition between uniform inward plastic deformation and ovalization that leads to catastrophic collapse. After adjustments to correct for the unexpected yield behavior of the tube material, the predicted pressure-deflection trends were found to follow the experimental data

  6. Collapse postulate for observables with continuous spectra

    International Nuclear Information System (INIS)

    Srinivas, M.D.; Madras Univ.

    1980-01-01

    In order to provide a mathematical framework for discussing the statistical correlations between the outcomes, when an arbitrary sequence of observables are measured, it is necessary to generalize the conventional von Neumann-Lueders collapse postulate to observables with a continuous spectrum. It is shown that the standard prescription in conventional quantum theory for the joint probabilities of compatible observables is sufficient to characterize, more or less completely, the appropriate 'generalized collapse postulate' which associates with each observable a unique 'finitely additive expectation valued measure'. An interesting feature of the collapse associated with observables with continuous spectra, which again follows from the basic principles of conventional quantum theory, is that it must be formulated in terms of the so-called non-normal conditional expectations, which implies that the joint probabilities associated with successive observations of such observables are not in general sigma-additive. The implications of this non-sigma-additivity on the determination of expectation values, correlation functions etc., are also investigated. It is demonstrated that the basic prescriptions introduced in this paper constitute a natural completion of the framework of conventional quantum theory for discussing the statistics of an arbitrary sequence of observations. (orig.) 891 HJ/orig. 892 CKA

  7. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  8. Stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  9. Physics of quantum rings

    International Nuclear Information System (INIS)

    Fomin, Vladimir M.

    2014-01-01

    Presents the new class of materials of quantum rings. Provides an elemental basis for low-cost high-performance devices promising for electronics, optoelectronics, spintronics and quantum information processing. Explains the physical properties of quantum rings to cover a gap in scientific literature. Presents the application of most advanced nanoengineering and nanocharacterization techniques. This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is possible on the basis of modern characterization methods of nanostructures, such as Scanning Tunneling Microscopy. A high level of complexity is demonstrated to be needed for a dedicated theoretical model to adequately represent the specific features of quantum rings. The findings presented in this book contribute to develop low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings.

  10. Atomic Structure and Energy Distribution of Collapsed Carbon Nanotubes of Different Chiralities

    Directory of Open Access Journals (Sweden)

    Julia A. Baimova

    2015-01-01

    Full Text Available For carbon nanotubes of sufficiently large diameter at sufficiently low temperature, due to the action of the van der Waals forces, the ground state is a bilayer graphene with closed edges, the so-called collapsed configuration. Molecular dynamics simulation of collapsed carbon nanotubes is performed. The effect of length, diameter, and chirality of the nanotubes on their properties is investigated. It is shown that collapsed nanotubes after relaxation have rippled structure which is strongly dependent on the nanotube chirality. The structural properties are studied by calculating the radial distribution function and energy distribution along various regions in the collapsed carbon nanotubes.

  11. How does the blue-ringed octopus (Hapalochlaena lunulata) flash its blue rings?

    Science.gov (United States)

    Mäthger, Lydia M; Bell, George R R; Kuzirian, Alan M; Allen, Justine J; Hanlon, Roger T

    2012-11-01

    The blue-ringed octopus (Hapalochlaena lunulata), one of the world's most venomous animals, has long captivated and endangered a large audience: children playing at the beach, divers turning over rocks, and biologists researching neurotoxins. These small animals spend much of their time in hiding, showing effective camouflage patterns. When disturbed, the octopus will flash around 60 iridescent blue rings and, when strongly harassed, bite and deliver a neurotoxin that can kill a human. Here, we describe the flashing mechanism and optical properties of these rings. The rings contain physiologically inert multilayer reflectors, arranged to reflect blue-green light in a broad viewing direction. Dark pigmented chromatophores are found beneath and around each ring to enhance contrast. No chromatophores are above the ring; this is unusual for cephalopods, which typically use chromatophores to cover or spectrally modify iridescence. The fast flashes are achieved using muscles under direct neural control. The ring is hidden by contraction of muscles above the iridophores; relaxation of these muscles and contraction of muscles outside the ring expose the iridescence. This mechanism of producing iridescent signals has not previously been reported in cephalopods and we suggest that it is an exceptionally effective way to create a fast and conspicuous warning display.

  12. α-Skew π-McCoy Rings

    Directory of Open Access Journals (Sweden)

    Areej M. Abduldaim

    2013-01-01

    Full Text Available As a generalization of α-skew McCoy rings, we introduce the concept of α-skew π-McCoy rings, and we study the relationships with another two new generalizations, α-skew π1-McCoy rings and α-skew π2-McCoy rings, observing the relations with α-skew McCoy rings, π-McCoy rings, α-skew Armendariz rings, π-regular rings, and other kinds of rings. Also, we investigate conditions such that α-skew π1-McCoy rings imply α-skew π-McCoy rings and α-skew π2-McCoy rings. We show that in the case where R is a nonreduced ring, if R is 2-primal, then R is an α-skew π-McCoy ring. And, let R be a weak (α,δ-compatible ring; if R is an α-skew π1-McCoy ring, then R is α-skew π2-McCoy.

  13. The vacuum interlock system for the CELSIUS ring

    International Nuclear Information System (INIS)

    Gajewski, K.

    1990-01-01

    A vacuum interlock system has been designed and built for the CELSIUS storage ring. The ultrahigh-vacuum system of CELSIUS has a design pressure of 10 -11 mbar. This is achieved by using vacuum-fired stainless-steel chambers, baking the whole ring to 300degC and running some 50 sputter ion and titanium sublimation pumps. The turbopumps, combined with roughing pumps, are used during the pump-down and the bake-out. The pressure is monitored by Penning vacuum gauges. There is a number of programmable pressure thresholds set to trigger various events (like closing the sector valves, disabling the bake-out, etc.). The interlock system is based on the Mitsubishi programmable logic controller (PLC). An IBM PC is used as an operator's console. The operation and performance of the system is described. On the basis of present experience an upgrading of the system is suggested. (orig.)

  14. The Cretaceous-Tertiary boundary marine extinction and global primary productivity collapse

    Science.gov (United States)

    Zachos, J. C.; Arthus, M. A.; Dean, W. E.

    1988-01-01

    The extinction of marine phyto-and zoo-plankton across the K-T boundary has been well documented. Such an event may have resulted in decreased photosynthetic fixation of carbon in surface waters and a collapse of the food chain in the marine biosphere. Because the vertical and horizontal distribution of the carbon isotopic composition of total dissolved carton (TDC) in the modern ocean is controlled by the transfer of organic carbon from the surface to deep reservoirs, it follows that a major disruption of the marine biosphere would have had a major effect on the distribution of carbon isotopes in the ocean. Negative carbon isotope excursions have been identified at many marine K-T boundary sequences worldwide and are interpreted as a signal of decreased oceanic primary productivity. However, the magnitude, duration and consequences of this productivity crisis have been poorly constrained. On the basis of planktonic and benthic calcareous microfossil carbon isotope and other geochemical data from DSDP Site 577 located on the Shatsky Rise in the north-central Pacific, as well as other sites, researchers have been able to provide a reasonable estimate of the duration and magnitude of this event.

  15. Improved Noninterferometric Test of Collapse Models Using Ultracold Cantilevers

    Science.gov (United States)

    Vinante, A.; Mezzena, R.; Falferi, P.; Carlesso, M.; Bassi, A.

    2017-09-01

    Spontaneous collapse models predict that a weak force noise acts on any mechanical system, as a consequence of the collapse of the wave function. Significant upper limits on the collapse rate have been recently inferred from precision mechanical experiments, such as ultracold cantilevers and the space mission LISA Pathfinder. Here, we report new results from an experiment based on a high-Q cantilever cooled to millikelvin temperatures, which is potentially able to improve the current bounds on the continuous spontaneous localization (CSL) model by 1 order of magnitude. High accuracy measurements of the cantilever thermal fluctuations reveal a nonthermal force noise of unknown origin. This excess noise is compatible with the CSL heating predicted by Adler. Several physical mechanisms able to explain the observed noise have been ruled out.

  16. A Critique: Jared Diamond’s Collapse Put In Perspective

    Directory of Open Access Journals (Sweden)

    Emma Gause

    2014-09-01

    Full Text Available Jared Diamond’s book 'Collapse' captivated readers with its tales of past great civilizations succumbing to dramatic cycles of decline, and among them are the ancient Maya. Diamond’s model of the Maya collapse has become quite popular since its publication, however numerous other divergent theories exist as well, which attempt to explain the phenomenon. Diamond, buoyed by the success of his book and his renown as an author, is the assumed authority, despite academic criticism. By comparing Diamond’s 'Collapse' with current research I hope to critique Diamond and thus elucidate the condition of the Maya decline concerning the roles of the environment, the regional variability of various sociopolitical dynamics, such as those that were played out in the Petexbatun region, and the extent of Post Classic continuation of Maya tradition.

  17. Collapsed Lung: MedlinePlus Health Topic

    Science.gov (United States)

    ... Spanish Pneumothorax - infants (Medical Encyclopedia) Also in Spanish Topic Image MedlinePlus Email Updates Get Collapsed Lung updates ... Lung surgery Pneumothorax - slideshow Pneumothorax - infants Related Health Topics Chest Injuries and Disorders Lung Diseases Pleural Disorders ...

  18. Numerical Investigation of Progressive Collapse Resistance for Seismically Designed RC Buildings

    OpenAIRE

    Marchiş, Adrian G.; Ioani, Adrian M.

    2014-01-01

    In this paper the progressive collapse behavior of a reinforced concrete framed building located in different seismic areas from Romania is investigated. The six-storey structure is designed for low (ag = 0.08 g), moderate (ag = 0.16 g) and high (ag = 0.24 g) seismic zone. Based on the GSA (2003) criteria, a nonlinear static analysis is conducted first in order to estimate the progressive collapse resistance of the models. It was shown that all the structures will collapse when subjected to i...

  19. VUV optical ring resonator for Duke storage ring free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H.; Litvinenko, V.N.; Madey, J.M.J. [Duke Univ., Durham, NC (United States)] [and others

    1995-12-31

    The conceptual design of the multifaceted-mirror ring resonator for Duke storage ring VUV FEL is presented. The expected performance of the OK-4 FEL with ring resonator is described. We discuss in this paper our plans to study reflectivity of VUV mirrors and their resistivity to soft X-ray spontaneous radiation from OK-4 undulator.

  20. Collapse and Revival of an Atomic Beam Interacting with a Coherent State Light Field

    International Nuclear Information System (INIS)

    Ben, Li; Jing-Biao, Chen

    2009-01-01

    We report on the phenomena of the periodic spontaneous collapse and revival in the dynamics of an atomic beam interacting with a single-mode and coherent-state light field. Conventional collapse and revival by Eberly et al. [Phys. Rev. Lett. 44 (1980) 1323] are presented in the case of the evolution with time of the population inversion. Here, we study the evolution with coupling strength of population inversion. We define the collapse and revival coupling strengths as characteristic parameters to describe the above collapse and revival. Furthermore, we present the analytic formulas for the population inversion, the collapse and revival coupling strengths

  1. Classical Collapse to Black Holes and Quantum Bounces: A Review

    Directory of Open Access Journals (Sweden)

    Daniele Malafarina

    2017-05-01

    Full Text Available In the last four decades, different programs have been carried out aiming at understanding the final fate of gravitational collapse of massive bodies once some prescriptions for the behaviour of gravity in the strong field regime are provided. The general picture arising from most of these scenarios is that the classical singularity at the end of collapse is replaced by a bounce. The most striking consequence of the bounce is that the black hole horizon may live for only a finite time. The possible implications for astrophysics are important since, if these models capture the essence of the collapse of a massive star, an observable signature of quantum gravity may be hiding in astrophysical phenomena. One intriguing idea that is implied by these models is the possible existence of exotic compact objects, of high density and finite size, that may not be covered by an horizon. The present article outlines the main features of these collapse models and some of the most relevant open problems. The aim is to provide a comprehensive (as much as possible overview of the current status of the field from the point of view of astrophysics. As a little extra, a new toy model for collapse leading to the formation of a quasi static compact object is presented.

  2. Mega-rings Surrounding Timber Mountain Nested Calderas, Geophysical Anomalies: Rethinking Structure and Volcanism Near Yucca Mountain (YM), Nevada

    Science.gov (United States)

    Tynan, M. C.; Smith, K. D.; Savino, J. M.; Vogt, T. J.

    2004-12-01

    Observed regional mega-rings define a zone ˜80-100 km in diameter centered on Timber Mountain (TM). The mega-rings encompass known smaller rhyolitic nested Miocene calderas ( ˜11-15 my, structural relationships. Mega-rings consist of arcuate faulted blocks with deformation (some remain active structures) patterns showing a genetic relationship to the TM volcanic system; they appear to be spatially associated and temporally correlated with Miocene volcanism and two geophysically identified crustal/upper mantle features. A 50+ km diameter pipe-like high velocity anomaly extends from crustal depth to over 200 km beneath TM (evidence for 400km depth to NE). The pipe is located between two ˜100 km sub-parallel N/S linear trends of small-magnitude earthquake activity, one extending through the central NV Test Site, and a second located near Beatty, NV. Neither the kinematics nor relational mechanism of 100km seismically active N/S linear zones, pipe, and mega-rings are understood. Interpreted mega-rings are: 1) Similar in size to larger terrestrial volcanic complexes (e.g., Yellowstone, Indonesia's Toba system); 2) Located in the region of structural transition from the Mohave block to the south, N/S Basin and Range features to the north, Walker Lane to the NW, and the Las Vegas Valley shear zone to the SE; 3) Associated with the two seismically active zones (similar to other caldera fault-bounded sags), the mantle high velocity feature, and possibly a regional bouguer gravity anomaly; 4) Nearly coincident with area hydrologic basins and sub-basins; 5) Similar to features described from terrestrial and planetary caldera-collapse studies, and as modeled in laboratory scaled investigations (ice melt, balloon/sand). Post Mid-Miocene basalts commonly occur within or adjacent to the older rhyolitic caldera moats; other basaltic material occurs marginal to both the outer rings of the interpreted mega-ring system and high velocity pipe. The YM repository may be situated in

  3. Interaction Region Design for a Ring-Ring LHeC

    CERN Document Server

    Thompson, L N S; Bernard, N R; Fitterer, M; Holzer, B; Klein, M; Kostka, P

    2011-01-01

    tively low energy and moderately high intensity provides high luminosity TeV-scale e-p collisions at one of the LHC interaction points, running simultaneously with existing experiments. Two designs are studied; an electron ring situated in the LHC tunnel, and an electron linac. The focus of this paper is on the ring design. Designing an e-p machine presents interesting accelerator physics and design challenges, particularly when considering the interaction region. These include coupled optics, beam separation and unconventional mini-beta focusing schemes. Designs are constrained by an array of interdependent factors, including beam-beam interaction, detector dimensions and acceptance, luminosity and synchrotron radiation. Methods of addressing these complex issues are discussed. The current designs for the LHeC Ring-Ring interaction region and long straight section are presented and discussed, in the context of the project goals and design challenges encountered. Future developments and work are also discusse...

  4. A Plastic Design Method for RC Moment Frame Buildings against Progressive Collapse

    Directory of Open Access Journals (Sweden)

    Hadi Faghihmaleki

    2017-04-01

    Full Text Available In this study, progressive collapse potential of generic 3-, 8- and 12-storey RC moment frame buildings designed based on IBC-2006 code was investigated by performing non-linear static and dynamic analyses. It was observed that the model structures had high potential for progressive collapse when the second floor column was suddenly removed. Then, the size of beams required to satisfy the failure criteria for progressive collapse was obtained by using the virtual work method; i.e., using the equilibrium of the external work done by gravity load due to loss of a column and the internal work done by plastic rotation of beams. According to the nonlinear dynamic analysis results, the model structures designed only for normal load turned out to have strong potential for progressive collapse whereas the structures designed by plastic design concept for progressive collapse satisfied the failure criterion recommended by the GSA code. 

  5. Maternal Postpartum Role Collapse as a Theory of Postpartum Depression

    Science.gov (United States)

    Amankwaa, Linda Clark

    2005-01-01

    The purpose of this paper is to discuss the development of a theory of maternal postpartum role collapse. The influences of traditional role theory and symbolic interactionism are presented. The development of the maternal postpartum role collapse theory emerged from the study of postpartum depression among African-American women (Amankwaa, 2000).…

  6. Magmatic development of the outer Vøring margin from seismic data

    Science.gov (United States)

    Breivik, Asbjørn; Faleide, Jan Inge; Mjelde, Rolf; Flueh, Ernst; Murai, Yoshio

    2014-09-01

    The Vøring Plateau off mid-Norway is a volcanic passive margin, located north of the East Jan Mayen Fracture Zone (EJMFZ). Large volumes of magmatic rocks were emplaced during Early Eocene margin formation. In 2003, an ocean bottom seismometer survey was acquired over the margin. One profile crosses from the Vøring Plateau to the Vøring Spur, a bathymetric high north of the EJMFZ. The P wave data were ray traced into a 2-D crustal velocity model. The velocity structure of the Vøring Spur indicates up to 15 km igneous crustal thickness. Magmatic processes can be estimated by comparing seismic velocity (VP) with igneous thickness (H). This and two other profiles show a positive H-VP correlation at the Vøring Plateau, consistent with elevated mantle temperature at breakup. However, during the first 2 Ma magma production was augmented by a secondary process, possibly small-scale convection. From ˜51.5 Ma excess melting may be caused by elevated mantle temperature alone. Seismic stratigraphy around the Vøring Spur shows that it was created by at least two uplift events, with the main episode close to the Miocene/Pliocene boundary. Low H-VP correlation of the spur is consistent with renewed igneous growth by constant, moderate-degree mantle melting, not related to the breakup magmatism. The admittance function between bathymetry and free-air gravity shows that the high is near local isostatic equilibrium, precluding that compressional flexure at the EJMFZ uplifted the high. We find a proposed Eocene triple junction model for the margin to be inconsistent with observations.

  7. Tetanus with multiple wedge vertebral collapses

    African Journals Online (AJOL)

    owner

    2012-07-06

    Jul 6, 2012 ... associated with traumatic injury, often a penetrating wound inflicted by dirty ... multiple vertebral collapses and the management chal- .... back pains and swelling as in our patient.9 There are usually no ... The cervical and.

  8. Uniquely Strongly Clean Group Rings

    Institute of Scientific and Technical Information of China (English)

    WANG XIU-LAN

    2012-01-01

    A ring R is called clean if every element is the sum of an idempotent and a unit,and R is called uniquely strongly clean (USC for short) if every element is uniquely the sum of an idempotent and a unit that commute.In this article,some conditions on a ring R and a group G such that RG is clean are given.It is also shown that if G is a locally finite group,then the group ring RG is USC if and only if R is USC,and G is a 2-group.The left uniquely exchange group ring,as a middle ring of the uniquely clean ring and the USC ring,does not possess this property,and so does the uniquely exchange group ring.

  9. An experimental study on the impact collapse characteristics of CF/Epoxy circular tubes

    International Nuclear Information System (INIS)

    Kim, Y.N.; Im, K.H.; Park, J.W.; Yang, I.Y.

    2003-01-01

    This study is to investigate the energy absorption characteristics of CF/Epoxy (Carbon-Fiber/Epoxy Resin) circular tubes in static and impact tests. The experimental results varied significantly as a function of interlaminar number, orientation angle of outer and trigger. When a CFRP composite tube is crushed, static/impact energy is consumed by friction between the loading plate and the splayed fronds of the tube, by fracture of the fibers, matrix and their interface, and the response is complex and depends on the interaction among the different mechanisms, such as transverse shearing, laminar bending and local buckling. The collapse mode depended upon orientation angle of outer of CFRP tubes and loading status(static/impact). Typical collapse modes of CFRP tubes are wedge collapse mode, splaying collapse mode and fragmentation collapse mode

  10. Experimental study of collapsing properties of the compacted soil foundation of auto-road embankment

    Directory of Open Access Journals (Sweden)

    Yushkov Boris Semenovich

    2014-06-01

    Full Text Available The loess collapsing soils are practically ubiquitously distributed in the Perm region. They occupy about 30% of the region area. The mass construction of buildings and structures of different purposes is conducted there. Design and construction of auto-roads on the collapsing soils by ensuring their strength and normal operation is one of the most important and difficult problems of the modern construction. It is recommended to eliminate collapsing properties of soils within the entire collapsing strata with the use of deep compaction by rammers and presoaking of foundation soils, including that with deepwater explosions, chemical or thermal fixing. Multi-year practice of construction on the collapsing soils in the regions of our country showed that during erection of the various structures the removal of the powerful loess soil collapsibility is achieved with the help of methods described above, each of which is selected on the basis of the conditions and possibilities of application. This article describes the following tasks: 1. Study and generalization of the available experience of road construction on the loess soils; 2. Zoning and classification (typing of the loess strata; 3. Selection of the engineering-geological factors influencing the choice of method for compacting collapsing soils; 4. General provisions for road construction on the collapsing soils.

  11. Triggering Collapse of the Presolar Dense Cloud Core and Injecting Short-lived Radioisotopes with a Shock Wave. V. Nonisothermal Collapse Regime

    Energy Technology Data Exchange (ETDEWEB)

    Boss, Alan P., E-mail: aboss@carnegiescience.edu [Department of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States)

    2017-08-01

    Recent meteoritical analyses support an initial abundance of the short-lived radioisotope (SLRI) {sup 60}Fe that may be high enough to require nucleosynthesis in a core-collapse supernova, followed by rapid incorporation into primitive meteoritical components, rather than a scenario where such isotopes were inherited from a well-mixed region of a giant molecular cloud polluted by a variety of supernovae remnants and massive star winds. This paper continues to explore the former scenario, by calculating three-dimensional, adaptive mesh refinement, hydrodynamical code (FLASH 2.5) models of the self-gravitational, dynamical collapse of a molecular cloud core that has been struck by a thin shock front with a speed of 40 km s{sup −1}, leading to the injection of shock front matter into the collapsing cloud through the formation of Rayleigh–Taylor fingers at the shock–cloud intersection. These models extend the previous work into the nonisothermal collapse regime using a polytropic approximation to represent compressional heating in the optically thick protostar. The models show that the injection efficiencies of shock front materials are enhanced compared to previous models, which were not carried into the nonisothermal regime, and so did not reach such high densities. The new models, combined with the recent estimates of initial {sup 60}Fe abundances, imply that the supernova triggering and injection scenario remains a plausible explanation for the origin of the SLRIs involved in the formation of our solar system.

  12. Influence of ring growth rate on damage development in hot ring rolling

    NARCIS (Netherlands)

    Wang, C.; Geijselaers, H. J.M.; Omerspahic, E.; Recina, V.; van den Boogaard, A. H.

    2015-01-01

    As an incremental forming process of bulk metal, ring rolling provides a cost effective process route to manufacture seamless rings. In the production of hot rolled rings, defects such as porosity can sometimes be found in high alloyed steel, manufactured from ingots having macro-segregation. For

  13. Collapse of a cavitation bubble near a free surface

    International Nuclear Information System (INIS)

    Chahine, G.

    1976-01-01

    The interaction between a collapsing bubble and a free surface is investigated theoretically and experimentally using high speed photography. A limiting value for the distance from the free surface to the center of the bubble reported to its radius is found. Under this limit the free surface is not disturbed during the collapse, in the first approximation. Only in this case, the method of images can be used and the free surface be replaced by an image-source, symmetrical with respect to the free surface to the sink representing the bubble. Above this limit, observations show a singular perturbation in the free surface with the formation of a thin spike directed to the air. In all cases the bubble is repelled from the free surface and the re-entering jet, formed during collapse, is oriented away from it [fr

  14. On the role of ambient environments in the collapse of Bonnor-Ebert spheres

    International Nuclear Information System (INIS)

    Kaminski, Erica; Frank, Adam; Carroll, Jonathan; Myers, Phil

    2014-01-01

    We consider the interaction between a marginally stable Bonnor-Ebert (BE) sphere and the surrounding ambient medium. In particular, we explore how the infall from an evolving ambient medium can trigger the collapse of the sphere using three-dimensional adaptive mesh refinement simulations. We find the resulting collapse dynamics to vary considerably with ambient density. In the highest ambient density cases, infalling material drives a strong compression wave into the cloud. It is the propagation of this wave through the cloud interior that triggers the subsequent collapse. For lower ambient densities, we find the main trigger of collapse to be a quasistatic adjustment of the BE sphere to gravitational settling of the ambient gas. In all cases, we find that the classic 'outside-in' collapse mode for super-critical BE spheres is recovered before a protostar (i.e., sink particle) forms. Our work supports scenarios in which BE dynamics naturally begins with either a compression wave or infall dominated phase, and only later assumes the usual outside-in collapse behavior.

  15. Collapse dynamics of a vector vortex optical field with inhomogeneous states of polarization

    International Nuclear Information System (INIS)

    Chen, Rui-Pin; Zhao, Ting-Yu; Zhang, Xiaobo; Zhong, Li-Xin; Chew, Khian-Hooi

    2015-01-01

    Based on a pair of coupled 2D nonlinear Schrödinger equations, the collapse dynamics of a vector field with hybrid states of polarization (SoP) in a Kerr medium is demonstrated. The critical power for an optical field to collapse is present, and the full vectorial numerical simulations provide detailed information about the evolution and partial collapse of the vector field in a Kerr medium. Our results reveal that the optical field prefers to collapse in linearly-polarization, as a result of the self-focusing effect difference in linearly, elliptically and circularly polarized components. The SoP in the field cross-section changes and propagates with a spiral trajectory when the vector beams are imposed with a vortex. The vectorial effect on the collapse of a vector optical field can prevail over the noise even though it reaches 10% amplitude of the optical field. The unique feature of these structured collapses of a vector optical field may lead to new phenomena in the interaction of light with matter. (paper)

  16. Ring rotational speed trend analysis by FEM approach in a Ring Rolling process

    Science.gov (United States)

    Allegri, G.; Giorleo, L.; Ceretti, E.

    2018-05-01

    Ring Rolling is an advanced local incremental forming technology to fabricate directly precise seamless ring-shape parts with various dimensions and materials. In this process two different deformations occur in order to reduce the width and the height of a preform hollow ring; as results a diameter expansion is obtained. In order to guarantee a uniform deformation, the preform is forced toward the Driver Roll whose aim is to transmit the rotation to the ring. The ring rotational speed selection is fundamental because the higher is the speed the higher will be the axial symmetry of the deformation process. However, it is important to underline that the rotational speed will affect not only the final ring geometry but also the loads and energy needed to produce it. Despite this importance in industrial environment, usually, a constant value for the Driver Roll angular velocity is set so to result in a decreasing trend law for the ring rotational speed. The main risk due to this approach is not fulfilling the axial symmetric constrain (due to the diameter expansion) and to generate a high localized ring section deformation. In order to improve the knowledge about this topic in the present paper three different ring rotational speed trends (constant, linearly increasing and linearly decreasing) were investigated by FEM approach. Results were compared in terms of geometrical and dimensional analysis, loads and energies required.

  17. Mechanical improvement of metal reinforcement rings for a finite ring-shaped superconducting bulk

    Science.gov (United States)

    Huang, Chen-Guang; Zhou, You-He

    2018-03-01

    As a key technique, reinforcement of type-II superconducting bulks with metal rings can efficiently improve their mechanical properties to enhance the maximum trapped field. In this paper, we study the magnetostrictive and fracture behaviors of a finite superconducting ring bulk reinforced by three typical reinforcing structures composed of metal rings during the magnetizing process by means of the minimization of magnetic energy and the finite element method. After a field-dependent critical current density is adopted, the magnetostriction, pinning-induced stress, and crack tip stress intensity factor are calculated considering the demagnetization effects. The results show that the mechanical properties of the ring bulk are strongly dependent on the reinforcing structure and the material and geometrical parameters of the metal rings. Introducing the metal ring can significantly reduce the hoop stress, and the reduction effect by internal reinforcement is much improved relative to external reinforcement. By comparison, bilateral reinforcement seems to be the best candidate structure. Only when the metal rings have particular Young's modulus and radial thickness will they contribute to improve the mechanical properties the most. In addition, if an edge crack is pre-existing in the ring bulk, the presence of metal rings can effectively avoid crack propagation since it reduces the crack tip stress intensity factor by nearly one order of magnitude.

  18. Ring correlations in random networks.

    Science.gov (United States)

    Sadjadi, Mahdi; Thorpe, M F

    2016-12-01

    We examine the correlations between rings in random network glasses in two dimensions as a function of their separation. Initially, we use the topological separation (measured by the number of intervening rings), but this leads to pseudo-long-range correlations due to a lack of topological charge neutrality in the shells surrounding a central ring. This effect is associated with the noncircular nature of the shells. It is, therefore, necessary to use the geometrical distance between ring centers. Hence we find a generalization of the Aboav-Weaire law out to larger distances, with the correlations between rings decaying away when two rings are more than about three rings apart.

  19. APPLICATION PERSPECTIVES OF THE ANTIINFLAMMATORY THERAPY IN TREATMENT OF THE LYMPHOPHARYNGEAL RING DISEASES AMONG CHILDREN IN OUTPATIENT PRACTICE

    Directory of Open Access Journals (Sweden)

    V.P. Vavilova

    2008-01-01

    Full Text Available Optimization of methods to treat and rehabilitate children, suffering from lymphopharyngeal ring diseases, is an urgent medical and social issue. The purpose of the given research was to study the efficacy of fenspiride (erespal in treatment of children with chronic lymphopharyngeal ring diseases. The authors generalized the findings of the 3byear dynamic observation carried out among 157 children aged between 3 and 8 years old. They found out that the 2B week fenspirideb based therapy in average age doses has positive effects on the run of the acute respiratory infection, coming to existence against the hypertrophy of the lymphopharyngeal ring tissues, accelerates the remission of chronic adenoiditis. In the event of the repeat application, fenspiride increases efficacy of the nonspecific resistance and local immunity factors, rebuilds the microflora, slows down the progress of hypertrophy of the lymphopharyngeal ring tissues. Thus, fenspiridebbased therapy is a perspective trend in treatment of children with chronic lymphopharyngeal ring diseases.Key words: children, fenspiride, lymphopharyngeal ring diseases.

  20. Non-adiabatic radiative collapse of a relativistic star under different ...

    Indian Academy of Sciences (India)

    ditions. The collapse of a star filled with a homogeneous perfect fluid is compared with that of a star filled with ... We have examined the collapse of a relativistic star with matter density and fluid pressure decreasing ..... are invoked to extract information about the change in the equation of state of the interior matter of a ...

  1. Key variables influencing patterns of lava dome growth and collapse

    Science.gov (United States)

    Husain, T.; Elsworth, D.; Voight, B.; Mattioli, G. S.; Jansma, P. E.

    2013-12-01

    Lava domes are conical structures that grow by the infusion of viscous silicic or intermediate composition magma from a central volcanic conduit. Dome growth can be characterized by repeated cycles of growth punctuated by collapse, as the structure becomes oversized for its composite strength. Within these cycles, deformation ranges from slow long term deformation to sudden deep-seated collapses. Collapses may range from small raveling failures to voluminous and fast-moving pyroclastic flows with rapid and long-downslope-reach from the edifice. Infusion rate and magma rheology together with crystallization temperature and volatile content govern the spatial distribution of strength in the structure. Solidification, driven by degassing-induced crystallization of magma leads to the formation of a continuously evolving frictional talus as a hard outer shell. This shell encapsulates the cohesion-dominated soft ductile core. Here we explore the mechanics of lava dome growth and failure using a two-dimensional particle-dynamics model. This meshless model follows the natural evolution of a brittle carapace formed by loss of volatiles and rheological stiffening and avoids difficulties of hour-glassing and mesh-entangelment typical in meshed models. We test the fidelity of the model against existing experimental and observational models of lava dome growth. The particle-dynamics model follows the natural development of dome growth and collapse which is infeasible using simple analytical models. The model provides insight into the triggers that lead to the transition in collapse mechasnism from shallow flank collapse to deep seated sector collapse. Increase in material stiffness due to decrease in infusion rate results in the transition of growth pattern from endogenous to exogenous. The material stiffness and strength are strongly controlled by the magma infusion rate. Increase in infusion rate decreases the time available for degassing induced crystallization leading to a

  2. Numerical investigations of gravitational collapse

    Energy Technology Data Exchange (ETDEWEB)

    Csizmadia, Peter; Racz, Istvan, E-mail: iracz@rmki.kfki.h [RMKI, Budapest, Konkoly Thege Miklos ut 29-33, H-1121 (Hungary)

    2010-03-01

    Some properties of a new framework for simulating generic 4-dimensional spherically symmetric gravitating systems are discussed. The framework can be used to investigate spacetimes that undergo complete gravitational collapse. The analytic setup is chosen to ensure that our numerical method is capable to follow the time evolution everywhere, including the black hole region.

  3. Collapse of simple harmonic universe

    International Nuclear Information System (INIS)

    Mithani, Audrey T.; Vilenkin, Alexander

    2012-01-01

    In a recent paper Graham et al constructed oscillating and static universe models which are stable with respect to all classical perturbations. Here we show that such universes are quantum-mechanically unstable and can collapse by quantum tunneling to zero radius. We also present instantons describing nucleation of oscillating and static universes from nothing

  4. Alpha - Skew Pi - Armendariz Rings

    Directory of Open Access Journals (Sweden)

    Areej M Abduldaim

    2018-03-01

    Full Text Available In this article we introduce a new concept called Alpha-skew Pi-Armendariz rings (Alpha - S Pi - ARas a generalization of the notion of Alpha-skew Armendariz rings.Another important goal behind studying this class of rings is to employ it in order to design a modern algorithm of an identification scheme according to the evolution of using modern algebra in the applications of the field of cryptography.We investigate general properties of this concept and give examples for illustration. Furthermore, this paperstudy the relationship between this concept and some previous notions related to Alpha-skew Armendariz rings. It clearly presents that every weak Alpha-skew Armendariz ring is Alpha-skew Pi-Armendariz (Alpha-S Pi-AR. Also, thisarticle showsthat the concepts of Alpha-skew Armendariz rings and Alpha-skew Pi- Armendariz rings are equivalent in case R is 2-primal and semiprime ring.Moreover, this paper proves for a semicommutative Alpha-compatible ringR that if R[x;Alpha] is nil-Armendariz, thenR is an Alpha-S Pi-AR. In addition, if R is an Alpha - S Pi -AR, 2-primal and semiprime ring, then N(R[x;Alpha]=N(R[x;Alpha]. Finally, we look forwardthat Alpha-skew Pi-Armendariz rings (Alpha-S Pi-ARbe more effect (due to their properties in the field of cryptography than Pi-Armendariz rings, weak Armendariz rings and others.For these properties and characterizations of the introduced concept Alpha-S Pi-AR, we aspire to design a novel algorithm of an identification scheme.

  5. Geophysical Processes - MO 2013 Collapse Potential (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — Collapse potential correlates with locations of underground mines and sinkholes. Computer-generated hazard calculations include areas in close proximity to mines and...

  6. Novel Coiled-Coil Cell Division Factor ZapB Stimulates Z Ring Assembly and Cell Division

    DEFF Research Database (Denmark)

    Ebersbach, Gitte; Galli, Elizabeth; Møller-Jensen, Jakob

    2008-01-01

    Formation of the Z ring is the first known event in bacterial cell division. However, it is not yet known how the assembly and contraction of the Z ring is regulated. Here, we identify a novel cell division factor ZapB in Escherichia coli that simultaneously stimulates Z ring assembly and cell...... division. Deletion of zapB resulted in delayed cell division and the formation of ectopic Z rings and spirals whereas overexpression of ZapB resulted in nucleoid condensation and aberrant cell divisions. Localization of ZapB to the divisome depended on FtsZ but not FtsA, ZipA or FtsI and ZapB interacted...... with FtsZ in a bacterial two-hybrid analysis. The simultaneous inactivation of FtsA and ZipA prevented Z ring assembly and ZapB localization. Time lapse microscopy showed that ZapB-GFP is present at mid-cell in a pattern very similar to that of FtsZ. Cells carrying a zapB deletion and the ftsZ84ts allele...

  7. Nonlinear analysis of collapse mechanism in superstructure vehicle

    Science.gov (United States)

    Nor, M. K. Mohd; Ho, C. S.; Ma'at, N.

    2017-04-01

    The EU directive 2001/85/EC is an official European text which describes the specifications for "single deck class II and III vehicles" required to be approved by the regulation UN/ECE no.66 (R66). To prevent the catastrophic consequences by occupant during an accident, the Malaysian government has reinforced the same regulation upon superstructure construction. This paper discusses collapse mechanism analysis of a superstructure vehicle using a Crash D nonlinear analysis computer program based on this regulation. The analysis starts by hand calculation to define the required energy absorption by the chosen structure. Simple calculations were then performed to define the weakest collapse mechanism after undesirable collapse modes are eliminated. There are few factors highlighted in this work to pass the regulation. Using the selected cross section, Crash D simulation showed a good result. Generally, the deformation is linearly correlates to the energy absorption for the structure with low stiffness. Failure of critical members such as vertical lower side wall must be avoided to sustain safety of the passenger compartment and prevent from severe and fatal injuries to the trapped occupant.

  8. Gravitational collapse with decaying vacuum energy

    Indian Academy of Sciences (India)

    Abstract. The effect of dark energy on the end state of spherical radiation collapse is considered within the context of the cosmic censorship hypothesis. It is found that it is possible to have both black holes as well as naked singularities.

  9. Study of the $^{44}$Ti$(\\alpha,p)^{47}$V47 reaction and implications for core collapse supernovae

    CERN Document Server

    Margerin, V; Davinson, T; Dressler, R; Fallis, J; Kankainen, A; Laird, A M; Lotay, G; Mountford, D J; Murphy, C D; Seiffert, C; Schumann, D; Stowasser, T; Stora, T; Wang, C H -T; Woods, P J

    2014-01-01

    The underlying physics triggering core collapse supernovae is not fully understood but observations of material ejected during such events helps to solve this puzzle. In particular, several satellite based γ -ray observations of the isotope 44 Ti have been reported recently. Conveniently, the amount of this isotope in stellar ejecta is thought to depend critically on the explosion mechanism. The most influential reaction to the amount of 44 Ti in supernovae is 44 Ti ( α , p ) 47 V. Here we report on a direct study of this reaction conducted at the REX-ISOLDE facility, CERN. The experiment was performed with a 44 Ti beam at E lab = 2 . 16 MeV / u, corresponding to an energy distribution, for reacting α -particles, centred on E cm = 4 . 15 with a 1 σ width of 0.23 MeV. This is, for the first time, well within the Gamow window for core collapse supernovae. The material from which the 44 Ti beam was extracted originates from highly irradiated components of the SINQ spallation neutron source of the Paul Scherr...

  10. Plasma-ring, fast-opening switch

    International Nuclear Information System (INIS)

    Hartman, C.W.; Eddleman, J.; Hammer, J.H.

    1986-01-01

    The authors discuss a fast-opening switch concept based on magnetically confined plasma rings, PROS (for Plasma Ring Opening Switch). In PROS, the plasma ring, confined by Bθ /sub and B/poloidal /sub fields of a compact torus, provide a low mass, localized conduction path between coaxial electrodes. To operate the switch, driver current is passed across the electrodes through the ring, storing inductive energy in external inductance and between the electrodes on the driver side of the ring. The ring is accelerated away from the driver by the field of the driver current and passes over a load gap transferring the current to the load. The authors distinguish two configurations in PROS, straight PROS where the electrodes are coaxial cylinders, and cone PROS with conical electrodes. In straight PROS ring acceleration takes place during the inductive store period as in foil switches, but with the localized ring providing the current path. Increased performance is predicted for the cone PROS (see figure) which employs compression of the ring in the cone during the inductive store period. Here, the B/θ /sub field of the driver forces the ring towards the apex of the cone but the force is in near balance with the opposing component of the radial equilibrium force of the ring along the cone. As a result, the ring undergoes a slow, quasistatic compression limited only by resistive decay of the ring field. Slow compression allows inductive storage with low-power drivers (homopoloar, magneto cumulative generators, high C-low V capacitor banks, etc.). Near the apex of the cone, near peak compression, the ring is allowed to enter a straight coaxial section where, because of low-mass, it rapidly accelerates to high velocity and crosses the load gap

  11. Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow.

    Science.gov (United States)

    Gudmundsson, Magnús T; Jónsdóttir, Kristín; Hooper, Andrew; Holohan, Eoghan P; Halldórsson, Sæmundur A; Ófeigsson, Benedikt G; Cesca, Simone; Vogfjörd, Kristín S; Sigmundsson, Freysteinn; Högnadóttir, Thórdís; Einarsson, Páll; Sigmarsson, Olgeir; Jarosch, Alexander H; Jónasson, Kristján; Magnússon, Eyjólfur; Hreinsdóttir, Sigrún; Bagnardi, Marco; Parks, Michelle M; Hjörleifsdóttir, Vala; Pálsson, Finnur; Walter, Thomas R; Schöpfer, Martin P J; Heimann, Sebastian; Reynolds, Hannah I; Dumont, Stéphanie; Bali, Eniko; Gudfinnsson, Gudmundur H; Dahm, Torsten; Roberts, Matthew J; Hensch, Martin; Belart, Joaquín M C; Spaans, Karsten; Jakobsson, Sigurdur; Gudmundsson, Gunnar B; Fridriksdóttir, Hildur M; Drouin, Vincent; Dürig, Tobias; Aðalgeirsdóttir, Guðfinna; Riishuus, Morten S; Pedersen, Gro B M; van Boeckel, Tayo; Oddsson, Björn; Pfeffer, Melissa A; Barsotti, Sara; Bergsson, Baldur; Donovan, Amy; Burton, Mike R; Aiuppa, Alessandro

    2016-07-15

    Large volcanic eruptions on Earth commonly occur with a collapse of the roof of a crustal magma reservoir, forming a caldera. Only a few such collapses occur per century, and the lack of detailed observations has obscured insight into the mechanical interplay between collapse and eruption. We use multiparameter geophysical and geochemical data to show that the 110-square-kilometer and 65-meter-deep collapse of Bárdarbunga caldera in 2014-2015 was initiated through withdrawal of magma, and lateral migration through a 48-kilometers-long dike, from a 12-kilometers deep reservoir. Interaction between the pressure exerted by the subsiding reservoir roof and the physical properties of the subsurface flow path explain the gradual, near-exponential decline of both collapse rate and the intensity of the 180-day-long eruption. Copyright © 2016, American Association for the Advancement of Science.

  12. Microscale interfacial behavior at vapor film collapse on high-temperature particle surface

    International Nuclear Information System (INIS)

    Abe, Yutaka; Tochio, Daisuke

    2009-01-01

    It has been pointed out that vapor film on a premixed high-temperature droplet surface should be collapsed to trigger vapor explosion. Thus, it is important to clarify the micromechanism of vapor film collapse behavior for the occurrence of vapor explosion. In the present study, microscale vapor-liquid interface behavior upon vapor film collapse caused by an external pressure pulse is experimentally observed and qualitatively analyzed. In the analytical investigation, interfacial temperature and interface movement were estimated with heat conduction analysis and visual data processing technique. Results show that condensation can possibly occur at the vapor-liquid interface when the pressure pulse arrived. That is, this result indicates that the vapor film collapse behavior is dominated not by fluid motion but by phase change. (author)

  13. Energy transfer between energetic ring current H(+) and O(+) by electromagnetic ion cyclotron waves

    Science.gov (United States)

    Thorne, Richard M.; Horne, Richard B.

    1994-01-01

    Electromagnetic ion cyclotron (EMIC) waves in the frequency range below the helium gyrofrequency can be excited in the equatorial region of the outer magnetosphere by cyclotron resonant instability with anisotropic ring current H(+) ions. As the unducted waves propagate to higher latitudes, the wave normal should become highly inclined to the ambient magnetic field. Under such conditions, wave energy can be absorbed by cyclotron resonant interactions with ambient O(+), leading to ion heating perpendicular to the ambient magnetic field. Resonant wave absorption peaks in the vicinity of the bi-ion frequency and the second harmonic of the O(+) gyrofrequrency. This absorption should mainly occur at latitudes between 10 deg and 30 deg along auroral field lines (L is greater than or equal to 7) in the postnoon sector. The concomitant ion heating perpendicular to the ambient magnetic field can contribute to the isotropization and geomagnetic trapping of collapsed O(+) ion conics (or beams) that originate from a low-altitude ionospheric source region. During geomagnetic storms when the O(+) content of the magnetosphere is significantly enhanced, the absorption of EMIC waves should become more efficient, and it may contribute to the observed acceleration of O(+) ions of ionospheric origin up to ring current energies.

  14. Fusion Rings for Quantum Groups

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Stroppel, Catharina

    2014-01-01

    We study the fusion rings of tilting modules for a quantum group at a root of unity modulo the tensor ideal of negligible tilting modules. We identify them in type A with the combinatorial rings from Korff, C., Stroppel, C.: The sl(ˆn)k-WZNW fusion ring: a combinato-rial construction...... and a realisation as quotient of quantum cohomology. Adv. Math. 225(1), 200–268, (2010) and give a similar description of the sp2n-fusion ring in terms of non-commutative symmetric functions. Moreover we give a presentation of all fusion rings in classical types as quotients of polynomial rings. Finally we also...... compute the fusion rings for type G2....

  15. The LSU Electron Storage Ring, the first commercially-built storage ring

    International Nuclear Information System (INIS)

    Sah, R.

    1990-01-01

    The Brobeck Division of Maxwell Laboratories, Inc., is building the first industrially-produced storage ring. It will be located at Louisiana State University (LSU) at the Center for Advanced Microstructures and Devices (CAMD) in Baton Rouge. The purpose of this electron storage ring is to provide intense beams of x-rays to advance the state-of-the-art in lithography and to permit research in a broad area. This facility consists of a 1.2 GeV, 400 mA electron storage ring with a 200 MeV linac injector. The magnet lattice is a Chasman-Green design (double-bend achromat), and the ring circumference is 55.2 meters. There are four 3.0 meter, dispersion-free straight sections, one for injection, one for the 500 MHz RF cavity, and two for possible future insertion devices. The storge ring construction project is in the detailed-design stage, and many systems are in the initial stages of fabrication. 4 figs., 1 tab

  16. Fusion rings and fusion ideals

    DEFF Research Database (Denmark)

    Andersen, Troels Bak

    by the so-called fusion ideals. The fusion rings of Wess-Zumino-Witten models have been widely studied and are well understood in terms of precise combinatorial descriptions and explicit generating sets of the fusion ideals. They also appear in another, more general, setting via tilting modules for quantum......This dissertation investigates fusion rings, which are Grothendieck groups of rigid, monoidal, semisimple, abelian categories. Special interest is in rational fusion rings, i.e., fusion rings which admit a finite basis, for as commutative rings they may be presented as quotients of polynomial rings...

  17. Record of the Solar Activity and of Other Geophysical Phenomenons in Tree Ring

    Science.gov (United States)

    Rigozo, Nivaor Rodolfo

    1999-01-01

    Tree ring studies are usually used to determine or verify climatic factors which prevail in a given place or region and may cause tree ring width variations. Few studies are dedicated to the geophysical phenomena which may underlie these tree ring width variations. In order to look for periodicities which may be associated to the solar activity and/or to other geophysical phenomena which may influence tree ring growth, a new interactive image analysis method to measure tree ring width was developed and is presented here. This method makes use of a computer and a high resolution flatbed scanner; a program was also developed in Interactive Data Language (IDL 5.0) to study ring digitized images and transform them into time series. The main advantage of this method is the tree ring image interactive analysis without needing complex and high cost instrumentation. Thirty-nine samples were collected: 12 from Concordia - S. C., 9 from Canela - R. S., 14 from Sao Francisco de Paula - R. S., one from Nova Petropolis - R. S., 2 from Sao Martinho da Serra - R. S. e one from Chile. Fit functions are applied to ring width time series to obtain the best long time range trend (growth rate of every tree) curves and are eliminated through a standardization process that gives the tree ring index time series from which is performed spectral analysis by maximum entropy method and iterative regression. The results obtained show periodicities close to 11 yr, 22 yr Hale solar cycles and 5.5 yr for all sampling locations 52 yr and Gleissberg cycles for Concordia - S. C. and Chile samples. El Nino events were also observed with periods around 4 e 7 yr.

  18. Critical Effects in Gravitational Collapse

    International Nuclear Information System (INIS)

    Chmaj, T.

    2000-01-01

    The models of gravitational collapse of a dynamical system are investigated by means of the Einstein equations. Different types conjunctions to gravitational field are analyzed and it is shown that in the case of week scalar field (low energy density) the system evaluated to flat space while in the case of strong field (high energy density) to black hole

  19. Distinct Element modeling of geophysical signatures during sinkhole collapse

    Science.gov (United States)

    Al-Halbouni, Djamil; Holohan, Eoghan P.; Taheri, Abbas; Dahm, Torsten

    2017-04-01

    A sinkhole forms due to the collapse of rocks or soil near the Earth's surface into an underground cavity. Such cavities represent large secondary pore spaces derived by dissolution and subrosion in the underground. By changing the stress field in the surrounding material, the growth of cavities can lead to a positive feedback, in which expansion and mechanical instability in the surrounding material increases or generates new secondary pore space (e.g. by fracturing), which in turn increases the cavity size, etc. A sinkhole forms due to the eventual subsidence or collapse of the overburden that becomes destabilized and fails all the way to the Earth's surface. Both natural processes like (sub)surface water movement and earthquakes, and human activities, such as mining, construction and groundwater extraction, intensify such feedbacks. The development of models for the mechanical interaction of a growing cavity and fracturing of its surrounding material, thus capturing related precursory geophysical signatures, has been limited, however. Here we report on the advances of a general, simplified approach to simulating cavity growth and sinkhole formation by using 2D Distinct Element Modeling (DEM) PFC5.0 software and thereby constraining pre-, syn- and post-collapse geophysical and geodetic signatures. This physically realistic approach allows for spontaneous cavity development and dislocation of rock mass to be simulated by bonded particle formulation of DEM. First, we present calibration and validation of our model. Surface subsidence above an instantaneously excavated circular cavity is tracked and compared with an incrementally increasing dissolution zone both for purely elastic and non-elastic material.This validation is important for the optimal choice of model dimensions and particles size with respect to simulation time. Second, a cavity growth approach is presented and compared to a well-documented case study, the deliberately intensified sinkhole collapse at

  20. Nation vs. region: tensions in Venezuela’s post-collapse party system

    Directory of Open Access Journals (Sweden)

    Iñaki SAGARZAZU

    2011-11-01

    Full Text Available The collapse of the Venezuelan party system stirred controversy because it was considered one of the most consolidated political systems of Latin America. Several studies have analyzed the causes that contributed to this collapse. None, however, have studied the restructuring process that happened later. Through a study of all the electoral processes since 1958 this article shows the existence of tensions between forces that promote nationalization and regionalization strategies. With this analysis it’s possible to understand that partisan strategy has been essential in the nationalization/regionalization process of the different post-collapse parties.

  1. Revisiting event horizon finders

    International Nuclear Information System (INIS)

    Cohen, Michael I; Pfeiffer, Harald P; Scheel, Mark A

    2009-01-01

    Event horizons are the defining physical features of black hole spacetimes, and are of considerable interest in studying black hole dynamics. Here, we reconsider three techniques to find event horizons in numerical spacetimes: integrating geodesics, integrating a surface, and integrating a level-set of surfaces over a volume. We implement the first two techniques and find that straightforward integration of geodesics backward in time is most robust. We find that the exponential rate of approach of a null surface towards the event horizon of a spinning black hole equals the surface gravity of the black hole. In head-on mergers we are able to track quasi-normal ringing of the merged black hole through seven oscillations, covering a dynamic range of about 10 5 . Both at late times (when the final black hole has settled down) and at early times (before the merger), the apparent horizon is found to be an excellent approximation of the event horizon. In the head-on binary black hole merger, only some of the future null generators of the horizon are found to start from past null infinity; the others approach the event horizons of the individual black holes at times far before merger.

  2. Dynamics of zonal shear collapse with hydrodynamic electrons

    Science.gov (United States)

    Hajjar, R. J.; Diamond, P. H.; Malkov, M. A.

    2018-06-01

    This paper presents a theory for the collapse of the edge zonal shear layer, as observed at the density limit at low β. This paper investigates the scaling of the transport and mean profiles with the adiabaticity parameter α, with special emphasizes on fluxes relevant to zonal flow (ZF) generation. We show that the adiabaticity parameter characterizes the strength of production of zonal flows and so determines the state of turbulence. A 1D reduced model that self-consistently describes the spatiotemporal evolution of the mean density n ¯ , the azimuthal flow v¯ y , and the turbulent potential enstrophy ɛ=⟨(n˜ -∇2ϕ˜ ) 2/2 ⟩ —related to fluctuation intensity—is presented. Quasi-linear analysis determines how the particle flux Γn and vorticity flux Π=-χy∇2vy+Πre s scale with α, in both hydrodynamic and adiabatic regimes. As the plasma response passes from adiabatic (α > 1) to hydrodynamic (α y=Πre s/χy —representative of the strength of the shear—also drops. The shear layer then collapses and turbulence is enhanced. The collapse is due to a decrease in ZF production, not an increase in damping. A physical picture for the onset of collapse is presented. The findings of this paper are used to motivate an explanation of the phenomenology of low β density limit evolution. A change from adiabatic ( α=kz2vth 2/(|ω|νei)>1 ) to hydrodynamic (α < 1) electron dynamics is associated with the density limit.

  3. Evaluation of ring impedance of the Photon Factory storage ring

    International Nuclear Information System (INIS)

    Kiuchi, T.; Izawa, M.; Tokumoto, S.; Hori, Y.; Sakanaka, S.; Kobayashi, M.; Kobayakawa, H.

    1992-05-01

    The loss parameters of the ducts in the Photon Factory (PF) storage ring were evaluated using the wire method and the code TBCI. Both the measurement and the calculation were done for a different bunch length (σ) ranging from 23 to 80 ps. The PF ring impedance was estimated to be |Z/n|=3.2 Ω using the broadband impedance model. The major contribution to the impedance comes from the bellows and the gate valve sections. Improvements of these components will lower the ring impedance by half. (author)

  4. Collapse of triangular channels in a soft elastomer

    Science.gov (United States)

    Tepáyotl-Ramírez, Daniel; Lu, Tong; Park, Yong-Lae; Majidi, Carmel

    2013-01-01

    We extend classical solutions in contact mechanics to examine the collapse of channels in a soft elastomer. These channels have triangular cross-section and collapse when pressure is applied to the surrounding elastomer. Treating the walls of the channel as indenters that penetrate the channel base, we derive an algebraic mapping between pressure and cross-sectional area. These theoretical predictions are in strong agreement with results that we obtain through finite element analysis and experimental measurements. This is accomplished without data fitting and suggests that the theoretical approach may be generalized to a broad range of cross-sectional geometries in soft microfluidics.

  5. Direct collapse to supermassive black hole seeds: comparing the AMR and SPH approaches.

    Science.gov (United States)

    Luo, Yang; Nagamine, Kentaro; Shlosman, Isaac

    2016-07-01

    We provide detailed comparison between the adaptive mesh refinement (AMR) code enzo-2.4 and the smoothed particle hydrodynamics (SPH)/ N -body code gadget-3 in the context of isolated or cosmological direct baryonic collapse within dark matter (DM) haloes to form supermassive black holes. Gas flow is examined by following evolution of basic parameters of accretion flows. Both codes show an overall agreement in the general features of the collapse; however, many subtle differences exist. For isolated models, the codes increase their spatial and mass resolutions at different pace, which leads to substantially earlier collapse in SPH than in AMR cases due to higher gravitational resolution in gadget-3. In cosmological runs, the AMR develops a slightly higher baryonic resolution than SPH during halo growth via cold accretion permeated by mergers. Still, both codes agree in the build-up of DM and baryonic structures. However, with the onset of collapse, this difference in mass and spatial resolution is amplified, so evolution of SPH models begins to lag behind. Such a delay can have effect on formation/destruction rate of H 2 due to UV background, and on basic properties of host haloes. Finally, isolated non-cosmological models in spinning haloes, with spin parameter λ ∼ 0.01-0.07, show delayed collapse for greater λ, but pace of this increase is faster for AMR. Within our simulation set-up, gadget-3 requires significantly larger computational resources than enzo-2.4 during collapse, and needs similar resources, during the pre-collapse, cosmological structure formation phase. Yet it benefits from substantially higher gravitational force and hydrodynamic resolutions, except at the end of collapse.

  6. The effect of giant lateral collapses on magma pathways and the location of volcanism.

    Science.gov (United States)

    Maccaferri, Francesco; Richter, Nicole; Walter, Thomas R

    2017-10-23

    Flank instability and lateral collapse are recurrent processes during the structural evolution of volcanic edifices, and they affect and are affected by magmatic activity. It is known that dyke intrusions have the potential to destabilise the flanks of a volcano, and that lateral collapses may change the style of volcanism and the arrangement of shallow dykes. However, the effect of a large lateral collapse on the location of a new eruptive centre remains unclear. Here, we use a numerical approach to simulate the pathways of magmatic intrusions underneath the volcanic edifice, after the stress redistribution resulting from a large lateral collapse. Our simulations are quantitatively validated against the observations at Fogo volcano, Cabo Verde. The results reveal that a lateral collapse can trigger a significant deflection of deep magma pathways in the crust, favouring the formation of a new eruptive centre within the collapse embayment. Our results have implications for the long-term evolution of intraplate volcanic ocean islands.

  7. A closed solution for the collapse load of pressurized pipelines in free spans

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Luciano M. [Brasilia Univ., DF (Brazil). Dept. de Engenharia Civil; Murray, David W.; Xuejun Song [University of Alberta (Canada). Civil Engineering Dept.

    2005-07-01

    Submarine pipelines for oil exploitation, generally, are under internal pressure and compressive thermal loading. Due to rough see-bottom terrains, these pipelines may be supported only intermittently and span freely. The collapse of such pipelines may produce oil leakage to the environment. A common engineering practice for the determination of the collapse load of such pipelines is the use of finite element modeling. This paper presents an analytical method for the determination of the collapse load of pressurized pipelines extended over free spans. The formulation also takes into account the internal pressure and initial imperfection, generally present in these pipelines. Collapse load is determined from a deduced transcendental equation. Results of the presented formulation are compared with sophisticated finite element analyses. While sophisticated finite element analysis requires hours of computer processing, the present formulation takes practically no time to assess a good approximation for the collapse load of pressurized free span pipelines under compression. The present paper is not intended to substitute the more precise finite element analyses but to provide an easier, faster, and practical way to determine a first approximation of the collapse load of pressurized free span pipelines. (author)

  8. Tree Rings: Timekeepers of the Past.

    Science.gov (United States)

    Phipps, R. L.; McGowan, J.

    One of a series of general interest publications on science issues, this booklet describes the uses of tree rings in historical and biological recordkeeping. Separate sections cover the following topics: dating of tree rings, dating with tree rings, tree ring formation, tree ring identification, sample collections, tree ring cross dating, tree…

  9. The Strong Disjoint Blow-Up/Collapse Property

    Directory of Open Access Journals (Sweden)

    Héctor N. Salas

    2013-01-01

    Full Text Available Let be a topological vector space, and let be the algebra of continuous linear operators on . The operators are disjoint hypercyclic if there is such that the orbit is dense in . Bès and Peris have shown that if satisfy the Disjoint Blow-up/Collapse property, then they are disjoint hypercyclic. In a recent paper Bès, Martin, and Sanders, among other things, have characterized disjoint hypercyclic -tuples of weighted shifts in terms of this property. We introduce the Strong Disjoint Blow-up/Collapse property and prove that if satisfy this new property, then they have a dense linear manifold of disjoint hypercyclic vectors. This allows us to give a partial affirmative answer to one of their questions.

  10. HII regions in collapsing massive molecular clouds

    International Nuclear Information System (INIS)

    Yorke, H.W.; Bodenheimer, P.; Tenorio-Tagle, G.

    1982-01-01

    Results of two-dimensional numerical calculations of the evolution of HII regions associated with self-gravitating, massive molecular clouds are presented. Depending on the location of the exciting star, a champagne flow can occur concurrently with the central collapse of a nonrotating cloud. Partial evaporation of the cloud at a rate of about 0.005 solar masses/yr results. When 100 O-stars are placed at the center of a freely falling cloud of 3x10 5 solar masses no evaporation takes place. Rotating clouds collapse to disks and the champagne flow can evaporate the cloud at a higher rate (0.01 solar masses/yr). It is concluded that massive clouds containing OB-stars have lifetimes of no more than 10 7 yr. (Auth.)

  11. Plastic collapse behavior for thin tube with two parallel cracks

    International Nuclear Information System (INIS)

    Moon, Seong In; Chang, Yoon Suk; Kim, Young Jin; Lee, Jin Ho; Song, Myung Ho; Choi, Young Hwan; Kim, Joung Soo

    2004-01-01

    The current plugging criterion is known to be too conservative for some locations and types of defects. Many defects detected during in-service inspection take on the form of multiple cracks at the top of tube sheet but there is no reliable plugging criterion for the steam generator tubes with multiple cracks. Most of the previous studies on multiple cracks are confined to elastic analyses and only few studies have been done on the steam generator tubes failed by plastic collapse. Therefore, it is necessary to develop models which can be used to estimate the failure behavior of steam generator tubes with multiple cracks. The objective of this study is to verify the applicability of the optimum local failure prediction models proposed in the previous study. For this, plastic collapse tests are performed with the tube specimens containing two parallel through-wall cracks. The plastic collapse load of the steam generator tubes containing two parallel through-wall cracks are also estimated by using the proposed optimum global failure model and the applicability is investigated by comparing the estimated results with the experimental results. Also, the interaction effect between two cracks was evaluated to explain the plastic collapse behavior

  12. Identification and behavior of collapsible soils.

    Science.gov (United States)

    2011-01-01

    Loess is a soil that can exhibit large deformations upon wetting. Cases of wetting induced collapse in loess have : been documented for natural deposits and man-made fills. These issues are of concern to the Indiana DOT due to the growth : of the sta...

  13. Some Aspects of Ring Theory

    CERN Document Server

    Herstein, IN

    2011-01-01

    S. Amitsur: Associative rings with identities.- I.N. Herstein: Topics in ring theory.- N. Jacobson: Representation theory of Jordan algebras.- I. Kaplansky: The theory of homological dimension.- D. Buchsbaum: Complexes in local ring theory.- P.H. Cohn: Two topics in ring theory.- A.W. Goldie: Non-commutative localisation.

  14. Determination of karst collapse intensity indicator in area of nuclear power plant construction using incomplete data

    International Nuclear Information System (INIS)

    Sharapov, R

    2014-01-01

    The paper deals with the definition of karst collapse intensity. The technique for determining the intensity of karst formation and collapse on the basis of calculation and probabilistic method is given. Karst collapse formation is affected by a great variety of natural and anthropogenic factors. Each factor can vary quite widely. The paper describes a technique for determining karst collapse intensity from incomplete data. It uses karst processes monitoring data in the area and monitoring data of areas with similar values of the most significant factors leading to the karst collapses. The method used for determination of karst collapse intensity indicator in area of Nizhny Novgorod nuclear power plant construction

  15. Responses of the Brans-Dicke field due to gravitational collapses

    International Nuclear Information System (INIS)

    Hwang, Dong-il; Yeom, Dong-han

    2010-01-01

    We study responses of the Brans-Dicke field due to gravitational collapses of scalar field pulses using numerical simulations. Double-null formalism is employed to implement the numerical simulations. If we supply a scalar field pulse, it will asymptotically form a black hole via dynamical interactions of the Brans-Dicke field. Hence, we can observe the responses of the Brans-Dicke field by two different regions. First, we observe the late time behaviors after the gravitational collapse, which include formations of a singularity and an apparent horizon. Second, we observe the fully dynamical behaviors during the gravitational collapse and view the energy-momentum tensor components. For the late time behaviors, if the Brans-Dicke coupling is greater (or smaller) than -1.5, the Brans-Dicke field decreases (or increases) during the gravitational collapse. Since the Brans-Dicke field should be relaxed to the asymptotic value with the elapse of time, the final apparent horizon becomes time-like (or space-like). For the dynamical behaviors, we observed the energy-momentum tensors around ω ∼ -1.5. If the Brans-Dicke coupling is greater than -1.5, the T uu component can be negative at the outside of the black hole. This can allow an instantaneous inflating region during the gravitational collapse. If the Brans-Dicke coupling is less than -1.5, the oscillation of the T vv component allows the apparent horizon to shrink. This allows a combination that violates weak cosmic censorship. Finally, we discuss the implications of the violation of the null energy condition and weak cosmic censorship.

  16. Responses of the Brans-Dicke field due to gravitational collapses

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dong-il; Yeom, Dong-han, E-mail: enotsae@gmail.co, E-mail: innocent@muon.kaist.ac.k [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of)

    2010-10-21

    We study responses of the Brans-Dicke field due to gravitational collapses of scalar field pulses using numerical simulations. Double-null formalism is employed to implement the numerical simulations. If we supply a scalar field pulse, it will asymptotically form a black hole via dynamical interactions of the Brans-Dicke field. Hence, we can observe the responses of the Brans-Dicke field by two different regions. First, we observe the late time behaviors after the gravitational collapse, which include formations of a singularity and an apparent horizon. Second, we observe the fully dynamical behaviors during the gravitational collapse and view the energy-momentum tensor components. For the late time behaviors, if the Brans-Dicke coupling is greater (or smaller) than -1.5, the Brans-Dicke field decreases (or increases) during the gravitational collapse. Since the Brans-Dicke field should be relaxed to the asymptotic value with the elapse of time, the final apparent horizon becomes time-like (or space-like). For the dynamical behaviors, we observed the energy-momentum tensors around {omega} {approx} -1.5. If the Brans-Dicke coupling is greater than -1.5, the T{sub uu} component can be negative at the outside of the black hole. This can allow an instantaneous inflating region during the gravitational collapse. If the Brans-Dicke coupling is less than -1.5, the oscillation of the T{sub vv} component allows the apparent horizon to shrink. This allows a combination that violates weak cosmic censorship. Finally, we discuss the implications of the violation of the null energy condition and weak cosmic censorship.

  17. Astrochemistry in TSR and CSR Ion Storage Rings

    Science.gov (United States)

    Novotny, Oldrich

    2017-04-01

    Dissociative recombination (DR) of molecular ions plays a key role in controlling the charge density and composition of the cold interstellar medium (ISM). Experimental data on DR are required in order to understand the chemical network in the ISM and related processes such as star formation from molecular clouds. Needed data include not only total reaction cross sections, but also the chemical composition and excitation states of the neutral products. Utilizing the TSR storage ring in Heidelberg, Germany, we have carried out DR measurements for astrophysically important molecular ions. We use a merged electron-ion beams technique combined with event-by-event fragment counting and fragment imaging. The count rate of detected neutral DR products yields the absolute DR rate coefficient. Imaging the distribution of fragment distances provides information on the kinetic energy released including the states of both the initial molecule and the final products. Additional kinetic energy sensitivity of the employed detector allows for identification of fragmentation channels by fragment-mass combination within each dissociation event. Such combined information is essential for studies on DR of polyatomic ions with multi-channel breakup. The recently commissioned Cryogenic Storage Ring (CSR) in Heidelberg, Germany, extends the experimental capabilities of TSR by operation at cryogenic temperatures down to 6 K. At these conditions residual gas densities down to 100 cm-3 can be reached resulting in beam storage times of several hours. Long storage in the cold environment allows the ions to relax down to their rotational ground state, thus mimicking well the conditions in the cold ISM. A variety of astrophysically relevant reactions will be investigated at these conditions, such as DR, electron impact excitation, ion-neutral collisions, etc. We report our TSR results on DR of HCl+ and D2Cl+. We also present first results from the CSR commissioning experiments.

  18. Improving the Accuracy of Laplacian Estimation with Novel Variable Inter-Ring Distances Concentric Ring Electrodes

    Directory of Open Access Journals (Sweden)

    Oleksandr Makeyev

    2016-06-01

    Full Text Available Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, the superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation, has been demonstrated in a range of applications. In our recent work, we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1-polar electrode with n rings using the (4n + 1-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2 and quadripolar (n = 3 electrode configurations are compared to their constant inter-ring distances counterparts. Finite element method modeling and analytic results are consistent and suggest that increasing inter-ring distances electrode configurations may decrease the truncation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration, the truncation error may be decreased more than two-fold, while for the quadripolar configuration more than a six-fold decrease is expected.

  19. Improving the Accuracy of Laplacian Estimation with Novel Variable Inter-Ring Distances Concentric Ring Electrodes

    Science.gov (United States)

    Makeyev, Oleksandr; Besio, Walter G.

    2016-01-01

    Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, the superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation, has been demonstrated in a range of applications. In our recent work, we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are compared to their constant inter-ring distances counterparts. Finite element method modeling and analytic results are consistent and suggest that increasing inter-ring distances electrode configurations may decrease the truncation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration, the truncation error may be decreased more than two-fold, while for the quadripolar configuration more than a six-fold decrease is expected. PMID:27294933

  20. Convergence of repeated quantum nondemolition measurements and wave-function collapse

    International Nuclear Information System (INIS)

    Bauer, Michel; Bernard, Denis

    2011-01-01

    Motivated by recent experiments on quantum trapped fields, we give a rigorous proof that repeated indirect quantum nondemolition (QND) measurements converge to the collapse of the wave function as predicted by the postulates of quantum mechanics for direct measurements. We also relate the rate of convergence toward the collapsed wave function to the relative entropy of each indirect measurement, a result which makes contact with information theory.