WorldWideScience

Sample records for ring beam losses

  1. The Beam Loss Detection System of the LHC Ring

    CERN Document Server

    Gschwendtner, E; Ferioli, G; Friesenbichler, W; Kain, V

    2002-01-01

    At the Large Hadron Collider (LHC) a beam loss system will be installed in the arc, dispersion suppressor and the straight regions for a continuous surveillance of particle losses. These beam particles deposit their energy partially in the super-conducting coils leading to temperature increase, possible magnet quenches and damages. The primary and secondary halo of the beam is absorbed by the collimation system. The tertiary halo will be lost at aperture limits in the ring. Its loss distribution along the magnets has been studies. At the positions, where most of the beam losses are expected, simulations of the particle fluences outside the cryostat and induced by lost protons at the aperture have been performed with the Monte Carlo Code Geant 3.2.1. This allows determining the most suitable positions of the detectors, the needed number of monitors and the impact on the dynamic range of the detectors. The design of the beam loss monitor system is presented that meet the required sensitivity, dynamic range and ...

  2. The beam loss monitoring system for HLS storage ring

    CERN Document Server

    Li Yu Xiong; Li Wei; Li Jue Xin; Liu Zu Ping; Shao Bei Bei

    2001-01-01

    A beam loss monitoring system has been established at HLS. This paper gives its principle and scientific grounds. Study on the ring's TBA structure and utilization of Monte-Carlo calculation to the shower electrons is important in its design. The system composition and performance are also introduced. The detector BLMs, data acquisition devices and host PC are linked via CAN bus. This system is helpful to analyze beam loss distribution and regulate the machine operation parameters.

  3. Beam Instrumentation for the Spallation Neutron Source Ring

    International Nuclear Information System (INIS)

    Witkover, R. L.; Cameron, P. R.; Shea, T. J.; Connolly, R. C.; Kesselman, M.

    1999-01-01

    The Spallation Neutron Source (SNS) will be constructed by a multi-laboratory collaboration with BNL responsible for the transfer lines and ring. The 1 MW beam power necessitates careful monitoring to minimize un-controlled loss. This high beam power will influence the design of the monitors in the high energy beam transport line (HEBT) from linac to ring, in the ring, and in the ring-to-target transfer line (RTBT). The ring instrumentation must cover a 3-decade range of beam intensity during accumulation. Beam loss monitoring will be especially critical since un-controlled beam loss must be kept below 10 -4 . A Beam-In-Gap (BIG) monitor is being designed to assure out-of-bucket beam will not be lost in the ring

  4. Preservation of beam loss induced quenches, beam lifetime and beam loss measurements with the HERA-p beam-loss-monitor system

    International Nuclear Information System (INIS)

    Wittenburg, K.

    1994-01-01

    The beam-loss-monitors (BLMs) in the HERA-Proton-ring (HERAp) must fulfil the following requirements: They have to measure losses sensitive and fast enough to prevent the superconducting magnets from beam loss induced quenching; the dynamic range of the monitors must exceed several decades in order to measure losses during beam lifetimes of hundreds of hours as well as the much stronger losses that may quench superconducting magnets; they have to be insensitive to the synchrotron radiation of the adjacent electron-ring (HERAe); and their radiation hardness must allow a monitor-lifetime of a few years of HERA operation. These requirements are well satisfied by the HERAp-BLM-System. (orig.)

  5. Cooling equilibrium and beam loss with internal targets in high energy storage rings

    International Nuclear Information System (INIS)

    Boine-Frankenheim, O.; Hasse, R.; Hinterberger, F.; Lehrach, A.; Zenkevich, P.

    2006-01-01

    The beam cooling equilibrium with internal target interaction is analyzed for parameters relevant to the proposed High Energy Storage Ring (HESR). For the proposed experiments with anti-protons high luminosities together with low momentum spreads are required. Rate equations are used to predict the rms equilibrium beam parameters. The cooling and IBS rate coefficients are obtained from simplified models. Energy loss straggling in the target and the associated beam loss are analyzed analytically assuming a thin target. A longitudinal kinetic simulation code is used to study the evolution of the momentum distribution in coasting and bunched beams. Analytic expressions for the target induced momentum tail are found in good agreement with the simulation results

  6. Beam loading effects for two-beam ring

    International Nuclear Information System (INIS)

    Wang Lanfa; Lin Yuzheng; Tong Dechun

    1999-01-01

    An analytic treatment of multi-bunch potential well distortion for a two-beam storage ring is presented. The longitudinal wake effects are separated into: the mode loss, the synchrotron tune shift (both due to potential well distortion) and the coherent multi-bunch coupling. Here, only the first two effects are studied. Resulting simple analytic formulas describe the mode loss and the synchrotron tune shift experienced by a given bunch within the two-beam, as a function of the high order mode's parameters. One can get immediately a simple quantitative answer in term of the mode loss and the synchrotron tune shift experienced by each bunch from these formulas, so the authors can know how to modify the existing configuration of parasitic cavity resonance (via frequency tuning) so that the resulting potential well distortion effects are minimized. When the RF cavities are symmetrically distributed about the interaction points, the two beams will have same beam loading effects, so the authors can compensate the phase shift of the two beam using the same method as in one beam case

  7. Beam loading in high-energy storage rings

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1974-06-01

    The analysis of beam loading in the RF systems of high-energy storage rings (for example, the PEP e/sup /minus//e/sup +/ ring) is complicated by the fact that the time, T/sub b/, between the passage of successive bunches is comparable to the cavity filling time, T/sub b/. In this paper, beam loading expressions are first summarized for the usual case in which T/sub b/ /much lt/ T/sub f/. The theory of phase oscillations in the heavily-beam-loaded case is considered, and the dependence of the synchrotron frequency and damping constant for the oscillations on beam current and cavity tuning is calculated. Expressions for beam loading are then derived which are valid for any value of the ratio T/sub b//T/sub f/. It is shown that, for the proposed PEP e/sup /minus//e/sup +/ ring parameters, the klystron power required is increased by about 3% over that calculated using the standard beam loading expressions. Finally, the analysis is extended to take into account the additional losses associated with the excitation of higher-order cavity modes. A rough numerical estimate is made of the loss enhancement to be expected for PEP RF system. It is concluded that this loss enhancement might be substantial unless appropriate measures are taken in the design and tuning of the accelerating structure

  8. OPERATIONAL EXPERIENCE WITH FAST FIBER-OPTIC BEAM LOSS MONITORS FOR THE ADVANCED PHOTON SOURCE STORAGE RING SUPERCONDUCTING UNDULATORS

    Energy Technology Data Exchange (ETDEWEB)

    Dooling, J.; Harkay, K.; Sajaev, V.; Shang, H.

    2017-06-25

    Fast fiber-optic (FFO) beam loss monitors (BLMs) installed with the first two superconducting undulators (SCUs) in the Advanced Photon Source storage ring have proven to be a useful diagnostic for measuring deposited charge (energy) during rapid beam loss events. The first set of FFOBLMs were installed outside the cryostat of the short SCU, a 0.33-m long device, above and below the beam centerline. The second set are mounted with the first 1.1-mlong SCU within the cryostat, on the outboard and inboard sides of the vacuum chamber. The next 1.1-m-long SCU is scheduled to replace the short SCU later in 2016 and will be fitted with FFOBLMs in a manner similar to original 1.1-m device. The FFOBLMs were employed to set timing and voltage for the abort kicker (AK) system. The AK helps to prevent quenching of the SCUs during beam dumps [1] by directing the beam away from the SC magnet windings. The AK is triggered by the Machine Protection System (MPS). In cases when the AK fails to prevent quenching, the FFOBLMs show that losses often begin before detection by the MPS.

  9. Spin flipping a stored polarized proton beam at the IUCF cooler ring

    International Nuclear Information System (INIS)

    Phelps, R.A.

    1995-01-01

    We recently studied the spin flip of a vertically polarized 139 MeV proton beam stored in the IUCF Cooler Ring. We used an rf solenoid to induce a depolarizing resonance in the ring; we flipped the spin by varying the solenoid field's frequency through this resonance. We found a polarization loss after multiple spin flips less than 0.1% per flip; we also found that this loss increased for very slow frequency changes. This spin flip could reduce systematic errors in stored polarization beam experiments by allowing frequent beam polarization reversals during the experiment. copyright 1995 American Institute of Physics

  10. BEAM-LOSS DRIVEN DESIGN OPTIMIZATION FOR THE SPALLATION NEUTRON SOURCE (SNS) RING.

    Energy Technology Data Exchange (ETDEWEB)

    WEI,J.; BEEBE-WANG,J.; BLASKIEWICZ,M.; CAMERON,P.; DANBY,G.; GARDNER,C.J.; JACKSON,J.; LEE,Y.Y.; LUDEWIG,H.; MALITSKY,N.; RAPARIA,D.; TSOUPAS,N.; WENG,W.T.; ZHANG,S.Y.

    1999-03-29

    This paper summarizes three-stage design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.).

  11. Beam-Loss Driven Design Optimization for the Spallation Neutron Source (SNS) Ring

    International Nuclear Information System (INIS)

    Wei, J.

    1999-01-01

    This paper summarizes three-state design optimization for the Spallation Neutron Source (SNS) ring: linear machine design (lattice, aperture, injection, magnet field errors and misalignment), beam core manipulation (painting, space charge, instabilities, RF requirements), and beam halo consideration (collimation, envelope variation, e-p issues etc.)

  12. Cryogenic Beam Loss Monitoring for the LHC

    CERN Document Server

    Kurfuerst, C; Sapinski, M

    A Beam Loss Monitoring (BLM) system was installed on the outside surface of the LHC magnet cryostats to protect the accelerator equipment from beam losses. The protection is achieved by extracting the beam from the ring in case thresholds imposed on measured radiation levels are exceeded. Close to the interaction regions of the LHC, the present BLM system is sensitive to particle showers generated in the interaction region of the two beams. In the future, with beams of higher energy and brightness resulting in higher luminosity, distinguishing between these interaction products and possible quench-provoking beam losses from the primary proton beams will be challenging. The particle showers measured by the present BLM configuration are partly shielded by the cryostat and the iron yoke of the magnets. The system can hence be optimised by locating beam loss monitors as close as possible to the protected element, i. e. the superconducting coils, inside the cold mass of the magnets in superfluid helium at 1.9 K. T...

  13. RHIC Beam Loss Monitor System Initial Operation

    International Nuclear Information System (INIS)

    Witkover, R. L.; Michnoff, R. J.; Geller, J. M.

    1999-01-01

    The RHIC Beam Loss Monitor (BLM) System is designed to prevent beam loss quenching of the superconducting magnets, and acquire loss data. Four hundred ion chambers are located around the rings to detect losses. The required 8-decade range in signal current is compressed using an RC pre-integrator ahead of a low current amplifier. A beam abort may be triggered if fast or slow losses exceed programmable threshold levels. A micro-controller based VME module sets references and gains and reads trip status for up to 64 channels. Results obtained with the detectors in the RHIC Sextant Test and the prototype electronics in the AGS-to-RHIC (AtR) transfer line are presented along with the present status of the system

  14. Tolerable Beam Loss at High-Intensity Machines

    International Nuclear Information System (INIS)

    Krivosheev, Oleg E.; Mokhov, Nikolai V.

    2000-01-01

    Tolerable beam losses are estimated for high-intensity ring accelerators with proton energy of 3 to 16 GeV. Dependence on beam energy, lattice and magnet geometry is studied via full Monte Carlo MARS14 simulations in lattice elements, shielding, tunnel and surrounding dirt with realistic geometry, materials and magnetic fields

  15. Beam Losses and Lifetime of the LHC Beam in the SPS

    CERN Document Server

    Bohl, T; Shaposhnikova, Elena; Tückmantel, Joachim

    2006-01-01

    Studies of the LHC beam loss in the SPS started in 2003 [1], [2] and continued in 2004. The flat bottom losses strongly depend on the batch intensity and the RF voltage. For beam with the 75 ns spacing at the same bunch intensity they are smaller than for the 25 ns spaced bunches. Large voltage on the flat bottom together with some optimum voltage at injection helps to reduce losses. Analysis of data from 2003 has shown that observations are compatible with a diffusion like process on the flat bottom. Therefore significant time during 2004 was devoted to studies of possible RF noise sources. However the main improvement in beam lifetime on the flat bottom was observed after a change in the working point in the transverse plane (MD on 1.09.2004). In this Note we present measurements of beam loss and lifetime done during several dedicated SPS MDs for different conditions in the ring. Analysis of beam coasts will be presented separately.

  16. Beam-beam interaction in e+-e- storage rings

    International Nuclear Information System (INIS)

    Le Duff, J.

    1977-01-01

    Colliding beams in electron-positron storage rings are discussed with particular reference to the space charge forces occuring during beam-beam interactions and their effect on beam current and consequently machine performance (maximum luminosity). The first section deals with linear beam-beam effects and discussses linear tune shift; the second section considers non-linear beam-beam effects and the creation on non-linear resonances. The last section poses questions of the possibility of extrapolating present results to future machines and discusses optimization of storage ring performance. (B.D.)

  17. Identification of LHC beam loss mechanism : a deterministic treatment of loss patterns

    CERN Document Server

    Marsili, Aurélien

    CERN's Large Hadron Collider (LHC) is the largest machine ever built, with a total circumference of 26.7 km; and it is the most powerful accelerator ever, both in beam energy and beam intensity. The main magnets are superconducting, keeping the particles into two counter circulating beams, which collide in four interaction points. CERN and the LHC will be described in chap. 1. The superconducting magnets of the LHC have to be protected against particle losses. Depending on the number of lost particles, the coils of the magnets will become normal conducting and/or will be damaged. To avoid these events a beam loss monitoring (BLM) system was installed to measure the particle loss rates. If the predefined safe thresholds of loss rates are exceeded, the beams are directed out of the accelerator ring towards the beam dump. The detectors of the BLM system are mainly ionization chambers located outside of the cryostats. In total, about 3500 ionisation chambers are installed. Further challenges include the high dyna...

  18. Beam Optics for FCC-ee Collider Ring

    CERN Document Server

    Oide, Katsunobu; Aumon, S; Benedikt, M; Blondel, A; Bogomyagkov, A V; Boscolo, M; Burkhardt, H; Cai, Y; Doblhammer, A; Haerer, B; Holzer, B; Koop, I; Koratzinos, M; Jowett, John M; Levichev, E B; Medina, L; Ohmi, K; Papaphilippou, Y; Piminov, P A; Shatilov, D N; Sinyatkin, S V; Sullivan, M; Wenninger, J; Wienands, U; Zhou, D; Zimmermann, F

    2017-01-01

    A beam optics scheme has been designed [ 1 ] for the Future Circular Collider- e + e − (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [ 2 ] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system without additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So- called “tapering" of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [ 3 ] as clos...

  19. Beam Loss Monitoring for LHC Machine Protection

    Science.gov (United States)

    Holzer, Eva Barbara; Dehning, Bernd; Effnger, Ewald; Emery, Jonathan; Grishin, Viatcheslav; Hajdu, Csaba; Jackson, Stephen; Kurfuerst, Christoph; Marsili, Aurelien; Misiowiec, Marek; Nagel, Markus; Busto, Eduardo Nebot Del; Nordt, Annika; Roderick, Chris; Sapinski, Mariusz; Zamantzas, Christos

    The energy stored in the nominal LHC beams is two times 362 MJ, 100 times the energy of the Tevatron. As little as 1 mJ/cm3 deposited energy quenches a magnet at 7 TeV and 1 J/cm3 causes magnet damage. The beam dumps are the only places to safely dispose of this beam. One of the key systems for machine protection is the beam loss monitoring (BLM) system. About 3600 ionization chambers are installed at likely or critical loss locations around the LHC ring. The losses are integrated in 12 time intervals ranging from 40 μs to 84 s and compared to threshold values defined in 32 energy ranges. A beam abort is requested when potentially dangerous losses are detected or when any of the numerous internal system validation tests fails. In addition, loss data are used for machine set-up and operational verifications. The collimation system for example uses the loss data for set-up and regular performance verification. Commissioning and operational experience of the BLM are presented: The machine protection functionality of the BLM system has been fully reliable; the LHC availability has not been compromised by false beam aborts.

  20. Beam losses due to abrupt crab cavity failures in the LHC

    International Nuclear Information System (INIS)

    Baer, T.; Barranco, J.; Calaga, R.; Tomas, R.; Wenninger, B.; Yee, B.; Zimmermann, F.

    2011-01-01

    A major concern for the implementation of crab crossing in a future High-Luminosity LHC (HL-LHC) is machine protection in an event of a fast crab-cavity failure. Certain types of abrupt crab-cavity amplitude and phase changes are simulated to characterize the effect of failures on the beam and the resulting particle-loss signatures. The time-dependent beam loss distributions around the ring and particle trajectories obtained from the simulations allow for a first assessment of the resulting beam impact on LHC collimators and on sensitive components around the ring. Results for the nominal LHC lattice is presented.

  1. Superconducting wiggler magnets for beam-emittance damping rings

    CERN Document Server

    Schoerling, Daniel

    2012-01-01

    Ultra-low emittance beams with a high bunch charge are necessary for the luminosity performance of linear electron-positron colliders, such as the Compact Linear Collider (CLIC). An effective way to create ultra-low emittance beams with a high bunch charge is to use damping rings, or storage rings equipped with strong damping wiggler magnets. The remanent field of the permanent magnet materials and the ohmic losses in normal conductors limit the economically achievable pole field in accelerator magnets operated at around room temperature to below the magnetic saturation induction, which is 2.15 T for iron. In wiggler magnets, the pole field in the center of the gap is reduced further like the hyperbolic cosine of the ratio of the gap size and the period length multiplied by pi. Moreover, damping wiggler magnets require relatively large gaps because they have to accept the un-damped beam and to generate, at a small period length, a large magnetic flux density amplitude to effectively damp the beam emittance....

  2. Design of the Beam Loss Monitoring System for the LHC Ring

    CERN Document Server

    Holzer, E B; Effinger, E; Ferioli, G; González, J L; Gschwendtner, E; Guaglio, Gianluca; Hodgson, M; Prieto, V; Zamantzas, C

    2004-01-01

    The beam loss monitoring (BLM) system of the LHC is one of the most critical elements for the protection of the LHC. It must prevent the super conducting magnets from quenches and the machine components from damages, caused by beam losses. It helps in the identification of the loss mechanism by measuring the loss pattern. Special detectors will be used for the setup and control of the collimators. Furthermore, it will be an important tool during machine setup and studies. The specification requirements of the BLM system include a very high reliability.

  3. Measurement of Beam Loss at the Australian Synchrotron

    CERN Document Server

    Holzer, EB; Kastriotou, M; Boland, MJ; Jackson, PD; Rasool, RP; Schmidt, J; Welsch, CP

    2014-01-01

    The unprecedented requirements that new machines are setting on their diagnostic systems is leading to the development of new generation of devices with large dynamic range, sensitivity and time resolution. Beam loss detection is particularly challenging due to the large extension of new facilities that need to be covered with localized detector. Candidates to mitigate this problem consist of systems in which the sensitive part of the radiation detectors can be extended over long distance of beam lines. In this document we study the feasibility of a BLM system based on optical fiber as an active detector for an electron storage ring. The Australian Synchrotron (AS) comprises a 216m ring that stores electrons up to 3GeV. The Accelerator has recently claimed the world record ultra low transverse emittance (below pm rad) and its surroundings are rich in synchrotron radiation. Therefore, the AS provides beam conditions very similar to those expected in the CLIC/ILC damping rings. A qualitative benchmark of beam l...

  4. Application of diamond based beam loss monitors at LHC

    International Nuclear Information System (INIS)

    Hempel, Maria

    2013-04-01

    The Large Hadron Collider (LHC) was conceived in the 1980s and started the operation in 2008. It needed more than 20 years to plan and construct this accelerator and its experiments. Four main experiments are located around the ring, Compact Muon Solenoid (CMS), A Toroidal LHC Apparatus(ATLAS), A Large Ion Collider Experiment (ALICE) and LHC beauty (LHCb). Two beams that traveling in opposite direction in the LHC tunnel, collide in each of the experiments to study the questions: ''What is mass?'', ''What is the universe made of?'' and ''Why is there no antimatter?''. The four experiments take data of the collision products and try to answer the fundamental questions of physics. The two larger detectors, CMS and ATLAS, are looking for the Higgs boson to study the electroweak symmetry breaking. Both detectors were built with contrasting concepts to exclude potential error sources and to rea rm the results. The smaller experiment LHCb studies the matter-antimatter asymmetry with a focus of the beauty quark. Another smaller experiment is ALICE that studies the conditions right after the Big Bang by colliding heavy ions. The navigation of the beams is done by over 10000 magnets and each beam has a stored energy of 362MJ which correspond to the kinetic energy of a train like the TGV travelling of 150 km/h. Only a small percentage of that energy can damage the material in the LHC ring or the magnets. This would mean a repair time of months or years, without taking any data. To avoid such a scenario, it is important to monitor the beam condition and measure the amount of losses of the beam. Such losses can for example happen due to dust particles in the vacuum chambers or due to deviations of the beam parameters. Several systems called beam loss monitors (BLMs) can measure beam losses. This thesis concentrates on two of them, ionization chambers and diamond detectors. Over 3600 ionization chambers are installed in the LHC, especially near each quadrupole and next to

  5. Simulation and Measurements of Beam Losses on LHC Collimators During Beam Abort Failures

    CERN Document Server

    Lari, L; Bruce, R; Goddard, B; Redaelli, S; Salvachua, B; Valentino, G; Faus-Golfe, A

    2013-01-01

    One of the main purposes of tracking simulations for collimation studies is to produce loss maps along the LHC ring, in order to identify the level of local beam losses during nominal and abnormal operation scenarios. The SixTrack program is the standard tracking tool used at CERN to perform these studies. Recently, it was expanded in order to evaluate the proton load on different collimators in case of fast beam failures. Simulations are compared with beam measurements at 4 TeV. Combined failures are assumed which provide worst-case scenarios of the load on tungsten tertiary collimators.

  6. Exact suppression of depolarisation by beam-beam interaction in an electron ring

    International Nuclear Information System (INIS)

    Buon, J.

    1983-03-01

    It is shown that depolarisation due to beam-beam interaction can be exactly suppressed in an electron storage ring. The necessary ''spin matching'' conditions to be fulfilled are derived for a planar ring. They depend on the ring optics, assumed linear, but not on the features of the beam-beam force, like intensity and non-linearity. Extension to a ring equipped with 90 0 spin rotators is straightorward

  7. Booster gold beam injection efficiency and beam loss

    International Nuclear Information System (INIS)

    Zhang, S.Y.; Ahrens, L.A.

    1998-01-01

    The Relativistic Heavy Ion Collider (RHIC) at the BNL requires the AGS to provide Gold beam with the intensity of 10 9 ions per bunch. Over the years, the Tandem Van de Graaff has provided steadily increasing intensity of gold ion beams to the AGS Booster. However, the gold beam injection efficiency at the Booster has been found to decrease with the rising intensity of injected beams. As the result, for Tandem beams of the highest intensity, the Booster late intensity is lower than with slightly lower intensity Tandem beam. In this article, the authors present two experiments associated with the Booster injection efficiency and beam intensity. One experiment looks at the Booster injection efficiency by adjusting the Tandem beam intensity, and another looks at the beam life time while scraping the beam in the Booster. The studies suggest that the gold beam injection efficiency at the AGS Booster is related to the beam loss in the ring, rather than the intensity of injected beam or circulating beam. A close look at the effect of the lost gold ion at the Booster injection leads to the prediction that the lost gold ion creates large number of positive ions, and even larger number of electrons. The lost gold beam is also expected to create large numbers of neutral particles. In 1998 heavy ion run, the production of positive ions and electrons due to the lost gold beam has been observed. Also the high vacuum pressure due to the beam loss, presumably because of the neutral particles it created, has been measured. These results will be reported elsewhere

  8. Application of diamond based beam loss monitors at LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Maria

    2013-04-15

    The Large Hadron Collider (LHC) was conceived in the 1980s and started the operation in 2008. It needed more than 20 years to plan and construct this accelerator and its experiments. Four main experiments are located around the ring, Compact Muon Solenoid (CMS), A Toroidal LHC Apparatus(ATLAS), A Large Ion Collider Experiment (ALICE) and LHC beauty (LHCb). Two beams that traveling in opposite direction in the LHC tunnel, collide in each of the experiments to study the questions: ''What is mass?'', ''What is the universe made of?'' and ''Why is there no antimatter?''. The four experiments take data of the collision products and try to answer the fundamental questions of physics. The two larger detectors, CMS and ATLAS, are looking for the Higgs boson to study the electroweak symmetry breaking. Both detectors were built with contrasting concepts to exclude potential error sources and to rea rm the results. The smaller experiment LHCb studies the matter-antimatter asymmetry with a focus of the beauty quark. Another smaller experiment is ALICE that studies the conditions right after the Big Bang by colliding heavy ions. The navigation of the beams is done by over 10000 magnets and each beam has a stored energy of 362MJ which correspond to the kinetic energy of a train like the TGV travelling of 150 km/h. Only a small percentage of that energy can damage the material in the LHC ring or the magnets. This would mean a repair time of months or years, without taking any data. To avoid such a scenario, it is important to monitor the beam condition and measure the amount of losses of the beam. Such losses can for example happen due to dust particles in the vacuum chambers or due to deviations of the beam parameters. Several systems called beam loss monitors (BLMs) can measure beam losses. This thesis concentrates on two of them, ionization chambers and diamond detectors. Over 3600 ionization chambers are installed in

  9. Beam-beam force and storage ring parameters

    International Nuclear Information System (INIS)

    Herrera, J.C.

    1979-01-01

    The fundamental aspects of the beam--beam force as it occurs in Intersecting Storage Rings are reported. The way in which the effect of the beam--particle electromagnetic force (weak--strong interaction) is different in the case of unbunched proton beams which cross each other at an angle (as in the ISR and in ISABELLE) is shown, as compared to the case of electron--positron beams where bunches collide head-on

  10. Commissioning and operational scenarios of the LHC beam loss monitor system

    International Nuclear Information System (INIS)

    Holzer, E.B.

    2007-01-01

    One of the most critical elements for the protection of CERN's Large Hadron Collider (LHC) is its beam loss monitoring (BLM) system. It must prevent quenches in the super conducting magnets and damage of machine components due to beam losses. The contribution will discuss the commissioning procedures of the BLM system and envisaged operational scenarios. About 4000 monitors will be installed around the ring. When the loss rate exceeds a predefined threshold value, a beam abort is requested. Magnet quench and damage levels vary as a function of beam energy and loss duration. Consequently, the beam abort threshold values vary accordingly. By measuring the loss pattern, the BLM system helps to identify the loss mechanism. Furthermore, it will be an important tool for commissioning, machine setup and studies. Special monitors will be used for the setup and control of the collimators. (author)

  11. Loss pattern of Pb ions with charge changing processes in the LEIR ring

    CERN Document Server

    Pasternak, J

    2004-01-01

    Avalanche like pressure rise and an associated decrease of the beam lifetime, caused by (i) beam loss due to charge exchange interactions with rest gas molecules and (ii) ion impact induced outgassing, is a potential limitation for heavy ion accelerators. The vacuum system of the LEIR ring has to be upgraded carefully to avoid that these phenomena prevent the machine from reaching design performance. The loss pattern of Pb ions having captured an electron presented in this report allows to estimate whether the low dynamic pressure needed for LEIR is reachable. Efficient interception of lost ions with low beam loss induced outgassing absorber blocks, installed at appropriate locations is promising.

  12. Anomaly Detection for Beam Loss Maps in the Large Hadron Collider

    Science.gov (United States)

    Valentino, Gianluca; Bruce, Roderik; Redaelli, Stefano; Rossi, Roberto; Theodoropoulos, Panagiotis; Jaster-Merz, Sonja

    2017-07-01

    In the LHC, beam loss maps are used to validate collimator settings for cleaning and machine protection. This is done by monitoring the loss distribution in the ring during infrequent controlled loss map campaigns, as well as in standard operation. Due to the complexity of the system, consisting of more than 50 collimators per beam, it is difficult to identify small changes in the collimation hierarchy, which may be due to setting errors or beam orbit drifts with such methods. A technique based on Principal Component Analysis and Local Outlier Factor is presented to detect anomalies in the loss maps and therefore provide an automatic check of the collimation hierarchy.

  13. Anomaly Detection for Beam Loss Maps in the Large Hadron Collider

    International Nuclear Information System (INIS)

    Valentino, Gianluca; Bruce, Roderik; Redaelli, Stefano; Rossi, Roberto; Theodoropoulos, Panagiotis; Jaster-Merz, Sonja

    2017-01-01

    In the LHC, beam loss maps are used to validate collimator settings for cleaning and machine protection. This is done by monitoring the loss distribution in the ring during infrequent controlled loss map campaigns, as well as in standard operation. Due to the complexity of the system, consisting of more than 50 collimators per beam, it is difficult to identify small changes in the collimation hierarchy, which may be due to setting errors or beam orbit drifts with such methods. A technique based on Principal Component Analysis and Local Outlier Factor is presented to detect anomalies in the loss maps and therefore provide an automatic check of the collimation hierarchy. (paper)

  14. Electron beam depolarization in a damping ring

    International Nuclear Information System (INIS)

    Minty, M.

    1993-04-01

    Depolarization of a polarized electron beam injected into a damping ring is analyzed by extending calculations conventionally applied to proton synchrotrons. Synchrotron radiation in an electron ring gives rise to both polarizing and depolarizing effects. In a damping ring, the beam is stored for a time much less than the time for self polarization. Spin flip radiation may therefore be neglected. Synchrotron radiation without spin flips, however, must be considered as the resonance strength depends on the vertical betatron oscillation amplitude which changes as the electron beam is radiation damped. An expression for the beam polarization at extraction is derived which takes into account radiation damping. The results are applied to the electron ring at the Stanford Linear Collider and are compared with numerical matrix formalisms

  15. DATA ACQUISITION FOR SNS BEAM LOSS MONITOR SYSTEM

    International Nuclear Information System (INIS)

    YENG, Y.; GASSNER, D.; HOFF, L.; WITKOVER, R.

    2003-01-01

    The Spallation Neutron Source (SNS) beam loss monitor system uses VME based electronics to measure the radiation produced by lost beam. Beam loss signals from cylindrical argon-filled ion chambers and neutron detectors will be conditioned in analog front-end (AFE) circuitry. These signals will be digitized and further processed in a dedicated VME crate. Fast beam inhibit and low-level, long-term loss warnings will be generated to provide machine protection. The fast loss data will have a bandwidth of 35kHz. While the low level, long-term loss data will have much higher sensitivity. This is further complicated by the 3 decade range of intensity as the Ring accumulates beam. Therefore a bandwidth of 100kHz and dynamic range larger than 21 bits data acquisition system will be required for this purpose. Based on the evaluation of several commercial ADC modules in preliminary design phase, a 24 bits Sigma-Delta data acquisition VME bus card was chosen as the SNS BLM digitizer. An associated vxworks driver and EPICS device support module also have been developed at BNL. Simulating test results showed this system is fully qualified for both fast loss and low-level, long-term loss application. The first prototype including data acquisition hardware setup and EPICS software (running database and OPI clients) will be used in SNS Drift Tube Linac (DTL) system commissioning

  16. First design for the optics of the decay ring for the beta-beams

    International Nuclear Information System (INIS)

    Chance, A.; Payet, J.

    2006-03-01

    The aim of the beta-beams is to produce pure electronic neutrino and anti-neutrino highly energetic beams, coming from beta radioactive disintegration decay of the 18 Ne 10+ and 6 He 2+ , directed to experiment situated in the Frejus tunnel. The high ion intensities are stored in a ring, until the ions decay. The losses due to the decay of the radioactive ions are compensated with regular injections. These should be done in presence of the circulating beam. The new ions are injected at a different energy from the stored beam energy, the design of the ring must enable this type of injection and accept the injected and stored beams. In this note, we will focus on the study of the design of such a ring at the first and second orders. We have reached the constraint on the dispersion in the injection section: a horizontal dispersion superior to 10 m with β x = 20 m. We have put sextupoles in the arcs to correct the chromaticity. In the same time, we have compensated the third order resonances to have a large enough dynamic aperture. So the decay ring accepts injected and stored beams. In a top-down approach, the high stored intensities impose to take into account the space charge effects. However, due to the merging, the beam blows up after each injection in the longitudinal space charge, which imposes to include a momentum collimation section in the decay ring

  17. Internal target effects in ion storage rings with beam cooling

    International Nuclear Information System (INIS)

    Gostishchev, Vitaly

    2008-06-01

    The accurate description of internal target effects is important for the prediction of operation conditions which are required for experiments in the planned storage rings of the FAIR facility. The BETACOOL code developed by the Dubna group has been used to evaluate beam dynamics in ion storage rings, where electron cooling in combination with an internal target is applied. Systematic benchmarking experiments of this code were carried out at the ESR storage ring at GSI. A mode with vanishing dispersion in the target position was applied to evaluate the influence of the dispersion function on the parameters when the target is heating the beam. The influence of the internal target on the beam parameters is demonstrated in the present work. A comparison of experimental results with simple models describing the energy loss of the beam particles in the target as well as with more sophisticated simulations with the BETACOOL code is given. In order to study the conditions which can be achieved in the proposed experiments the simulation results were quantitatively compared with experimental results and simulations for the ESR. The results of this comparison are discussed in the present thesis. BETACOOL simulations of target effects were performed for the NESR and the HESR of the future FAIR facility in order to predict the beam parameters for the planned experiments. (orig.)

  18. Internal target effects in ion storage rings with beam cooling

    Energy Technology Data Exchange (ETDEWEB)

    Gostishchev, Vitaly

    2008-06-15

    The accurate description of internal target effects is important for the prediction of operation conditions which are required for experiments in the planned storage rings of the FAIR facility. The BETACOOL code developed by the Dubna group has been used to evaluate beam dynamics in ion storage rings, where electron cooling in combination with an internal target is applied. Systematic benchmarking experiments of this code were carried out at the ESR storage ring at GSI. A mode with vanishing dispersion in the target position was applied to evaluate the influence of the dispersion function on the parameters when the target is heating the beam. The influence of the internal target on the beam parameters is demonstrated in the present work. A comparison of experimental results with simple models describing the energy loss of the beam particles in the target as well as with more sophisticated simulations with the BETACOOL code is given. In order to study the conditions which can be achieved in the proposed experiments the simulation results were quantitatively compared with experimental results and simulations for the ESR. The results of this comparison are discussed in the present thesis. BETACOOL simulations of target effects were performed for the NESR and the HESR of the future FAIR facility in order to predict the beam parameters for the planned experiments. (orig.)

  19. A muon storage ring for neutrino beams

    International Nuclear Information System (INIS)

    Lee, W.; Neuffer, D.

    1988-01-01

    A muon storage ring can provide electron and muon neutrino beams of precisely knowable flux. Constraints on muon collection and storage-ring design are discussed. Sample muon storage rings are presented and muon and neutrino intensities are estimated. Experimental use of the ν-beams, detector properties, and possible variations are described. Future directions for conceptual designs are outlined. 11 refs., 4 figs., 3 tabs

  20. Beam position monitor system for storage rings

    International Nuclear Information System (INIS)

    Nakamura, M.; Hinkson, J.A.

    1985-05-01

    Beam position monitors (BPM) for synchrotron light storage rings usually consist of beam pickup electrodes, coaxial relays and a narrowband receiver. While accurate, these systems are slow and of limited use in the commissioning of an accelerator. A beam position monitor is described which is intended to be a principal diagnostic during debug and routine running of a storage ring. It is capable of measuring the position of a single bunch on the first or nth orbit to an accuracy of a few percent. Stored beam position is more accurately measured with averaging techniques. Beam position changes can be studied in a bandwidth from DC to a few MHz. The beam monitor electronics consist of a separate amplification, detection, and sampling channel for each beam pickup electrode. Fast switches in each channel permit selection of the nth turn for measurement (single bunch mode). A calibration pulse is injected into each channel after beam measurement to permit gain offsets to be measured and removed from the final data. While initially more costly than the usual beam position monitor system, this sytem will pay for itself in reduced storage ring debug and trouble shooting time. 5 refs., 5 figs

  1. Beam size blow-up and current loss in the Fermilab main ring during storage

    International Nuclear Information System (INIS)

    Guignard, G.; Month, M.

    1977-01-01

    Observations at Fermilab during the storage mode of operation show characteristic forms of transverse beam size growth and current loss with time. There are three obvious mechanisms which can produce such blowup. The gas pressure is a source for immediate beam loss by direct nuclear scattering. Protons can also multiple Coulomb scatter off the orbiting electrons of the gas atoms causing the transverse beam size to increase with time, t. This effect is therefore also proportional to the gas pressure. A third mechanism not related to the gas pressure is beam growth due to multiple crossing of betatron resonances arising from the synchrotron oscillations of the stored bunches. This simulates a random walk and causes the transverse beam size to grow with √t. An attempt is made to describe the observations with direct nuclear scattering, multiple coulomb scattering and multiple resonance crossing. In addition to the loss rate from direct nuclear scattering, the presence of betatron resonances also contribute to particle loss. In fact this latter effect becomes dominant after the beam size reaches a critical value. This critical size is referred to as the resonance aperture. It is the size at which ''fast'' resonance crossing is no longer valid. The stopband width becomes so large (due both to emittance growth as well as the increase in magnetic field distortions) that particles are locked into the resonance and are extracted to the physical aperture. The model is described in a phenomenological way, and the coefficients involved are estimated. Theoretical curves for transverse beam growth and loss rate are plotted and compared with some measured values. Finally, some general comments are given

  2. Experimental investigation of the trapping and energy loss mechanisms of intense relativistic electron rings in hydrogen gas and plasma

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.

    1977-01-01

    The results of an experimental study on the trapping and energy loss mechanisms of intense, relativistic electron rings confined in Astron-like magnetic field geometries are presented. The work is subdivided into four sections: gas trapping; average ring electron energetics; plasma trapping, and hollow-beam cusp-injection into gas and plasma. The mechanisms by which the injected beam coalesces into a current ring in the existing Cornell RECE-Berta facility are considered. To investigate the nature of ring electron energy loss mechanisms following completion of the trapping process, a diagnostic was developed utilizing multi-foil X-ray absorption spectroscopy to analyze the Bremsstrahlung generated by the electrons as they impinge upon a thin tungsten wire target suspended in the circulating current. Finally, a set of preliminary experimental results is presented in which an annular electron beam was passed through a coaxial, non-adiabatic magnetic cusp located at one end of a magnetic mirror well

  3. Correlation of beam loss to residual activation in the AGS

    International Nuclear Information System (INIS)

    Brown, K.A.

    1991-01-01

    Studies of beam loss and activation at the AGS have provided a better understanding of measurements of beam loss and how they may be used to predict activation. Studies have been done in which first order correlations have been made between measured beam losses on the distributed ionization chamber system in the AGS and the health physics recorded residual activation. These studies have provided important insight into the ionization chamber system, its limitations, and its usefulness in the prediction of activation based on monitored beam loss. In recent years the AGS has run high intensity protons primarily for rare kaon decay experiments. In this mode of running the AGS typically accelerates beam from an injection momentum of 0.644 GeV/c up to a slow extracted beam (SEB) momentum of 24.2 GeV/c. The beam intensities are on the order of 4.5 x 10 13 protons per AGS cycle at injection to as high as 1.9 x 10 13 protons per AGS cycle at extraction. Residual activation varies around the AGS ring from the order of 5 mR/hour to levels of the order at 5 R/hour. The highest levels occur around the AGS beam catcher and the extraction equipment

  4. Beam size blow-up and current loss in the Fermilab Main Ring during storage

    International Nuclear Information System (INIS)

    Guignard, C.; Month, M.

    1977-01-01

    Observations at Fermilab during storage mode operation show characteristic forms of transverse beam size growth and current loss with time. There are three obvious mechanisms which can produce such blowup. The gas pressure is a source for immediate beam loss by direct nuclear scattering. Protons can also multiple scatter off the orbiting electrons of the gas atoms causing the trasnverse beam size to increase with time. A third mechanism not related to gas pressure is beam growth due to multiple crossing of betatron resonances arising from the synchrotron oscillations of the stored bunches. This simulates a random walk and causes the transverse beam size to grow. This is an attempt to describe the observations with direct nuclear scattering, multiple coulomb scattering, and multiple resonance crossing

  5. Radiation safety design for SSRL storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Khater, Hesham [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)]. E-mail: khater1@llnl.gov; Liu, James [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Fasso, Alberto [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Prinz, Alyssa [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Rokni, Sayed [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2006-12-15

    In 2003, the Stanford Synchrotron Radiation Laboratory (SSRL) had upgraded its storage ring to a 3rd generation storage ring (SPEAR3). SPEAR3 is deigned to operate at 500-mA stored beam current and 3-GeV energy. The 234-m circumference SPEAR3 ring utilizes 60-cm-thick concrete lateral walls, 30-cm-thick concrete roof, as well as 60- or 90-cm-thick concrete ratchet walls. A total of 3.5x10{sup 15}e{sup -}/y will be injected into the ring with an injection power of 4W and an injection efficiency of 75%. Normal beam losses occur due to both injection and stored beam operations in the total of 20 low loss as well as 3 high loss limiting apertures. During the 6-min injection period, an instantaneous power loss of 0.05W occurs at each low loss aperture. When averaged over the operational year, the loss of both the injection and the stored beams is equivalent to an average loss of 2mW at each low loss aperture. On the other hand, the average losses in the high loss apertures are 16mW for the injection septum, 47mW for the beam abort dump, and 13mW for the ring stoppers. The shielding requirements for losses in the new ring were based on a generic approach that used both FLUKA Monte Carlo particle generation and transport code and empirical computer codes and formulae.

  6. Comparative test results of various beam loss monitors in preparation for LHC

    OpenAIRE

    Bosser, Jacques; Ferioli, G

    1999-01-01

    Beam loss detectors will play an important role in the protection of the superconducting LHC magnets. Different types of detectors have been tested in the SPS ring and secondary beam lines with a view to their possible use for this application. This paper describes the measurements made with: microcalorimeters at cryogenic temperatures, PIN diodes, ionisation chambers, scintillators, and ACEMs. Measurements made using proton beams showing their relative sensitivities, linearities in counting ...

  7. Beam Commissioning of the PEP-II High Energy Ring

    International Nuclear Information System (INIS)

    Wienands, U.; Anderson, S.; Assmann, R.; Bharadwaj, V.; Cai, Y.; Clendenin, J.; Corredoura, P.; Decker, F.J.; Donald, M.; Ecklund, S.; Emma, P.; Erickson, R.; Fox, J.; Fieguth, T.; Fisher, A.; Heifets, S.; Hill, A.; Himel, T.; Iverson, R.; Johnson, R.; Judkins, J.; Krejcik, P.; Kulikov, A.; Lee, M.; Mattison, T.; Minty, M.; Nosochkov, Y.; Phinney, N.; Placidi, M.; Prabhakar, S.; Ross, M.; Smith, S.; Schwarz, H.; Stanek, M.; Teytelman, D.; Traller, R.; Turner, J.; Zimmermann, F.; Barry, W.; Chattopadhyay, S.; Corlett, J.; Decking, W.; Furman, M.; Nishimura, H.; Portmann, G.; Rimmer, R.; Zholents, A.; Zisman, M.; Kozanecki, W.; Hofmann, A.; Zotter, B.; Steier, C.; Bialowons, W.; Lomperski, M.; Lumpkin, A.; Reichel, I.; Safranek, J.; Smith, V.; Tighe, R.; Sullivan, M.; Byrd, J.; Li, D.

    1998-01-01

    The PEP-II High Energy Ring (HER), a 9 GeV electron storage ring, has been in commissioning since spring 1997. Initial beam commissioning activities focused on systems checkout and commissioning and on determining the behavior of the machine systems at high beam currents. This phase culminated with the accumulation of 0.75 A of stored beam-sufficient to achieve design luminosity--in January 1998 after 3.5 months of beam time. Collisions with the 3 GeV positron beam of the Low Energy Ring (LER) were achieved in Summer of 1998. At high beam currents, collective instabilities have been seen. Since then, commissioning activities for the HER have shifted in focus towards characterization of the machine and a rigorous program to understand the machine and the beam dynamics is presently underway

  8. Beam-plasma interaction in a synchrotron-cooler ring

    International Nuclear Information System (INIS)

    Itahashi, T.

    1989-01-01

    We propose a plasma target installed in the synchrotron-cooler ring in order to study the beam-plasma interaction. Various types of beam diagnostic devices and precise techniques developed for stochastic cooling and rf-stacking in the storage ring would be a powerful tool to approach the problems concerning the plasma behavior induced by the beam, such as plasma lens effect, anomalous stopping power and plasma instability. (author)

  9. Beam Loss in Linacs

    CERN Document Server

    Plum, M.A.

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  10. Particle Rate and Host Accelerator Beam Loss on the MICE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, Adam James [Imperial College, London (United Kingdom)

    2011-10-01

    A study is presented of particle rates in the MICE Muon Beamline and their relationship to beam loss produced in ISIS. A brief overview of neutrino physics is presented, together with a discussion on the Neutrino Factory as a motivation for MICE. An overview of MICE itself is then presented, highlighting the need for a systematic understanding of the relationship between the MICE target parameters, ISIS beam loss, and MICE particle rate. The variation of beam loss with target depth is examined and observed to be non-linear. The variation of beam loss with respect to the target dip time in the ISIS cycle is examined and observed to be approximately linear for dip times between 11.1 ms and 12.6 ms after ISIS injection, before tailing at earlier dip times. The variation of beam loss with particle rate is also observed to follow an approximately linear relationship from 0.05 V.ms to 4.7 V.ms beam loss, with a further strong indication that this continues up to 7.1 V.ms. Particle identification using time-of-flight data is used to give an insight into the relative abundances of each particle species present in the MICE beam. Estimates of muon rate are then produced as a function of beam loss. At a level of 2 V.ms beam loss ~10.9 muons per spill for a 3.2 ms spill with negative π → μ optics, and ~31.1 muons per 1 ms spill with positive π → μ optics are observed. Simulations using the ORBIT particle tracking code of the beam loss distributions around the ISIS ring, caused by the MICE target, are also presented and the implications for MICE running discussed.

  11. Beam dynamic issues in TESLA damping ring

    International Nuclear Information System (INIS)

    Shiltsev, V.

    1996-05-01

    In this paper we study general requirements on impedances of the linear collider TESLA damping ring design. Quantitative consideration is performed for 17-km long ''dog-bone'' ring. Beam dynamics in alternative options of 6.3 and 2.3-km long damping rings is briefly discussed. 5 refs., 2 tabs

  12. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    Science.gov (United States)

    Bruce, R.; Assmann, R. W.; Boccone, V.; Bracco, C.; Brugger, M.; Cauchi, M.; Cerutti, F.; Deboy, D.; Ferrari, A.; Lari, L.; Marsili, A.; Mereghetti, A.; Mirarchi, D.; Quaranta, E.; Redaelli, S.; Robert-Demolaize, G.; Rossi, A.; Salvachua, B.; Skordis, E.; Tambasco, C.; Valentino, G.; Weiler, T.; Vlachoudis, V.; Wollmann, D.

    2014-08-01

    The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010-2013, the LHC was routinely storing protons at 3.5-4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the collimation system. The studies include tracking of protons through the fields of more than 5000 magnets in the 27 km LHC ring over hundreds of revolutions, and Monte Carlo simulations of particle-matter interactions both in collimators and machine elements being hit by escaping particles. The simulation results agree typically within a factor 2 with measurements of beam loss distributions from the previous LHC run. Considering the complex simulation, which must account for a very large number of unknown imperfections, and in view of the total losses around the ring spanning over 7 orders of magnitude, we consider this an excellent agreement. Our results give confidence in the simulation tools, which are used also for the design of future accelerators.

  13. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    R. Bruce

    2014-08-01

    Full Text Available The CERN Large Hadron Collider (LHC is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010–2013, the LHC was routinely storing protons at 3.5–4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the collimation system. The studies include tracking of protons through the fields of more than 5000 magnets in the 27 km LHC ring over hundreds of revolutions, and Monte Carlo simulations of particle-matter interactions both in collimators and machine elements being hit by escaping particles. The simulation results agree typically within a factor 2 with measurements of beam loss distributions from the previous LHC run. Considering the complex simulation, which must account for a very large number of unknown imperfections, and in view of the total losses around the ring spanning over 7 orders of magnitude, we consider this an excellent agreement. Our results give confidence in the simulation tools, which are used also for the design of future accelerators.

  14. Identification of LHC beam loss mechanism: a deterministic treatment of loss patterns

    International Nuclear Information System (INIS)

    Marsili, A.

    2012-01-01

    The goal of this work was to identify patterns in the beam loss profiles, both in their spatial distribution and time evolution. CERN's Large Hadron Collider (LHC) is the largest device ever built, with a total circumference of 26.7 km; and it is the most powerful accelerator ever, both in beam energy and beam intensity. The main magnets are superconducting, and contain the particles into two counter circulating beams which collide in four interaction points. CERN and the LHC will be described in chapter 1. The superconducting magnets of the LHC have to be protected against particle losses. Depending on the number of lost particles, the coils of the magnets could become normal conducting and/or will be damaged. To avoid these events a beam loss monitoring (BLM) system was installed to measure the particle loss rates. If the predefined safe thresholds of loss rates are exceeded, the beams are directed out of the accelerator ring towards the beam dump. The detectors of the BLM system are mainly ionization chambers located outside of the cryostats. In total, about 3600 ionisation chambers are installed. Further challenges include the high dynamical range of losses (chamber currents ranging between 2 pA and 1 mA). The BLM system will be further described in chapter 2. The subject of this thesis is to study the loss patterns and nd the origin of the losses in a deterministic way, by comparing measured losses to well understood loss scenarios. This is done through a case study: different techniques were used on a restrained set of loss scenarios, as a proof of concept of the possibility to extract information from a loss profile. Finding the origin of the losses should allow acting in response. A justification of the doctoral work will be given at the end of chapter 2. This thesis will then focus on the theoretical understanding and the implementation of the decomposition of a measured loss profile as a linear combination of the reference scenarios; and the evaluation of

  15. Performance and perspectives of the diamond based Beam Condition Monitor for beam loss monitoring at CMS

    CERN Document Server

    AUTHOR|(CDS)2080862

    2015-01-01

    At CMS, a beam loss monitoring system is operated to protect the silicon detectors from high particle rates, arising from intense beam loss events. As detectors, poly-crystalline CVD diamond sensors are placed around the beam pipe at several locations inside CMS. In case of extremely high detector currents, the LHC beams are automatically extracted from the LHC rings.Diamond is the detector material of choice due to its radiation hardness. Predictions of the detector lifetime were made based on FLUKA monte-carlo simulations and irradiation test results from the RD42 collaboration, which attested no significant radiation damage over several years.During the LHC operational Run1 (2010 â?? 2013), the detector efficiencies were monitored. A signal decrease of about 50 times stronger than expectations was observed in the in-situ radiation environment. Electric field deformations due to charge carriers, trapped in radiation induced lattice defects, are responsible for this signal decrease. This so-called polarizat...

  16. Beam energy loss to parasitic modes in SPEAR II

    International Nuclear Information System (INIS)

    Allen, M.A.; Paterson, J.M.; Rees, J.R.; Wilson, P.B.

    1975-01-01

    The energy loss due to the excitation of parasitic modes in the SPEAR II rf cavities and vacuum chamber components was measured by observing the shift in synchronous phase angle as a function of circulating beam current and accelerating cavity voltage. The resulting parasitic mode loss resistance is 5 M OMEGA at a bunch length of 6.5 cm. The loss resistance varies with bunch length sigma/sub z/ approximately as exp(-0.3 sigma/sub z/). If the measured result is compared with reasonable theoretical predictions, it may be inferred that the major portion of the parasitic loss takes place in ring vacuum components rather than in the rf cavities. (auth)

  17. Transverse Periodic Beam Loading Effects in a Storage Ring

    International Nuclear Information System (INIS)

    Thompson, J.R.; Byrd, J.M.

    2009-01-01

    Uneven beam fill patterns in storage rings, such as gaps in the fill patterns, leads to periodic, or transient loading of the modes of the RF cavities. We show that an analogous effect can occur in the loading of a dipole cavity mode when the beam passes off the electrical center of the cavity mode. Although this effect is small, it results in a variation of the transverse offset of the beam along the bunch train. For ultralow emittance beams, such as optimized third generation light sources and damping rings, this effect results in a larger projected emittance of the beam compared with the single bunch emittance. The effect is particularly strong for the case when a strong dipole mode has been purposely added to the ring, such as a deflecting, or 'crab' cavity. We derive an approximate analytic solution for the variation of the beam-induced deflecting voltage along the bunch train.

  18. New data acquisition system for beam loss monitor used in J-PARC main ring

    Science.gov (United States)

    Satou, K.; Toyama, T.; Kamikubota, N.; Yoshida, S.; Matsushita, J.; Wakita, T.; Sugiyama, M.; Morino, T.

    2018-04-01

    A new data acquisition system has been developed continually as a part of the development of a new beam loss monitor (BLM) system for the J-PARC main ring. This development includes a newly designed front-end isolation amp that uses photo-couplers and a VME-based new analog-to-digital converter (ADC) system. Compared to the old amp, the new amp has a 10 times higher conversion impedance for the input current to the output voltage; this value is 1 M Ω. Moreover, the bandwidth was improved to from DC to 50 kHz, which is about two orders of magnitude greater than the previously used bandwidth. The theoretical estimations made in this study roughly agree with the frequency response obtained for the new system. The new ADC system uses an on-board field-programmable gate array chip for signal processing. By replacing the firmware of this chip, changes pertaining to future accelerator upgrade plans may be introduced into the new ADC system; in addition, the ADC system can be used in other applications. The sampling speed of the system is 1 MS/s, and it exhibits a 95 dBc spurious-free dynamic range and 16.5 effective number of bits. The obtained waveform and integrated charge data are compared with two reference levels in the ADC system. If the data exceeds the reference level, the system generates an alarm to dump the beams. By using the new data acquisition system, it was proved that the new BLM system shows a wide dynamic range of 160 dB. In this study, the details of the new data acquisition system are described.

  19. Complex ABCD transformations for optical ring cavities with losses and gain

    International Nuclear Information System (INIS)

    Kudashov, V N; Radin, A M; Plachenov, A B

    1999-01-01

    Complex ABCD field transformations are investigated for inhomogeneous optical ring cavities with losses and gain. It is shown that the sets of eigenfunctions, corresponding to counterpropagating waves, are really biorthogonal: the functions in each of these sets are really orthogonal relative to one another, and have a complex weighting factor independent of the mode number. Bidirectional and unidirectional stability conditions are formulated for such cavities. These conditions are qualitatively different from those for loss-free cavities. A simple algorithm is proposed for the evaluation of the ABCD matrix for a medium with an arbitrary longitudinal inhomogeneity along the beam. (laser applications and other topics in quantum electronics)

  20. Beam Cooling with ionisation losses

    CERN Document Server

    Rubbia, Carlo; Kadi, Y; Vlachoudis, V

    2006-01-01

    A novel type of particle "cooling", called Ionization Cooling, is applicable to slow (v of the order of 0.1c) ions stored in a small ring. The many traversals through a thin foil enhance the nuclear reaction probability, in a steady configuration in which ionisation losses are recovered at each turn by a RF-cavity. For a uniform target "foil" the longitudinal momentum spread diverges exponentially since faster (slower) particles ionise less (more) than the average. In order to "cool" also longitudinally, a chromaticity has to be introduced with a wedge shaped "foil". Multiple scattering and straggling are then "cooled" in all three dimensions, with a method similar to the one of synchrotron cooling, but valid for low energy ions. Particles then stably circulate in the beam indefinitely, until they undergo for instance nuclear processes in the thin target foil. This new method is under consideration for the nuclear production of a few MeV/A ion beams. Simple reactions, for instance Li 7 + D Li 8 + p, are more ...

  1. IKOR - An isochronous pulse compressor ring for proton beams

    International Nuclear Information System (INIS)

    Schaffer, G.

    1981-06-01

    This report contains the results of a study carried out for an isochronous compressor ring IKOR which compresses the 500 μs linac macropulses into pulses of 0.68 μs length. Its basic component is a ring magnet with alternating gradient and separated functions. Due to the isochronous operation, an rf system can be avoided which otherwise would be necessary in order to maintain a void in the circulating beam for the purpose of ejection. Injection is performed by charge exchange. The H - beam of the accelerator is first converted into a H 0 beam by stripping off one electron by a high gradient magnet placed in the transfer channel. Subsequently, the beam is converted into a proton beam by removing the remaining electron through a stripping foil in the ring. IKOR will be filled in 658 turns. Immediately after filling, the beam is ejected in a single turn via a kicker and a septum magnet and is transported to the spallation target. Because of the high intensity of 2.7 x 10 14 protons per pulse and, secondly, due to the high repetition rate of 100 Hz, beam dynamics and radiation protection aspects dominate the design and are, for this reason, treated in detail. (orig.)

  2. Beam and spin dynamics of hadron beams in intermediate-energy ring accelerators

    International Nuclear Information System (INIS)

    Lehrach, Andreas

    2008-01-01

    In this thesis beam and spin dynamics of ring accelerators are described. After a general theoretical treatment methods for the beam optimization and polarization conservation are discussed. Then experiments on spin manipulation at the COSY facility are considered. Finally the beam simulation and accelerator lay-out for the HESR with regards to the FAIR experiment are described. (HSI)

  3. Dissipative effects in the beam-beam interaction of intersecting storage rings

    International Nuclear Information System (INIS)

    Ford, J.; Vivaldi, F.

    1982-01-01

    This proposal seeks continuing support for an ongoing research investigation of various dynamical instabilities which arise in high energy intersecting storage rings due to the beam-beam interaction. Although the dissipative effect of radiation in beam-beam machines is anticipated to be a dominant feature affecting stability in the dynamics of colliding beams of heavy particles, almost nothing is known regarding the stability problem in many-dimensional dissipative systems. The work proposed here will extend the earlier computations on weak instabilities in many-dimensional beam-beam models to include the effect of dissipation. The object of this research is to obtain conditions for global beam stability over long time scales as a function of the machine parameters

  4. Longitudinal beam instability due to the ring impedance at KEK's accelerator test facility damping ring

    International Nuclear Information System (INIS)

    Kim, Eun-San

    2003-01-01

    This paper shows the results of a numerical study of the impedance in the Accelerator Test Facility damping ring. The longitudinal impedance in the damping ring is shown to be inductive. It is shown that the total impedance |Z || /n| is 0.23 Ω and the inductance is L = 14 nH. In the extremely low emittance beam of the damping ring, bunch lengthening is caused by both the effects of potential-well distortion and intra-beam scattering. In this paper, the bunch-lengthening due to the ring impedance is numerically investigated, and the result shows qualitative agreement with the result of an analysis performed using the bunch-length measurement. With the calculated longitudinal impedance, the instability threshold in the damping ring is estimated to be a bunch population of 3.3 x 10 10 by using both a Vlasov equation approach and a multi-particle tracking method.

  5. Beam Profile Measurement with Flying Wires at the Fermilab Recycler Ring

    CERN Document Server

    Hu, Martin; Krider, John; Lorman, Eugene; Marchionni, Alberto; Pishchalnikov, Yu M; Pordes, Stephen; Slimmer, David; Wilson, Peter R; Zagel, James

    2005-01-01

    The Fermilab Recycler Ring is a high vacuum fixed energy antiproton storage ring with stochastic and electron cooling systems. Flying wires were installed at the Fermilab Recycler Ring for transverse beam profile measurement. The following note describes the system configuration, calibration and resolution of the flying wire system, as well as analysis of the transverse beam profile in the presence of both cooling systems.

  6. Nonlinear interaction of colliding beams in particle storage rings

    International Nuclear Information System (INIS)

    Herrera, J.C.; Month, M.

    1979-01-01

    When two beams of high energy particles moving in opposite directions are brought into collision, a large amount of energy is available for the production of new particles. However to obtain a sufficiently high event rate for rare processes, such as the production of the intermediate vector boson (Z 0 and W +- ), large beam currents are also required. Under this circumstance, the high charge density of one beam results in a classical electromagnetic interaction on the particles in the other beam. This very nonlinear space charge force, caled the beam-beam force, limits the total circulating charge and, thereby, the ultimate performance of the colliding ring system. The basic nature of the beam-beam force is discussed, indicating how it is quite different in the case of continuous beams, which cross each other at an angle as compared to the case of bunched beams which collide head-on. Some experimental observations on the beam-beam interaction in proton-proton and electron-positron beams are then reviewed and interpreted. An important aspect of the beam-beam problem in storage rings is to determine at what point in the analysis of the particle dynamics is it relevant to bring in the concepts of stochasticity, slow diffusion, and resonance overlap. These ideas are briefly discussed

  7. Simulation of equivalent dose due to accidental electron beam loss in Indus-1 and Indus-2 synchrotron radiation sources using FLUKA code

    International Nuclear Information System (INIS)

    Sahani, P.K.; Dev, Vipin; Singh, Gurnam; Haridas, G.; Thakkar, K.K.; Sarkar, P.K.; Sharma, D.N.

    2008-01-01

    Indus-1 and Indus-2 are two Synchrotron radiation sources at Raja Ramanna Centre for Advanced Technology (RRCAT), India. Stored electron energy in Indus-1 and Indus-2 are 450MeV and 2.5GeV respectively. During operation of storage ring, accidental electron beam loss may occur in addition to normal beam losses. The Bremsstrahlung radiation produced due to the beam losses creates a major radiation hazard in these high energy electron accelerators. FLUKA, the Monte Carlo radiation transport code is used to simulate the accidental beam loss. The simulation was carried out to estimate the equivalent dose likely to be received by a trapped person closer to the storage ring. Depth dose profile in water phantom for 450MeV and 2.5GeV electron beam is generated, from which percentage energy absorbed in 30cm water phantom (analogous to human body) is calculated. The simulation showed the percentage energy deposition in the phantom is about 19% for 450MeV electron and 4.3% for 2.5GeV electron. The dose build up factor in 30cm water phantom for 450MeV and 2.5GeV electron beam are found to be 1.85 and 2.94 respectively. Based on the depth dose profile, dose equivalent index of 0.026Sv and 1.08Sv are likely to be received by the trapped person near the storage ring in Indus-1 and Indus-2 respectively. (author)

  8. Confinement and stability of crystalline beams in storage rings

    International Nuclear Information System (INIS)

    Haffmans, A.F.

    1995-01-01

    We present a fully analytical approach to the study of the confinement and stability of open-quote open-quote Crystalline Beams close-quote close-quote in storage rings, in terms of such fundamental accelerator concepts as tune shift and stopband. We consider a open-quote open-quote Crystalline Beam close-quote close-quote consisting of substrings, arranged symmetrically around the reference trajectory, and we examine the motion of a slightly perturbed test particle on one of them. Our approach quite naturally leads to the conclusion, that (a) storage rings need to be operated below the transition energy, and (b) the open-quote open-quote Crystalline Beam close-quote close-quote has the same periodicity as the storage ring. Each open-quote open-quote Crystalline Beam close-quote close-quote has an upper and lower limit of the spacing between the ions. The upper limit is determined by condition (b), and the lower limit is set by the stability of the test particle motion around the equilibrium. copyright 1995 American Institute of Physics

  9. Model calibration and beam control systems for storage rings

    International Nuclear Information System (INIS)

    Corbett, W.J.; Lee, M.J.; Ziemann, V.

    1993-04-01

    Electron beam storage rings and linear accelerators are rapidly gaining worldwide popularity as scientific devices for the production of high-brightness synchrotron radiation. Today, everybody agrees that there is a premium on calibrating the storage ring model and determining errors in the machine as soon as possible after the beam is injected. In addition, the accurate optics model enables machine operators to predictably adjust key performance parameters, and allows reliable identification of new errors that occur during operation of the machine. Since the need for model calibration and beam control systems is common to all storage rings, software packages should be made that are portable between different machines. In this paper, we report on work directed toward achieving in-situ calibration of the optics model, detection of alignment errors, and orbit control techniques, with an emphasis on developing a portable system incorporating these tools

  10. Quadrupole modes in linearized beam-beam interaction in e+e- colliding rings

    International Nuclear Information System (INIS)

    Matsumoto, Shuji; Hirata, Kohji.

    1992-01-01

    The dynamic-beta model is extended, incorporating the synchrotron radiation effects. The model yields dynamic-emittance effect. The steady-state envelope matrix is explicitly obtained. Both equal-beam and flip-flop solutions are found. The stability of the steady-state solutions are investigated by numerical calculations. The model illustrates some characteristic features of the beam-beam interaction at e + e - colliding rings in spite of containing some qualitatively unrealistic points. (author)

  11. Studies Performed in Preparation for the Spallation Neutron Source Accumulator Ring Commissioning

    CERN Document Server

    Cousineau, Sarah M; Henderson, Stuart; Holmes, Jeffrey Alan; Plum, Michael

    2005-01-01

    The Spallation Neutron Source accumulator ring will compress 1.5?1014, 1 GeV protons from a 1 ms bunch train to a single 695 ns proton bunch for use in neutron spallation. Due to the high beam power, unprecedented control of beam loss will be required in order to control radiation and allow for hands-on maintenance in most areas of the ring. A number of detailed investigations have been performed to understand the primary sources of beam loss and to predict and mitigate problems associated with radiation hot spots in the ring. The ORBIT particle tracking code is used to perform realistic simulations of the beam accumulation in the ring, including detailed modeling of the injection system, transport through the measured magnet fields including higher order multipoles, and beam loss and collimation. In this paper we present the results of a number of studies performed in preparation for the 2006 commissioning of the accumulator ring.

  12. Effect of an internal target on the beam behaviour in a storage ring

    International Nuclear Information System (INIS)

    Diehl, N.

    1988-04-01

    For the study of the effects of an internal target on the beam behaviour in a storage ring a Monte Carlo simulation program was developed. Special importance was attached to the ranges of validity of the used models. The dominating effects are the Coulomb scattering of the projectiles on the target nuclei, which lead to an angular dispersion, and the collisions of the projectiles on the electrons of the target atoms which cause an energy loss. The target effects are regarded in the simulation program. The simulation calculations for the storage ring COSY give cause for the hope that experiments with internal targets because of high luminosity represent an interesting alternative in spite of thin targets. (orig./HSI) [de

  13. Stochastic beam dynamics in storage rings

    International Nuclear Information System (INIS)

    Pauluhn, A.

    1993-12-01

    In this thesis several approaches to stochastic dynamics in storage rings are investigated. In the first part the theory of stochastic differential equations and Fokker-Planck equations is used to describe the processes which have been assumed to be Markov processes. The mathematical theory of Markov processes is well known. Nevertheless, analytical solutions can be found only in special cases and numerical algorithms are required. Several numerical integration schemes for stochastic differential equations will therefore be tested in analytical solvable examples and then applied to examples from accelerator physics. In particular the stochastically perturbed synchrotron motion is treated. For the special case of a double rf system several perturbation theoretical methods for deriving the Fokker-Planck equation in the action variable are used and compared with numerical results. The second part is concerned with the dynamics of electron storage rings. Due to the synchrotron radiation the electron motion is influenced by damping and exciting forces. An algorithm for the computation of the density function in the phase space of such a dissipative stochastically excited system is introduced. The density function contains all information of a process, e.g. it determines the beam dimensions and the lifetime of a stored electron beam. The new algorithm consists in calculating a time propagator for the density function. By means of this propagator the time evolution of the density is modelled very computing time efficient. The method is applied to simple models of the beam-beam interaction (one-dimensional, round beams) and the results of the density calculations are compared with results obtained from multiparticle tracking. Furthermore some modifications of the algorithm are introduced to improve its efficiency concerning computing time and storage requirements. Finally, extensions to two-dimensional beam-beam models are described. (orig.)

  14. The LHC beam loss monitoring system's real-time data analysis card

    CERN Document Server

    Dehning, B; Ferioli, G; Guaglio, G; Leitner, R; Zamantzas, C

    2005-01-01

    The BLM (Beam Loss Monitoring) system has to prevent the superconducting magnets from being quenched and protect the machine components against damages making it one of the most critical elements for the protection of the LHC. The complete system consists of 3600 detectors, placed at various locations around the ring, tunnel electronics, which are responsible for acquiring, digitizing, and transmitting the data, and surface electronics, which receive the data via 2km optical data links, process, analyze, store, and issue warning and abort triggers. At those surface units, named BLMTCs, the backbone on each of them is an FPGA (field programmable gate array) which treats the loss signals collected from 16 detectors. It takes into account the beam energy and keeps 192 running sums giving loss durations of up to the last 84 seconds before it compares them with thresholds uniquely programmable for each detector. In this paper, the BLMTC's design is explored giving emphasis to the strategies followed in combining t...

  15. Storage Rings

    International Nuclear Information System (INIS)

    Fischer, W.

    2010-01-01

    Storage rings are circular machines that store particle beams at a constant energy. Beams are stored in rings without acceleration for a number of reasons (Tab. 1). Storage rings are used in high-energy, nuclear, atomic, and molecular physics, as well as for experiments in chemistry, material and life sciences. Parameters for storage rings such as particle species, energy, beam intensity, beam size, and store time vary widely depending on the application. The beam must be injected into a storage ring but may not be extracted (Fig. 1). Accelerator rings such as synchrotrons are used as storage rings before and after acceleration. Particles stored in rings include electrons and positrons; muons; protons and anti-protons; neutrons; light and heavy, positive and negative, atomic ions of various charge states; molecular and cluster ions, and neutral polar molecules. Spin polarized beams of electrons, positrons, and protons were stored. The kinetic energy of the stored particles ranges from 10 -6 eV to 3.5 x 10 12 eV (LHC, 7 x 10 12 eV planned), the number of stored particles from one (ESR) to 1015 (ISR). To store beam in rings requires bending (dipoles) and transverse focusing (quadrupoles). Higher order multipoles are used to correct chromatic aberrations, to suppress instabilities, and to compensate for nonlinear field errors of dipoles and quadrupoles. Magnetic multipole functions can be combined in magnets. Beams are stored bunched with radio frequency systems, and unbunched. The magnetic lattice and radio frequency system are designed to ensure the stability of transverse and longitudinal motion. New technologies allow for better storage rings. With strong focusing the beam pipe dimensions became much smaller than previously possible. For a given circumference superconducting magnets make higher energies possible, and superconducting radio frequency systems allow for efficient replenishment of synchrotron radiation losses of large current electron or positron beams

  16. Beam dynamics in Compton ring gamma sources

    Directory of Open Access Journals (Sweden)

    Eugene Bulyak

    2006-09-01

    Full Text Available Electron storage rings of GeV energy with laser pulse stacking cavities are promising intense sources of polarized hard photons which, via pair production, can be used to generate polarized positron beams. In this paper, the dynamics of electron bunches circulating in a storage ring and interacting with high-power laser pulses is studied both analytically and by simulation. Both the common features and the differences in the behavior of bunches interacting with an extremely high power laser pulse and with a moderate pulse are discussed. Also considerations on particular lattice designs for Compton gamma rings are presented.

  17. Beam Loss and Beam Shape at the LHC Collimators

    CERN Document Server

    Burkart, Florian

    In this master thesis the beam loss and the beam shape at the LHC collimators was measured, analysed, presented and discussed. Beginning with a short introduction of the LHC, the experiments, the supercon- ducting magnet system, the basics on linear beam dynamics and a describtion of the LHC collimation system are given. This is followed by the presentation of the performance of the LHC collimation sys- tem during 2011. A method to convert the Beam Loss Monitor signal in Gy/s to a proton beam loss rate will be introduced. Also the beam lifetime during the proton physics runs in 2011 will be presented and discussed. Finally, the shape of the LHC beams is analysed by using data obtained by scraping the beam at the LHC primary collimators.

  18. Feasibility of beam crystallization in a cooler storage ring

    Directory of Open Access Journals (Sweden)

    Yosuke Yuri

    2005-11-01

    Full Text Available It has been known theoretically that a charged-particle beam circulating in a storage ring exhibits an “ordered” configuration at the space-charge limit. Such an ultimate state of matter is called a crystalline beam whose emittance is ideally equal to zero except for quantum noise. This paper discusses how close one can come to various ordered states by employing currently available accelerator technologies. The dynamic nature of ultracold beams and conditions required for crystallization are briefly reviewed. Molecular dynamics simulations are performed to study the feasibility of this unique phenomenon, considering practical situations in general cooling experiments. It is pointed out that several essential obstacles must be overcome to reach a three-dimensional crystalline state in a storage ring. Doppler laser cooling of ion beams is also numerically simulated to explore the possibility of beam crystallization in an existing machine.

  19. Generation of tunable chain of three-dimensional optical bottle beams via focused multi-ring hollow Gaussian beam.

    Science.gov (United States)

    Philip, Geo M; Viswanathan, Nirmal K

    2010-11-01

    We report here the generation of a chain of three-dimensional (3-D) optical bottle beams by focusing a π-phase shifted multi-ring hollow Gaussian beam (HGB) using a lens with spherical aberration. The rings of the HGB of suitable radial (k(r)) and axial (k(z)) wave vectors are generated using a double-negative axicon chemically etched in the optical fiber tips. Moving the lens position with respect to the fiber tip results in variation of the semi-angle of the cones of wave vectors of the HGBs and their diameter, using which we demonstrate tunability in the size and the periodicity of the 3-D optical bottle beams over a wide range, from micrometers to millimeters. The propagation characteristics of the beams resulting from focusing of single- and multi-ring HGBs and resulting in a quasi-non-diffracting beam and a chain of 3-D optical bottle beams, respectively, are simulated using only the input beam parameters and are found to agree well with experimental results.

  20. Ion optics and beam dynamics optimization at the HESR storage ring for the SPARC experiments with highly charged heavy ions

    International Nuclear Information System (INIS)

    Kovalenko, Oleksandr

    2015-01-01

    The High-Energy Storage Ring (HESR) is a part of an upcoming International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt. A key part of a scientific program, along with antiproton physics, will be physics with highly-charged heavy ions. Phase-space cooled beams together with fixed internal target will provide an excellent environment for storage ring experiments at the HESR for the SPARC collaboration. Until recently, however, the existing ion optical lattice for the HESR was designed only for the experiments with antiproton beams. The thesis presents a new ion optical mode developed specifically for the operation of the HESR with highly charged heavy ions. The presence of the errors, such as beam momentum spread, magnetic field impurities or magnets misalignments, leads to disruption of beam dynamics: exciting of resonant motion and loss of beam stability. Within the paper, these effects are investigated with the help of numerical codes for particle accelerator design and simulation MAD-X and MIRKO. A number of correction techniques are applied to minimize the nonlinear impact on the beam dynamics and improve the experimental conditions. The application of the analytical and numerical tools is demonstrated in the experiment with uranium U 90+ beam at the existing storage ring ESR, GSI.

  1. Ion optics and beam dynamics optimization at the HESR storage ring for the SPARC experiments with highly charged heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, Oleksandr

    2015-06-24

    The High-Energy Storage Ring (HESR) is a part of an upcoming International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt. A key part of a scientific program, along with antiproton physics, will be physics with highly-charged heavy ions. Phase-space cooled beams together with fixed internal target will provide an excellent environment for storage ring experiments at the HESR for the SPARC collaboration. Until recently, however, the existing ion optical lattice for the HESR was designed only for the experiments with antiproton beams. The thesis presents a new ion optical mode developed specifically for the operation of the HESR with highly charged heavy ions. The presence of the errors, such as beam momentum spread, magnetic field impurities or magnets misalignments, leads to disruption of beam dynamics: exciting of resonant motion and loss of beam stability. Within the paper, these effects are investigated with the help of numerical codes for particle accelerator design and simulation MAD-X and MIRKO. A number of correction techniques are applied to minimize the nonlinear impact on the beam dynamics and improve the experimental conditions. The application of the analytical and numerical tools is demonstrated in the experiment with uranium U{sup 90+} beam at the existing storage ring ESR, GSI.

  2. Present status of beam position stabilization at photon factory storage ring

    International Nuclear Information System (INIS)

    Nakamura, Norio

    1990-01-01

    Stabilization of photon beam position became a major issue in the operation of the storage rings dedicated as synchrotron radiation source. At the Photon Factory storage ring (PF ring), the orbit movement appeared remarkably when the low-emittance operation started. This orbit movement became a serious problem to synchrotron radiation users because the photon beam to drift with a large amplitude. The horizontal and vertical orbit feedback systems were constructed and developed in order to suppress the orbit movement globally. As a result, the horizontal and vertical orbit movements were reduced by a factor of five and ten, respectively. In addition, another type of feedback system using a local bump was constructed. In the test operation, this system could remove the fast photon beam motion as well as the slow photon beam drift for a beamline. (author)

  3. Detection of Equipment Faults Before Beam Loss

    CERN Document Server

    Galambos, J.

    2016-01-01

    High-power hadron accelerators have strict limits on fractional beam loss. In principle, once a high-quality beam is set up in an acceptable state, beam loss should remain steady. However, in practice, there are many trips in operational machines, owing to excessive beam loss. This paper deals with monitoring equipment health to identify precursor signals that indicate an issue with equipment that will lead to unacceptable beam loss. To this end, a variety of equipment and beam signal measurements are described. In particular, several operational examples from the Spallation Neutron Source (SNS) of deteriorating equipment functionality leading to beam loss are reported.

  4. Beam optics simulation of rare-RI ring at RI beam factory in RIKEN

    International Nuclear Information System (INIS)

    Arai, I.; Ozawa, A.; Yasuda, Y.

    2009-01-01

    The cyclotron-like storage ring dedicated to Rare-RI Ring project consists of 6 magnetic sectors and 6 straight sections, having a circumference of 56.13 m. The magnetic sector works for both bending and focusing. The total circulation is assumed to be 1,000 turns. Over the momentum range from -1% to +1% in ∆p/p, the required isochronicity is 10 -6 while the beam emittance is several tens of π mm-mrad. To examine the design of cyclotron-like storage ring and fix its parameters, we have developed a high precision beam optics simulation. To achieve the precision as high as possible within a feasible computational time, we have adopted a geometrical tracking assuming a circular orbit for a small spatial segment. For that purpose, it is enough that the magnetic sector is divided into 150 sub-sectors in calculation. In each sub-sector, the magnetic field is given as a function of radial position but uniform around the vicinity of beam trajectory. The beam trajectory is evaluated in 4th order Runge-Kutta algorithm. Finally, we have achieved a precision of 10 -9 in ∆T/T and a computational time of 1.8 sec on a typical PC server for ray tracing of single particle undergoing a circulation of 1,000 turns. (author)

  5. INJECTION EFFICIENCY IN COMPTON RING NESTOR

    Directory of Open Access Journals (Sweden)

    P. I. Gladkikh

    2017-12-01

    Full Text Available NESTOR is the hard X-ray source that is under commissioning at NSC KIPT. NESTOR based on the Compton scattering of laser photons on relativistic electrons. The structure of the facility can be represented as the following components: a linear accelerator, a transport channel, a storage ring, and a laser-optical system. Electrons are stored in the storage ring for energy of 40-200 MeV. Inevitable alignment errors of magnetic elements are strongly effect on the beam dynamics in the storage ring. These errors lead to a shift of the equilibrium orbit relative to the ideal one. Significant shift of the equilibrium orbit could lead to loss of the beam on physical apertures. Transverse sizes of electron and laser beams are only few tens of microns at the interaction point. The shift of electron beam at the interaction point could greatly complicate the operation adjustment of storage ring without sufficient beam position diagnostic system. This article presents the simulation results of the efficiency of electron beam accumulation in the NESTOR storage ring. Also, this article is devoted to electron beam dynamics due to alignment errors of magnetic element in the ring.

  6. Conceptual design of a linac-stretcher ring to obtain a 2-gev continuous electron beam

    International Nuclear Information System (INIS)

    Cho, Y.; Holt, R.J.; Jackson, H.E.; Khoe, T.K.; Mavrogenes, G.S.

    1981-01-01

    In order to obtain a high duty factor, >100 /mu/A 2-Gev electron beam, a linac-stretcher ring system was designed. The system is an attractive option because it draws heavily on the existing accelerator technology. The linac-stretcher ring consists of a 2-Gev SLAC-type pulsed linac which injects into a storage ring. In between linac pulses, the stored electron beam is to extract resonantly. This design differs from those discussed recently in several important respects. The storage ring includes an rf system whose purpose is to control the beam orbit and rate of extraction from the ring. With an rf system in the ring, the injection scheme consists of a few turns of synchronous transfers of beam between the linac and storage ring. 4 refs

  7. Polarized beams in high energy storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Montague, B W [European Organization for Nuclear Research, Geneva (Switzerland)

    1984-11-01

    In recent years there has been a considerable advance in understanding the spin motion of particles in storage rings and accelerators. The survey presented here outlines the early historical development in this field, describes the basic ideas governing the kinetics of polarized particles in electromagnetic fields and shows how these have evolved into the current description of polarized beam behaviour. Orbital motion of particles influences their spin precession, and depolarization of a beam can result from excitation of spin resonances by orbit errors and oscillations. Electrons and positrons are additionally influenced by the quantized character of synchrotron radiation, which not only provides a polarizing mechanism but also enhances depolarizing effects. Progress in the theoretical formulation of these phenomena has clarified the details of the physical processes and suggested improved methods of compensating spin resonances. Full use of polarized beams for high-energy physics with storage rings requires spin rotators to produce longitudinal polarization in the interaction regions. Variants of these schemes, dubbed Siberian snakes, provide a curious precession topology which can substantially reduce depolarization in the high-energy range. Efficient polarimetry is an essential requirement for implementing polarized beams, whose utility for physics can be enhanced by various methods of spin manipulation.

  8. Some topics in beam dynamics of storage rings

    International Nuclear Information System (INIS)

    Mais, H.

    1996-06-01

    In the following report we want to review some beam dynamics problems in accelerator physics. Theoretical tools and methods are introduced and discussed, and it is shown how these concepts can be applied to the study of various problems in storage rings. The first part treats Hamiltonian systems (proton accelerators) whereas the second part is concerned with explicitly stochastic systems (e.g. electron storage rings). (orig.)

  9. Characteristics of possible beam losses in superconducting cyclotron

    International Nuclear Information System (INIS)

    Pradhan, J.; Paul, Santanu; Debnath, Jayanta; Dutta, Atanu; Bhunia, Uttam; Naser, Md. Zamal Abdul; Singh, Vinay; Agrawal, Ankur; Dey, Malay Kanti

    2015-01-01

    In a compact superconducting cyclotron large coherent oscillation and off-centering of the beam may cause large amount of beam loss. The off-centered beam may hit the beam chamber wall prohibiting extraction of the beam. Or it may hit the RF liner surfaces due to vertical blow-up across various resonances during acceleration. The vertical shift of beam caused by the mis-alignment gradually moves the beam out of geometrical median plane eventually leading to internal beam losses. The loss of isochronisms results the reduction of beam intensity depending on the particle phase history. Small field perturbations generated by trim coils have been used to identify the beam loss mechanisms in the superconducting cyclotron at out centre. Besides, the beam loss due to interaction of accelerating ions with residual gases is also discussed. The beam profile obtained from differential and three finger probes gives a clear insight of the loss-mechanism. The paper describes different beam losses observed in the cyclotron with corresponding beam profiles under different field perturbations, Special emphasis is given on characteristics features of beam-current profile to identify the cause of beam loss. (author)

  10. Overview of LHC Beam Loss Measurements

    CERN Document Server

    Dehning, B; Effinger, E; Emery, J; Fadakis, E; Holzer, E B; Jackson, S; Kruk, G; Kurfuerst, C; Marsili, A; Misiowiec, M; Nebot Del Busto, E; Nordt, A; Priebe, A; Roderick, C; Sapinski, M; Zamantzas, C; Grishin, V; Griesmayer, E

    2011-01-01

    The LHC beam loss monitoring system provides measurements with an update rate of 1 Hz and high time resolution data by event triggering. These informations are used for the initiation of beam aborts, fixed displays and the off line analysis. The analysis of fast and localized loss events resulted in the determination of its rate, duration, peak amplitudes, its scaling with intensity, number of bunches and beam energy. The calibration of the secondary shower beam loss signal in respect to the needed beam energy deposition to quench the magnet coil is addressed at 450GeV and 3.5T eV . The adjustment of collimators is checked my measuring the loss pattern and its variation in the collimation regions of the LHC. Loss pattern changes during a fill allow the observation of non typical fill parameters.

  11. Halo and space charge issues in the SNS Ring

    International Nuclear Information System (INIS)

    Fedotov, A.V.; Abell, D.T.; Beebe-Wang, J.; Lee, Y.Y.; Malitsky, N.; Wei, J.; Gluckstern, R.L.

    2000-01-01

    The latest designs for high-intensity proton rings require minimizing beam-induced radioactivation of the vacuum chamber. Although the tune depression in the ring is much smaller than in high-intensity linacs, space-charge contributions to halo formation and, hence, beam loss may be significant. This paper reviews our current understanding of halo formation issues for the Spallation Neutron Source (SNS) accumulator ring

  12. Halo and space charge issues in the SNS Ring

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov, A.V.; Abell, D.T.; Beebe-Wang, J.; Lee, Y.Y.; Malitsky, N.; Wei, J.; Gluckstern, R.L.

    2000-06-30

    The latest designs for high-intensity proton rings require minimizing beam-induced radioactivation of the vacuum chamber. Although the tune depression in the ring is much smaller than in high-intensity linacs, space-charge contributions to halo formation and, hence, beam loss may be significant. This paper reviews our current understanding of halo formation issues for the Spallation Neutron Source (SNS) accumulator ring.

  13. Conceptual design of a linac-stretcher ring to obtain a 2-GeV continuous electron beam

    International Nuclear Information System (INIS)

    Cho, Y.; Holt, R.J.; Jackson, H.E.; Khoe, T.K.; Mavrogenes, G.S.

    1981-01-01

    In order to obtain a high duty factor, > 100 μA 2-GeV electron beam, we have designed a linac-stretcher ring system. The system is an attractive option because it draws heavily on the existing accelerator technology. The linac-stretcher ring consists of a 2-GeV SLAC-type pulsed linac which injects into a storage ring. In between linac pulses, the stored electron beam is to extract resonantly. This design differs from those discussed recently in several important respects. The storage ring includes an RF system whose purpose is to control the beam orbit and rate of extraction from the ring. With an RF system in the ring, the injection scheme consists of a few turns of synchronous transfers of beam between the linac and storage ring

  14. Conceptual design of elliptical cavities for intensity and position sensitive beam measurements in storage rings

    International Nuclear Information System (INIS)

    Sanjari, M S; Chen, X; Hülsmann, P; Litvinov, Yu A; Nolden, F; Piotrowski, J; Steck, M; Stöhlker, Th

    2015-01-01

    Position sensitive beam monitors are indispensable for the beam diagnostics in storage rings. Apart from their applications in the measurements of beam parameters, they can be used in non-destructive in-ring decay studies of radioactive ion beams as well as enhancing precision in the isochronous mass measurement technique. In this work, we introduce a novel approach based on cavities with elliptical cross-section, in order to compensate the limitations of known designs for the application in ion storage rings. The design is aimed primarily for future heavy ion storage rings of the FAIR project. The conceptual design is discussed together with simulation results. (paper)

  15. A method for generating double-ring-shaped vector beams

    Science.gov (United States)

    Huan, Chen; Xiao-Hui, Ling; Zhi-Hong, Chen; Qian-Guang, Li; Hao, Lv; Hua-Qing, Yu; Xu-Nong, Yi

    2016-07-01

    We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator (SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature because it depends on the optical length. Then a Pancharatnam-Berry phase (PBP) optical element is used to manipulate the local polarization of the optical field by modulating the geometric phase. The experimental results show that this scheme can effectively create double-ring-shaped vector beams. It provides much greater flexibility to manipulate the phase and polarization by simultaneously modulating the dynamic and the geometric phases. Project supported by the National Natural Science Foundation of China (Grant No. 11547017), the Hubei Engineering University Research Foundation, China (Grant No. z2014001), and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB578).

  16. Initial commissioning results from the APS loss monitor system

    International Nuclear Information System (INIS)

    Patterson, D.R.

    1996-01-01

    The design of the beam loss monitor system for the Argonne National Laboratory Advanced Photon Source is based on using a number of air dielectric coaxial cables as long ionization chambers. Results to date show that the loss monitor is useful in helping to determine the cause of injection losses and losses large enough to limit circulating currents in the storage ring to short lifetimes. Sensitivities ranging from 13 to 240 pC of charge collected in the injector BTS (booster-to-storage-ring) loss monitor per picocoulomb of loss have been measured, depending on the loss location. These results have been used to predict that the storage ring loss monitor leakage current limit of 10 pA per cable should allow detection of losses resulting in beam lifetimes of 100 hours or less with 100 mA stored beam. Significant DC bias levels associated with the presence of stored beam have been observed. These large bias levels are most likely caused by the loss monitor responding to hard x-ray synchrotron radiation. No such response to synchrotron radiation was observed during earlier tests at SSRL. However, the loss monitor response to average stored beam current in APS has provided a reasonable alternative to the DC current transformer (DCCT) for measuring beam lifetimes

  17. Development of Stripline Kickers for Low Emittance Rings: Application to the Beam Extraction Kicker for CLIC Damping Rings

    CERN Document Server

    AUTHOR|(SzGeCERN)728476; Toral Fernandez, Fernando

    In the framework of the design study of Future Linear Colliders, the Compact Linear Collider (CLIC) aims for electron-positron collisions with high luminosity at a nominal centre-of-mass energy of 3 TeV. To achieve the luminosity requirements, Pre-Damping Rings (PDRs) and Damping Rings (DRs) are required: they reduce the beam emittance before the beam is accelerated in the main linac. Several injection and extraction systems are needed to inject and extract the beam from the PDRs and DRs. The work of this Thesis consists of the design, fabrication and laboratory tests of the first stripline kicker prototype for beam extraction from the CLIC DRs, although the methodology proposed can be extended to stripline kickers for any low emittance ring. The excellent field homogeneity required, as well as a good transmission of the high voltage pulse through the electrodes, has been achieved by choosing a novel electrode shape. With this new geometry, it has been possible to benefit from all the advantages that the most...

  18. Higher-order paraxial theory of the propagation of ring rippled laser beam in plasma: Relativistic ponderomotive regime

    International Nuclear Information System (INIS)

    Purohit, Gunjan; Rawat, Priyanka; Chauhan, Prashant; Mahmoud, Saleh T.

    2015-01-01

    This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled laser beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate

  19. Numerical analysis on seismic behavior of reinforced concrete beam to concrete filled steel tubular column connections with ring-beam

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yi., E-mail: zhaoyi091218@163.com [School of Civil and Architectural Engineering, Zhongyuan University of Technology,Zhengzhou 450000 (China); Xu, Li. Hua. [School of Civil Engineering, Wuhan University, No.8, Donghu Road, WuHan 430072 (China)

    2016-06-08

    This paper presents numerical study of the seismic behavior of reinforced concrete beam to concrete filled steel tube column connections with ring-beam. The material stress-strain relations, element type and boundary condition are selected, which are consistent with actual situation. Then the seismic behavior of this type of joint are researched by ABAQUS, and finite element analyses are conducted under cyclic loading. Its parameters are discussed including thickness of steel tubular column wall, sectional dimension of the ring-beam and strength of the core concrete. The results show that the ultimate capacity of the connections is improved with sectional dimension of the ring-beam increased. In the meanwhile, the influence on skeleton curve of the joints is slight of which included thickness of steel tubular column wall and strength of the core concrete.

  20. Transformation dynamics of Ni clusters into NiO rings under electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Knez, Daniel, E-mail: daniel.knez@felmi-zfe.at [Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz (Austria); Thaler, Philipp; Volk, Alexander [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Kothleitner, Gerald [Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz (Austria); Ernst, Wolfgang E. [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Hofer, Ferdinand [Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz (Austria)

    2017-05-15

    We report the transformation of nickel clusters into NiO rings by an electron beam induced nanoscale Kirkendall effect. High-purity nickel clusters consisting of a few thousand atoms have been used as precursors and were synthesized with the superfluid helium droplet technique. Aberration-corrected, analytical scanning transmission electron microscopy was applied to oxidise and simultaneously analyse the nanostructures. The transient dynamics of the oxidation could be documented by time lapse series using high-angle annular dark-field imaging and electron energy-loss spectroscopy. A two-step Cabrera-Mott oxidation mechanism was identified. It was found that water adsorbed adjacent to the clusters acts as oxygen source for the electron beam induced oxidation. The size-dependent oxidation rate was estimated by quantitative EELS measurements combined with molecular dynamics simulations. Our findings could serve to better control sample changes during examination in an electron microscope, and might provide a methodology to generate other metal oxide nanostructures. - Highlights: • Beam induced conversion of Ni clusters into crystalline NiO rings has been observed. • Ni clusters were grown with the superfluid He-droplet technique. • oxidizeSTEM was utilized to investigate and simultaneously oxidize these clusters. • Oxidation dynamics was captured in real-time. • Cluster sizes and the oxidation rate were estimated via EELS and molecular dynamics.

  1. Development of capacitive beam position, beam current and Schottky-signal monitors for the Cryogenic Storage Ring (CSR)

    International Nuclear Information System (INIS)

    Laux, Felix

    2011-01-01

    In this thesis novel techniques based on capacitive pickups for the determination of the beam current, the beam position and the Schottky-signal in storage rings have been developed. Beam current measurements at the heavy ion storage ring TSR with a capacitive pickup have been found in very good agreement with the theory. Using this device the accurate measurement of beam currents at the TSR far below 1 μA is now possible. This method will also be used at the Cryogenic Storage Ring (CSR) at which beam currents in the range of 1 nA-1 μA are expected. For the first time, position measurements with a resonant amplifier system for capacitive pickups have been examined at the TSR for later use of this technique in the CSR. With this method an increased signal-to-noise ratio can be achieved using a parallel inductance. A comparison with measurements using the rest gas beam profile monitor has shown very good agreement even at very low intensities. Experiments with the cryo-capable electronics for the CSR beam position monitors have shown an achievable quality factor of Q=500, resulting in the prospect of precise position measurements at the CSR even at very low beam currents. The CSR Schottky-Pickup will also be equipped with a resonant amplifier system with a comparable quality factor. An estimation of the signal-to-noise ratio suggests a detection limit of a few protons. (orig.)

  2. Studies of Beam Dynamics in Cooler Rings

    International Nuclear Information System (INIS)

    Dietrich, J.; Stein, J.; Meshkov, I.; Sidorin, A.; Smirnov, A.

    2006-01-01

    This report describes the numerical simulation of the crystalline proton beam formation in COSY using BETACOOL code. The study includes the description of experimental results at NAP-M storage ring where the large reduction of the momentum spread was observed for first time. The present simulation shows that this behavior of proton beam can not be explained as ordered state of protons. The numerical simulation of crystalline proton beams was done for COSY parameters. The number of protons when the ordering state can be observed is limited by value 106 particles and momentum spread less then 10-6. Experimental results for the attempt to achieve of ordered state of proton beam for COSY is presented. This work is supported by RFBR grant no. 05-02-16320 and INTAS grant no. 03-54-5584

  3. Beam Dynamics and Beam Losses - Circular Machines

    CERN Document Server

    Kain, V

    2016-01-01

    A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.

  4. Beam-based alignment at the KEK-ATF damping ring

    International Nuclear Information System (INIS)

    Woodley, Mark D.; Nelson, Janice; Ross, Marc; Turner, James; Wolski, A.; Kubo, Kiyoshi

    2004-01-01

    The damping rings of a future linear collider will have demanding alignment and stability requirements in order to achieve the low vertical emittance necessary for high luminosity. The Accelerator Test Facility (ATF) at KEK has successfully demonstrated the vertical emittance below 5 pm that is specified for the GLC/NLC Main Damping Rings. One contribution to this accomplishment has been the use of Beam Based Alignment (BBA) techniques. The mode of operation of the ATF presents particular challenges for BBA, and we describe here how we have deduced the offsets of the BPMs with respect to the quadrupoles. We also discuss a technique that allows for direct measurements of the beam-to-quad offsets

  5. Beam profile measurement with flying wires at the Fermilab Recycler Ring

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Pishchalnikov, Yu.; Krider, J.; Hu, M.; Lorman, E.; Marchionni, A.; Pordes, S.; Wilson, P.; Zagel, J.; /Fermilab

    2005-05-01

    Flying wires were installed at the Fermilab Recycler Ring for transverse beam profile measurement for both proton and antiproton beams. The following note describes the system configuration, calibration and resolution of the flying wire system, interactions between the wires and the beam, as well as analysis of the transverse beam profile in the presence of a stochastic cooling system.

  6. Beam profile measurement with flying wires at the Fermilab Recycler Ring

    International Nuclear Information System (INIS)

    Carcagno, R.; Pishchalnikov, Yu.; Krider, J.; Hu, M.; Lorman, E.; Marchionni, A.; Pordes, S.; Wilson, P.; Zagel, J.

    2005-01-01

    Flying wires were installed at the Fermilab Recycler Ring for transverse beam profile measurement for both proton and antiproton beams. The following note describes the system configuration, calibration and resolution of the flying wire system, interactions between the wires and the beam, as well as analysis of the transverse beam profile in the presence of a stochastic cooling system

  7. Measuring proton beam thermal noises on the NAP-M storage ring

    International Nuclear Information System (INIS)

    Dement'ev, E.N.; Dikanskij, N.S.; Medvedko, A.S.; Parkhomchuk, V.V.; Pestrikov, D.V.

    1980-01-01

    The data on experimental investigation of thermal noises of an asimuthally homogeneous proton beam on the NAP-M storage ring are given. The noise spectra are measured at the 5th and 8th harmonics of the ciculation frequency using pick-up electrodes. The dependencies of the noise power on the proton current for noncooled and cooled beams are presented. It is shown that as a result of electron cooling the noise power decreases by two orders and in the 0.5-10 μA current range the noise power of the cooled beam does not depend on the proton current. The noise power of the noncooled beam linearly increases with the proton current. It is also shown that with the modulation growth the noise power increases. The conclusions are made that while analyzing noises of the continuous beam in the storage ring the changes of the noise spectra due to particle interaction in the beam should be taken into account

  8. Beam vacuum system of Brookhaven's muon storage ring

    International Nuclear Information System (INIS)

    Hseuth, H.C.; Snydstrup, L.; Mapes, M.

    1995-01-01

    A storage ring with a circumference of 45 m is being built at Brookhaven to measure the g-2 value of the muons to an accuracy of 0.35 ppm.. The beam vacuum system of the storage ring will operate at 10 -7 Torr and has to be completely non-magnetic. It consists of twelve sector chambers. The chambers are constructed of aluminum and are approximately 3.5 m in length with a rectangular cross-section of 16.5 cm high by 45 cm at the widest point. The design features, fabrication techniques and cleaning methods for these chambers are described. The beam vacuum system will be pumped by forty eight non-magnetic distributed ion pumps with a total pumping speed of over 2000 ell/sec. Monte Carlo simulations of the pressure distribution in the muon storage region are presented

  9. Beam-beam effects in high energy e+e- storage rings: resonant amplification of vertical dimensions for flat beams

    International Nuclear Information System (INIS)

    Bambade, P.

    1984-06-01

    In this thesis, we present a phenomenological study of the beam-beam effect in e + e - storage rings. We are in particular interested in the blow-up of the vertical dimension observed in this kind of accelerator. A detailed analysis of the electromagnetic field generated by the very flat bunches stored, and seen by the counter-rotating particles shows that two-dimensional non-linear resonances, which couple vertical and horizontal betatron oscillations, play a very important role. Moreover, the ''weak beam-strong beam'' approximation holds rather well in the case of very flat bunches. Perturbative analysis enables us to predict the effects from the strongest coupling resonance: 20sub(x)-20sub(y) = integer. We find that mainly the tails of the vertical distribution are affected, and we give a criterion concerning the optimal distance to this resonance in the case of a storage ring such as LEP. Finally, the results and in particular the validity of the single resonance approximation are checked through a numerical simulation [fr

  10. BEAM EXTRACTION FROM THE RECYCLER RING TO P1 LINE AT FERMILAB

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, M. [Fermilab; Capista, D. [Fermilab; Adams, P. [Fermilab; Morris, D. [Fermilab; Yang, M. J. [Fermilab; Hazewood, K. [Fermilab

    2016-10-03

    The transfer line for beam extraction from the Recycler ring to P1 line provides a way to deliver 8 GeV kinetic energy protons from the Booster to the Delivery ring, via the Recycler, using existing beam transport lines, and without the need for new civil construction. It was designed in 2012. The kicker magnets at RR520 and the lambertson magnet at RR522 in the RR were installed in 2014 Summer Shutdown, the elements of RR to P1 Stub (permanent quads, trim quads, correctors, BPMs, the toroid at 703 and vertical bending dipole at V703 (ADCW) were installed in 2015 Summer Shutdown. On Tuesday, June 21, 2016, beam line from the Recycler Ring to P1 line was commissioned. The detailed results will be presented in this report.

  11. Luminosity Loss due to Beam Distortion and the Beam-Beam Instability

    CERN Document Server

    Wu, Juhao; Raubenheimer, Tor O; Seryi, Andrei; Sramek, Christopher K

    2005-01-01

    In a linear collider, sources of emittance dilution such as transverse wakefields or dispersive errors will couple the vertical phase space to the longitudinal position within the beam (the so-called ‘banana effect'). When the Intersection Point (IP) disruption parameter is large, these beam distortions will be amplified by a single bunch kink instability which will lead to luminosity loss. We study this phenomena both analytically using linear theory and via numerical simulation. In particular, we examine the dependence of the luminosity loss on the wavelength of the beam distortions and the disruption parameter. This analysis may prove useful when optimizing the vertical disruption parameter for luminosity operation with given beam distortions.

  12. Laser cooling and ion beam diagnosis of relativistic ions in a storage ring

    International Nuclear Information System (INIS)

    Schroeder, S.

    1990-08-01

    Particle accelerator and storage ring technology has reached an advanced state, so that different heavy ion storage rings are coming into operation by now, capable of storing even fully stripped ions up to U 92+ . The main purpose of these machines are the accumulation of ions and the ability of improving the beam quality, that is the phase space density of the stored beams. This beam cooling is done successfully by the well established stochastic and electron cooling techniques. A new cooling method, the laser cooling, is taken over from atomic beam and ion trap experiments, where it has yielded extremely low temperatures of atomic samples. As a canditate at storage rings 7 Li + ions are stored in the Heidelberg TSR at 13.3 MeV. The ion beam properties of the metastable fraction like momentum spread, storage time and the influence of residual gas scattering are investigated by colinear laser spectroscopy in the experimental section of the TSR. An optical pumping experiment using two dye laser systems yields information about ion kinematics and velocity mixing processes in the ring. Lifetimes in the order of 100 ms for velocity classes marked in this way show that laser cooling can be applied to the stored 7 Li + beam. In an experimental situation of two strong counterpropagating laser beams, both tuned near resonance, a dramatic reduction of the ion beam momentum spread is observed. With a special geometrical control of laser and ion beam the longitudinal beam temperature is reduced from 260 K to at least 3 K with very high collection efficiency. (orig./HSI) [de

  13. Severe signal loss in diamond beam loss monitors in high particle rate environments by charge trapping in radiation-induced defects

    CERN Document Server

    Kassel, Florian; Dabrowski, Anne; de Boer, Wim

    2016-01-01

    The beam condition monitoring leakage (BCML) system is a beam monitoring device in the compact muon solenoid (CMS) experiment at the large hadron collider (LHC). As detectors 32 poly-crystalline (pCVD) diamond sensors are positioned in rings around the beam pipe. Here, high particle rates occur from the colliding beams scattering particles outside the beam pipe. These particles cause defects, which act as traps for the ionization, thus reducing the charge collection efficiency (CCE). However, the loss in CCE was much more severe than expected from low rate laboratory measurements and simulations, especially in single-crystalline (sCVD) diamonds, which have a low initial concentration of defects. The reason why in real experiments the CCE is much worse than in laboratory experiments is related to the ionization rate. At high particle rates the trapping rate of the ionization is so high compared with the detrapping rate, that space charge builds up. This space charge reduces locally the internal electric field,...

  14. Rotational loss of a ring-shaped flywheel supported by high Tc superconducting levitation

    International Nuclear Information System (INIS)

    Teshima, Hidekazu; Tawara, Taichi; Shimada, Ryuichi.

    1997-01-01

    This paper describes the experimental results for the rotational loss of a ring-shaped flywheel supported by high T c superconducting levitation. Superconducting levitation is appropriate for rotating a ring-shaped flywheel which has neither shaft nor hub because it is a non-contact and automatically stable levitation without any control systems. The rotational loss has been investigated using a small-scaled experimental machine consisting of 16 bulk superconductors 46 mm in diameter and a ring-shaped flywheel about 300 mm in diameter. The rotational loss decreased as the levitation gap height increased. In low-speed rotational regions, the rotational loss was in proportion to the rotation speed and depended more on the levitation gap. In high-speed rotational regions, the rotational loss was in proportion to the third power of the rotation speed and depended less on the levitation gap. The cubic rotational loss in He was reduced to one-fifth of that in air. The magnetic field pinned in bulk superconductors induces a loss in the materials composing the ring-shaped flywheel. The rotational loss of a ring-shaped flywheel supported by superconducting levitation can be reduced by improving the uniformity of the magnetic fields along the ring, enlargement of the bulk superconductor(s), and densely arranging the bulk superconductors. (author)

  15. ACCELERATORS: Beam based alignment of the SSRF storage ring

    Science.gov (United States)

    Zhang, Man-Zhou; Li, Hao-Hu; Jiang, Bo-Cheng; Liu, Gui-Min; Li, De-Ming

    2009-04-01

    There are 140 beam position monitors (BPMs) in the Shanghai Synchrotron Radiation Facility (SSRF) storage ring used for measuring the closed orbit. As the BPM pickup electrodes are assembled directly on the vacuum chamber, it is important to calibrate the electrical center offset of the BPM to an adjacent quadrupole magnetic center. A beam based alignment (BBA) method which varies individual quadrupole magnet strength and observes its effects on the orbit is used to measure the BPM offsets in both the horizontal and vertical planes. It is a completely automated technique with various data processing methods. There are several parameters such as the strength change of the correctors and the quadrupoles which should be chosen carefully in real measurement. After several rounds of BBA measurement and closed orbit correction, these offsets are set to an accuracy better than 10 μm. In this paper we present the method of beam based calibration of BPMs, the experimental results of the SSRF storage ring, and the error analysis.

  16. Cooling rings for TeV colliders

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1985-02-01

    Consideration is given to quantum fluctuations, intra beam scattering, cooling rates, and ring acceptance in order to see if one can obtain a normalized emittance of 10 -8 in any plausible cooling ring. It is concluded that only a small gain is obtained by varying the partition functions, but a very significant gain is made by using higher bending fields. The ring is found to get bigger if the magnet apertures are increased. The ring diameter is found to increase if the momentum spread of the beam is reduced. It is shown that the power can be reduced by allowing a high beamstrahlung energy loss resulting in higher current in the cooling ring. Parameters are also given for a 10 -7 m radian emittance case

  17. Transverse beam stability measurement and analysis for the SNS accumulator ring

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zaipeng [University of Wisconsin-Madison, Madison, WI 53706-1691 (United States); Deibele, Craig, E-mail: deibele@ornl.gov [Oak Ridge National Laboratory, PO BOX 2008 MS6483, Oak Ridge, TN 37831-6461 (United States); Schulte, Michael J.; Hu, Yu-Hen [University of Wisconsin-Madison, Madison, WI 53706-1691 (United States)

    2015-07-11

    A field-programmable gate array (FPGA)-based transverse feedback damper system was implemented in the Spallation Neutron Source (SNS) accumulator ring with the intention to stabilize the electron–proton (e–p) instability in the frequency range of 1–300 MHz. The transverse feedback damper could also be used as a diagnostic tool by measuring the beam transfer function (BTF). An analysis of the BTF measurements provides the stability diagram for the production beam at SNS. This paper describes the feedback damper system and its setup as the BTF diagnostic tool. Experimental BTF results are presented and beam stability is analyzed by use of the BTF measurements for the SNS accumulator ring.

  18. Transverse beam stability measurement and analysis for the SNS accumulator ring

    International Nuclear Information System (INIS)

    Xie, Zaipeng; Deibele, Craig; Schulte, Michael J.; Hu, Yu-Hen

    2015-01-01

    A field-programmable gate array (FPGA)-based transverse feedback damper system was implemented in the Spallation Neutron Source (SNS) accumulator ring with the intention to stabilize the electron–proton (e–p) instability in the frequency range of 1–300 MHz. The transverse feedback damper could also be used as a diagnostic tool by measuring the beam transfer function (BTF). An analysis of the BTF measurements provides the stability diagram for the production beam at SNS. This paper describes the feedback damper system and its setup as the BTF diagnostic tool. Experimental BTF results are presented and beam stability is analyzed by use of the BTF measurements for the SNS accumulator ring

  19. Cryogenic beam loss monitoring for the LHC

    International Nuclear Information System (INIS)

    Kurfürst, C.

    2013-01-01

    A Beam Loss Monitoring (BLM) system was installed on the outside surface of the LHC magnet cryostats to protect the accelerator equipment from beam losses. The protection is achieved by extracting the beam from the ring in case thresholds imposed on measured radiation levels are exceeded. Close to the interaction regions of the LHC, the present BLM system is sensitive to particle showers generated in the interaction region of the two beams. In the future, with beams of higher energy and brightness resulting in higher luminosity, distinguishing between these interaction products and possible quench-provoking beam losses from the primary proton beams will be challenging. The particle showers measured by the present BLM configuration are partly shielded by the cryostat and the iron yoke of the magnets. The system can hence be optimised by locating beam loss monitors as close as possible to the protected element, i. e. the superconducting coils, inside the cold mass of the magnets in superfluid helium at 1.9 K. The advantage is that the dose measured by the Cryogenic Beam Loss Monitor (CryoBLM) would more precisely correspond to the dose deposited in the superconducting coil. The main challenges of this placement are the low temperature of 1.9 K and the integrated dose of 2 MGy in 20 years. Furthermore the CryoBLM should work in a magnetic field of 2 T and at a pressure of 1.1 bar, withstanding a fast pressure rise up to 20 bar in case of a magnet quench. The detector response should be linear between 0.1 and 10 mGy/s and faster than 1 ms. Once the detectors are installed in the LHC magnets, no access will be possible. Hence the detectors need to be available, reliable and stable for 20 years. Following intense research it became clear that no existing technology was proven to work in such conditions. The candidates under investigation in this work are diamond and silicon detectors and an ionisation chamber, using the liquid helium itself as particle detection medium

  20. Iterative image-domain ring artifact removal in cone-beam CT

    Science.gov (United States)

    Liang, Xiaokun; Zhang, Zhicheng; Niu, Tianye; Yu, Shaode; Wu, Shibin; Li, Zhicheng; Zhang, Huailing; Xie, Yaoqin

    2017-07-01

    Ring artifacts in cone beam computed tomography (CBCT) images are caused by pixel gain variations using flat-panel detectors, and may lead to structured non-uniformities and deterioration of image quality. The purpose of this study is to propose a method of general ring artifact removal in CBCT images. This method is based on the polar coordinate system, where the ring artifacts manifest as stripe artifacts. Using relative total variation, the CBCT images are first smoothed to generate template images with fewer image details and ring artifacts. By subtracting the template images from the CBCT images, residual images with image details and ring artifacts are generated. As the ring artifact manifests as a stripe artifact in a polar coordinate system, the artifact image can be extracted by mean value from the residual image; the image details are generated by subtracting the artifact image from the residual image. Finally, the image details are compensated to the template image to generate the corrected images. The proposed framework is iterated until the differences in the extracted ring artifacts are minimized. We use a 3D Shepp-Logan phantom, Catphan©504 phantom, uniform acrylic cylinder, and images from a head patient to evaluate the proposed method. In the experiments using simulated data, the spatial uniformity is increased by 1.68 times and the structural similarity index is increased from 87.12% to 95.50% using the proposed method. In the experiment using clinical data, our method shows high efficiency in ring artifact removal while preserving the image structure and detail. The iterative approach we propose for ring artifact removal in cone-beam CT is practical and attractive for CBCT guided radiation therapy.

  1. Radioactive Ions Production Ring for Beta-Beams

    CERN Document Server

    Benedetto, E; Wehner, J

    2010-01-01

    Within the FP7 EUROnu program, Work Package 4 addresses the issues of production and acceleration of 8Li and 8B isotopes through the Beta-Beam complex, for the production of electron-neutrino. One of the major critical issues is the production of a high enougth ion ßux, to fulÞll the requirements for physics. In alternative to the direct ISOL production method, a new ap- proach is proposed in [1]. The idea is to use a compact ring for Litium ions at 25 MeV and an internal He or D target, in which the radioactive-isotopes production takes place. The beam is expected to survive for several thousands of turns, therefore cooling in 6D is required and, according this scheme, the ionization cooling provided by the target itself and a suitable RF system would be sufÞcient. We present some preliminary work on the Production ring lat- tice design and cooling issues, for the 7Li ions, and propose plans for future studies, within the EUROnu program.

  2. Beam monitors and transverse feedback system of TRISTAN Main Ring

    International Nuclear Information System (INIS)

    Ieiri, T.; Ishii, H.; Kishiro, J.; Mizumachi, Y.; Mori, K.; Nakajima, K.; Ogata, A.; Shintake, T.; Tejima, M.

    1987-01-01

    The construction of 30 GeV TRISTAN Main Ring (MR) started in 1983 soon after the commissioning of 8 GeV Accumulation Ring (AR). The authors prepared 392 position monitors, 6 synchrotron radiation monitors, 9 screen monitors, 2 DCCT's, 3 scrapers, 12 bunch monitors, transverse feedback systems for two beams and DC separators. Since the required monitoring devices of AR and MR are almost the same, the experiences in AR were very useful in the design of MR monitors. However, machine parameters of two rings are very different and the authors had to review the performance of each item. From the monitor point of view the most important is the difference of revolution frequency; 794.6 kHz for AR and 99.33 kHz for MR. This means that average beam current of MR is 1/8 as small as AR current with the same bunch number and intensity. Therefore, the sensitivity of each monitor must be better in MR. The second difference is that MR should be used as a collider from the beginning. Therefore they must prepare for multi-beam and multi-bunch operation

  3. Beam losses in heavy ion drivers

    CERN Document Server

    Mustafin, E R; Hofmann, I; Spiller, P J

    2002-01-01

    While beam loss issues have hardly been considered in detail for heavy ion fusion scenarios, recent heavy ion machine developments in different labs (European Organization for Nuclear Research (CERN), Gesellschaft fur Schwerionenforschung (GSI), Institute for Theoretical and Experimental Physics (ITEP), Relativistic Heavy-Ion Collider (RHIC)) have shown the great importance of beam current limitations due to ion losses. Two aspects of beam losses in heavy ion accelerators are theoretically considered: (1) secondary neutron production due to lost ions, and (2) vacuum pressure instability due to charge exchange losses. Calculations are compared and found to be in good agreement with measured data. The application to a Heavy-Ion Driven Inertial Fusion (HIDIF) scenario is discussed. 12 Refs.

  4. Beam scraping problems in storage rings: the black cloud

    International Nuclear Information System (INIS)

    Jones, L.W.

    1980-01-01

    The heavy ion, multi-GeV drivers for inertial confinement fusion are being designed to produce beams of an energy, power, and specific ionization sufficient to raise matter to thermonuclear temperatures. The magnitude of these parameters is so far beyond current experience that some problems raised warrant careful scrutiny. In particular, the consequence of some fraction of the beam lost on storage ring inflection septa, extraction channels, and beam-defining collimators seems potentially very serious. Unless carefully contained, a beam halo can easily vaporize the best refractory materials, and the resulting vapor cloud will interact destructively within microseconds with the following beam. The limits on beam flux which may be so lost for particular examples are orders of magnitude below current experience

  5. The beam slow extraction from a magnetic ring of Moscow meson facility

    International Nuclear Information System (INIS)

    Gusev, O.A.; Malitsky, N.D.; Severgin, Yu.P.; Titov, V.A.; Shukeilo, I.A.; Aseev, V.N.; Grachev, M.I.; Lobashev, V.M.; Ostroumov, P.N.; Ponomaryov, O.V.

    1990-01-01

    The beam slow extraction from the circular accelerators or stretcher rings is generally realized by the resonant excitation of betratron oscillations. A precise betatron frequency control is proved to be quite necessary for high-efficient slow ejection. The Coulomb field turns out to have a significant influence upon the slow extraction from the high-current medium energy proton storage rings. It prevents resonant excitation at a reasonable rate and reduces the ejection efficiency. The proton storage ring of Moscow meson facility is an example of a stretcher with a noticeable beam space charge. The detailed investigation of the resonant ejection, having been performed for our stretcher, resulted in the conclusion that extracted beam average current should be limited by the value of 50 mA, which is only 10% of the linac design current. The search for the alternative version to the resonant ejection made us to analyze in details and to develop an old-fashioned method, based on the radial betatron oscillation excitation while the beam is being gradually shifted onto the thin target. (author) 5 refs., 4 figs

  6. RHIC beam loss monitor system design

    International Nuclear Information System (INIS)

    Witkover, R.; Zitvogel, E.; Michnoff, R.

    1997-01-01

    The Beam Loss Monitor (BLM) System is designed to prevent the quenching of RHIC magnets due to beam loss, provide quantitative loss data, and the loss history in the event of a beam abort. The system uses 400 ion chambers of a modified Tevatron design. To satisfy fast (single turn) and slow (100 msec) loss beam criteria and provide sensitivity for studies measurements, a range of over 8 decades is needed. An RC pre-integrator reduces the dynamic range for a low current amplifier. This is digitized for data logging. The output is also applied to an analog multiplier which compensates the energy dependence, extending the range of the abort comparators. High and low pass filters separate the signal to dual comparators with independent programmable trip levels. Up to 64 channels, on 8 VME boards, are controlled by a micro-controller based VME module, decoupling it from the front-end computer (FEC) for real-time operation. Results with the detectors in the RHIC Sextant Test and the electronics in the AGS-to-RHIC (AtR) transfer line will be presented

  7. Simulations of Bunch Precompression at High Currents in the SLC Damping Rings

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Minty, M.G.; Chao, A.W.

    2011-01-01

    In the Stanford Linear Collider (SLC) each beam, after leaving a damping ring, is compressed in the Ring-to-Linac (RTL) transfer line before entering the linear accelerator. At a bunch population of 4.0 x 10 10 particles, due to the limited energy acceptance of the RTL, approximately 15% of the beam has normally been lost. During the 1996 run, however, to eliminate this loss the bunch was partially precompressed in the damping ring, just before extraction; the beam loss in the RTL was reduced to almost zero. The operation and performance of precompression are presented by Minty et al. (1999). Also given is an analysis which, however, does not include the effects of the longitudinal wakefield on the beam dynamics. In this report we extend that analysis to include these effects.

  8. Commissioning results of the APS storage ring rf beam position monitors

    International Nuclear Information System (INIS)

    Kahana, E.; Chung, Y.

    1996-01-01

    The commissioning of the 360 rf beam position monitors (BPMs) in the Advanced Photon Source (APS) storage ring (SR) is nearing completion. After using the single-turn capability of the BPM electronics in the early ring commissioning phase, resolution measurements versus current and bandwidth were successfully performed. In the standard Sr vacuum chamber geometry, the resolution was measured with beam as 0.16 micromA/√(Hz). For the insertion device vacuum chamber geometry, the resolution was measured to be 0.1 micromA/√(Hz). Since the photon beam stability requirement for the users is only 4.5 microns rms in the vertical direction, investigations of rf BPM offset versus current and bunch pattern have also been initiated. Both single bunch and multibunch beam patterns with varying intensity were used to determine offset stability for both the global and the local orbit feedback applications

  9. Beam catcher/dump

    International Nuclear Information System (INIS)

    Makdisi, Y.; Rodger, E.; Glenn, J.W.; Brown, K.

    1985-01-01

    A simple, low cost aperture limiting device with an absorber block has been developed and installed in the AGS ring at Brookhaven National Laboratory. The device intercepts injection tails, transition losses, and the inward spiraling beam of an aborted acceleration or extraction cycle. The resultant consolidation of losses at one point reduces activation of components around the ring and radiation exposure to personnel. 3 refs., 6 figs

  10. Colliding or co-rotating ion beams in storage rings for EDM search

    International Nuclear Information System (INIS)

    Koop, I A

    2015-01-01

    A new approach to search for and measure the electric dipole moment (EDM) of the proton, deuteron and some other light nuclei is presented. The idea of the method is to store two ion beams, circulating with different velocities, in a storage ring with crossed electric and magnetic guiding fields. One beam is polarized and its EDM is measured using the so-called ‘frozen spin’ method. The second beam, which is unpolarized, is used as a co-magnetometer, sensitive to the radial component of the ring’s magnetic field. The particle’s magnetic dipole moment (MDM) couples to the radial magnetic field and mimics the EDM signal. Measuring the relative vertical orbit separation of the two beams, caused by the presence of the radial magnetic field, one can control the unwanted MDM spin precession. Examples of the parameters for EDM storage rings for protons and other species of ions are presented. The use of crossed electric and magnetic fields helps to reduce the size of the ring by a factor of 10–20. We show that the bending radius of such an EDM storage ring could be about 2–3 m. Finally, a new method of increasing the spin coherence time, the so-called ‘spin wheel’, is proposed and its applicability to the EDM search is discussed. (paper)

  11. A Versatile Beam Loss Monitoring System for CLIC

    CERN Document Server

    Kastriotou, Maria; Farabolini, Wilfrid; Holzer, Eva Barbara; Nebot Del Busto, Eduardo; Tecker, Frank; Welsch, Carsten

    2016-01-01

    The design of a potential CLIC beam loss monitoring (BLM) system presents multiple challenges. To successfully cover the 48 km of beamline, ionisation chambers and optical fibre BLMs are under investigation. The former fulfils all CLIC requirements but would need more than 40000 monitors to protect the whole facility. For the latter, the capability of reconstructing the original loss position with a multi-bunch beam pulse and multiple loss locations still needs to be quantified. Two main sources of background for beam loss measurements are identified for CLIC. The two-beam accelerator scheme introduces so-called crosstalk, i.e. detection of losses originating in one beam line by the monitors protecting the other. Moreover, electrons emitted from the inner surface of RF cavities and boosted by the high RF gradients may produce signals in neighbouring BLMs, limiting their ability to detect real beam losses. This contribution presents the results of dedicated experiments performed in the CLIC Test Facility to qu...

  12. Mitigation of numerical noise for beam loss simulations

    CERN Document Server

    Kesting, Frederik

    2017-01-01

    Numerical noise emerges in self-consistent simulations of charged particles, and its mitigation is investigated since the first numerical studies in plasma physics. In accelerator physics, recent studies find an artificial diffusion of the particle beam due to numerical noise in particle-in-cell tracking, which is of particular importance for high intensity machines with a long storage time, as the SIS100 at FAIR or in context of the LIU upgrade at CERN. In beam loss simulations for these projects artificial effects must be distinguished from physical beam loss. Therefore, it is important to relate artificial diffusion to artificial beam loss, and to choose simulation parameters such that physical beam loss is well resolved. As a practical tool, we therefore suggest a scaling law to find optimal simulation parameters for a given maximum percentage of acceptable artificial beam loss.

  13. Low-emittance tuning of storage rings using normal mode beam position monitor calibration

    Science.gov (United States)

    Wolski, A.; Rubin, D.; Sagan, D.; Shanks, J.

    2011-07-01

    We describe a new technique for low-emittance tuning of electron and positron storage rings. This technique is based on calibration of the beam position monitors (BPMs) using excitation of the normal modes of the beam motion, and has benefits over conventional methods. It is relatively fast and straightforward to apply, it can be as easily applied to a large ring as to a small ring, and the tuning for low emittance becomes completely insensitive to BPM gain and alignment errors that can be difficult to determine accurately. We discuss the theory behind the technique, present some simulation results illustrating that it is highly effective and robust for low-emittance tuning, and describe the results of some initial experimental tests on the CesrTA storage ring.

  14. Developments at an electrostatic cryogenic storage ring for electron-cooled keV energy ion beams

    International Nuclear Information System (INIS)

    Vogel, Stephen

    2016-01-01

    This work is devoted to final setup activities and the commissioning of an electrostatic cryogenic storage ring (CSR) at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg. The first cryogenic operation of CSR in 2015 has been documented and characterized using a set of non-destructive beam diagnostic tools developed within this work. These are (1) the current pick-up system for the determination of the current of the stored ion beam and its velocity, (2) a position pick-up system for measuring the transverse position of the ion beam center at six symmetric locations of the storage ring circumference, and (3) a Schottky pick-up system for the monitoring of coasting ion beams. Despite the requirements imposed by the cryogenic operation, the developed diagnostic system demonstrated its full functionality. First characterizations of the storage ring properties and the performance of the diagnostic system are presented. Based on previous work, an electron cooling system for CSR has been developed and largely realized. With the implementation into CSR in 2016, the electron cooler will enhance the storage ring into a unique experimental facility for electron-ion collision studies. With this CSR is on the track to become the first cryogenic storage ring featuring actively cooled ion beams.

  15. Electron cooling of a bunched ion beam in a storage ring

    Science.gov (United States)

    Zhao, He; Mao, Lijun; Yang, Jiancheng; Xia, Jiawen; Yang, Xiaodong; Li, Jie; Tang, Meitang; Shen, Guodong; Ma, Xiaoming; Wu, Bo; Wang, Geng; Ruan, Shuang; Wang, Kedong; Dong, Ziqiang

    2018-02-01

    A combination of electron cooling and rf system is an effective method to compress the beam bunch length in storage rings. A simulation code based on multiparticle tracking was developed to calculate the bunched ion beam cooling process, in which the electron cooling, intrabeam scattering (IBS), ion beam space-charge field, transverse and synchrotron motion are considered. Meanwhile, bunched ion beam cooling experiments have been carried out in the main cooling storage ring (CSRm) of the Heavy Ion Research Facility in Lanzhou, to investigate the minimum bunch length obtained by the cooling method, and study the dependence of the minimum bunch length on beam and machine parameters. The experiments show comparable results to those from simulation. Based on these simulations and experiments, we established an analytical model to describe the limitation of the bunch length of the cooled ion beam. It is observed that the IBS effect is dominant for low intensity beams, and the space-charge effect is much more important for high intensity beams. Moreover, the particles will not be bunched for much higher intensity beam. The experimental results in CSRm show a good agreement with the analytical model in the IBS dominated regime. The simulation work offers us comparable results to those from the analytical model both in IBS dominated and space-charge dominated regimes.

  16. Beam Collimation Studies for the ILC Positron Source

    Energy Technology Data Exchange (ETDEWEB)

    Drozhdin, A.; /Fermilab; Nosochkov, Y.; Zhou, F.; /SLAC

    2008-06-26

    Results of the collimation studies for the ILC positron source beam line are presented. The calculations of primary positron beam loss are done using the ELEGANT code. The secondary positron and electron beam loss, the synchrotron radiation along the beam line and the bremsstrahlung radiation in the collimators are simulated using the STRUCT code. The first part of the collimation system, located right after the positron source target (0.125 GeV), is used for protection of the RF Linac sections from heating and radiation. The second part of the system is used for final collimation before the beam injection into the Damping Ring at 5 GeV. The calculated power loss in the collimation region is within 100 W/m, with the loss in the collimators of 0.2-5 kW. The beam transfer efficiency from the target to the Damping Ring is 13.5%.

  17. Energy dependence of the emittance of damping ring beams

    International Nuclear Information System (INIS)

    Stiening, R.

    1985-01-01

    The energy at which the SLC damping rings are operated was chosen to be 1.21 GeV. At the time that that specification was made, the repetition rate of the SLC was expected to be 180 Hz. It is now anticipated that the repetition rate during the initial year of operation of the SLC will be 120 Hz. The following curves which show the output emittance of the damping rings as a function of input emittance and energy suggest that there is a range of energies over which the rings can be operated without changing the SLC luminosity. It should be noted that in the era of polarized beams, the damping ring energy will be fixed at the design value on account of the spin precession required in the LTR and RTL transport lines. The SLC design output emittance of the damping rings is 3 x 10 -5 radian-meters. Because of space charge disruption and quantum emission downstream of the damping rings, much lower values than the design value may not have a large beneficial effect on the luminosity. 3 figures

  18. Simulations of Bunch Merging in a Beta Beam Decay Ring

    CERN Document Server

    Heinrich, Daniel Christopher; Chance, Antoine

    2011-01-01

    To further study neutrino oscillation properties a Beta Beam facility has been proposed. Beta decaying ions with high kinetic energy are stored in a storage ring ("Decay Ring") with straight sections to create pure focused (anti) electron neutrino beams. However to reach high sensitivity to neutrino oscillation parameters in the experiment the bunched beam intensity and duty cycle in the DR have to be optimized. The first CERN-based scenario, using 6He and 18Ne as neutrino sources, has been studied using a bunch merging RF scheme. Two RF cavities at different frequencies are used to capture newly injected bunches and then merge them into the stored bunches. It was shown that this scheme could satisfy the requirements on intensity and duty cycle set by the experiment. This merging scheme has now been revised with new simulation software providing new results for 6He and 18Ne. Furthermore bunch merging has been studied for the second CERN-based scenario using 8Li and 8B.

  19. Diffraction measurements using the LHC Beam Loss Monitoring System

    Science.gov (United States)

    Kalliokoski, Matti

    2017-03-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider protects the machine from beam induced damage by measuring the absorbed dose rates of beam losses, and by triggering beam dump if the rates increase above the allowed threshold limits. Although the detection time scales are optimized for multi-turn losses, information on fast losses can be recovered from the loss data. In this paper, methods in using the BLM system in diffraction studies are discussed.

  20. Low-emittance tuning of storage rings using normal mode beam position monitor calibration

    Directory of Open Access Journals (Sweden)

    A. Wolski

    2011-07-01

    Full Text Available We describe a new technique for low-emittance tuning of electron and positron storage rings. This technique is based on calibration of the beam position monitors (BPMs using excitation of the normal modes of the beam motion, and has benefits over conventional methods. It is relatively fast and straightforward to apply, it can be as easily applied to a large ring as to a small ring, and the tuning for low emittance becomes completely insensitive to BPM gain and alignment errors that can be difficult to determine accurately. We discuss the theory behind the technique, present some simulation results illustrating that it is highly effective and robust for low-emittance tuning, and describe the results of some initial experimental tests on the CesrTA storage ring.

  1. Beam separation for p-anti p collisions in a single ring in the multibunch mode

    International Nuclear Information System (INIS)

    Berley, D.; Garren, A.A.; Month, M.

    1978-01-01

    A discussion is given of proton-antiproton colliding beam operation in storage rings. Some means of separating the beams at points where no experiment is being performed seems to be an important feature for a p-anti p colliding beam ring. By exciting a betatron oscillation in some appropriate, localized region, one could create a specific collision point while at the same time cause the p and anti p beams to oscillate in opposition so that their orbits meet at only a small number of points, roughly given by twice the tune, 2ν

  2. A Collimation Scheme for Ions Changing Charge State in the LEIR Ring

    CERN Document Server

    Pasternak, Jaroslaw; Carli, Christian; Chanel, Michel; Mahner, Edgar

    2005-01-01

    Avalanche-like pressure rise and an associated decrease of the beam life-time, caused by (i) beam loss due to charge exchange interactions with rest gas molecules and (ii) electron capture from the electron beam of the electron cooler and (iii) ion impact induced outgassing, is a potential limitation for heavy ion accelerators. The vacuum system of the LEIR ring as to be upgraded to reach the dynamical vacuum pressure in the low 10-12 Torr range necessary to reach design performance. A collimation system to intercept lost ions by absorber blocks made of low beam-induced outgassing material will be installed. This paper reviews the collimation scheme and simulations of beam loss patterns around the ring.

  3. TRANSVERSE PHASE SPACE PAINTING FOR SNS ACCUMULATOR RING INJECTION.

    Energy Technology Data Exchange (ETDEWEB)

    BEEBE-WANG,J.; LEE,Y.Y.; RAPARIA,D.; WEI,J.

    1999-03-29

    The result of investigation and comparison of a series of transverse phase space painting schemes for the injection of SNS accumulator ring [1] is reported. In this computer simulation study, the focus is on the creation of closed orbit bumps that give desired distributions at the target. Space charge effects such as tune shift, emittance growth and beam losses are considered. The results of pseudo end-to-end simulations from the injection to the target through the accumulator ring and Ring to Target Beam Transfer (RTBT) system [2] are presented and discussed.

  4. Analysis of fast losses in the LHC with the BLM system

    CERN Document Server

    Nebot, E; Holzer, E; Dehning, B; Nordt, A; Sapinski, M; Emery, J; Zamantzas, C; Effinger, E; Marsili, A; Wenninger, J; Baer, T; Schmidt, R; Yang, Z; Zimmerman, F; Fuster, N

    2011-01-01

    About 3600 Ionization Chambers are located around the LHC ring to detect beam losses that could damage the equipment or quench superconducting magnets. The Beam Loss Monitors (BLMs) integrate the losses in 12 different time intervals (from 40 us to 83.8 s) allowing for different abort thresholds depending on the duration of the loss and the beam energy. The signals are also recorded in a database at 1 Hz for offline analysis. During the 2010 run, a limiting factor in the machine availability were sudden losses appearing around the ring on the ms time scale and detected exclusively by the BLM system. It is believed that such losses originate from dust particles falling into the beam, or being attracted by its strong electromagnetic field. This document describes some of the properties of these ”Unidentified Falling Objects” (UFOs) putting special emphasis on their dependence on beam parameters (energy, intensity, etc). The subsequent modification of the BLM beam abort thresholds for the 2011 run that were ...

  5. Accidental Beam Losses and Protection in the LHC

    Science.gov (United States)

    Schmidt, R.; Working Group On Machine Protection

    2005-06-01

    At top energy (proton momentum 7 TeV/c) with nominal beam parameters, each of the two LHC proton beams has a stored energy of 350 MJ threatening to damage accelerator equipment in case of accidental beam loss. It is essential that the beams are properly extracted onto the dump blocks in case of failure since these are the only elements that can withstand full beam impact. Although the energy stored in the beams at injection (450 GeV/c) is about 15 times smaller compared to top energy, the beams must still be properly extracted in case of large accidental beam losses. Failures must be detected at a sufficiently early stage and initiate a beam dump. Quenches and power converter failures will be detected by monitoring the correct functioning of the hardware systems. In addition, safe operation throughout the cycle requires the use of beam loss monitors, collimators and absorbers. Ideas of detection of fast beam current decay, monitoring of fast beam position changes and monitoring of fast magnet current changes are discussed, to provide the required redundancy for machine protection.

  6. Accidental Beam Losses and Protection in the LHC

    International Nuclear Information System (INIS)

    Schmidt, R.; Wenninger, J.

    2005-01-01

    At top energy (proton momentum 7 TeV/c) with nominal beam parameters, each of the two LHC proton beams has a stored energy of 350 MJ threatening to damage accelerator equipment in case of accidental beam loss. It is essential that the beams are properly extracted onto the dump blocks in case of failure since these are the only elements that can withstand full beam impact. Although the energy stored in the beams at injection (450 GeV/c) is about 15 times smaller compared to top energy, the beams must still be properly extracted in case of large accidental beam losses. Failures must be detected at a sufficiently early stage and initiate a beam dump. Quenches and power converter failures will be detected by monitoring the correct functioning of the hardware systems. In addition, safe operation throughout the cycle requires the use of beam loss monitors, collimators and absorbers. Ideas of detection of fast beam current decay, monitoring of fast beam position changes and monitoring of fast magnet current changes are discussed, to provide the required redundancy for machine protection

  7. Some fundamental aspects of fluctuations and coherence in charged-particle beams in storage rings

    International Nuclear Information System (INIS)

    Chattopadhyay, S.

    1984-01-01

    A conceptual survey and exposition is presented of some fundamental aspects of fluctuations and coherence, as well as the interplay between the two, in coasting charged-particle beams - both continuous and bunched - in storage rings. A detailed study is given of the spectral properties of the incoherent phase-space Schottky fluctuations, their propagation as waves in the beam, and the analytic complex coherent beam electromagnetic response or transfer function. The modification or distortion of these by collective interactions is examined in terms of simple regeneration mechanisms. Collective or coherent forces in the beam-storage-ring system are described by defining suitable impedance functions or propagators, and a brief discussion of the coherent collective modes and their stability is provided, including a general and rigorous description of the Nyquist stability criterion. The nature of the critical fluctuations near an instability threshold is explored. The concept of Landau damping and its connection with phase-mixing within the beam is outlined. The important connection between the incoherent fluctuations and the beam response, namely the Fluctuation-Dissipation relation, is revealed. A brief discussion is given of the information degrees of freedom, and effective temperature of the fluctuation signals. Appendices provide a short resume of some general aspects of various interactions in a charged-particle beam-environment system in a storage ring and a general introduction to kinetic theory as applied to particle beams. (orig.)

  8. Status of PSR [Proton Storage Ring

    International Nuclear Information System (INIS)

    Macek, R.J.

    1989-01-01

    The Los Alamos Proton Storage Ring (PSR) now operates with 35μA at 20-Hz pulse repetition rate. Beam availability during 1988 suffered because of a number of problems with hardware reliability and from narrow operating margins for beam spill in the extraction line. A strong effort is underway to improve reliability with an eventual goal of obtaining beam availability in excess of 75%. Beam losses and the resulting component activation have limited operating currents to their present values. In detailed studies of the problem, loss rates were found to be approximately proportional to the circulating current and can be understood by a detailed accounting of emittance growth in the two-step injection process along with Coulomb scattering of the stored beam during multiple traversals of the injection foil. It is now apparent that the key to reducing losses is in reducing the number of foil traversals. A program of upgrades to reduce losses and improve the operating current is being planned. 8 refs., 16 figs

  9. Rotational loss of a ring-shaped flywheel supported by high T{sub c} superconducting levitation

    Energy Technology Data Exchange (ETDEWEB)

    Teshima, Hidekazu [Nippon Steel Corp., Kawasaki, Kanagawa (Japan). Advanced Materials and Technology Research Labs.; Tawara, Taichi; Shimada, Ryuichi

    1997-08-01

    This paper describes the experimental results for the rotational loss of a ring-shaped flywheel supported by high T{sub c} superconducting levitation. Superconducting levitation is appropriate for rotating a ring-shaped flywheel which has neither shaft nor hub because it is a non-contact and automatically stable levitation without any control systems. The rotational loss has been investigated using a small-scaled experimental machine consisting of 16 bulk superconductors 46 mm in diameter and a ring-shaped flywheel about 300 mm in diameter. The rotational loss decreased as the levitation gap height increased. In low-speed rotational regions, the rotational loss was in proportion to the rotation speed and depended more on the levitation gap. In high-speed rotational regions, the rotational loss was in proportion to the third power of the rotation speed and depended less on the levitation gap. The cubic rotational loss in He was reduced to one-fifth of that in air. The magnetic field pinned in bulk superconductors induces a loss in the materials composing the ring-shaped flywheel. The rotational loss of a ring-shaped flywheel supported by superconducting levitation can be reduced by improving the uniformity of the magnetic fields along the ring, enlargement of the bulk superconductor(s), and densely arranging the bulk superconductors. (author)

  10. Coherent instability of the heavy ion beam in the storage ring

    International Nuclear Information System (INIS)

    Noda, A.

    1981-01-01

    The storage ring as the final part of a driver for heavy ion fusion is required to provide heavy ions (A asymptotically equals 200) with energy of 5 -- 10 GeV and such a high intensity as 1 -- 6 x 10 15 ions/pulse. So as to raise the number of ions which can be accumulated in a ring, singlly charged heavy ion is used for its relatively smaller incoherent space charge force compared with higher charge states. The intensity limit due to incoherent space charge force is 0.7 -- 1.4 x 10 15 ions for U 1 + . Much more severe limits exist due to coherent motion of heavy ion beams (0.8 -- 2 x 10 13 for longitudinal motion and 0.9 -- 1.1 x 10 12 for transverse motion), because of the relatively lower velocity of the accumulated ions. It seems unrealistic to use a lot of rings in order to operate below such intensity limits of the above instability. Therefore the number of the storage rings is constrained within a reasonable value (3 -- 7) and the possibility of compressing the bunches of heavy ion beams before the instability grows fatally large is studied. (author)

  11. Electron Cloud Simulations of a Proton Storage Ring Using Cold Proton Bunches

    International Nuclear Information System (INIS)

    Sato, Y.; Holmes, Jeffrey A.; Lee, S.Y.; Macek, R.

    2008-01-01

    Using the ORBIT code we study the sensitivity of electron cloud properties with respect to different proton beam profiles, the secondary electron yield (SEY) parameter, and the proton loss rate. Our model uses a cold proton bunch to generate primary electrons and electromagnetic field for electron cloud dynamics. We study the dependence of the prompt and swept electron signals vs the bunch charge and the recovery of electron clouds after sweeping on the beam loss rate and the SEY. The simulation results are compared with the experimental data measured at the proton storage ring at the Los Alamos National Laboratory. Our simulations indicate that the fractional proton loss rate in the field-free straight section may be an exponential function of proton beam charge and may also be lower than the averaged fractional proton loss rate over the whole ring.

  12. Investigation of an He-Ne laser generating a beam with a ring-shaped intensity distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, I I; Troitskii, IU V; Iakushkin, S V

    1987-02-01

    The paper examines an He-Ne laser regime with the simultaneous generation of TEM(01) and TEM(10) modes, forming a beam with a ring-shaped intensity distribution with total suppression of the TEM(00) mode. The ratio of the intensity at the ring crest to the intensity at the axis reached a value of 200 and was limited by scattering in the optical components of the resonator. A regime of mutual frequency locking of the TEM(01) and TEM(10) modes was achieved with total spatial coherence of the ring-shaped beam. 14 references.

  13. Beam diagnostics for low energy beams

    Directory of Open Access Journals (Sweden)

    J. Harasimowicz

    2012-12-01

    Full Text Available Low-energetic ion and antimatter beams are very attractive for a number of fundamental studies. The diagnostics of such beams, however, is a challenge due to low currents down to only a few thousands of particles per second and significant fraction of energy loss in matter at keV beam energies. A modular set of particle detectors has been developed to suit the particular beam diagnostic needs of the ultralow-energy storage ring (USR at the future facility for low-energy antiproton and ion research, accommodating very low beam intensities at energies down to 20 keV. The detectors include beam-profile monitors based on scintillating screens and secondary electron emission, sensitive Faraday cups for absolute intensity measurements, and capacitive pickups for beam position monitoring. In this paper, the design of all detectors is presented in detail and results from beam measurements are shown. The resolution limits of all detectors are described and options for further improvement summarized. Whilst initially developed for the USR, the instrumentation described in this paper is also well suited for use in other low-intensity, low-energy accelerators, storage rings, and beam lines.

  14. Coherent instabilities of proton beams in accelerators and storage rings - experimental results, diagnosis and cures

    International Nuclear Information System (INIS)

    Schnell, W.

    1977-01-01

    The author discusses diagnosis and cure of proton beam instabilities in accelerators and storage rings. Coasting beams and bunched beams are treated separately and both transverse and longitudinal instabilities are considered. (B.D.)

  15. AIP Diffraction measurements using the LHC Beam Loss Monitoring System

    CERN Document Server

    Kalliokoski, Matti

    2017-01-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider protects the machine from beam induced damage by measuring the absorbed dose rates of beam losses, and by triggering beam dump if the rates increase above the allowed threshold limits. Although the detection time scales are optimized for multi-turn losses, information on fast losses can be recovered from the loss data. In this paper, methods in using the BLM system in di ff raction studies are discussed.

  16. ORBIT : BEAM DYNAMICS CALCULATIONS FOR HIGH - INTENSITY RINGS

    International Nuclear Information System (INIS)

    HOLMES, J.A.; DANILOV, V.; GALAMBOS, J.; SHISHLO, A.; COUSINEAU, S.; CHOU, W.; MICHELOTTI, L.; OSTIGUY, F.; WEI, J.

    2002-01-01

    We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK the introduction of a treatment magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings

  17. Beam Loss Detection at Radiation Source ELBE

    CERN Document Server

    Michel, P; Schurig, R; Langenhagen, H

    2003-01-01

    The Rossendorf superconducting Electron Linac of high Brilliance and low Emittance (ELBE) delivers an 40 MeV, 1 mA cw-beam for different applications such as bremsstrahlung production, electron channelling, free-electron lasers or secondary particle beam generation. In this energy region in case of collisions of the electron beam with the pipe nearly all beam power will be deposited into the pipe material. Therefore a reliable beam loss monitoring is essential for machine protection at ELBE. Different systems basing on photo multipliers, compton diodes and long ionization chambers were studied. The pros and cons of the different systems will be discussed. Ionization chambers based on air-isolated RF cables installed some cm away parallel to the beam line turned out to be the optimal solution. The beam shut-off threshold was adjusted to 1 μC integral charge loss during a 100 ms time interval. Due to the favourable geometry the monitor sensitivity varies less than ±50% along the beam line (di...

  18. Alignment of Duke free electron laser storage ring and optical beam delivery system

    International Nuclear Information System (INIS)

    Emamian, M.; Hower, N.

    1999-01-01

    Duke Free Electron Laser Laboratory (DFELL) hosts a 1.1 GeV electron beam storage ring facility which is capable of generating beams in the range of nearly monochromatic gamma rays to high peak power infra red (IR) laser. In this report specifications and procedures for alignment of OK-4 /Duke storage ring FEL wiggler and optical cavity mirrors will be discussed. The OK-4 FEL lasing has demonstrated a series of world record in the last few years. In August of this year the OK-4 FEL successfully commissioned to laser at 193.7 nm. Also in this article, alignment of the γ-ray and UV optical beam delivery system that is currently in progress will be described. (authors)

  19. PDX neutral-beam reionization losses

    International Nuclear Information System (INIS)

    Kugel, H.W.; Dylla, H.F.; Eubank, H.P.; Kozub, T.A.; Moore, R.; Schilling, G.; Stewart, L.D.; von Halle, A.; Williams, M.D.

    1982-02-01

    Reionization losses for 1.5 MW H 0 and 2 MW D 0 neutral beams injected into the PDX tokamak were studied using pressure gauges, photo-transistors, thermocouples, surface shielding, and surface sample analysis. Considerable outgassing of conventionally prepared 304SS ducts occurred during initial injections and gradually decreased with the cumulative absorption of beam power. Reionization power losses are presently about 5% in the ducts and about 12% total for a beamline including the duct. Present duct pressures are attributed primarily to gas from the ion source and neutralizer with much smaller contributions from residual wall desorption. Physical mechanisms for the observed duct outgassing are discussed

  20. Precision analog signal processor for beam position measurements in electron storage rings

    International Nuclear Information System (INIS)

    Hinkson, J.A.; Unser, K.B.

    1995-05-01

    Beam position monitors (BPM) in electron and positron storage rings have evolved from simple systems composed of beam pickups, coaxial cables, multiplexing relays, and a single receiver (usually a analyzer) into very complex and costly systems of multiple receivers and processors. The older may have taken minutes to measure the circulating beam closed orbit. Today instrumentation designers are required to provide high-speed measurements of the beam orbit, often at the ring revolution frequency. In addition the instruments must have very high accuracy and resolution. A BPM has been developed for the Advanced Light Source (ALS) in Berkeley which features high resolution and relatively low cost. The instrument has a single purpose; to measure position of a stable stored beam. Because the pickup signals are multiplexed into a single receiver, and due to its narrow bandwidth, the receiver is not intended for single-turn studies. The receiver delivers normalized measurements of X and Y position entirely by analog means at nominally 1 V/mm. No computers are involved. No software is required. Bergoz, a French company specializing in precision beam instrumentation, integrated the ALS design m their new BPM analog signal processor module. Performance comparisons were made on the ALS. In this paper we report on the architecture and performance of the ALS prototype BPM

  1. Resonant beam behavior studies in the Proton Storage Ring

    Directory of Open Access Journals (Sweden)

    S. Cousineau

    2003-07-01

    Full Text Available We present studies of space-charge-induced beam profile broadening at high intensities in the Proton Storage Ring (PSR at Los Alamos National Laboratory. We investigate the profile broadening through detailed particle-in-cell simulations of several experiments and obtain results in good agreement with the measurements. We interpret these results within the framework of coherent resonance theory. With increasing intensity, our simulations show strong evidence for the presence of a quadrupole-mode resonance of the beam envelope with the lattice in the vertical plane. Specifically, we observe incoherent tunes crossing integer values, and large amplitude, nearly periodic envelope oscillations. At the highest operating intensities, we observe a continuing relaxation of the beam through space charge forces leading to emittance growth. The increase of emittance commences when the beam parameters encounter an envelope stop band. Once the stop band is reached, the emittance growth balances the intensity increase to maintain the beam near the stop band edge. Additionally, we investigate the potential benefit of a stop band correction to the high intensity PSR beam.

  2. Colliding beam physics at Fermilab: interaction regions, beam storage, antiproton cooling, production, and colliding

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.K. (ed.)

    1977-01-01

    The purpose of the colliding beams experment department at Fermilab was to bring about collisions of the stored beams in the energy doubler/saver and main ring, and construct experimental areas with appropriate detectors. To explore the feasibility of using the main ring as a storage device, several studies were carried out to investigate beam growth, loss, and the backgrounds in detectors at possible intersection regions. This range of developments constituted the major topics at the 1977 Summer Study reported here. Emphasis in part one is on interaction regions, beam storage, antiproton cooling, production, and colliding. 40 papers from this part are included in the data base. (GHT)

  3. Development Of A Hydrogen And Deuterium Polarized Gas Target For Application In Storage Rings

    International Nuclear Information System (INIS)

    Haeberli, Willy

    2009-01-01

    The exploration of spin degrees of freedom in nuclear and high-energy interactions requires the use of spin-polarized projectiles and/or spin-polarized targets. During the last two decades, the use of external beams from cyclotrons has to a large extent been supplanted by use of circulating beams stored in storage rings. In these experiments, the circulating particles pass millions of times through targets internal to the ring. Thus the targets need to be very thin to avoid beam loss by scattering out of the acceptance aperture of the ring.

  4. Cherenkov Fibers for Beam Loss Monitoring at the CLIC Two Beam Module

    CERN Document Server

    van Hoorne, Jacobus Willem; Holzer, E B

    The Compact Linear Collider (CLIC) study is a feasibility study aiming at a nominal center of mass energy of 3TeV and is based on normal conducting travelling-wave accelerating structures, operating at very high field gradients of 100 MV/m. Such high fields require high peak power and hence a novel power source, the CLIC two beam system, has been developed, in which a high intensity, low energy drive beam (DB) supplies energy to a high energy, low intensity main beam (MB). At the Two Beam Modules (TBM), which compose the 2x21km long CLIC main linac, a protection against beam losses resulting from badly controlled beams is necessary and particularly challenging, since the beam power of both main beam (14 MW) and drive beam (70 MW) is impressive. To avoid operational downtimes and severe damages to machine components, a general Machine Protection System (MPS) scheme has been developed. The Beam Loss Monitoring (BLM) system is a key element of the CLIC machine protection system. Its main role will be to detect p...

  5. Proceedings of the 1979 workshop on beam current limitations in storage rings, July 16-27, 1979

    International Nuclear Information System (INIS)

    Pellegrini, C.

    1979-01-01

    The Workshop on Beam Current Limitations in Storage Rings was held at Brookhaven National Laboratory from July 16 to 27, 1979. The purpose of this Workshop was to discuss the physical mechanisms limiting the beam current or current density in accelerators or storage rings. Many of these machines are now being built or planned for a variety of applications, such as colliding beam experiments, synchrotron light production, heavy ion beams. This diversity was reflected in the Workshop and in the papers which have been contributed to these Proceedings. The twenty-one papers from the workshop were incorporated individually in the data base

  6. Electron beam properties and impedance characterization for storage rings used for free electron lasers

    International Nuclear Information System (INIS)

    Dattoli, G.; Mezi, L.; Renieri, A.; Migliorati, M.; Walker, R.

    2000-01-01

    Good electron beam qualities and stability are the crucial features of Storage Rings dedicated to synchrotron radiation sources or to Free Electron Laser. Most of these characteristics depends on the coupling of the e-beam with the machine environment, which can be in turn modelled in terms of a characteristic impedance, whose absolute value and structure can be used to specify both the stability (longitudinal and transverse) of the beam and its qualities (energy spread, bunch length, peak current ...). In this paper are considered two specific examples of Storage Rings used for FEL operation and analyze their performances by means of semi analytical and numerical methods. The analysis is aimed at clarifying the dependence of beam energy spread and bunch length on beam current and at providing a set of parameters useful for the optimization of Free Electron Laser or synchrotron radiation sources [it

  7. Studies on beam extraction from the 1 GeV proton accumulator ring

    International Nuclear Information System (INIS)

    Goyal, Pradeep Kumar; Sharma, Amalendu; Kumar, Vinit; Ghodke, A.D.

    2015-01-01

    For the proposed Indian Spallation Neutron Source (ISNS), a 1 GeV proton Accumulator Ring (AR) is presently being designed at RRCAT. Two optics configurations of AR, namely FODO and Hybrid lattices are under consideration. Each lattice configuration has four superperiods. In this paper, preliminary studies on beam extraction from AR are presented for both the optics configurations. The extraction system will be accommodated in one of the long dispersion free straight sections. Bunch length of the proton beam in AR is 700 ns, and the revolution time of the bunch in AR is 1 ms. This leaves a gap of ∼300 ns for bunch extraction. The proton bunch will be extracted to Ring to Target Beam Transport (RTBT) line, with the help of fast kicker and septum magnets. In this paper, we present the details of the beam extraction scheme with suitable number of kicker magnets, and find out their optimal location and strength. Estimation of field error tolerances for kicker magnets is also presented. (author)

  8. Compact high-efficiency vortex beam emitter based on a silicon photonics micro-ring

    DEFF Research Database (Denmark)

    Li, Shimao; Ding, Yunhong; Guan, Xiaowei

    2018-01-01

    Photonic integrated devices that emit vortex beam carrying orbital angular momentum are becoming key components for multiple applications. Here we propose and demonstrate a high-efficiency vortex beam emitter based on a silicon micro-ring resonator integrated with a metal mirror. Such a compact...

  9. A new formula for the lifetime of a round beam caused by the Touschek effect in an electron storage ring

    International Nuclear Information System (INIS)

    Miyahara, Yoshikazu

    1985-01-01

    The beam lifetime caused by the Touschek effect in an electron storage ring is calculated for a round beam, extending the existing theory for a ribbon beam. The result agrees with the observed lifetime in the SOR-RING. (author)

  10. Pumping slots: impedances and power losses

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S [Maryland Univ., College Park, MD (United States). Dept. of Physics

    1996-08-01

    Contributions of pumping slots to the beam coupling impedances and power losses in a B-factory ring are considered. While their leading contribution is to the inductive impedance, for high-intensity machines with short bunches like e{sup +}e{sup -} B-factories the real part of the impedance and related loss factors are also important. Using an analytical approach we calculate the coupling impedances and loss factors due to slots in a ring with an arbitrary cross section of the vacuum chamber. Effects of the slot tilt on the beam impedance are also considered, and restrictions on the tilt angle are derived from limitations on the impedance increase. The power leakage through the slots is discussed briefly. The results are applied to the KEK B-factory. (author)

  11. Achievement of ultra-low emittance beam in the ATF damping ring

    CERN Document Server

    Honda, Y; Araki, S; Bane, Karl Leopold Freitag; Brachmann, A; Frisch, J; Fukuda, M; Hasegawa, K; Hayano, H; Hendrickson, L; Higashi, Y; Higo, T; Hirano, K; Hirose, T; Iida, K; Imai, T; Inoue, Y; Karataev, P; Kubo, K; Kurihara, Y; Kuriki, M; Kuroda, R; Kuroda, S; Luo, X; Matsuda, M; McCormick, D; Muto, T; Nakajima, K; Nelson, J; Nomura, M; Ohashi, A; Okugi, T; Omori, T; Ross, M; Sakai, H; Sakai, I; Sasao, N; Smith, S; Suzuki, T; Takano, M; Takashi, N; Taniguchi, T; Terunuma, N; Toge, N; Turner, J; Urakawa, J; Vogel, V; Wolski, A; Woodley, M; Yamazaki, I; Yamazaki, Y; Yocky, J; Young, A; Zimmermann, Frank

    2003-01-01

    We report on the smallest vertical emittance achieved in single-bunch-mode operation of the ATF. The emittances were measured with a laser-wire beam-profile monitor installed in the damping ring. The bunch length and the momentum spread of the beam were also recorded under the same conditions. The smallest vertical rms emittance measured is 4 pm in the limit of zero current. It increases by a factor of 1.5 for a bunch intensity of 10^10 electrons. There are no discrepancies between the measured data and the calculations of intra-beam scattering.

  12. Normal form analysis of linear beam dynamics in a coupled storage ring

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Woodley, Mark D.

    2004-01-01

    The techniques of normal form analysis, well known in the literature, can be used to provide a straightforward characterization of linear betatron dynamics in a coupled lattice. Here, we consider both the beam distribution and the betatron oscillations in a storage ring. We find that the beta functions for uncoupled motion generalize in a simple way to the coupled case. Defined in the way that we propose, the beta functions remain well behaved (positive and finite) under all circumstances, and have essentially the same physical significance for the beam size and betatron oscillation amplitude as in the uncoupled case. Application of this analysis to the online modeling of the PEP-II rings is also discussed

  13. Renewal of beam position monitor electronics of the SPring-8 storage ring

    International Nuclear Information System (INIS)

    Sasaki, Shigeki; Fujita, Takahiro

    2007-01-01

    Signal processing electronics for the beam position monitors (BPM) of the SPring-8 Storage Ring were renewed during the summer shutdown period of 2006. The configurations of the electronics of before and after the alteration are described. The evaluation of the performance of the electronics is shown with the data taken by using the actual beams. (author)

  14. Beam-beam collisions and crossing angles in RHIC

    International Nuclear Information System (INIS)

    Peggs, S.

    1999-01-01

    This paper evaluates the strength of head on and parasitic beam-beam collisions in RHIC when the crossing angle is zero. A non-zero crossing angle is not required in normal operation with 120 bunches, thanks to the early separation of the two beams. The RHIC lattice is shown to easily accommodate even conservatively large crossing angles, for example in beam dynamics studies, or in future operational upgrades to as many as 360 bunches per ring. A modest loss in luminosity is incurred when gold ions collide at an angle after 10 hours of storage

  15. E-P instability in the NSNS accumulator ring

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, A.G.; Blaskiewicz, M.

    1997-08-01

    It has been speculated that the intensity limitation observed in the Los Alamos Proton Storage Ring (PSR) is caused by a coherent instability induced by the presence of pockets of electrons generated by scattering with the molecules of the vacuum residual gas. A theoretical explanation of the e-p instability of course does exist, and is similar to the one developed for the ion-induced instability in electron storage rings. Considering the large beam power (3 MW) involved in the NSNS Accumulator Ring, and the consequences caused by even a small amount of beam loss, we need to carefully assess the effects of electrons that may be generated in the vacuum chamber.

  16. Note on beam--beam tune shift in single ring multi bunch mode

    International Nuclear Information System (INIS)

    Month, M.

    1978-01-01

    If many identical counter-rotating bunches of protons and antiprotons are stored in a single ring, they will have identical orbits. The question is: Is this total tune shift relevant to the problem of beam stability. The answer is: not in general. The nonlinear force is described by its ''strength'', Δν/sub I/, for each bunch interaction individually. It is not at all clear that the sum of the individual Δν/sub I/ is the significant quantity

  17. A proposal of a beam injection device for the proton storage ring of JAERI neutron science project

    International Nuclear Information System (INIS)

    Suzuki, Yasuo

    1998-01-01

    A new injection device (a charge-exchange device) with light and magnetic field, is proposed for a proton storage ring of JAERI Neutron Science Project. This injection device is composed of a neutralizer and an ionizer. The neutralizer strips electrons of H 0 beam into H - one with the undulator magnetic field. The ionizer which is composed of undulator magnets and an optical resonator placed along a straight part in the storage ring, can ionize effectively the H 0 beam excited to n=3 level by a laser beam into H + one. Adopting the 2nd harmonics of Nd : YAG laser, the powerful laser on the market can be used, and the required items of the technological development can be minimized. The energy of the particle beam, however, should be accelerated up to 1.587 GeV by 6% increase from 1.5 GeV. In this device, the non-charge-exchange rate and beam-spill can be minimized by decreasing the deflection angle of the beam which occurs at the charge-exchange process. This method can be realized with exiting technologies and there are not any effects on the trajectory of the ring-circulating proton beam due to scatterings by the foil as the usual charge-exchange devices. This device, therefore, will be an optimal and highly effective method of the least beam-spill as the injector of the high power proton storage ring. (author)

  18. Beam Loss Patterns at the LHC Collimators Measurements & Simulations

    CERN Document Server

    Böhlen, Till Tobias

    2008-01-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider (LHC) detects particle losses of circulating beams and initiates an emergency extraction of the beam in case that the BLM thresholds are exceeded. This protection is required as energy deposition in the accelerator equipment due to secondary shower particles can reach critical levels; causing damage to the beam-line components and quenches of superconducting magnets. Robust and movable beam line elements, so-called collimators, are the aperture limitations of the LHC. Consequently, they are exposed to the excess of lost beam particles and their showers. Proton loss patterns at LHC collimators have to be determined to interpret the signal of the BLM detectors and to set adequate BLM thresholds for the protection of collimators and other equipment in case of unacceptably increased loss rates. The first part of this work investigates the agreement of BLM detector measurements with simulations for an LHC-like collimation setup. The setup consists ...

  19. Damping spurious harmonic resonances in the APS storage ring beam chamber

    International Nuclear Information System (INIS)

    Kang, Y.

    1999-01-01

    The APS storage ring beam chamber has been storing the beam up to 100 mA successfully. However, in some beam chambers, spurious signals corrupted the BPM outputs. The cause of the unwanted signals was investigated, and it was found that transverse electric (TE) longitudinal harmonic resonances of the beam chamber were responsible. The beam chambers have small height in the area between the ovid beam chamber and the antechamber. The structure behaves like a ridge waveguide so that the cut-off frequency of the waveguide mode becomes lower. The pass-band then includes the frequency around 350 MHz that is important to the beam position monitors (BPMs). The spurious harmonic resonances are damped with two types of dampers to restore the useful signals of the BPMs; coaxial loop dampers and lossy ceramic slab loading are used

  20. Measuring beam losses in the THI project

    International Nuclear Information System (INIS)

    David, L.; Duneau, P.; Lecorche, E.; Lermine, P.; Lemaitre, E.; Ulrich, M.

    1997-01-01

    The goal of the THI project (High Intensity Transport) is to upgrade the GANIL facilities by increasing the beam by a factor of 15, at least for light ions. This higher intensity is required by the radioactive beam facility SPIRAL starting in September 1997, to generate the new nuclear species in the solid target-source (ISOL method). For the control system, the most important issues are now to tune the accelerators while minimizing the beam losses at each stage of acceleration and when not possible, to have a fast beam loss detection signal. This system is composed of probes which deliver a signal to stop the beam when there's too much intensity lost and when not, a logarithmic value of the beam intensity. These probes are linked to a front end VME crate on the network, and in the control room, on the workstations, a graphical user interface program displays the beam variations using logarithmic scales. This program is also used to center the beam while injecting in or ejecting from the main cyclotrons by tuning the steerers, the magnetic elements inside, and the electrostatic deflector to be able to separate and extract the last beam turn. (author)

  1. Damping Ring R&D at CESR-TA

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, David L. [Cornell Univ., Ithaca, NY (United States). Dept. of Physics

    2015-01-23

    Accelerators that collide high energy beams of matter and anti-matter are essential tools for the investigation of the fundamental constituents of matter, and the search for new forms of matter and energy. A “Linear Collider” is a machine that would bring high energy and very compact bunches of electrons and positrons (anti-electrons) into head-on collision. Such a machine would produce (among many other things) the newly discovered Higgs particle, enabling a detailed study of its properties. Among the most critical and challenging components of a linear collider are the damping rings that produce the very compact and intense beams of electrons and positrons that are to be accelerated into collision. Hot dilute particle beams are injected into the damping rings, where they are compressed and cooled. The size of the positron beam must be reduced more than a thousand fold in the damping ring, and this compression must be accomplished in a fraction of a second. The cold compact beams are then extracted from the damping ring and accelerated into collision at high energy. The proposed International Linear Collider (ILC), would require damping rings that routinely produce such cold, compact and intense beams. The goal of the Cornell study was a credible design for the damping rings for the ILC. Among the technical challenges of the damping rings; the development of instrumentation that can measure the properties of the very small beams in a very narrow window of time, and mitigation of the forces that can destabilize the beams and prevent adequate cooling, or worse lead to beam loss. One of the most pernicious destabilizing forces is due to the formation of clouds of electrons in the beam pipe. The electron cloud effect is a phenomenon in particle accelerators in which a high density of low energy electrons, build up inside the vacuum chamber. At the outset of the study, it was anticipated that electron cloud effects would limit the intensity of the positron ring

  2. Second advanced ICFA beam dynamics workshop on aperture-related limitations of the performance and beam lifetime in storage rings

    International Nuclear Information System (INIS)

    Hagel, J.; Keil, E.

    1988-01-01

    These proceedings contain the papers presented at the 'Second advanced beam dynamics workshop on aperture-related limitations of the performance and beam lifetime in storage rings', which was organized in Lugano, Switzerland, from 11 to 16 April 1988, by the Beam Dynamics Panel of the International Committee for Future Accelerators (ICFA). The papers cover experiments on existing accelerators, analytical methods for determining amplitude limitations, criteria for the properties of the circulating beam and for the quality of accelerator components, and compensation schemes for field defects. (orig.)

  3. Precision analog signal processor for beam position measurements in electron storage rings

    International Nuclear Information System (INIS)

    Hinkson, J.A.; Unser, K.B.

    1995-01-01

    Beam position monitors (BPM) in electron and positron storage rings have evolved from simple systems composed of beam pickups, coaxial cables, multiplexing relays, and a single receiver (usually a analyzer) into very complex and costly systems of multiple receivers and processors. The older may have taken minutes to measure the circulating beam closed orbit. Today instrumentation designers are required to provide high-speed measurements of the beam orbit, often at the ring revolution frequency. In addition the instruments must have very high accuracy and resolution. A BPM has been developed for the Advanced Light Source (ALS) in Berkeley which features high resolution and relatively low cost. The instrument has a single purpose; to measure position of a stable stored beam. Because the pickup signals are multiplexed into a single receiver, and due to its narrow bandwidth, the receiver is not intended for single-turn studies. The receiver delivers normalized measurements of X and Y posit ion entirely by analog means at nominally 1 V/mm. No computers are involved. No software is required. Bergoz, a French company specializing in precision beam instrumentation, integrated the ALS design m their new BPM analog signal processor module. Performance comparisons were made on the ALS. In this paper we report on the architecture and performance of the ALS prototype BPM

  4. Simulation of the Beam-Beam Effects in e+e- Storage Rings with a Method of Reducing the Region of Mesh

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai

    2000-08-31

    A highly accurate self-consistent particle code to simulate the beam-beam collision in e{sup +}e{sup -} storage rings has been developed. It adopts a method of solving the Poisson equation with an open boundary. The method consists of two steps: assigning the potential on a finite boundary using the Green's function, and then solving the potential inside the boundary with a fast Poisson solver. Since the solution of the Poisson's equation is unique, the authors solution is exactly the same as the one obtained by simply using the Green's function. The method allows us to select much smaller region of mesh and therefore increase the resolution of the solver. The better resolution makes more accurate the calculation of the dynamics in the core of the beams. The luminosity simulated with this method agrees quantitatively with the measurement for the PEP-II B-factory ring in the linear and nonlinear beam current regimes, demonstrating its predictive capability in detail.

  5. Numerical simulation of crystalline ion beams in storage ring

    CERN Document Server

    Meshkov, I N; Katayama, T; Sidorin, A; Smirnov, A Yu; Syresin, E M; Trubnikov, G; Tsutsui, H

    2004-01-01

    The use of crystalline ion beams can increase luminosity in the collider and in experiments with targets for investigation of rare radioactive isotopes. The ordered state of circulating ion beams was observed at several storage rings: NAP-M (Proceedings of the Fourth All Union Conference on Charged Particle Accelerators, Vol. 2, Nauka, Moscow, 1975 (in Russian); Part. Accel. 7 (1976) 197; At. Energy 40 (1976) 49; Preprint CERN/PS/AA 79-41, Geneva, 1979) (Novosibirsk), ESR (Phys. Rev. Lett. 77 (1996) 3803) and SIS (Proceedings of EPAC'2000, 2000) (Darmstadt), CRYRING (Proceedings of PAC'2001, 2001) (Stockholm) and PALLAS (Proceedings of the Conference on Applications of Accelerators in Research and Industry, AIP Conference Proceedings, p. 576, in preparation) (Munchen). New criteria of the beam orderliness are derived and verified with a new program code. Molecular dynamics technique is inserted in BETACOOL program (Proceedings of Beam Cooling and Related Topics, Bad Honnef, Germany, 2001) and used for numeric...

  6. Beam position determination for the Test Storage Ring

    International Nuclear Information System (INIS)

    Baumann, P.

    1987-01-01

    The Test Storage Ring (TSR) for heavy ions, currently under design and construction at the Max Planck Institute for Nuclear Physics in Heidelberg, requires an extensive beam diagnostics system in order to enable it to operate without friction. This thesis concerns the beam position determination sub-system of this diagnostics system which is intended to determine the beam center of gravity of a bunched beam inside the cross section of the beam tube in a non-destructive manner. An electrostatic pickup is used to sense the location of the beam; the mode of operation of this device will be explained in detail. The signals go to a preamplifier from where they are then sent via a multiplex system to the measuring unit. This point also represents the interface to the computer system that controls the TSR. The prototype developed here was tested with the aid of a particle beam, as well as with other measurement methods. Resolutions of better than 1 mm about the center have been measured. In order to achieve or even improve such resolutions later in actual operation, it is possible to determine the properties of the preamplifiers with the aid of calibration signals and to take these into account in the course of the signal evaluation in the computer. The differences between the individual electrodes of a given pickup must also be compensated. These procedures and their associated electronic circuits are also described in this paper

  7. Computation of integral electron storage ring beam characteristics in the application package DeCA. Version 3.3. A physical model

    International Nuclear Information System (INIS)

    Gladkikh, P.I.; Strelkov, M.A.; Zelinskij, A.Yu.

    1993-01-01

    In calculations and optimization of electron storage ring lattices, aside from solving the problem of particle motion stability in the ring and calculating ring structure functions and betatron tune, it is of great importance to determine the integral characteristics such as momentum compaction factor, chromaticity of the lattice, emittance, energy spread, bunch size, beam lifetime, etc. Knowing them, one is able to determine all most important properties which the beam would have in the storage ring, as well as to work out requirements for physical equipment of the ring. In this respect it is of importance to have a possibility of calculating rapidly all the parameters required. This paper describes convenient algorithms for calculating integral beam characteristics in electron storage rings, which are employed in the application package DeCA

  8. Beam commissioning and operation of the J-PARC main ring synchrotron

    International Nuclear Information System (INIS)

    Koseki, Tadashi; Arakaki, Yoshitugu; Chin, Yong Ho; Hara, Keigo; Hasegawa, Katsushi; Hashimoto, Yoshinori; Hori, Yoichiro; Igarashi, Susumu; Ishii, Koji; Kamikubota, Norihiko; Kimura, Takuro; Koseki, Kunio; Fan, Kuanjyun; Kubota, Chikashi; Kuniyasu, Yuu; Kurimoto, Yoshinori; Lee, Seishu; Matsumoto, Hiroshi; Molodozhentsev, Alexander; Morita, Yuichi; Murasugi, Shigeru; Muto, Ryotaro; Naito, Fujio; Nakagawa, Hidetoshi; Nakamura, Shu; Niki, Kazuaki; Ohmi, Kazuhito; Ohmori, Chihiro; Okada, Masashi; Okamura, Katsuya; Oogoe, Takao; Ooya, Kazufumi; Sato, Kenichi; Sato, Yoichi; Sato, Yoshihiro; Satou, Kenichirou; Shimamoto, Masayuki; Shirakata, Masashi; Someya, Hirohiko; Sugimoto, Takuya; Takano, Junpei; Takeda, Yasuhiro; Takiyama, Yoichi; Tejima, Masaki; Toda, Makoto; Tomizawa, Masahito; Toyama, Takeshi; Uota, Masahiko; Yamada, Shuei; Yamamoto, Noboru; Yanaoka, Eiichi; Yoshii, Masahito; Harada, Hiroyuki; Hatakeyama, Shuichiro; Hotchi, Hideaki; Nomura, Masahiro; Schnase, Alexander; Shimada, Taihei; Tamura, Fumihiko; Yamamoto, Masanobu; Shimogawa, Tetsushi

    2012-01-01

    The slow cycling main ring synchrotron (MR) is located the furthest downstream in the J-PARC accelerator cascade. It became available for user operation in 2009 and provides high-intensity 30 GeV proton beams for various experiments on particle and nuclear physics. The MR has two beam extraction systems: a fast extraction system for beam delivery to the neutrino beam line of the Tokai-to-Kamioka (T2K) experiment and a slow extraction system for beam delivery to the hadron experimental hall. After a nine-month beam shutdown during the recovery from the Great East Japan Earthquake, the J-PARC facility resumed beam operation in December 2011. The MR delivers a 160-200 kW beam to the T2K experiment and a 3.5-6 kW beam to users in the hadron experimental hall. In this paper, a brief review of the MR and the recent status of beam operation are presented. Near-future plans for a beam intensity upgrade are also discussed. (author)

  9. Effects of a modulated vortex structure on the diffraction dynamics of ring Airy Gaussian beams.

    Science.gov (United States)

    Huang, Xianwei; Shi, Xiaohui; Deng, Zhixiang; Bai, Yanfeng; Fu, Xiquan

    2017-09-01

    The evolution of the ring Airy Gaussian beams with a modulated vortex in free space is numerically investigated. Compared with the unmodulated vortex, the unique property is that the beam spots first break up, and then gather. The evolution of the beams is influenced by the parameters of the vortex modulation, and the splitting phenomenon gets enhanced with multiple rings becoming light spots if the modulation depth increases. The symmetric branch pattern of the beam spots gets changed when the number of phase folds increases, and the initial modulation phase only impacts the angle of the beam spots. Moreover, a large distribution factor correlates to a hollow Gaussian vortex shape and weakens the splitting and gathering trend. By changing the initial parameters of the vortex modulation and the distribution factor, the peak intensity is greatly affected. In addition, the energy flow and the angular momentum are elucidated with the beam evolution features being confirmed.

  10. Correlation of photon beam motion with vacuum chamber cooling on the NSLS x-ray ring

    International Nuclear Information System (INIS)

    Johnson, E.D.; Fauchet, A.M.; Zhang, Xiaohao.

    1991-01-01

    The NSLS X-ray ring exhibits a direct correlation between photon beam motion, and distortion of the ring vacuum chamber induced by fluctuations in the cooling system. We have made long term measurements of photon beam vertical position, accelerator vacuum chamber motion, process water temperatures, and angular motions of the magnets around one superperiod of the NSLS x-ray ring. Short term transients in water temperature cause deflection of the ring vacuum chamber which have in turn been shown to induce very small angular rotations of the magnets, on the order of 10 micro-radians. A larger and more difficult to correct effect is the drift in beam position over the course of a fill. This problem has been shown to be related to the thermal gradients that develop across the vacuum chamber which, as a consequence of the configuration of the chamber cooling, depend upon stored current. Orbit simulations based upon the measured rotations are in agreement with the observed beam motions, and reveal that certain patterns of correlated motions of the magnets can produce much larger errors than random motion or concerted motion of all the magnets. During the course of these measurements global orbit feedback was installed, and found to significantly reduce the orbit errors which could not be corrected at their source

  11. Electron Beam Polarization Measurement Using Touschek Lifetime Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Changchun; /Duke U., DFELL; Li, Jingyi; /Duke U., DFELL; Mikhailov, Stepan; /Duke U., DFELL; Popov, Victor; /Duke U., DFELL; Wu, Wenzhong; /Duke U., DFELL; Wu, Ying; /Duke U., DFELL; Chao, Alex; /SLAC; Xu, Hong-liang; /Hefei, NSRL; Zhang, Jian-feng; /Hefei, NSRL

    2012-08-24

    Electron beam loss due to intra-beam scattering, the Touschek effect, in a storage ring depends on the electron beam polarization. The polarization of an electron beam can be determined from the difference in the Touschek lifetime compared with an unpolarized beam. In this paper, we report on a systematic experimental procedure recently developed at Duke FEL laboratory to study the radiative polarization of a stored electron beam. Using this technique, we have successfully observed the radiative polarization build-up of an electron beam in the Duke storage ring, and determined the equilibrium degree of polarization and the time constant of the polarization build-up process.

  12. The proton storage ring: Problems and solutions

    International Nuclear Information System (INIS)

    Macek, R.J.

    1988-01-01

    The Los Alamos Proton Storage Ring (PSR) now operates with 35μA at 20-Hz pulse repetition rate. Beam availability during 1988 suffered because of a number of problems with hardware reliability and from narrow operating margins for beam spill in the extraction line. A strong effort is underway to improve reliability with an eventual goal of obtaining beam availability in excess of 75%. Beam losses and the resulting component activation have limited operating currents to their present values. In detailed studies of the problem, loss rates were found to be approximately proportional to the circulating current and can be understood by a detailed accounting of emittance growth in the two-step injection process along with Coulomb scattering of the stored beam during multiple traversals of the injection foil. It is now apparent that the key to reducing losses is in reducing the number of foil traversals. A program of upgrades to reduce losses and improve the operating current is being planned. 8 refs., 17 figs., 2 tabs

  13. The proton storage ring: Problems and solutions

    International Nuclear Information System (INIS)

    Macek, R.J.

    1989-01-01

    The Los Alamos Proton Storage Ring (PSR) now operates with 35μA at 20-Hz pulse repetition rate. Beam availability during 1988 suffered because of a number of problems with hardware reliability and from narrow operating margins for beam spill in the extraction line. A strong effort is underway to improve reliability with an eventual goal of obtaining beam availability in excess of 75%. Beam losses and the resulting component activation have limited operating currents to their present values. In detail studies of the problem, loss rates were found to be approximately proportional to the circulating current and can be understood by a detailed accounting of emittance growth in the two-step injection process along with Coulomb scattering of the stored beam during multiple traversals of the injection foil. It is now apparent that the key to reducing losses is in reducing the number of foil traversals. A program of upgrades to reduce losses and improve the operating current is being planned. 8 refs., 17 figs., 2 tabs

  14. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Feng-Chia; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin [Industrial Technology Research Institute-South, Tainan 709, Taiwan (China); Hsu, Jin-Chen, E-mail: fengchiahsu@itri.org.t, E-mail: hsujc@yuntech.edu.t [Department of Mechanical Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan (China)

    2011-09-21

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  15. Reducing support loss in micromechanical ring resonators using phononic band-gap structures

    International Nuclear Information System (INIS)

    Hsu, Feng-Chia; Huang, Tsun-Che; Wang, Chin-Hung; Chang, Pin; Hsu, Jin-Chen

    2011-01-01

    In micromechanical resonators, energy loss via supports into the substrates may lead to a low quality factor. To eliminate the support loss, in this paper a phononic band-gap structure is employed. We demonstrate a design of phononic-crystal (PC) strips used to support extensional wine-glass mode ring resonators to increase the quality factor. The PC strips are introduced to stop elastic-wave propagation by the band-gap and deaf-band effects. Analyses of resonant characteristics of the ring resonators and the dispersion relations, eigenmodes, and transmission properties of the PC strips are presented. With the proposed resonator architecture, the finite-element simulations show that the leaky power is effectively reduced and the stored energy inside the resonators is enhanced simultaneously as the operating frequencies of the resonators are within the band gap or deaf bands. Realization of a high quality factor micromechanical ring resonator with minimized support loss is expected.

  16. LHC Beam Instrumentation: Beam Loss and Tune Measurements (3/3)

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  17. Beam Loss Simulation Studies for ALS Top-Off Operation

    CERN Document Server

    Nishimura, Hiroshi; Robin, David; Steier, Christoph

    2005-01-01

    The ALS is planning to operate with top-off injection at higher beam currents and smaller vertical beam size. As part of a radiation safety study for top-off, we carried out two kinds of tracking studies: (1) to confirm that the injected beam cannot go into users' photon beam lines, and (2) to control the location of beam dump when the storage ring RF is tripped. (1) is done by tracking electrons from a photon beam line to the injection sector inversely by including the magnetic field profiles, varying the field strength with geometric aperture limits to conclude that it is impossible. (2) is done by tracking an electron with radiation in the 6-dim space for different combinations of vertical scrapers for the realistic lattice with errors.

  18. Measurement of the longitudinal parameters of an electron beam in a storage ring

    International Nuclear Information System (INIS)

    Krinsky, S.

    1989-01-01

    We discuss the determination of the longitudinal parameters of a bunched beam of electrons or positrons circulating in a storage ring. From the analysis of the beam current observed at a fixed azimuthal location, one can learn much about the longitudinal behavior. We present an elementary analysis of the time-dependence of the current. In particular, we discuss the determination of the average current, bunch length, synchrotron oscillation frequency, and the coherent synchrotron oscillation modes associated with longitudinal instabilities. A brief discussion is also given of the incoherent synchrotron oscillations, or Schottky noise. We review the electromagnetic field traveling with a charge in uniform motion, and introduce some of the most common devices used to detect this field: capacitive pick-up, stripline monitor, and DC beam current transformer. Our paper is organized as follows: We discuss the analysis of the time-dependence of the beam current. Then, the measurement of the current is considered. Finally, we describe some measurements of energy spread and bunch lengthening made recently at SLAC on the SLC damping ring. 12 refs., 6 figs

  19. Commissioning the beam diagnostics for the PEP-II B Factory

    International Nuclear Information System (INIS)

    Fisher, A.S.; Alzofon, D.; Collins, B.

    1998-06-01

    PEP-II is a 2.2-km-circumference collider with a 2.1-A, 3.1-GeV positron ring (the Low-Energy Ring) 1 m above a 1-A, 9-GeV electron ring (the High-Energy Ring); both rings are designed for a maximum current of 3 A. The authors describe the beam diagnostics and present measurements from HER commissioning. The beam profile is measured using near-UV synchrotron light extracted by grazing-incidence mirrors that must withstand up to 200 W/cm. Normally 1,658 of the 3,492 buckets will be filled, and the charge must be equal within 2%. To measure the charge in each bucket, the sum signal from a set of 4 pickup buttons is digitized and averaged over 256 samples per bucket in every 60-Hz interval. The sum is them normalized to the ring current, measured by a DC current transformer. The 300 beam-position monitors per ring are multiplexed to share 171 processor modules, which use DPSs for recording positions over 1,024 turns and for calibration. For both diagnostics and machine protection, 100 photomultipliers with fused-silica Cherenkov radiators measure beam losses and can trigger a beam abort in case of high loss. For the ring tunes, signals from a set of 4 pickup buttons are combined into horizontal, vertical, and sum signals. Two signals are selected and downconverted into the range of a 10-MHz, 2-channel, programmable, DSP-based spectrum analyzer, connected over ethernet to the control room

  20. Absolute beam-charge measurement for single-bunch electron beams

    International Nuclear Information System (INIS)

    Suwada, Tsuyoshi; Ohsawa, Satoshi; Furukawa, Kazuro; Akasaka, Nobumasa

    2000-01-01

    The absolute beam charge of a single-bunch electron beam with a pulse width of 10 ps and that of a short-pulsed electron beam with a pulse width of 1 ns were measured with a Faraday cup in a beam test for the KEK B-Factory (KEKB) injector linac. It is strongly desired to obtain a precise beam-injection rate to the KEKB rings, and to estimate the amount of beam loss. A wall-current monitor was also recalibrated within an error of ±2%. This report describes the new results for an absolute beam-charge measurement for single-bunch and short-pulsed electron beams, and recalibration of the wall-current monitors in detail. (author)

  1. Anomolous, intensity dependent losses in Au(32+) beams

    International Nuclear Information System (INIS)

    Blaskiewicz, M.; Ahrens, L.; Calvani, H.

    1997-01-01

    The AGS Booster is a rapid cycling proton and heavy ion synchrotron. Anomolous, intensity dependent losses in Au(32+) beams have been observed in the AGS Booster. No collective signal is expected, or observed, but increasing the number of injected ions decreases the beam lifetime. The loss rates for Au(32+) are compared with those for Au(15+)

  2. First turn beam correction for the Advanced Photon Source storage ring

    International Nuclear Information System (INIS)

    Qian, Y.; Crosbie, E.; Teng, L.

    1991-01-01

    A procedure was developed for precise realignment of the quadrupoles in a synchrotron radiation storage ring which can substantially ease the required precision of the initial survey. The procedure consists of first using the injected beam to obtain a closed orbit which is centered on the beam position monitors by the correction dipoles. The strengths of the correction dipoles then give the required fine-adjustment of the quadrupole positions. In this paper the authors discuss only the algorithm for obtaining the closed orbit

  3. Measurements of Beam Ion Loss from the Compact Helical System

    International Nuclear Information System (INIS)

    Darrow, D.S.; Isobe, M.; Kondo, Takashi; Sasao, M.

    2010-01-01

    Beam ion loss from the Compact Helical System (CHS) has been measured with a scintillator-type probe. The total loss to the probe, and the pitch angle and gyroradius distributions of that loss, have been measured as various plasma parameters were scanned. Three classes of beam ion loss were observed at the probe position: passing ions with pitch angles within 10o of those of transition orbits, ions on transition orbits, and ions on trapped orbits, typically 15o or more from transition orbits. Some orbit calculations in this geometry have been performed in order to understand the characteristics of the loss. Simulation of the detector signal based upon the following of orbits from realistic beam deposition profiles is not able to reproduce the pitch angle distribution of the losses measured. Consequently it is inferred that internal plasma processes, whether magnetohydrodynamic modes, radial electric fields, or plasma turbulence, move previously confined beam ions to transition orbits, resulting in their loss.

  4. Calculation of abort thresholds for the Beam Loss Monitoring System of the Large Hadron Collider at CERN

    CERN Document Server

    Nemcic, Martin; Dehning, Bernd

    The Beam Loss Monitoring (BLM) System is one of the most critical machine protection systems for the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), Switzerland. Its main purpose is to protect the superconducting magnets from quenches and other equipment from damage by requesting a beam abort when the measured losses exceed any of the predefined threshold levels. The system consist of circa 4000 ionization chambers which are installed around the 27 kilometres ring (LHC). This study aims to choose a technical platform and produce a system that addresses all of the limitations with the current system that is used for the calculation of the LHC BLM abort threshold values. To achieve this, a comparison and benchmarking of the Java and .NET technical platforms is performed in order to establish the most suitable solution. To establish which technical platform is a successful replacement of the current abort threshold calculator, comparable prototype systems in Java and .NET we...

  5. Chlorine loss and mass loss from polyvinylchloride and polyvinylidenchloride under the electron beam

    International Nuclear Information System (INIS)

    Lindberg, K.A.H.; Bertilsson, H.E.

    1985-01-01

    The loss of chlorine during the irradiation of PVC and PVDC in the electron microscope has been measured by the decay of the X-ray chlorine Kα signal. A number of factors affecting the measured beam damage curves have been considered and the experimental errors reduced to +- 10%. The results show that the chlorine decay curves can be best described by the sum of two exponentials, corresponding to the two different chlorine decay processes, these being: the dehydrochlorination of the polymer molecules and the dehydrochlorination of the polyene structure formed by the beam damage. The higher initial chlorine content of PVDC compared to PVC will result in a larger amount of chlorine atoms reacting with the polyene structure, which is more stable in the electron beam than the undamaged polymer. The chlorine loss, measured by X-ray analysis, has been compared to the mass loss, measured by energy loss analysis, and also with the volume changes of isolated spherical PVC particles. It has been concluded that the mass loss is almost entirely due to chlorine loss and that the residual structure has a density similar to the undamaged PVC. (author)

  6. Reliability of the beam loss monitors system for the large hadron collider at CERN

    International Nuclear Information System (INIS)

    Guaglio, G.

    2005-12-01

    The energy stored in the Large Hadron Collider is unprecedented. The impact of the beam particles can cause severe damage on the superconductive magnets, resulting in significant downtime for repairing. The Beam Loss Monitors System (BLMS) detects the secondary particles shower of the lost beam particles and initiates the extraction of the beam before any serious damage to the equipment can occur. This thesis defines the BLMS specifications in term of reliability. The main goal is the design of a system minimizing both the probability to not detect a dangerous loss and the number of false alarms generated. The reliability theory and techniques utilized are described. The prediction of the hazard rates, the testing procedures, the Failure Modes Effects and Criticalities Analysis and the Fault Tree Analysis have been used to provide an estimation of the probability to damage a magnet, of the number of false alarms and of the number of generated warnings. The weakest components in the BLMS have been pointed out. The reliability figures of the BLMS have been calculated using a commercial software package (Isograph.). The effect of the variation of the parameters on the obtained results has been evaluated with a sensitivity analysis. The reliability model has been extended by the results of radiation tests. Design improvements, like redundant optical transmission, have been implemented in an iterative process. The proposed system is compliant with the reliability requirements. The model uncertainties are given by the limited knowledge of the thresholds levels of the superconductive magnets and of the locations of the losses along the ring. The implemented model allows modifications of the system, following the measuring of the hazard rates during the LHC life. It can also provide reference numbers to other accelerators which will implement similar technologies. (author)

  7. Acceleration of on-axis and ring-shaped electron beams in wakefields driven by Laguerre-Gaussian pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guo-Bo [College of Science, National University of Defense Technology, Changsha 410073 (China); Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com; Luo, Ji; Zeng, Ming; Yuan, Tao; Yu, Ji-Ye; Yu, Lu-Le; Weng, Su-Ming [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Ma, Yan-Yun, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com [College of Science, National University of Defense Technology, Changsha 410073 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Yu, Tong-Pu [College of Science, National University of Defense Technology, Changsha 410073 (China); Sheng, Zheng-Ming [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2016-03-14

    The acceleration of electron beams with multiple transverse structures in wakefields driven by Laguerre-Gaussian pulses has been studied through three-dimensional (3D) particle-in-cell simulations. Under different laser-plasma conditions, the wakefield shows different transverse structures. In general cases, the wakefield shows a donut-like structure and it accelerates the ring-shaped hollow electron beam. When a lower plasma density or a smaller laser spot size is used, besides the donut-like wakefield, a central bell-like wakefield can also be excited. The wake sets in the center of the donut-like wake. In this case, both a central on-axis electron beam and a ring-shaped electron beam are simultaneously accelerated. Further, reducing the plasma density or laser spot size leads to an on-axis electron beam acceleration only. The research is beneficial for some potential applications requiring special pulse beam structures, such as positron acceleration and collimation.

  8. Operating experience with high beam currents and transient beam loading in the SLC damping rings

    International Nuclear Information System (INIS)

    Minty, M.G.; Akre, R.; Krejcik, P.; Siemann, R.H.

    1995-01-01

    During the 1994 SLC run the nominal operating intensity in the damping rings was raised from 3.5 x 10 10 to greater than 4 x 10 10 particles per bunch (ppb). Stricter regulation of rf system parameters was required to maintain stability of the rf system and particle beam. Improvements were made in the feedback loops which control the cavity amplitude and loading angles. Compensation for beam loading was also required to prevent klystron saturation during repetition rate changes. To minimize the effects of transient loading on the rf system, the gain of the direct rf feedback loop and the loading angles were optimized

  9. Research on degradation of vacuum O-rings under gamma radiation

    CERN Document Server

    Ino, H; Saitô, Y; Kubo, T; Kinsho, M

    2003-01-01

    The high-intensity proton accelerator being constructed by JAERI and KEK will generates greater beam power than conventional accelerators. The radiation emission due to beam losses will therefore increase. Since vacuum O-rings installed in the accelerator will be degraded badly by the radiation, there is need to find an O-ring that has more resistant to radiation. To find an O-ring that has better radiation resistant than that of the fluororubber used for conventional accelerators in general, some O-rings which are expected to have enough resistant to the radiation were irradiated, and estimated a degradation by measurement of outgassing rate, hardness, permeation time of helium gas, and an outward observation. Most of the O-rings were irradiated in an oxygen free atmosphere and in the air. The irradiations were carried out at room temperature in Co-60 gamma irradiation facility until a dose of 1 MGy was reached. The radiation resistance of PURE-RUBBER O-ring showed somewhat better than that of the fluororubb...

  10. Intra-beam Scattering Theory and RHIC Experiments

    International Nuclear Information System (INIS)

    Wei, J.; Fedotov, A.; Fischer, W.; Malitsky, N.; Parzen, G.; Qiang, J.

    2005-01-01

    Intra-beam scattering is the leading mechanism limiting the luminosity in heavy-ion storage rings like the Relativistic Heavy Ion Collider (RHIC). The multiple Coulomb scattering among the charged particles causes transverse emittance growth and longitudinal beam de-bunching and beam loss, compromising machine performance during collision. Theoretically, the original theories developed by Piwinski, Bjorken, and Mtingwa only describe the rms beam size growth of an unbounded Gaussian distribution. Equations based on the Fokker-Planck approach are developed to further describe the beam density profile evolution and beam loss. During the 2004 RHIC heavy-ion operation, dedicated IBS experiments were performed to bench-mark the rms beam size growth, beam loss, and profile evolution both for a Gaussian-like and a longitudinal hollow beam. This paper summarizes the IBS theory and discusses the experimental bench-marking results

  11. An extended range soft X-ray beam line for the 1 GeV storage ring Aladdin

    International Nuclear Information System (INIS)

    Hulbert, S.L.; Stott, J.P.; Brown, F.C.

    1983-01-01

    The design and implementation of a soft X-ray beam line on the new 1 GeV storage ring Aladdin in Stoughton, Wisconsin is discussed. The beam line consists of a long horizontally focussing collection mirror, an extended range (50-1500 eV) grasshopper monochromator, an ellipsoidal refocussing mirror, and a photoemission chamber. Also discussed are the factors considered in matching the monochromator to the storage ring, flux and performance expectations, and the results of a ray tracing analysis. (orig.)

  12. Ionization Chambers for the LHC Beam Loss Detection

    CERN Document Server

    Assmann, R W; Ferioli, G; Gschwendtner, E; Kain, V

    2003-01-01

    At the Large Hadron Collider (LHC) a beam loss system will be used to prevent and protect superconducting magnets against coil quenches and coil damages. Ionisation chambers will be mounted outside the cryostat to measure the secondary shower particles caused by lost beam particles. Since the stored particle beam intensity is eight orders of magnitude larger than the lowest quench level and the losses should be detected with a relative error of two, the design and the location of the detectors have to be optimised. For that purpose a two-fold simulation was carried out. The longitudinal loss locations of the tertiary halo is investigated by tracking the halo through several magnet elements. These loss distributions are combined with simulations of the particle fluence outside the cryostat, which is induced by lost protons at the vacuum pipe. The base-line ionisation chamber has been tested at the PS Booster in order to determine the detector response at the high end of the dynamic range.

  13. Reliability of Beam Loss Monitor Systems for the Large Hadron Collider

    CERN Document Server

    Guaglio, Gianluca; Santoni, C

    2005-01-01

    The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data...

  14. Analytical treatment of the nonlinear electron cloud effect and the combined effects with beam-beam and space charge nonlinear forces in storage rings

    International Nuclear Information System (INIS)

    Gao Jie

    2009-01-01

    In this paper we treat first some nonlinear beam dynamics problems in storage rings, such as beam dynamic apertures due to magnetic multipoles, wiggles, beam-beam effects, nonlinear space charge effect, and then nonlinear electron cloud effect combined with beam-beam and space charge effects, analytically. This analytical treatment is applied to BEPC II. The corresponding analytical expressions developed in this paper are useful both in understanding the physics behind these problems and also in making practical quick hand estimations. (author)

  15. Beam loss studies in high-intensity heavy-ion linacs

    International Nuclear Information System (INIS)

    Ostroumov, P.N.; Aseev, V.N.; Lessner, E.S.; Mustapha, B.

    2004-01-01

    A low beam-loss budget is an essential requirement for high-intensity machines and represents one of their major design challenges. In a high-intensity heavy-ion machine, losses are required to be below 1 W/m for hands-on-maintenance. The driver linac of the Rare Isotope Accelerator (RIA) is designed to accelerate beams of any ion to energies from 400 MeV per nucleon for uranium up to 950 MeV for protons with a beam power of up to 400 kW. The high intensity of the heaviest ions is achieved by acceleration of multiple-charge-state beams, which requires a careful beam dynamics optimization to minimize effective emittance growth and beam halo formation. For beam loss simulation purposes, large number of particles must be tracked through the linac. Therefore the computer code TRACK has been parallelized and calculations are being performed on the JAZZ cluster recently inaugurated at ANL. This paper discusses how this powerful tool is being used for simulations for the RIA project to help decide on the high-performance and cost-effective design of the driver linac

  16. MATLAB based beam orbit correction system of HLS storage ring

    International Nuclear Information System (INIS)

    Ding Shichuan; Liu Gongfa; Xuan Ke; Li Weimin; Wang Lin; Wang Jigang; Li Chuan; Bao Xun; Guo Weiqun

    2006-01-01

    The distortion of closed orbit usually causes much side effect which is harmful to synchrotron radiation source such as HLS, so it is necessary to correct the distortion of closed orbit. In this paper, the correction principle, development procedure and test of MATLAB based on beam orbit correction system of HLS storage ring are described. The correction system is consisted of the beam orbit measure system, corrector magnet system and the control system, and the beam orbit correction code based on MATLAB is working on the operation interface. The data of the beam orbit are analyzed and calculated firstly, and then the orbit is corrected by changing corrector strength via control system. The test shows that the distortion of closed orbit is from max 4.468 mm before correction to max 0.299 mm after correction as well as SDEV is from 2.986 mm to 0.087 mm. So the correction system reaches the design goal. (authors)

  17. TRANSIENT BEAM LOADING EFFECTS IN RF SYSTEMS IN JLEIC

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haipeng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Guo, Jiquan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Rimmer, Robert A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, Shaoheng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    The pulsed electron bunch trains generated from the Continuous Electron Beam Accelerator Facility (CEBAF) linac to inject into the proposed Jefferson Lab Electron Ion Collider (JLEIC) e-ring will produce transient beam loading effects in the Superconducting Radio Frequency (SRF) systems that, if not mitigated, could cause unacceptably large beam energy deviation in the injection capture, or exceed the energy acceptance of CEBAF’s recirculating arcs. In the electron storage ring, the beam abort or ion clearing gaps or uneven bucket filling can cause large beam phase transients in the (S)RF cavity control systems and even beam loss due to Robinson instability. We have first analysed the beam stability criteria in steady state and estimated the transient effect in Feedforward and Feedback RF controls. Initial analytical models for these effects are shown for the design of the JLEIC e-ring from 3GeV to 12GeV.

  18. Transient beam loading in electron-positron storage rings

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1978-01-01

    In this note the fundamental of transient beam loading in electron-positron storage rings will be reviewed. The notation, and some of the material, has been introduced previously. The present note is, however, more tutorial in nature, and in addition the analysis is extended to include the transient behaviour of the cavity fields and reflected power between bunch passages. Since we are not bound here by the rigid space limitations of a paper for publication, an attempt is made to give a reasonably coherent and complete discussion of transient beam loading that can hopefully be followed even by the uninitiated. The discussion begins with a consideration of the beam-cavity interaction in the ''single-pass'' limit. In this limit it is assumed that the fields induced in the cavity by the passage of a bunch have decayed essentially to zero by the time the next bunch has arrived. The problem of the maximum energy that can be extracted from a cavity by a bunch is given particular attention, since this subject seems to be the source of some confusion. The analysis is then extended to the ''multiple-pass'' case, where the beam-induced fields do not decay to zero between bunches, and to a detailed consideration of the transient variation of cavity fields and reflected power. The note concludes with a brief discussion of the effect of transient beam loading on quantum lifetime

  19. Effects of beam-beam collisions on storage-ring performance - a pedagogical review

    International Nuclear Information System (INIS)

    Schonfeld, J.F.

    1983-01-01

    This paper presents a survey of the experimental and theoretical literature on colliding-beam effects in both leptonic and hadronic storage rings. For the most part, this literature is rather technical and, to the novice, both obscurely written and hard to locate. Although there have already been several symposia on the subject, as well as a number of reviews for specialists there has up till now been no unified and pedagogical exposition. The present work represents an attempt to fill this gap. The material is grouped into four major areas: observational phenomenology, computer simulation, mathematical background, and theoretical models. 113 references, 36 figures

  20. Cryogenic Beam Loss Monitors for the Superconducting Magnets of the LHC

    CERN Document Server

    Bartosik, MR; Sapinski, M; Kurfuerst, C; Griesmayer, E; Eremin, V; Verbitskaya, E

    2014-01-01

    The Beam Loss Monitor detectors close to the interaction points of the Large Hadron Collider are currently located outside the cryostat, far from the superconducting coils of the magnets. In addition to their sensitivity to lost beam particles, they also detect particles coming from the experimental collisions, which do not contribute significantly to the heat deposition in the superconducting coils. In the future, with beams of higher energy and brightness resulting in higher luminosity, distinguishing between these interaction products and dangerous quench-provoking beam losses from the primary proton beams will be challenging. The system can be optimised by locating beam loss monitors as close as possible to the superconducting coils, inside the cold mass in a superfluid helium environment, at 1.9 K. The dose then measured by such Cryogenic Beam Loss Monitors would more precisely correspond to the real dose deposited in the coil. The candidates under investigation for such detectors are based on p+-n-n+ si...

  1. Beam Aborts in PEP-II Rings and Lingering Drift Chamber Currents

    International Nuclear Information System (INIS)

    Meshkat, N.

    2004-01-01

    The BABAR detector at SLAC was designed to study CP-violation in B-meson decays from electron-positron collisions in the PEP-II electron-positron storage rings. Background radiation in the High Energy Ring (HER) and Low Energy Ring (LER) of PEP-II has the potential to damage the sensitive equipment in the BABAR detector. As a result, the beams in the HER and LER can be aborted to prevent such damage. In the span of a few microseconds, the HER and LER currents drop from, for example, 1450 micro Amps and 2300 micro Amps, respectively, to zero. At this time the voltage in the Drift Chamber is rapidly ramped down from a potential of 1930 V to a safe potential of 800 V, thus we would expect the currents in the Drift Chamber to quickly go to zero once the beams are aborted. However, we observe an average 15 second delay in the measured time it takes for all current in the Drift Chamber to fall below 1 micro Amp. This delay has been hypothesized as an instrumentation issue and not as a physical phenomenon. The specific sources of this error are still not completely known, but analysis suggests that it results from the interplay of the CAEN High Voltage supplies and the EPICS system and/or limitations within those systems

  2. Status report on the Los Alamos proton storage ring

    International Nuclear Information System (INIS)

    Colton, E.; Neuffer, D.; Thiessen, H.A.

    1988-01-01

    The proton storage ring currently operates at an average current of 30 μA corresponding to 1.25 /times/ 10 13 protons per pulse (ppp) at a repetition rate of 15 Hz. The design operating current for the machine is 100 μA. We are limited to running at the reduced yield because of beam losses during the accumulation period. These losses are understood and arise mainly from emittance growths during the injection and multiple scattering in the stripping foil during the storage. During beam studies we have succeeded in accumulating in excess of 3.7 /times/ 10 13 ppp. We have also observed a coherent transverse instability at high charge levels. The signature for the instability is rapid coherent growth of the transverse beam size followed by a loss of beam in the machine. The threshold for the instability depends most strongly upon rf voltage and beam size. 3 refs., 1 fig., 1 tab

  3. RFQ Designs and Beam-Loss Distributions for IFMIF

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, Robert A [ORNL

    2007-01-01

    The IFMIF 125 mA cw 40 MeV accelerators will set an intensity record. Minimization of particle loss along the accelerator is a top-level requirement and requires sophisticated design intimately relating the accelerated beam and the accelerator structure. Such design technique, based on the space-charge physics of linear accelerators (linacs), is used in this report in the development of conceptual designs for the Radio-Frequency-Quadrupole (RFQ) section of the IFMIF accelerators. Design comparisons are given for the IFMIF CDR Equipartitioned RFQ, a CDR Alternative RFQ, and new IFMIF Post-CDR Equipartitioned RFQ designs. Design strategies are illustrated for combining several desirable characteristics, prioritized as minimum beam loss at energies above ~ 1 MeV, low rf power, low peak field, short length, high percentage of accelerated particles. The CDR design has ~0.073% losses above 1 MeV, requires ~1.1 MW rf structure power, has KP factor 1.7,is 12.3 m long, and accelerates ~89.6% of the input beam. A new Post-CDR design has ~0.077% losses above 1 MeV, requires ~1.1 MW rf structure power, has KP factor 1.7 and ~8 m length, and accelerates ~97% of the input beam. A complete background for the designs is given, and comparisons are made. Beam-loss distributions are used as input for nuclear physics simulations of radioactivity effects in the IFMIF accelerator hall, to give information for shielding, radiation safety and maintenance design. Beam-loss distributions resulting from a ~1M particle input distribution representative of the IFMIF ECR ion source are presented. The simulations reported were performed with a consistent family of codes. Relevant comparison with other codes has not been possible as their source code is not available. Certain differences have been noted but are not consistent over a broad range of designs and parameter range. The exact transmission found by any of these codes should be treated as indicative, as each has various sensitivities in

  4. Beam Loss Calibration Studies for High Energy Proton Accelerators

    CERN Document Server

    Stockner, M

    2007-01-01

    CERN's Large Hadron Collider (LHC) is a proton collider with injection energy of 450 GeV and collision energy of 7 TeV. Superconducting magnets keep the particles circulating in two counter rotating beams, which cross each other at the Interaction Points (IP). Those complex magnets have been designed to contain both beams in one yoke within a cryostat. An unprecedented amount of energy will be stored in the circulating beams and in the magnet system. The LHC outperforms other existing accelerators in its maximum beam energy by a factor of 7 and in its beam intensity by a factor of 23. Even a loss of a small fraction of the beam particles may cause the transition from the superconducting to the normal conducting state of the coil or cause physical damage to machine components. The unique combination of these extreme beam parameters and the highly advanced superconducting technology has the consequence that the LHC needs a more efficient beam cleaning and beam loss measurement system than previous accelerators....

  5. High Intensity Effects in the SNS Accumulator Ring

    International Nuclear Information System (INIS)

    Holmes, Jeffrey A.; Cousineau, Sarah M.; Danilov, Viatcheslav; Plum, Michael A.; Shishlo, Andrei P.

    2008-01-01

    Currently operating at 0.5 MW beam power on target, the Spallation Neutron Source (SNS) is already the world's most powerful pulsed neutron source. However, we are only one third of the way to full power. As we ramp toward full power, the control of the beam and beam loss in the ring will be critical. In addition to practical considerations, such as choice of operating point, painting scheme, RF bunching, and beam scattering, it may be necessary to understand and mitigate collective effects due to space charge, impedances, and electron clouds. At each stage of the power ramp-up, we use all available resources to understand and to minimize beam losses. From the standpoint of beam dynamics, the losses observed so far under normal operating conditions have not involved collective phenomena. We are now entering the intensity regime in which this may change. In dedicated high intensity beam studies, we have already observed resistive wall, extraction kicker impedance-driven, and electron cloud activities. The analysis and simulation of this data are important ongoing activities at SNS. This paper discusses the status of this work, as well as other considerations necessary to the successful full power operation of SNS.

  6. Beam Loss Monitoring for Run 2 of the LHC

    CERN Document Server

    Kalliokoski, Matti; Dehning, Bernd; Domingues Sousa, Fernando; Effinger, Ewald; Emery, Jonathan; Grishin, Viatcheslav; Holzer, Eva Barbara; Jackson, Stephen; Kolad, Blazej; Nebot Del Busto, Eduardo; Picha, Ondrej; Roderick, Chris; Sapinski, Mariusz; Sobieszek, Marcin; Zamantzas, Christos

    2015-01-01

    The Beam Loss Monitoring (BLM) system of the LHC consists of over 3600 ionization chambers. The main task of the system is to prevent the superconducting magnets from quenching and protect the machine components from damage, as a result of critical beam losses. The BLM system therefore requests a beam abort when the measured dose in the chambers exceeds a threshold value. During Long Shutdown 1 (LS1) a series of modifications were made to the system. Based on the experience from Run 1 and from improved simulation models, all the threshold settings were revised, and modified where required. This was done to improve the machine safety at 7 TeV, and to reduce beam abort requests when neither a magnet quench or damage to machine components is expected. In addition to the updates of the threshold values, about 800 monitors were relocated. This improves the response to unforeseen beam losses in the millisecond time scale due to micron size dust particles present in the vacuum chamber. This contribution will discuss...

  7. Analog front end circuit design of CSNS beam loss monitor system

    International Nuclear Information System (INIS)

    Xiao Shuai; Guo Xian; Tian Jianmin; Zeng Lei; Xu Taoguang; Fu Shinian

    2013-01-01

    The China Spallation Neutron Source (CSNS) beam loss monitor system uses gas ionization chamber to detect beam losses. The output signals from ionization chamber need to be processed in the analog front end circuit, which has been designed and developed independently. The way of transimpedance amplifier was used to achieve current-voltage (I-V) conversion measurement of signal with low repetition rate, low duty cycle and low amplitude. The analog front end circuit also realized rapid response to the larger beam loss in order to protect the safe operation of the accelerator equipment. The testing results show that the analog front end circuit meets the requirements of beam loss monitor system. (authors)

  8. Local beam position feedback experiments on the ESRF storage ring

    International Nuclear Information System (INIS)

    Chung, Y.; Kahana, E.; Kirchman, J.

    1995-01-01

    This paper describes the results of local beam position feedback experiments conducted on the ESRF storage ring using digital signal processing (DSP) under the trilateral agreement of collaboration among ESRF, APS, and SPring-8. Two rf beam position monitors (BPMS) in the, upstream and downstream of the insertion device (ID) and two x-ray BPMs in the sixth cell were used to monitor the electron beam and the x-ray beam emitted from the ID, respectively. The local bump coefficients were obtained using the technique of singular value decomposition (SVD) on the global response matrix for the bump magnets and all the available BPMs outside the local bump. The local response matrix was then obtained between the two three-magnet bumps and the position monitors. The data sampling frequency was 4 kHz and a proportional, integral, and derivative (PID) controller was used. The result indicates the closed-loop feedback bandwidth close to 100 Hz and clear attenuation (∼ -40 dB) of the 7-Hz beam motion due to girder vibration resonance. Comparison of the results using the rf BPMs and x-ray BPMs will be also discussed

  9. Beam loss control in the LINAC4 design

    CERN Document Server

    Stovall, J; Crandall, K

    2010-01-01

    The Linac4 DTL reference design has been modified to reduce the power consumption in tank 1 by modifying the accelerating field and phase law. In addition we have adopted an FFDD focusing lattice throughout to minimize expected losses resulting from alignment errors. We have observed, however, that this design suffers from decreasing transverse acceptance and a sensitivity to misalignments that causes any expected beam loss to occcur at the high energy end of the DTL. In this note we investigate two solutions to increase the acceptance, decrease its sensitivity to misalignments and eliminate the potential for a beam-loss “bottleneck” at 50 MeV.

  10. Adiabatic energization in the ring current and its relation to other source and loss terms

    Science.gov (United States)

    Liemohn, M. W.; Kozyra, J. U.; Clauer, C. R.; Khazanov, G. V.; Thomsen, M. F.

    2002-04-01

    The influence of adiabatic energization and deenergization effects, caused by particle drift in radial distance, on ring current growth rates and loss lifetimes is investigated. Growth and loss rates from simulation results of four storms (5 June 1991, 15 May 1997, 19 October 1998, and 25 September 1998) are examined and compared against the y component of the solar wind electric field (Ey,sw). Energy change rates with and without the inclusion of adiabatic energy changes are considered to isolate the influence of this mechanism in governing changes of ring current strength. It is found that the influence of adiabatic drift effects on the energy change rates is very large when energization and deenergization are considered separately as gain and loss mechanisms, often about an order of magnitude larger than all other source or loss terms combined. This is true not only during storm times, when the open drift path configuration of the hot ions dominates the physics of the ring current, but also during quiet times, when the small oscillation in L of the closed trajectories creates a large source and loss of energy each drift orbit. However, the net energy change from adiabatic drift is often smaller than other source and loss processes, especially during quiet times. Energization from adiabatic drift dominates ring current growth only during portions of the main phase of storms. Furthermore, the net-adiabatic energization is often positive, because some particles are lost in the inner magnetosphere before they can adiabatically deenergize. It is shown that the inclusion of only this net-adiabatic drift effect in the total source rate or loss lifetime (depending on the sign of the net-adiabatic energization) best matches the observed source and loss values from empirical Dst predictor methods (that is, for consistency, these values should be compared between the calculation methods). While adiabatic deenergization dominates the loss timescales for all Ey,sw values

  11. Comparison of SW and TW non-synchronous accelerating cavities as used in electron beam storage rings

    International Nuclear Information System (INIS)

    Zolfaghari, A.; Demos, P.T.; Flanz, J.B.; Jacobs, K.

    1991-01-01

    The authors relate the parameters of detuned standing wave (SW) and non-synchronous beam travelling wave (TW) accelerating cavities of equivalent equilibrium performance when used to compensate for radiation and parasitic energy losses by electrons circulating in a high energy electron storage ring. The relationship is expressed in terms of the coupling parameter β and cavity tuning angle ψ of the TW accelerator's equivalent SW system. A given TW cavity corresponds to a standing wave system possessing specific settings of β and ψ. This is shown for the constant impedance TW waveguide, for which β and ψ can be expressed as explicit functions of TW cavity length 1, attenuation factor I, RF electric field phase velocity V p , and shunt impedance r. Coupling parameter β depends additionally on SW cavity shunt impedance R. The basis they have used for formulating the equivalence of the two systems follows Travelling Wave Cavity Non-Synchronous Beam Loading theory developed by G.A. Loew and Standing Wave Circuit Analysis theory as described by P.B. Wilson

  12. Rf systems for high-energy e/sup /minus//e/sup /plus// storage rings

    International Nuclear Information System (INIS)

    Allen, M.A.; Wilson, P.B.

    1974-01-01

    Electron or positron beams in a storage ring radiate electromagnetic energy at a rate proportional to the fourth power of the recirculating energy, and this loss must be supplied by an rf system. Furthermore, a substantial overvoltage is required to contain the stored beam against losses due to quantum fluctuations in the emitted photons. As an example, an improvement program, SPEAR II, is now underway to increase the energy of the SPEAR ring to 4.5 GeV. At this energy, the radiation loss per turn is 2.8 MeV, and to maintain a reasonable lifetime against quantum fluctuations, a peak voltage of 7.5 MeV is required. Thus, the SPEAR II rf system is similar to a continuously-operating 7.5 MeV linear accelerator. Furthermore, the available straight-section space in the ring which is suitable for containing the accelerating structures is limited, and this means that a cavity design must be sought with a high shunt impedance per losses will be held to a reasonable level. In the case of SPEAR, about 9 meters of straight section space is available for accelerating cavities, requiring a gradient of close to 1 MV per meter. The PEP 15-GeV ring would require peak accelerating voltages of around 50 MV, with about 60 meters of straight-section space available for accelerating structures. 8 refs

  13. Design of a quasi-isochronous storage ring for THz light source

    International Nuclear Information System (INIS)

    Zhu Jiapeng; Xu Hongliang; Feng Guangyao; Lan Jieqin

    2012-01-01

    A quasi-isochronous storage ring is designed by manipulating lattice parameters to introduce a negative dispersion function to the dispersion section. This quasi-isochronous storage ring is designed for a THz synchrotron radiation source. The simulation of the optics function and beam emittance shows its feasibility, and the tracing result of particles indicates that the designed ring has a good particle dynamic aperture. In addition, a three-dimensional model of the vacuum chamber used for photon radiation in the quasi-isochronous mode is also designed. The eigenmodes of the chamber are simulated, and characteristic parameters such as quality factor, power loss and characteristic impedance are also calculated. The result shows that the vacuum chamber has little effect on the circulating beam. (authors)

  14. PSR experience with beam losses, instabilities and space charge effects

    International Nuclear Information System (INIS)

    Macek, Robert J.

    1998-01-01

    Average current from the PSR has been limited to ∼70 μA at 20 Hz by beam losses of 0.4 to 0.5 μA which arise from two principal causes, production of H 0 excited states and stored-beam scattering in the stripper foil. To reduce beam losses, an upgrade from the two-step H 0 injection to direct H - injection is underway and will be completed in 1998. Peak intensity from the PSR is limited by a strong instability that available evidence indicates is the two-stream e-p instability. New evidence for the e-p hypothesis is presented. At operating intensities, the incoherent space charge tune shift depresses both horizontal and vertical tunes past the integer without additional beam loss although some intensity-dependent emittance growth is observed

  15. Beam loss detection system in the arcs of the LHC

    Science.gov (United States)

    Arauzo, A.; Bovet, C.

    2000-11-01

    Over the whole circumference of the LHC, Beam Loss Monitors (BLM) will be needed for a continuous surveillance of fast and slow beam losses. In this paper, the location of the BLMs set outside the magnet cryostats in the arcs is proposed. In order to know the number of protons lost on the beam screen, the sensitivity of each BLM has been computed using the program GEANT 3.21, which generates the shower inside the cryostat. The material and the magnetic fields have been described thoroughly in 3-D and the simulation results show the best locations for 6 BLMs needed around each quadrupole. The number of minimum ionizing particles received for each lost proton serves to define local thresholds to dump the beam when the losses are menacing to quench a magnet.

  16. Beam loss detection system in the arcs of the LHC

    International Nuclear Information System (INIS)

    Arauzo, A.; Bovet, C.

    2000-01-01

    Over the whole circumference of the LHC, Beam Loss Monitors (BLM) will be needed for a continuous surveillance of fast and slow beam losses. In this paper, the location of the BLMs set outside the magnet cryostats in the arcs is proposed. In order to know the number of protons lost on the beam screen, the sensitivity of each BLM has been computed using the program GEANT 3.21, which generates the shower inside the cryostat. The material and the magnetic fields have been described thoroughly in 3-D and the simulation results show the best locations for 6 BLMs needed around each quadrupole. The number of minimum ionizing particles received for each lost proton serves to define local thresholds to dump the beam when the losses are menacing to quench a magnet

  17. Reliability of Beam Loss Monitor Systems for the Large Hadron Collider

    International Nuclear Information System (INIS)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2005-01-01

    The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data has been processed by reliability software (Isograph). The analysis spaces from the components data to the system configuration

  18. Reliability of Beam Loss Monitor Systems for the Large Hadron Collider

    Science.gov (United States)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2005-06-01

    The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data has been processed by reliability software (Isograph). The analysis spaces from the components data to the system configuration.

  19. Surface area loss and increased sphericity account for the splenic entrapment of subpopulations of Plasmodium falciparum ring-infected erythrocytes.

    Directory of Open Access Journals (Sweden)

    Innocent Safeukui

    Full Text Available Ex vivo perfusion of human spleens revealed innate retention of numerous cultured Plasmodium falciparum ring-infected red blood cells (ring-iRBCs. Ring-iRBC retention was confirmed by a microsphiltration device, a microbead-based technology that mimics the mechanical filtering function of the human spleen. However, the cellular alterations underpinning this retention remain unclear. Here, we use ImageStream technology to analyze infected RBCs' morphology and cell dimensions before and after fractionation with microsphiltration. Compared to fresh normal RBCs, the mean cell membrane surface area loss of trophozoite-iRBCs, ring-iRBCs and uninfected co-cultured RBCs (uRBCs was 14.2% (range: 8.3-21.9%, 9.6% (7.3-12.2% and 3.7% (0-8.4, respectively. Microsphilters retained 100%, ∼50% and 4% of trophozoite-iRBCs, ring-iRBCs and uRBCs, respectively. Retained ring-iRBCs display reduced surface area values (estimated mean, range: 17%, 15-18%, similar to the previously shown threshold of surface-deficient RBCs retention in the human spleen (surface area loss: >18%. By contrast, ring-iRBCs that successfully traversed microsphilters had minimal surface area loss and normal sphericity, suggesting that these parameters are determinants of their retention. To confirm this hypothesis, fresh normal RBCs were exposed to lysophosphatidylcholine to induce a controlled loss of surface area. This resulted in a dose-dependent retention in microsphilters, with complete retention occurring for RBCs displaying >14% surface area loss. Taken together, these data demonstrate that surface area loss and resultant increased sphericity drive ring-iRBC retention in microsphilters, and contribute to splenic entrapment of a subpopulation of ring-iRBCs. These findings trigger more interest in malaria research fields, including modeling of infection kinetics, estimation of parasite load, and analysis of risk factors for severe clinical forms. The determination of the threshold of

  20. Beam losses and beam halos in accelerators for new energy sources

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1995-01-01

    Large particle accelerators are proposed as drivers for new ways to produce electricity from nuclear fusion and fission reactions. The accelerators must be designed to deliver large particle beam currents to a target facility with very little beam spill along the accelerator itself, in order that accelerator maintenance can be accomplished without remote manipulators. Typically, particle loss is preceded by the formation of a tenuous halo of particles around the central beam core, caused by beam dynamics effects, often coupled with the slight imperfections inevitable in a practical design. If the halo becomes large enough, particles may be scraped off along the accelerator. The tolerance for beam spill in different applications is discussed, halo mechanisms and recent work to explore and understand their dynamics are reviewed, and possible directions for future investigation are outlined. 17 refs., 10 figs

  1. Beam loss monitor system for machine protection

    CERN Document Server

    Dehning, B

    2005-01-01

    Most beam loss monitoring systems are based on the detection of secondary shower particles which depose their energy in the accelerator equipment and finally also in the monitoring detector. To allow an efficient protection of the equipment, the likely loss locations have to be identified by tracking simulations or by using low intensity beams. If superconducting magnets are used for the beam guiding system, not only a damage protection is required but also quench preventions. The quench levels for high field magnets are several orders of magnitude below the damage levels. To keep the operational efficiency high under such circumstances, the calibration factor between the energy deposition in the coils and the energy deposition in the detectors has to be accurately known. To allow a reliable damage protection and quench prevention, the mean time between failures should be high. If in such failsafe system the number of monitors is numerous, the false dump probability has to be kept low to keep a high operation...

  2. Single-chip ring resonator-based 1 x 8 optical beam forming network in CMOS-compatible waveguide technology

    NARCIS (Netherlands)

    Zhuang, L.; Roeloffzen, C.G.H.; Heideman, Rene; Borreman, A.; Meijerink, Arjan; van Etten, Wim

    2007-01-01

    Optical ring resonators (ORRs) are good candidates to provide continuously tunable delay in optical beam forming networks (OBFNs) for phased array antenna systems. Delay and splitting/combining elements can be integrated on a single optical chip to form an OBFN. A state-of-the-art ring resonator-

  3. ORBIT: A CODE FOR COLLECTIVE BEAM DYNAMICS IN HIGH INTENSITY RINGS

    International Nuclear Information System (INIS)

    HOLMES, J.A.; DANILOV, V.; GALAMBOS, J.; SHISHLO, A.; COUSINEAU, S.; CHOU, W.; MICHELOTTI, L.; OSTIGUY, J.F.; WEI, J.

    2002-01-01

    We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection, including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK, the introduction of a treatment of magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings

  4. ORBIT: A Code for Collective Beam Dynamics in High-Intensity Rings

    Science.gov (United States)

    Holmes, J. A.; Danilov, V.; Galambos, J.; Shishlo, A.; Cousineau, S.; Chou, W.; Michelotti, L.; Ostiguy, J.-F.; Wei, J.

    2002-12-01

    We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection, including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK; the introduction of a treatment of magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings.

  5. ORBIT: A code for collective beam dynamics in high-intensity rings

    International Nuclear Information System (INIS)

    Holmes, J.A.; Danilov, V.; Galambos, J.; Shishlo, A.; Cousineau, S.; Chou, W.; Michelotti, L.; Ostiguy, J.-F.; Wei, J.

    2002-01-01

    We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection, including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK; the introduction of a treatment of magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings

  6. Feedback to suppress beam instabilities in future proton rings

    International Nuclear Information System (INIS)

    Lambertson, G.R.

    1985-05-01

    Criteria for the design of feedback systems to suppress coherent beam instabilities are presented. These address starting amplitudes, diffusion from noise during damping or long storage, and choice of kicker. As a model for future accelerators, specifications of the proposed 20 TeV SSC are used to calculate parameters of systems to control expected instabilities. A scenario and hardware to stabilize the transverse mode-coupling instability is examined. The scale of the systems is large but not out of scale with the large ring. 9 refs., 4 tabs

  7. RF SYSTEM FOR THE SNS ACCUMULATOR RING

    International Nuclear Information System (INIS)

    BLASKIEWICZ, M.; BRENNAN, J.M.; BRODOWSKI, J.; DELONG, J.; METH, M.; SMITH, K.; ZALTSMAN, A.

    2001-01-01

    During accumulation the RF beam current in the spallation neutron source ring rises from 0 to 50 amperes. A clean, 250 nanosecond gap is needed for the extraction kicker risetime. Large momentum spread and small peak current are needed to prevent instabilities and stopband related losses. A robust RF system meeting these requirements has been designed

  8. PSR experience with beam losses, instabilities and space charge effects

    International Nuclear Information System (INIS)

    Macek, R.J.

    1998-01-01

    Average current from the PSR has been limited to ∼70 μA at 20 Hz by beam losses of 0.4 to 0.5 μA which arise from two principal causes, production of H 0 excited states and stored-beam scattering in the stripper foil. To reduce beam losses, an upgrade from the two-step H 0 injection to direct H - injection is underway and will be completed in 1998. Peak intensity from the PSR is limited by a strong instability that available evidence indicates is the two-stream e-p instability. New evidence for the e-p hypothesis is presented. At operating intensities, the incoherent space charge tune shift depresses both horizontal and vertical tunes past the integer without additional beam loss although some intensity-dependent emittance growth is observed. copyright 1998 American Institute of Physics

  9. Beam pinging, sweeping, shaking, and electron/ion collecting, at the Proton Storage Ring

    International Nuclear Information System (INIS)

    Hardek, T.W.; Macek, R.J.; Plum, M.A.; Wang, T.S.F.

    1993-01-01

    We have built, installed and tested a pinger for use as a general diagnostic at the Los Alamos Proton Storage Ring (PSR). Two 4-m-long parallel-plate electrodes with a plate spacing of 10.2 cm provide kicks of up to 1.1 mrad. A pair of solid-state pulsers may be operated in a single-pulse mode for beam pinging (tune measurements) or in a burst mode at up to 700 kHz pulse rates for beam sweeping. During our 1992 operating period we used the pinger for beam sweeping, for beam shaking, for measuring the tune shift, and we have used it as an ion chamber. Using the pinger as an ion chamber during production conditions has yielded some surprising results

  10. Simple computer model for the nonlinear beam--beam interaction in ISABELLE

    International Nuclear Information System (INIS)

    Herrera, J.C.; Month, M.; Peierls, R.F.

    1979-03-01

    The beam--beam interaction for two counter-rotating continuous proton beams crossing at an angle can be simulated by a 1-dimensional nonlinear force. The model is applicable to ISABELLE as well as to the ISR. Since the interaction length is short compared with the length of the beam orbit, the interaction region is taken to be a point. The problem is then treated as a mapping with the remainder of the system taken to be a rotation of phase given by the betatron tune of the storage ring. The evolution of the mean square amplitude of a given distribution of particles is shown for different beam--beam strengths. The effect of round-off error with resulting loss of accuracy for particle trajectories is discussed. 3 figures

  11. On the compressor ring for the JAERI neutron science project

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, Isao [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1997-11-01

    (1), As long as a 1.5 GeV-8 MW linear accelerator is constructed in the JAERI neutron science center, it is quite reasonable to construct a 5 MW compressor ring as a driver of a high intensity spallation neutron source to generate pulsed neutron beams. (2), Suppression of beam loss around the compressor ring to an acceptable level is the most crucial subject to be coped with in designing a MW-class compressor ring. This subject should be successfully cleared by carefully studying and designing the overall system of accelerator and tunnel. (3), The `PSR instability` was comprehensively discussed in the NSNS workshop held at Santa Fe in March, 1997, as a remaining problem of a high intensity proton compressor ring. People of Los Alamos attributed it to an e-p instability. But some questions like the cause that makes some part of protons leak away from a beam bunch to a bunch gap are yet left open. (4), A new scheme of two step H{sup 0} injection is proposed to remove defects of the conventional one of Los Alamos PSR. (author)

  12. Configuration of the Beam Loss Monitors for the LHC arcs

    CERN Document Server

    Arauzo-Garcia, A

    2000-01-01

    A revised configuration for a beam loss detection system is given for the arcs of the LHC. The last modifications of the LHC arc layout have been taken into account, LHC optics version 6.2. A set of 6 Loss Detectors will be placed outside the cryostat around each short straight section. Quench alarm thresholds are estimated for each detector in all possible LHC arc layout configurations. Threshold values are proposed for top and injection energy beam loss.

  13. Modeling of neutral beam ion loss from CHS plasmas

    International Nuclear Information System (INIS)

    Darrow, D.S.; Isobe, Mitsutaka; Sasao, Mamiko; Kondo, T.

    2000-01-01

    Beam ion loss measurements from Compact Helical System (CHS) plasmas under a variety of conditions show a strong loss of ions in the range of pitch angles corresponding to transition orbits at the probe location. A numerical model has been developed which includes the beam ion orbits, and details of the detector, plasma, vessel, and neutral beam geometry. From this, the expected classical (i.e. collisionless single particle orbit) signal at the detector can be computed. Preliminary comparisons between the experimental data and model predictions indicate that the classical behavior of the orbits and the machine geometry are insufficient to explain the observations. (author)

  14. CONTINOUS EXTRACTED BEAM IN THE AGS FAST EXTERNAL BEAM LINE

    International Nuclear Information System (INIS)

    GLENN, J.W.; TSOUPAS, N.; BROWN, K.A.; BIRYUKOV, V.M.

    2001-01-01

    A method to split off a few percent of the 6 x 10 13 AGS beam delivered to the Slow External Beam (SEB) lines and send it down the Fast External Beam line (FEB) has been developed. The mission is to feed a counter experiment off the FEB that directly measures the neutrino mass using the muon storage ring. The use of normal thin septum splitters would have an excessive loss overhead and been optically difficult. The AGS Slow Extraction uses a third integer resonance with sextuple strength so the resonance width is a few percent of the beam width. This results in a low density tail which will be clipped by a bent crystal and deflected into the FEB channel. This clipping off of the tail should reduce losses in the SEB transport line. Details of modeled orbits, particle distribution and extraction trajectories into and out off the crystal will be given

  15. A Fast CVD Diamond Beam Loss Monitor for LHC

    CERN Document Server

    Griesmayer, E; Dobos, D; Effinger, E; Pernegger, H

    2011-01-01

    Chemical Vapour Deposition (CVD) diamond detectors were installed in the collimation area of the CERN LHC to study their feasibility as Fast Beam Loss Monitors in a high-radiation environment. The detectors were configured with a fast, radiation-hard pre-amplifier with a bandwidth of 2 GHz. The readout was via an oscilloscope with a bandwidth of 1 GHz and a sampling rate of 5 GSPS. Despite the 250 m cable run from the detectors to the oscilloscope, single MIPs were resolved with a 2 ns rise time, a pulse width of 10 ns and a time resolution of less than 1 ns. Two modes of operation were applied. For the analysis of unexpected beam aborts, the loss profile was recorded in a 1 ms buffer and, for nominal operation, the histogram of the time structure of the losses was recorded in synchronism with the LHC period of 89.2 μs. Measurements during the LHC start-up (February to December 2010) are presented. The Diamond Monitors gave an unprecedented insight into the time structure of the beam losses resolving the 400...

  16. The LEP RF Trip and Beam Loss Diagnostics System

    CERN Document Server

    Arnaudon, L; Beetham, G; Ciapala, Edmond; Juillard, J C; Olsen, R

    2002-01-01

    During the last years of operation the number of operationally independent RF stations distributed around LEP reached a total of 40. A serious difficulty when running at high energy and high beam intensities was to establish cause and effect in beam loss situations, where the trip of any single RF station would result in beam loss, rapidly producing further multiple RF station trips. For the last year of operation a fast post-mortem diagnostics system was developed to allow precise time-stamping of RF unit trips and beam intensity changes. The system was based on eight local DSP controlled fast acquisition and event recording units, one in each RF sector, connected to critical RF control signals and fast beam intensity monitors and synchronised by GPS. The acquisition units were armed and synchronised at the start of each fill. At the end of the fill the local time-stamped RF trip and beam intensity change history tables were recovered, events ordered and the results stored in a database for subsequent analys...

  17. BERKELEY: ALS ring

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-06-15

    Everybody at Lawrence Berkeley Laboratory's Center for Beam Physics is pleased with the rapid progress in commissioning LBL's Advanced Light Source (ALS) electron storage ring, the foundation for this third-generation synchrotron radiation facility. Designed for a maximum current of 400 mA, the ALS storage ring reached 407 mA just 24 days after storing the first beam on 16 March. ALS construction as a US Department of Energy (DOE) national user facility to provide high-brightness vacuum ultra-violet and soft x-ray radiation began in October 1987. One technical requirement marking project completion was to accumulate a 50-mA current in the storage ring. The ALS passed this milestone on 24 March, a week ahead of the official deadline. Once injected, the electron beam decays quasi-exponentially primarily because of interactions with residual gas molecules in the storage-ring vacuum chamber. Eventually, when the pressure in the vacuum chamber with beam decreases toward the expected operating level of 1 nano Torr, it will only be necessary to refill the storage ring at intervals of four to eight hours. At present the vacuum is improving rapidly as surfaces are irradiated (scrubbed) by the synchrotron radiation itself. At 100 mA, beam lifetime was about one hour (9 April)

  18. BERKELEY: ALS ring

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Everybody at Lawrence Berkeley Laboratory's Center for Beam Physics is pleased with the rapid progress in commissioning LBL's Advanced Light Source (ALS) electron storage ring, the foundation for this third-generation synchrotron radiation facility. Designed for a maximum current of 400 mA, the ALS storage ring reached 407 mA just 24 days after storing the first beam on 16 March. ALS construction as a US Department of Energy (DOE) national user facility to provide high-brightness vacuum ultra-violet and soft x-ray radiation began in October 1987. One technical requirement marking project completion was to accumulate a 50-mA current in the storage ring. The ALS passed this milestone on 24 March, a week ahead of the official deadline. Once injected, the electron beam decays quasi-exponentially primarily because of interactions with residual gas molecules in the storage-ring vacuum chamber. Eventually, when the pressure in the vacuum chamber with beam decreases toward the expected operating level of 1 nano Torr, it will only be necessary to refill the storage ring at intervals of four to eight hours. At present the vacuum is improving rapidly as surfaces are irradiated (scrubbed) by the synchrotron radiation itself. At 100 mA, beam lifetime was about one hour (9 April)

  19. INJECTION CARBON STRIPPING FOIL ISSUES IN THE SNS ACCUMULATOR RING

    International Nuclear Information System (INIS)

    BEEBE-WANG, J.; LEE, Y.Y.; RAPARIA, D.; WEI, J.

    2001-01-01

    We are reporting the results of studies on issues related to the injection stripping foil in the Spallation Neutron Source (SNS) accumulator ring. The problems related to foil heating and foil lifetime, such as current density distribution and temperature distribution in the foil, are investigated. The impact of injection errors on the beam losses at the foil is studied. The particle traversal rate and the beam losses due to scattering in the foil are summarized. Finally, SNS end-to-end simulation results of the foil-missing rate, the foil-hitting rate and the maximum foil temperature are presented

  20. Interaction Region Design for a Ring-Ring LHeC

    CERN Document Server

    Thompson, L N S; Bernard, N R; Fitterer, M; Holzer, B; Klein, M; Kostka, P

    2011-01-01

    tively low energy and moderately high intensity provides high luminosity TeV-scale e-p collisions at one of the LHC interaction points, running simultaneously with existing experiments. Two designs are studied; an electron ring situated in the LHC tunnel, and an electron linac. The focus of this paper is on the ring design. Designing an e-p machine presents interesting accelerator physics and design challenges, particularly when considering the interaction region. These include coupled optics, beam separation and unconventional mini-beta focusing schemes. Designs are constrained by an array of interdependent factors, including beam-beam interaction, detector dimensions and acceptance, luminosity and synchrotron radiation. Methods of addressing these complex issues are discussed. The current designs for the LHeC Ring-Ring interaction region and long straight section are presented and discussed, in the context of the project goals and design challenges encountered. Future developments and work are also discusse...

  1. Ionisation Chambers for the LHC Beam Loss Detection

    CERN Document Server

    Gschwendtner, E; Dehning, B; Ferioli, G; Kain, V

    2003-01-01

    At the Large Hadron Collider (LHC) a beam loss system will be used to prevent and protect superconducting magnets against coil quenches and coil damages. Since the stored particle beam intensity is 8 orders of magnitude larger than the lowest quench level value particular attention is paid to the design of the secondary particle shower detectors. The foreseen ionisation chambers are optimised in geometry simulating the probable loss distribution along the magnets and convoluting the loss distribution with the secondary particle shower distributions. To reach the appropriate coverage of a particle loss and to determine the quench levels with a relative accuracy of 2 the number of the detectors and their lengths is weighted against the particle intensity density variation. In addition attention is paid to the electrical ionisation chamber signal to minimise the ion tail extension. This optimisation is based on time resolved test measurements in the PS booster. A proposal for a new ionisation chamber will be pre...

  2. End-pumped Nd:YVO4 laser with reduced thermal lensing via the use of a ring-shaped pump beam.

    Science.gov (United States)

    Lin, Di; Andrew Clarkson, W

    2017-08-01

    A simple approach for alleviating thermal lensing in end-pumped solid-state lasers using a pump beam with a ring-shaped intensity distribution to decrease the radial temperature gradient is described. This scheme has been implemented in a diode-end-pumped Nd:YVO 4 laser yielding 14 W of TEM 00 output at 1.064 μm with a corresponding slope efficiency of 53% and a beam propagation factor (M 2 ) of 1.08 limited by available pump power. By comparison, the same laser design with a conventional quasi-top-hat pump beam profile of approximately equal radial extent yielded only 9 W of output before the power rolled over due to thermal lensing. Further investigation with the aid of a probe beam revealed that the thermal lens power was ∼30% smaller for the ring-shaped pump beam compared to the quasi-top-hat beam. The implications for further power scaling in end-pumped laser configurations are considered.

  3. Three-dimensional ordering of cold ion beams in a storage ring: A molecular-dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Yuri, Yosuke, E-mail: yuri.yosuke@jaea.go.jp [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi Takasaki, Gunma 370-1292 Japan (Japan)

    2015-06-29

    Three-dimensional (3D) ordering of a charged-particle beams circulating in a storage ring is systematically studied with a molecular-dynamics simulation code. An ion beam can exhibit a 3D ordered configuration at ultralow temperature as a result of powerful 3D laser cooling. Various unique characteristics of the ordered beams, different from those of crystalline beams, are revealed in detail, such as the single-particle motion in the transverse and longitudinal directions, and the dependence of the tune depression and the Coulomb coupling constant on the operating points.

  4. Benchmarking of Touschek Beam Lifetime Calculations for the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, A.; Yang, B.

    2017-06-25

    Particle loss from Touschek scattering is one of the most significant issues faced by present and future synchrotron light source storage rings. For example, the predicted, Touschek-dominated beam lifetime for the Advanced Photon Source (APS) Upgrade lattice in 48-bunch, 200-mA timing mode is only ~ 2 h. In order to understand the reliability of the predicted lifetime, a series of measurements with various beam parameters was performed on the present APS storage ring. This paper first describes the entire process of beam lifetime measurement, then compares measured lifetime with the calculated one by applying the measured beam parameters. The results show very good agreement.

  5. Development of a Bunched Beam Electron Cooler based on ERL and Circulator Ring Technology for the Jefferson Lab Electron-Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Stephen V. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hannon, Fay E. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hutton, Andrew M. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Li, Rui [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Rimmer, Robert A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roblin, Yves R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Tennant, Christopher D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, Haipeng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, He [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-01-01

    Jefferson Lab is in the process of designing an electron ion collider with unprecedented luminosity at a 45 GeV center-of-mass energy. This luminosity relies on ion cooling in both the booster and the storage ring of the accelerator complex. The cooling in the booster will use a conventional DC cooler similar to the one at COSY. The high-energy storage ring, operating at a momentum of up to 100 GeV/nucleon, requires novel use of bunched-beam cooling. There are two designs for such a cooler. The first uses a conventional Energy Recovery Linac (ERL) with a magnetized beam while the second uses a circulating ring to enhance both peak and average currents experienced by the ion beam. This presentation will describe the design of both the Circulator Cooling Ring (CCR) design and that of the backup option using the stand-alone ERL operated at lower charge but higher repetition rate than the ERL injector required by the CCR-based design.

  6. New results on the beam-loss criteria for heavy-ion accelerators

    International Nuclear Information System (INIS)

    Katrik, Peter; Hoffmann, Dieter H.H.; Mustafin, Edil; Strasik, Ivan; Pavlovic, Marius

    2015-01-01

    Activation of high-energy heavy-ion accelerators due to beam losses is a serious issue for accelerator parts like collimators, magnets, beam-lines, fragment separator targets, etc. The beam losses below 1 W/m are considered as tolerable for 'hands-on' maintenance in proton machines. In our previous studies, the FLUKA2008 code has been used for establishing a scaling law expanding the existing beam-loss tolerance for 1 GeV protons to heavy ions. This scaling law enabled specifying beam-loss criteria for projectile species from proton up to uranium at energies from 200 MeV/u up to 1 GeV/u. FLUKA2008 allowed nucleus-nucleus interactions down to 100 MeV/u only. In this work, we review our previous results and extend activation simulations to lower energies with the help of the new FLUKA version, namely FLUKA2011. It includes models for nucleus-nucleus interactions below 100 MeV/u. We also tried to expand the scaling law to lower energies. This, however, needs further studies, because the heavy-ion-induced nuclide composition starts deviating from the proton-induced nuclide composition at energies below 150 MeV/u. (authors)

  7. IFMIF-LIPAc Beam Diagnostics. Profiling and Loss Monitoring Systems

    International Nuclear Information System (INIS)

    Egberts, J.

    2012-01-01

    The IFMIF accelerator will accelerate two 125 mA continuous wave (cw) deuteron beams up to 40 MeV and blasts them onto a liquid lithium target to release neutrons. The very high beam power of 10 MW pose unprecedented challenges for the accelerator development. Therefore, it was decided to build a prototype accelerator, the Linear IFMIF Prototype Accelerator (LIPAc), which has the very same beam characteristic, but is limited to 9 MeV only. In the frame of this thesis, diagnostics devices for IFMIF and LIPAc have been developed. The diagnostics devices consist of beam loss monitors and interceptive as well as non-interceptive profile monitors. For the beam loss monitoring system, ionization chambers and diamond detectors have been tested and calibrated for neutron and γ radiation in the energy range expected at LIPAc. During these tests, for the first time, diamond detectors were successfully operated at cryogenic temperatures. For the interceptive profilers, thermal simulations were performed to ensure safe operation. For the non-interceptive profiler, Ionization Profile Monitors (IPMs) were developed. A prototype has been built and tested, and based on the findings, the final IPMs were designed and built. To overcome the space charge of accelerator beam, a software algorithm was written to reconstruct the actual beam profile. (author) [fr

  8. Injector for CESAR (2 MeV electron storage ring): 2-beam, 2 MV van de Graaff generator.

    CERN Multimedia

    CERN PhotoLab

    1963-01-01

    Van de Graaff generator being assembled. Central column and top-terminal. The acceleration tube visible in front of the column is for the spectrometer beam. The acceleration tube for the beam to be injected into the CESAR ring is hidden behind the column. H.Burridge (left) and R.Nettleton (right).

  9. Protection against Accidental Beam Losses at the LHC

    CERN Document Server

    Wenninger, Jörg

    2005-01-01

    Protection of the LHC against uncontrolled beam losses is of prime importance due to the very high stored beam energy. For nominal beam intensities, each of the two 7 TeV/c proton beams has a stored energy of 360 MJ threatening to damage accelerator equipment. At injection a number of passive beam absorbers must be correctly positioned and specific procedures have been proposed to ensure safe injection of high intensity. The LHC beam dump block being the only LHC element that can safety absorb the full LHC beam, it is essential that the beams are extracted unto the dump block in case of emergency. The failure time constants extend from 100 microseconds to few seconds depending on the equipment. Failures must be detected at a sufficiently early stage and transmitted to the beam interlock system that triggers the beam dumping system. To ensure safe operation the machine protection system uses a variety of systems to detect such failures. The strategy for protection of the LHC will be illustrated, with emphasis ...

  10. On-line Observation Of Electron Beam Bunches In The Large Storage Ring Of Kurchatov Srs

    CERN Document Server

    Ioudin, L I; Krylov, Y V; Rezvov, V A; Stirin, A I; Valentinov, A G; Yupinov, Y L

    2004-01-01

    A complex of instrumentation for visual quantitative estimation of electron beam bunches in the big storage ring of Kurchatov Synchrotron Radiation Centre (KSRC) is tested. The bunches pass through a cylindrical electrostatic sensor whose signal is recorded by a wide-band oscillograph. The TV camera reads the optical image of the signal from the oscillograph screen. The TV signal numbering board inputs the video image to the computer memory. The monitor displays the beam bunch structure. A special program provides on-line visualisation of bunch behaviour on the beam orbit. The images of beam structure and a series of images showing the beam behaviour in the regimes of accumulation, acceleration and in the stationary regime a full power are numbered and stored.

  11. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    CERN Document Server

    Guaglio, Gianluca; Santoni, C

    2004-01-01

    The employment of superconducting magnets, in the high energies colliders, opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standar...

  12. Prestress Loss of CFL in a Prestressing Process for Strengthening RC Beams

    Directory of Open Access Journals (Sweden)

    Xinyan Guo

    2017-01-01

    Full Text Available A prestressing system was designed to strengthen reinforced concrete (RC beams with prestressed carbon fiber laminate (CFL. During different prestressing processes, prestress loss was measured using strain gauges attached on the surface of CFL along the length direction. The prestress loss was 50–68% of the whole prestress loss, which is typically associated with CFL slipping between the grip anchors. Approximately 20–27% of the prestress loss was caused by the elastic shortening of the RC beam. An analytical model using linear-elastic theory was constructed to calculate the prestress loss caused by CFL slipping between the anchors and the elastic shortening of the strengthened beams. The compared results showed that the analytical model of prestress loss can describe the experimental data well. Methods of reducing the prestress loss were also suggested. Compared to other experiments, the prestressing system proposed by this research group was effective because the maximum percentage of prestress loss was 14.9% and the average prestress loss was 12.5%.

  13. Interaction of crystalline beams with a storage ring lattice

    International Nuclear Information System (INIS)

    Hofmann, I.; Struckmeier, J.

    1989-01-01

    We present the results of numerical calculations for beams in realistic storage ring lattices under conditions, where crystalline order could be expected, at least in principle. In particular we discuss the effect of space charge, envelope instabilities, bending magnets and of cooling strength. Our conclusions on the lattice design require high symmetry and a small betatron tune. For three-dimensional ordering we find in addition that typically an e-folding of cooling is necessary after each bending section. The formation of order in a one- dimensional chain puts no restriction on the lattice, and a fraction of an e-folding of cooling once per revolution has been found sufficient. (orig.)

  14. Impedances and beam stability issues of the Fermilab recycler ring

    International Nuclear Information System (INIS)

    Ng, King-Yuen.

    1996-04-01

    The Fermilab Recycler Ring (permanent magnets) will be built on top of the Fermilab Main Injector sharing the same tunnel; its main function is to recycle the anti-protons after a store in the Tevatron and to provide storage for them after after accumulation and cooling in the Accumulator. Estimates of coupling impedances show domination by space charge. Examination of longitudinal instabilities shows that microwave instability will not occur if there are only N = 2.53 x 10 12 anti-protons in the beam. Longitudinal coupling-bunch instability during injection stacking does not appear possible because of long bunch lengths/short bunch gaps and lack of sharp resonances. Transverse instability, on the other hand, cannot be Landau damped by the momentum spread in the beam, but it can be cured by a small spread in the betatron tunes (either from space charge or an octupole)

  15. Present status of storage ring free electron laser experiment at ETL

    International Nuclear Information System (INIS)

    Yamazaki, T.; Nakamura, T.; Tomimasu, T.; Sugiyama, S.; Noguchi, T.

    1988-01-01

    Outline is described of the present status of the ETL storage-ring free electron laser project. The structure and the performance of the ETL-type transverse optical klystron are given. A modification of the dispersive section has decreased the degradation of the shape of the spontaneous-emission spectrum due to energy spread of the electron beam. Relevant parameters of the stored beam are presented. Measurement of the optical-cavity loss is under way. (author)

  16. Charged-particle beam diagnostics for the Advanced Photon Source (APS)

    International Nuclear Information System (INIS)

    Lumpkin, A.H.; Decker, G.; Kahana, E.; Patterson, D.; Sellyey, W.; Wang, X.; Chung, Y.

    1992-01-01

    Plans, prototypes, and initial test results for the charged-particle beam (e - , e + ) diagnostic systems on the injector rings, their transport lines, and the storage ring for the Advanced Photon Source (APS) are presented. The APS will be a synchrotron radiation user facility with one of the world's brightest x-ray sources in the 10-keV to 100-keV regime. Its 200-MeV electron linac, 450-MeV positron linac, positron accumulator ring, 7-GeV booster synchrotron, 7-GeV storage ring, and undulator test lines will also demand the development and demonstration of key particle-beam characterization techniques over a wide range of parameter space. Some of these parameter values overlap or approach those projected for fourth generation light sources (linac-driven FELs and high brightness storage rings) as described at a recent workshop. Initial results from the diagnostics prototypes on the linac test stand operating at 45-MeV include current monitor data, beam loss monitor data, and video digitization using VME architecture

  17. Beam-beam interactions in p-p storage rings

    CERN Document Server

    Keil, Eberhard

    1977-01-01

    There are two lectures. The first one (sections 2 to 5) deals with the theoretical aspects of the beam-beam interaction, and the second one (sections 6 to 8) describes the results of experiments in the ISR. Section 3 describes the strength of the beam-beam interaction in terms of the linear tune shift Delta Q which has been calculated for several models. Because of the non-uniform density distribution in the beam the force results in a tune spread. This can be calculated by a perturbation method as explained in section 4. Section 5 discusses the simulation of the beam-beam interaction on a computer. Finally, section 6 reviews beam-beam phenomena observed in the CERN-ISR. These include the absence of observable beam-beam effects in unbunched beams, overlap knock-out resonances, collisions between a low-energy beam and a high-intensity stack, experiments with a nonlinear lens, and experiments with a high- beta insertion. (20 refs).

  18. Studies of Limits on Uncontrolled Heavy Ion Beam Losses for Allowing Hands-On Maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Reginald M. Ronningen; Igor Remec

    2010-09-11

    Dose rates from accelerator components activated by 1 W/m beam losses are obtained semiempirically for a 1 GeV proton beam and by use of Monte Carlo transport codes for the proton beam and for 777 MeV/u 3He, 500 MeV/u 48Ca, 86Kr, 136Xe, and 400 MeV/u 238U ions. The dose rate obtained by the semi-empirical method, 0.99 mSv/h (99 mrem/h) at 30 cm, 4 h after 100 d irradiation by a 1-GeV proton beam, is consistent with studies at several accelerator facilities and with adopted hands-on maintenance dose rate limits. Monte Carlo simulations verify this result for protons and extend studies to heavy ion beam losses in drift-tube linac and superconducting linac accelerating structures. The studies indicate that the 1 W/m limit imposed on uncontrolled beam losses for high-energy proton beams might be relaxed for heavy ion beams. These studies further suggest that using the ratio of neutrons produced by a heavy ion beam to neutrons produced by a proton beam along with the dose rate from the proton beam (for thin-target scenarios) should allow an estimate of the dose rates expected from heavy ion beam losses.

  19. Overview of collective effects in the NLC main damping rings

    International Nuclear Information System (INIS)

    Wolski, A.; Santis, S. de

    2002-01-01

    The present design for the NLC Main Damping Rings (MDRs) meets the specifications for acceptance and extracted emittance, in the limit of zero current. However, the relatively large bunch charge and moderate energy mean that a variety of collective effects can impact the beam dynamics, leading to loss of stability or increase of equilibrium emittance. These effects include intrabeam scattering, impedance from numerous sources, fast ion instability, and (in the positron ring) electron cloud. In this note, we survey the expected impact on damping ring performance from each of a number of collective effects, and discuss the priorities for future studies in this area

  20. Beam-beam interactions in p-p storage rings

    International Nuclear Information System (INIS)

    Keil, E.

    1977-01-01

    There are two lectures: the first part of this paper (sections 2 to 5) deals with the theoretical aspects of the beam-beam interaction, and the second part (sections 6 to 8) describe the results of experiments in the ISR. Section 3 describes the strengths of the beam-beam interaction in terms of the linear tune shift ΔQ which has been calculated for several models. Because of the non-uniform density distribution in the beam the force results in a tune spread. This can be calculated by a perturbation method as explained in section 4. Section 5 discusses the simulation of the beam-beam interaction on a computer. Finally, section 6 reviews beam-beam phenomena observed in the CERN-ISR. These include the absence of observable beam-beam effects in unbunched beams, overlap knock-out resonances, collisions between a low-energy beam and a high-intensity stack, experiments with a nonlinear lens, and experiments with a high-β insertion. Section 7 contains a few concluding remarks. (Auth.)

  1. The AGS Booster beam loss monitor system

    International Nuclear Information System (INIS)

    Beadle, E.R.; Bennett, G.W.; Witkover, R.L.

    1991-01-01

    A beam loss monitor system has been developed for the Brookhaven National Laboratory Booster accelerator, and is designed for use with intensities of up to 1.5 x 10 13 protons and carbon to gold ions at 50-3 x 10 9 ions per pulse. This system is a significant advance over the present AGS system by improving the sensitivity, dynamic range, and data acquisition. In addition to the large dynamic range achievable, it is adaptively shifted when high losses are detected. The system uses up to 80 argon filled ion chambers as detectors, as well as newly designed electronics for processing and digitizing detector outputs. The hardware simultaneously integrates each detector output, interfaces to the beam interrupt systems, and digitizes all 80 channels to 21 bits at 170 KHz. This paper discuses the design, construction, and operation of the system. 4 refs., 2 figs

  2. Tests of a grazing-incidence ring resonator free-electron laser

    International Nuclear Information System (INIS)

    Dowell, D.H.; Laucks, M.L.; Lowrey, A.R.; Adamski, J.L.; Pistoresi, D.J.; Shoffstall, D.R.; Bentz, M.P.; Burns, R.H.; Guha, J.; Sun, K.; Tomita, W.

    1991-01-01

    This paper reports on the Boeing free-electron laser (FEL) optical cavity that has been changed from a simple concentric cavity using two spherical mirrors to a larger grazing-incidence ring resonator. The new resonator consists of two mirror telescopes located at each end of the wiggler with a round-trip path length of approximately 133 m. Each telescope is a grazing-incidence hyperboloid followed by a normal-incidence paraboloid. Initial tests showed that poorly positioned ring focus and unreliable pointing alignment resulted in reduced and structured FEL output. (First lasing operation occurred on March 23 and 24, 1990.) Later efforts concentrated on improving the resonator alignment techniques and lowering the single-pass losses. FEL performance and reliability have significantly improved due to better ring alignment. The alignment procedure and recent lasing results are described. The effect the electron beam has on lasing is also discussed. Measurements are presented showing how FEL temporal output and wavelength are sensitive to electron beam energy variations

  3. Enhanced Schottky signals from electron-cooled, coasting beams in a heavy-ion storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, C., E-mail: claude.krantz@mpi-hd.mpg.d [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Blaum, K.; Grieser, M. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Litvinov, Yu.A. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstrasse 1, D-64291 Darmstadt (Germany); Repnow, R.; Wolf, A. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2011-02-11

    Measurements at the Test Storage Ring of the Max-Planck-Institut fuer Kernphysik in Heidelberg (Germany) have shown that the signal amplitude induced in a Schottky-noise pickup electrode by a coasting electron-cooled ion beam can be greatly enhanced by exposure of the latter to a perturbing radiofrequency signal which is detuned from the true beam revolution frequency. The centre frequencies obtained from harmonic analysis of the observed pickup signal closely follow those imposed on the ions by the electron cooling force. The phenomenon can be exploited to measure the true revolution frequency of ion beams of very low intensity, whose pure Schottky noise is too weak to be measurable under normal circumstances.

  4. ELECTRON CLOUD AT COLLIMATOR AND INJECTION REGION OF THE SPALLATION NEUTRON SOURCE ACCUMULATOR RING

    International Nuclear Information System (INIS)

    WANG, L.; HSEUH, H.-C.; LEE, Y.Y.; RAPARIA, D.; WEI, J.; COUSINEAU, S.

    2005-01-01

    The beam loss along the Spallation Neutron Source's accumulator ring is mainly located at the collimator region and injection region. This paper studied the electron cloud build-up at these two regions with the three-dimension program CLOUDLAND

  5. Compensated linac beam colliding with a stored beam

    International Nuclear Information System (INIS)

    Csonka, P.L.; Oregon Univ., Eugene

    1981-01-01

    The disruptive effect of a linac beam on a beam circulating in a storage ring can be reduced by compensating for the space charge of the linac beam with a beam which is oppositely charged, may have different bunchlength as well as lower energy, and need not be circulating in a storage ring. (orig.)

  6. Beam loss studies on silicon strip detector modules for the CMS experiment

    CERN Document Server

    Fahrer, Manuel

    2006-01-01

    The large beam energy of the LHC demands for a save beam abort system. Nevertheless, failures cannot be excluded with last assurance and are predicted to occur once per year. As the CMS experiment is placed in the neighboured LHC octant, it is affected by such events. The effect of an unsynchronized beam abort on the silicon strip modules of the CMS tracking detector has been investigated in this thesis by performing one accelerator and two lab experiments. The dynamical behaviour of operational parameters of modules and components has been recorded during simulated beam loss events to be able to disentangle the reasons of possible damages. The first study with high intensive proton bunches at the CERN PS ensured the robustness of the module design against beam losses. A further lab experiment with pulsed IR LEDs clarified the physical and electrical processes during such events. The silicon strip sensors on a module are protected against beam losses by a part of the module design that originally has not been...

  7. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    Science.gov (United States)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2004-11-01

    The employment of superconducting magnets in high energy colliders opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particle losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data have been processed by reliability software (Isograph). The analysis ranges from the components data to the system configuration.

  8. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    International Nuclear Information System (INIS)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2004-01-01

    The employment of superconducting magnets in high energy colliders opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particle losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data have been processed by reliability software (Isograph). The analysis ranges from the components data to the system configuration

  9. Size modulated transition in the fluid–structure interaction losses in nano mechanical beam resonators

    Energy Technology Data Exchange (ETDEWEB)

    Vishwakarma, S. D.; Pratap, R., E-mail: pratap@mecheng.iisc.ernet.in [Center for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012 (India); Pandey, A. K., E-mail: ashok@iith.ac.in [Department of Mechanical and Aerospace Engineering, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy - 502285 (India); Parpia, J. M.; Craighead, H. G. [Center for Materials Research, Cornell University, Ithaca, New York 14853 (United States); Verbridge, S. S. [Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2016-05-21

    An understanding of the dominant dissipative mechanisms is crucial for the design of a high-Q doubly clamped nanobeam resonator to be operated in air. We focus on quantifying analytically the viscous losses—the squeeze film damping and drag force damping—that limit the net quality factor of a beam resonator, vibrating in its flexural fundamental mode with the surrounding fluid as air at atmospheric pressure. Specifically, drag force damping dominates at smaller beam widths and squeeze film losses dominate at larger beam widths, with no significant contribution from structural losses and acoustic radiation losses. The combined viscous losses agree well with the experimentally measured Q of the resonator over a large range of beam widths, within the limits of thin beam theory. We propose an empirical relation between the maximum quality factor and the ratio of maximum beam width to the squeeze film air gap thickness.

  10. Beam losses monitor for superconducting accelerators

    International Nuclear Information System (INIS)

    Kurochkin, I.A.; Lapitskij, S.N.; Mokhov, N.V.; Seleznev, V.S.

    1991-01-01

    A special beam losses monitor (BLM) for SC accelerators -colliders as an integral part od SC magnet (quadrupole or/and corrector) design is proposed. The main BLM parameters calculated under the real UNK and SSC conditions are presented in comparison with the traditional BLM ones which is planned to be used at SSC now. 9 refs.; 4 figs.; 2 tabs

  11. The electron beam dynamics simulation in the laser-electron storage ring involving compton and intrabeam scattering

    International Nuclear Information System (INIS)

    Gladkikh, P.I.; Telegin, Yu.N.; Karnaukhov, I.M.

    2002-01-01

    The feasibility of the development of intense X-ray sources based on Compton scattering in laser-electron storage rings is discussed. The results of the electron beam dynamics simulation involving Compton and intrabeam scattering are presented

  12. The electron beam dynamics simulation in the laser-electron storage ring involving compton and intrabeam scattering

    CERN Document Server

    Gladkikh, P I; Karnaukhov, I M

    2002-01-01

    The feasibility of the development of intense X-ray sources based on Compton scattering in laser-electron storage rings is discussed. The results of the electron beam dynamics simulation involving Compton and intrabeam scattering are presented.

  13. Present and future colliding beam facilities at SLAC

    International Nuclear Information System (INIS)

    Wiedemann, H.

    1977-01-01

    Present state of the 4.1 GeV electron-positron storage ring SPEAR is described. The most important limitations on performance in SPEAR, such as synchrotron-betatron resonances, higher-order mode losses are outlined. Active bunch lengthener was outstalled in SPEAR to reduce the losses. Experiments on the bunch lengthening observed in SPEAR showed that the lengthening mechanism results from bunch instabilities due to the bunch interaction with the environment. SPEAR performance experience provided with effective prototype for directing the design of PEP-the 18 GeV positron-electron storage ring with designed luminosity of 10 32 cm -2 s -1 . Procurements and construction of PEP components are in full swing. The first beam is expeted to go around in the storage ring by October 1979

  14. Lifetime measurement of ATF damping ring

    International Nuclear Information System (INIS)

    Okugi, T.; Hayano, H.; Kubo, K.; Naito, T.; Terunuma, N.; Urakawa, J.; Zimmermann, F.

    1998-06-01

    The purpose of the ATF damping ring is the development of technologies for producing a low emittance beam required in future linear colliders such as JLC. The lifetime of the damping ring is very short (typically a few minutes). It is limited by elastic beam-gas scattering along with a small dynamic aperture, and by single intra-beam scattering (Touschek effect). The Touschek lifetime strongly depends upon the charge density of the beam, especially, the size of the vertical emittance. In this paper, the authors report the results of beam lifetime measurements in the ATF damping ring and the estimation of the vertical emittance from these measurements

  15. Forming mechanism and avoiding measures of blue-ring on electronic beam welding sample after water corrosion

    International Nuclear Information System (INIS)

    Ren Defang; Luo Xiandian; Tong Shenxiu; Guo Xulin; Peng Haiqing

    2001-01-01

    After water corrosion in compliance with ASTM G2, the blue ring appears on the nuclear fuel rod samples of AFA 2G welded by using a Big Chamber Electron Beam Welder made in Russia. The characteristics, appearance, chemical composition, microstructure of b lue ring a nd some condition test are described. The mechanism of forming blue ring may be depicted as following: welding metal vapor and the splash produced by secondary and scatter electrons on metal clamp and gun body deposit in the area between HAZ and substrate because of the water cooling down effects on the clamp; these deposits, after water corrosion, appears as blue ring on the fuel rod surface. Avoiding measure is that the side of the clamp closing to weld seal is chamfered, while making the welding chamber cleaner

  16. Consideration of neutral beam prompt loss in the design of a tokamak helicon antenna

    International Nuclear Information System (INIS)

    Pace, D.C.; Van Zeeland, M.A.; Fishler, B.; Murphy, C.

    2016-01-01

    Highlights: • Neutral beam prompt losses place appreciable power on an in-vessel tokamak antenna. • Simulations predict prompt loss power and inform protective tile design. • Experiments confirm the validity of the prompt loss simulations. - Abstract: Neutral beam prompt losses (injected neutrals that ionize such that their first poloidal transit intersects with the wall) can put appreciable power on the outer wall of tokamaks, and this power may damage the wall or other internal components. These prompt losses are simulated including a protruding helicon antenna installation in the DIII-D tokamak and it is determined that 160 kW of power will impact the antenna during the injection of a particular neutral beam. Protective graphite tiles are designed in response to this modeling and the wall shape of the installed antenna is precisely measured to improve the accuracy of these calculations. Initial experiments confirm that the antenna component temperature increases according to the amount of neutral beam energy injected into the plasma. In this case, only injection of beams that are aimed counter to the plasma current produce an appreciable power load on the outer wall, suggesting that the effect is of little concern for tokamaks featuring only co-current neutral beam injection. Incorporating neutral beam prompt loss considerations into the design of this in-vessel component serves to ensure that adequate protection or cooling is provided.

  17. Consideration of neutral beam prompt loss in the design of a tokamak helicon antenna

    Energy Technology Data Exchange (ETDEWEB)

    Pace, D.C., E-mail: pacedc@fusion.gat.com; Van Zeeland, M.A.; Fishler, B.; Murphy, C.

    2016-11-15

    Highlights: • Neutral beam prompt losses place appreciable power on an in-vessel tokamak antenna. • Simulations predict prompt loss power and inform protective tile design. • Experiments confirm the validity of the prompt loss simulations. - Abstract: Neutral beam prompt losses (injected neutrals that ionize such that their first poloidal transit intersects with the wall) can put appreciable power on the outer wall of tokamaks, and this power may damage the wall or other internal components. These prompt losses are simulated including a protruding helicon antenna installation in the DIII-D tokamak and it is determined that 160 kW of power will impact the antenna during the injection of a particular neutral beam. Protective graphite tiles are designed in response to this modeling and the wall shape of the installed antenna is precisely measured to improve the accuracy of these calculations. Initial experiments confirm that the antenna component temperature increases according to the amount of neutral beam energy injected into the plasma. In this case, only injection of beams that are aimed counter to the plasma current produce an appreciable power load on the outer wall, suggesting that the effect is of little concern for tokamaks featuring only co-current neutral beam injection. Incorporating neutral beam prompt loss considerations into the design of this in-vessel component serves to ensure that adequate protection or cooling is provided.

  18. Basis for low beam loss in the high-current APT linac

    International Nuclear Information System (INIS)

    Wangler, T.P.; Gray, E.R.; Krawczyk, F.L.; Kurennoy, S.S.; Lawrence, G.P.; Ryne, R.D.; Crandall, K.R.

    1998-01-01

    The present evidence that the APT proton linac design will meet its goal of low beam loss operation. The conclusion has three main bases: (1) extrapolation from the understanding of the performance of the 800-MeV LANSCE proton linac at Los Alamos, (2) the theoretical understanding of the dominant halo-forming mechanism in the APT accelerator from physics models and multiparticle simulations, and (3) the conservative approach and key principles underlying the design of the APT linac, which are aimed at minimizing beam halo and providing large apertures to reduce beam loss to a very low value

  19. Comparison of LHC collimator beam-based alignment to BPM-Interpolated centers

    CERN Document Server

    Valentino, G; Assmann, R W; Bruce, R; Muller, G J; Redaelli, S; Rossi, A; Lari, L

    2012-01-01

    The beam centers at the Large Hadron Collider collimators are determined by beam-based alignment, where both jaws of a collimator are moved in separately until a loss spike is detected on a Beam LossMonitor downstream. Orbit drifts of more than a few hundred micrometers cannot be tolerated, as they would compromise the performance of the collimation system. Beam Position Monitors (BPMs) are installed at various locations around the LHC ring, and a linear interpolation of the orbit can be obtained at the collimator positions. In this paper, the results obtained from beam-based alignment are compared with the orbit interpolated from the BPM data throughout the 2011 and 2012 LHC proton runs.

  20. Experimental observations and theoretical models for beam-beam phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Kheifets, S.

    1981-03-01

    The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10/sup 10/-10/sup 11/ and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented.

  1. Experimental observations and theoretical models for beam-beam phenomena

    International Nuclear Information System (INIS)

    Kheifets, S.

    1981-03-01

    The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10 10 -10 11 and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented

  2. OPERATIONAL EXPERIENCE WITH BEAM ABORT SYSTEM FOR SUPERCONDUCTING UNDULATOR QUENCH MITIGATION*

    Energy Technology Data Exchange (ETDEWEB)

    Harkay, Katherine C.; Dooling, Jeffrey C.; Sajaev, Vadim; Wang, Ju

    2017-06-25

    A beam abort system has been implemented in the Advanced Photon Source storage ring. The abort system works in tandem with the existing machine protection system (MPS), and its purpose is to control the beam loss location and, thereby, minimize beam loss-induced quenches at the two superconducting undulators (SCUs). The abort system consists of a dedicated horizontal kicker designed to kick out all the bunches in a few turns after being triggered by MPS. The abort system concept was developed on the basis of single- and multi-particle tracking simulations using elegant and bench measurements of the kicker pulse. Performance of the abort system—kick amplitudes and loss distributions of all bunches—was analyzed using beam position monitor (BPM) turn histories, and agrees reasonably well with the model. Beam loss locations indicated by the BPMs are consistent with the fast fiber-optic beam loss monitor (BLM) diagnostics described elsewhere [1,2]. Operational experience with the abort system, various issues that were encountered, limitations of the system, and quench statistics are described.

  3. Characterization of beam dynamics in the APS injector rings using time-resolved imaging techniques

    International Nuclear Information System (INIS)

    Yang, B.X.; Lumpkin, A.H.; Borland, M.

    1997-01-01

    Images taken with streak cameras and gated intensified cameras with both time (longitudinal) and spatial (transverse) resolution reveal a wealth of information about circular accelerators. The authors illustrate a novel technique by a sequence of dual-sweep streak camera images taken at a high dispersion location in the booster synchrotron, where the horizontal coordinate is strongly correlated with the particle energy and the open-quotes top-viewclose quotes of the beam gives a good approximation to the particle density distribution in the longitudinal phase space. A sequence of top-view images taken fight after injection clearly shows the beam dynamics in the phase space. We report another example from the positron accumulator ring for the characterization of its beam compression bunching with the 12th harmonic rf

  4. Design of a ring resonator-based optical beam forming network for phased array receive antennas

    NARCIS (Netherlands)

    van 't Klooster, J.W.J.R.; Roeloffzen, C.G.H.; Meijerink, Arjan; Zhuang, L.; Marpaung, D.A.I.; van Etten, Wim; Heideman, Rene; Leinse, Arne; Schippers, H.; Verpoorte, J.; Wintels, M.

    2008-01-01

    A novel squint-free ring resonator-based optical beam forming network (OBFN) for phased array antennas (PAA) is proposed. It is intended to provide broadband connectivity to airborne platforms via geostationary satellites. In this paper, we present the design of the OBFN and its control system. Our

  5. SPS transverse beam scraping and LHC injection losses

    CERN Document Server

    Drosdal, L; Bartmann, W; Bracco, C; Cornelis, K; Goddard, B; Meddahi, M; Veyrunes, E

    2012-01-01

    Machine protection sets strict requirements for the quality of the injected beam, in particular in the transverse plane. Losses at aperture restrictions and protection elements have to be kept at a minimum. Particles in the beam tails are lost at the tight transfer line collimators and can trigger the LHC beam abort system. These particles have to be removed by scrapers in the vertical and horizontal plane in the SPS. Scraping has become vital for high intensity LHC operation. This paper shows the dependence of injection quality on the SPS scraping and discusses an improved scraper setting up strategy for better reproducibility with the current scraper system.

  6. Prestressed Ring Beam in the Church of St. Peter’s and Paul’s in Bodzanow, Design and Realization

    Science.gov (United States)

    Szydlowski, Rafal; Labuzek, Barbara; Turcza, Monika

    2017-10-01

    The present trend in architecture is designing thin. slender and spacious architectural forms. It has become the reason for searching for new solutions and finding new ways of use of the existing construction ones. Recently, the first time in Poland, the post-tensioning has been used in realization of church building. In the Church of St. Peter’s and Paul’s in Bodzanow (near Cracow) was designed circumferential ring beam post-tensioned with 4 unbounded tendons to transfer peripheral tensile forces from the roof. Thanks to the use of a prestressed ring beam hidden in the wall, large cross-section of roof girders was possible to be avoided, as well as a massive reinforced concrete ring or additional steel tie-rods. The paper presents the applied solutions in details with the theoretical calculated results as well as the results of prestressing measured in site during tensioning of tendons. Based on presented results some conclusions have been drawn.

  7. Measuring, calculating and estimating PEP's parasitic mode loss parameters

    International Nuclear Information System (INIS)

    Weaver, J.N.

    1981-01-01

    This note discusses various ways the parasitic mode losses from a bunched beam to a vacuum chamber can be measured, calculated or estimated. A listing of the parameter, k, for the various PEP ring components is included. A number of formulas for calculating multiple and single pass losses are discussed and evaluated for several cases. 25 refs., 1 fig., 1 tab

  8. Computational Modelling of Piston Ring Dynamics in 3D

    Directory of Open Access Journals (Sweden)

    Dlugoš Jozef

    2014-12-01

    Full Text Available Advanced computational models of a piston assembly based on the level of virtual prototypes require a detailed description of piston ring behaviour. Considering these requirements, the piston rings operate in regimes that cannot, in general, be simplified into an axisymmetric model. The piston and the cylinder liner do not have a perfect round shape, mainly due to machining tolerances and external thermo-mechanical loads. If the ring cannot follow the liner deformations, a local loss of contact occurs resulting in blow-by and increased consumption of lubricant oil in the engine. Current computational models are unable to implement such effects. The paper focuses on the development of a flexible 3D piston ring model based on the Timoshenko beam theory using the multibody system (MBS. The MBS model is compared to the finite element method (FEM solution.

  9. Present and future colliding beam facilities at SLAC

    International Nuclear Information System (INIS)

    Wiedemann, H.

    1977-07-01

    In April 1972, the 3-GeV electron positron storage ring, SPEAR, was put into operation at the end of the linear accelerator at Stanford. By the recent discoveries in high energy physics the value of electron-positron storage rings for high energy physics has been clearly demonstrated. This development certainly encouraged the relatively early funding of the new electron-positron storage ring, PEP, at SLAC. In addition to its role as a particle physics research tool, SPEAR has been and remains a priceless model or prototype for larger storage rings like PEP. A few of the recent observations in SPEAR which have important implications to the design of PEP are described. Although the PEP design follows closely the SPEAR concept in many respects, it has its own distinctive and important features which are discussed in detail. Topics discussed include synchrotron-betatron resonances, beam losses, beam bunching, PEP design luminosity and energy, chromaticity correction in PEP, and the high energy cabability of PEP

  10. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses [Shielding Synchrotron Light Sources: Importance of geometry for calculating radiation levels from beam losses

    International Nuclear Information System (INIS)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-01-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. Lastly, the principles used to provide

  11. Study and conception of the decay ring of a neutrino facility using the β decays of the helium 6 and neon 18 nuclei produced by an intense beam of protons hitting various targets

    International Nuclear Information System (INIS)

    Chance, A.

    2007-09-01

    The study of the neutrino oscillation between its different flavours needs pure and very intense flux of energetic, well collimated neutrinos with a well determined energy spectrum. So, a dedicated machine seems necessary nowadays. Among the different concepts of neutrino facilities, the one which will be studied here, called Beta-Beams, lies on the neutrino production by beta decay of radioactive ions after their acceleration. More precisely, the thesis is focused on the study and the design of the race-track-shaped storage ring of the high energy ions. Its aim is to store the ions until decaying. After a brief description of the neutrino oscillation mechanism and a review of the different experiments, an introduction to the neutrino facility concept and more precisely to the Beta-Beams will be given. Then, the issues linked to the Beta-Beams will be presented. After a description of the beam transport formalism, a first design and the optical properties of the ring will be then given. The effects of the misalignment and of the field errors in the dipoles have been studied. The dynamic aperture optimization is then realized. Handling of the decay losses or the energy collimation scheme will be developed. The off-momentum injection needed in presence of a circulating beam will be explained. Finally, the specific radiofrequency program needed by the beam merging will be presented. (author)

  12. The Circular RFQ Storage Ring

    International Nuclear Information System (INIS)

    Ruggiero, A. G.

    1999-01-01

    This paper presents a novel idea of storage ring for the accumulation of intense beams of light and heavy ions at low energy. The new concept is a natural development of the combined features of conventional storage rings and ion traps, and is basically a linear RFQ bent on itself. The advantages are: smaller beam dimensions, higher beam intensity, and a more compact storage device

  13. Inter-dependence of the electron beam excitations with the free electron laser stability on the super-ACO storage ring

    CERN Document Server

    Couprie, Marie Emmanuelle; Nutarelli, D; Renault, E; Billardon, M

    1999-01-01

    Storage ring free electron lasers have a complex dynamics as compared to the LINAC driven FEL sources since both the laser and the recirculating electron beam behaviours are involved. Electron beam perturbations can strongly affect the FEL operation (start-up, stability) whereas the FEL can stabilize beam instabilities. Experimental analysis together with simulations are reported here. Improvements of the Super-ACO FEL for users is discussed, and consequences are given in terms of electron beam tolerances for a source development for users.

  14. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  15. The rapid cycling synchrotron of the Eurisol / Beta-Beam facility

    International Nuclear Information System (INIS)

    Lachaize, A.

    2008-09-01

    In order to ask for physicians requests, some neutrinos facilities are under studies to produce pure, intense, well collimated neutrinos beams with a well determined energy spectrum. One of them, the Beta-Beam project, is based on neutrinos production by radioactive ion beams decay after acceleration. The thesis is focused on one step of the complex, namely the low energy ring required for accumulation and injection of ion beams between the post-acceleration linac of the EURISOL complex (dedicated complex for radioactive ion beam production) and the CERN PS. After the description of the EURISOL complex and the Beta-Beam complex, a description of charged particles beams transport formalism is given. Then, in the second part, studies on the definition and the optimisation of the ring are given, starting by optical structure then different simulations concerning beam dynamics, i.e. multiturn injection, synchronous acceleration with beam losses localization and intensity, fast extraction, chromaticity with eddy currents correction and space charge effects. Finally, a preliminary technical design of the RCS main magnets is proposed. (author)

  16. Reliability Analysis of the new Link between the Beam Interlock System and the LHC Beam Dumping System Zuverlässigkeitsanalyse der neuen Verbindung zwischen dem Beam Interlock System und dem LHC Beam Dumping System

    CERN Document Server

    Vatansever, Volkan

    The nominal stored energy in each LHC beam is 360 MJ, surpassing the beam energy of other accelerators by orders of magnitude. This energy threatens to damage accelerator components in case of uncontrolled beam losses To avoid damage of accelerator equipment due to impacting beam, the controlled removal of the LHC beams from the collider rings towards the dump block must be guaranteed at all times. Therefore, the LHC Beam Dumping System was built according to high reliability standards. To further reduce the risk of incapability to dump the beams in case of correlated failures in the redundant system, a new direct link from the LHC Beam Interlock System to the Re-triggering Lines of the LHC Beam Dumping System will be implemented for the startup with beam in 2015. This link represents a diverse redundancy to the current implementation, which should neither significantly increase the risk for so-called Asynchronous Beam Dumps nor compromise machine availability. Therefore, a reliability analysis down to the co...

  17. Lifetime improvement and beam stabilization by longitudinal phase modulation at the DELTA electron storage ring; Lebensdauerverbesserung und Strahlstabilisierung durch longitudinale Phasenmodulation am Elektronenspreicherring DELTA

    Energy Technology Data Exchange (ETDEWEB)

    Fuersch, Jonathan

    2014-10-16

    In DELTA especially at high beam currents often the occurence of an instability of a longitudinal oscillation mode is observed. In the framework of the present thesis first with different procedure the cause of the longitudinal oscillation mode, which is especially strongly excited at high beam currents, is searched for. Thereby connections between the occurrence of this mode and parameters from the region of the storage-ring high-frequency system is observed. It is shown by comparison of different procedures, simulation calculations, and experimental pre-examinations, that especially by a phase modulation of the storage-ring high frequency an essential improvement of especially the longitudinal beam stability and the beam lifetime can be reached. For the durable and reliable improvement of these beam properties in the framework of the present thesis a system for the longitudinal phase modulation of the after-acceleration voltage in the cavity resonator of the DELTA storage ring is concipated, developed, constructed, taken in operation, and tested. Finally the results aimed hereby are presented and discussed.

  18. The circular RFQ storage ring

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1998-01-01

    This paper presents a novel idea of storage ring for the accumulation of intense beams of light and heavy ions at low energy. The new concept is a natural development of the combined features used in a conventional storage ring and an ion trap, and is basically a linear RFQ bend on itself. In summary the advantages are: smaller beam dimensions, higher beam intensity, and a more compact storage device

  19. Heavy ion storage rings

    International Nuclear Information System (INIS)

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented. 35 refs

  20. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    CERN Document Server

    Bruce, R.; Boccone, V.; Bracco, C.; Brugger, M.; Cauchi, M.; Cerutti, F.; Deboy, D.; Ferrari, A.; Lari, L.; Marsili, A.; Mereghetti, A.; Mirarchi, D.; Quaranta, E.; Redaelli, S.; Robert-Demolaize, G.; Rossi, A.; Salvachua, B.; Skordis, E.; Tambasco, C.; Valentino, G.; Weiler, T.; Vlachoudis, V.; Wollmann, D.

    2014-08-21

    The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010--2013, the LHC was routinely storing protons at 3.5--4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An un-controlled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multi-stage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the co...

  1. Investigation of ring-like runaway electron beams in the EAST tokamak

    International Nuclear Information System (INIS)

    Zhou, R J; Hu, L Q; Li, E Z; Xu, M; Zhong, G Q; Xu, L Q; Lin, S Y; Zhang, J Z

    2013-01-01

    In the EAST tokamak, asymmetrical ring-like runaway electron beams with energy more than 30 MeV and pitch angle about 0.1 were investigated. Those runaway beams carried about 46% of the plasma current and located around the q = 2 rational surface when m/n = 1/1 and m/n = 2/1 MHD modes existed in the plasma. Those runaway beams changed from a hollow to a filled structure during the slow oscillations in the discharge about every 0.2 s, which correlated with a large step-like jump in electron cyclotron emission (ECE) signals, a big spike-like perturbation in Mirnov signals and a large decrease in runaway energy. Between those slow oscillations with large magnitude, fast oscillations with small magnitude also existed about every 0.02 s, which correlated with a small step-like jump in ECE signals, a small spike-like perturbation in Mirnov signals, but no clear decrease in runaway energy and changes in the runaway beam structure. Resonant interactions occurred between runaway electrons and magnetohydrodynamic instabilities, which gave rise to fast pitch angle scattering processes of those resonant runaway electrons, and hence increased the synchrotron radiation. Theoretical calculations of the resonant interaction were given based on a test particle description. Synchrotron radiation of those resonant runaway electrons was increased by about 60% until the end of the resonant interaction. (paper)

  2. Very Fast Losses of the Circulating LHC Beam, their Mitigation and Machine Protection

    CERN Document Server

    Baer, Tobias; Elsen, Eckhard

    The Large Hadron Collider (LHC) has a nominal energy of 362MJ stored in each of its two counter-rotating beams - over two orders of magnitude more than any previous accelerator and enough to melt 880kg of copper. Therefore, in case of abnormal conditions comprehensive machine protection systems extract the beams safely from the LHC within not more than three turns $\\approx$270$\\mu$s. The first years of LHC operation demonstrated a remarkable reliability of the major machine protection systems. However, they also showed that the LHC is vulnerable to losses of the circulating beams on very fast timescales, which are too fast to ensure an active protection. Very fast equipment failures, in particular of normal-conducting dipole magnets and the transverse damper can lead to such beam losses. Whereas these failures were already studied in the past, other unexpected beam loss mechanisms were observed after the LHC start-up: so-called (un)identified falling objects (UFOs), which are believed to be micrometer-sized m...

  3. Polarized particles in storage rings

    International Nuclear Information System (INIS)

    Derbenev, Ya.S.; Kondratenko, A.M.; Serednyakov, S.I.; Skrinskij, A.N.; Tumajkin, G.M.; Shatunov, Yu.M.

    1977-01-01

    Experiments with polarized beams on the VEPP-2M and SPEAK storage rings are described. Possible methods of producing polarized particle beams in storage rings as well as method of polarization monitoring are counted. Considered are the processes of radiation polarization of electrons and positrons. It is shown, that to preserve radiation polarization the introduction of regions with a strong sign-variable magnetic field is recommended. Methods of polarization measurement are counted. It is suggested for high energies to use dependence of synchrotron radiation power on transverse polarization of electrons and positrons. Examples of using polarizability of colliding beams in storage rings are presented

  4. Beam loss due to the aperture limitation resulting from intrabeam scattering

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1984-01-01

    Diffusion equation is used to evaluate the beam loss in the presence of aperture limitation resulting from the intrabeam scattering. We discuss the effect of different boundary conditions. Satisfactory beam intensity can be maintained within the proposed RHIC operation time

  5. Storage ring development at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Krinsky, S.; Bittner, J.; Fauchet, A.M.; Johnson, E.D.; Keane, J.; Murphy, J.; Nawrocky, R.J.; Rogers, J.; Singh, O.V.; Yu, L.H.

    1991-09-01

    This report contains papers on the following topics: Transverse Beam Profile Monitor; Bunch Length Measurements in the VUV Storage Ring; Photoelectric Effect Photon Beam Position Monitors; RF Receivers for Processing Electron Beam Pick-up Electrode Signals; Real-Time Global Orbit Feedback Systems; Local Orbit Feedback; Active Interlock System for High Power Insertion Devices in the X-ray Ring; Bunch Lengthening Cavity for the VUV Ring; SXLS Storage Ring Design

  6. Overlap knock-out effects in the CERN intersecting storage rings (ISR)

    CERN Document Server

    Gourber, J P; Myers, S

    1977-01-01

    Overlap knock-out arises from an overlap between frequencies present in a bunched beam and the betatron frequencies in a stack. The 'single ring' effect in the interaction of a bunched beam with a stack in the same ring. Here the coupling forces are fairly linear and are transmitted by machine elements. The 'two-ring' effect is the interaction of a bunched beam with a stack in the other ring. Here the coupling forces are nonlinear since they are produced by the beam-beam interaction. A brief outline of the general theory of these effects is given. The single ring and two-ring dipole effects have been observed and shown to cause a large increase in the transverse size of the stacked beam. (4 refs).

  7. The LCLS Undulator Beam Loss Monitor Readout System

    Energy Technology Data Exchange (ETDEWEB)

    Dusatko, John; Browne, M.; Fisher, A.S.; Kotturi, D.; Norum, S.; Olsen, J.; /SLAC

    2012-07-23

    The LCLS Undulator Beam Loss Monitor System is required to detect any loss radiation seen by the FEL undulators. The undulator segments consist of permanent magnets which are very sensitive to radiation damage. The operational goal is to keep demagnetization below 0.01% over the life of the LCLS. The BLM system is designed to help achieve this goal by detecting any loss radiation and indicating a fault condition if the radiation level exceeds a certain threshold. Upon reception of this fault signal, the LCLS Machine Protection System takes appropriate action by either halting or rate limiting the beam. The BLM detector consists of a PMT coupled to a Cherenkov radiator located near the upstream end of each undulator segment. There are 33 BLMs in the system, one per segment. The detectors are read out by a dedicated system that is integrated directly into the LCLS MPS. The BLM readout system provides monitoring of radiation levels, computation of integrated doses, detection of radiation excursions beyond set thresholds, fault reporting and control of BLM system functions. This paper describes the design, construction and operational performance of the BLM readout system.

  8. RF Trip and Beam Loss Diagnostics in LEP using GPS timing

    CERN Document Server

    Arnaudon, L; Beetham, G; Ciapala, Edmond; Juillard, J C; Olsen, R; CERN. Geneva. SPS and LEP Division

    2000-01-01

    A fast diagnostics system has been installed in LEP to allow precise time-stamping of RF unit trips. The system also monitors the fast decay of current when a beam loss occurs. From the information gathered it is now possible to determine which RF units have provoked a beam loss at high energy and which have tripped as a result. The system uses GPS equipment installed at all of the even points of LEP together with fast local DSP acquisition and event recording units in each RF sector. An overall control application driven by the LEPExec arms the system at the start of each fill, calculates and displays RF and trip beam loss events in sequence, then stores the results in a database. The system installation was completed in time for the LEP 2000 startup and initial problems were quickly resolved. Throughout the year it has proved invaluable for high energy running. The experience gained will also be very useful for similar diagnostics applications in LHC.

  9. Commissioning results of the APS storage ring diagnostics systems

    International Nuclear Information System (INIS)

    Lumpkin, A.H.

    1996-01-01

    Initial commissionings of the Advanced Photon Source (APS) 7-GeV storage ring and its diagnostics systems have been done. Early studies involved single-bunch measurements for beam transverse size (σ x ∼ 150 μm, σ y ∼ 50 μm), current, injection losses, and bunch length. The diagnostics have been used in studies related to the detection of an extra contribution to beam jitter at ∼ 6.5 Hz frequency; observation of bunch lengthening (σ ∼ 30 to 60 ps) with single-bunch current; observation of an induced vertical, head-tail instability; and detection of a small orbit change with insertion device gap position. More recently, operations at 100-mA stored-beam current, the baseline design goal, have been achieved with the support of beam characterizations

  10. The vacuum system for the PEP II high energy ring straight sections

    International Nuclear Information System (INIS)

    Wienands, U.; Daly, E.; Heifets, S.A.; Kulikov, A.; Kurita, N.; Nordby, M.; Perkins, C.; Reuter, E.; Seeman, J.T.; Belser, F.C.; Berg, J.; Holdener, F.R.; Kerns, J.A.; McDaniel, M.R.; Stoeffl, W.

    1995-01-01

    The six straight sections of the PEP II High Energy Ring (HER) serve various functions: lattice tuning, beam injection and abort, providing space for rf cavities, longitudinal and transverse feedback, beam diagnostics and the interaction point. A stainless steel vacuum system has been designed; prototypes are currently being built. Cooling is required due to radiation coming from the last arc dipole and resistive losses in the vacuum chamber. Although the nominal beam current of the HER is 1 A the vacuum system is designed for 3 A to provide margin and an upgrade path. 5 refs., 7 figs

  11. Annular spherically focused ring transducers for improved single-beam acoustical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology—ETC, Santa Fe, New Mexico 87508 (United States)

    2016-02-14

    The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long- (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.

  12. Independent component analysis applied to long bunch beams in the Los Alamos Proton Storage Ring

    Science.gov (United States)

    Kolski, Jeffrey S.; Macek, Robert J.; McCrady, Rodney C.; Pang, Xiaoying

    2012-11-01

    Independent component analysis (ICA) is a powerful blind source separation (BSS) method. Compared to the typical BSS method, principal component analysis, ICA is more robust to noise, coupling, and nonlinearity. The conventional ICA application to turn-by-turn position data from multiple beam position monitors (BPMs) yields information about cross-BPM correlations. With this scheme, multi-BPM ICA has been used to measure the transverse betatron phase and amplitude functions, dispersion function, linear coupling, sextupole strength, and nonlinear beam dynamics. We apply ICA in a new way to slices along the bunch revealing correlations of particle motion within the beam bunch. We digitize beam signals of the long bunch at the Los Alamos Proton Storage Ring with a single device (BPM or fast current monitor) for an entire injection-extraction cycle. ICA of the digitized beam signals results in source signals, which we identify to describe varying betatron motion along the bunch, locations of transverse resonances along the bunch, measurement noise, characteristic frequencies of the digitizing oscilloscopes, and longitudinal beam structure.

  13. Independent component analysis applied to long bunch beams in the Los Alamos Proton Storage Ring

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Kolski

    2012-11-01

    Full Text Available Independent component analysis (ICA is a powerful blind source separation (BSS method. Compared to the typical BSS method, principal component analysis, ICA is more robust to noise, coupling, and nonlinearity. The conventional ICA application to turn-by-turn position data from multiple beam position monitors (BPMs yields information about cross-BPM correlations. With this scheme, multi-BPM ICA has been used to measure the transverse betatron phase and amplitude functions, dispersion function, linear coupling, sextupole strength, and nonlinear beam dynamics. We apply ICA in a new way to slices along the bunch revealing correlations of particle motion within the beam bunch. We digitize beam signals of the long bunch at the Los Alamos Proton Storage Ring with a single device (BPM or fast current monitor for an entire injection-extraction cycle. ICA of the digitized beam signals results in source signals, which we identify to describe varying betatron motion along the bunch, locations of transverse resonances along the bunch, measurement noise, characteristic frequencies of the digitizing oscilloscopes, and longitudinal beam structure.

  14. Status of the MIT-Bates South Hall Ring commissioning

    International Nuclear Information System (INIS)

    Flanz, J.B.; Jacobs, K.D.; McAllister, B.; Averill, R.; Bradley, S.; Carter, A.; Dow, K.; Farkondeh, M.; Ihloff, E.; Kowalski, S.

    1993-01-01

    The MIT-Bates South Hall Ring construction project is now nearly complete. At this time the Energy Compression System, the SHR Injection Line and the South Hall Ring itself are complete. The SHR Extraction Line is complete but has not been connected to the ring. Commissioning with beam of the completed beam lines has been started. The MIT-Bates South Hall Ring (SHR) is an electron storage ring used with the 1 GeV Bates electron accelerator to increase the effective duty factor and luminosity. A beam can be stored for use with an internal target, thus allowing for high duty factor, high luminosity experiments. External beams with high duty factor can be obtained using resonant extraction. The new systems associated with the SHR include the Energy Compression System (ECS), the Injection line, and the Extraction line. The authors have commissioned the ECS, the new injection line and the SHR without RF. This includes transporting beam, measuring beam phase space parameters using critical injection elements including a high voltage electrostatic septum, a fast beam kicker, and storing a beam in the SHR

  15. New beam-position monitor system for upgraded Photon Factory storage ring.

    Science.gov (United States)

    Haga, K; Honda, T; Tadano, M; Obina, T; Kasuga, T

    1998-05-01

    Accompanying the brilliance-upgrading project at the Photon Factory storage ring, the beam-position monitor (BPM) system has been renovated. The new system was designed to enable precise and fast measurements to correct the closed-orbit distortion (COD), as well as to feed back the orbit position during user runs. There are 42 BPMs newly installed, amounting to a total of 65 BPMs. All of the BPMs are calibrated on the test bench using a coaxially strung metallic wire. The measured electrical offsets are typically 200 micro m in both directions, which is 1/2-1/3 of those of the old-type BPMs. In the signal-processing system, PIN diode switches are employed in order to improve reliability. In the fastest mode, this system is capable of measuring COD within about 10 ms; this fast acquisition will allow fast suppression of the beam movement for frequencies up to 50 Hz using a global feedback system.

  16. Beam-beam dynamics during the injection process at the PEP-II B-Factory

    International Nuclear Information System (INIS)

    Chin, Yong Ho.

    1991-10-01

    This paper is concerned with beam-beam effects during the injection process at the proposed asymmetric SLAC/LBL/LLNL B-Factory based on PEP (PEP-2). For symmetric colliders, the primary source of the beam-beam effect is the head-on collision at the interaction point (IP), and this effect can be mitigated by separating the beams during the injection process. For an asymmetric collider, which intrinsically consists of two separate rings, the bunches not only collide at the IP but experience a long-range beam-beam force on the way into and out of the IP region. These collisions are called ''parasitic crossings (PC).'' The parasitic crossings emerge as a potential source of far stronger beam-beam impact during the injection process for the following reason. In the proposed injection scheme of the APIARY-6.3d design, the bunches are injected horizontally into the two rings with large horizontal offset of 8σ Ox sptm where σ Ox sptm is the nominal horizontal storage ring beam size at the end of the septum magnet. Then, the injected beam starts to travel around the ring oscillating horizontally. For the sake of discussion, let us assume that the beam in the other ring has already been fully stored. When the injected beam arrives at the 1st PC, where the two nominal orbits are separated horizontally by about 7.6 times the nominal horizontal beam size of the low energy ring, it may pass through the other beam far more closely than at the nominal separation distance, or it may even strike the other beam head-on

  17. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio

    2014-09-11

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.

  18. Studies of Limits on Uncontrolled Heavy Ion Beam Losses for Allowing Hands-On Maintenance. Final report

    International Nuclear Information System (INIS)

    Ronningen, Reginald M.; Remec, Igor

    2010-01-01

    Dose rates from accelerator components activated by 1 W/m beam losses are obtained semiempirically for a 1 GeV proton beam and by use of Monte Carlo transport codes for the proton beam and for 777 MeV/u 3He, 500 MeV/u 48Ca, 86Kr, 136Xe, and 400 MeV/u 238U ions. The dose rate obtained by the semi-empirical method, 0.99 mSv/h (99 mrem/h) at 30 cm, 4 h after 100 d irradiation by a 1-GeV proton beam, is consistent with studies at several accelerator facilities and with adopted hands-on maintenance dose rate limits. Monte Carlo simulations verify this result for protons and extend studies to heavy ion beam losses in drift-tube linac and superconducting linac accelerating structures. The studies indicate that the 1 W/m limit imposed on uncontrolled beam losses for high-energy proton beams might be relaxed for heavy ion beams. These studies further suggest that using the ratio of neutrons produced by a heavy ion beam to neutrons produced by a proton beam along with the dose rate from the proton beam (for thin-target scenarios) should allow an estimate of the dose rates expected from heavy ion beam losses.

  19. Commissioning of the diamond light source storage ring vacuum system

    International Nuclear Information System (INIS)

    Cox, M P; Boussier, B; Bryan, S; Macdonald, B F; Shiers, H S

    2008-01-01

    The Diamond storage ring has been operating with a 3 GeV electron beam since September 2006 and 190 A.h of beam dose have been accumulated. The pressure in the storage ring is 4.2 10 -10 mbar without beam, rising to 7.9 10 -10 mbar with 125 mA of stored beam. Data on the storage ring vacuum performance and experience from commissioning and beam conditioning are presented

  20. Long radiation detector system for beam loss monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Balsamo, J.; Fewell, N.M.; Klein, J.D.; Witkover, R.L.

    1977-01-01

    The Long Radiation Monitor (LRM) system installed at the 200 MeV linac at Brookhaven National Laboratory is described. This system allows observation of both the spatial and temporal character of the losses in the linac and its transport lines. An array of large diameter gas filled coaxial cables are used as extended ion chambers to detect the losses. The output signals are available as a histogram, video waveforms, and numerical data via the computer. A fast beam interrupt is also provided. The detector characteristics and details of the processing electronics are presented. Results of studies of longitudinal, steering and focusing losses are described.

  1. Long radiation detector system for beam loss monitoring

    International Nuclear Information System (INIS)

    Balsamo, J.; Fewell, N.M.; Klein, J.D.; Witkover, R.L.

    1977-01-01

    The Long Radiation Monitor (LRM) system installed at the 200 MeV linac at Brookhaven National Laboratory is described. This system allows observation of both the spatial and temporal character of the losses in the linac and its transport lines. An array of large diameter gas filled coaxial cables are used as extended ion chambers to detect the losses. The output signals are available as a histogram, video waveforms, and numerical data via the computer. A fast beam interrupt is also provided. The detector characteristics and details of the processing electronics are presented. Results of studies of longitudinal, steering and focusing losses are described

  2. Proton storage rings

    International Nuclear Information System (INIS)

    Rau, R.R.

    1978-04-01

    A discussion is given of proton storage ring beam dynamic characteristics. Topics considered include: (1) beam energy; (2) beam luminosity; (3) limits on beam current; (4) beam site; (5) crossing angle; (6) beam--beam interaction; (7) longitudinal instability; (8) effects of scattering processes; (9) beam production; and (10) high magnetic fields. Much of the discussion is related to the design parameters of ISABELLE, a 400 x 400 GeV proton---proton intersecting storage accelerator to be built at Brookhaven National Laboratory

  3. Report of the New Rings Study Group

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, S.D.; Dugan, G.; Marriner, J.

    1987-10-19

    We have taken the approach here of trying to understand both the feasibility and practicality of varied options for new rings at Fermilab, rather than trying to produce a single detailed design. In other words, this document is not a design report and should not be construed as such. Our perception of the potential needs for new rings (in order of priority) is as follows: Antiproton Storage and/or Recovery: A facility for storing up to 4 x 10/sup 12/ antiprotons is needed. Recovery of antiprotons from the collider becomes a viable option if the luminosity is indeed dominated by emittance dilution rather than beam loss. New or Post-Booster: The goal here would be to inject into the existing Main Ring above transition. Improved performance of the Main Ring would be anticipated. New Main Ring: Advantages would include better emittance preservation, a faster cycle time for antiproton production, and the removal of interference/backgrounds at the B0 and D0 detectors. We discuss in this paper various scenarios based on one or more combinations of the above possibilities. 14 figs., 10 tabs.

  4. Report of the New Rings Study Group

    International Nuclear Information System (INIS)

    Holmes, S.D.; Dugan, G.; Marriner, J.

    1987-01-01

    We have taken the approach here of trying to understand both the feasibility and practicality of varied options for new rings at Fermilab, rather than trying to produce a single detailed design. In other words, this document is not a design report and should not be construed as such. Our perception of the potential needs for new rings (in order of priority) is as follows: Antiproton Storage and/or Recovery: A facility for storing up to 4 x 10 12 antiprotons is needed. Recovery of antiprotons from the collider becomes a viable option if the luminosity is indeed dominated by emittance dilution rather than beam loss. New or Post-Booster: The goal here would be to inject into the existing Main Ring above transition. Improved performance of the Main Ring would be anticipated. New Main Ring: Advantages would include better emittance preservation, a faster cycle time for antiproton production, and the removal of interference/backgrounds at the B0 and D0 detectors. We discuss in this paper various scenarios based on one or more combinations of the above possibilities. 14 figs., 10 tabs

  5. Measured and simulated heavy-ion beam loss patterns at the CERN Large Hadron Collider

    Science.gov (United States)

    Hermes, P. D.; Bruce, R.; Jowett, J. M.; Redaelli, S.; Salvachua Ferrando, B.; Valentino, G.; Wollmann, D.

    2016-05-01

    The Large Hadron Collider (LHC) at CERN pushes forward to new regimes in terms of beam energy and intensity. In view of the combination of very energetic and intense beams together with sensitive machine components, in particular the superconducting magnets, the LHC is equipped with a collimation system to provide protection and intercept uncontrolled beam losses. Beam losses could cause a superconducting magnet to quench, or in the worst case, damage the hardware. The collimation system, which is optimized to provide a good protection with proton beams, has shown a cleaning efficiency with heavy-ion beams which is worse by up to two orders of magnitude. The reason for this reduced cleaning efficiency is the fragmentation of heavy-ion beams into isotopes with a different mass to charge ratios because of the interaction with the collimator material. In order to ensure sufficient collimation performance in future ion runs, a detailed theoretical understanding of ion collimation is needed. The simulation of heavy-ion collimation must include processes in which 82 + 208Pb ions fragment into dozens of new isotopes. The ions and their fragments must be tracked inside the magnetic lattice of the LHC to determine their loss positions. This paper gives an overview of physical processes important for the description of heavy-ion loss patterns. Loss maps simulated by means of the two tools ICOSIM [1,2] and the newly developed STIER (SixTrack with Ion-Equivalent Rigidities) are compared with experimental data measured during LHC operation. The comparison shows that the tool STIER is in better agreement.

  6. Prestress Loss and Bending Capacity of Pre-cracked 40 Year-Old PC Beams Exposed to Marine Environment

    Directory of Open Access Journals (Sweden)

    Dasar Amry

    2016-01-01

    Full Text Available Six prestressed concrete beams (PC beam were used for evaluation, consist of four post-tension beams (PC-O and two pre-tension beams (PC-R. In order to investigate the effect of crack on prestress loss and bending capacity after long-term exposed, prestressed concrete beams were pre-crack and then exposed to marine environment. Experimental work was carried out to evaluate PC beams performance after long-term exposed. In addition, visual observations and load bearing capacity test was carried out. Furthermore, evaluation of prestress loss conducted using three-point loading bending test and the remaining tendon forces in the beam were determined using Crack Re-opening Method. The experimental results revealed that prestress loss was increased due to corrosion of strand/wire which affected by the pre-crack on the prestressed beams. Approximately a prestress loss around 26% and 30% was recorded for post-tension and pre-tension beams respectively.

  7. Status of the SLC damping rings

    International Nuclear Information System (INIS)

    Hutton, A.M.; Davies-White, W.A.; Delahaye, J.P.

    1985-06-01

    Electron beams of full design energy 1.21 GeV and nearly full design intensity 4 x 10 10 particles/pulse (design 5 x 10 10 ) have been extracted from the Stanford Linac and successfully stored in the electron damping ring. Beams of less intensity have been extracted from the ring and reinjected into the Linac. The present intensity limits are not thought to be fundamental. The operating experience with the electron ring and the status of the construction of the positron ring will be discussed. 11 refs., 1 fig., 2 tabs

  8. Magnetic ring for stripping enhancement

    International Nuclear Information System (INIS)

    Selph, F.

    1992-10-01

    A ring designed to recycle ions through a stripping medium offers the possibility for increasing output of the desired charge state by up to 4x. This could be a very important component of a Radioactive Nuclear Beam Facility. In order for such a ring to work effectively it must satisfy certain design conditions. These include achromaticity at the stripper, a dispersed region for an extraction magnet, and a number of first and higher order optics constraints which are necessary to insure that the beam emittance is not degraded unduly by the ring. An example is given of a candidate design of a stripping ring

  9. RF Beam Position Monitor for the SNS Ring

    International Nuclear Information System (INIS)

    Vetter, Kurt; Cameron, Peter; Dawson, Craig; Degen, Chris; Kesselman, Martin; Mead, Joseph

    2004-01-01

    The Spallation Neutron Source Ring accumulates 1060 pulses of 38-mA peak current 1-GeV H-minus particles from the Linac through the HEBT line, then delivers this accumulated beam in a single pulse to a mercury target via the RTBT line. The dynamic range over the course of the accumulation cycle is 60 dB. As a result of particle energy distribution the 402.5-MHz RF bunching frequency quickly de-coheres during the first few turns. In order to measure first-turn position a dual-mode BPM has been designed to process 402.5-MHz signal energy during the first few turns then switch to a Baseband mode to process de-cohered energy in the low MHz region. The design has been implemented as a dual mother/daughter board PCI architecture. Both Baseband and RF calibration are included on the RF BPM board. A prototype system has been installed in the SNS Linac

  10. Angular scattering in electron capture and loss D- beam formation processes

    International Nuclear Information System (INIS)

    Coggiola, M.J.; Hodges, R.V.; Huestis, D.L.; Peterson, J.R.

    1980-01-01

    The development of high energy (> 150 keV) neutral beams for heating and fueling magnetic fusion devices depends on the ability to produce well-collimated negative ion beams. The double capture charge-exchange technique is a known, scalable method. In order to maximize the overall efficiency of the process and to achieve the desired beam characteristics, it is necessary to examine the optical qualities of the beams as well as the total efficiency of beam production. A combined modeling and experimental study of the angular scattering effects in negative ion formation and loss processes has therefore been undertaken

  11. Investigation and optimization of transverse non-linear beam dynamics in the high-energy storage ring HESR

    Energy Technology Data Exchange (ETDEWEB)

    Welsch, Dominic Markus

    2010-03-10

    The High-Energy Storage Ring (HESR) is part of the upcoming Facility for Antiproton and Ion Research (FAIR) which is planned as a major extension to the present facility of the Helmholtzzentrum fuer Schwerionenforschung (GSI) in Darmstadt. The HESR will provide antiprotons in the momentum range from 1.5 to 15 GeV/c for the internal target experiment PANDA. The demanding requirements of PANDA in terms of beam quality and luminosity together with a limited production rate of antiprotons call for a long beam life time and a minimum of beam loss. Therefore, an effective closed orbit correction and a sufficiently large dynamic aperture of the HESR are crucial. With this thesis I present my work on both of these topics. The expected misalignments of beam guiding magnets have been estimated and used to simulate the closed orbit in the HESR. A closed orbit correction scheme has been developed for different ion optical settings of the HESR and numerical simulations have been performed to validate the scheme. The proposed closed orbit correction method which uses the orbit response matrix has been benchmarked at the Cooler Synchrotron COSY of the Forschungszentrum Juelich. A chromaticity correction scheme for the HESR consisting of sextupole magnets has been developed to reduce tune spread and thus to minimize the emittance growth caused by betatron resonances. The chromaticity correction scheme has been optimized through dynamic aperture calculations. The estimated field errors of the HESR dipole and quadrupole magnets have been included in the non-linear beam dynamics studies. Investigations concerning their optimization have been carried out. The ion optical settings of the HESR have been improved using dynamic aperture calculations and the technique of frequency map analysis. The related diffusion coefficient was also used to predict long-term stability based on short-term particle tracking. With a reasonable reduction of the quadrupole magnets field errors and a

  12. Ring resonator-based single-chip 1x8 optical beam forming network in LPCVD waveguide technology

    NARCIS (Netherlands)

    Zhuang, L.; Roeloffzen, C.G.H.; Heideman, Rene; Borreman, A.; Meijerink, Arjan; van Etten, Wim; Koonen, A.M.J.; Leijtens, X.J.M.; van den Boom, H.P.A.; Verdurmen, E.J.M.; Molina Vázquez, J.

    2006-01-01

    Optical ring resonators (ORRs) are good candidates to provide continuously tunable delay in beam forming networks (BFNs) for phased array antenna systems. Delay and splitting/combining elements can be integrated on a single optical chip to form an OBFN. A state-of-the-art 1×8 OBFN chip has been

  13. Automatic local beam steering systems for NSLS x-ray storage ring: Design and implementation

    International Nuclear Information System (INIS)

    Singh, O.V.; Nawrocky, R.; Flannigan, J.

    1991-01-01

    Recently, two local automatic steering systems, controlled by microprocessors, have been installed and commissioned in the NSLS X- Ray storage ring. In each system, the position of the electron beam is stabilized at two locations by four independent servo systems. This paper describes three aspects of the local feedback program: design; commissioning; and limitation. The system design is explained by identifying major elements such as beam position detectors, signal processors, compensation amplifiers, ratio amplifiers, trim equalizers and microprocessor feedback controllers. System commissioning involves steps such as matching trim compensation, determination of local orbit bumps, measurement of open loop responses and design of servo circuits. Several limitations of performance are also discussed. 7 refs., 2 figs

  14. Coherent beam-beam effects

    International Nuclear Information System (INIS)

    Chao, A.W.

    1992-01-01

    There are two physical pictures that describe the beam-beam interaction in a storage ring collider: The weak-strong and the strong-strong pictures. Both pictures play a role in determining the beam-beam behavior. This review addresses only the strong-strong picture. The corresponding beam dynamical effects are referred to as the coherent beam-beam effects. Some basic knowledge of the weak-strong picture is assumed. To be specific, two beams of opposite charges are considered. (orig.)

  15. Simulation of the ATLAS SCT barrel module response to LHC beam loss scenarios

    CERN Document Server

    Rose, P; The ATLAS collaboration; Fadeyev, V; Spencer, E; Wilder, M; Domingo, M

    2014-01-01

    In the event of beam loss at the LHC, ATLAS Inner Detector components nearest the beam line may be subjected to unusually large amounts of radiation. Understanding their behavior in such an event is important in determining whether they would still function properly. We built a SPICE model of the silicon strip module electrical system to determine the behavior of its elements during a realistic beam loss scenario. We found that the power supply and bias filter characteristics strongly affect the module response in such scenarios. In particular, the following self-limiting phenomena were observed: there is a finite amount of charge initially available on the bias filter capacitors for collection by the strips; the power supply current limit reduces the rate at which the bias filter capacitors' charge can be replenished; the reduced bias voltage leads to a smaller depletion depth in the sensors which results in less collected charge. These effects provide a larger measure of safety during beam loss events than ...

  16. Carbon filament beam profile monitor for high energy proton-antiproton storage rings

    International Nuclear Information System (INIS)

    Evans, L.R.; Shafer, R.E.

    1979-01-01

    The measurement of the evolution of the transverse profile of the stored beams in high energy proton storage rings such as the p-anti p colliders at CERN and at FNAL is of considerable importance. In the present note, a simple monitor is discussed which will allow almost non-destructive measurement of the profile of each individual proton and antiproton bunch separately. It is based on the flying wire technique first used at CEA and more recently at the CPS. A fine carbon filament is passed quickly through the beam, acting as a target for secondary particle production. The flux of secondary particles is measured by two scintillator telescopes, one for protons and one for antiprotons, having an angular acceptance between 30 and 100 mrad. Measurements of secondary particle production performed at FNAL in this angular range show that a very respectable flux can be expected

  17. Broadband feedback systems for the damping of coherent beam instabilities in the stretcher ring ELSA

    International Nuclear Information System (INIS)

    Roth, Andre

    2012-12-01

    At the Electron Stretcher Facility ELSA an upgrade of the internal beam current up to 200 mA would be desirable in order to increase the intensity of the extracted electron beam for the future experimental hadron physics program. However, such an upgrade is mainly limited by the excitation of coherent beam instabilities in the stretcher ring. As active counteraction, broadband bunch-by-bunch feedback-systems for the longitudinal, as well as for both transverse planes were installed. After detection of the motion of each of the 27 4 stored bunches via beam position monitors, the systems determine independent correction signals for each bunch using digital signal processors. The amplified correction signals are applied to the beam by means of broadband longitudinal and transverse kicker structures. The detailed setup, the commissioning procedure and measurement results of the damping performance of the systems are presented. In addition, the operation of the longitudinal system during the fast energy ramp of 4 GeV/s from 1.2 GeV to 3.2 GeV is investigated.

  18. Thon rings from amorphous ice and implications of beam-induced Brownian motion in single particle electron cryo-microscopy

    Energy Technology Data Exchange (ETDEWEB)

    McMullan, G., E-mail: gm2@mrc-lmb.cam.ac.uk; Vinothkumar, K.R.; Henderson, R.

    2015-11-15

    We have recorded dose-fractionated electron cryo-microscope images of thin films of pure flash-frozen amorphous ice and pre-irradiated amorphous carbon on a Falcon II direct electron detector using 300 keV electrons. We observe Thon rings [1] in both the power spectrum of the summed frames and the sum of power spectra from the individual frames. The Thon rings from amorphous carbon images are always more visible in the power spectrum of the summed frames whereas those of amorphous ice are more visible in the sum of power spectra from the individual frames. This difference indicates that while pre-irradiated carbon behaves like a solid during the exposure, amorphous ice behaves like a fluid with the individual water molecules undergoing beam-induced motion. Using the measured variation in the power spectra amplitude with number of electrons per image we deduce that water molecules are randomly displaced by a mean squared distance of ∼1.1 Å{sup 2} for every incident 300 keV e{sup −}/Å{sup 2}. The induced motion leads to an optimal exposure with 300 keV electrons of 4.0 e{sup −}/Å{sup 2} per image with which to observe Thon rings centred around the strong 3.7 Å scattering peak from amorphous ice. The beam-induced movement of the water molecules generates pseudo-Brownian motion of embedded macromolecules. The resulting blurring of single particle images contributes an additional term, on top of that from radiation damage, to the minimum achievable B-factor for macromolecular structure determination. - Highlights: • Thon rings can be seen from amorphous ice. • Radiation damage to amorphous ice randomly displaces water molecules. • Each incident 300 keV e{sup −}/Å{sup 2} displaces water molecules on average by ∼1 Å. • Macromolecules embedded in amorphous ice undergo beam induced Brownian motion.

  19. A radio frequency ring electrode cooler for low-energy ion beams

    International Nuclear Information System (INIS)

    Heinz, S.; Aeystoe, J.; Habs, D.; Hegewisch, S.; Huikari, J.; Nieminen, A.; Rinta-Antila, S.; Schumann, M.; Szerypo, J.

    2004-01-01

    We are investigating a new concept for ion confinement while buffer-gas-cooling low-energy ion beams. Instead of applying the well-established technique of Radio Frequency Quadrupoles (RFQs) where the ions are transversely confined by a quadratic-pseudo potential we are using a stack of thin ring electrodes supplied by an RF field (RF funnel) which creates a box-shaped potential well. In Monte Carlo simulations we have investigated the transmission behavior and cooling performance of the RF funnel. First experimental investigations with ion currents up to 20 nA revealed a promising transmission characteristic which qualifies the RF funnel as high-current cooler

  20. A Phase Space Monitoring of Injected Beam of J-PARC MR

    Science.gov (United States)

    Hatakeyama, Shuichiro; Toyama, Takeshi

    Beam power of J-PARC MR (30 GeV Proton Synchrotron Main Ring) has been improved since 2008 and now achieved over 200 kW for the user operation. A part of beam loss is localized at the beam injection phase so it is important to monitor the beam bunch behavior in the transverse direction. In this paper it is described the method how to measure the position and momentum for each injected beam bunch using Beam Position Monitors (BPMs). It is also mentioned some implementation of an operator's interface (OPI) to display the plots of injected and circulating beam bunches in phase space coordinate.

  1. Energy Deposition in Adjacent LHC Superconducting Magnets from Beam Loss at LHC Transfer Line Collimators

    CERN Document Server

    Beavan, S; Kain, V

    2006-01-01

    Injection intensities for the LHC are over an order of magnitude above the damage threshold. The collimation system in the two transfer lines is designed to dilute the beam sufficiently to avoid damage in case of accidental beam loss or mis-steered beam. To maximise the protection for the LHC most of the collimators are located in the last 300 m upstream of the injection point where the transfer lines approach the LHC machine. To study the issue of possible quenches following beam loss at the collimators part of the collimation section in one of the lines, TI 8, together with the adjacent part of the LHC has been modeled in FLUKA. The simulated energy deposition in the LHC for worst-case accidental losses and as well as for losses expected during a normal filling is presented.

  2. The PEP electron-positron ring

    International Nuclear Information System (INIS)

    Rees, J.R.

    1988-01-01

    The first stage of the positron-electron-proton (PEP) colliding-beam system which has been under joint study by a Lawrence Berkeley Laboratory-Stanford Linear Accelerator Center team for the past two years, will be the electron-positron storage ring. The physics justification for the e + e/sup minus/ ring is summarized briefly and the proposed facility is described. The ring will have six arcs having gross radii of about 220 m and six interaction regions located at the centers of straight sections about 130 m long. The longitudinal distance left free for experimental apparatus at the intersection regions will be 20 m. The range of operating beam energies will be from 5 GeV to 15 GeV. The design luminosity at 15 GeV will be 10 32 cm/sup minus 2/s/sup minus 1/, and the luminosity will vary approximately as the square of the beam energy. Alternative methods under consideration for adjusting the beam cross-section are discussed. The designs of the storage ring subsystems and of the conventional facilities including the experimental halls at the interaction regions are described

  3. Anomalous Beam-Ion Loss in TFTR Reversed Magnetic Shear Plasmas

    International Nuclear Information System (INIS)

    Ruskov, E.; Bell, M.; Budny, R.V.; McCune, D.C.; Medley, S.S.; Redi, M.H.; Scott, S.; Synakowski, E.J.; Goeler, S. von; White, R.B.; Zweben, S.J.

    1999-01-01

    Anomalous beam-ion loss has been observed in an experiment with short tritium beam pulses injected into deuterium-beam-heated Tokamak Fusion Test Reactor plasmas (P NBI =15 MW) with reversed magnetic shear (RS). Comparisons of the measured total 14thinspthinspMeV neutron emission, the neutron flux along eight radial locations, and the perpendicular plasma stored energy with predictions from an extensive set of TRANSP simulations suggest that about 40% beam power is lost on a time scale much shorter than the tritium beam pulse length Δt=70 ms. In contrast with recent results [K. Tobita et al., Nucl.Fusion 37, 1583 (1997)] from RS experiments at JT-60U, we were not able to show conclusively that magnetic field ripple is responsible for this anomaly. copyright 1999 The American Physical Society

  4. Tinkering at the main-ring lattice

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, S.

    1982-08-23

    To improve production of usable antiprotons using the proton beam from the main ring and the lossless injection of cooled antiprotons into the main ring, modifications of the main ring lattice are recommended.

  5. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    International Nuclear Information System (INIS)

    Baumbaugh, A.; Briegel, C.; Brown, B.C.; Capista, D.; Drennan, C.; Fellenz, B.; Knickerbocker, K.; Lewis, J.D.; Marchionni, A.; Needles, C.; Olson, M.

    2011-01-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. The system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and show a number of examples of its use in both the Main Injector and Tevatron.

  6. Antiproton chain of the FAIR storage rings

    International Nuclear Information System (INIS)

    Katayama, T; Kamerdzhiev, V; Lehrach, A; Maier, R; Prasuhn, D; Stassen, R; Stockhorst, H; Herfurth, F; Lestinsky, M; Litvinov, Yu A; Steck, M; Stöhlker, T

    2015-01-01

    In the Modularized Start Version of the Facility of Antiproton and Ion Research (FAIR) at Darmstadt Germany, the 3 GeV antiprotons are precooled in the collector ring and accumulated in the high energy storage ring (HESR). They are further accelerated to 14 GeV or decelerated to 1 GeV for the experiments with a high-density internal target. The powerful beam cooling devices, stochastic cooling and electron cooling will support the provision of a high-resolution antiproton beam. The other option of FAIR is to prepare the low energy, 300 keV antiproton beam connecting the existing storage rings ESR and CRYRING with HESR. Beam physics issues related with these concepts are described. (paper)

  7. The Abort Kicker System for the PEP-II Storage Rings at SLAC.

    CERN Document Server

    Delamare, J E

    2003-01-01

    The PEP-II project has two storage rings. The HER (High Energy Ring) has up to 1.48 A of election beam at 9 GeV, and the LER (Low Energy Ring) has up to 2.14 A of positron beam at 3.1 GeV. To protect the HER and LER beam lines in the event of a ring component failure, each ring has an abort kicker system which directs the beam into a dump when a failure is detected. Due to the high current of the beams, the beam kick is tapered from 100% to 80% in 7.33 (micro)S (the beam transit time around the ring). This taper distributes the energy evenly across the window which separates the ring from the beam dump such that the window is not damaged. The abort kicker trigger is synchronized with the ion clearing gap of the beam allowing for the kicker field to rise from 0-80% while there is no beam in the kicker magnet. Originally the kicker system was designed for a rise time of 370nS [1], but because the ion clearing gap was reduced in half, so was the rise time requirement for the kicker. This report discusses the des...

  8. Low energy current accumulator for high-energy proton rings

    International Nuclear Information System (INIS)

    Month, M.

    1977-01-01

    Building current in high-energy p-p colliding beam machines is most appropriately done in a low-energy (small circumference) current accumulator. Three significant factors favor such a procedure: First, large rings tend to be susceptible to unstable longitudinal density oscillations. These can be avoided by pumping up the beam in the accumulator. When the current stack is injected into the storage ring, potentially harmful instability is essentially neutralized. Second, high-field magnets characteristic of future high energy proton rings are designed with superconducting coils within the iron magnetic shield. This means coil construction and placement errors propagate rapidly within the beam aperture. An intermediate ''stacking ring'' allows the minimum use of the superconducting ring aperture. Finally, the coils are vulnerable to radiation heating and possible magnet quenching. By minimizing beam manipulaion in the superconducting environment and using only the central portion of the beam aperture, coil vulnerability can be put at a minimum

  9. Severe signal loss in diamond beam loss monitors in high particle rate environments by charge trapping in radiation-induced defects

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, Florian; Boer, Wim de [Institute for Experimental Nuclear Physics (IEKP), KIT, Karlsruhe (Germany); Guthoff, Moritz; Dabrowski, Anne [CERN, Meyrin (Switzerland)

    2016-10-15

    The beam condition monitoring leakage (BCML) system is a beam monitoring device in the compact muon solenoid (CMS) experiment at the large hadron collider (LHC). As detectors 32 poly-crystalline (pCVD) diamond sensors are positioned in rings around the beam pipe. Here, high particle rates occur from the colliding beams scattering particles outside the beam pipe. These particles cause defects, which act as traps for the ionization, thus reducing the charge collection efficiency (CCE). However, the loss in CCE was much more severe than expected from low rate laboratory measurements and simulations, especially in single-crystalline (sCVD) diamonds, which have a low initial concentration of defects. After an integrated luminosity of a few fb{sup -1} corresponding to a few weeks of LHC operation, the CCE of the sCVD diamonds dropped by a factor of five or more and quickly approached the poor CCE of pCVD diamonds. The reason why in real experiments the CCE is much worse than in laboratory experiments is related to the ionization rate. At high particle rates the trapping rate of the ionization is so high compared with the detrapping rate, that space charge builds up. This space charge reduces locally the internal electric field, which in turn increases the trapping rate and recombination and hence reduces the CCE in a strongly non-linear way. A diamond irradiation campaign was started to investigate the rate-dependent electrical field deformation with respect to the radiation damage. Besides the electrical field measurements via the transient current technique (TCT), the CCE was measured. The experimental results were used to create an effective deep trap model that takes the radiation damage into account. Using this trap model, the rate-dependent electrical field deformation and the CCE were simulated with the software SILVACO TCAD. The simulation, tuned to rate-dependent measurements from a strong radioactive source, was able to predict the non-linear decrease of the

  10. Severe signal loss in diamond beam loss monitors in high particle rate environments by charge trapping in radiation-induced defects

    International Nuclear Information System (INIS)

    Kassel, Florian; Boer, Wim de; Guthoff, Moritz; Dabrowski, Anne

    2016-01-01

    The beam condition monitoring leakage (BCML) system is a beam monitoring device in the compact muon solenoid (CMS) experiment at the large hadron collider (LHC). As detectors 32 poly-crystalline (pCVD) diamond sensors are positioned in rings around the beam pipe. Here, high particle rates occur from the colliding beams scattering particles outside the beam pipe. These particles cause defects, which act as traps for the ionization, thus reducing the charge collection efficiency (CCE). However, the loss in CCE was much more severe than expected from low rate laboratory measurements and simulations, especially in single-crystalline (sCVD) diamonds, which have a low initial concentration of defects. After an integrated luminosity of a few fb -1 corresponding to a few weeks of LHC operation, the CCE of the sCVD diamonds dropped by a factor of five or more and quickly approached the poor CCE of pCVD diamonds. The reason why in real experiments the CCE is much worse than in laboratory experiments is related to the ionization rate. At high particle rates the trapping rate of the ionization is so high compared with the detrapping rate, that space charge builds up. This space charge reduces locally the internal electric field, which in turn increases the trapping rate and recombination and hence reduces the CCE in a strongly non-linear way. A diamond irradiation campaign was started to investigate the rate-dependent electrical field deformation with respect to the radiation damage. Besides the electrical field measurements via the transient current technique (TCT), the CCE was measured. The experimental results were used to create an effective deep trap model that takes the radiation damage into account. Using this trap model, the rate-dependent electrical field deformation and the CCE were simulated with the software SILVACO TCAD. The simulation, tuned to rate-dependent measurements from a strong radioactive source, was able to predict the non-linear decrease of the CCE in

  11. The Cryogenic Storage Ring CSR

    OpenAIRE

    von Hahn, Robert; Becker, Arno; Berg, Felix; Blaum, Klaus; Breitenfeldt, Christian; Fadil, Hisham; Fellenberger, Florian; Froese, Michael; George, Sebastian; Göck, Jürgen; Grieser, Manfred; Grussie, Florian; Guerin, Elisabeth A.; Heber, Oded; Herwig, Philipp

    2016-01-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion a...

  12. RHIC beam permit and quench detection communications system

    International Nuclear Information System (INIS)

    Conkling, C.R. Jr.

    1997-01-01

    A beam permit module has been developed to concentrate RHIC, subsystem sensor outputs, permit beam, and initiate emergency shutdowns. The modules accept inputs from the vacuum, cryogenic, power supply, beam loss, and superconducting magnet quench detection systems. Modules are located at equipment locations around the RHIC ring. The modules are connected by three fiberoptic communications links; a beam permit link, and two magnet power supply interlock links. During operation, carrier presence allows beam. If a RHIC subsystem detects a fault, the beam permit carrier terminates - initiating a beam dump. If the fault was a superconducting magnet quench, a power supply interlock carrier terminates - initiating an emergency magnet power dump. In addition, the master module triggers an event to cause remote sensors to log and hold data at the time-of-failure

  13. Single-bunch beam loading on the SLAC two-mile accelerator

    International Nuclear Information System (INIS)

    Koontz, R.F.

    1976-05-01

    The experiments described were initially prompted by interest in the radiation loss of relativistic electron rings passing through periodic structures. Later the same experiments became relevant to the theory of energy loss of electrons in large storage rings. In both of these cases energy loss to the higher order modes of the respective structures could seriously limit their effective operation. In these experiments, single bunches of electrons with intensities up to 7 x 10 8 electrons per bunch are accelerated through the SLAC three-kilometer accelerator, and their energy spectra are analyzed. Early experiments over a wide energy range (900 MeV to 19 GeV) demonstrated that the energy loss was proportional to the total charge in the bunch but was independent of beam energy. The average energy loss of a single bunch normalized to 10 9 electrons was initially measured to be 38 MeV

  14. Direct focusing error correction with ring-wide TBT beam position data

    International Nuclear Information System (INIS)

    Yang, M.J.

    2011-01-01

    Turn-By-Turn (TBT) betatron oscillation data is a very powerful tool in studying machine optics. Hundreds and thousands of turns of free oscillations are taken in just few tens of milliseconds. With beam covering all positions and angles at every location TBT data can be used to diagnose focusing errors almost instantly. This paper describes a new approach that observes focusing error collectively over all available TBT data to find the optimized quadrupole strength, one location at a time. Example will be shown and other issues will be discussed. The procedure presented clearly has helped to reduce overall deviations significantly, with relative ease. Sextupoles, being a permanent feature of the ring, will need to be incorporated into the model. While cumulative effect from all sextupoles around the ring may be negligible on turn-to-turn basis it is not so in this transfer line analysis. It should be noted that this procedure is not limited to looking for quadrupole errors. By modifying the target of minimization it could in principle be used to look for skew quadrupole errors and sextupole errors as well.

  15. Beam Loss Monitors at LHC

    CERN Document Server

    Dehning, B.

    2016-01-01

    One of the main functions of the LHC beam loss measurement system is the protection of equipment against damage caused by impacting particles creating secondary showers and their energy dissipation in the matter. Reliability requirements are scaled according to the acceptable consequences and the frequency of particle impact events on equipment. Increasing reliability often leads to more complex systems. The downside of complexity is a reduction of availability; therefore, an optimum has to be found for these conflicting requirements. A detailed review of selected concepts and solutions for the LHC system will be given to show approaches used in various parts of the system from the sensors, signal processing, and software implementations to the requirements for operation and documentation.

  16. The Abort Kicker System for the PEP-II Storage Rings at SLAC

    International Nuclear Information System (INIS)

    Delamare, Jeffrey E

    2003-01-01

    The PEP-II project has two storage rings. The HER (High Energy Ring) has up to 1.48 A of election beam at 9 GeV, and the LER (Low Energy Ring) has up to 2.14 A of positron beam at 3.1 GeV. To protect the HER and LER beam lines in the event of a ring component failure, each ring has an abort kicker system which directs the beam into a dump when a failure is detected. Due to the high current of the beams, the beam kick is tapered from 100% to 80% in 7.33 (micro)S (the beam transit time around the ring). This taper distributes the energy evenly across the window which separates the ring from the beam dump such that the window is not damaged. The abort kicker trigger is synchronized with the ion clearing gap of the beam allowing for the kicker field to rise from 0-80% while there is no beam in the kicker magnet. Originally the kicker system was designed for a rise time of 370nS [1], but because the ion clearing gap was reduced in half, so was the rise time requirement for the kicker. This report discusses the design of the system interlocks, diagnostics, and modulator with the modifications necessary to accommodate an ion clearing gap of 185nS

  17. TSR: A Storage Ring for HIE-ISOLDE

    CERN Document Server

    Butler, P A; Blaum, K; Grieser, M; Davinson, T; Woods, P J; Flanagan, K; Freeman, S J; Lazarus, I H; Litvinov, Yu A; Raabe, R; Siesling, E; Wenander, F

    2016-01-01

    It is planned to install the heavy-ion, low-energy ring TSR, currently at the Max-Planck-Institute for Nuclear Physics in Heidelberg, at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored, cooled secondary beams that is rich and varied, spanning from studies of nuclear ground-state properties and reaction studies of astrophysical relevance, to investigations with highly-charged ions and pure isomeric beams. In addition to experiments performed using beams recirculating within the ring, the cooled beams can be extracted and exploited by external spectrometers for high-precision measurements. The capabilities of the ring facility as well as some physics cases will be presented, together with a brief report on the status of the project.

  18. Design and performance of the beam loss monitor system for the Advanced Photon Source

    International Nuclear Information System (INIS)

    Patterson, D.

    1994-01-01

    The design of the beam loss monitor system for the Argonne National Laboratory Advanced Photon Source is based on using a number of air dielectric coaxial cables as long ionization chambers. The coaxial cables are multiplexed into a high sensitivity DC current-to-voltage converter, which provides an output proportional to the average loss rate over the length of the multiplexed cable. Losses of sufficient amplitude generate measurable voltage pulses on the coaxial cable at a location near the loss point. Multiplexed pulse timing circuits determine the location of the losses by measuring the time at which these voltage pulses arrive at the beginning of the coaxial cable. The loss monitor system has been tested on the SPEAR accelerator at SSRL and was demonstrated to be as sensitive as the DCCT. Preliminary performance data from the APS injector show that the sensitivities of the current-to-voltage, converter circuit are about ten picoamperes of loss monitor signal per picocoulomb per second beam loss rate. The corresponding pulse sensitivity is about 28 μV pulse amplitude in the coaxial cable per picocoulomb of loss. Both these sensitivities are at 300-MeV beam energies. The loss monitor has proven useful in initial commissioning of the injector. Further data will be available as accelerator construction and commissioning continue

  19. Shielding NSLS-II light source: Importance of geometry for calculating radiation levels from beam losses

    Science.gov (United States)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.

    2016-11-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental shielding to the NSLS-II accelerators and the lessons learned from this process are presented.

  20. LHC beam dump system Consequences of abnormal operation

    CERN Document Server

    Kramer, T; Uythoven, J

    2010-01-01

    The LHC beam dump system is one of the most critical systems concerning machine protection and safe operation. It is used to dispose of high intensity beams between 450 GeV and 7 TeV. Studies into the consequences of abnormal beam dump actions have been performed. Different error scenarios have been evaluated using particle tracking in MAD-X, including an asynchronous dump action, and the impact of different orbit and collimator settings. Losses at locations in the ring and the beam dump transfer lines have been quantified as a function of different settings of the dump system protection elements. The implications for the setting up and operation of these protection elements are discussed.

  1. Single-pass BPM system of the Photon Factory storage ring.

    Science.gov (United States)

    Honda, T; Katoh, M; Mitsuhashi, T; Ueda, A; Tadano, M; Kobayashi, Y

    1998-05-01

    At the 2.5 GeV ring of the Photon Factory, a single-pass beam-position monitor (BPM) system is being prepared for the storage ring and the beam transport line. In the storage ring, the injected beam position during the first several turns can be measured with a single injection pulse. The BPM system has an adequate performance, useful for the commissioning of the new low-emittance lattice. Several stripline BPMs are being installed in the beam transport line. The continuous monitoring of the orbit in the beam transport line will be useful for the stabilization of the injection energy as well as the injection beam orbit.

  2. High resolution beam line of the U400M cyclotron and RIB accumulation and cooling in the K4 storage ring

    International Nuclear Information System (INIS)

    Rodin, A.M.; Sidorchuk, S.I.; Stepantsov, S.V.

    1996-01-01

    The high resolution beam line ACCULINNA put into operation on a primary beam line of the JINR U400M cyclotron is discussed in the framework of the TREBLE project. The capability of the beam line for producing radioactive ion beams is demonstrated by means of nuclear fragmentation of the primary 14 N beam, with the energy of 51 MeV · A, on the 170 mg/cm 2 carbon target. Characteristics of the obtained 6 He, 8 He and 8 B radioactive beams are presented. A scheme of accumulation and cooling on the orbit of the storage ring K4 is proposed for a low intensity radioactive beam obtained from this beam line. 8 refs., 6 figs., 1 tab

  3. Polarization Studies for the eRHIC Electron Storage Ring

    Energy Technology Data Exchange (ETDEWEB)

    Gianfelice-Wendt, Eliana [Fermilab; Tepikian, S. [Brookhaven

    2018-04-01

    A hadron/lepton collider with polarized beams has been under consideration by the scientific community since some years, in the U.S. and Europe. Among the various proposals, those by JLAB and BNL with polarized electron and proton beams are currently under closer study in the U.S. Experimenters call for the simultaneous storage of electron bunches with both spin helicity. In the BNL based Ring-Ring design, electrons are stored at top energy in a ring to be accommodated in the existing RHIC tunnel. The transversely polarized electron beam is injected into the storage ring at variable energies, between 5 and 18 GeV. Polarization is brought into the longitudinal direction at the IP by a couple of spin rotators. In this paper results of first studies of the attainable beam polarization level and lifetime in the storage ring at 18 GeV are presented.

  4. Efficient Injection of Electron Beams into Magnetic Guide Fields

    International Nuclear Information System (INIS)

    Chorny, V.; Cooperstein, G.; Dubyna, V.; Frolov, O.; Harper-Slaboszewicz, V.; Hinshelwood, D.; Schneider, R.; Solovyov, V.; Tsepilov, H.; Vitkovitsky, I.; Ware, K.

    1999-01-01

    Preliminary experimental and modeling study of injection and transport of high current electron beams in current-neutralized background gas has been performed. Initial analysis of the results indicates that high current triaxial ring diode operates very reproducibly in the pinch mode. High current density beam can be injected efficiently into the drift region, using azimuthal guide field with reduced intensity near the injection region. This was shown to improve the effectiveness of capturing the beam for the transport. The transport length was insufficient to measure losses, such as would arise from scattering with the background gas

  5. Injection envelope matching in storage rings

    International Nuclear Information System (INIS)

    Minty, M.G.; Spence, W.L.

    1995-05-01

    The shape and size of the transverse phase space injected into a storage ring can be deduced from turn-by-turn measurements of the transient behavior of the beam envelope in the ring. Envelope oscillations at 2 x the β-tron frequency indicate the presence of a β-mismatch, while envelope oscillations at the β-tron frequency are the signature of a dispersion function mismatch. Experiments in injection optimization using synchrotron radiation imaging of the beam and a fast-gated camera at the SLC damping rings are reported

  6. Low emittance electron storage rings

    Science.gov (United States)

    Levichev, E. B.

    2018-01-01

    Low-emittance electron (positron) beams are essential for synchrotron light sources, linear collider damping rings, and circular Crab Waist colliders. In this review, the principles and methods of emittance minimization are discussed, prospects for developing relativistic electron storage rings with small beam phase volume are assessed, and problems related to emittance minimization are examined together with their possible solutions. The special features and engineering implementation aspects of various facilities are briefly reviewed.

  7. Secondary Electron Emission Beam Loss Monitor for LHC

    CERN Document Server

    Dehning, B; Holzer, E B; Kramer, Daniel

    2008-01-01

    Beam Loss Monitoring (BLM) system is a vital part of the active protection of the LHC accelerators' elements. It should provide the number of particles lost from the primary hadron beam by measuring the radiation field induced by their interaction with matter surrounding the beam pipe. The LHC BLM system will use ionization chambers as standard detectors but in the areas where very high dose rates are expected, the Secondary Emission Monitor (SEM) chambers will be employed because of their high linearity, low sensitivity and fast response. The SEM needs a high vacuum for proper operation and has to be functional for up to 20 years, therefore all the components were designed according to the UHV requirements and a getter pump was included. The SEM electrodes are made of Ti because of its Secondary Emission Yield (SEY) stability. The sensitivity of the SEM was modeled in Geant4 via the Photo-Absorption Ionization module together with custom parameterization of the very low energy secondary electron production. ...

  8. Plasma Heating and Losses in Toroidal Multipole Fields

    International Nuclear Information System (INIS)

    Armentrout, C. J.; Barter, J. D.; Breun, R. A.; Cavallo, A. J.; Drake, J. R.; Etzweiler,; Greenwood, J. R.

    1974-01-01

    The heating and loss of plasmas have been studied in three pulsed, toroidal multipole devices: a large levitated octupole, a small supported octupole and a very small supported quadrupole. Plasmas are produced by gun injection and heated by electron and ion cyclotron resonance heating and ohmic heating. Electron cyclotron heating rates have been measured over a wide range of parameters, and the results are in quantitative agreement with stochastic heating theory. Electron cyclotron resonance heating produces ions with energies larger than predicted by theory. With the addition of a toroidal field, ohmic heating gives densities as high as 10 13 cm -3 in the toroidal quadrupole and 10 12 cm -3 in the small octupole. Plasma losses for n=5 x 10 9 cm -3 plasmas are inferred from Langmuir probe and Fabry-Perot interferometer measurements, and measured with special striped collectors on the wall and rings. The loss to a levitated ring is measured using a modulated light beam telemeter. The confinement is better than Bohm but considerably worse than classical. Low frequency convective cells which are fixed in space are observed. These cells around the ring are diminished when a weak toroidal field is added, and loss collectors show a vastly reduced flux to the rings. Analysis of the spatial density profile shows features of B-independent diffusion. The confinement is sensitive to some kinds of dc field errors, but surprisingly insensitive to perturbations of the ac confining field

  9. High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging

    Science.gov (United States)

    Abu Anas, Emran Mohammad; Kim, Jae Gon; Lee, Soo Yeol; Kamrul Hasan, Md

    2011-10-01

    The use of an x-ray flat panel detector is increasingly becoming popular in 3D cone beam volume CT machines. Due to the deficient semiconductor array manufacturing process, the cone beam projection data are often corrupted by different types of abnormalities, which cause severe ring and radiant artifacts in a cone beam reconstruction image, and as a result, the diagnostic image quality is degraded. In this paper, a novel technique is presented for the correction of error in the 2D cone beam projections due to abnormalities often observed in 2D x-ray flat panel detectors. Template images are derived from the responses of the detector pixels using their statistical properties and then an effective non-causal derivative-based detection algorithm in 2D space is presented for the detection of defective and mis-calibrated detector elements separately. An image inpainting-based 3D correction scheme is proposed for the estimation of responses of defective detector elements, and the responses of the mis-calibrated detector elements are corrected using the normalization technique. For real-time implementation, a simplification of the proposed off-line method is also suggested. Finally, the proposed algorithms are tested using different real cone beam volume CT images and the experimental results demonstrate that the proposed methods can effectively remove ring and radiant artifacts from cone beam volume CT images compared to other reported techniques in the literature.

  10. High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging

    International Nuclear Information System (INIS)

    Anas, Emran Mohammad Abu; Hasan, Md Kamrul; Kim, Jae Gon; Lee, Soo Yeol

    2011-01-01

    The use of an x-ray flat panel detector is increasingly becoming popular in 3D cone beam volume CT machines. Due to the deficient semiconductor array manufacturing process, the cone beam projection data are often corrupted by different types of abnormalities, which cause severe ring and radiant artifacts in a cone beam reconstruction image, and as a result, the diagnostic image quality is degraded. In this paper, a novel technique is presented for the correction of error in the 2D cone beam projections due to abnormalities often observed in 2D x-ray flat panel detectors. Template images are derived from the responses of the detector pixels using their statistical properties and then an effective non-causal derivative-based detection algorithm in 2D space is presented for the detection of defective and mis-calibrated detector elements separately. An image inpainting-based 3D correction scheme is proposed for the estimation of responses of defective detector elements, and the responses of the mis-calibrated detector elements are corrected using the normalization technique. For real-time implementation, a simplification of the proposed off-line method is also suggested. Finally, the proposed algorithms are tested using different real cone beam volume CT images and the experimental results demonstrate that the proposed methods can effectively remove ring and radiant artifacts from cone beam volume CT images compared to other reported techniques in the literature.

  11. Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response.

    Science.gov (United States)

    Sipp, Amy R; Gwin, Joseph T; Makeig, Scott; Ferris, Daniel P

    2013-11-01

    Determining the neural correlates of loss of balance during walking could lead to improved clinical assessment and treatment for individuals predisposed to falls. We used high-density electroencephalography (EEG) combined with independent component analysis (ICA) to study loss of balance during human walking. We examined 26 healthy young subjects performing heel-to-toe walking on a treadmill-mounted balance beam as well as walking on the treadmill belt (both at 0.22 m/s). ICA identified clusters of electrocortical EEG sources located in or near anterior cingulate, anterior parietal, superior dorsolateral-prefrontal, and medial sensorimotor cortex that exhibited significantly larger mean spectral power in the theta band (4-7 Hz) during walking on the balance beam compared with treadmill walking. Left and right sensorimotor cortex clusters produced significantly less power in the beta band (12-30 Hz) during walking on the balance beam compared with treadmill walking. For each source cluster, we also computed a normalized mean time/frequency spectrogram time locked to the gait cycle during loss of balance (i.e., when subjects stepped off the balance beam). All clusters except the medial sensorimotor cluster exhibited a transient increase in theta band power during loss of balance. Cluster spectrograms demonstrated that the first electrocortical indication of impending loss of balance occurred in the left sensorimotor cortex at the transition from single support to double support prior to stepping off the beam. These findings provide new insight into the neural correlates of walking balance control and could aid future studies on elderly individuals and others with balance impairments.

  12. Beam loss reduction by magnetic shielding using beam pipes and bellows of soft magnetic materials

    Science.gov (United States)

    Kamiya, J.; Ogiwara, N.; Hotchi, H.; Hayashi, N.; Kinsho, M.

    2014-11-01

    One of the main sources of beam loss in high power accelerators is unwanted stray magnetic fields from magnets near the beam line, which can distort the beam orbit. The most effective way to shield such magnetic fields is to perfectly surround the beam region without any gaps with a soft magnetic high permeability material. This leads to the manufacture of vacuum chambers (beam pipes and bellows) with soft magnetic materials. A Ni-Fe alloy (permalloy) was selected for the material of the pipe parts and outer bellows parts, while a ferritic stainless steel was selected for the flanges. An austenitic stainless steel, which is non-magnetic material, was used for the inner bellows for vacuum tightness. To achieve good magnetic shielding and vacuum performances, a heat treatment under high vacuum was applied during the manufacturing process of the vacuum chambers. Using this heat treatment, the ratio of the integrated magnetic flux density along the beam orbit between the inside and outside of the beam pipe and bellows became small enough to suppress beam orbit distortion. The outgassing rate of the materials with this heat treatment was reduced by one order magnitude compared to that without heat treatment. By installing the beam pipes and bellows of soft magnetic materials as part of the Japan Proton Accelerator Research Complex 3 GeV rapid cycling synchrotron beam line, the closed orbit distortion (COD) was reduced by more than 80%. In addition, a 95.5% beam survival ratio was achieved by this COD improvement.

  13. Effects and Correction of Closed Orbit Magnet Errors in the SNS Ring

    Energy Technology Data Exchange (ETDEWEB)

    Bunch, S.C.; Holmes, J.

    2004-01-01

    We consider the effect and correction of three types of orbit errors in SNS: quadrupole displacement errors, dipole displacement errors, and dipole field errors. Using the ORBIT beam dynamics code, we focus on orbit deflection of a standard pencil beam and on beam losses in a high intensity injection simulation. We study the correction of these orbit errors using the proposed system of 88 (44 horizontal and 44 vertical) ring beam position monitors (BPMs) and 52 (24 horizontal and 28 vertical) dipole corrector magnets. Correction is carried out numerically by adjusting the kick strengths of the dipole corrector magnets to minimize the sum of the squares of the BPM signals for the pencil beam. In addition to using the exact BPM signals as input to the correction algorithm, we also consider the effect of random BPM signal errors. For all three types of error and for perturbations of individual magnets, the correction algorithm always chooses the three-bump method to localize the orbit displacement to the region between the magnet and its adjacent correctors. The values of the BPM signals resulting from specified settings of the dipole corrector kick strengths can be used to set up the orbit response matrix, which can then be applied to the correction in the limit that the signals from the separate errors add linearly. When high intensity calculations are carried out to study beam losses, it is seen that the SNS orbit correction system, even with BPM uncertainties, is sufficient to correct losses to less than 10-4 in nearly all cases, even those for which uncorrected losses constitute a large portion of the beam.

  14. 2014 Joint International Accelerator School: Beam Loss and Accelerator Protection

    CERN Document Server

    JAS - Joint US-CERN-Japan-Russia Accelerator School

    2016-01-01

    Many particle accelerators operate with very high beam power and very high energy stored in particle beams as well as in magnet systems. In the future, the beam power in high intensity accelerators will further increase. The protection of the accelerator equipment from the consequences of uncontrolled release of the energy is essential. This was the motivation for organizing a first school on beam losses and accelerator protection (in general referred to as machine protection). During the school the methods and technologies to identify, mitigate, monitor and manage the technical risks associated with the operation of accelerators with high-power beams or subsystems with large stored energy were presented. At the completion of the school the participants should have been able to understand the physical phenomena that can damage machine subsystems or interrupt operations and to analyze an accelerator facility to produce a register of technical risks and the corresponding risk mitigation and management strategie...

  15. Simulation of the ATLAS SCT Barrel Module Response to LHC Beam Loss Scenarios

    CERN Document Server

    Rose, P; The ATLAS collaboration; Fadeyev, V; Spencer, E; Wilder, M; Domingo, M

    2013-01-01

    In the event of beam loss at the LHC, ATLAS Inner Detector components nearest the beamline may be subjected to unusually large amounts of radiation. Understanding their behavior in such an event is important in determining whether they would still function properly. We built a SPICE model of the silicon strip module electrical system to determine the behavior of its elements during a realistic beam loss scenario. We found that the power supply and bias filter characteristics strongly affect the module response in such scenarios. In particular, the following self-limiting phenomena were observed: there is a finite amount of charge initially available on the bias filter capacitors for collection by the strips; the power supply current limit reduces the rate at which the bias filter capacitors' charge can be replenished; the reduced bias voltage leads to a smaller depletion depth which results in less collected charge. These effects provide a larger measure of safety during beam loss events than we have previous...

  16. Design studies for the electron storage ring EUTERPE

    Energy Technology Data Exchange (ETDEWEB)

    Boling, Xi

    1995-05-18

    The 400 MeV electron storage ring EUTERPE is under construction at Eindhoven University of Technology. The ring is to be used as an experimental tool for accelerator physics studies and synchroton radiation applications. The main task of the current research work is the electron optical design of the ring. Lattice design is a basis for machine design as a whole. Design aspects regarding the basic lattice, based on single particle dynamics, include determination of the equilibrium beam size and bunch length, design of achromatic bending sections, selection of tune values, correction of chromaticity, and minimization of the natural emittance in the ring. The basic lattice designed for the EUTERPE ring has a high flexibility so that different electron optical modes can be realized easily. In low energy storage rings with a high beam current, collective effects can cause a significant change in the bunch length, the transverse emittance and the beam lifetime. In order to ensure a good optical performance for the ring, the choice of suitable parameters concerning the vacuum and RF system are essential as far as collective effects are concerned. An estimation of the collective effects in the ring is given. The injector for EUTERPE is a 75 MeV racetrack microtron which is injected from a 10 MeV linac. In order to get sufficient beam current in the ring, a special procedure of continuous injection with an adjustable locally shifted closed orbit has been presented. Details of the injection procedure and numerical simulations are given. (orig./HSI).

  17. Design studies for the electron storage ring EUTERPE

    International Nuclear Information System (INIS)

    Xi Boling.

    1995-01-01

    The 400 MeV electron storage ring EUTERPE is under construction at Eindhoven University of Technology. The ring is to be used as an experimental tool for accelerator physics studies and synchroton radiation applications. The main task of the current research work is the electron optical design of the ring. Lattice design is a basis for machine design as a whole. Design aspects regarding the basic lattice, based on single particle dynamics, include determination of the equilibrium beam size and bunch length, design of achromatic bending sections, selection of tune values, correction of chromaticity, and minimization of the natural emittance in the ring. The basic lattice designed for the EUTERPE ring has a high flexibility so that different electron optical modes can be realized easily. In low energy storage rings with a high beam current, collective effects can cause a significant change in the bunch length, the transverse emittance and the beam lifetime. In order to ensure a good optical performance for the ring, the choice of suitable parameters concerning the vacuum and RF system are essential as far as collective effects are concerned. An estimation of the collective effects in the ring is given. The injector for EUTERPE is a 75 MeV racetrack microtron which is injected from a 10 MeV linac. In order to get sufficient beam current in the ring, a special procedure of continuous injection with an adjustable locally shifted closed orbit has been presented. Details of the injection procedure and numerical simulations are given. (orig./HSI)

  18. A Monte-Carlo simulation of the equilibrium beam polarization in ultra-high energy electron (positron) storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Zhe, E-mail: zhe.duan@ihep.ac.cn [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing (China); University of Chinese Academy of Sciences, 100049 Beijing (China); Bai, Mei [Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Barber, Desmond P. [Deutsches Elektronen-Synchrotron, DESY, 22607 Hamburg (Germany); Qin, Qing [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing (China)

    2015-09-01

    With the recently emerging global interest in building a next generation of circular electron–positron colliders to study the properties of the Higgs boson, and other important topics in particle physics at ultra-high beam energies, it is also important to pursue the possibility of implementing polarized beams at this energy scale. It is therefore necessary to set up simulation tools to evaluate the beam polarization at these ultra-high beam energies. In this paper, a Monte-Carlo simulation of the equilibrium beam polarization based on the Polymorphic Tracking Code (PTC) (Schmidt et al., 2002 [1]) is described. The simulations are for a model storage ring with parameters similar to those of proposed circular colliders in this energy range, and they are compared with the suggestion (Derbenev et al., 1979 [2]) that there are different regimes for the spin dynamics underlying the polarization of a beam in the presence of synchrotron radiation at ultra-high beam energies. In particular, it has been suggested that the so-called “correlated” crossing of spin resonances during synchrotron oscillations at current energies evolves into “uncorrelated” crossing of spin resonances at ultra-high energies.

  19. A Monte-Carlo simulation of the equilibrium beam polarization in ultra-high energy electron (positron) storage rings

    International Nuclear Information System (INIS)

    Duan, Zhe; Bai, Mei; Barber, Desmond P.; Qin, Qing

    2015-04-01

    With the recently emerging global interest in building a next generation of circular electron-positron colliders to study the properties of the Higgs boson, and other important topics in particle physics at ultra-high beam energies, it is also important to pursue the possibility of implementing polarized beams at this energy scale. It is therefore necessary to set up simulation tools to evaluate the beam polarization at these ultra-high beam energies. In this paper, a Monte-Carlo simulation of the equilibrium beam polarization based on the Polymorphic Tracking Code(PTC) (Schmidt et al., 2002) is described. The simulations are for a model storage ring with parameters similar to those of proposed circular colliders in this energy range, and they are compared with the suggestion (Derbenev et al., 1978) that there are different regimes for the spin dynamics underlying the polarization of a beam in the presence of synchrotron radiation at ultra-high beam energies. In particular, it has been suggested that the so-called ''correlated'' crossing of spin resonances during synchrotron oscillations at current energies, evolves into ''uncorrelated'' crossing of spin resonances at ultra-high energies.

  20. CESR-c Performance of a Wiggler-Dominated Storage Ring

    CERN Document Server

    Temnykh, Alexander

    2005-01-01

    CESR-c operates now as a Wiggler-Dominated Storage Ring extending the lowest operating energy to 1.5GeV/beam. To improve beam stability at low energy, 12 super-ferric wiggler magnets with total length of 15m and 2.1T maximum field were installed in the ring. They cause ~90% of total beam radiation lost and increase radiation damping rate by factor 10 from ~3 to 40 Hz. However, the field of the wiggler magnets not only initiates the radiation, but potentially affects beam dynamics. The latter was an issue of a great concern from the planning the CESR-c project. In this paper we describe general performance of CESR-c and report the results of an experimental study on some aspects of beam dynamics. Comparisons are made between the experimental data and the model prediction. We find that all parameters, which are critically dependent on wigglers, such as beam properties and ring nonlinearity, are in good agreement with those calculated from the model. This validates the ring and wiggler models and justifies our d...

  1. Dynamical chaos and beam-beam models

    International Nuclear Information System (INIS)

    Izrailev, F.M.

    1990-01-01

    Some aspects of the nonlinear dynamics of beam-beam interaction for simple one-dimensional and two-dimensional models of round and flat beams are discussed. The main attention is paid to the stochasticity threshold due to the overlapping of nonlinear resonances. The peculiarities of a round beam are investigated in view of using the round beams in storage rings to get high luminosity. 16 refs.; 7 figs

  2. Lifetime and performance of NSLS storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Halama, H.J.

    1988-01-01

    The performance of synchrotron light sources is measured primarily in terms of beam lifetime, beam size, and the recovery of normal operation after a section of the machine has been brought to atmospheric pressure. The beam lifetime and the beam size depend on the following phenomena: Beam gas interaction which can be either elastic or inelastic scattering on residual gas nuclei or electrons. With the exception of low energy machines, this phenomenon represents the main limiting factor on lifetime; Beam interaction with trapped ions causing both beam loss and defocussing. Residual gas molecules are ionized both by circulating beam and synchrotron radiation. The cross sections for both processes are comparable. The effects of this phenomenon are most troublesome at low energies. The problem can be eliminated by switching to positron beams. Installing clearing electrodes has also been successful; Intrabeam scattering (Touschek effect) is caused by Coulomb scattering among electrons of the same bunch as they execute betatron oscillations. The Touschek effect is strongly dependent on energy and in general is a problem only in low energy machines; and Various instabilities causing both slow and fast beam decay which have been observed in both NSLS rings. A special case due to dust particles that fall into the electron beam is commonly observed in early stages of conditioning. Coherent collective instabilities will not be discussed in this paper. 19 refs., 4 figs., 1 tab.

  3. Lifetime and performance of NSLS storage rings

    International Nuclear Information System (INIS)

    Halama, H.J.

    1988-01-01

    The performance of synchrotron light sources is measured primarily in terms of beam lifetime, beam size, and the recovery of normal operation after a section of the machine has been brought to atmospheric pressure. The beam lifetime and the beam size depend on the following phenomena: Beam gas interaction which can be either elastic or inelastic scattering on residual gas nuclei or electrons. With the exception of low energy machines, this phenomenon represents the main limiting factor on lifetime; Beam interaction with trapped ions causing both beam loss and defocussing. Residual gas molecules are ionized both by circulating beam and synchrotron radiation. The cross sections for both processes are comparable. The effects of this phenomenon are most troublesome at low energies. The problem can be eliminated by switching to positron beams. Installing clearing electrodes has also been successful; Intrabeam scattering (Touschek effect) is caused by Coulomb scattering among electrons of the same bunch as they execute betatron oscillations. The Touschek effect is strongly dependent on energy and in general is a problem only in low energy machines; and Various instabilities causing both slow and fast beam decay which have been observed in both NSLS rings. A special case due to dust particles that fall into the electron beam is commonly observed in early stages of conditioning. Coherent collective instabilities will not be discussed in this paper. 19 refs., 4 figs., 1 tab

  4. LHC beam dump system : analysis of beam commissioning, performance and the consequences of abnormal operation

    International Nuclear Information System (INIS)

    Kramer, T.

    2011-01-01

    The LHC accelerates proton beams to a momentum of up to 7 TeV/c. At this energy level and with nominal beam intensity the stored energy of 360 MJ per beam is sufficient to melt 500 kg of copper. In addition up to 10 GJ are stored within the LHC magnet system at top energy. lt is obvious that such a machine needs well designed safety and protection systems. The LHC Beam Dump System (LBDS) is such a system and one of the most critical once concerning machine protection and safe operation. lt is used to dispose of high intensity beams between 450 GeV and 7 TeV and is thus designed to fast extract beam in a loss free way and to transfer it to an external absorber. For each ring systems of 15 horizontal fast kicker magnets (MKD), 15 vertically deflecting magnetic septa (MSD) and 10 diluter kicker magnets (MKB) are installed. This thesis is concerned with the analysis of the LBDS performance under normal operating parameters as well as under abnormal conditions like in the event of asynchronous beam abort or missing MKD elements. Therefore a sophisticated simulation environment was developed based on the use of the MAD-X tracking code. A system of tracking jobs was set up to study failure cases and losses for various dump events. Those jobs can be distributed to available CPU power and be calculated in parallel. Studies into the consequences of abnormal beam dump actions have been performed. Different error scenarios have been evaluated including an asynchronous dump action, prefire cases, and the impact of different orbit and collimator settings. Losses at locations in the ring and the beam dump transfer lines have been quantified as a function of different settings of the dump system protection elements. The implications for the setup and operation of these protection elements are discussed. Particle distributions can be created according to the used orbit. Simulations with different orbit parameters (including magnet field errors, beam position read out errors

  5. Numerical Simulation of Beam-Beam Effects in the Proposed Electron-Ion Colider at Jefferson Lab

    International Nuclear Information System (INIS)

    Terzic, Balsa; Zhang, Yuhong

    2010-01-01

    One key limiting factor to a collider luminosity is beam-beam interactions which usually can cause serious emittance growth of colliding beams and fast reduction of luminosity. Such nonlinear collective beam effect can be a very serious design challenge when the machine parameters are pushed into a new regime. In this paper, we present simulation studies of the beam-beam effect for a medium energy ring-ring electron-ion collider based on CEBAF.

  6. Electron Cloud Generation and Trapping in a Quadrupole Magnet at the Los Alamos Proton Storage Ring

    International Nuclear Information System (INIS)

    Macek, Robert J.; Browman, Andrew A.; Ledford, John E.; TechSource, Santa Fe; Los Alamos; Borden, Michael J.; O'Hara, James F.; McCrady, Rodney C.; Rybarcyk, Lawrence J.; Spickermann, Thomas; Zaugg, Thomas J.; Pivi, Mauro T.F.

    2008-01-01

    Recent beam physics studies on the two-stream e-p instability at the LANL proton storage ring (PSR) have focused on the role of the electron cloud generated in quadrupole magnets where primary electrons, which seed beam-induced multipacting, are expected to be largest due to grazing angle losses from the beam halo. A new diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies using this diagnostic show that the 'prompt' electron flux striking the wall in a quadrupole is comparable to the prompt signal in the adjacent drift space. In addition, the 'swept' electron signal, obtained using the sweeping feature of the diagnostic after the beam was extracted from the ring, was larger than expected and decayed slowly with an exponential time constant of 50 to 100 (micro)s. Other measurements include the cumulative energy spectra of prompt electrons and the variation of both prompt and swept electron signals with beam intensity. Experimental results were also obtained which suggest that a good fraction of the electrons observed in the adjacent drift space for the typical beam conditions in the 2006 run cycle were seeded by electrons ejected from the quadrupole

  7. Electron cloud generation and trapping in a quadrupole magnet at the Los Alamos proton storage ring

    Directory of Open Access Journals (Sweden)

    Robert J. Macek

    2008-01-01

    Full Text Available Recent beam physics studies on the two-stream e-p instability at the LANL proton storage ring (PSR have focused on the role of the electron cloud generated in quadrupole magnets where primary electrons, which seed beam-induced multipacting, are expected to be largest due to grazing angle losses from the beam halo. A new diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Beam studies using this diagnostic show that the “prompt” electron flux striking the wall in a quadrupole is comparable to the prompt signal in the adjacent drift space. In addition, the “swept” electron signal, obtained using the sweeping feature of the diagnostic after the beam was extracted from the ring, was larger than expected and decayed slowly with an exponential time constant of 50 to 100  μs. Other measurements include the cumulative energy spectra of prompt electrons and the variation of both prompt and swept electron signals with beam intensity. Experimental results were also obtained which suggest that a good fraction of the electrons observed in the adjacent drift space for the typical beam conditions in the 2006 run cycle were seeded by electrons ejected from the quadrupole.

  8. Beam position monitor R&D for keV ion beams

    CERN Document Server

    Naveed, S; Nosych, A; Søby,L

    2013-01-01

    Beams of cooled antiprotons at keV energies shall be provided by the Ultra-low energy Storage Ring (USR) at the Facility for Low energy Antiproton and Ion Research (FLAIR) and the Extra Low ENergy Antiproton ring (ELENA) at CERN's Antiproton Decelerator (AD) facility. Both storage rings put challenging demands on the beam position monitoring (BPM) system as their capacitive pick-ups should be capable of determining the beam position of beams at low intensities and low velocities, close to the noise level of state-of-the-art electronics. In this contribution we describe the design and anticipated performance of BPMs for low-energy ion beams with a focus on the ELENA orbit measurement systems. We also present the particular challenges encountered in the numerical simulation of pickup response at very low beta values. Finally, we provide an outlook on how the implementation of faster algorithms for the simulation of BPM characteristics could potentially help speed up such studies considerably.

  9. Prompt loss of beam ions in KSTAR plasmas

    Directory of Open Access Journals (Sweden)

    Jun Young Kim

    2016-10-01

    Full Text Available For a toroidal plasma facility to realize fusion energy, researching the transport of fast ions is important not only due to its close relation to the heating and current drive efficiencies but also to determine the heat load on the plasma-facing components. We present a theoretical analysis and orbit simulation for the origin of lost fast-ions during neutral beam injection (NBI heating in Korea Superconducting Tokamak Advanced Research (KSTAR device. We adopted a two-dimensional phase diagram of the toroidal momentum and magnetic moment and describe detectable momentums at the fast-ion loss detector (FILD position as a quadratic line. This simple method was used to model birth ions deposited by NBI and drawn as points in the momentum phase space. A Lorentz orbit code was used to calculate the fast-ion orbits and present the prompt loss characteristics of the KSTAR NBI. The scrape-off layer deposition of fast ions produces a significant prompt loss, and the model and experimental results closely agreed on the pitch-angle range of the NBI prompt loss. Our approach can provide wall load information from the fast ion loss.

  10. Perturbation of the energy loss spectra for an accelerated electron beam due to the photo injector exit

    CERN Document Server

    Salah, W

    2003-01-01

    The influence of the photo-injector exit hall on the energy loss for an accelerated electron beam is investigated, by calculating the total energy transferred from the electrons to the wakefields, which are driven by the beam. The obtained energy loss is compared to those previously obtained for a 'pill-box' cavity. This comparison shows that the influence of this hall, in terms of energy loss, varies over the beam length. It is strongest in the middle of the beam and decreases towards both ends. In consequence of this perturbation, the center of the beam is displaced from its initial position during the first phase (t < 200 ps) where the exit aperture has no effect to a new equilibrium position which takes place at 200 < t < 250 ps. (author)

  11. Black rings with fourth dipole cause less hair loss

    Science.gov (United States)

    Chowdhury, Borun D.

    2012-07-01

    An example of entropy enigma with a controlled CFT dual was recently studied in [1]. The enigmatic bulk configurations, considered within the STU model, can be mapped under spectral flow into black rings with three monopole and dipole charges. Even though the bulk and CFT configurations existed in the same region of parameter space, the Bekenstein-Hawking entropy of the bulk configurations was found to be lower than the microscopic entropy from the CFT. While it is possible that the difference in entropy is due to the bulk and boundary configurations being at different points in the moduli space, it is also possible that the bulk configurations embeddable within the STU model are not the most entropic. New families of BPS black ring solutions with four electric and four dipole magnetic charges have recently been explicitly constructed in [2]. These black rings are not embeddable within the STU model. In this paper we investigate if these black rings can be entropically dominant over the STU model black rings. We find that the new black rings are always entropically subdominant to the STU-model black rings. However, for small fourth dipole charge these black rings continue to be dominant over the BMPV in a small region of parameters and are thus enigmatic.

  12. Injector for CESAR (2 MeV electron storage ring): 2-beam, 2 MV van de Graaff generator.

    CERN Multimedia

    CERN PhotoLab

    1963-01-01

    The van de Graaff generator in its tank. For voltage-holding, the tank was filled with pressurized extra-dry nitrogen. 2 beams emanated from 2 separate electron-guns. The left beam, for injection into the CESAR ring, was pulsed at 50 Hz, with currents of up to 1 A for 400 ns. The right beam was sent to a spectrometer line. Its pulselength was also 400 ns, but the pulse current was 12 microA, at a rate variable from 50 kHz to 1 MHz. This allowed stabilization of the top-terminal voltage to an unprecedented stability of +- 100 V, i.e. 6E-5. Although built for a nominal voltage of 2 MV, the operational voltage was limited to 1.75 MV in order to minimize voltage break-down events.

  13. Ultra-low energy storage ring at FLAIR

    International Nuclear Information System (INIS)

    Welsch, Carsten P.; Papash, A. I.; Gorda, O.; Harasimowicz, J.; Karamyshev, O.; Karamysheva, G.; Newton, D.; Panniello, M.; Putignano, M.; Siggel-King, M. R. F.; Smirnov, A.

    2012-01-01

    The Ultra-low energy electrostatic Storage Ring (USR) at the future Facility for Low-energy Antiproton and Ion Research (FLAIR) will provide cooled beams of antiprotons in the energy range between 300 keV down to 20 keV and possibly less. The USR has been completely redesigned over the past three years. The ring structure is based on a “split achromat” lattice that allows in-ring experiments with internal gas jet target. Beam parameters might be adjusted in a wide range: from very short pulses in the nanosecond regime to a Coasting beam. In addition, a combined fast and slow extraction scheme was developed that allows for providing external experiments with cooled beams of different time structure. Detailed investigations of the USR, including studies into the ring’s long term beam dynamics, life time, equilibrium momentum spread and equilibrium lateral spread during collisions with an internal target were carried out. New tools and beam handling techniques for diagnostics of ultra-low energy ions at beam intensities less than 10 6 were developed by the QUASAR Group. In this paper, progress on the USR project will be presented with an emphasis on the expected beam parameters available to the experiments at FLAIR.

  14. Measurements of electron beam emittance in the Accelerator Test Facility damping ring operated in multibunch modes

    Directory of Open Access Journals (Sweden)

    Yosuke Honda

    2003-09-01

    Full Text Available We present the measurement results of electron beam emittance in the Accelerator Test Facility damping ring operated in multibunch modes. The measurements were carried out with an upgraded laser wire beam profile monitor. The monitor has now a vertical wire as well as a horizontal one and is able to make much faster measurements thanks to an increased effective laser power inside the cavity. The measured emittance shows no large bunch-to-bunch dependence in either the horizontal or vertical directions. The values of the vertical emittance are similar to those obtained in the single-bunch operation. The present results are an important step toward the realization of a high-energy linear collider.

  15. Spatial superpositions of Gaussian beams

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2014-02-01

    Full Text Available . At the plane of the lens we obtain a multi-ringed beam with a central intensity maximum which develops into a multi-ringed beam with a central null at the focal plane of the lens. The interesting feature of this beam is that it possesses two focal spots...

  16. Storage ring at HIE-ISOLDE Technical design report

    NARCIS (Netherlands)

    Grieser, M.; Litvinov, Yu. A.; Raabe, R.; Blaum, K.; Blumenfeld, Y.; Butler, P. A.; Wenander, F.; Woods, P. J.; Aliotta, M.; Andreyev, A.; Artemyev, A.; Atanasov, D.; Aumann, T.; Balabanski, D.; Barzakh, A.; Batist, L.; Bernardes, A. -P.; Bernhardt, D.; Billowes, J.; Bishop, S.; Borge, M.; Borzov, I.; Boston, A. J.; Brandau, C.; Catford, W.; Catherall, R.; Cederkall, J.; Cullen, D.; Davinson, T.; Dillmann, I.; Dimopoulou, C.; Dracoulis, G.; Duellmann, Ch. E.; Egelhof, P.; Estrade, A.; Fischer, D.; Flanagan, K.; Fraile, L.; Fraser, M. A.; Freeman, S. J.; Geissel, H.; Gerl, J.; Greenlees, P.; Grisenti, R. E.; Habs, D.; von Hahn, R.; Hagmann, S.; Hausmann, M.; He, J. J.; Heil, M.; Huyse, M.; Jenkins, D.; Jokinen, A.; Jonson, B.; Joss, D. T.; Kadi, Y.; Kalantar-Nayestanaki, N.; Kay, B. P.; Kiselev, O.; Kluge, H. -J.; Kowalska, M.; Kozhuharov, C.; Kreim, S.; Kroell, T.; Kurcewicz, J.; Labiche, M.; Lemmon, R. C.; Lestinsky, M.; Lotay, G.; Ma, X. W.; Marta, M.; Meng, J.; Muecher, D.; Mukha, I.; Mueller, A.; Murphy, A. St J.; Neyens, G.; Nilsson, T.; Nociforo, C.; Noertershaeuser, W.; Page, R. D.; Pasini, M.; Petridis, N.; Pietralla, N.; Pfuetzner, M.; Podolyak, Z.; Regan, P.; Reed, M. W.; Reifarth, R.; Reiter, P.; Repnow, R.; Riisager, K.; Rubio, B.; Sanjari, M. S.; Savin, D. W.; Scheidenberger, C.; Schippers, S.; Schneider, D.; Schuch, R.; Schwalm, D.; Schweikhard, L.; Shubina, D.; Siesling, E.; Simon, H.; Simpson, J.; Smith, J.; Sonnabend, K.; Steck, M.; Stora, T.; Stoehlker, T.; Sun, B.; Surzhykov, A.; Suzaki, F.; Tarasov, O.; Trotsenko, S.; Tu, X. L.; Van Duppen, P.; Volpe, C.; Voulot, D.; Walker, P. M.; Wildner, E.; Winckler, N.; Winters, D. F. A.; Wolf, A.; Xu, H. S.; Yakushev, A.; Yamaguchi, T.; Yuan, Y. J.; Zhang, Y. H.; Zuber, K.; Bosch, F.M.

    We propose to install a storage ring at an ISOL-type radioactive beam facility for the first time. Specifically, we intend to setup the heavy-ion, low-energy ring TSR at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored secondary beams

  17. Design and construction of electrostatic separators for TRISTAN Main Ring

    International Nuclear Information System (INIS)

    Shintake, Tsumoru; Suetsugu, Yusuke; Mori, Kenji; Sato, Masayuki; Higo, Toshiyasu.

    1989-03-01

    Sixteen electrostatic separators have been installed in TRISTAN Main Ring for separating the electron and positron beams. The maximum designed voltage is 240 kV across a gap of 8 cm between 4.6 or 3.2 m long titanium electrodes. Special care was taken to secure the passage of the wall current produced by the passing bunched beam and also to reduce irradiation of the synchrotron radiation onto the ceramic parts, so that no H.V. breakdown will occur. Even if one of them breaks down, it will result in total beam loss. In order to make the H.V. sparking rate as low as possible, the chemical cleaning process was studied carefully. The process was focused on removing the contamination such as machining oil, sander emery on the metal surfaces. The field distributions were studied by the computer simulation code DENKAI, and the shapes of the electrodes and ceramics were optimized, taking into account the limit of Kilpatrick Criterion. Every one of the H.V.-bushings and ceramic supports were tested by applying H.V. up to 150 kV, and assembled into the chamber in a clean room. The power of the parasitic mode was pulled out through the H.V.-bushing and damped by ferrite microwave absorbers inside the shield box. It was estimated that the maximum power of the electrode heating is less than 25 W and temperature rise is less than 50degC. With this much temperature rise, no significant deterioration of vacuum pressure is expected. The direct electrode cooling became unnecessary, and the structure of the separator became very simple. The separators showed excellent H.V. properties, i.e., no H.V. spark was observed over two days for 16 separators at 240 kV without the beams circulating the ring. With the beams of 9 mA, neither beam loss nor sparks were observed at the separation voltage of 200 kV. The vacuum pressure rose by only twice as high as the base pressure. The rise was not much different from that of the neighborhood, and enough for the beam operation. (author)

  18. FEL indulators with the hollow-ring electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Epp, V.; Bordovitsyn, V. [Tomsk State Univ. (Russian Federation); Kozhevnikov, A. [Tomsk Pedagogical Institute (Russian Federation)] [and others

    1995-12-31

    A conceptual design of undulators with a modulated longitudinal magnetic field is proposed. The magnetic field is created by use of a solenoid with axis coincident with the electron beam axis. In order to modulate the magnetic field we propose an insertion of a row of alternating ferromagnetic and superconducting diaphragms in line with electron beam. The simulation of two-dimensional distribution of the magnetic field in the plane containing undulator axis was made using the computer code {open_quotes}Mermaid{close_quotes}. The magnetic field was analysed as a function of the system geometry. The dependence on the spacing l between superconducting diaphragms, inner a and outer b radii of the last ones is investigated. Two versions of the device are considered: with ferromagnetic rings made of magnetically soft material placed between the superconducting diaphragms and without them. It is shown that the field modulation depth increases with ratio of b/l and can exceed 50% in case of the ferromagnetic insertions. An approximate analytical calculation of the magnetic field distribution is performed as follows. The axial-symmetrical magnetic field can be defined by the vector potential with only one nonzero component A(r,{phi}) where r and {phi} are the cylindrical coordinates. The solution of the Laplace`s equation is found under the assumption that the magnetic field is infinitely extended and periodic along the z-axis. The boundary conditions are defined by the undulator design. The result is used for the calculation of the particle dynamics and for the investigations of the trajectory stability. The spectral and angular distribution of the radiation emitted from the described systems is found. The estimations show that the proposed design allows to create relatively high magnitude of the magnetic field (up to 1 T) with a short period about 1 cm or less.

  19. Storage-ring FEL for the vuv

    International Nuclear Information System (INIS)

    Peterson, J.M.; Bisognano, J.J.; Garren, A.A.; Halbach, K.; Kim, K.J.; Sah, R.C.

    1984-09-01

    A free-electron laser for the vuv operating in a storage ring requires an electron beam of high density and low energy spread and a short wavelength, narrow-gap undulator. These conditions tend to produce longitudinal and transverse beam instabilities, excessive beam growth through multiple intrabeam scattering, and a short gas-scattering lifetime. Passing the beam only occasionally through the undulator in a by-pass straight section, as proposed by Murphy and Pellegrini, allows operation in a high-gain, single-pass mode and a long gas-scattering lifetime. Several storage ring designs have been considered to see how best to satisfy the several requirements. Each features a by-pass, a low-emittance lattice, and built-in wigglers for enhanced damping to counteract the intra-beam scattering. 15 references, 3 figures, 2 tables

  20. Simultaneous computation of intrabunch and interbunch collective beam motions in storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Skripka, Galina, E-mail: galina.skripka@maxlab.lu.se [MAX IV Laboratory, Lund University, SE-22100 Lund (Sweden); Nagaoka, Ryutaro, E-mail: ryutaro.nagaoka@synchrotron-soleil.fr [Synchrotron SOLEIL, Saint Aubin, 91192 Gif-sur-Yvette (France); Klein, Marit; Cullinan, Francis [Synchrotron SOLEIL, Saint Aubin, 91192 Gif-sur-Yvette (France); Tavares, Pedro F. [MAX IV Laboratory, Lund University, SE-22100 Lund (Sweden)

    2016-01-11

    We present the multibunch tracking code mbtrack developed to simulate, in 6-dimensional phase space, single- and multibunch collective instabilities driven by short- and long-range wakefields in storage rings. Multiple bunches, each composed of a large number of macroparticles, are tracked, allowing simulation of both intra- and interbunch motions. Besides analytical impedance models, the code allows employment of numerical wake potentials computed with electromagnetic (EM) field solvers. The corresponding impedances are fitted to a number of known analytical functions and the coefficients obtained in the fit are used as an input to the code. mbtrack performs a dynamic treatment of long-range resistive-wall and harmonic cavity fields, which are likely to be the two major factors impacting multibunch collective motions in many present and future ring-based light sources. Furthermore, it is capable of simulating beam-ion interactions as well as transverse bunch-by-bunch feedback. We describe the physical effects considered in the code and their implementation, which makes use of parallel processing to significantly shorten the computation time. mbtrack is benchmarked against other codes and applied to the MAX IV 3 GeV ring as an example, where the importance of the interplay of various physical effects as well as coupling among different degrees of freedom is demonstrated. - Highlights: • A new 6D multibunch multiparticle tracking code is developed. • The code employs numerical impedance computed for realistic vacuum components. • Effects of passive harmonic cavity and resistive wall are treated. • A method to model interplay between intra- and interbunch motions is developed.

  1. Ion production and trapping in electron rings

    International Nuclear Information System (INIS)

    Gluckstern, R.C.; Ruggiero, A.G.

    1979-08-01

    The electron beam in the VUV and X-ray rings of NSLS will ionize residual gas by collisions. Positive ions will be produced with low velocity, and will be attracted by the electron beam to the beam axis. If they are trapped in stable (transverse) orbits, they may accumulate, thereby increasing the ν/sub x,z/ of the individual electrons. Since the accumulated ions are unlikely to be of uniform density, a spread in ν/sub x,z/ will also occur. Should these effects be serious, it may be necessary to introduce clearing electrodes, although this may increase Z/n in the rings, thereby adding to longitudinal instability problems. The seriousness of the above effect for the VUV and X-ray rings is estimated

  2. SNS accumulator ring design and space charge considerations

    International Nuclear Information System (INIS)

    Weng, W.T.

    1998-01-01

    The goal of the proposed Spallation Neutron Source (SNS) is to provide a short pulse proton beam of about 0.5micros with average beam power of 1MW. To achieve such purpose, a proton storage ring operated at 60Hz with 1 x 10 14 protons per pulse at 1GeV is required. The Accumulator Ring (AR) receives 1msec long H - beam bunches of 28mA from a 1GeV linac. Scope and design performance goals of the AR are presented. About 1,200 turns of charge exchange injection is needed to accumulate 1mA in the ring. After a brief description of the lattice design and machine performance parameters, space charge related issues, such as: tune shifts, stopband corrections, halo generation and beam collimation etc. is discussed

  3. NRL ion ring program

    International Nuclear Information System (INIS)

    Kapetanakos, C.A.; Golden, J.; Drobot, A.; Mahaffey, R.A.; Marsh, S.J.; Pasour, J.A.

    1977-01-01

    An experiment is under way to form a storng proton ring using the 200 ka, 1.2 MeV, 50 nsec hollow proton beam recently generated at NRL. The 5 m long magnetic field configuration consists of a magnetic cusp, a compressing magnetic field, a gate field and a magnetic mirror. The midplane value of the magnetic mirror is such that the major radius of the ring will be about 10 cm. The degree of field reversal that will be achieved with 5 x 10 16 protons per pulse from the existing beam depends upon the field reversal is possible with the 600 kA proton beam that would be generated from the low inductance coaxial triode coupled to the upgraded Gamble II generator. The propagation and trapping of an intense proton beam in the experimental magnetic field configuration is investigated numerically. The results show that the self magnetic has a very pronounced effect on the dynamics of the gyrating protons

  4. Ion transport and loss in the earth's quiet ring current. I - Data and standard model

    Science.gov (United States)

    Sheldon, R. B.; Hamilton, D. C.

    1993-01-01

    A study of the transport and loss of ions in the earth's quiet time ring current, in which the standard radial diffusion model developed for the high-energy radiation belt particles is compared with the measurements of the lower-energy ring current ions, is presented. The data set provides ionic composition information in an energy range that includes the bulk of the ring current energy density, 1-300 keV/e. Protons are found to dominate the quiet time energy density at all altitudes, peaking near L of about 4 at 60 keV/cu cm, with much smaller contributions from O(+) (1-10 percent), He(+) (1-5 percent), and He(2+) (less than 1 percent). A minimization procedure is used to fit the amplitudes of the standard electric radial diffusion coefficient, yielding 5.8 x 10 exp -11 R(E-squared)/s. Fluctuation ionospheric electric fields are suggested as the source of the additional diffusion detected.

  5. On the dynamics of Airy beams in nonlinear media with nonlinear losses.

    Science.gov (United States)

    Ruiz-Jiménez, Carlos; Nóbrega, K Z; Porras, Miguel A

    2015-04-06

    We investigate on the nonlinear dynamics of Airy beams in a regime where nonlinear losses due to multi-photon absorption are significant. We identify the nonlinear Airy beam (NAB) that preserves the amplitude of the inward Hänkel component as an attractor of the dynamics. This attractor governs also the dynamics of finite-power (apodized) Airy beams, irrespective of the location of the entrance plane in the medium with respect to the Airy waist plane. A soft (linear) input long before the waist, however, strongly speeds up NAB formation and its persistence as a quasi-stationary beam in comparison to an abrupt input at the Airy waist plane, and promotes the formation of a new type of highly dissipative, fully nonlinear Airy beam not described so far.

  6. Emittance growth induced by electron cloud in proton storage rings

    CERN Document Server

    Benedetto, Elena; Coppa, G

    2006-01-01

    In proton and positron storage rings with many closely spaced bunches, a large number of electrons can accumulate in the beam pipe due to various mechanisms (photoemission, residual gas ionization, beam-induced multipacting). The so-formed electron cloud interacts with the positively charged bunches, giving rise to instabilities, emittance growth and losses. This phenomenon has been observed in several existing machines such as the CERN Super Proton Synchrotron (SPS), whose operation has been constrained by the electron-cloud problem, and it is a concern for the Large Hadron Collider (LHC), under construction at CERN. The interaction between the beam and the electron cloud has features which cannot be fully taken into account by the conventional and known theories from accelerators and plasma physics. Computer simulations are indispensable for a proper prediction and understanding of the instability dynamics. The main feature which renders the beam-cloud interactions so peculiar is that the the electron cloud...

  7. Effect of the long-term memory on the beam break-up instability of a single bunch in storage rings

    International Nuclear Information System (INIS)

    Pestrikov, D.V.

    2009-01-01

    We study modifications of the beam break-up instability of transverse coherent oscillations of a single bunch which occur in storage rings due to weak wakefields decaying longer than the revolution period of particles. The long-term part of the wake results in the eigenmode spectra of coherent oscillations. Both stable and unstable modes are found for coherent oscillations of a monochromatic bunch. The single turn wakefields result in the beam break-up coherent oscillations of the bunch. The found eigenmode spectrum does not contain a leading unstable mode. Despite the exponential increase in time of the eigenmodes, both self-consistent and the beam break-up parts of the coherent oscillations indicate similar and non-exponential time dependencies. The beam break-up behavior dominates, if the wake memory is weak.

  8. Space charge beam dynamics studies for a pulsed spallation source accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.; Lessner, E.

    1995-12-31

    Feasibility studies for 2-GeV, 1-MW and 10-GeV, 5-MW rapid cycling synchrotrons (RCS) for spallation neutron sources have been completed. Both synchrotrons operate at a repetition rate of 30 Hz, and accelerate 1.04 {times} 10{sup 14} protons per pulse. The injection energy of the 2-GeV ring is 400 MeV, and the 10-GeV RCS accepts the beam from the 2-GeV machine. Work performed to-date includes calculation of the longitudinal space charge effects in the 400-MeV beam transfer line, and of both longitudinal and transverse space charge effects during the injection, capture and acceleration processes in the two rings. Results of space charge calculations in the rings led to proper choices of the working points and of rf voltage programs that prevents beam loss. Space charge effects in the 2-GeV synchrotron, in both transverse and longitudinal phase space, have major impact on the design due to the fact that the injection energy is 400 MeV. The design achieves the required performance while alleviating harmful effects due to space charge.

  9. Towards a slow extraction system for the TRIUMF Kaon factory extender ring with 0.1% losses

    International Nuclear Information System (INIS)

    Wienands, U.; Servranckx, R.V.

    1988-03-01

    In order to reduce extraction losses a modified third-integral slow extraction system is proposed using a 0.5 m long and 10 μm thin electrostatic preseptum. Various factors limiting the extraction efficiency are investigated, and the losses are estimated to be as low as 0.2%. The extracted beam emittance is found to be about 0.2 π mm-mrad for achromatic extraction. For chromatic extraction a reduction in momentum width of the extracted beam by a factor of 2.5 will result in an extracted momentum bite of less than 30 MeV/c FWHM. This figure is limited by emittance blow-up due to synchrotron oscillations, which in turn increases extraction losses. Following the analytical estimate of the performance of the extraction system, simulation results are shown

  10. Ring accelerators

    International Nuclear Information System (INIS)

    Gisler, G.; Faehl, R.

    1983-01-01

    We present two-dimensional simulations in (r-z) and r-theta) cylinderical geometries of imploding-liner-driven accelerators of rings of charged particles. We address issues of azimuthal and longitudinal stability of the rings. We discuss self-trapping designs in which beam injection and extraction is aided by means of external cusp fields. Our simulations are done with the 2-1/2-D particle-in-cell plasma simulation code CLINER, which combines collisionless, electromagnetic PIC capabilities with a quasi-MHD finite element package

  11. Summary test results of the particle-beam diagnostics for the Advanced Photon Source (APS) subsystems

    International Nuclear Information System (INIS)

    Lumpkin, A.; Wang, X.; Sellyey, W.; Patterson, D.; Kahana, E.

    1994-01-01

    During the first half of 1994, a number of the diagnostic systems for measurement of the charged-particle beam parameters throughout the subsystems of the Advanced Photon Source (APS) have been installed and tested. The particle beams eventually will involve 450-MeV to 7-GeV positrons and with different pulse formats. The first test and commissionin results for beam profiles, beam position monitors, loss rate monitors, current monitors, and synchrotron radiation photon monitors hve been obtained using 200- to 350-MeV electron beams injected into the subsystems. Data presented are principally from the transport lines and the positron accumulator ring

  12. Design of low energy ring(s)

    CERN Document Server

    Lachaize, Antoine

    During the last two years, several upgrades of the initial baseline scenario were studied with the aim of increasing the average intensity of ion beams in the accelerator chain of the Beta Beam complex. This is the reason why the Rapid Cycling Synchrotron (RCS) specifications were reconsidered many times [1], [2], [3].General considerations on the optical design were presented at the Beta Beam Task Meetings held at CERN and at Saclay in 2005 [4]. More detailed beam optics studies were performed during the next months. Lattices, RF system parameters, multi-turn injection scheme, fast extraction, closed orbit correction and chromaticity correction systems were proposed for different versions of the RCS [5], [6], [7].Finally, the RCS specifications have stabilized in November 2006 after the fourth Beta Beam Task Meeting when it was decided to fix the maximum magnetic rigidity of ion beams to 14.47 T.m (3.5 GeV equivalent proton energy) and to adopt a ring physical radius of 40 m in order to facilitate injectio...

  13. Comparative study of beam losses and heat loads reduction methods in MITICA beam source

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it; Agostinetti, P.; Dal Bello, S.; Marcuzzi, D.; Serianni, G.; Veltri, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Sonato, P. [Consorzio RFX, Euratom-ENEA association, C.so Stati Uniti 4, 35127 Padova (Italy); Dipartimento di Ingegneria Elettrica, Padova University, Via Gradenigo 6/a, 35131 Padova (Italy)

    2014-02-15

    In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.

  14. TSR: A storage and cooling ring for HIE-ISOLDE

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.A. [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Blaum, K. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); Davinson, T. [School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Flanagan, K.; Freeman, S.J. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Grieser, M. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); Lazarus, I.H. [S.T.F.C. Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Litvinov, Yu.A. [Max-Planck-Institut für Kernphysik, 69117 Heidelberg (Germany); GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany); Lotay, G. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Page, R.D. [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Raabe, R. [KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven (Belgium); Siesling, E.; Wenander, F. [CERN, 1211 Geneva 23 (Switzerland); Woods, P.J. [School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom)

    2016-06-01

    It is planned to install the heavy-ion, low-energy ring TSR, currently at the Max-Planck-Institute for Nuclear Physics in Heidelberg, at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored, cooled secondary beams that is rich and varied, spanning from studies of nuclear ground-state properties and reaction studies of astrophysical relevance, to investigations with highly-charged ions and pure isomeric beams. In addition to experiments performed using beams recirculating within the ring, the cooled beams can be extracted and exploited by external spectrometers for high-precision measurements. The capabilities of the ring facility as well as some physics cases will be presented, together with a brief report on the status of the project.

  15. The beam-beam limit in asymmetric colliders: Optimization of the B-factory parameter base

    International Nuclear Information System (INIS)

    Tennyson, J.L.

    1990-01-01

    This paper presents a general theory of the beam-beam limit in symmetric and asymmetric lepton ring colliders. It shows how the beam-beam limit in these accelerators affects the maximum attainable luminosity and presents a specific algorithm for parameter base optimization. It is shown that the special problems inherent in asymmetric colliders derive not from the asymmetry, but from the fact that the two beams must be in different rings. Computer simulation experiments are used to demonstrate the various phenomena discussed in the theory

  16. Single-bunch beam loading on the SLAC two-mile accelerator

    International Nuclear Information System (INIS)

    Koontz, R.F.

    1976-01-01

    The experiments described were initially prompted by interest in the radiation loss of relativistic electron rings passing through periodic structures. Later, the same experiments became relevant to the theory of energy loss of electrons in large storage rings. In both of these cases, energy loss to the higher order modes of the respective structures could seriously limit their effective operation as acceleration devices. In these experiments, single bunches of electrons with intensities up to 7 x 10 8 electrons per bunch are accelerated through the SLAC three-kilometer accelerator, and their energy spectra are analyzed. Early experiments over a wide energy range (900 MeV to 19 GeV) demonstrated that the energy loss was proportional to the total charge in the bunch but was independent of beam energy. The average energy loss of a single bunch normalized to 10 9 electrons was initially measured to be 38 MeV. The experiments, including much of the equipment development, are described and are compared with theoretical predictions made to date

  17. SNS accumulator ring design and space charge considerations

    Energy Technology Data Exchange (ETDEWEB)

    Weng, W.T.

    1998-08-01

    The goal of the proposed Spallation Neutron Source (SNS) is to provide a short pulse proton beam of about 0.5 {micro}s with average beam power of 1 MW. To achieve such purpose, a proton storage ring operated at 60 Hz with 1 {times} 10{sup 14} protons per pulse at 1 GeV is required. The Accumulator Ring (AR) receives 1 msec long H{sup {minus}} beam bunches of 28 mA from a 1 GeV linac. Scope and design performance goals of the AR are presented. About 1,200 turns of charge exchange injection is needed to accumulate 1 mA in the ring. After a brief description of the lattice design and machine performance parameters, space charge related issues, such as: tune shifts, stopband corrections, halo generatino and beam collimation etc. is discussed.

  18. SNS ACCUMULATOR RING DESIGN AND SPACE CHARGE CONSIDERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    WENG,W.T.

    1998-05-04

    The goal of the proposed Spallation Neutron Source (SNS) is to provide a short pulse proton beam of about 0.5{micro}s with average beam power of 1MW. To achieve such purpose, a proton storage ring operated at 60Hz with 1 x 10{sup 14} protons per pulse at 1GeV is required. The Accumulator Ring (AR) receives 1msec long H{sup {minus}} beam bunches of 28mA from a 1GeV linac. Scope and design performance goals of the AR are presented. About 1,200 turns of charge exchange injection is needed to accumulate 1mA in the ring. After a brief description of the lattice design and machine performance parameters, space charge related issues, such as: tune shifts, stopband corrections, halo generation and beam collimation etc. is discussed.

  19. Vertical septum magnets for distributing the beam to the 4 PS Booster rings

    CERN Multimedia

    Ordan, Julien Marius

    2017-01-01

    To facilitate H- injection from Linac4 to the PS Booster via the transfer line the BI.SMV10 (Booster Injection Septum Magnet Vertical) provides the vertical deflection of the 160 MeV H- beam to rings 1, 2 and 4 of the Booster. Currently this system is capable of deflecting 50 MeV protons and comprises an assembly of ferrite type magnets in an “omega” section vacuum tank (see fig. 1). The current system shall be replaced with a UHV compatible vacuum chamber incorporating 3 sets of double septum magnets, pulsed from 3 individual power supplies via transformers with 12:1 ratio.

  20. Longitudinal holes in debunched particle beams in storage rings, perpetuated by space-charge forces

    Directory of Open Access Journals (Sweden)

    Shane Koscielniak

    2001-04-01

    Full Text Available Stationary, self-consistent, and localized longitudinal density perturbations on an unbunched charged-particle beam, which are solutions of the nonlinearized Vlasov-Poisson equation, have recently received some attention. In particular, we address the case that space charge is the dominant longitudinal impedance and the storage ring operates below transition energy so that the negative mass instability is not an explanation for persistent beam structure. Under the customary assumption of a bell-shaped steady-state distribution, about which the expansion is made, the usual wave theory of Keil and Schnell for perturbations on unbunched beams predicts that self-sustaining perturbations are possible only (below transition if the impedance is inductive (or resistive or if the bell shape is inverted. Space charge gives a capacitive impedance. Nevertheless, we report numerous experimental measurements made at the CERN Proton Synchrotron Booster that plainly show the longevity of holelike structures in coasting beams. We shall also report on computer simulations of boosterlike beams that provide compelling evidence that it is space-charge force which perpetuates the holes. We shall show that the localized solitonlike structures, i.e., holes, decouple from the steady-state distribution and that they are simple solutions of the nonlinearized time-independent Vlasov equation. We have derived conditions for stationarity of holes that satisfy the requirement of self-consistency; essentially, the relation between the momentum spread and depth of the holes is given by the Hamiltonian—with the constraint that the phase-space density be high enough to support the solitons. The stationarity conditions have scaling laws similar to the Keil-Schnell criteria except that the charge and momentum spread of the hole replaces that of the beam.

  1. Beam dynamics issues of high-luminosity asymmetric collider rings

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1990-01-01

    Machines for use in high-energy physics are advancing along two frontiers. First, there is the frontier of energy, currently being pressed by the Fermilab collider (p bar p), and SLC and LEP (e + e - ) and in the near future by HERA (ep), the LHC, and the SSC (pp). Second, there is the frontier of intensity, currently being pressed by a variety of low-energy machines and, at higher energies, by various linacs such as those at KEK. Fermilab, GSI, and LAMPF (p) and CEBAF (e - ). In the future there should be, along this frontier, various ''factories'' such as those for Kaons at TRIUMF, and those proposed for var-phi mesons, τ-charm particles, and B mesons. It is with the intensity frontier that these proceedings are concerned. The elementary particle motivation to study the nonconservation of PC in the B-stringB system (which topic is not covered in these Proceedings, but is treated extensively in the literature) has motivated the study of very high intensity asymmetric collider rings. It was for this purpose that a Workshop on Beam Dynamics Issues of High-Luminosity Asymmetric Collider Rings was held, in Berkeley, during February 12--16, 1990. A general introduction to the subject has been given in an article which is reprinted here as an Appendix. The nonexpert may wish to start there. The volume consists of four parts. The first part consists of Summaries; first an overall summary of the Workshop and then, second, more detailed summaries from each of the working groups. The second part consists of the Invited Talks at the workshop. The third part contains various Contributed Papers, most of which represent work that came out of the workshop. Finally, there are, in the fourth part, brief Summaries of the Various Proposed B-Factory Projects in the world

  2. Modeling the effects of a flat wiggler on a storage ring beam

    International Nuclear Information System (INIS)

    Helm, R.H.

    1978-06-01

    The purpose of the present note is to show how the various effects of the wiggler may be modeled in a simple way suitable for use in machine control. It will be seen that in general a total of about 17 functions are involved. However, in typical designs many of these functions vanish identically because of symmetries, and others are neglibly small. Furthermore, each of the functions may be modeled quite accurately by a single power law in (B/sub o//E)/sup n/ where B is a measure of the field excitation. E is the beam energy, and n is an integer which takes on values of either 0, 2, 3, 4, for 5 for the different functions. Magnet saturation may cause the field distribution to vary with excitation so that the series coefficients would vary slowly with B/sub o/. A computer program has been used to obtain numerical results for typical wiggler designs. In practice, the required functions could be determined either by computer analysis of the measured field data, or by experimental calibration using the stored beam in the ring. 9 refs., 3 figs., 11 tabs

  3. Prediction of flux loss in a Nd-Fe-B ring magnet considering magnetizing process

    International Nuclear Information System (INIS)

    Fukunaga, H; Koreeda, H; Yanai, T; Nakano, M; Yamashita, F

    2010-01-01

    We developed a technique to predict flux loss of a magnet with a complicated magnetization pattern using the finite element method. The developed method consists of four steps. At first, the distribution of magnetization under magnetizing field is analyzed (Step 1), and a demagnetization curve of each element is deduced from the result of the first step (Step 2). After removing the magnetizing field, the distributions of magnetization at room and elevated temperatures are analyzed by using demagnetization curves determined in Step 2 (Step 3). Based on a physical model, the distribution of flux loss due to exposure at the elevated temperature is predicted by using the result obtained in Step 3 (Step 4). We applied this technique to a ring magnet with 10 poles, and large flux loss values were predicted at the transition regions between magnetic poles.

  4. LHC Beam Dump System: Analysis of beam commissioning, performance and the consequences of abnormal operation

    CERN Document Server

    Kramer, Thomas

    2011-01-01

    The LHC accelerates proton beams to a momentum of up to 7 TeV/c. At this energy level and with nominal beam intensity the stored energy of 360 MJ per beam is sufficient to melt 500 kg of copper. In addition up to 10 GJ are stored within the LHC magnet system at top energy. It is obvious that such a machine needs well designed safety and protection systems. The LHC Beam Dump System (LBDS) is such a system and one of the most critical once concerning machine protection and safe operation. It is used to dispose of high intensity beams between 450 GeV and 7 TeV and is thus designed to fast extract beam in a loss free way and to transfer it to an external absorber. For each ring systems of 15 horizontal fast kicker magnets (MKD), 15 vertically deflecting magnetic septa (MSD) and 10 diluter kicker magnets (MKB) are installed. This thesis is concerned with the analysis of the LBDS performance under normal operating parameters as well as under abnormal conditions like in the event of asynchronous beam abort or missin...

  5. Dependence of mis-alignment sensitivity of ring laser gyro cavity on cavity parameters

    Energy Technology Data Exchange (ETDEWEB)

    Sun Feng; Zhang Xi; Zhang Hongbo; Yang Changcheng, E-mail: sunok1234@sohu.com [Huazhong Institute of Electro-Optics - Wuhan National Lab for Optoelectronics, Wuhan, Hubei (China)

    2011-02-01

    The ring laser gyroscope (RLG), as a rotation sensor, has been widely used for navigation and guidance on vehicles and missiles. The environment of strong random-vibration and large acceleration may deteriorate the performance of the RLG due to the vibration-induced tilting of the mirrors. In this paper the RLG performance is theoretically analyzed and the parameters such as the beam diameter at the aperture, cavity mirror alignment sensitivities and power loss due to the mirror tilting are calculated. It is concluded that by carefully choosing the parameters, the significant loss in laser power can be avoided.

  6. Electron beam cooling at a magnetic storage ring, TARN II, and an electrostatic storage ring

    International Nuclear Information System (INIS)

    Tanabe, Tetsumi

    2006-01-01

    At the High Energy Accelerator Research Organization (KEK), a magnetic storage ring, TARN II, with an electron cooler was operated from 1989 to 1999, while an electrostatic storage ring with a small electron cooler has been operational since 2000. In this paper, the electron cooling at TARN II and the electrostatic storage ring is described. (author)

  7. Beam Delivery Simulation: BDSIM - Development & Optimization

    CERN Document Server

    Nevay, Laurence James; Garcia-Morales, H; Gibson, S M; Kwee-Hinzmann, R; Snuverink, J; Deacon, L C

    2014-01-01

    Beam Delivery Simulation (BDSIM) is a Geant4 and C++ based particle tracking code that seamlessly tracks particles through accelerators and detectors, including the full range of particle interaction physics processes from Geant4. BDSIM has been successfully used to model beam loss and background conditions for many current and future linear accelerators such as the Accelerator Test Facility 2 (ATF2) and the International Linear Collider (ILC). Current developments extend its application for use with storage rings, in particular for the Large Hadron Collider (LHC) and the High Luminosity upgrade project (HL-LHC). This paper presents the latest results from using BDSIM to model the LHC as well as the developments underway to improve performance.

  8. Status of the PEP-II B-factory high energy ring

    International Nuclear Information System (INIS)

    Wienands, U.; Reuter, E.; Bellomo, P.; Daly, E.; Fisher, A.; Gracia, J.; Kulikov, A.; Kurita, N.; Pietryka, M.; Seeman, J.T.; Taylor; Belser, C.; Bertolini, L.; Mugge, M.; Swan, J.

    1996-01-01

    The 9 GeV High Energy Ring (HER) of the PEP-II B Factory is an electron storage ring under construction at SLAC. Significant progress has been made in the last year on all systems. As of mid 1996, all 192 dipoles have been installed, with installation of the quadrupoles underway. The vacuum system, for design currents up to 3 A average, is in production using a recently commissioned e-beam welder. Beam instrumentation systems are being fabricated. The interaction region will bring the HER beam into collision with the 3 GeV beam of the Low Energy Ring; design of this section of the HER is in an advanced stage. 8 refs., 3 figs., 1 tab

  9. Modeling and Simulation of the Longitudinal Beam Dynamics - RF Station Interaction in the LHC Rings

    International Nuclear Information System (INIS)

    Mastorides, T

    2008-01-01

    A non-linear time-domain simulation has been developed to study the interaction between longitudinal beam dynamics and RF stations in the LHC rings. The motivation for this tool is to determine optimal LLRF configurations, to study system sensitivity on various parameters, and to define the operational and technology limits. It will be also used to study the effect of RF station noise, impedance, and perturbations on the beam life time and longitudinal emittance. It allows the study of alternative LLRF implementations and control algorithms. The insight and experience gained from our PEP-II simulation is important for this work. In this paper we discuss properties of the simulation tool that will be helpful in analyzing the LHC RF system and its initial results. Partial verification of the model with data taken during the LHC RF station commissioning is presented

  10. Energy loss of a high charge bunched electron beam in plasma: Simulations, scaling, and accelerating wakefields

    Directory of Open Access Journals (Sweden)

    J. B. Rosenzweig

    2004-06-01

    Full Text Available The energy loss and gain of a beam in the nonlinear, “blowout” regime of the plasma wakefield accelerator, which features ultrahigh accelerating fields, linear transverse focusing forces, and nonlinear plasma motion, has been asserted, through previous observations in simulations, to scale linearly with beam charge. Additionally, from a recent analysis by Barov et al., it has been concluded that for an infinitesimally short beam, the energy loss is indeed predicted to scale linearly with beam charge for arbitrarily large beam charge. This scaling is predicted to hold despite the onset of a relativistic, nonlinear response by the plasma, when the number of beam particles occupying a cubic plasma skin depth exceeds that of plasma electrons within the same volume. This paper is intended to explore the deviations from linear energy loss using 2D particle-in-cell simulations that arise in the case of experimentally relevant finite length beams. The peak accelerating field in the plasma wave excited behind the finite-length beam is also examined, with the artifact of wave spiking adding to the apparent persistence of linear scaling of the peak field amplitude into the nonlinear regime. At large enough normalized charge, the linear scaling of both decelerating and accelerating fields collapses, with serious consequences for plasma wave excitation efficiency. Using the results of parametric particle-in-cell studies, the implications of these results for observing severe deviations from linear scaling in present and planned experiments are discussed.

  11. Electron Cloud Mitigation in the Spallation Neutron Source Ring

    International Nuclear Information System (INIS)

    Wei, J.; Blaskiewicz, Michael; Brodowski, J.; Cameron, P.; Davino, Daniele; Fedotov, A.; He, P.; Hseuh, H.; Lee, Y.Y.; Ludewig, H.; Meng, W.; Raparia, D.; Tuozzolo, J.; Zhang, S.Y.; Catalan-Lasheras, N.; Macek, R.J.; Furman, Miguel A.; Aleksandrov, A.; Cousineau, S.; Danilov, V.; Henderson, S.

    2008-01-01

    The Spallation Neutron Source (SNS) accumulator ring is designed to accumulate, via H - injection, protons of 2 MW beam power at 1 GeV kinetic energy at a repetition rate of 60 Hz [1]. At such beam intensity, electron-cloud is expected to be one of the intensity-limiting mechanisms that complicate ring operations. This paper summarizes mitigation strategy adopted in the design, both in suppressing electron-cloud formation and in enhancing Landau damping, including tapered magnetic field and monitoring system for the collection of stripped electrons at injection, TiN coated beam chamber for suppression of the secondary yield, clearing electrodes dedicated for the injection region and parasitic on BPMs around the ring, solenoid windings in the collimation region, and planning of vacuum systems for beam scrubbing upon operation

  12. Electron-cloud mitigation in the spallation neutron source ring

    International Nuclear Information System (INIS)

    Wei, J.; Blaskiewicz, M.; Brodowski, J.; Cameron, P.; Davino, D.; Fedotov, A.; He, P.; Hseuh, H.; Lee, Y.Y.; Meng, W.; Raparia, D.; Tuozzolo, J.; Zhang, S.Y.; Danilov, V.; Henderson, S.; Furman, M.; Pivi, M.; Macek, R.

    2003-01-01

    The Spallation Neutron Source (SNS) accumulator ring is designed to accumulate, via H- injection, protons of 2 MW beam power at 1 GeV kinetic energy at a repetition rate of 60 Hz [1]. At such beam intensity, electron cloud is expected to be one of the intensity-limiting mechanisms that complicate ring operations. This paper summarizes mitigation strategy adopted in the design, both in suppressing electron-cloud formation and in enhancing Landau damping, including tapered magnetic field and monitoring system for the collection of stripped electrons at injection, TiN coated beam chamber for suppression of the secondary yield, clearing electrodes dedicated for the injection region and parasitic on BPMs around the ring, solenoid windings in the collimation region, and planning of vacuum systems for beam scrubbing upon operation

  13. Cooler Storage Ring at China Institute of Modern Physics

    CERN Document Server

    Wen-Xia, Jia; Zhan, W

    2005-01-01

    CSR, a new ion cooler-storage-ring project in China IMP, is a double ring system, and consists of a main ring (CSRm) and an experimental ring (CSRe). The two existing cyclotrons SFC (K=69) and SSC (K=450) of the Heavy Ion Research Facility in Lanzhou (HIRFL) will be used as its injector system. The heavy ion beams with the energy range of 7-30 MeV/nucleus from the HIRFL will be accumulated, cooled and accelerated to the higher energy range of 100-500 MeV/ nucleus in CSRm, and then extracted fast to produce radioactive ion beams or highly charged heavy ions. Those secondary beams will be accepted and stored or decelerated by CSRe for many internal-target experiments or high precision spectroscopy with beam cooling. On the other hand, the beams with the energy range of 100-1000MeV/ nucleus will also be extracted from CSRm by using slow extraction or fast extraction for many external-target experiments. CSR project was started in the end of 1999 and will be finished in 2006. In this paper the outline and the act...

  14. 2014 CERN Accelerator Schools: Beam Loss and Accelerator Protection

    CERN Multimedia

    2014-01-01

    The US-CERN-JAPAN-RUSSIA Joint International Accelerator School is organising a course on Beam Loss and Accelerator Protection to be held in Newport Beach, California, USA from 5-14 November, 2014.    This school is intended for physicists and engineers who are or may be engaged in the design, construction, and/or operation of accelerators with high power photon or particle beams and/or accelerator sub-systems with large stored energy. Application deadlines are 15 August and 4 September. Further information on this Joint School can be found at: http://cas.web.cern.ch/cas/JAS/Newport%20Beach%202014/NPBadvert.html http://indico.cern.ch/event/287647/ http://uspas.fnal.gov/programs/JAS/JAS14.shtml

  15. Total projectile electron loss cross sections of U^{28+} ions in collisions with gaseous targets ranging from hydrogen to krypton

    Directory of Open Access Journals (Sweden)

    G. Weber

    2015-03-01

    Full Text Available Beam lifetimes of stored U^{28+} ions with kinetic energies of 30 and 50  MeV/u, respectively, were measured in the experimental storage ring of the GSI accelerator facility. By using the internal gas target station of the experimental storage ring, it was possible to obtain total projectile electron loss cross sections for collisions with several gaseous targets ranging from hydrogen to krypton from the beam lifetime data. The resulting experimental cross sections are compared to predictions by two theoretical approaches, namely the CTMC method and a combination of the DEPOSIT code and the RICODE program.

  16. Luminosity, Beamstrahlung energy loss and beam-beam deflections for e+e- and e-e- collisions at the ILC with 500 GeV and varying transverse beam sizes

    International Nuclear Information System (INIS)

    Alabau Pons, M.; Bambade, P.; Faus-Golfe, A.

    2006-01-01

    At the interaction point of the International Linear Collider, beam-beam effects due to the strong electromagnetic fields that the bunches experience during collisions cause a mutual focusing, called pinch effect, which enhances the luminosity in the case of e + e - collisions. The opposite is true for e - e - collisions. In this case the luminosity is reduced by mutual defocusing, or anti-pinching. The resulting Beamstrahlung energy loss and beam-beam deflection angles as function of the vertical transverse offset are also different for both modes of operation. The dependence of these quantities with transverse beam sizes are presented for the case of e - e - collisions

  17. A 1 MHz beam chopper for the KAON Factory

    International Nuclear Information System (INIS)

    Wait, G.D.; Barnes, M.J.; Waters, G.; Figley, C.B.

    1990-06-01

    The proposed KAON Factory at TRIUMF requires a high repetition rate beam chopper for the injection process into the accumulator ring. Prototype studies on a novel design for an energy efficient 1 MHz (10 6 discrete pulses/s) beam chopper are described. In the low voltage prototype 20 V electrical pulses are stored in a low loss transmission line which is open circuited at the far end. Testing has just begun on high voltage prototype in which 7 kV pulses have been produced at the end of 10 cm diameter, 50 Ω coaxial cable. In the final version the voltage may be as high as 20 kV and the low loss transmission line will be coupled to an open circuited set of deflection plates through which the beam passes. Results on the performance of the low voltage prototype are presented as well as a description of the first test results from the high voltage prototype. (Author) 16 refs., 5 figs., tab

  18. Reliability of the Beam Loss Monitors System for the Large Hadron Collider at CERN

    CERN Document Server

    Guaglio, G; Santoni, C

    2005-01-01

    The energy stored in the Large Hadron Collider is unprecedented. The impact of the beam particles can cause severe damage on the superconductive magnets, resulting in significant downtime for repairing. The Beam Loss Monitors System (BLMS) detects the secondary particles shower of the lost beam particles and initiates the extraction of the beam before any serious damage to the equipment can occur. This thesis defines the BLMS specifications in term of reliability. The main goal is the design of a system minimizing both the probability to not detect a dangerous loss and the number of false alarms generated. The reliability theory and techniques utilized are described. The prediction of the hazard rates, the testing procedures, the Failure Modes Effects and Criticalities Analysis and the Fault Tree Analysis have been used to provide an estimation of the probability to damage a magnet, of the number of false alarms and of the number of generated warnings. The weakest components in the BLMS have been pointed out....

  19. Accumulator ring design for the NSNS project

    International Nuclear Information System (INIS)

    Weng, W.T.; Alessi, J.; Beebe-Wang, J.

    1997-01-01

    The goal of the proposed National Spallation Neutron Source (NSNS) is to provide a short pulse proton beam of about 0.5 μs with average beam power of 1 MW. To achieve such purpose, a proton storage ring operated at 60 Hz with 1 x 10 14 protons per pulse at 1 GeV is required. The Accumulator Ring (AR) receives 1 msec long H - beam bunches of 28 mA from a 1 GeV linac. Scope and design performance goals of the AR are presented, other possible technological choices and design options considered, but not adopted, are also briefly reviewed

  20. Beam scrubbing of beam pipes during the first commissioning of SuperKEKB

    Science.gov (United States)

    Suetsugu, Y.; Shibata, K.; Ishibashi, T.; Kanazawa, K.; Shirai, M.; Terui, S.; Hisamatsu, H.

    2018-02-01

    The first (Phase-1) commissioning of SuperKEKB-an electron-positron collider with asymmetric energies located at KEK, in Tsukuba, Japan-started in February 2016, after more than five years of upgrading work on KEKB, and successfully ended in June of the same year. This paper describes one major task of Phase-1 commissioning: beam scrubbing the surface of the beam pipes, to prepare them for a sufficiently long beam lifetime and low background noise in the next commissioning, when a new particle detector will be installed. The pressure rises per unit beam current (dP/dI [Pa A-1]) were continuously monitored, and the coefficient of photon-stimulated desorption (PSD), η [molecules photon-1], was evaluated in the arc sections. The value of η decreased steadily with the beam dose, as expected. For arc sections in the positron ring, where most of the beam pipes were newly fabricated, the decrease in η against the photon dose (D) was similar to that previously reported; that is: η ∝ D-0.5 ∼ 0.8. At high storage beam currents, the evolution of η was affected by gas desorption resulting from the multipacting of electrons-that is, the electron cloud effect (ECE), which is a phenomenon particular to high-intensity positron rings. For the arc sections in the electron ring, η also decreased smoothly with the photon dose D, approximately as ∝ D-0.8. Given that most of these beam pipes were reused from KEKB, the value of η was much lower than that of the positron ring, and also lower than that of the electron ring of KEKB from the early stages of D. This implies that the surface of the reused beam pipes remembered the conditions in the KEKB, which is a known memory effect. The results obtained for η are compared with those obtained in various other accelerators.

  1. WORKSHOP: Crystalline beams

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Following pioneer work by specialists at the Soviet Novosibirsk Laboratory some ten years ago, interest developed in the possibility of 'freezing' ion beams in storage rings by pushing cooling (to smooth out beam behaviour) to its limits, the final goal being to lock the ions into a neat crystal pattern. After advances by groups working on laser cooled ions in traps, and with several cooling rings now in operation, a workshop on crystalline ion beams was organized recently by the GSI (Darmstadt) Laboratory and held at Wertheim in Germany

  2. Design of a compact polarizing beam splitter based on a photonic crystal ring resonator with a triangular lattice.

    Science.gov (United States)

    Yu, Tianbao; Huang, Jiehui; Liu, Nianhua; Yang, Jianyi; Liao, Qinghua; Jiang, Xiaoqing

    2010-04-10

    We propose and simulate a new kind of compact polarizing beam splitter (PBS) based on a photonic crystal ring resonator (PCRR) with complete photonic bandgaps. The two polarized states are separated far enough by resonant and nonresonant coupling between the waveguide modes and the microring modes. Some defect holes are utilized to control the beam propagation. The simulated results obtained by the finite-difference time-domain method show that high transmission (over 95%) is obtained and the polarization separation is realized with a length as short as 3.1 microm. The design of the proposed PBS can be flexible, thanks to the advantages of PCRRs.

  3. Thin layer activation (TLA) experiment of piston ring F.J product by using nuclear facility proton beam 12.5 MeV

    International Nuclear Information System (INIS)

    Sudarmono; Silakhuddin

    2002-01-01

    The experiment of thin layer activation of piston ring F.J product, was done. The purpose of this experiment are to measure material wearing level by using concentration method. The experiment was carried out by activated piston ring proton beam with energy 12,5 MeV and beam current 1 μA for 30 minutes then was continued by wearing process. The measurement of the wear result activity was carried out by pouring the total of volume of lubricant oil for radioactivity measurement. Measurement of the activity level used the gamma spectroscopy. The minimum wearing duration that can detects a wear was 5 hours. The activity count was 1.230 pulse per 30 seconds which is in accordance with a wear in order of 8 mg of Fe material on 1 liter oil lubricant, this result is same with the result of T. Delvigne namely is less than 10 mgr

  4. Damping ring designs and issues

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Decking, Winfried

    2003-01-01

    The luminosity performance of a future linear collider (LC) will depend critically on the performance of the damping rings. The design luminosities of the current LC proposals require rings with very short damping times, large acceptance, low equilibrium emittance and high beam intensity. We discuss the design strategies for lattices achieving the goals of dynamical stability, examine the challenges for alignment and coupling correction, and consider a variety of collective effects that threaten to limit beam quality. We put the design goals in context by referring to the experience of operating facilities, and outline the further research and development that is needed

  5. Latest on polarization in electron storage rings

    International Nuclear Information System (INIS)

    Chao, A.W.

    1983-01-01

    The field of beam polarization in electron storage rings is making rapid progress in recent several years. This report is an attempt to summarize some of these developments concerning how to produce and maintain a high level of beam polarization. Emphasized will be the ideas and current thoughts people have on what should and could be done on electron rings being designed at present such as HERA, LEP and TRISTAN. 23 references

  6. ALARA Review of the Spallation Neutron Source Accumulator Ring and Transfer Lines

    Energy Technology Data Exchange (ETDEWEB)

    Haire, M.J.

    2003-06-30

    early design stage. The ring and transfer lines are being designed for hands-on maintenance. The SNS beam loss criteria, which determine radiation dose design, are a factor of {approx}30 lower than the lowest that has been achieved at any existing proton synchrotron and accumulator rings. This demonstrates that ALARA considerations are an important part of SNS design. A noteworthy example of the ALARA principal being incorporated into the SNS is the hybrid ring lattice design recently approved by the SNS change control process. The new lattice design increases calculated acceptance by about 50% and improves the expected collimator efficiency from 80 to 95%. As a result, the expected calculated beam loss rate, and resulting radiation dose rates, are significantly improved. Another major design change with ALARA implications was the change from an alpha to an omega configuration for the high-energy beam transport (HEBT) system, ring, and ring-to-target beam transport (RTBT) system. Because of this change, the ring and transfer lines will have crane coverage, eliminating the need for personnel to be near activated equipment for repair and removal. By using the crane, extensive shielding can be placed around highly radioactive equipment (e.g., collimators), and the equipment can be moved by remote control. As part of the change from an alpha to omega configuration, the tunnel width was increased by 2 ft. This increased width will allow easier access to failed equipment, reducing radiation exposure time to workers during maintenance and repair. In addition, a personnel entrance was added to the ring between the HEBT and RTBT so that personnel will not have to enter this area directly through the HEBT or RTBT. This addition will shorten the travel distance, and therefore the time, that personnel performing maintenance work on radioactive equipment will need to be in the area, reducing potential dose. In the RTBT beam line, a hatchway will be placed above the collimators and

  7. The upgraded ring loss radiation monitorinng system at the AGS

    International Nuclear Information System (INIS)

    Bennett, G.W.; Beadle, E.; Castille, V.; Witkover, R.L.

    1989-01-01

    With the Booster the AGS will accelerate protons to 3 /times/ 10 13 per cycle, polarized protons at 10 12 , and ions from Carbon to Gold at intensities from 50 to 3 /times/ 10 9 . A loss monitoring system is being developed to facilitate tuning, and to reduce personnel radiation exposure by minimizing residual induced activity and by allowing remote monitoring of activity in the accelerator enclosure. The monitoring system must have a large dynamic range to monitor high intensity beam losses and to measure induced activity down to the level of a few mrad/hour. Various detectors are being evaluated, including ion chambers, proportional counters, and aluminium cathode electronmultipliers. Measurements of the prompt ionization distribution in the median plane at various energies from point targets at two representative locations in the accelerator lattice have been completed. Details of the monitoring system will be presented, as well as the experimental measurements of the prompt radiation field, and a comparable Monte Carlo calculation. 2 refs., 5 figs

  8. Simulation study on beam loss in the alpha bucket regime during SIS-100 proton operation

    Science.gov (United States)

    Sorge, S.

    2018-02-01

    Crossing the transition energy γt in synchrotrons for high intensity proton beams requires well tuned jump schemes and is usually accompanied by longitudinal emittance growth. In order to avoid γt crossing during proton operation in the projected SIS-100 synchrotron special high-γt lattice settings have been developed, in order to keep γt above the beam extraction energy. A further advantage of this scheme is the formation of alpha buckets which naturally lead to short proton bunches, required for the foreseen production and storage of antiprotons for the FAIR facility. Special attention is turned on the imperfections of the superconducting SIS-100 magnets because together with the high-γt lattice settings, they could potentially lead to enhanced beam loss. The aim of the present work is to estimate the beam loss by means of particle tracking simulations.

  9. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi [Brookhaven National Laboratory, Upton, Long Island, NY 11973 (United States); Huang, Xiaobiao, E-mail: xiahuang@slac.stanford.edu [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2016-08-21

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. The fitting results are used for lattice correction. The method has been successfully demonstrated on the NSLS-II storage ring.

  10. A method for simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xi [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, Xiaobiao [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-08-01

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. Furthermore, the fitting results are used for lattice correction. Our method has been successfully demonstrated on the NSLS-II storage ring.

  11. The short circumference damping ring design for the ILC

    CERN Document Server

    Korostelev, Maxim S; Kuriki, Masao; Kuroda, Shigeru; Naito, Takashi; Ross, Marc; Urakawa, Junji; Zimmermann, Frank

    2005-01-01

    The ILC damping ring tentative design is driven by the operational scenario of the main linac, the beam-dynamics demand of producing a stable and high-quality beam, the injection/extraction scheme and the kicker performance. In this paper, a short circumference damping ring design based on TME cells is described. The ring accommodates injection kickers which provide a flat top of 280 nsec and a 60 nsec rise and fall time and very fast strip-line kickers for beam extraction with a 2 nsec rise and fall time for 3-MHz operation. The potential impact of collective effects and the possible degradation of the dynamic aperture by nonlinear-wiggler fields are estimated.

  12. Beam stabilization at SPEAR

    International Nuclear Information System (INIS)

    Corbett, J.

    1996-01-01

    The SPEAR storage ring began routine synchrotron radiation operation with a dedicated injector in 1990. Since then, a program to improve beam stability has steadily progressed. This paper, based on a seminar given at a workshop on storage ring optimization (1995 SRI conference) reviews the beam stability program for SPEAR. copyright 1996 American Institute of Physics

  13. Quantum lifetime in electron storage rings

    International Nuclear Information System (INIS)

    Chao, A.W.

    1977-02-01

    One of the mechanisms which contribute to beam lifetime in electron storage rings is the quantum emission of energetic photons causing particles to be lost from the rf bucket. This quantum lifetime is among other things important in defining the required aperture in a storage ring. An approximate expression of quantum lifetime, predicted by a one-dimensional model which takes into account only the betatron motion, has been used in most storage ring designs. If the beam is aperture-limited at a position with nonzero dispersion, both the betatron and synchrotron motions have to be included and a two-dimensional model must be used. An exact expression of quantum lifetime for the one-dimensional case and an approximate expression for the two-dimensional case are given

  14. Quantum lifetime in electron storage rings

    International Nuclear Information System (INIS)

    Chao, A.W.

    1977-01-01

    One of the mechanisms which contributes to beam lifetime in electron storage rings is the quantum emission of energetic photons causing particles to be lost from the rf bucket. This quantum lifetime is among other things important in defining the required aperture in a storage ring. An approximate expression of quantum lifetime, predicted by a one-dimensional model which takes into account only the betatron motion, has been used in most storage ring designs. If the beam is aperture-limited at a position with nonzero dispersion, both the betatron and synchrotron motions have to be included, and a two-dimensional model must be used. An exact expression of quantum lifetime for the one-dimensional case and an approximate expression for the two-dimensional case are given

  15. Beam position monitor multiplexer controller upgrade at the LAMPF proton storage ring

    International Nuclear Information System (INIS)

    Scarborough, W.K.; Cohen, S.

    1992-01-01

    The beam position monitor (BPM) is one of the primary diagnostic tools used for the tuning of the proton storage ring (PSR) at the Clinton P. Anderson Meson Physics Facility (LAMPF). A replacement for the existing, monolithic, wire-wrapped microprocessor-based BPM multiplexer controller has been built. The controller has been redesigned as a modular system retaining the same functionality of the original system built in 1981. Individual printed circuit cards are used for each controller function to insure greater maintainability and ease of keeping a spare parts inventory. Programmable logic device technology has substantially reduced the component count of the new controller. Diagnostic software was written to support the development of the upgraded controller. The new software actually uncovered some flaws in the original CAMAC interface. (author)

  16. ASTOR, concept of a combined acceleration and storage ring for the production of intense pulsed or continuous beams of neutrinos, pions, muons, kaons and neutrons

    International Nuclear Information System (INIS)

    Joho, W.

    1983-01-01

    A new concept for a high intensity accelerator for 2 GeV protons using the continuous 590 MeV beam from the present ring cyclotron has been worked out at SIN. To suppress the cosmic background in neutrino experiments a pulsed beam with high peak current and low duty cycle is required. Using the so called phase expansion effect 1,2 one can combine the acceleration and storage effect in a single isochronous cyclotron ASTOR. With the help of several RF cavities, positioned at different radii, it is possible to operate ASTOR either in a pulsed mode at 1500 Hz or in a continuous mode. The anticipated beam powers are .8 MW and 4 MW respectively. The ASTOR concept is also applicable in a possible kaon factory design, acting as an interface between the SIN ring cyclotron and a 50 Hz synchrotron for 15 to 20 GeV protons

  17. FESA class for off-momentum lossmaps and decomposition of beam losses at LHC

    CERN Document Server

    Wyszynski, Michal Jakub; Pojer, Mirko; Salvachua Ferrando, Belen Maria; Valentino, Gianluca; CERN. Geneva. ATS Department

    2016-01-01

    The project consisted of two main parts. The first part was to build a FESA class which would serve as lossmap feedback controller for off-momentum lossmaps, capable of handling 100 Hz BLM data, contrary to existing controller. Thanks to the efficient management RF frequency, beam dumps during this procedure would be avoided and machine availability would improve by shortening the duration of machine validation after technical stops. The second part concerned identification of beam losses at the LHC. It was a continuation of author’s work done as Summer Student project. The aim was to identify issues with the existing losses decomposition matrix for flat top, apply necessary corrections and construct analogous matrix for injection.

  18. Accidental beam loss in superconducting accelerators: Simulations, consequences of accidents and protective measures

    International Nuclear Information System (INIS)

    Drozhdin, A.; Mokhov, N.; Parker, B.

    1994-02-01

    The consequences of an accidental beam loss in superconducting accelerators and colliders of the next generation range from the mundane to rather dramatic, i.e., from superconducting magnet quench, to overheating of critical components, to a total destruction of some units via explosion. Specific measures are required to minimize and eliminate such events as much as practical. In this paper we study such accidents taking the Superconducting Supercollider complex as an example. Particle tracking, beam loss and energy deposition calculations were done using the realistic machine simulation with the Monte-Carlo codes MARS 12 and STRUCT. Protective measures for minimizing the damaging effects of prefire and misfire of injection and extraction kicker magnets are proposed here

  19. A fast wire scanner, used to measure the transverse density distribution of beams circulating in an accelerator or storage ring.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Fast wire scanners are used to measure the transverse density distribution of beams circulating in an accelerator or storage ring. In order to minimize blow-up of the beam through multiple Coulomb scattering, the wires are very thin (in the version shown here it is actually a twisted strand of carbon fibres with a total diameter of about 25 microns) and are swept through the beam at high speed (a linear motor, not mounted here, accelerates the wires to up to 20 m/s). One measures either the secondary emission current from the wire, or the signal from a scintillator/photomultiplier combination downstream from the wire scanner receiving the shower from nuclear reactions of beam particles with the wire nuclei. There are four such fast wire scanners in the 26 GeV PS and eight in the 1.4 GeV Booster.

  20. Beam-beam effect and luminosity in SPEAR

    International Nuclear Information System (INIS)

    Wiedemann, H.

    1980-01-01

    Many measurements on the beam-beam limit in SPEAR have been performed over the past years. The goal for these measurements was to find the proper parameterization of the beam-beam effect. All measurements presented were done with both beams equally blown up by control of the flip-flop phenomenon. Colliding beam measurements were made at energies as low as 600 MeV and together with earlier measurements the author presents the scaling of some relevant storage ring parameters from 600 MeV up to almost 4 GeV. (Auth.)

  1. Duration of memory loss due to electron beam exposure. Final report Jan-May 1983

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, T.G.; Tilton, B.M.

    1983-08-01

    Electron beam exposure has been shown to produce retrograde amnesia (RA). The objective of this study was to determine the duration of memory loss upon electron beam exposure. It is important to know if exposure produces a memory loss of the events which occurred in the preceding 1 sec or memory loss of the preceding minute's events. The task was a single-trial avoidance paradigm. The animal was placed in a small aversive chamber. After a 90-sec adaptation period, a door opened that provided access to a large, dark, preferred chamber. The time required for the animal to enter the preferred chamber was the measure of interest (T). Once inside the preferred chamber, a 1-sec footshock was delivered. Following the footshock by some preset delay (delta T), the animal was exposed to a 10-microsec, 10-rad electron beam (or X-ray). A second trial on the task was run 2 hr postexposure. The second trial consisted of placing the animal in the aversive chamber and monitoring the time (T') required to enter the preferred chamber. If the electron beam exposure interfered with the animal's ability to recall the shock, T' would be greatly reduced as compared with the sham controls. The exposure delay times used were delta T = 1, 3, 5, and 10 sec.

  2. Polarized gas targets for storage rings

    International Nuclear Information System (INIS)

    Holt, R.J.

    1990-01-01

    It is widely recognized that polarized gas targets in electron storage rings represent a new opportunity for precision nuclear physics studies. New developments in polarized target technology specific to internal applications will be discussed. In particular, polarized gas targets have been used in the VEPP-3 electron ring in Novosibirsk. A simple storage cell was used to increase the total target thickness by a factor of 15 over the simple gas jet target from an atomic beam source. Results from the initial phase of this project will be reported. In addition, the plans for increasing the luminosity by an additional order or magnitude will be presented. The application of this work to polarized hydrogen and deuterium targets for the HERA ring will be noted. The influence of beam-induced depolarization, a phenomena encountered in short-pulse electron storage rings, will be discussed. Finally, the performance tests of laser-driven sources will be presented. 8 refs., 12 figs., 1 tab

  3. Combined phenomena of beam-beam and beam-electron cloud interactionsin circular e^{+}e^{-} colliders

    Directory of Open Access Journals (Sweden)

    Kazuhito Ohmi

    2002-10-01

    Full Text Available An electron cloud causes various effects in high intensity positron storage rings. The positron beam and the electron cloud can be considered a typical two-stream system with a certain plasma frequency. Beam-beam interaction is another important effect for high luminosity circular colliders. Colliding two beams can be considered as a two-stream system with another plasma frequency. We study the combined phenomena of the beam-electron cloud and beam-beam interactions from a viewpoint of two complex two-stream effects with two plasma frequencies.

  4. A Main Ring bunch length monitor by detecting two frequency components of the beam

    International Nuclear Information System (INIS)

    Ieiri, T.; Jackson, G.

    1989-01-01

    The bunch length is measured by detecting two revolution frequency harmonics of the beam and taking the ratio of their amplitudes. Two heterodyne receivers have been made to direct them, one at 53MHz and the other at 159MHz. These signals are picked-up by a stripline detector. An analog circuit provides a signal proportional to the bunch length. The monitor measures variation of the bunch length as a function of time in the Main Ring. The measured signal, which sometimes shows that the bunches are tumbling in phase space, can be damped by feedback to the RF amplitude modulator. 9 refs., 12 figs., 1 tab

  5. Lifetimes of relativistic heavy-ion beams in the High Energy Storage Ring of FAIR

    Science.gov (United States)

    Shevelko, V. P.; Litvinov, Yu. A.; Stöhlker, Th.; Tolstikhina, I. Yu.

    2018-04-01

    The High Energy Storage Ring, HESR, will be constructed at the Facility for Antiproton and Ion Research, FAIR, Darmstadt. For the first time, it will be possible to perform experiments with cooled high-intensity stable and radioactive heavy ions at highly relativistic energies. To design experiments at the HESR, realistic estimations of beam lifetimes are indispensable. Here we report calculated cross sections and lifetimes for typical U88+ , U90+ , U92+ , Sn49+ and Sn50+ ions in the energy range E = 400 MeV/u-5 GeV/u, relevant for the HESR. Interactions with the residual gas and with internal gas-jet targets are also considered.

  6. Study of Anti-Hydrogen and Plasma Physics 4.Observation of Antiproton Beams and Nonneutral Plasmas

    CERN Document Server

    Hori, Masaki; Fujiwara, Makoto; Kuroda, Naofumi

    2004-01-01

    Diagnostics of antiproton beams and nonneutral plasmas are described in this chapter. Parallel plate secondary electron emission detectors are used to non-destructively observe the beam position and intensity without loss. Plastic scintillation tracking detectors are useful in determining the position of annihilations of antiprotons in the trap. Three-dimensional imaging of antiprotons in a Penning trap is discussed. The unique capability of antimatter particle imaging has allowed the observation of the spatial distribution of particle loss in a trap. Radial loss is localized to small spots, strongly breaking the azimuthal symmetry expected for an ideal trap. By observing electrostatic eigen-modes of nonneutral plasmas trapped in the Multi-ring electrode trap, the non-destructive measurement of plasma parameters is performed.

  7. The Cornell field-reversed ion ring experiment FIREX: experimental design and first results

    International Nuclear Information System (INIS)

    Podulka, W.J.; Greenly, J.B.; Anderson, D.E.; Glidden, S.C.; Hammer, D.A.; Omelchenko, Yu.A.; Sudan, R.N.

    1996-01-01

    The goal of FIREX (Field-reversed Ion Ring EXperiment) is to produce a fully field-reversed ring with 1 MeV protons. Such a ring requires about (2-3) x 10 17 protons, or 30-50 mC of charge. This charge is to be injected as an annular proton beam through a suitable magnetic cusp configuration to produce a compact ring. The critical design issues for the ion beam accelerator are described. First experimental results of ion diode operation indicate that the design is capable of producing the required beam parameters. (author). 4 figs., 4 refs

  8. The Cornell field-reversed ion ring experiment FIREX: experimental design and first results

    Energy Technology Data Exchange (ETDEWEB)

    Podulka, W J; Greenly, J B; Anderson, D E; Glidden, S C; Hammer, D A; Omelchenko, Yu A; Sudan, R N [Cornell Univ., Ithaca, NY (United States). Laboratory of Plasma Studies

    1997-12-31

    The goal of FIREX (Field-reversed Ion Ring EXperiment) is to produce a fully field-reversed ring with 1 MeV protons. Such a ring requires about (2-3) x 10{sup 17} protons, or 30-50 mC of charge. This charge is to be injected as an annular proton beam through a suitable magnetic cusp configuration to produce a compact ring. The critical design issues for the ion beam accelerator are described. First experimental results of ion diode operation indicate that the design is capable of producing the required beam parameters. (author). 4 figs., 4 refs.

  9. Free electron laser and microwave instability interplay in a storage ring

    Directory of Open Access Journals (Sweden)

    G. L. Orlandi

    2004-06-01

    Full Text Available Collective effects, such as the microwave instability, influence the longitudinal dynamics of an electron beam in a storage ring. In a storage ring free electron laser (FEL they can compete with the induced beam heating and thus be treated as a further concomitant perturbing source of the beam dynamics. Bunch length and energy spread measurements, carried out at the Super-ACO storage ring, can be correctly interpreted according to a broad-band impedance model. Quantitative estimations of the relative role that is played by the microwave instability and the laser heating in shaping the beam longitudinal dynamics have been obtained by the analysis of the equilibrium laser power. It has been performed in terms of either a theoretical limit, implemented with the measured beam longitudinal characteristics, or the numerical results obtained by a macroparticle tracking code, which includes the laser pulse propagation. Such an analysis, carried out for different operating points of the Super-ACO storage ring FEL, indicates that the laser heating counteracts the microwave instability.

  10. Ring current proton decay by charge exchange

    Science.gov (United States)

    Smith, P. H.; Hoffman, R. A.; Fritz, T.

    1975-01-01

    Explorer 45 measurements during the recovery phase of a moderate magnetic storm have confirmed that the charge exchange decay mechanism can account for the decay of the storm-time proton ring current. Data from the moderate magnetic storm of 24 February 1972 was selected for study since a symmetrical ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, the equatorially mirroring protons in the energy range 5 to 30 keV decayed throughout the L-value range of 3.5 to 5.0 at the charge exchange decay rate calculated by Liemohn. After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange can entirely account for the storm-time proton ring current decay, and that this mechanism must be considered in all studies involving the loss of proton ring current particles.

  11. New injection scheme using a pulsed quadrupole magnet in electron storage rings

    Directory of Open Access Journals (Sweden)

    Kentaro Harada

    2007-12-01

    Full Text Available We demonstrated a new injection scheme using a single pulsed quadrupole magnet (PQM with no pulsed local bump at the Photon Factory Advanced Ring (PF-AR in High Energy Accelerator Research Organization (KEK. The scheme employs the basic property of a quadrupole magnet, that the field at the center is zero, and nonzero elsewhere. The amplitude of coherent betatron oscillation of the injected beam is effectively reduced by the PQM; then, the injected beam is captured into the ring without largely affecting the already stored beam. In order to investigate the performance of the scheme with a real beam, we built the PQM providing a higher field gradient over 3  T/m and a shorter pulse width of 2.4  μs, which is twice the revolution period of the PF-AR. After the field measurements confirmed the PQM specifications, we installed it into the ring. Then, we conducted the experiment using a real beam and consequently succeeded in storing the beam current of more than 60 mA at the PF-AR. This is the first successful beam injection using a single PQM in electron storage rings.

  12. Proton storage ring summer workshop

    International Nuclear Information System (INIS)

    Lawrence, G.P.; Cooper, R.K.

    1977-10-01

    During the week of August 16, 1976 a Workshop was held at the Los Alamos Scientific Laboratory (LASL) on the Proton Storage Ring (PSR) for the Weapons Neutron Research Facility (WNRF). Written contributions were solicited from each of the participants in the Workshop, and the contributions that were received are presented. The papers do not represent polished or necessarily complete work, but rather represent ''first cuts'' at their respective areas. Topics covered include: (1) background information on the storage ring; (2) WNRF design; (3) rf transient during filling; (4) rf capture; (5) beam bunch compression; (6) transverse space charge limits; (7) transverse resistive instability in the PSR; (8) longitudinal resistive instability; (9) synchrotron frequency splitting; (10) E Quintus Unum--off resonance; (11) first harmonic bunching in the storage ring; (12) kicker considerations; (13) beam extraction; (14) ferrite kicker magnets; and (15) E Quintus Unum: a possible ejection scheme

  13. FLUKA Monte Carlo simulations and benchmark measurements for the LHC beam loss monitors

    International Nuclear Information System (INIS)

    Sarchiapone, L.; Brugger, M.; Dehning, B.; Kramer, D.; Stockner, M.; Vlachoudis, V.

    2007-01-01

    One of the crucial elements in terms of machine protection for CERN's Large Hadron Collider (LHC) is its beam loss monitoring (BLM) system. On-line loss measurements must prevent the superconducting magnets from quenching and protect the machine components from damages due to unforeseen critical beam losses. In order to ensure the BLM's design quality, in the final design phase of the LHC detailed FLUKA Monte Carlo simulations were performed for the betatron collimation insertion. In addition, benchmark measurements were carried out with LHC type BLMs installed at the CERN-EU high-energy Reference Field facility (CERF). This paper presents results of FLUKA calculations performed for BLMs installed in the collimation region, compares the results of the CERF measurement with FLUKA simulations and evaluates related uncertainties. This, together with the fact that the CERF source spectra at the respective BLM locations are comparable with those at the LHC, allows assessing the sensitivity of the performed LHC design studies

  14. FLUKA Monte Carlo simulations and benchmark measurements for the LHC beam loss monitors

    Science.gov (United States)

    Sarchiapone, L.; Brugger, M.; Dehning, B.; Kramer, D.; Stockner, M.; Vlachoudis, V.

    2007-10-01

    One of the crucial elements in terms of machine protection for CERN's Large Hadron Collider (LHC) is its beam loss monitoring (BLM) system. On-line loss measurements must prevent the superconducting magnets from quenching and protect the machine components from damages due to unforeseen critical beam losses. In order to ensure the BLM's design quality, in the final design phase of the LHC detailed FLUKA Monte Carlo simulations were performed for the betatron collimation insertion. In addition, benchmark measurements were carried out with LHC type BLMs installed at the CERN-EU high-energy Reference Field facility (CERF). This paper presents results of FLUKA calculations performed for BLMs installed in the collimation region, compares the results of the CERF measurement with FLUKA simulations and evaluates related uncertainties. This, together with the fact that the CERF source spectra at the respective BLM locations are comparable with those at the LHC, allows assessing the sensitivity of the performed LHC design studies.

  15. Ring cavity surface emitting semiconductor lasers

    International Nuclear Information System (INIS)

    Mujagic, E.

    2010-01-01

    Quantum cascade lasers (QCLs) are electrically driven semiconductor lasers, which have undergone a steady improvement since the first demonstration in 1994. These are now well established as reliable sources of coherent light in the mid-infrared (MIR) and terahertz (THz)range of the electromagnetic spectrum (3-300 μm). The rapid progress of this type of lasers is based on a high degree of freedom in tailoring the emission wavelength within a large variety of semiconductor heterostructure designs and materials. These properties have attracted the attention of various applications such as gas analysis, chemical sensing, spectral imaging and free-space telecommunication. In order to improve the selectivity, sensitivity and efficiency of today's sensor systems, high optical power, continuous wave and room temperature performance, single-mode operation and low divergence optical beams, are highly desirable qualities of a compact laser source in this field of research. Since all of these features cannot be provided by a conventional edge-emitting device at the same time, research has put focus on the development of surface emitting devices. Nowadays, the vertical cavity surface emitting lasers (VCSELs) are the most prominent representative for this type of light emitters. With its capability of producing narrow circular beams, the feasibility of two-dimensional arrays and on-wafer testing, such a coherent light source results in a reduction of the fabrication effort and production costs. Since the radiation in QCLs is strictly polarized normal to the epitaxial layer plane, fabrication of VCSELs based on QC structures is not viable. The subject of this work is the design and realization of 'ring cavity surface emitting lasers' (ring-CSELs). This type of lasers employs a circular ring cavity and a resonant distributed feedback (DFB) surface grating. Ring-CSELs were fabricated on the basis of MIR and THz QC structures, which cover a wavelength range from 4 μm to 93

  16. Effects of the beam loading in the rf deflectors of the CLIC test facility CTF3 combiner ring

    Directory of Open Access Journals (Sweden)

    David Alesini

    2004-04-01

    Full Text Available In this paper we study the impact of the rf deflectors beam loading on the transverse beam dynamics of the CTF3 combiner ring. A general expression for the single-passage wake field is obtained. Different approximated formulas are derived applying linearization of the rf deflector dispersion curve either on a limited or an unlimited frequency range. A dedicated tracking code has been written to study the multibunch multiturn effects on the transverse beam dynamics. The numerical simulations reveal that the beam emittance growth due to the wake field in the rf deflectors is a small fraction of the design emittance if the trains are injected perfectly on axis. Nevertheless in case of injection errors the final emittance growth strongly depends on the betatron phase advance between the rf deflectors. If the finite bunch length is included in the tracking code, the scenario for the central part of the bunches does not change. However, for some particular injection errors, the tails of the bunches can increase the total transverse bunch emittances.

  17. Beam loss reduction by injection painting in the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Directory of Open Access Journals (Sweden)

    H. Hotchi

    2012-04-01

    Full Text Available The 3-GeV rapid cycling synchrotron (RCS of the Japan Proton Accelerator Research Complex was commissioned in October 2007. Via the initial beam tuning and a series of underlying beam studies with low-intensity beams, since December 2009, we have intermittently been performing beam tuning experiments with higher-intensity beams including the injection painting technique. By optimizing the injection painting parameters, we have successfully achieved a 420 kW-equivalent output intensity at a low-level intensity loss of less than 1%. Also the corresponding numerical simulation well reproduced the observed painting parameter dependence on the beam loss, and captured a characteristic behavior of the high-intensity beam in the injection painting process. In this paper, we present the experimental results obtained in the course of the RCS beam power ramp-up, especially on the beam loss reduction achieved by employing the injection painting, together with the numerical simulation results.

  18. Atomic and molecular physics with ion storage rings

    International Nuclear Information System (INIS)

    Larsson, M.

    1995-01-01

    Advances in ion-source, accelerator and beam-cooling technology have made it possible to produce high-quality beams of atomic ions in arbitrary charged states as well as molecular and cluster ions are internally cold. Ion beams of low emittance and narrow momentum spread are obtained in a new generation of ion storage-cooler rings dedicated to atomic and molecular physics. The long storage times (∼ 5 s ≤ τ ≤ days) allow the study of very slow processes occurring in charged (positive and negative) atoms, molecules and clusters. Interactions of ions with electrons and/or photons can be studied by merging the stored ion beam with electron and laser beams. The physics of storage rings spans particles having a charge-to-mass ratio ranging from 60 + and C 70 + ) to 0.4 - 1.0 (H + , D + , He 2+ , ..., U 92+ ) and collision processes ranging from <1 meV to ∼ 70 GeV. It incorporates, in addition to atomic and molecular physics, tests of fundamental physics theories and atomic physics bordering on nuclear and chemical physics. This exciting development concerning ion storage rings has taken place within the last five to six years. (author)

  19. REQUIREMENTS AND GUIDELINES FOR NSLS EXPERIMENTAL BEAM LINE VACUUM SYSTEMS-REVISION B

    International Nuclear Information System (INIS)

    FOERSTER, C.

    1999-01-01

    Typical beam lines are comprised of an assembly of vacuum valves and shutters referred to as a ''front end'', optical elements to monochromatize, focus and split the photon beam, and an experimental area where a target sample is placed into the photon beam and data from the interaction is detected and recorded. Windows are used to separate sections of beam lines that are not compatible with storage ring ultra high vacuum. Some experimental beam lines share a common vacuum with storage rings. Sections of beam lines are only allowed to vent up to atmospheric pressure using pure nitrogen gas after a vacuum barrier is established to protect ring vacuum. The front end may only be bled up when there is no current in the machine. This is especially true on the VUV storage ring where for most experiments, windows are not used. For the shorter wavelength, more energetic photons of the x-ray ring, beryllium windows are used at various beam line locations so that the monochromator, mirror box or sample chamber may be used in a helium atmosphere or rough vacuum. The window separates ring vacuum from the environment of the downstream beam line components. The stored beam lifetime in the storage rings and the maintenance of desirable reflection properties of optical surfaces depend upon hydrocarbon-free, ultra-high vacuum systems. Storage ring vacuum systems will operate at pressures of ∼ 1 x 10 -10 Torr without beam and ∼ 1 x 10 -9 Torr with beam. Systems are free of hydrocarbons in the sense that no pumps, valves, etc. containing organics are used. Components are all-metal, chemically cleaned and bakeable. To the extent that beam lines share a common vacuum with the storage ring, the same criteria will hold for beam line components. The design philosophy for NSLS beam lines is to use all-metal, hydrocarbon-free front end components and recommend that experimenters use this approach for common vacuum hardware downstream of front ends. O-ring-sealed valves, if used, are not

  20. RI beam factory project at RIKEN

    CERN Document Server

    Motobayashi, T

    2003-01-01

    Construction of the RI beam factory project in the first phase has started. The aim of the project is to provide intense radio-isotopes (RI) beams at energies of several hundred MeV/nucleon in a wide range of atomic masses. These beams will be produced by the projectile fragmentation of primary beams accelerated by a cascade of the existing ring cyclotron and a series of new ring cyclotrons. Improvements of the existing facility made for the new cyclotron complex have extended the energy range of available beams, which already opened new domains of study.