Exotic distributions of rigid unit modes in the reciprocal spaces of framework aluminosilicates
International Nuclear Information System (INIS)
Dove, Martin T; Pryde, Alexandra K A; Heine, Volker; Hammonds, Kenton D
2007-01-01
Until recently it was assumed that rigid unit modes, defined as the zero-frequency solutions to the dynamical equations for an infinite framework of rigid corner-linked tetrahedra, were confined to a small set of normal modes with wavevectors on lines or planes of special symmetry in reciprocal space. Using a search method that explores the full three-dimensional reciprocal space, we have located rigid unit modes with wavevectors on exotic curved surfaces in reciprocal space for a range of silicate minerals. This has led to the realization that the crystal structures of these minerals contain rather more topological floppiness than had previously been realized. The origin of the exotic RUM surfaces remains to be understood
Synthesis, Structure, and Rigid Unit Mode-like Anisotropic Thermal Expansion of BaIr2In9.
Calta, Nicholas P; Han, Fei; Kanatzidis, Mercouri G
2015-09-08
This Article reports the synthesis of large single crystals of BaIr2In9 using In flux and their characterization by variable-temperature single-crystal and synchrotron powder X-ray diffraction, resistivity, and magnetization measurements. The title compound adopts the BaFe2Al9-type structure in the space group P6/mmm with room temperature unit cell parameters a = 8.8548(6) Å and c = 4.2696(4) Å. BaIr2In9 exhibits anisotropic thermal expansion behavior with linear expansion along the c axis more than 3 times larger than expansion in the ab plane between 90 and 400 K. This anisotropic expansion originates from a rigid unit mode-like mechanism similar to the mechanism of zero and negative thermal expansion observed in many anomalous thermal expansion materials such as ZrW2O8 and ScF3.
Inertial modes of rigidly rotating neutron stars in Cowling approximation
International Nuclear Information System (INIS)
Kastaun, Wolfgang
2008-01-01
In this article, we investigate inertial modes of rigidly rotating neutron stars, i.e. modes for which the Coriolis force is dominant. This is done using the assumption of a fixed spacetime (Cowling approximation). We present frequencies and eigenfunctions for a sequence of stars with a polytropic equation of state, covering a broad range of rotation rates. The modes were obtained with a nonlinear general relativistic hydrodynamic evolution code. We further show that the eigenequations for the oscillation modes can be written in a particularly simple form for the case of arbitrary fast but rigid rotation. Using these equations, we investigate some general characteristics of inertial modes, which are then compared to the numerically obtained eigenfunctions. In particular, we derive a rough analytical estimate for the frequency as a function of the number of nodes of the eigenfunction, and find that a similar empirical relation matches the numerical results with unexpected accuracy. We investigate the slow rotation limit of the eigenequations, obtaining two different sets of equations describing pressure and inertial modes. For the numerical computations we only considered axisymmetric modes, while the analytic part also covers nonaxisymmetric modes. The eigenfunctions suggest that the classification of inertial modes by the quantum numbers of the leading term of a spherical harmonic decomposition is artificial in the sense that the largest term is not strongly dominant, even in the slow rotation limit. The reason for the different structure of pressure and inertial modes is that the Coriolis force remains important in the slow rotation limit only for inertial modes. Accordingly, the scalar eigenequation we obtain in that limit is spherically symmetric for pressure modes, but not for inertial modes
NOLB: Nonlinear Rigid Block Normal Mode Analysis Method
Hoffmann , Alexandre; Grudinin , Sergei
2017-01-01
International audience; We present a new conceptually simple and computationally efficient method for nonlinear normal mode analysis called NOLB. It relies on the rotations-translations of blocks (RTB) theoretical basis developed by Y.-H. Sanejouand and colleagues. We demonstrate how to physically interpret the eigenvalues computed in the RTB basis in terms of angular and linear velocities applied to the rigid blocks and how to construct a nonlinear extrapolation of motion out of these veloci...
Tilting mode in rigidly rotating field-reversed configurations
International Nuclear Information System (INIS)
Clemente, R.A.; Milovich, J.L.
1983-01-01
The tilting-mode stability of field-reversed configurations is analyzed taking into account plasma rotational effects that had not been included in previous theoretical treatments. It is shown that for a rigidly rotating plasma in stationary equilibrium, stability can be attained if the plasma rotational energy is of the same order as the thermal energy. Since presently available values of the rotational velocities are quite lower than required by the stabilization mechanism considered here, the contribution of this effect to the overall stability of the mode does not appear to be significant
A computer program for external modes in complex ionic crystals (the rigid molecular-ion model)
International Nuclear Information System (INIS)
Chaplot, S.L.
1978-01-01
A computer program DISPR has been developed to calculate the external mode phonon dispersion relation in the harmonic approximation for complex ionic crystals using the rigid molecular ion model. A description of the program, the flow diagram and the required input information are given. A sample calculation for α-KNO 3 is presented. The program can handle any type of crystal lattice with any number of atoms and molecules per unit cell with suitable changes in dimension statements. (M.G.B.)
Composite Sliding Mode Control for a Free-Floating Space Rigid-Flexible Coupling Manipulator System
Congqing, Wang; Pengfei, Wu; Xin, Zhou; Xiwu, Pei
2013-01-01
The flexible space manipulator is a highly nonlinear and coupled dynamic system. This paper proposes a novel composite sliding mode control to deal with the vibration suppression and trajectory tracking of a free-floating space rigid-flexible coupling manipulator with a rigid payload. First, the dynamic equations of this system are established by using Lagrange and assumed mode methods and in the meantime this dynamic modelling allows consideration of the modelling errors, the external distur...
Wobbling motion: A γ-rigid or γ-soft mode?
International Nuclear Information System (INIS)
Casten, R.F.; McCutchan, E.A.; Beausang, C.W.; Zamfir, N.V.; Zhang Jingye
2003-01-01
For even-even nuclei, it is shown that the predicted B(E2) values from the odd spin states of the quasi-γ band in a γ-soft nucleus to the yrast band are quite similar to those predicted for the one-phonon wobbling mode of a rigidly triaxial nucleus. This suggests that the observation of wobbling points to axial asymmetry, but not necessarily to rigid triaxiality. However, another observable that does distinguish γ-soft from γ-rigid structure is identified
Transverse multibunch modes for non-rigid bunches, including mode coupling
Energy Technology Data Exchange (ETDEWEB)
Berg, J S; Ruth, R D [Stanford Linear Accelerator Center, Menlo Park, CA (United States)
1996-08-01
A method for computing transverse multibunch growth rates and frequency shifts in rings, which has been described previously, is applied to the PEP-II B factory. The method allows multibunch modes with different internal-bunch oscillation modes to couple to one another, similar to single-bunch mode coupling. Including coupling between the multibunch modes gives effects similar to those seen in single-bunch mode coupling. These effects occur at currents that are lower than the single-bunch mode coupling threshold. (author)
Fermion zero modes and the black-hole hypermultiplet with rigid supersymmetry
International Nuclear Information System (INIS)
Brooks, R.; Kallosh, R.; Ortin, T.
1995-01-01
The gravitini zero modes riding on top of the extreme Reissner-Nordstroem black-hole solution of N=2 supergravity are shown to be normalizable. The gravitini and dilatini zero modes of axion-dilaton extreme black-hole solutions of N=4 supergravity are also given and found to have finite norms. These norms are duality invariant. The finiteness and positivity of the norms in both cases are found to be correlated with the Witten-Israel-Nester construction; however, we have replaced the Witten condition by the pure-spin-3/2 constraint on the gravitini. We compare our calculation of the norms with the calculations which provide the moduli space metric for extreme black holes. The action of the N=2 hypermultiplet with an off-shell central charge describes the solitons of N=2 supergravity. This action, in the Majumdar-Papapetrou multi-black-hole background, is shown to be N=2 rigidly supersymmetric
Low beta rigid mode stability criterion for an arbitrary Larmor radius plasma
International Nuclear Information System (INIS)
Berk, H.L.; Wong, H.V.
1987-05-01
The low beta flute interchange dispersion relation for rigid displacement perturbation of axisymmetric plasma equilibria with arbitrary Larmor radius particles and field line curvature, large compared to the plasma radius, is derived. The equilibrium particle orbits are characterized by two constants of motion, energy and angular momentum, and a third adiabatic invariant derived from the rapid radial motion. The Vlasov equation is integrated, assuming that the mode frequency, axial ''bounce'' frequency, and particle drift frequency are small compared to the cyclotron frequency, and it is demonstrated that the plasma response to a rigid perturbation has a universal character independent of Larmor radius. As a result the interchange instability is the same as that predicted from conventional MHD theory. However, a new prediction, more optimistic than earlier work, is found for the low density threshold of systems like Migma, which are disc-shaped, that is, the axial extent Δz is less than the radial extent r 0 . For Δz/sub r 0 / much less than 1, the stability criterion is determined by the total particle number. Whereas the older theory (Δz/sub r 0 / much greater than 1) predicted instability at about the densities achieved in actual Migma experiments, the present theory (Δz/sub r 0 / much less than 1) indicates that the experimental results were for plasmas with particle number below the interchange threshold
Flutter Analysis of RX-420 Balistic Rocket Fin Involving Rigid Body Modes of Rocket Structures
Directory of Open Access Journals (Sweden)
Novi Andria
2013-03-01
Full Text Available Flutter is a phenomenon that has brought a catastrophic failure to the flight vehicle structure. In this experiment, flutter was analyzed for its symmetric and antisymmetric configuration to understand the effect of rocket rigid modes to the fin flutter characteristic. This research was also expected to find out the safety level of RX-420 structure design. The analysis was performed using half rocket model. Fin structure used in this research was a fin which has semispan 600 mm, thickness 12 mm, chord root 700 mm, chord tip 400 mm, made by Al 6061-T651, double spar configuration with skin thickness of 2 mm. Structural dynamics and flutter stability were analyzed using finite element software implemented on MSC. Nastran. The analysis shows that the antisymmetric flutter mode is more critical than symmetric flutter mode. At sea level altitude, antisymmetric flutter occurs at 6.4 Mach, and symmetric flutter occurs at 10.15 Mach. Compared to maximum speed of RX-420 which is 4.5 Mach at altitude 11 km or equivalent to 2.1 Mach at sea level, it can be concluded that the RX-420 structure design is safe, and flutter will not occur during flight.
Generalized Predictive Control of Dynamic Systems with Rigid-Body Modes
Kvaternik, Raymond G.
2013-01-01
Numerical simulations to assess the effectiveness of Generalized Predictive Control (GPC) for active control of dynamic systems having rigid-body modes are presented. GPC is a linear, time-invariant, multi-input/multi-output predictive control method that uses an ARX model to characterize the system and to design the controller. Although the method can accommodate both embedded (implicit) and explicit feedforward paths for incorporation of disturbance effects, only the case of embedded feedforward in which the disturbances are assumed to be unknown is considered here. Results from numerical simulations using mathematical models of both a free-free three-degree-of-freedom mass-spring-dashpot system and the XV-15 tiltrotor research aircraft are presented. In regulation mode operation, which calls for zero system response in the presence of disturbances, the simulations showed reductions of nearly 100%. In tracking mode operations, where the system is commanded to follow a specified path, the GPC controllers produced the desired responses, even in the presence of disturbances.
Convergent Synthesis of Rigid Macrocycles Containing One and Two Tetrathiafulvalene Units
DEFF Research Database (Denmark)
Simonsen, Klaus B.; Thorup, Niels; Becher, Jan
1997-01-01
The synthesis of rigid tetrathiafulvalenophanes containing one or two tetrathiafulvalene units is presented, together with a stepwise convergent synthesis of macrocyclic bis-tetrathiafulvalenes via several open dimeric tetrathiafulvalenes. These systems were investigated by cyclic voltammetry...... and by X-ray crystallography....
H infinity controller design to a rigid-flexible satellite with two vibration modes
International Nuclear Information System (INIS)
De Souza, A G; De Souza, L C G
2015-01-01
The satellite attitude control system (ACS) design becomes more complex when the satellite structure has components like, flexible solar panels, antennas and mechanical manipulators. These flexible structures can interact with the satellite rigid parts during translational and/or rotational manoeuvre damaging the ACS pointing accuracy. Although, a well-designed controller can suppress such disturbances quickly, the controller error pointing may be limited by the minimum time necessary to suppress such disturbances thus affecting the satellite attitude acquisition. This paper deals with the rigid-flexible satellite ACS design using the H infinity method. The rigid-flexible satellite is represented by a beam connected to a central rigid hub at one end and free at the other one. The equations of motions are obtained considering small flexible deformations and the Euler-Bernoulli hypothesis. The results of the simulations have shown that the H-infinity controller was able to control the rigid motion and suppress the vibrations. (paper)
Failure evolution in granular material retained by rigid wall in active mode
Pietrzak, Magdalena; Leśniewska, Danuta
2012-10-01
This paper presents a detailed study of a selected small scale model test, performed on a sample of surrogate granular material, retained by a rigid wall (typical geotechnical problem of earth thrust on a retaining wall). The experimental data presented in this paper show that the deformation of granular sample behind retaining wall can undergo some cyclic changes. The nature of these cycles is not clear - it is probably related to some micromechanical features of granular materials, which are recently extensively studied in many research centers in the world. Employing very precise DIC (PIV) method can help to relate micro and macro-scale behavior of granular materials.
Long-rod penetration: the transition zone between rigid and hydrodynamic penetration modes
Directory of Open Access Journals (Sweden)
Jian-feng Lou
2014-06-01
Full Text Available Long-rod penetration in a wide range of velocity means that the initial impact velocity varies in a range from tens of meters per second to several kilometers per second. The long rods maintain rigid state when the impact velocity is low, the nose of rod deforms and even is blunted when the velocity gets higher, and the nose erodes and fails to lead to the consumption of long projectile when the velocity is very high due to instantaneous high pressure. That is, from low velocity to high velocity, the projectile undergoes rigid rods, deforming non-erosive rods, and erosive rods. Because of the complicated changes of the projectile, no well-established theoretical model and numerical simulation have been used to study the transition zone. Based on the analysis of penetration behavior in the transition zone, a phenomenological model to describe target resistance and a formula to calculate penetration depth in transition zone are proposed, and a method to obtain the boundary velocity of transition zone is determined. A combined theoretical analysis model for three response regions is built by analyzing the characteristics in these regions. The penetration depth predicted by this combined model is in good agreement with experimental result.
International Nuclear Information System (INIS)
Lamare, F; Carbayo, M J Ledesma; Cresson, T; Kontaxakis, G; Santos, A; Rest, C Cheze Le; Reader, A J; Visvikis, D
2007-01-01
Respiratory motion in emission tomography leads to reduced image quality. Developed correction methodology has been concentrating on the use of respiratory synchronized acquisitions leading to gated frames. Such frames, however, are of low signal-to-noise ratio as a result of containing reduced statistics. In this work, we describe the implementation of an elastic transformation within a list-mode-based reconstruction for the correction of respiratory motion over the thorax, allowing the use of all data available throughout a respiratory motion average acquisition. The developed algorithm was evaluated using datasets of the NCAT phantom generated at different points throughout the respiratory cycle. List-mode-data-based PET-simulated frames were subsequently produced by combining the NCAT datasets with Monte Carlo simulation. A non-rigid registration algorithm based on B-spline basis functions was employed to derive transformation parameters accounting for the respiratory motion using the NCAT dynamic CT images. The displacement matrices derived were subsequently applied during the image reconstruction of the original emission list mode data. Two different implementations for the incorporation of the elastic transformations within the one-pass list mode EM (OPL-EM) algorithm were developed and evaluated. The corrected images were compared with those produced using an affine transformation of list mode data prior to reconstruction, as well as with uncorrected respiratory motion average images. Results demonstrate that although both correction techniques considered lead to significant improvements in accounting for respiratory motion artefacts in the lung fields, the elastic-transformation-based correction leads to a more uniform improvement across the lungs for different lesion sizes and locations
The Effect of Displacement Mode of Rigid Retaining Walls on Shearing Bands by Active Earth Pressure
Directory of Open Access Journals (Sweden)
A. Sekkel
2013-10-01
Full Text Available This work treats the physical modeling of failure mechanisms by active earth pressure. This last is developed by retaining wall movement. A lot of research showed that wall displacement has a significant effect on active earth pressure. A good comprehension of active earth pressure phenomenon and its failure mechanisms help us to better conceive retaining walls. The conception of a small-scale model allowed the realization of active earth pressure tests, while displacing the mobile wall toward the outside of the massif. The studied material is that of Schneebeli; light two-dimensional material made of cylindrical plastic rollers, simulating granular non-cohesive soil. The evolution of shearing zones under continuous and discontinuous displacement modes of mobile walls by correlation pictures allows the investigation of the localization of deformations and failure mechanisms.
Mechanical and assembly units of viral capsids identified via quasi-rigid domain decomposition.
Directory of Open Access Journals (Sweden)
Guido Polles
Full Text Available Key steps in a viral life-cycle, such as self-assembly of a protective protein container or in some cases also subsequent maturation events, are governed by the interplay of physico-chemical mechanisms involving various spatial and temporal scales. These salient aspects of a viral life cycle are hence well described and rationalised from a mesoscopic perspective. Accordingly, various experimental and computational efforts have been directed towards identifying the fundamental building blocks that are instrumental for the mechanical response, or constitute the assembly units, of a few specific viral shells. Motivated by these earlier studies we introduce and apply a general and efficient computational scheme for identifying the stable domains of a given viral capsid. The method is based on elastic network models and quasi-rigid domain decomposition. It is first applied to a heterogeneous set of well-characterized viruses (CCMV, MS2, STNV, STMV for which the known mechanical or assembly domains are correctly identified. The validated method is next applied to other viral particles such as L-A, Pariacoto and polyoma viruses, whose fundamental functional domains are still unknown or debated and for which we formulate verifiable predictions. The numerical code implementing the domain decomposition strategy is made freely available.
Intensive Mode Delivery of a Neuroanatomy Unit: Lower Final Grades but Higher Student Satisfaction
Whillier, Stephney; Lystad, Reidar P.
2013-01-01
In 2011, Macquarie University moved to a three-session academic year which included two 13-week sessions (traditional mode) and one seven-week session (intensive mode). This study was designed to compare the intensive and traditional modes of delivery in a unit of undergraduate neuroanatomy. The new intensive mode neuroanatomy unit provided the…
The Almost Periodic Rigidity of Crystallographic Bar-Joint Frameworks
Directory of Open Access Journals (Sweden)
Ghada Badri
2014-04-01
Full Text Available A crystallographic bar-joint framework, C in Rd, is shown to be almost periodically infinitesimally rigid if and only if it is strictly periodically infinitesimally rigid and the rigid unit mode (RUM spectrum, Ω (C, is a singleton. Moreover, the almost periodic infinitesimal flexes of C are characterised in terms of a matrix-valued function, ΦC(z, on the d-torus, Td, determined by a full rank translation symmetry group and an associated motif of joints and bars.
Modes of death in neonatal intensive care units.
LENUS (Irish Health Repository)
Finan, E
2006-04-01
With the ever-increasing availability of aggressive medical treatment and technical support, neonatologists are offered an increasing ability to prolong life. While "end-of-life" decisions within NICUs have been studied internationally, there is limited data available for Ireland. Through the auspices of the Irish Faculty of Paediatrics 2002 Neonatal Mortality Ouestionnaire, decisions made around the time of death in Irish Neonatal Intensive Care Units were examined. The overall response rate to the questionnaire was 96% (n=25). One hundred and eighty seven deaths were reported for 2002. Information pertaining to the mode of death was available in 53% of cases. Seventy seven percent of those paediatricians who answered this question, reported either withdrawing or withholding treatment in babies thought to have a hopeless outcome, with the greatest proportion of these deaths occurring in premature infants (n=30) and babies with congenital defects (n=40).
14 CFR 33.96 - Engine tests in auxiliary power unit (APU) mode.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine tests in auxiliary power unit (APU... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.96 Engine tests in auxiliary power unit (APU) mode. If the engine is designed with a propeller brake which...
Directory of Open Access Journals (Sweden)
Lulu Wang
2016-01-01
Full Text Available A two-dimensional, single-phase, isothermal, multicomponent, transient model is built to investigate the transport phenomena in unitized regenerative fuel cells (URFCs under the condition of switching from the fuel cell (FC mode to the water electrolysis (WE mode. The model is coupled with an electrochemical reaction. The proton exchange membrane (PEM is selected as the solid electrolyte of the URFC. The work is motivated by the need to elucidate the complex mass transfer and electrochemical process under operation mode switching in order to improve the performance of PEM URFC. A set of governing equations, including conservation of mass, momentum, species, and charge, are considered. These equations are solved by the finite element method. The simulation results indicate the distributions of hydrogen, oxygen, water mass fraction, and electrolyte potential response to the transient phenomena via saltation under operation mode switching. The hydrogen mass fraction gradients are smaller than the oxygen mass fraction gradients. The average mass fractions of the reactants (oxygen and hydrogen and product (water exhibit evident differences between each layer in the steady state of the FC mode. By contrast, the average mass fractions of the reactant (water and products (oxygen and hydrogen exhibit only slight differences between each layer in the steady state of the WE mode. Under either the FC mode or the WE mode, the duration of the transient state is only approximately 0.2 s.
Counter-rotating type axial flow pump unit in turbine mode for micro grid system
International Nuclear Information System (INIS)
Kasahara, R; Takano, G; Komaki, K; Murakami, T; Kanemoto, T
2012-01-01
Traditional type pumped storage system contributes to adjust the electric power unbalance between day and night, in general. This serial research proposes the hybrid power system combined the wind power unit with the pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind. In the pumping mode, the pump should operate unsteadily at not only the normal but also the partial discharge. The operation may be unstable in the rising portion of the head characteristics at the lower discharge, and/or bring the cavitation at the low suction head. To simultaneously overcome both weak points, the authors have proposed a superior pump unit that is composed of counter-rotating type impellers and a peculiar motor with double rotational armatures. This paper discusses the operation at the turbine mode of the above unit. It is concluded with the numerical simulations that this type unit can be also operated acceptably at the turbine mode, because the unit works so as to coincide the angular momentum change through the front runners/impellers with that thorough the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet without the guide vanes.
A dual-mode proximity sensor with integrated capacitive and temperature sensing units
International Nuclear Information System (INIS)
Qiu, Shihua; Huang, Ying; He, Xiaoyue; Sun, Zhiguang; Liu, Ping; Liu, Caixia
2015-01-01
The proximity sensor is one of the most important devices in the field of robot application. It can accurately provide the proximity information to assistant robots to interact with human beings and the external environment safely. In this paper, we have proposed and demonstrated a dual-mode proximity sensor composed of capacitive and resistive sensing units. We defined the capacitive type proximity sensor perceiving the proximity information as C-mode and the resistive type proximity sensor detecting as R-mode. Graphene nanoplatelets (GNPs) were chosen as the R-mode sensing material because of its high performance. The dual-mode proximity sensor presents the following features: (1) the sensing distance of the dual-mode proximity sensor has been enlarged compared with the single capacitive proximity sensor in the same geometrical pattern; (2) experiments have verified that the proposed sensor can sense the proximity information of different materials; (3) the proximity sensing capability of the sensor has been improved by two modes perceive collaboratively, for a plastic block at a temperature of 60 °C: the R-mode will perceive the proximity information when the distance d between the sensor and object is 6.0–17.0 mm and the C-mode will do that when their interval is 0–2.0 mm; additionally two modes will work together when the distance is 2.0–6.0 mm. These features indicate our transducer is very valuable in skin-like sensing applications. (paper)
Rigidity of Glasses and Macromolecules
Thorpe, M. F.
1998-03-01
The simple yet powerful ideas of percolation theory have found their way into many different areas of research. In this talk we show how RIGIDITY PERCOLATION can be studied at a similar level of sophistication, using a powerful new program THE PEBBLE GAME (D. J. Jacobs and M. F. Thorpe, Phys. Rev. E) 53, 3682 (1996). that uses an integer algorithm. This program can analyse the rigidity of two and three dimensional networks containing more than one million bars and joints. We find the total number of floppy modes, and find the critical behavior as the network goes from floppy to rigid as more bars are added. We discuss the relevance of this work to network glasses, and how it relates to experiments that involve the mechanical properties like hardness and elasticity of covalent glassy networks like Ge_xAs_ySe_1-x-y and dicuss recent experiments that suggest that the rigidity transition may be first order (Xingwei Feng, W. J.Bresser and P. Boolchand, Phys. Rev. Lett 78), 4422 (1997).. This approach is also useful in macromolecules and proteins, where detailed information about the rigid domain structure can be obtained.
Directory of Open Access Journals (Sweden)
Jae Eun Kim
2013-07-01
Full Text Available We propose a vibration energy harvester consisting of an auxiliary frequency-tuned mass unit and a piezoelectric vibration energy harvesting unit for enhancing output power. The proposed integrated system is so configured that its out-of-phase mode can appear at the lowest eigenfrequency unlike in the conventional system using a tuned unit. Such an arrangement makes the resulting system distinctive: enhanced output power at or near the target operating frequency and very little eigenfrequency separation, not observed in conventional eigenfrequency-tuned vibration energy harvesters. The power enhancement of the proposed system is theoretically examined with and without tip mass normalization or footprint area normalization.
Tseng, Wan-Yu; Chen, Ruey-Song; Wang, Jaw-Lin; Lee, Ming-Shu; Rueggeberg, Frederick A; Chen, Min-Huey
2007-05-01
The flowable resin composite, Tetric Flow, was used to measure microstrain and degree of conversion after hardening with each of three curing machines: XL3000(XL) for 10, 20, 30, and 40 s; Optilux 501 using conventional mode (OC) for 10, 20, 30, and 40 s, as well as Optilux boost (OB, 10 s) and ramp modes (OR, 20 s); and LEDemetron (LEDe) for 10, 20, 30, and 40 s. The emitted power density and spectral distribution of the three light curing units were also measured. The LEDe output energy spectrum was centralized between 425 and 490 nm, which encompasses the excited wavelength of camphorquinone. The microstrain produced by the curing process is as a second-degree polynomial for each light source. The OB microstrain was highest, while the OR microstrain was lower. The ranking in order of degree of monomer conversion was as follows: XL10 conversion cured with OB was significant higher than other curing modes except OC30, OC40, LEDe30, LEDe40, and XL40. The conversion value of XL10 was the lowest. The LEDe produced higher conversion for the same emitted energy compared to the two halogen units.
Multiobjective Optimization of a Counterrotating Type Pump-Turbine Unit Operated at Turbine Mode
Directory of Open Access Journals (Sweden)
Jin-Hyuk Kim
2014-05-01
Full Text Available A multiobjective optimization for improving the turbine output and efficiency of a counterrotating type pump-turbine unit operated at turbine mode was carried out in this work. The blade geometry of both the runners was optimized using a hybrid multiobjective evolutionary algorithm coupled with a surrogate model. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model were discretized by finite volume approximations and solved on hexahedral grids to analyze the flow in the pump-turbine unit. As major hydrodynamic performance parameters, the turbine output and efficiency were selected as objective functions with two design variables related to the hub profiles of both the runner blades. These objectives were numerically assessed at twelve design points selected by Latin hypercube sampling in the design space. Response surface approximation models for the objectives were constructed based on the objective function values at the design points. A fast nondominated sorting genetic algorithm for the local search coupled with the response surface approximation models was applied to determine the global Pareto-optimal solutions. The trade-off between the two objectives was determined and described with respect to the Pareto-optimal solutions. The results of this work showed that the turbine outputs and efficiencies of optimized pump-turbine units were simultaneously improved in comparison to the reference unit.
Functionally rigid bistable [2]rotaxanes
DEFF Research Database (Denmark)
Nygaard, Sune; Leung, Ken C-F; Aprahamian, Ivan
2007-01-01
defines an unambiguous distance of 1.5 nm over which the ring moves between the MPTTF and NP units. The degenerate NP/NP [2]rotaxane was used to investigate the shuttling barrier by dynamic 1H NMR spectroscopy for the movement of the CBPQT4+ ring across the new rigid spacer. It is evident from...... better control over the position of the ring component in the ground state but also for control over the location of the CBPQT4+ ring during solution-state switching experiments, triggered either chemically (1H NMR) or electrochemically (cyclic voltammetry). In this instance, the use of the rigid spacer......Two-station [2]rotaxanes in the shape of a degenerate naphthalene (NP) shuttle and a nondegenerate monopyrrolotetrathiafulvalene (MPTTF)/NP redox-controllable switch have been synthesized and characterized in solution. Their dumbbell-shaped components are composed of polyether chains interrupted...
School transportation mode, by distance between home and school, United States, ConsumerStyles 2012.
Beck, Laurie F; Nguyen, Daniel D
2017-09-01
Motor-vehicle crashes are a leading cause of death among children in the United States, and almost one-fourth of all trips by school-aged children are trips to and from school. This study sought to determine how children (5-18years) travel to and from school and, among those living ≤1mile of school, to explore the role of school bus service eligibility on school travel mode. We used national 2012 survey data to determine prevalence of usual school travel mode, stratified by distance from school. For those living ≤1mile of school, multivariable regression was conducted to assess the association between bus service eligibility and walking or bicycling. Almost half (46.6%) of all children rode in passenger vehicles (PV) to school and 41.8% did so for the trip home. Results were similar among those living ≤1mile (48.1%, PV to school; 41.3%, PV to home). Among those living ≤1mile, 21.9% and 28.4% of children walked or bicycled to and from school, respectively. Ineligibility for school bus service was strongly associated with walking or bicycling to school [adjusted prevalence ratio (aPR: 5.36; ppassenger vehicles were a common mode of travel. For children who live close to school, the role that school bus service eligibility plays in walking or bicycling deserves further consideration. Given the large proportion of children who use passenger vehicles for school travel, effective interventions can be adopted to increase proper child restraint and seat belt use and reduce crash risks among teen drivers. Better understanding of conditions under which bus service is offered to children who live close to school could inform efforts to improve pedestrian and bicyclist safety for school travel. Published by Elsevier Ltd.
Influence of flock coating on bending rigidity of woven fabrics
Ozdemir, O.; Kesimci, M. O.
2017-10-01
This work presents the preliminary results of our efforts that focused on the effect of the flock coating on the bending rigidity of woven fabrics. For this objective, a laboratory scale flocking unit is designed and flocked samples of controlled flock density are produced. Bending rigidity of the samples with different flock densities are measured on both flocked and unflocked sides. It is shown that the bending rigidity depends on both flock density and whether the side to be measured is flocked or not. Adhesive layer thickness on the bending rigidity is shown to be dramatic. And at higher basis weights, flock density gets less effective on bending rigidity.
International Nuclear Information System (INIS)
Hahm, Dae Gi; Choi, In Kil
2009-01-01
The containment buildings in a nuclear power plant (NPP) are final barriers against the exposure of harmful radiation materials at severe accident condition. Since the accident at Three Mile Island nuclear plant in 1979, it has become necessary to evaluate the internal pressure capacity of the containment buildings for the assessment of the safety of nuclear power plants. According to this necessity, many researchers including Yonezawa et al. and Hu and Lin analyzed the ultimate capacity of prestressed concrete containments subjected to internal pressure which can be occurred at sever accident condition. Especially in Wolsong nuclear power plant, the Unit 1 containment structures were constructed in the late 1970 to early 1980, so that the end of its service life will be reached in near future. Since that the complete decommission and reconstruction of the NPP may cause a huge expenses, an extension of the service time can be a cost-effective alternative. To extend the service time of NPP, an overall safety evaluation of the containment building under severe accident condition should be performed. In this study, we assessed the pressure capacity of Wolsong Unit 1 containment building under severe accident, and estimated the responses at all of the probable critical areas. Based on those results, we found the significant failure modes of Wolsong Unit 1 containment building with respect to the severe accident condition. On the other hand, for the aged NPP, the degradation of their structural performance must also be explained in the procedure of the internal pressure capacity evaluation. Therefore, in this study, we performed a parametric study on the degradation effects and evaluated the internal pressure capacity of Wolsong Unit 1 containment building with considering aging and degradation effects
Evaluating a method for automated rigid registration
DEFF Research Database (Denmark)
Darkner, Sune; Vester-Christensen, Martin; Larsen, Rasmus
2007-01-01
to point distance. T-test for common mean are used to determine the performance of the two methods (supported by a Wilcoxon signed rank test). The performance influence of sampling density, sampling quantity, and norms is analyzed using a similar method.......We evaluate a novel method for fully automated rigid registration of 2D manifolds in 3D space based on distance maps, the Gibbs sampler and Iterated Conditional Modes (ICM). The method is tested against the ICP considered as the gold standard for automated rigid registration. Furthermore...
Weiss, Asia; Whiteley, Walter
2014-01-01
This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures, and to explore the interaction of geometry, algebra, and combinatorics. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme. Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology. The volume will also be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and gradu...
Pukhlikov, Aleksandr
2013-01-01
Birational rigidity is a striking and mysterious phenomenon in higher-dimensional algebraic geometry. It turns out that certain natural families of algebraic varieties (for example, three-dimensional quartics) belong to the same classification type as the projective space but have radically different birational geometric properties. In particular, they admit no non-trivial birational self-maps and cannot be fibred into rational varieties by a rational map. The origins of the theory of birational rigidity are in the work of Max Noether and Fano; however, it was only in 1970 that Iskovskikh and Manin proved birational superrigidity of quartic three-folds. This book gives a systematic exposition of, and a comprehensive introduction to, the theory of birational rigidity, presenting in a uniform way, ideas, techniques, and results that so far could only be found in journal papers. The recent rapid progress in birational geometry and the widening interaction with the neighboring areas generate the growing interest ...
Failure mode and effect analysis: improving intensive care unit risk management processes.
Askari, Roohollah; Shafii, Milad; Rafiei, Sima; Abolhassani, Mohammad Sadegh; Salarikhah, Elaheh
2017-04-18
Purpose Failure modes and effects analysis (FMEA) is a practical tool to evaluate risks, discover failures in a proactive manner and propose corrective actions to reduce or eliminate potential risks. The purpose of this paper is to apply FMEA technique to examine the hazards associated with the process of service delivery in intensive care unit (ICU) of a tertiary hospital in Yazd, Iran. Design/methodology/approach This was a before-after study conducted between March 2013 and December 2014. By forming a FMEA team, all potential hazards associated with ICU services - their frequency and severity - were identified. Then risk priority number was calculated for each activity as an indicator representing high priority areas that need special attention and resource allocation. Findings Eight failure modes with highest priority scores including endotracheal tube defect, wrong placement of endotracheal tube, EVD interface, aspiration failure during suctioning, chest tube failure, tissue injury and deep vein thrombosis were selected for improvement. Findings affirmed that improvement strategies were generally satisfying and significantly decreased total failures. Practical implications Application of FMEA in ICUs proved to be effective in proactively decreasing the risk of failures and corrected the control measures up to acceptable levels in all eight areas of function. Originality/value Using a prospective risk assessment approach, such as FMEA, could be beneficial in dealing with potential failures through proposing preventive actions in a proactive manner. The method could be used as a tool for healthcare continuous quality improvement so that the method identifies both systemic and human errors, and offers practical advice to deal effectively with them.
International Nuclear Information System (INIS)
Mishra, L.; Choi, Chang-Shik; Araki, Koji
1997-01-01
Dinuclear Ru(II) complex having extended conjugation within the bridging ligand was prepared by coupling of the Ru(II) polypyridyl complex having a benzoyl-substituted phenazine unit with diaminoanthraquinone in one step, in which emission from the excited Ru(II) center was efficiently quenched through the anthraquinone unit. (author)
Elastic properties of rigid fiber-reinforced composites
Chen, J.; Thorpe, M. F.; Davis, L. C.
1995-05-01
We study the elastic properties of rigid fiber-reinforced composites with perfect bonding between fibers and matrix, and also with sliding boundary conditions. In the dilute region, there exists an exact analytical solution. Around the rigidity threshold we find the elastic moduli and Poisson's ratio by decomposing the deformation into a compression mode and a rotation mode. For perfect bonding, both modes are important, whereas only the compression mode is operative for sliding boundary conditions. We employ the digital-image-based method and a finite element analysis to perform computer simulations which confirm our analytical predictions.
Robust Sliding Mode Control of Air Handling Unit for Energy Efficiency Enhancement
Directory of Open Access Journals (Sweden)
Awais Shah
2017-11-01
Full Text Available In order to achieve feasible and copacetic low energy consuming building, a robust and efficient air conditioning system is necessary. Since heating ventilation and air conditioning systems are nonlinear and temperature and humidity are coupled, application of conventional control is inappropriate. A multi-input multi-output nonlinear model is presented. The temperature and humidity of thermal zone are ascendance by the manipulation of the water and air flow rates. A sliding mode controller (SMC is designed to ensure robust performance of air handling unit in the presence of uncertainties. A simple proportional-integral-derivative (PID controller is used as a comparison template to highlight the efficiency of the proposed controller. To accomplish tracking targets, a variety of desired temperature and relative humidity commands (including ramp and combination with sequence of steps are investigated. According to simulation results, SMC transcends the PID controller in terms of settling time, steady state and rise time, which makes SMC more energy efficient.
International Nuclear Information System (INIS)
Borysenko, V.I.; Kadenko, I.N.; Samoilenko, D.V.
2012-01-01
This paper provides the study results of accelerated unit unloading mode (AUU) initiated at WWER-1000 unit operated at 100 % power and its expediency in the event of single Turbo Feed Pump (TFP) failure. Modeling was performed using an advanced calculation code RELAP/SCDAPSIM/Mod3.4 and relevant model for KhNPP Unit No. 2. As the study shows, SCRAM cannot be prevented in case of failure of 3 main circulation pumps due to steam generators (SG) level drop. Based on the results obtained, it is reasonably justified to allow SCRAM signal instead of AUU activation in case of single TFP failure at power level more than 90 % of N n om. This will provide more sparing temperature modes for fuel assemblies and equipment, as well as prevent additional thermal cycling loads and violation of safe operation limits as SG water levels
Rigid supersymmetry with boundaries
Energy Technology Data Exchange (ETDEWEB)
Belyaev, D.V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Van Nieuwenhuizen, P. [State Univ. of New York, Stony Brook, NY (United States). C.N. Yang Inst. for Theoretical Physics
2008-01-15
We construct rigidly supersymmetric bulk-plus-boundary actions, both in x-space and in superspace. For each standard supersymmetric bulk action a minimal supersymmetric bulk-plus-boundary action follows from an extended F- or D-term formula. Additional separately supersymmetric boundary actions can be systematically constructed using co-dimension one multiplets (boundary superfields). We also discuss the orbit of boundary conditions which follow from the Euler-Lagrange variational principle. (orig.)
Clinical risk analysis with failure mode and effect analysis (FMEA) model in a dialysis unit.
Bonfant, Giovanna; Belfanti, Pietro; Paternoster, Giuseppe; Gabrielli, Danila; Gaiter, Alberto M; Manes, Massimo; Molino, Andrea; Pellu, Valentina; Ponzetti, Clemente; Farina, Massimo; Nebiolo, Pier E
2010-01-01
The aim of clinical risk management is to improve the quality of care provided by health care organizations and to assure patients' safety. Failure mode and effect analysis (FMEA) is a tool employed for clinical risk reduction. We applied FMEA to chronic hemodialysis outpatients. FMEA steps: (i) process study: we recorded phases and activities. (ii) Hazard analysis: we listed activity-related failure modes and their effects; described control measures; assigned severity, occurrence and detection scores for each failure mode and calculated the risk priority numbers (RPNs) by multiplying the 3 scores. Total RPN is calculated by adding single failure mode RPN. (iii) Planning: we performed a RPNs prioritization on a priority matrix taking into account the 3 scores, and we analyzed failure modes causes, made recommendations and planned new control measures. (iv) Monitoring: after failure mode elimination or reduction, we compared the resulting RPN with the previous one. Our failure modes with the highest RPN came from communication and organization problems. Two tools have been created to ameliorate information flow: "dialysis agenda" software and nursing datasheets. We scheduled nephrological examinations, and we changed both medical and nursing organization. Total RPN value decreased from 892 to 815 (8.6%) after reorganization. Employing FMEA, we worked on a few critical activities, and we reduced patients' clinical risk. A priority matrix also takes into account the weight of the control measures: we believe this evaluation is quick, because of simple priority selection, and that it decreases action times.
Yuantai Hu; Huiliang Hu; Bin Luo; Huan Xue; Jiemin Xie; Ji Wang
2013-08-01
A two-dimensional model was established to study the dynamic characteristics of a quartz crystal resonator with the upper surface covered by an array of hemispherical material units. A frequency-dependent equivalent mass ratio was proposed to simulate the effect of the covered units on frequency shift of the resonator system. It was found that the equivalent mass ratio alternately becomes positive or negative with change of shear modulus and radius of each material unit, which indicates that the equivalent mass ratio is strongly related to the vibration mode of the covered loadings. The further numerical results show the cyclical feature in the relationship of frequency shift and shear modulus/radius as expected. The solutions are useful in the analysis of frequency stability of quartz resonators and acoustic wave sensors.
About deformation and rigidity in relativity
International Nuclear Information System (INIS)
Coll, Bartolome
2007-01-01
The notion of deformation involves that of rigidity. In relativity, starting from Born's early definition of rigidity, some other ones have been proposed, offering more or less interesting aspects but also accompanied of undesired or even pathological properties. In order to clarify the origin of these difficulties presented by the notion of rigidity in relativity, we analyze with some detail significant aspects of the unambiguous classical, Newtonian, notion. In particular, the relative character of its kinetic definition is pointed out, allowing to predict and to understand the limitations imposed by Herglotz-Noether theorem. Also, its equivalent dynamic definition is obtained and, in contrast, its absolute character is shown. But in spite of this absolute character, the dynamic definition is shown to be not extensible to relativity. The metric deformation of Minkowski space by the presence of a gravitational field is interpreted as a universal deformation, and it is shown that, under natural conditions, only a simple deformation law is possible, relating locally, but in an one-to-one way, gravitational fields and gauge classes of two-forms. We argue that fields of unit vectors associated to the internal gauge class of two-forms of every space-time (and, in particular, of Minkowski space-time) are the relativistic analogues of the classical accelerated observers, i.e. of the classical rigid motions. Some other consequences of the universal law of gravitational deformation are commented
Modeling Intercity Mode Choice and Airport Choice in the United States
Ashiabor, Senanu Y.
2007-01-01
The aim of this study was to develop a framework to model travel choice behavior in order to estimate intercity travel demand at nation-level in the United States. Nested and mixed logit models were developed to study national-level intercity transportation in the United States. A separate General Aviation airport choice model to estimates General Aviation person-trips and number of aircraft operations though more than 3000 airports was also developed. The combination of the General Aviati...
Torsional Rigidity of Minimal Submanifolds
DEFF Research Database (Denmark)
Markvorsen, Steen; Palmer, Vicente
2006-01-01
We prove explicit upper bounds for the torsional rigidity of extrinsic domains of minimal submanifolds $P^m$ in ambient Riemannian manifolds $N^n$ with a pole $p$. The upper bounds are given in terms of the torsional rigidities of corresponding Schwarz symmetrizations of the domains in warped...
Quantum charged rigid membrane
Energy Technology Data Exchange (ETDEWEB)
Cordero, Ruben [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N., Unidad Adolfo Lopez Mateos, Edificio 9, 07738 Mexico, D.F. (Mexico); Molgado, Alberto [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Zacatecas Zac. (Mexico); Rojas, Efrain, E-mail: cordero@esfm.ipn.mx, E-mail: amolgado@fisica.uaz.edu.mx, E-mail: efrojas@uv.mx [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)
2011-03-21
The early Dirac proposal to model the electron as a charged membrane is reviewed. A rigidity term, instead of the natural membrane tension, involving linearly the extrinsic curvature of the worldvolume swept out by the membrane is considered in the action modeling the bubble in the presence of an electromagnetic field. We set up this model as a genuine second-order derivative theory by considering a non-trivial boundary term which plays a relevant part in our formulation. The Lagrangian in question is linear in the bubble acceleration and by means of the Ostrogradski-Hamiltonian approach, we observed that the theory comprises the management of both first- and second-class constraints. We thus show that our second-order approach is robust allowing for a proper quantization. We found an effective quantum potential which permits us to compute bounded states for the system. We comment on the possibility of describing brane world universes by invoking this kind of second-order correction terms.
Quantum charged rigid membrane
International Nuclear Information System (INIS)
Cordero, Ruben; Molgado, Alberto; Rojas, Efrain
2011-01-01
The early Dirac proposal to model the electron as a charged membrane is reviewed. A rigidity term, instead of the natural membrane tension, involving linearly the extrinsic curvature of the worldvolume swept out by the membrane is considered in the action modeling the bubble in the presence of an electromagnetic field. We set up this model as a genuine second-order derivative theory by considering a non-trivial boundary term which plays a relevant part in our formulation. The Lagrangian in question is linear in the bubble acceleration and by means of the Ostrogradski-Hamiltonian approach, we observed that the theory comprises the management of both first- and second-class constraints. We thus show that our second-order approach is robust allowing for a proper quantization. We found an effective quantum potential which permits us to compute bounded states for the system. We comment on the possibility of describing brane world universes by invoking this kind of second-order correction terms.
Outcomes by Mode of Transport of ST Elevation MI Patients in the United Arab Emirates.
Callachan, Edward L; Alsheikh-Ali, Alawi A; Nair, Satish Chandrasekhar; Bruijns, Stevan; Wallis, Lee A
2017-04-01
The purpose of this multicenter study was to assess differences in demographics, medical history, treatment times, and follow-up status among patients with ST-elevation myocardial infarction (STEMI), who were transported to the hospital by emergency medical services (EMS) or by private vehicle, or were transferred from other medical facilities. This multicenter study involved the collection of both retrospective and prospective data from 455 patients admitted to four hospitals in Abu Dhabi. We collected electronic medical records from EMS and hospitals, and conducted interviews with patients in person or via telephone. Chi-square tests and Kruskal-Wallis tests were used to examine differences in variables by mode of transportation. Results indicated significant differences in modes of transportation when considering symptom-onset-to-balloon time (p transported by EMS, private vehicle, or transferred from an outside facility were as follows: symptom-onset-to-balloon time in hours, 3.1 (1.8-4.3), 3.2 (2.1-5.3), and 4.5 (3.0-7.5), respectively; door-to-balloon time in minutes, 70 (48-78), 81 (64-105), and 62 (46-77), respectively. In all cases, EMS transportation was associated with a shorter time to treatment than other modes of transportation. However, the EMS group experienced greater rates of in-hospital events, including cardiac arrest and mortality, than the private transport group. Our results contribute data supporting EMS transportation for patients with acute coronary syndrome. Although a lack of follow-up data made it difficult to draw conclusions about long-term outcomes, our findings clearly indicate that EMS transportation can speed time to treatment, including time to balloon inflation, potentially reducing readmission and adverse events. We conclude that future efforts should focus on encouraging the use of EMS and improving transfer practices. Such efforts could improve outcomes for patients presenting with STEMI.
DEFF Research Database (Denmark)
Hoseini, S. Kazem; Pouresmaeil, E.; Hosseinnia, S. H.
2016-01-01
. However, the converter-based DG interface is subjected to the unexpected uncertainties, which highly influence performance of control loop of DG unit and operation of interfaced converter. The interfacing impedance seen by interfaced VSC may considerably vary in power grid, and the stability of interfaced...... converter is highly sensitive to the impacts of this impedance changes; then, DG unit cannot inject appropriate currents. To deal with the instability problem, a control method based on fractional order active sliding mode is proposed in this paper, which is less sensitive to variations of interfacing...... impedance. A fractional sliding surface, which demonstrates the desired dynamics of system is developed and then, the controller is designed in two phases as sliding and reaching phases to keep the control loop stable. Stability issues of the control method are discussed in details and the conditions...
Energy Technology Data Exchange (ETDEWEB)
O' Gorman, T.; Gibson, K. J.; Snape, J. A. [York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom); Naylor, G.; Huang, B.; McArdle, G. J.; Scannell, R.; Shibaev, S.; Thomas-Davies, N. [EURATOM/CCFE Fusion Association, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom)
2012-10-15
A real-time system has been developed to trigger both the MAST Thomson scattering (TS) system and the plasma control system on the phase and amplitude of neoclassical tearing modes (NTMs), extending the capabilities of the original system. This triggering system determines the phase and amplitude of a given NTM using magnetic coils at different toroidal locations. Real-time processing of the raw magnetic data occurs on a low cost field programmable gate array (FPGA) based unit which permits triggering of the TS lasers on specific amplitudes and phases of NTM evolution. The MAST plasma control system can receive a separate trigger from the FPGA unit that initiates a vertical shift of the MAST magnetic axis. Such shifts have fully removed m/n= 2/1 NTMs instabilities on a number of MAST discharges.
Li, Xixi; He, Mei; Wang, Haiyan
2017-12-01
In this study, failure mode and effect analysis (FMEA), a proactive tool, was applied to reduce errors associated with the process which begins with assessment of patient and ends with treatment of complications. The aim of this study is to assess whether FMEA implementation will significantly reduce the incidence of catheter-related bloodstream infections (CRBSIs) in intensive care unit.The FMEA team was constructed. A team of 15 medical staff from different departments were recruited and trained. Their main responsibility was to analyze and score all possible processes of central venous catheterization failures. Failure modes with risk priority number (RPN) ≥100 (top 10 RPN scores) were deemed as high-priority-risks, meaning that they needed immediate corrective action. After modifications were put, the resulting RPN was compared with the previous one. A centralized nursing care system was designed.A total of 25 failure modes were identified. High-priority risks were "Unqualified medical device sterilization" (RPN, 337), "leukopenia, very low immunity" (RPN, 222), and "Poor hand hygiene Basic diseases" (RPN, 160). The corrective measures that we took allowed a decrease in the RPNs, especially for the high-priority risks. The maximum reduction was approximately 80%, as observed for the failure mode "Not creating the maximal barrier for patient." The averaged incidence of CRBSIs was reduced from 5.19% to 1.45%, with 3 months of 0 infection rate.The FMEA can effectively reduce incidence of CRBSIs, improve the security of central venous catheterization technology, decrease overall medical expenses, and improve nursing quality. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
Operator support system for power unit control in abnormal modes of operation
International Nuclear Information System (INIS)
Kurka, J.
1993-01-01
I and C system technology, partly Soviet and partly Czechoslovakian, used on the NPP Dukovany units represents the control technology standard of late 70-ties and it becomes the weak part of the whole system. The modernization of the system, therefore, is necessary and it is already in preparation. The specification of both the scope and the depth of upgrading/replacement is being carried out within the framework of the PHARE program. The second phase of the program aimed at the final specifications of requirements on new I and C system is in progress. The output will serve as detailed specification for bid invitation for control system supplier. Parallely, the preparation of specification for WWER-440 full-scope plant simulator for operator training is in progress as well. In the case of two units with WWER-1000 MW reactors, the completion of construction of which was even threaten for a certain period of time, essential changes have taken place in the design of both the I and C systems and the reactor core. 7 figs
Model for Sucker-Rod Pumping Unit Operating Modes Analysis Based on SimMechanics Library
Zyuzev, A. M.; Bubnov, M. V.
2018-01-01
The article provides basic information about the process of a sucker-rod pumping unit (SRPU) model developing by means of SimMechanics library in the MATLAB Simulink environment. The model is designed for the development of a pump productivity optimal management algorithms, sensorless diagnostics of the plunger pump and pumpjack, acquisition of the dynamometer card and determination of a dynamic fluid level in the well, normalization of the faulty unit operation before troubleshooting is performed by staff as well as equilibrium ratio determining by energy indicators and outputting of manual balancing recommendations to achieve optimal power consumption efficiency. Particular attention is given to the application of various blocks from SimMechanics library to take into account the pumpjack construction principal characteristic and to obtain an adequate model. The article explains in depth the developed tools features for collecting and analysis of simulated mechanism data. The conclusions were drawn about practical implementation possibility of the SRPU modelling results and areas for further development of investigation.
Directory of Open Access Journals (Sweden)
Salati Parinaz
2012-01-01
Full Text Available The ninth olefin plan of Arya Sasol Petrochemical Company (A.S.P.C. is regarded the largest gas Olefin Unit located on Pars Special Economic Energy Zone (P.S.E.E.Z. Considering the importance of the petrochemical unit, its environmental assessment seems necessary to identify and reduce potential hazards. For this purpose, after determining the scope of the study area, identification and measurement of the environmental parameters, environmental risk assessment of the unit was carried out using Environment Failure Mode and Effect Analysis (EFMEA. Using the noted method, sources causing environmental risks were identified, rated and prioritized. Beside, the impacts of the environmental aspects derived from the unit activities as well as their consequences were also analyzed. Furthermore, the identified impacts were prioritized based on Risk Priority Number (RPN and severity level of the consequences imposed on the affected environment. After performing statistical calculations, it was found that the environmental aspects owing the risk priority number higher than 15 have a high level of risk. Results obtained from Low Density Polyethylene Unit revealed that the highest risk belongs to the emergency vent system with risk priority number equal to 48. It is occurred due to imperfect performance of the reactor safety system leading to the emissions of ethylene gas, particles, and radioactive steam as well as air and noise pollutions. Results derived from secondary assessment of the environmental aspects, through difference in calculated RPN and activities risk levels showed that employing modern methods and risk assessment are have remarkably reduced the severity of risk and consequently detracted the damages and losses incurred on the environment.
DEFF Research Database (Denmark)
Rijkhoff, Jan
2010-01-01
classes. Finally this article wants to claim that the distinction between rigid and flexible noun categories (a) adds a new dimension to current classifications of parts of speech systems, (b) correlates with certain grammatical phenomena (e.g. so-called number discord), and (c) helps to explain the parts......This article argues that in addition to the major flexible lexical categories in Hengeveld’s classification of parts of speech systems (Contentive, Non-Verb, Modifier), there are also flexible word classes within the rigid lexical category Noun (Set Noun, Sort Noun, General Noun). Members...... by the flexible item in the external world. I will then argue that flexible word classes constitute a proper category (i.e. they are not the result of a merger of some rigid word classes) in that members of flexible word categories display the same properties regarding category membership as members of rigid word...
International Nuclear Information System (INIS)
Lobello, Maria Grazia; Fantacci, Simona; Manfredi, Norberto; Coluccini, Carmine; Abbotto, Alessandro; Nazeeruddin, Mohammed K.; De Angelis, Filippo
2014-01-01
We report the design, synthesis and computational investigation of a class of Ru(II)-dyes based on mixed bipyridine ligands for use in dye-sensitized solar cells. These dyes are designed to preserve the optimal anchoring mode of the prototypical N719 sensitizer by three carboxylic groups, yet allowing for tunable optimization of their electronic and optical properties by selective substitution at one of the 4-4′ positions of a single bipyridine ligand with π-excessive heteroaromatic groups. We used Density Functional Theory/Time Dependent Density Functional Theory calculations to analyze the electronic structure and optical properties of the dye and to investigate the dye adsorption mode on a TiO 2 nanoparticle model. Our results show that we are effectively able to introduce three carboxylic anchoring units into the dye and achieve at the same time an enhanced dye light harvesting, demonstrating the design concept. As a drawback of this type of dyes, the synthesis leads to a mixture of dye isomers, which are rather tedious to separate. - Highlights: • We designed heteroleptic Ru(II) sensitizers with three carboxylic anchoring groups. • The three carboxylic anchoring groups are essential for high open circuit potentials. • Introduction of the mixed bipyridine ligand increases the dye light absorption. • Computational simulations confirm the three anchoring sites on TiO 2
Energy Technology Data Exchange (ETDEWEB)
Lobello, Maria Grazia; Fantacci, Simona [Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Molecolari, Via elce di Sotto 8, I-06213 Perugia (Italy); Manfredi, Norberto; Coluccini, Carmine [Department of Materials Science and Milano-Bicocca Solar Energy Research Center-MIB-Solar, University of Milano-Bicocca and INSTM, Via Cozzi 53, I-20125 Milano (Italy); Abbotto, Alessandro, E-mail: alessandro.abbotto@unimib.it [Department of Materials Science and Milano-Bicocca Solar Energy Research Center-MIB-Solar, University of Milano-Bicocca and INSTM, Via Cozzi 53, I-20125 Milano (Italy); Nazeeruddin, Mohammed K., E-mail: mdkhaja.nazeeruddin@epfl.ch [Laboratory for Photonics and Interfaces, Station 6, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland); De Angelis, Filippo, E-mail: filippo@thch.unipg.it [Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Molecolari, Via elce di Sotto 8, I-06213 Perugia (Italy)
2014-06-02
We report the design, synthesis and computational investigation of a class of Ru(II)-dyes based on mixed bipyridine ligands for use in dye-sensitized solar cells. These dyes are designed to preserve the optimal anchoring mode of the prototypical N719 sensitizer by three carboxylic groups, yet allowing for tunable optimization of their electronic and optical properties by selective substitution at one of the 4-4′ positions of a single bipyridine ligand with π-excessive heteroaromatic groups. We used Density Functional Theory/Time Dependent Density Functional Theory calculations to analyze the electronic structure and optical properties of the dye and to investigate the dye adsorption mode on a TiO{sub 2} nanoparticle model. Our results show that we are effectively able to introduce three carboxylic anchoring units into the dye and achieve at the same time an enhanced dye light harvesting, demonstrating the design concept. As a drawback of this type of dyes, the synthesis leads to a mixture of dye isomers, which are rather tedious to separate. - Highlights: • We designed heteroleptic Ru(II) sensitizers with three carboxylic anchoring groups. • The three carboxylic anchoring groups are essential for high open circuit potentials. • Introduction of the mixed bipyridine ligand increases the dye light absorption. • Computational simulations confirm the three anchoring sites on TiO{sub 2}.
Rigid multibody system dynamics with uncertain rigid bodies
Energy Technology Data Exchange (ETDEWEB)
Batou, A., E-mail: anas.batou@univ-paris-est.fr; Soize, C., E-mail: christian.soize@univ-paris-est.fr [Universite Paris-Est, Laboratoire Modelisation et Simulation Multi Echelle, MSME UMR 8208 CNRS (France)
2012-03-15
This paper is devoted to the construction of a probabilistic model of uncertain rigid bodies for multibody system dynamics. We first construct a stochastic model of an uncertain rigid body by replacing the mass, the center of mass, and the tensor of inertia by random variables. The prior probability distributions of the stochastic model are constructed using the maximum entropy principle under the constraints defined by the available information. The generators of independent realizations corresponding to the prior probability distribution of these random quantities are further developed. Then several uncertain rigid bodies can be linked to each other in order to calculate the random response of a multibody dynamical system. An application is proposed to illustrate the theoretical development.
Türk, Murat; Aydoğdu, Müge; Gürsel, Gül
2018-01-01
Different outcomes and success rates of non-invasive positive pressure ventilation (NPPV) in patients with acute hypercapnic respiratory failure (AHRF) still pose a significant problem in intensive care units. Previous studies investigating different modes, body positioning, and obesity-associated hypoventilation in patients with chronic respiratory failure showed that these factors may affect ventilator mechanics to achieve a better minute ventilation. This study tried to compare pressure support (BiPAP-S) and average volume targeted pressure support (AVAPS-S) modes in patients with acute or acute-on-chronic hypercapnic respiratory failure. In addition, short-term effects of body position and obesity within both modes were analyzed. We conducted a randomized controlled study in a 7-bed intensive care unit. The course of blood gas analysis and differences in ventilation variables were compared between BiPAP-S (n=33) and AVAPS-S (n=29), and between semi-recumbent and lateral positions in both modes. No difference was found in the length of hospital stay and the course of PaCO2, pH, and HCO3 levels between the modes. There was a mean reduction of 5.7±4.1 mmHg in the PaCO2 levels in the AVAPS-S mode, and 2.7±2.3 mmHg in the BiPAP-S mode per session (ppositioning had no notable effect in both modes. Although the decrease in the PaCO2 levels in the AVAPS-S mode per session was remarkably high, the course was similar in both modes. Furthermore, obesity and body positioning had no prominent effect on the PaCO2 response and ventilator mechanics. Post hoc power analysis showed that the sample size was not adequate to detect a significant difference between the modes.
Kowsari, Mohammad H; Ebrahimi, Soraya
2018-05-16
Comprehensive molecular dynamics simulations are performed to study the average single-particle dynamics and the transport properties of 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6], and 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, [bmim][FAP], ionic liquids (ILs) at 400 K. We applied one of the most widely used nonpolarizable all-atom force fields for ILs, both with the original unit (±1) charges on each ion and with the partial charges uniformly scaled to 80-85%, taking into account the average polarizability and tracing the experimentally compatible transport properties. In all simulations, [bmim]+ was considered to be flexible, while the effect of a flexible vs. rigid structure of the anions and the effect of two applied charge sets on the calculated properties were separately investigated in detail. The simulation results showed that replacing [PF6]- with [FAP]-, considering anion flexibility, and applying the charge-scaled model significantly enhanced the ionic self-diffusion, ionic conductivity, inverse viscosity, and hyper anion preference (HAP). Both of the calculated self-diffusion coefficients from the long-time linear slope of the mean-square displacement (MSD) and from the integration of the velocity autocorrelation function (VACF) for the centers of mass of the ions were used for evaluation of the ionic transference number, HAP, ideal Nernst-Einstein ionic conductivity (σNE), and the Stokes-Einstein viscosity. In addition, for quantification of the degree of complicated ionic association (known as the Nernst-Einstein deviation parameter, Δ) and ionicity phenomena in the two studied ILs, the ionic conductivity was determined more rigorously by the Green-Kubo integral of the electric-current autocorrelation function (ECACF), and then the σGK/σNE ratio was evaluated. It was found that the correlated motion of the (cationanion) neighbors in [bmim][FAP] is smaller than in [bmim][PF6]. The relaxation times of
The influence of climate modes on streamflow in the Mid-Atlantic region of the United States
Directory of Open Access Journals (Sweden)
Justin A. Schulte
2016-03-01
Full Text Available Study region: The Mid-Atlantic region of the United States. Study focus: An understanding of past streamflow variability is necessary for developing future management practices that will help mitigate the impacts of extreme events such as drought or floods on agriculture and other human activities. To better understand mechanisms driving streamflow variability at all timescales, annual to multi-decadal streamflow variability of three major rivers in the Mid-Atlantic region of the United States (the Susquehanna, Delaware, and Hudson Rivers was studied in the context of climate modes using correlation and wavelet analyses. New hydrological insights for the region: Results from the correlation analysis detected statistically significant relationships between climate indices and streamflow that were similar for the three rivers. The results from the wavelet analysis showed that 18- and 26-year periodicities were embedded in the streamflow time series. Decadal variability of streamflow was coherent with the El-Niño Southern Oscillation (SO and the Pacific Decadal Oscillation (PDO. The time series for the PDO and SO indices and precipitation were found to be synchronized to the decadal variability of a global circulation pattern consisting of a Rossby wave train emanating from the North Pacific. The SO explained 37–54% of the 1960s drought, 33–49% of the 1970s pluvial, and 19–50% of the 2000s pluvial in the three river basins. Keywords: Streamflow, Climate, Climate variability, Wavelet analysis, El-Niño-Southern Oscillation, Mid-Atlantic region
1983-12-01
In A COMPARATIVE ANALYSIS OF PATIENT ACCESS MODES AT WILFORD HALL UNITED STATES AIR FORCE MEDICAL CENTER N AND SELECTED CIVILIAN MEDICAL CENTERS0 N...current patient access modes at WHMC and several civilian medical centers of comparable size. This project has pursued the subject of patient access in...selected civilian medical centers which are comparable to WHMC in size, specialty mix, workload, and mission, providing responsive and efficient patient
Rigidly foldable origami gadgets and tessellations
Evans, Thomas A.; Lang, Robert J.; Magleby, Spencer P.; Howell, Larry L.
2015-01-01
Rigidly foldable origami allows for motion where all deflection occurs at the crease lines and facilitates the application of origami in materials other than paper. In this paper, we use a recently discovered method for determining rigid foldability to identify existing flat-foldable rigidly foldable tessellations, which are also categorized. We introduce rigidly foldable origami gadgets which may be used to modify existing tessellations or to create new tessellations. Several modified and new rigidly foldable tessellations are presented. PMID:26473037
Alajarín, Mateo; Sánchez-Andrada, Pilar; Vidal, Angel; Tovar, Fulgencio
2005-02-18
[reaction: see text] The mode selectivity in the intramolecular cyclization of a particular class of ketenimines bearing N-acylimino units has been studied by ab initio and DFT calculations. In the model compounds the carbonyl carbon atom and the keteniminic nitrogen atom are linked either by a vinylic or an o-phenylene tether. Two cyclization modes have been analyzed: the [2+2] cycloaddition furnishing compounds with an azeto[2,1-b]pyrimidinone moiety and a 6pi-electrocyclic ring closure leading to compounds enclosing a 1,3-oxazine ring. The [2+2] cycloaddition reaction takes place via a two-step process with formation of a zwitterionic intermediate, which has been characterized as a cross-conjugated mesomeric betaine. The 6pi-electrocyclic ring closure occurs via a transition state whose pseudopericyclic character has been established on the basis of its magnetic properties, geometry, and NBO analysis. The 6pi-electrocyclic ring closure is energetically favored over the [2+2] cycloaddition, although the [2+2] cycloadducts are the thermodynamically controlled products. A quantitative kinetic analysis predicts that 1,3-oxazines would be the kinetically controlled products, but they should transform rapidly and totally into the [2+2] cycloadducts at room temperature. In the experimental study, a number of N-acylimino-ketenimines, in which both reactive functions are supported on an o-phenylene scaffold, have been successfully synthesized in three steps starting from 2-azidobenzoyl chloride. These compounds rapidly convert into azeto[2,1-b]quinazolin-8-ones in moderate to good yields as a result of a formal [2+2] cycloaddition.
Rigidity-tuning conductive elastomer
Shan, Wanliang; Diller, Stuart; Tutcuoglu, Abbas; Majidi, Carmel
2015-06-01
We introduce a conductive propylene-based elastomer (cPBE) that rapidly and reversibly changes its mechanical rigidity when powered with electrical current. The elastomer is rigid in its natural state, with an elastic (Young’s) modulus of 175.5 MPa, and softens when electrically activated. By embedding the cPBE in an electrically insulating sheet of polydimethylsiloxane (PDMS), we create a cPBE-PDMS composite that can reversibly change its tensile modulus between 37 and 1.5 MPa. The rigidity change takes ˜6 s and is initiated when a 100 V voltage drop is applied across the two ends of the cPBE film. This magnitude of change in elastic rigidity is similar to that observed in natural skeletal muscle and catch connective tissue. We characterize the tunable load-bearing capability of the cPBE-PDMS composite with a motorized tensile test and deadweight experiment. Lastly, we demonstrate the ability to control the routing of internal forces by embedding several cPBE-PDMS ‘active tendons’ into a soft robotic pneumatic bending actuator. Selectively activating the artificial tendons controls the neutral axis and direction of bending during inflation.
Rigidity-tuning conductive elastomer
International Nuclear Information System (INIS)
Shan, Wanliang; Diller, Stuart; Tutcuoglu, Abbas; Majidi, Carmel
2015-01-01
We introduce a conductive propylene-based elastomer (cPBE) that rapidly and reversibly changes its mechanical rigidity when powered with electrical current. The elastomer is rigid in its natural state, with an elastic (Young’s) modulus of 175.5 MPa, and softens when electrically activated. By embedding the cPBE in an electrically insulating sheet of polydimethylsiloxane (PDMS), we create a cPBE–PDMS composite that can reversibly change its tensile modulus between 37 and 1.5 MPa. The rigidity change takes ∼6 s and is initiated when a 100 V voltage drop is applied across the two ends of the cPBE film. This magnitude of change in elastic rigidity is similar to that observed in natural skeletal muscle and catch connective tissue. We characterize the tunable load-bearing capability of the cPBE–PDMS composite with a motorized tensile test and deadweight experiment. Lastly, we demonstrate the ability to control the routing of internal forces by embedding several cPBE–PDMS ‘active tendons’ into a soft robotic pneumatic bending actuator. Selectively activating the artificial tendons controls the neutral axis and direction of bending during inflation. (paper)
DEFF Research Database (Denmark)
Rijkhoff, Jan
2008-01-01
Studies in Language 32-3 (2008), 727-752. Special issue: Parts of Speech: Descriptive tools, theoretical constructs Jan Rijkhoff - On flexible and rigid nouns This article argues that in addition to the flexible lexical categories in Hengeveld’s classification of parts-of-speech systems (Contentive......, Non-Verb, Modifier), there are also flexible word classes within the rigid lexical category Noun (Set Noun, Sort Noun, General Noun). Members of flexible word classes are characterized by their vague semantics, which in the case of nouns means that values for the semantic features Shape...... and Homogeneity are either left undetermined or they are specified in such a way that they do not quite match the properties of the kind of entity denoted by the flexible item in the external world. I will then argue that flexible word classes constitute a proper category (i.e. they are not the result of a merger...
Elasticity of Relativistic Rigid Bodies?
Smarandache, Florentin
2013-10-01
In the classical Twin Paradox, according to the Special Theory of Relativity, when the traveling twin blasts off from the Earth to a relative velocity v =√{/3 } 2 c with respect to the Earth, his measuring stick and other physical objects in the direction of relative motion shrink to half their lengths. How is that possible in the real physical world to have let's say a rigid rocket shrinking to half and then later elongated back to normal as an elastic material when it stops? What is the explanation for the traveler's measuring stick and other physical objects, in effect, return to the same length to their original length in the Stay-At-Home, but there is no record of their having shrunk? If it's a rigid (not elastic) object, how can it shrink and then elongate back to normal? It might get broken in such situation.
Rigid body dynamics of mechanisms
Hahn, Hubert
2003-01-01
The second volume of Rigid Body Dynamics of Mechanisms covers applications via a systematic method for deriving model equations of planar and spatial mechanisms. The necessary theoretical foundations have been laid in the first volume that introduces the theoretical mechanical aspects of mechatronic systems. Here the focus is on the application of the modeling methodology to various examples of rigid-body mechanisms, simple planar ones as well as more challenging spatial problems. A rich variety of joint models, active constraints, plus active and passive force elements is treated. The book is intended for self-study by working engineers and students concerned with the control of mechanical systems, i.e. robotics, mechatronics, vehicles, and machine tools. The examples included are a likely source from which to choose models for university lectures.
Associative memory through rigid origami
Murugan, Arvind; Brenner, Michael
2015-03-01
Mechanisms such as Miura Ori have proven useful in diverse contexts since they have only one degree of freedom that is easily controlled. We combine the theory of rigid origami and associative memory in frustrated neural networks to create structures that can ``learn'' multiple generic folding mechanisms and yet can be robustly controlled. We show that such rigid origami structures can ``recall'' a specific learned mechanism when induced by a physical impulse that only need resemble the desired mechanism (i.e. robust recall through association). Such associative memory in matter, seen before in self-assembly, arises due to a balance between local promiscuity (i.e., many local degrees of freedom) and global frustration which minimizes interference between different learned behaviors. Origami with associative memory can lead to a new class of deployable structures and kinetic architectures with multiple context-dependent behaviors.
Rigidity spectrum of Forbush decrease
International Nuclear Information System (INIS)
Sakakibara, S.; Munakata, K.; Nagashima, K.
1985-01-01
Using data from neutron monitors and muon telescopes at surface and underground stations, the average rigidity spectrum of Forbush decreases (Fds) during the period of 1978-1982 were obtained. Thirty eight Ed-events are classified into two groups, Hard Fd and Soft FD according to size of Fd at the Sakashita station. It is found that a spectral form of a fractional-power type (P to the-gamma sub 1 (P+P sub c) to the -gamma sub2) is more suitable than that of a power-exponential type or of a power type with an upper limiting rigidity. The best fitted spectrum of the fractional-power type is expressed by gamma sub1 = 0.37, gamma sub2 = 0.89 and P subc = 10 GV for Hard Fd and gamma sub1 = 0.77, gamma sub2 = 1.02 and P sub c - 14GV for Soft Fd
Signature of Thermal Rigidity Percolation
International Nuclear Information System (INIS)
Huerta, Adrián
2013-01-01
To explore the role that temperature and percolation of rigidity play in determining the macroscopic properties, we propose a model that adds translational degrees of freedom to the spins of the well known Ising hamiltonian. In particular, the Ising model illustrate the longstanding idea that the growth of correlations on approach to a critical point could be describable in terms of the percolation of some sort of p hysical cluster . For certain parameters of this model we observe two well defined peaks of C V , that suggest the existence of two kinds of p hysical percolation , namely connectivity and rigidity percolation. Thermal fluctuations give rise to two different kinds of elementary excitations, i.e. droplets and configuron, as suggested by Angell in the framework of a bond lattice model approach. The later is reflected in the fluctuations of redundant constraints that gives stability to the structure and correlate with the order parameter
Torsional rigidity, isospectrality and quantum graphs
International Nuclear Information System (INIS)
Colladay, Don; McDonald, Patrick; Kaganovskiy, Leon
2017-01-01
We study torsional rigidity for graph and quantum graph analogs of well-known pairs of isospectral non-isometric planar domains. We prove that such isospectral pairs are distinguished by torsional rigidity. (paper)
Non-rigid connector: The wand to allay the stresses on abutment
Banerjee, Saurav; Khongshei, Arlingstone; Gupta, Tapas; Banerjee, Ardhendu
2011-01-01
The use of rigid connectors in 5-unit fixed dental prosthesis with a pier abutment can result in failure of weaker retainer in the long run as the pier abutment acts as a fulcrum. Non-rigid connector placed on the distal aspect of pier seems to reduce potentially excess stress concentration on the pier abutment.
Localized Acoustic Surface Modes
Farhat, Mohamed
2015-08-04
We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.
Rigidity of monodromies for Appell's hypergeometric functions
Directory of Open Access Journals (Sweden)
Yoshishige Haraoka
2015-01-01
Full Text Available For monodromy representations of holonomic systems, the rigidity can be defined. We examine the rigidity of the monodromy representations for Appell's hypergeometric functions, and get the representations explicitly. The results show how the topology of the singular locus and the spectral types of the local monodromies work for the study of the rigidity.
1996-01-01
This Failure Modes and Effects Analysis (FMEA) is for the Advanced Microwave Sounding Unit-A (AMSU-A) instruments that are being designed and manufactured for the Meteorological Satellites Project (METSAT) and the Earth Observing System (EOS) integrated programs. The FMEA analyzes the design of the METSAT and EOS instruments as they currently exist. This FMEA is intended to identify METSAT and EOS failure modes and their effect on spacecraft-instrument and instrument-component interfaces. The prime objective of this FMEA is to identify potential catastrophic and critical failures so that susceptibility to the failures and their effects can be eliminated from the METSAT/EOS instruments.
Geometry, rigidity, and group actions
Farb, Benson; Zimmer, Robert J
2011-01-01
The study of group actions is more than a hundred years old but remains to this day a vibrant and widely studied topic in a variety of mathematic fields. A central development in the last fifty years is the phenomenon of rigidity, whereby one can classify actions of certain groups, such as lattices in semi-simple Lie groups. This provides a way to classify all possible symmetries of important spaces and all spaces admitting given symmetries. Paradigmatic results can be found in the seminal work of George Mostow, Gergory Margulis, and Robert J. Zimmer, among others.The p
Handedness in shearing auxetics creates rigid and compliant structures
Lipton, Jeffrey Ian; MacCurdy, Robert; Manchester, Zachary; Chin, Lillian; Cellucci, Daniel; Rus, Daniela
2018-05-01
In nature, repeated base units produce handed structures that selectively bond to make rigid or compliant materials. Auxetic tilings are scale-independent frameworks made from repeated unit cells that expand under tension. We discovered how to produce handedness in auxetic unit cells that shear as they expand by changing the symmetries and alignments of auxetic tilings. Using the symmetry and alignment rules that we developed, we made handed shearing auxetics that tile planes, cylinders, and spheres. By compositing the handed shearing auxetics in a manner inspired by keratin and collagen, we produce both compliant structures that expand while twisting and deployable structures that can rigidly lock. This work opens up new possibilities in designing chemical frameworks, medical devices like stents, robotic systems, and deployable engineering structures.
EnviroAtlas - Commute Modes and Working from Home by Block Group for the Conterminous United States
U.S. Environmental Protection Agency — This EnviroAtlas dataset portrays the percent of workers who commute to work using various modes, and the percent who work from home within each Census Block Group...
Waycaster, Garrett C; Matsumura, Taiki; Bilotkach, Volodymyr; Haftka, Raphael T; Kim, Nam H
2018-05-01
The U.S. Department of Transportation is responsible for implementing new safety improvements and regulations with the goal of ensuring limited funds are distributed to where they can have the greatest impact on safety. In this work, we conduct a study of new regulations and other reactions (such as recalls) to fatal accidents in several different modes of transportation implemented from 2002 to 2009. We find that in the safest modes of commercial aviation and bus transport, the amount of spending on new regulations is high in relation to the number of fatalities compared to the regulatory attention received by less safe modes of general aviation and private automobiles. Additionally, we study two major fatal accident investigations from commercial aviation and two major automotive recalls associated with fatal accidents. We find differences in the cost per expected fatality prevented for these reactions, with the airline accident investigations being more cost effective. Overall, we observe trends in both the automotive and aviation sectors that suggest that public transportation receives more regulatory attention than private transport. We also observe that the types of safety remedies utilized, regulation versus investigation, have varying levels of effectiveness in different transport modes. We suggest that these differences are indicative of increased public demand for safety in modes where a third party may be held responsible, even for those not participating in the transportation. These findings have important implications for the transportation industry, policymakers, and for estimating the public demand for safety in new transport modes. © 2017 Society for Risk Analysis.
International Nuclear Information System (INIS)
Thameem Ansari, M.Md.; Velusami, S.
2010-01-01
A design of dual mode linguistic hedge fuzzy logic controller for an isolated wind-diesel hybrid power system with superconducting magnetic energy storage unit is proposed in this paper. The design methodology of dual mode linguistic hedge fuzzy logic controller is a hybrid model based on the concepts of linguistic hedges and hybrid genetic algorithm-simulated annealing algorithms. The linguistic hedge operators are used to adjust the shape of the system membership functions dynamically and can speed up the control result to fit the system demand. The hybrid genetic algorithm-simulated annealing algorithm is adopted to search the optimal linguistic hedge combination in the linguistic hedge module. Dual mode concept is also incorporated in the proposed controller because it can improve the system performance. The system with the proposed controller was simulated and the frequency deviation resulting from a step load disturbance is presented. The comparison of the proportional plus integral controller, fuzzy logic controller and the proposed dual mode linguistic hedge fuzzy logic controller shows that, with the application of the proposed controller, the system performance is improved significantly. The proposed controller is also found to be less sensitive to the changes in the parameters of the system and also robust under different operating modes of the hybrid power system.
Rigid-beam model of a high-efficiency magnicon
International Nuclear Information System (INIS)
Rees, D.E.; Tallerico, P.J.; Humphries, S.J. Jr.
1993-01-01
The magnicon is a new type of high-efficiency deflection-modulated amplifier developed at the Institute of Nuclear Physics in Novosibirsk, Russia. The prototype pulsed magnicon achieved an output power of 2.4 MW and an efficiency of 73% at 915 MHz. This paper presents the results of a rigid-beam model for a 700-MHz, 2.5-MW 82%-efficient magnicon. The rigid-beam model allows for characterization of the beam dynamics by tracking only a single electron. The magnicon design presented consists of a drive cavity; passive cavities; a pi-mode, coupled-deflection cavity; and an output cavity. It represents an optimized design. The model is fully self-consistent, and this paper presents the details of the model and calculated performance of a 2.5-MW magnicon
Directory of Open Access Journals (Sweden)
Hong Xiao
2016-12-01
Full Text Available Knowledge concerning the complicated changes of mass and heat transfer is desired to improve the performance and durability of unitized regenerative fuel cells (URFCs. In this study, a transient, non-isothermal, single-phase, and multi-physics mathematical model for a URFC based on the proton exchange membrane is generated to investigate transient responses in the process of operation mode switching from fuel cell (FC to electrolysis cell (EC. Various heat generation mechanisms, including Joule heat, reaction heat, and the heat attributed to activation polarizations, have been considered in the transient model coupled with electrochemical reaction and mass transfer in porous electrodes. The polarization curves of the steady-state models are validated by experimental data in the literatures. Numerical results reveal that current density, gas mass fractions, and temperature suddenly change with the sudden change of operating voltage in the mode switching process. The response time of temperature is longer than that of current density and gas mass fractions. In both FC and EC modes, the cell temperature and gradient of gas mass fraction in the oxygen side are larger than that in the hydrogen side. The temperature difference of the entire cell is less than 1.5 K. The highest temperature appears at oxygen-side catalyst layer under the FC mode and at membrane under a more stable EC mode. The cell is exothermic all the time. These dynamic responses and phenomena have important implications for heat analysis and provide proven guidelines for the improvement of URFCs mode switching.
Topological orders in rigid states
International Nuclear Information System (INIS)
Wen, X.G.
1990-01-01
The authors study a new kind of ordering topological order in rigid states (the states with no local gapless excitations). This paper concentrates on characterization of the different topological orders. As an example the authors discuss in detail chiral spin states of 2+1 dimensional spin systems. Chiral spin states are described by the topological Chern-Simons theories in the continuum limit. The authors show that the topological orders can be characterized by a non-Abelian gauge structure over the moduli space which parametrizes a family of the model Hamiltonians supporting topologically ordered ground states. In 2 + 1 dimensions, the non-Abelian gauge structure determines possible fractional statistics of the quasi-particle excitations over the topologically ordered ground states. The dynamics of the low lying global excitations is shown to be independent of random spatial dependent perturbations. The ground state degeneracy and the non-Abelian gauge structures discussed in this paper are very robust, even against those perturbations that break translation symmetry. The authors also discuss the symmetry properties of the degenerate ground states of chiral spin states. The authors find that some degenerate ground states of chiral spin states on torus carry non-trivial quantum numbers of the 90 degrees rotation
Numerical rigid plastic modelling of shear capacity of keyed joints
DEFF Research Database (Denmark)
Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao
2015-01-01
Keyed shear joints are currently designed using simple and conservative design formulas, yet these formulas do not take the local mechanisms in the concrete core of the joint into account. To investigate this phenomenon a rigid, perfectly plastic finite element model of keyed joints is used....... The model is formulated for second-order conic optimisation as a lower bound problem, which yields a statically admissible stress field that satisfies the yield condition in every point. The dual solution to the problem can be interpreted as the collapse mode and will be used to analyse the properties...
WE-H-BRC-01: Failure Mode and Effects Analysis of Skin Electronic Brachytherapy Using Esteya Unit
International Nuclear Information System (INIS)
Ibanez-Rosello, B; Bautista-Ballesteros, J; Bonaque, J; Lliso, F; Carmona, V; Gimeno, J; Ouhib, Z; Perez-Calatayud, J
2016-01-01
Purpose: A failure mode and effect analysis (FMEA) of skin lesions treatment process using Esteya™ device (Elekta Brachyterapy, Veenendaal, The Netherlands) was performed, with the aim of increasing the quality of the treatment and reducing the likelihood of unwanted events. Methods: A multidisciplinary team with experience in the treatment process met to establish the process map, which outlines the flow of various stages for such patients undergoing skin treatment. Potential failure modes (FM) were identified and the value of severity (S), frequency of occurrence (O), and lack of detectability (D) of the proposed FM were scored individually, each on a scale of 1 to 10 following TG-100 guidelines of the AAPM. These failure modes were ranked according to our risk priority number (RPN) and S scores. The efficiency of existing quality management tools was analyzed through a reassessment of the O and D made by consensus. Results: 149 FM were identified, 43 of which had RPN ≥ 100 and 30 had S ≥ 7. After introduction of the tools of quality management, only 3 FM had RPN ≥ 100 and 22 FM had RPN ≥ 50. These 22 FM were thoroughly analyzed and new tools for quality management were proposed. The most common cause of highest RPN FM was associated with the heavy patient workload and the continuous and accurate applicator-patient skin contact during the treatment. To overcome this second item, a regular quality control and setup review by a second individual before each treatment session was proposed. Conclusion: FMEA revealed some of the FM potentials that were not predicted during the initial implementation of the quality management tools. This exercise was useful in identifying the need of periodic update of the FMEA process as new potential failures can be identified.
WE-H-BRC-01: Failure Mode and Effects Analysis of Skin Electronic Brachytherapy Using Esteya Unit
Energy Technology Data Exchange (ETDEWEB)
Ibanez-Rosello, B; Bautista-Ballesteros, J; Bonaque, J; Lliso, F; Carmona, V; Gimeno, J [Hospital La Fe, Valencia, Valencia (Spain); Ouhib, Z [Lynn Regional Cancer Center, Delray Beach, FL (United States); Perez-Calatayud, J [Hospital La Fe, Valencia, Valencia (Spain); Clinica Benidorm, Benidorm, Alicante (Spain)
2016-06-15
Purpose: A failure mode and effect analysis (FMEA) of skin lesions treatment process using Esteya™ device (Elekta Brachyterapy, Veenendaal, The Netherlands) was performed, with the aim of increasing the quality of the treatment and reducing the likelihood of unwanted events. Methods: A multidisciplinary team with experience in the treatment process met to establish the process map, which outlines the flow of various stages for such patients undergoing skin treatment. Potential failure modes (FM) were identified and the value of severity (S), frequency of occurrence (O), and lack of detectability (D) of the proposed FM were scored individually, each on a scale of 1 to 10 following TG-100 guidelines of the AAPM. These failure modes were ranked according to our risk priority number (RPN) and S scores. The efficiency of existing quality management tools was analyzed through a reassessment of the O and D made by consensus. Results: 149 FM were identified, 43 of which had RPN ≥ 100 and 30 had S ≥ 7. After introduction of the tools of quality management, only 3 FM had RPN ≥ 100 and 22 FM had RPN ≥ 50. These 22 FM were thoroughly analyzed and new tools for quality management were proposed. The most common cause of highest RPN FM was associated with the heavy patient workload and the continuous and accurate applicator-patient skin contact during the treatment. To overcome this second item, a regular quality control and setup review by a second individual before each treatment session was proposed. Conclusion: FMEA revealed some of the FM potentials that were not predicted during the initial implementation of the quality management tools. This exercise was useful in identifying the need of periodic update of the FMEA process as new potential failures can be identified.
Sanchez-Izquierdo-Riera, Jose Angel; Molano-Alvarez, Esteban; Saez-de la Fuente, Ignacio; Maynar-Moliner, Javier; Marín-Mateos, Helena; Chacón-Alves, Silvia
2016-01-01
The failure mode and effect analysis (FMEA) may improve the safety of the continuous renal replacement therapies (CRRT) in the intensive care unit. We use this tool in three phases: 1) Retrospective observational study. 2) A process FMEA, with implementation of the improvement measures identified. 3) Cohort study after FMEA. We included 54 patients in the pre-FMEA group and 72 patients in the post-FMEA group. Comparing the risks frequencies per patient in both groups, we got less cases of under 24 hours of filter survival time in the post-FMEA group (31 patients 57.4% vs. 21 patients 29.6%; p FMEA, there were several improvements in the management of intensive care unit patients receiving CRRT, and we consider it a useful tool for improving the safety of critically ill patients.
A rigidity transition and glassy dynamics in a model for confluent 3D tissues
Merkel, Matthias; Manning, M. Lisa
The origin of rigidity in disordered materials is an outstanding open problem in statistical physics. Recently, a new type of rigidity transition was discovered in a family of models for 2D biological tissues, but the mechanisms responsible for rigidity remain unclear. This is not just a statistical physics problem, but also relevant for embryonic development, cancer growth, and wound healing. To gain insight into this rigidity transition and make new predictions about biological bulk tissues, we have developed a fully 3D self-propelled Voronoi (SPV) model. The model takes into account shape, elasticity, and self-propelled motion of the individual cells. We find that in the absence of self-propulsion, this model exhibits a rigidity transition that is controlled by a dimensionless model parameter describing the preferred cell shape, with an accompanying structural order parameter. In the presence of self-propulsion, the rigidity transition appears as a glass-like transition featuring caging and aging effects. Given the similarities between this transition and jamming in particulate solids, it is natural to ask if the two transitions are related. By comparing statistics of Voronoi geometries, we show the transitions are surprisingly close but demonstrably distinct. Furthermore, an index theorem used to identify topologically protected mechanical modes in jammed systems can be extended to these vertex-type models. In our model, residual stresses govern the transition and enter the index theorem in a different way compared to jammed particles, suggesting the origin of rigidity may be different between the two.
Rigid multipodal platforms for metal surfaces
Directory of Open Access Journals (Sweden)
Michal Valášek
2016-03-01
Full Text Available In this review the recent progress in molecular platforms that form rigid and well-defined contact to a metal surface are discussed. Most of the presented examples have at least three anchoring units in order to control the spatial arrangement of the protruding molecular subunit. Another interesting feature is the lateral orientation of these foot structures which, depending on the particular application, is equally important as the spatial arrangement of the molecules. The numerous approaches towards assembling and organizing functional molecules into specific architectures on metal substrates are reviewed here. Particular attention is paid to variations of both, the core structures and the anchoring groups. Furthermore, the analytical methods enabling the investigation of individual molecules as well as monomolecular layers of ordered platform structures are summarized. The presented multipodal platforms bearing several anchoring groups form considerably more stable molecule–metal contacts than corresponding monopodal analogues and exhibit an enlarged separation of the functional molecules due to the increased footprint, as well as restrict tilting of the functional termini with respect to the metal surface. These platforms are thus ideally suited to tune important properties of the molecule–metal interface. On a single-molecule level, several of these platforms enable the control over the arrangement of the protruding rod-type molecular structures (e.g., molecular wires, switches, rotors, sensors with respect to the surface of the substrate.
Energy Technology Data Exchange (ETDEWEB)
Mawet, D.; Ruane, G.; Xuan, W.; Echeverri, D.; Klimovich, N.; Randolph, M.; Fucik, J.; Wang, J.; Dekany, R.; Delorme, J.-R. [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Wallace, J. K.; Vasisht, G.; Mennesson, B.; Choquet, E.; Serabyn, E., E-mail: dmawet@astro.caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)
2017-04-01
High-dispersion coronagraphy (HDC) optimally combines high-contrast imaging techniques such as adaptive optics/wavefront control plus coronagraphy to high spectral resolution spectroscopy. HDC is a critical pathway toward fully characterizing exoplanet atmospheres across a broad range of masses from giant gaseous planets down to Earth-like planets. In addition to determining the molecular composition of exoplanet atmospheres, HDC also enables Doppler mapping of atmosphere inhomogeneities (temperature, clouds, wind), as well as precise measurements of exoplanet rotational velocities. Here, we demonstrate an innovative concept for injecting the directly imaged planet light into a single-mode fiber, linking a high-contrast adaptively corrected coronagraph to a high-resolution spectrograph (diffraction-limited or not). Our laboratory demonstration includes three key milestones: close-to-theoretical injection efficiency, accurate pointing and tracking, and on-fiber coherent modulation and speckle nulling of spurious starlight signal coupling into the fiber. Using the extreme modal selectivity of single-mode fibers, we also demonstrated speckle suppression gains that outperform conventional image-based speckle nulling by at least two orders of magnitude.
Wikswo, Mary E; Kambhampati, Anita; Shioda, Kayoko; Walsh, Kelly A; Bowen, Anna; Hall, Aron J
2015-12-11
Acute gastroenteritis (AGE) is a major cause of illness in the United States, with an estimated 179 million episodes annually. AGE outbreaks propagated through direct person-to-person contact, contaminated environmental surfaces, and unknown modes of transmission were not systematically captured at the national level before 2009 and thus were not well characterized. 2009-2013. The National Outbreak Reporting System (NORS) is a voluntary national reporting system that supports reporting of all waterborne and foodborne disease outbreaks and all AGE outbreaks resulting from transmission by contact with contaminated environmental sources, infected persons or animals, or unknown modes. Local, state, and territorial public health agencies within the 50 U.S. states, the District of Columbia (DC), five U.S. territories, and three Freely Associated States report outbreaks to CDC via NORS using a standard online data entry system. A total of 10,756 AGE outbreaks occurred during 2009-2013, for which the primary mode of transmission occurred through person-to-person contact, environmental contamination, and unknown modes of transmission. NORS received reports from public health agencies in 50 U.S. states, DC, and Puerto Rico. These outbreaks resulted in 356,532 reported illnesses, 5,394 hospitalizations, and 459 deaths. The median outbreak reporting rate for all sites in a given year increased from 2.7 outbreaks per million population in 2009 to 11.8 outbreaks in 2013. The etiology was unknown in 31% (N = 3,326) of outbreaks. Of the 7,430 outbreaks with a suspected or confirmed etiology reported, norovirus was the most common, reported in 6,223 (84%) of these outbreaks. Other reported suspected or confirmed etiologies included Shigella (n = 332) and Salmonella (n = 320). Outbreaks were more frequent during the winter, with 5,716 (53%) outbreaks occurring during December-February, and 70% of the 7,001 outbreaks with a reported setting of exposure occurred in long
Butwick, A J; El-Sayed, Y Y; Blumenfeld, Y J; Osmundson, S S; Weiniger, C F
2015-08-01
Preterm delivery is often performed by Caesarean section. We investigated modes of anaesthesia and risk factors for general anaesthesia among women undergoing preterm Caesarean delivery. Women undergoing Caesarean delivery between 24(+0) and 36(+6) weeks' gestation were identified from a multicentre US registry. The mode of anaesthesia was classified as neuraxial anaesthesia (spinal, epidural, or combined spinal and epidural) or general anaesthesia. Logistic regression was used to identify patient characteristic, obstetric, and peripartum risk factors associated with general anaesthesia. Within the study cohort, 11 539 women had preterm Caesarean delivery; 9510 (82.4%) underwent neuraxial anaesthesia and 2029 (17.6%) general anaesthesia. In our multivariate model, African-American race [adjusted odds ratio (aOR)=1.9; 95% confidence interval (CI)=1.7-2.2], Hispanic ethnicity (aOR=1.5; 95% CI=1.2-1.8), other race (aOR=1.4; 95% CI=1.1-1.9), and haemolysis, elevated liver enzymes and low platelets (HELLP) syndrome or eclampsia (aOR=2.8; 95% CI=2.2-3.5) were independently associated with receiving general anaesthesia for preterm Caesarean delivery. Women with an emergency Caesarean delivery indication had the highest odds for general anaesthesia (aOR=3.5; 95% CI=3.1-3.9). For every 1 week decrease in gestational age at delivery, the adjusted odds of general anaesthesia increased by 13%. In our study cohort, nearly one in five women received general anaesthesia for preterm Caesarean delivery. Although potential confounding by unmeasured factors cannot be excluded, our findings suggest that early gestational age at delivery, emergent Caesarean delivery indications, hypertensive disease, and non-Caucasian race or ethnicity are associated with general anaesthesia for preterm Caesarean delivery. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Determination of Weight Suspension Rigidity in the Transport-Erector Aggregates
Directory of Open Access Journals (Sweden)
V. A. Zverev
2016-01-01
Full Text Available The aim is to determine weight suspension rigidity in aggregates designed to perform technological transport-erector operations at the miscellaneous launch complexes.We consider the weight suspension comprising the following distinctive structural components: the executive weight-lowering mechanism, polyspast mechanism, rope, traverse, and rods. A created structural dynamic model of suspension allowed us to define weight suspension rigidity. Within the framework of design analysis of a dynamic model we determined the rigidity of its structural units, i.e. traverse, rope, and polyspast.Known analytical relationships were used to calculate the rope rigidity. To determine rigidity of polyspast and traverse have been created special models based on the finite element method. For each model deformation in the specific points under the test load have been defined. Data obtained were used to determine trigidity of traverses and polyspast, and also rigidity of suspension in total. The rigidity models of polispast mechanism and traverse have been developed and calculated using the software complex "Zenit-95".As the research results, the paper presents a dynamic model of the weight suspension of the transport-erector aggregate, the finite element models of the polispast mechanism and traverse, an algorithm for determining the weight suspension rigidity and relevant analytical relationships.Independent calculation of weight suspension rigidity enables us to simplify further dynamic calculation of the aggregate-weight system because it allows attaining a simpler model of the aggregate-weight system that uses the weight suspension model as an element of equivalent rigidity. Despite this simplification the model allows us to determine correctly weight movement parameters and overloads in the aggregate-weight system in the process of technical operations.
Analysis of Switched-Rigid Floating Oscillator
Directory of Open Access Journals (Sweden)
Prabhakar R. Marur
2009-01-01
Full Text Available In explicit finite element simulations, a technique called deformable-to-rigid (D2R switching is used routinely to reduce the computation time. Using the D2R option, the deformable parts in the model can be switched to rigid and reverted back to deformable when needed during the analysis. The time of activation of D2R however influences the overall dynamics of the system being analyzed. In this paper, a theoretical basis for the selection of time of rigid switching based on system energy is established. A floating oscillator problem is investigated for this purpose and closed-form analytical expressions are derived for different phases in rigid switching. The analytical expressions are validated by comparing the theoretical results with numerical computations.
Rigid pricing and rationally inattentive consumer
Czech Academy of Sciences Publication Activity Database
Matějka, Filip
158 B, July (2015), s. 656-678 ISSN 0022-0531 Institutional support: PRVOUK-P23 Keywords : rational inattention * imperfect information * nominal rigidity Subject RIV: AH - Economics Impact factor: 1.097, year: 2015
Rigid pricing and rationally inattentive consumer
Czech Academy of Sciences Publication Activity Database
Matějka, Filip
158 B, July (2015), s. 656-678 ISSN 0022-0531 Institutional support: RVO:67985998 Keywords : rational inattention * imperfect information * nominal rigidity Subject RIV: AH - Economics Impact factor: 1.097, year: 2015
Soft soils reinforced by rigid vertical inclusions
Directory of Open Access Journals (Sweden)
Iulia-Victoria NEAGOE
2013-12-01
Full Text Available Reinforcement of soft soils by rigid vertical inclusions is an increasingly used technique over the last few years. The system consists of rigid or semi-rigid vertical inclusions and a granular platform for the loads transfer from the structure to the inclusions. This technique aims to reduce the differential settlements both at ground level as below the structure. Reinforcement by rigid inclusions is mainly used for foundation works for large commercial and industrial platforms, storage tanks, wastewater treatment plants, wind farms, bridges, roads, railway embankments. The subject is one of interest as it proves the recently concerns at international level in research and design; however, most studies deal more with the static behavior and less with the dynamic one.
Jousselme, Chloé; Vialet, Renaud; Jouve, Elisabeth; Lagier, Pierre; Martin, Claude; Michel, Fabrice
2011-03-01
To determine whether a sound-activated light-alarm device could reduce the noise in the central area of our pediatric intensive care unit and to determine whether this reduction was significant enough to decrease the noise that could be perceived by a patient located in a nearby room. The secondary objective was to determine the mode of action of the device. In a 16-bed pediatric and neonatal intensive care unit, a large and clearly noticeable sound-activated light device was set in the noisiest part of the central area of our unit, and noise measurements were made in the central area and in a nearby room. In a prospective, quasi-experimental design, sound levels were compared across three different situations--no device present, device present and turned on, and device present but turned off--and noise level measurements were made over a total of 18 days. None. Setting a sound-activated light device on or off. When the device was present, the noise was about 2 dB lower in the central area and in a nearby room, but there was no difference in noise level with the device turned on vs. turned off. The noise decrease in the central area was of limited importance but was translated in a nearby room. The sound-activated light device did not directly decrease noise when turned on, but repetition of the visual signal throughout the day raised staff awareness of noise levels over time.
Flexible and rigid cystoscopy in women.
Gee, Jason R; Waterman, Bradley J; Jarrard, David F; Hedican, Sean P; Bruskewitz, Reginald C; Nakada, Stephen Y
2009-01-01
Previous studies have evaluated the tolerability of rigid versus flexible cystoscopy in men. Similar studies, however, have not been performed in women. We sought to determine whether office-based flexible cystoscopy was better tolerated than rigid cystoscopy in women. Following full IRB approval, women were prospectively randomized in a single-blind manner. Patients were randomized to flexible or rigid cystoscopy and draped in the lithotomy position to maintain blinding of the study. Questionnaires evaluated discomfort before, during, and after cystoscopy. Thirty-six women were randomized to flexible (18) or rigid (18) cystoscopy. Indications were surveillance (16), hematuria (15), recurrent UTIs (2), voiding dysfunction (1), and other (2). All questionnaires were returned by 31/36 women. Using a 10-point visual analog scale (VAS), median discomfort during the procedure for flexible and rigid cystoscopy were 1.4 and 1.8, respectively, in patients perceiving pain. Median recalled pain 1 week later was similar at 0.8 and 1.15, respectively. None of these differences were statistically significant. Flexible and rigid cystoscopy are well tolerated in women. Discomfort during and after the procedure is minimal in both groups. Urologists should perform either procedure in women based on their preference and skill level.
International Nuclear Information System (INIS)
Khatib-Rahbar, M.; Pratt, W.; Ludewig, H.
1985-09-01
A technical review and evaluation of the Millstone Unit 3 probabilistic safety study has been performed. It was determined that; (1) long-term damage indices (latent fatalities, person-rem, etc.) are dominated by late failure of the containment, (2) short-term damage indices (early fatalities, etc.) are dominated by bypass sequences for internally initiated events, while severe seismic sequences can also contribute significantly to early damage indices. These overall estimates of severe accident risk are extremely low compared with other societal sources of risk. Furthermore, the risks for Millstone-3 are comparable to risks from other nuclear plants at high population sites. Seismically induced accidents dominate the severe accident risks at Millstone-3. Potential mitigative features were shown not to be cost-effective for internal events. Value-impact analysis for seismic events showed that a manually actuated containment spray system might be cost-effective
Energy Technology Data Exchange (ETDEWEB)
1991-10-01
On August 13, 1991, at Nine Mile Point Unit 2 nuclear power plant, located near Scriba, New York, on Lake Ontario, the main transformer experienced an internal failure that resulted in degraded voltage which caused the simultaneous loss of five uninterruptible power supplies, which in turn caused the loss of several nonsafety systems, including reactor control rod position indication, some reactor power and water indication, control room annunciators, the plant communications system, the plant process computer, and lighting at some locations. The reactor was subsequently brought to a safe shutdown. Following this event, the US Nuclear Regulatory Commission dispatched an Incident Investigation Team to the site to determine what happened, to identify the probable causes, and to make appropriate findings and conclusions. This report describes the incident, the methodology used by the team in its investigation, and presents and the team's findings and conclusions. 59 figs., 14 tabs.
International Nuclear Information System (INIS)
1991-10-01
On August 13, 1991, at Nine Mile Point Unit 2 nuclear power plant, located near Scriba, New York, on Lake Ontario, the main transformer experienced an internal failure that resulted in degraded voltage which caused the simultaneous loss of five uninterruptible power supplies, which in turn caused the loss of several nonsafety systems, including reactor control rod position indication, some reactor power and water indication, control room annunciators, the plant communications system, the plant process computer, and lighting at some locations. The reactor was subsequently brought to a safe shutdown. Following this event, the US Nuclear Regulatory Commission dispatched an Incident Investigation Team to the site to determine what happened, to identify the probable causes, and to make appropriate findings and conclusions. This report describes the incident, the methodology used by the team in its investigation, and presents and the team's findings and conclusions. 59 figs., 14 tabs
Rigid Body Sampling and Individual Time Stepping for Rigid-Fluid Coupling of Fluid Simulation
Directory of Open Access Journals (Sweden)
Xiaokun Wang
2017-01-01
Full Text Available In this paper, we propose an efficient and simple rigid-fluid coupling scheme with scientific programming algorithms for particle-based fluid simulation and three-dimensional visualization. Our approach samples the surface of rigid bodies with boundary particles that interact with fluids. It contains two procedures, that is, surface sampling and sampling relaxation, which insures uniform distribution of particles with less iterations. Furthermore, we present a rigid-fluid coupling scheme integrating individual time stepping to rigid-fluid coupling, which gains an obvious speedup compared to previous method. The experimental results demonstrate the effectiveness of our approach.
Amo-Ochoa, Pilar; Castillo, Oscar; Harrington, Ross W; Zamora, Félix; Houlton, Andrew
2013-02-18
Reactions between [Rh(2)(CH(3)COO)(4)] with 2,6-diaminopurine (HDap) or 6-chloro-2-aminopurine (HClap) and [Rh(2)((CH(3))(3)CCOO)(4)] with HClap produce, three new dirhodium(II) carboxylate complexes of the general form, [Rh(2)(RCOO)(4)(Purine)(2)] (R = CH(3), (CH(3))(3)C). Single crystal X-ray diffraction studies confirm that in all cases the purine coordinates to the axial position of the dirhodium(II)tetracarboxylate unit. However, while the complex obtained with HDap features the typical purine binding mode via N(7), complexes containing HClap show unusual N3 coordination. This is an extremely rare instance of an unrestricted purine binding via N3. Some rationalization of these data is offered based on a series of DFT calculations.
Identifying Floppy and Rigid Regions in Proteins
Jacobs, D. J.; Thorpe, M. F.; Kuhn, L. A.
1998-03-01
In proteins it is possible to separate hard covalent forces involving bond lengths and bond angles from other weak forces. We model the microstructure of the protein as a generic bar-joint truss framework, where the hard covalent forces and strong hydrogen bonds are regarded as rigid bar constraints. We study the mechanical stability of proteins using FIRST (Floppy Inclusions and Rigid Substructure Topography) based on a recently developed combinatorial constraint counting algorithm (the 3D Pebble Game), which is a generalization of the 2D pebble game (D. J. Jacobs and M. F. Thorpe, ``Generic Rigidity: The Pebble Game'', Phys. Rev. Lett.) 75, 4051-4054 (1995) for the special class of bond-bending networks (D. J. Jacobs, "Generic Rigidity in Three Dimensional Bond-bending Networks", Preprint Aug (1997)). This approach is useful in identifying rigid motifs and flexible linkages in proteins, and thereby determines the essential degrees of freedom. We will show some preliminary results from the FIRST analysis on the myohemerythrin and lyozyme proteins.
Quantum mechanics of a generalised rigid body
International Nuclear Information System (INIS)
Gripaios, Ben; Sutherland, Dave
2016-01-01
We consider the quantum version of Arnold’s generalisation of a rigid body in classical mechanics. Thus, we quantise the motion on an arbitrary Lie group manifold of a particle whose classical trajectories correspond to the geodesics of any one-sided-invariant metric. We show how the derivation of the spectrum of energy eigenstates can be simplified by making use of automorphisms of the Lie algebra and (for groups of type I) by methods of harmonic analysis. We show how the method can be extended to cosets, generalising the linear rigid rotor. As examples, we consider all connected and simply connected Lie groups up to dimension 3. This includes the universal cover of the archetypical rigid body, along with a number of new exactly solvable models. We also discuss a possible application to the topical problem of quantising a perfect fluid. (paper)
Durable bistable auxetics made of rigid solids
Shang, Xiao; Liu, Lu; Rafsanjani, Ahmad; Pasini, Damiano
2018-02-01
Bistable Auxetic Metamaterials (BAMs) are a class of monolithic perforated periodic structures with negative Poisson's ratio. Under tension, a BAM can expand and reach a second state of equilibrium through a globally large shape transformation that is ensured by the flexibility of its elastomeric base material. However, if made from a rigid polymer, or metal, BAM ceases to function due to the inevitable rupture of its ligaments. The goal of this work is to extend the unique functionality of the original kirigami architecture of BAM to a rigid solid base material. We use experiments and numerical simulations to assess performance, bistability and durability of rigid BAMs at 10,000 cycles. Geometric maps are presented to elucidate the role of the main descriptors of BAM architecture. The proposed design enables the realization of BAM from a large palette of materials, including elastic-perfectly plastic materials and potentially brittle materials.
Effect of rigid inclusions on sintering
International Nuclear Information System (INIS)
Rahaman, M.N.; De Jonghe, L.C.
1988-01-01
The predictions of recent theoretical studies on the effect of inert, rigid inclusions on the sintering of ceramic powder matrices are examined and compared with experimental data. The densification of glass matrix composites with inclusion volume fractions of ≤0.15 can be adequately explained by Scherer's theory for viscous sintering with rigid inclusions. Inclusions cause a vast reduction in the densification rates of polycrystalline matrix composites even at low inclusion volume fractions. Models put forward to explain the sintering of polycrystalline matrix composites are discussed
Type number and rigidity of fibred surfaces
International Nuclear Information System (INIS)
Markov, P E
2001-01-01
Infinitesimal l-th order bendings, 1≤l≤∞, of higher-dimensional surfaces are considered in higher-dimensional flat spaces (for l=∞ an infinitesimal bending is assumed to be an analytic bending). In terms of the Allendoerfer type number, criteria are established for the (r,l)-rigidity (in the terminology of Sabitov) of such surfaces. In particular, an (r,l)-infinitesimal analogue is proved of the classical theorem of Allendoerfer on the unbendability of surfaces with type number ≥3 and the class of (r,l)-rigid fibred surfaces is distinguished
Rigid origami vertices: conditions and forcing sets
Directory of Open Access Journals (Sweden)
Zachary Abel
2016-04-01
Full Text Available We develop an intrinsic necessary and sufficient condition for single-vertex origami crease patterns to be able to fold rigidly. We classify such patterns in the case where the creases are pre-assigned to be mountains and valleys as well as in the unassigned case. We also illustrate the utility of this result by applying it to the new concept of minimal forcing sets for rigid origami models, which are the smallest collection of creases that, when folded, will force all the other creases to fold in a prescribed way.
A Soft Gripper with Rigidity Tunable Elastomer Strips as Ligaments.
Nasab, Amir Mohammadi; Sabzehzar, Amin; Tatari, Milad; Majidi, Carmel; Shan, Wanliang
2017-12-01
Like their natural counterparts, soft bioinspired robots capable of actively tuning their mechanical rigidity can rapidly transition between a broad range of motor tasks-from lifting heavy loads to dexterous manipulation of delicate objects. Reversible rigidity tuning also enables soft robot actuators to reroute their internal loading and alter their mode of deformation in response to intrinsic activation. In this study, we demonstrate this principle with a three-fingered pneumatic gripper that contains "programmable" ligaments that change stiffness when activated with electrical current. The ligaments are composed of a conductive, thermoplastic elastomer composite that reversibly softens under resistive heating. Depending on which ligaments are activated, the gripper will bend inward to pick up an object, bend laterally to twist it, and bend outward to release it. All of the gripper motions are generated with a single pneumatic source of pressure. An activation-deactivation cycle can be completed within 15 s. The ability to incorporate electrically programmable ligaments in a pneumatic or hydraulic actuator has the potential to enhance versatility and reduce dependency on tubing and valves.
High temperature testing of TRUPACT-I materials: Kevlar, honeycomb, rigid polyurethane foam
International Nuclear Information System (INIS)
Hudson, M.L.
1985-12-01
When the Transuranic Package Transporter Model-I (TRUPACT-I) failed to afford sufficient containment after a 35-minute JP-4 fueled open-pool fire, component tests were conducted, in conjunction with analyses, to guide and assess the redesign of TRUPACT-I. Since materials which change phase or combust are difficult to numerically analyze, the component tests determined the behavior of these materials in TRUPACT-I. The component tests approximated the behavior of Kevlar (registered trademark of DuPont), metal honeycomb, and rigid polyurethane foam, as they appear in TRUPACT-I, in an open-pool fire environment. Six series of tests were performed at Sandia's Radiant Heat Facility and one test at the wind-shielded fire test facility (LAARC Chimney). Each test facility was controlled to yield temperatures or heat fluxes equivalent to those measured in the TRUPACT-I, Unit 0, open-pool fire. This extensive series of component tests (34 runs total) provided information on the high-temperature behavior of unique materials which was not previously available or otherwise attainable. The component tests were a timely and cost-effective means of providing the data for the TRUPACT-I redesign
On the dynamics of semi-rigid chains
International Nuclear Information System (INIS)
Rodriguez Talavera, R.; Alexander-Katz, R.
1993-01-01
The dynamics of a semi-rigid polymer chain is studied. The force structure of the chain is derived from the statistics generated through a Wiener measure whose end-to-end distance is that of a Kratky-Porod chain. Additionally, the dissipative terms in the equation of motion will contain, besides the usual Stokes' term, a non-local friction term (internal viscosity) which is quadratic in the normal mode q, in order to take into account the resistance to changes in curvature. The analytical shape of this term is the same as the one introduced by Edwards and Freed. We show that this model of stiff chain reproduces both asymptotic limits: the flexible and the rod limits for the elastic moduli. A form for the internal viscosity coefficient is deduced from a phenomenological approach, which has the right solvent viscosity dependency as obtained by MacInnes. (Author)
Dynamics of Rigid Bodies and Flexible Beam Structures
DEFF Research Database (Denmark)
Nielsen, Martin Bjerre
of rigid bodies and flexible beam structures with emphasis on the rotational motion. The first part deals with motion in a rotating frame of reference. A novel approach where the equations of motion are formulated in a hybrid state-space in terms of local displacements and global velocities is presented...... quaternion parameters or nine convected base vector components. In both cases, the equations of motion are obtained via Hamilton’s equations by including the kinematic constraints associated with the redundant rotation description by means of Lagrange multipliers. A special feature of the formulation...... of the global components of the position vectors and associated convected base vectors for the element nodes. The kinematics is expressed in a homogeneous quadratic form and the constitutive stiffness is derived from complementary energy of a set of equilibrium modes, each representing a state of constant...
Geometric integrators for stochastic rigid body dynamics
Tretyakov, Mikhail
2016-01-05
Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.
Combinatorial and Algorithmic Rigidity: Beyond Two Dimensions
2012-12-01
44]. Theorems of Maxwell- Laman type were ob- tained in [9, 15, 43]. 2 3. Counting and Enumeration. As anticipated in the project, we relied on methods...decompositions. Graphs and Combinatorics, 25:219–238, 2009. [43] I. Streinu and L. Theran. Slider-pinning rigidity: a Maxwell- Laman -type theorem. Discrete and
Birationally rigid varieties. I. Fano varieties
International Nuclear Information System (INIS)
Pukhlikov, A V
2007-01-01
The theory of birational rigidity of rationally connected varieties generalises the classical rationality problem. This paper gives a survey of the current state of this theory and traces its history from Noether's theorem and the Lueroth problem to the latest results on the birational superrigidity of higher-dimensional Fano varieties. The main components of the method of maximal singularities are considered.
Rigid polyurethane and kenaf core composite foams
Rigid polyurethane foams are valuable in many construction applications. Kenaf is a bast fiber plant where the surface stem skin provides bast fibers whose strength-to-weight ratio competes with glass fiber. The higher volume product of the kenaf core is an under-investigated area in composite appli...
Geometric integrators for stochastic rigid body dynamics
Tretyakov, Mikhail
2016-01-01
Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.
Rigidity Sensing Explained by Active Matter Theory
Marcq, Philippe; Yoshinaga, Natsuhiko; Prost, Jacques
2011-01-01
The magnitude of traction forces exerted by living animal cells on their environment is a monotonically increasing and approximately sigmoidal function of the stiffness of the external medium. We rationalize this observation using active matter theory, and propose that adaptation to substrate rigidity results from an interplay between passive elasticity and active contractility.
Rigid pricing and rationally inattentive consumer
Czech Academy of Sciences Publication Activity Database
Matějka, Filip
2010-01-01
Roč. 20, č. 2 (2010), s. 1-40 ISSN 1211-3298 R&D Projects: GA MŠk LC542 Institutional research plan: CEZ:AV0Z70850503 Keywords : rational inattention * nominal rigidity Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp409.pdf
Cracking of open traffic rigid pavement
Directory of Open Access Journals (Sweden)
Niken Chatarina
2017-01-01
Full Text Available The research is done by observing the growth of real structure cracking in Natar, Lampung, Indonesia compared to C. Niken’s et al research and literature study. The rigid pavement was done with open traffic system. There are two main crack types on Natar rigid pavement: cracks cross the road, and cracks spreads on rigid pavement surface. The observation of cracks was analyzed by analyzing material, casting, curing, loading and shrinkage mechanism. The relationship between these analysis and shrinkage mechanism was studied in concrete micro structure. Open traffic make hydration process occur under vibration; therefore, fresh concrete was compressed and tensioned alternately since beginning. High temperature together with compression, cement dissociation, the growth of Ca2+ at very early age leads abnormal swelling. No prevention from outside water movement leads hydration process occur with limited water which caused spreads fine cracks. Limited water improves shrinkage and plastic phase becomes shorter; therefore, rigid pavement can’t accommodate the abnormal swelling and shrinking alternately and creates the spread of cracks. Discontinuing casting the concrete makes both mix under different condition, the first is shrink and the second is swell and creates weak line on the border; so, the cracks appear as cracks across the road.
Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery.
Directory of Open Access Journals (Sweden)
Robert Kalescky
2016-04-01
Full Text Available Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2 in the human PTP1E protein is examined as model system to advance a recently developed rigid residue scan method combining with configurational entropy calculation and principal component analysis. The contributions from individual residues to whole-protein dynamics and allostery were systematically assessed via rigid body simulations of both unbound and ligand-bound states of the protein. The entropic contributions of individual residues to whole-protein dynamics were evaluated based on covariance-based correlation analysis of all simulations. The changes of overall protein entropy when individual residues being held rigid support that the rigidity/flexibility equilibrium in protein structure is governed by the La Châtelier's principle of chemical equilibrium. Key residues of PDZ2 allostery were identified with good agreement with NMR studies of the same protein bound to the same peptide. On the other hand, the change of entropic contribution from each residue upon perturbation revealed intrinsic differences among all the residues. The quasi-harmonic and principal component analyses of simulations without rigid residue perturbation showed a coherent allosteric mode from unbound and bound states, respectively. The projection of simulations with rigid residue perturbation onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions supporting the population-shift theory of protein allostery. Overall, the study presented here provides a robust and systematic approach to estimate the contribution of individual residue internal motion to overall protein dynamics and allostery.
Rigid Spine Syndrome among Children in Oman
Directory of Open Access Journals (Sweden)
Roshan Koul
2015-08-01
Full Text Available Objectives: Rigidity of the spine is common in adults but is rarely observed in children. The aim of this study was to report on rigid spine syndrome (RSS among children in Oman. Methods: Data on children diagnosed with RSS were collected consecutively at presentation between 1996 and 2014 at the Sultan Qaboos University Hospital (SQUH in Muscat, Oman. A diagnosis of RSS was based on the patient’s history, clinical examination, biochemical investigations, electrophysiological findings, neuro-imaging and muscle biopsy. Atrophy of the paraspinal muscles, particularly the erector spinae, was the diagnostic feature; this was noted using magnetic resonance imaging of the spine. Children with disease onset in the paraspinal muscles were labelled as having primary RSS or rigid spinal muscular dystrophy. Secondary RSS was classified as RSS due to the late involvement of other muscle diseases. Results: Over the 18-year period, 12 children were included in the study, with a maleto- female ratio of 9:3. A total of 10 children were found to have primary RSS or rigid spinal muscular dystrophy syndrome while two had secondary RSS. Onset of the disease ranged from birth to 18 months of age. A family history was noted, with two siblings from one family and three siblings from another (n = 5. On examination, children with primary RSS had typical features of severe spine rigidity at onset, with the rest of the neurological examination being normal. Conclusion: RSS is a rare disease with only 12 reported cases found at SQUH during the study period. Cases of primary RSS should be differentiated from the secondary type.
The two-body problem of a pseudo-rigid body and a rigid sphere
DEFF Research Database (Denmark)
Kristiansen, Kristian Uldall; Vereshchagin, M.; Gózdziewski, K.
2012-01-01
n this paper we consider the two-body problem of a spherical pseudo-rigid body and a rigid sphere. Due to the rotational and "re-labelling" symmetries, the system is shown to possess conservation of angular momentum and circulation. We follow a reduction procedure similar to that undertaken...... in the study of the two-body problem of a rigid body and a sphere so that the computed reduced non-canonical Hamiltonian takes a similar form. We then consider relative equilibria and show that the notions of locally central and planar equilibria coincide. Finally, we show that Riemann's theorem on pseudo......-rigid bodies has an extension to this system for planar relative equilibria....
Marco Guerrazzi; Nicola Meccheri
2009-01-01
This paper offers a critical discussion of the concept of labour market rigidity relevant to explaining unemployment. Starting from Keynes’s own view, we discuss how the concept of labour market flexibility has changed over time, involving nominal or real wage flexibility, contract flexibility or labour market institution flexibility. We also provide a critical assessment of the factors that lead the search framework highlighting labour market rigidities (frictions) to challenge the more wide...
A Network Model for the Effective Thermal Conductivity of Rigid Fibrous Refractory Insulations
Marschall, Jochen; Cooper, D. M. (Technical Monitor)
1995-01-01
A procedure is described for computing the effective thermal conductivity of a rigid fibrous refractory insulation. The insulation is modeled as a 3-dimensional Cartesian network of thermal conductance. The values and volume distributions of the conductance are assigned to reflect the physical properties of the insulation, its constituent fibers, and any permeating gas. The effective thermal conductivity is computed by considering the simultaneous energy transport by solid conduction, gas conduction and radiation through a cubic volume of model insulation; thus the coupling between heat transfer modes is retained (within the simplifications inherent to the model), rather than suppressed by treating these heat transfer modes as independent. The model takes into account insulation composition, density and fiber anisotropy, as well as the geometric and material properties of the constituent fibers. A relatively good agreement, between calculated and experimentally derived thermal conductivity values, is obtained for a variety of rigid fibrous insulations.
Financial Constraints and Nominal Price Rigidities
DEFF Research Database (Denmark)
Menno, Dominik Francesco; Balleer, Almut; Hristov, Nikolay
This paper investigates how financial market imperfections and the frequency of price adjustment interact. Based on new firm-level evidence for Germany, we document that financially constrained firms adjust prices more often than their unconstrained counterparts, both upwards and downwards. We show...... that these empirical patterns are consistent with a partial equilibrium menu-cost model with a working capital constraint. We then use the model to show how the presence of financial frictions changes profits and the price distribution of firms compared to a model without financial frictions. Our results suggest...... that tighter financial constraints are associated with higher nominal rigidities, higher prices and lower output. Moreover, in response to aggregate shocks, aggregate price rigidity moves substantially, the response of inflation is dampened, while output reacts more in the presence of financial frictions...
Rigidity of the magic pentagram game
Kalev, Amir; Miller, Carl A.
2018-01-01
A game is rigid if a near-optimal score guarantees, under the sole assumption of the validity of quantum mechanics, that the players are using an approximately unique quantum strategy. Rigidity has a vital role in quantum cryptography as it permits a strictly classical user to trust behavior in the quantum realm. This property can be traced back as far as 1998 (Mayers and Yao) and has been proved for multiple classes of games. In this paper we prove ridigity for the magic pentagram game, a simple binary constraint satisfaction game involving two players, five clauses and ten variables. We show that all near-optimal strategies for the pentagram game are approximately equivalent to a unique strategy involving real Pauli measurements on three maximally-entangled qubit pairs.
Rigidity of the magic pentagram game.
Kalev, Amir; Miller, Carl A
2018-01-01
A game is rigid if a near-optimal score guarantees, under the sole assumption of the validity of quantum mechanics, that the players are using an approximately unique quantum strategy. Rigidity has a vital role in quantum cryptography as it permits a strictly classical user to trust behavior in the quantum realm. This property can be traced back as far as 1998 (Mayers and Yao) and has been proved for multiple classes of games. In this paper we prove ridigity for the magic pentagram game, a simple binary constraint satisfaction game involving two players, five clauses and ten variables. We show that all near-optimal strategies for the pentagram game are approximately equivalent to a unique strategy involving real Pauli measurements on three maximally-entangled qubit pairs.
Rigid cohomology over Laurent series fields
Lazda, Christopher
2016-01-01
In this monograph, the authors develop a new theory of p-adic cohomology for varieties over Laurent series fields in positive characteristic, based on Berthelot's theory of rigid cohomology. Many major fundamental properties of these cohomology groups are proven, such as finite dimensionality and cohomological descent, as well as interpretations in terms of Monsky-Washnitzer cohomology and Le Stum's overconvergent site. Applications of this new theory to arithmetic questions, such as l-independence and the weight monodromy conjecture, are also discussed. The construction of these cohomology groups, analogous to the Galois representations associated to varieties over local fields in mixed characteristic, fills a major gap in the study of arithmetic cohomology theories over function fields. By extending the scope of existing methods, the results presented here also serve as a first step towards a more general theory of p-adic cohomology over non-perfect ground fields. Rigid Cohomology over Laurent Series Fields...
Analysing the effects of rigid and flexible aircraft dynamics on the ejection of a large store
CSIR Research Space (South Africa)
Jamison, Kevin
2011-09-01
Full Text Available duration ? ERU forces + store weight release causes aircraft ?g-jump? ? Period of ERU force is short enough to excite wing vibration modes ? ERU force/time & front/back force balance important for determining store separation rates from aircraft... ? Constrained motion in other DOF ? Used mass, inertias, CG of aircraft without Katleho ? Used trimmed forces of aircraft with Katleho ? Assumes delay in pilot response to g-jump ? CSIR 2011 Slide 14 Aircraft rigid accelerations Aircraft mass...
Modeling the Flexural Rigidity of Rod Photoreceptors
Haeri, Mohammad; Knox, Barry E.; Ahmadi, Aphrodite
2013-01-01
In vertebrate eyes, the rod photoreceptor has a modified cilium with an extended cylindrical structure specialized for phototransduction called the outer segment (OS). The OS has numerous stacked membrane disks and can bend or break when subjected to mechanical forces. The OS exhibits axial structural variation, with extended bands composed of a few hundred membrane disks whose thickness is diurnally modulated. Using high-resolution confocal microscopy, we have observed OS flexing and disruption in live transgenic Xenopus rods. Based on the experimental observations, we introduce a coarse-grained model of OS mechanical rigidity using elasticity theory, representing the axial OS banding explicitly via a spring-bead model. We calculate a bending stiffness of ∼105 nN⋅μm2, which is seven orders-of-magnitude larger than that of typical cilia and flagella. This bending stiffness has a quadratic relation to OS radius, so that thinner OS have lower fragility. Furthermore, we find that increasing the spatial frequency of axial OS banding decreases OS rigidity, reducing its fragility. Moreover, the model predicts a tendency for OS to break in bands with higher spring number density, analogous to the experimental observation that transgenic rods tended to break preferentially in bands of high fluorescence. We discuss how pathological alterations of disk membrane properties by mutant proteins may lead to increased OS rigidity and thus increased breakage, ultimately contributing to retinal degeneration. PMID:23442852
Blast wave interaction with a rigid surface
International Nuclear Information System (INIS)
Josey, T.; Whitehouse, D.R.; Ripley, R.C.; Dionne, J.P.
2004-01-01
A simple model used to investigate blast wave interactions with a rigid surface is presented. The model uses a constant volume energy source analogue to predict pressure histories at gauges located directly above the charge. A series of two-dimensional axi-symmetric CFD calculations were performed, varying the height of the charge relative to the ground. Pressure histories, along with isopycnic plots are presented to evaluate the effects of placing a charge in close proximity to a rigid surface. When a charge is placed near a solid surface the pressure histories experienced at gauges above the charge indicate the presence of two distinct pressure peaks. The first peak is caused by the primary shock and the second peak is a result of the wave reflections from the rigid surface. As the distance from the charge to the wall is increased the magnitude of the second pressure peak is reduced, provided that the distance between the charge and the gauge is maintained constant. The simple model presented is able to capture significant, predictable flow features. (author)
Lateral rigidity of cracked concrete structures
International Nuclear Information System (INIS)
Castellani, A.; Chesi, C.
1979-01-01
Numerical results are discussed on the lateral rigidity of reinforced concrete structures with a given crack distribution. They have been favourably checked with experimental results for cylindrical shells under the effect of a thermal gradient producing vertical cracking or vertical plus horizontal cracking. The main effects characterizing the concrete behaviour are: (1) The shear transfer across a crack; (2) The shear transfer degradation after cyclic loading; (3) The tension stiffening provided by the concrete between crack and crack, in the normal stress transfer; (4) The temperature effect on the elastic moduli of concrete, when cracks are of thermal origin. Only the 1st effect is discussed on an experimental basis. Two broad cathegories of reinforced concrete structures have been investigated in this respect: shear walls of buildings and cylindrical containment structures. The main conclusions so far reached are: (1) Vertical cracks are unlikely to decrease the lateral rigidity to less than 80% of the original one, and to less than 90% when they do not involve the entire thickness of the wall; (2) The appearence of horizontal cracks can reduce the lateral rigidity by some 30% or more; (3) A noticeable but not yet evaluated influence is shown by cyclic loading. (orig.)
Stresses in Circular Plates with Rigid Elements
Velikanov, N. L.; Koryagin, S. I.; Sharkov, O. V.
2018-05-01
Calculations of residual stress fields are carried out by numerical and static methods, using the flat cross-section hypothesis. The failure of metal when exposed to residual stresses is, in most cases, brittle. The presence in the engineering structures of rigid elements often leads to the crack initiation and structure failure. This is due to the fact that rigid elements under the influence of external stresses are stress concentrators. In addition, if these elements are fixed by welding, the residual welding stresses can lead to an increase in stress concentration and, ultimately, to failure. The development of design schemes for such structures is a very urgent task for complex technical systems. To determine the stresses in a circular plate with a welded circular rigid insert under the influence of an external load, one can use the solution of the plane stress problem for annular plates in polar coordinates. The polar coordinates of the points are the polar radius and the polar angle, and the stress state is determined by normal radial stresses, tangential and shearing stresses. The use of the above mentioned design schemes, formulas, will allow more accurate determination of residual stresses in annular welded structures. This will help to establish the most likely directions of failure and take measures at the stages of designing, manufacturing and repairing engineering structures to prevent these failures. However, it must be taken into account that the external load, the presence of insulation can lead to a change in the residual stress field.
Acoustic propagation mode in a cylindrical plasma
International Nuclear Information System (INIS)
Ishida, Yoshio; Idehara, Toshitaka; Inada, Hideyo
1975-01-01
The sound velocity in a cylindrical plasma produced by a high frequency discharge is measured by an interferometer system. The result shows that the acoustic wave guide effect does exist in a neutral gas and in a plasma. It is found that the wave propagates in the mode m=2 in a rigid boundary above the cut-off frequency fsub(c) and in the mode m=0 below fsub(c). Because the mode m=0 is identical to a plane wave, the sound velocity in free space can be evaluated exactly. In the mode m=2, the sound velocity approaches the free space value, when the frequency increases sufficiently. (auth.)
49 CFR 587.18 - Dimensions of fixed rigid barrier.
2010-10-01
... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) DEFORMABLE BARRIERS Offset Deformable Barrier § 587.18 Dimensions of fixed rigid barrier. (a) The fixed rigid barrier has a mass of not... 49 Transportation 7 2010-10-01 2010-10-01 false Dimensions of fixed rigid barrier. 587.18 Section...
International Nuclear Information System (INIS)
Rosenfeldt, S.; Dingenouts, N.; Poetschke, D.; Ballauff, M.; Berresheim, A.J.; Muellen, K.; Lindner, P.; Saalwaechter, K.
2005-01-01
The analysis of the spatial structure of a rigid polyphenylene dendrimer G4-M of fourth generation by small-angle neutron scattering (SANS) is presented. This dendrimer is composed of phenyl units and is therefore devoid of any flexible unit. The scattering intensity of dilute solutions of the dendrimer was measured by SANS at different contrast which was adjusted by mixtures of protonated and deuterated toluene. Hence, the method of contrast variation could be applied and the data yield the scattering function extrapolated to infinite contrast. The comparison of this data with simulations demonstrates that the scaffold of the dendrimer is rigid as expected from its chemical structure. The positions of the various units setting up consecutive shells of the dendrimer are relatively well localized and the entire structure cannot be modeled in terms of spherically symmetric models. No backfolding of the terminal groups can occur and the model calculations demonstrate that higher generations of this dendritic scaffold must exhibit a dense shell and a congestion of the terminal groups. This finding is directly corroborated by recent solid-state NMR data. All results show that the rigid dendrimer investigated here presents the first example for a dendritic structure whose segment density does not have its maximum at the center. Rigid scaffolds are therefore the only way to achieve the goal of a 'dense-shell' dendrimer whereas flexible scaffolds leads invariably to the 'dense-core' case
International Nuclear Information System (INIS)
Stancanello, J.; Loeckx, D.; Francescon, P.; Calvedon, C.; Avanzo, M.; Cora, S.; Scalchi, P.; Cerveri, P.; Ferrigno, G.
2004-01-01
This work aims at comparing rigid, affine and Local Non Rigid (LNR) CT-3D Rotational Angiography (CT-3DRA) registrations based on mutual information. 10 cranial and 1 spinal cases have been registered by rigid and affine transformations; while LNR has been applied to the cases where residual deformation must be corrected. An example of CT-3DRA registration without regularization term and an example of LNR using the similarity criterion and the regularization term as well as 3D superposition of the 3DRA before and after the registration without the regularization term are presented. All the registrations performed by rigid transformation converged to an acceptable solution. The results about the robustness test in axial direction are reported. Conclusions: For cranial cases, affine transformation endowed with threshold-segmentation pre-processing can be considered the most favourable solution for almost all registrations; for some cases, LNR provides more accurate results. For the spinal case rigid transformation is the most suitable when immobilizing patient during examinations; in this case the increase of accuracy by using LNR registrations seems to be not significant
Capital-Skill Complementarity and Rigid Relative Wages
DEFF Research Database (Denmark)
Rose Skaksen, Jan; Sørensen, Anders
2004-01-01
be countercyclical. The labor market is competitivein the United States and therefore relative wages of skilled labor are expected to becountercyclical. We find that the business cycle development of the two economiesis consistent with capital-skill complementarity.Keywords: capital-skill complementarity, relative......The relative demand for skills has increased considerably in many OECD countriesduring recent decades. This development is potentially explained by capital-skillcomplementarity and high growth rates of capital equipment. When productionfunctions are characterized by capital-skill complementarity......, relative wages and employmentof skilled labor are countercyclical because capital equipment is a quasi-fixed factor in the short run. The exact behavior of the two variables depends onrelative wage flexibility. Relative wages are rigid in Denmark, implying that the employmentshare of skills should...
Understanding geological processes: Visualization of rigid and non-rigid transformations
Shipley, T. F.; Atit, K.; Manduca, C. A.; Ormand, C. J.; Resnick, I.; Tikoff, B.
2012-12-01
Visualizations are used in the geological sciences to support reasoning about structures and events. Research in cognitive sciences offers insights into the range of skills of different users, and ultimately how visualizations might support different users. To understand the range of skills needed to reason about earth processes we have developed a program of research that is grounded in the geosciences' careful description of the spatial and spatiotemporal patterns associated with earth processes. In particular, we are pursuing a research program that identifies specific spatial skills and investigates whether and how they are related to each other. For this study, we focus on a specific question: Is there an important distinction in the geosciences between rigid and non-rigid deformation? To study a general spatial thinking skill we employed displays with non-geological objects that had been altered by rigid change (rotation), and two types of non-rigid change ("brittle" (or discontinuous) and "ductile" (or continuous) deformation). Disciplinary scientists (geosciences and chemistry faculty), and novices (non-science faculty and undergraduate psychology students) answered questions that required them to visualize the appearance of the object before the change. In one study, geologists and chemists were found to be superior to non-science faculty in reasoning about rigid rotations (e.g., what an object would look like from a different perspective). Geologists were superior to chemists in reasoning about brittle deformations (e.g., what an object looked like before it was broken - here the object was a word cut into many fragments displaced in different directions). This finding is consistent with two hypotheses: 1) Experts are good at visualizing the types of changes required for their domain; and 2) Visualization of rigid and non-rigid changes are not the same skill. An additional important finding is that there was a broad range of skill in both rigid and non-rigid
A rigid porous filter and filtration method
Energy Technology Data Exchange (ETDEWEB)
Chiang, Ta-Kuan; Straub, Douglas, Straub L.; Dennis, Richard A.
1998-12-01
The present invention involves a porous rigid filter comprising a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulate from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulate. The present filter has the advantage of requiring fewer filter elements due to the high surface area- to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.
Mechanical Characterization of Rigid Polyurethane Foams
Energy Technology Data Exchange (ETDEWEB)
Lu, Wei-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Mechanics of Materials
2014-12-01
Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.
Rigidity of complete generic shrinking Ricci solitons
Chu, Yawei; Zhou, Jundong; Wang, Xue
2018-01-01
Let (Mn , g , X) be a complete generic shrinking Ricci soliton of dimension n ≥ 3. In this paper, by employing curvature inequalities, the formula of X-Laplacian for the norm square of the trace-free curvature tensor, the weak maximum principle and the estimate of the scalar curvature of (Mn , g) , we prove some rigidity results for (Mn , g , X) . In particular, it is showed that (Mn , g , X) is isometric to Rn or a finite quotient of Sn under a pointwise pinching condition. Moreover, we establish several optimal inequalities and classify those shrinking solitons for equalities.
Directory of Open Access Journals (Sweden)
Esmail Yassini
2017-12-01
Conclusion: The results showed that both light curing devices were effective and no significant difference between different modes of LED light curing device on microleakage of class II composite restorations was found.
First Case of Glufosinate-Resistant Rigid Ryegrass (Lolium rigidum Gaud. in Greece
Directory of Open Access Journals (Sweden)
Ilias S. Travlos
2018-03-01
Full Text Available Repeated applications of the same herbicide(s, which are characterized by the same mode of action, increase selection pressure, which in turn favours the evolution of herbicide-resistant weeds. Glufosinate is a broad-spectrum non-selective herbicide being used for weed control for many years around the world. Rigid ryegrass (Lolium rigidum Gaud. is an economically important grass weed in Greece. Recent complaints by growers about control failure of rigid ryegrass with glufosinate require further investigation and have been the basis of this study. The objectives of this study were to confirm the existence of glufosinate-resistant L. rigidum in Greece and evaluate the effect of L. rigidum growth stage on glufosinate efficacy. Twenty populations of rigid ryegrass from Greece were sampled from five regions, and whole plant dose–response studies were conducted for five populations under controlled conditions with eight rates of glufosinate (0.0, 0.098, 0.187, 0.375, 0.75, 1.5, 3.0, and 6.0 kg a.i. ha−1. Glufosinate resistance was confirmed in three out of five populations with the level of resistance ranging from three-to seven-fold compared with the susceptible populations based on above-ground biomass reduction. Results also revealed that the level of glufosinate-resistance of rigid ryegrass was dependent on the growth stage at which it was applied.
International Nuclear Information System (INIS)
Zhang Xuping; Mills, James K.; Cleghorn, William L.
2009-01-01
Modeling of multibody dynamics with flexible links is a challenging task, which not only involves the effect of rigid body motion on elastic deformations, but also includes the influence of elastic deformations on rigid body motion. This paper presents coupling characteristics of rigid body motions and elastic motions of a 3-PRR parallel manipulator with three flexible intermediate links. The intermediate links are modeled as Euler-Bernoulli beams with pinned-pinned boundary conditions based on the assumed mode method (AMM). Using Lagrange multipliers, the fully coupled equations of motions of the flexible parallel manipulator are developed by incorporating the rigid body motions with elastic motions. The mutual dependence of elastic deformations and rigid body motions are investigated from the analysis of the derived equations of motion. Open-loop simulation without joint motion controls and closed-loop simulation with joint motion controls are performed to illustrate the effect of elastic motion on rigid body motions and the coupling effect amongst flexible links. These analyses and results provide valuable insight to the design and control of the parallel manipulator with flexible intermediate links
Public policies targeting labour market rigidities
Directory of Open Access Journals (Sweden)
Andreea Claudia ŞERBAN
2013-02-01
Full Text Available Labour market rigidity becomes an issue of increasing importance under conditions of shocks associated with the economic crisis due to the need to increase the adaptability and responsiveness to them. Thus, labour market policies must be directed towards mitigating rigidities caused by institutional or demographic factors or certain mismatch between demand and supply of education qualifications. This paper highlights the major role of the active labour market policies targeting the increase of labour flexibility, stressing the importance and impact on the ability to adapt quickly and effectively to macroeconomic shocks. Located on a declining trend in the years preceding the crisis, spending on labour market policies increased in 2009 in all the Member States of the European Union. Spending differences are significant between countries, Romania being at the lowest end of the European Union. This requires special attention because the increased adaptability of workers through training, as active measure, is of major importance considering the increased speed of changes in the labour market.
Vertebral Column Resection for Rigid Spinal Deformity.
Saifi, Comron; Laratta, Joseph L; Petridis, Petros; Shillingford, Jamal N; Lehman, Ronald A; Lenke, Lawrence G
2017-05-01
Broad narrative review. To review the evolution, operative technique, outcomes, and complications associated with posterior vertebral column resection. A literature review of posterior vertebral column resection was performed. The authors' surgical technique is outlined in detail. The authors' experience and the literature regarding vertebral column resection are discussed at length. Treatment of severe, rigid coronal and/or sagittal malalignment with posterior vertebral column resection results in approximately 50-70% correction depending on the type of deformity. Surgical site infection rates range from 2.9% to 9.7%. Transient and permanent neurologic injury rates range from 0% to 13.8% and 0% to 6.3%, respectively. Although there are significant variations in EBL throughout the literature, it can be minimized by utilizing tranexamic acid intraoperatively. The ability to correct a rigid deformity in the spine relies on osteotomies. Each osteotomy is associated with a particular magnitude of correction at a single level. Posterior vertebral column resection is the most powerful posterior osteotomy method providing a successful correction of fixed complex deformities. Despite meticulous surgical technique and precision, this robust osteotomy technique can be associated with significant morbidity even in the most experienced hands.
Optimized imaging using non-rigid registration
International Nuclear Information System (INIS)
Berkels, Benjamin; Binev, Peter; Blom, Douglas A.; Dahmen, Wolfgang; Sharpley, Robert C.; Vogt, Thomas
2014-01-01
The extraordinary improvements of modern imaging devices offer access to data with unprecedented information content. However, widely used image processing methodologies fall far short of exploiting the full breadth of information offered by numerous types of scanning probe, optical, and electron microscopies. In many applications, it is necessary to keep measurement intensities below a desired threshold. We propose a methodology for extracting an increased level of information by processing a series of data sets suffering, in particular, from high degree of spatial uncertainty caused by complex multiscale motion during the acquisition process. An important role is played by a non-rigid pixel-wise registration method that can cope with low signal-to-noise ratios. This is accompanied by formulating objective quality measures which replace human intervention and visual inspection in the processing chain. Scanning transmission electron microscopy of siliceous zeolite material exhibits the above-mentioned obstructions and therefore serves as orientation and a test of our procedures. - Highlights: • Developed a new process for extracting more information from a series of STEM images. • An objective non-rigid registration process copes with distortions. • Images of zeolite Y show retrieval of all information available from the data set. • Quantitative measures of registration quality were implemented. • Applicable to any serially acquired data, e.g. STM, AFM, STXM, etc
Nonlinear mechanics of non-rigid origami: an efficient computational approach
Liu, K.; Paulino, G. H.
2017-10-01
Origami-inspired designs possess attractive applications to science and engineering (e.g. deployable, self-assembling, adaptable systems). The special geometric arrangement of panels and creases gives rise to unique mechanical properties of origami, such as reconfigurability, making origami designs well suited for tunable structures. Although often being ignored, origami structures exhibit additional soft modes beyond rigid folding due to the flexibility of thin sheets that further influence their behaviour. Actual behaviour of origami structures usually involves significant geometric nonlinearity, which amplifies the influence of additional soft modes. To investigate the nonlinear mechanics of origami structures with deformable panels, we present a structural engineering approach for simulating the nonlinear response of non-rigid origami structures. In this paper, we propose a fully nonlinear, displacement-based implicit formulation for performing static/quasi-static analyses of non-rigid origami structures based on `bar-and-hinge' models. The formulation itself leads to an efficient and robust numerical implementation. Agreement between real models and numerical simulations demonstrates the ability of the proposed approach to capture key features of origami behaviour.
Thermostability in rubredoxin and its relationship to mechanical rigidity
Rader, A. J.
2010-03-01
The source of increased stability in proteins from organisms that thrive in extreme thermal environments is not well understood. Previous experimental and theoretical studies have suggested many different features possibly responsible for such thermostability. Many of these thermostabilizing mechanisms can be accounted for in terms of structural rigidity. Thus a plausible hypothesis accounting for this remarkable stability in thermophilic enzymes states that these enzymes have enhanced conformational rigidity at temperatures below their native, functioning temperature. Experimental evidence exists to both support and contradict this supposition. We computationally investigate the relationship between thermostability and rigidity using rubredoxin as a case study. The mechanical rigidity is calculated using atomic models of homologous rubredoxin structures from the hyperthermophile Pyrococcus furiosus and mesophile Clostridium pasteurianum using the FIRST software. A global increase in structural rigidity (equivalently a decrease in flexibility) corresponds to an increase in thermostability. Locally, rigidity differences (between mesophilic and thermophilic structures) agree with differences in protection factors.
Thermostability in rubredoxin and its relationship to mechanical rigidity
International Nuclear Information System (INIS)
Rader, A J
2010-01-01
The source of increased stability in proteins from organisms that thrive in extreme thermal environments is not well understood. Previous experimental and theoretical studies have suggested many different features possibly responsible for such thermostability. Many of these thermostabilizing mechanisms can be accounted for in terms of structural rigidity. Thus a plausible hypothesis accounting for this remarkable stability in thermophilic enzymes states that these enzymes have enhanced conformational rigidity at temperatures below their native, functioning temperature. Experimental evidence exists to both support and contradict this supposition. We computationally investigate the relationship between thermostability and rigidity using rubredoxin as a case study. The mechanical rigidity is calculated using atomic models of homologous rubredoxin structures from the hyperthermophile Pyrococcus furiosus and mesophile Clostridium pasteurianum using the FIRST software. A global increase in structural rigidity (equivalently a decrease in flexibility) corresponds to an increase in thermostability. Locally, rigidity differences (between mesophilic and thermophilic structures) agree with differences in protection factors
Coherent distributions for the rigid rotator
Energy Technology Data Exchange (ETDEWEB)
Grigorescu, Marius [CP 15-645, Bucharest 014700 (Romania)
2016-06-15
Coherent solutions of the classical Liouville equation for the rigid rotator are presented as positive phase-space distributions localized on the Lagrangian submanifolds of Hamilton-Jacobi theory. These solutions become Wigner-type quasiprobability distributions by a formal discretization of the left-invariant vector fields from their Fourier transform in angular momentum. The results are consistent with the usual quantization of the anisotropic rotator, but the expected value of the Hamiltonian contains a finite “zero point” energy term. It is shown that during the time when a quasiprobability distribution evolves according to the Liouville equation, the related quantum wave function should satisfy the time-dependent Schrödinger equation.
Static friction between rigid fractal surfaces.
Alonso-Marroquin, Fernando; Huang, Pengyu; Hanaor, Dorian A H; Flores-Johnson, E A; Proust, Gwénaëlle; Gan, Yixiang; Shen, Luming
2015-09-01
Using spheropolygon-based simulations and contact slope analysis, we investigate the effects of surface topography and atomic scale friction on the macroscopically observed friction between rigid blocks with fractal surface structures. From our mathematical derivation, the angle of macroscopic friction is the result of the sum of the angle of atomic friction and the slope angle between the contact surfaces. The latter is obtained from the determination of all possible contact slopes between the two surface profiles through an alternative signature function. Our theory is validated through numerical simulations of spheropolygons with fractal Koch surfaces and is applied to the description of frictional properties of Weierstrass-Mandelbrot surfaces. The agreement between simulations and theory suggests that for interpreting macroscopic frictional behavior, the descriptors of surface morphology should be defined from the signature function rather than from the slopes of the contacting surfaces.
Observational properties of rigidly rotating dust configurations
Energy Technology Data Exchange (ETDEWEB)
Ilyas, Batyr; Malafarina, Daniele [Nazarbayev University, Department of Physics, Astana (Kazakhstan); Yang, Jinye [Fudan University, Center for Field Theory and Particle Physics and Department of Physics, Shanghai (China); Bambi, Cosimo [Fudan University, Center for Field Theory and Particle Physics and Department of Physics, Shanghai (China); Eberhard-Karls Universitaet Tuebingen, Theoretical Astrophysics, Tuebingen (Germany)
2017-07-15
We study the observational properties of a class of exact solutions of Einstein's field equations describing stationary, axially symmetric, rigidly rotating dust (i.e. non-interacting particles). We ask the question whether such solutions can describe astrophysical rotating dark matter clouds near the center of galaxies and we probe the possibility that they may constitute an alternative to supermassive black holes at the center of galaxies. We show that light emission from accretion disks made of ordinary baryonic matter in this space-time has several differences with respect to the emission of light from similar accretion disks around black holes. The shape of the iron Kα line in the reflection spectrum of accretion disks can potentially distinguish this class of solutions from the Kerr metric, but this may not be possible with current X-ray missions. (orig.)
On real structures on rigid surfaces
International Nuclear Information System (INIS)
Kulikov, Vik S; Kharlamov, V M
2002-01-01
We construct examples of rigid surfaces (that is, surfaces whose deformation class consists of a unique surface) with a particular behaviour with respect to real structures. In one example the surface has no real structure. In another it has a unique real structure, which is not maximal with respect to the Smith-Thom inequality. These examples give negative answers to the following problems: the existence of real surfaces in each deformation class of complex surfaces, and the existence of maximal real surfaces in every complex deformation class that contains real surfaces. Moreover, we prove that there are no real surfaces among surfaces of general type with p g =q=0 and K 2 =9. These surfaces also provide new counterexamples to the 'Dif = Def' problem
On real structures on rigid surfaces
Energy Technology Data Exchange (ETDEWEB)
Kulikov, Vik S [Steklov Mathematical Institute, Russian Academy of Sciences (Russian Federation); Kharlamov, V M [Institut de Recherche Matematique Avanee Universite Louis Pasteur et CNRS 7 rue Rene Descartes (France)
2002-02-28
We construct examples of rigid surfaces (that is, surfaces whose deformation class consists of a unique surface) with a particular behaviour with respect to real structures. In one example the surface has no real structure. In another it has a unique real structure, which is not maximal with respect to the Smith-Thom inequality. These examples give negative answers to the following problems: the existence of real surfaces in each deformation class of complex surfaces, and the existence of maximal real surfaces in every complex deformation class that contains real surfaces. Moreover, we prove that there are no real surfaces among surfaces of general type with p{sub g}=q=0 and K{sup 2}=9. These surfaces also provide new counterexamples to the 'Dif = Def' problem.
Management of rigid post-traumatic kyphosis.
Wu, S S; Hwa, S Y; Lin, L C; Pai, W M; Chen, P Q; Au, M K
1996-10-01
Rigid post-traumatic kyphosis after fracture of the thoracolumbar and lumbar spine represents a failure of initial management of the injury. Kyphosis moves the center of gravity anterior. The kyphosis and instability may result in pain, deformity, and increased neurologic deficits. Management for symptomatic post-traumatic kyphosis always has presented a challenge to orthopedic surgeons. To evaluate the surgical results of one stage posterior correction for rigid symptomatic post-traumatic kyphosis of the thoracolumbar and lumbar spine. The management for post-traumatic kyphosis remains controversial. Anterior, posterior, or combined anterior and posterior procedures have been advocated by different authors and show various degrees of success. One vertebra immediately above and below the level of the deformity was instrumented posteriorly by a transpedicular system (internal fixator AO). Posterior decompression was performed by excision of the spinal process and bilateral laminectomy. With the deformed vertebra through the pedicle, the vertebral body carefully is removed around the pedicle level, approximating a wedge shape. The extent to which the deformed vertebral body should be removed is determined by the attempted correction. Correction of the deformity is achieved by manipulation of the operating table and compression of the adjacent Schanz screws above and below the lesion. Thirteen patients with post-traumatic kyphosis with symptoms of fatigue and pain caused by slow progression of kyphotic deformities received posterior decompression, correction, and stabilization as a definitive treatment. The precorrection kyphosis ranged from 30-60 degrees, with a mean of 40 degrees +/- 10.8 degrees. After correction, kyphosis was reduced to an average of 1.5 degrees +/- 3.8 degrees, with a range from -5 degrees to 5 degrees. The average angle of correction was 38.8 degrees +/- 10.4 degrees, with a range from 25 degrees to 60 degrees. Significant difference was found
Dual Quaternion Variational Integrator for Rigid Body Dynamic Simulation
Xu, Jiafeng; Halse, Karl Henning
2016-01-01
In rigid body dynamic simulations, often the algorithm is required to deal with general situations where both reference point and inertia matrix are arbitrarily de- fined. We introduce a novel Lie group variational integrator using dual quaternion for simulating rigid body dynamics in all six degrees of freedom. Dual quaternion is used to represent rigid body kinematics and one-step Lie group method is used to derive dynamic equations. The combination of these two becomes the first Lie group ...
Tile-based rigidization surface parametric design study
Giner Munoz, Laura; Luntz, Jonathan; Brei, Diann; Kim, Wonhee
2018-03-01
Inflatable technologies have proven useful in consumer goods as well as in more recent applications including civil structures, aerospace, medical, and robotics. However, inflatable technologies are typically lacking in their ability to provide rigid structural support. Particle jamming improves upon this by providing structures which are normally flexible and moldable but become rigid when air is removed. Because these are based on an airtight bladder filled with loose particles, they always occupy the full volume of its rigid state, even when not rigidized. More recent developments in layer jamming have created thin, compact rigidizing surfaces replacing the loose volume of particles with thinly layered surface materials. Work in this area has been applied to several specific applications with positive results but have not generally provided the broader understanding of the rigidization performance as a function of design parameters required for directly adapting layer rigidization technology to other applications. This paper presents a parametric design study of a new layer jamming vacuum rigidization architecture: tile-based vacuum rigidization. This form of rigidization is based on layers of tiles contained within a thin vacuum bladder which can be bent, rolled, or otherwise compactly stowed, but when deployed flat, can be vacuumed and form a large, flat, rigid plate capable of supporting large forces both localized and distributed over the surface. The general architecture and operation detailing rigidization and compliance mechanisms is introduced. To quantitatively characterize the rigidization behavior, prototypes rigidization surfaces are fabricated and an experimental technique is developed based on a 3-point bending test. Performance evaluation metrics are developed to describe the stiffness, load-bearing capacity, and internal slippage of tested prototypes. A set of experimental parametric studies are performed to better understand the impact of
Directory of Open Access Journals (Sweden)
Yu. V. Vasilevich
2016-01-01
Full Text Available Virtual testing of portal machine tool has been carried out with the help of finite elements method (FEM. Static, modal and harmonic analyses have been made for a heavy planer. The paper reveals influence of concrete filler on machine tool dynamic flexibility. A peculiar feature of the simulation is concrete filling of a high-level transverse beam. Such approach oes look a typical one for machine-tool industry. Concrete has been considered as generalized material in two variants. It has been established that concrete application provides approximately 3-fold increase in machine tool rigidity per each coordinate. In this regard it is necessary to arrange closure of rigidity contour by filling all the cavities inside of the portal. Modal FEA makes it possible to determine that concrete increases comparatively weakly (1.3–1.4-fold frequencies of resonance modes. Frequency of the lowest mode rises only from 30.25 to 42.86 Hz. The following most active whole-machine eigenmodes have been revealed in the paper: “Portal pecking”, “Parallelogram” and “Traverse pecking”. In order to restrain the last mode it is necessary to carry out concrete filling of the traverse, in particular. Frequency-response characteristics and curves of dynamic rigidity for a spindle have been plotted for 0–150 Hz interval while using harmonic FEM. It has been determined that concrete increases dynamic machine tool rigidity by 2.5–3.5-fold. The effect is obtained even in the case when weakly damping concrete (2 % is used. This is due to distribution of vibrational energy flow along concrete and along cast iron as well. Thus energy density and vibration amplitudes must decrease. The paper shows acceptability for internal reinforcement of high-level machine tool parts (for example, portal traverses and fillers are applied for this purpose. Traverse weighting is compensated by additional torsional, shear and bending rigidity. The machine tool obtains the
Dubin, D. H. E.
This chapter explores several aspects of the linear electrostatic normal modes of oscillation for a single-species non-neutral plasma in a Penning trap. Linearized fluid equations of motion are developed, assuming the plasma is cold but collisionless, which allow derivation of the cold plasma dielectric tensor and the electrostatic wave equation. Upper hybrid and magnetized plasma waves in an infinite uniform plasma are described. The effect of the plasma surface in a bounded plasma system is considered, and the properties of surface plasma waves are characterized. The normal modes of a cylindrical plasma column are discussed, and finally, modes of spheroidal plasmas, and finite temperature effects on the modes, are briefly described.
Defect States Emerging from a Non-Hermitian Flatband of Photonic Zero Modes
Qi, Bingkun; Zhang, Lingxuan; Ge, Li
2018-03-01
We show the existence of a flatband consisting of photonic zero modes in a gain and loss modulated lattice system as a result of the underlying non-Hermitian particle-hole symmetry. This general finding explains the previous observation in parity-time symmetric systems where non-Hermitian particle-hole symmetry is hidden. We further discuss the defect states in these systems, whose emergence can be viewed as an unconventional alignment of a pseudospin under the influence of a complex-valued pseudomagnetic field. These defect states also behave as a chain with two types of links, one rigid in a unit cell and one soft between unit cells, as the defect states become increasingly localized with the gain and loss strength.
Directory of Open Access Journals (Sweden)
J. A. Fisher
2012-03-01
Full Text Available We applied a multiple linear regression model to understand the relationships of PM2.5 with meteorological variables in the contiguous US and from there to infer the sensitivity of PM2.5 to climate change. We used 2004–2008 PM2.5 observations from ~1000 sites (~200 sites for PM2.5 components and compared to results from the GEOS-Chem chemical transport model (CTM. All data were deseasonalized to focus on synoptic-scale correlations. We find strong positive correlations of PM2.5 components with temperature in most of the US, except for nitrate in the Southeast where the correlation is negative. Relative humidity (RH is generally positively correlated with sulfate and nitrate but negatively correlated with organic carbon. GEOS-Chem results indicate that most of the correlations of PM2.5 with temperature and RH do not arise from direct dependence but from covariation with synoptic transport. We applied principal component analysis and regression to identify the dominant meteorological modes controlling PM2.5 variability, and show that 20–40% of the observed PM2.5 day-to-day variability can be explained by a single dominant meteorological mode: cold frontal passages in the eastern US and maritime inflow in the West. These and other synoptic transport modes drive most of the overall correlations of PM2.5 with temperature and RH except in the Southeast. We show that interannual variability of PM2.5 in the US Midwest is strongly correlated with cyclone frequency as diagnosed from a spectral-autoregressive analysis of the dominant meteorological mode. An ensemble of five realizations of 1996–2050 climate change with the GISS general circulation model (GCM using the same climate forcings shows inconsistent trends in cyclone frequency over the Midwest (including in sign, with a likely decrease in cyclone frequency implying an increase in PM2.5. Our results demonstrate the need for multiple GCM realizations (because of climate chaos when diagnosing
Algebraic Methods for Counting Euclidean Embeddings of Rigid Graphs
I.Z. Emiris; E.P. Tsigaridas; A. Varvitsiotis (Antonios); E.R. Gasner
2009-01-01
textabstract The study of (minimally) rigid graphs is motivated by numerous applications, mostly in robotics and bioinformatics. A major open problem concerns the number of embeddings of such graphs, up to rigid motions, in Euclidean space. We capture embeddability by polynomial systems
THE RIGIDITY OF THE EARTH'S INNER CORE
Directory of Open Access Journals (Sweden)
K. E. BULLEN
1953-06-01
Full Text Available The purpose of this paper is to examine and assess, in the
light of recent evidence, the theory lliat the Earth's inner core has
a significant rigidity.
The presenee of an inner core in the Earth is revealed from
observations of the seismie pliase PKP in the « sliadow zone » for
which the epicentral distance A lies in the range 105" < A < 143".
Miss I. Lehmann (r in 1936, followed by Gutenberg and Richter (2
in 1938, atlrihuted these observations to tlie presence of an inner
core; and Jeffreys (3 in 1939 applied Airy's theory of diffraetion
near a caustic to sliow that the alternative theory of diffraetion
round the outer boundary of the centrai core was not capable of
explaining tlie observations in the shadow zone. The existence of the
inner core has been fairly generallv accepted sinee tliis ealculation
of Jeffreys.
The theory of pseudo-rigid bodies
Cohen, Harley
1988-01-01
This monograph concerns the development, analysis, and application of the theory of pseudo-rigid bodies. It collects together our work on that subject over the last five years. While some results have appeared else where, much of the work is new. Our objective in writing this mono graph has been to present a new theory of the deformation of bodies, one that has not only a firm theoretical basis, but also the simplicity to serve as an effective tool in practical problems. Consequently, the main body of the treatise is a multifaceted development of the theory, from foundations to explicit solutions to linearizations to methods of approximation. The fact that this variety of aspects, each examined in considerable detail, can be collected together in a single, unified treat ment gives this theory an elegance that we feel sets it apart from many others. While our goal has always been to give a complete treatment of the theory as it now stands, the work here is not meant to be definitive. Theories are not ent...
Almost Poisson integration of rigid body systems
International Nuclear Information System (INIS)
Austin, M.A.; Krishnaprasad, P.S.; Li-Sheng Wang
1993-01-01
In this paper we discuss the numerical integration of Lie-Poisson systems using the mid-point rule. Since such systems result from the reduction of hamiltonian systems with symmetry by lie group actions, we also present examples of reconstruction rules for the full dynamics. A primary motivation is to preserve in the integration process, various conserved quantities of the original dynamics. A main result of this paper is an O(h 3 ) error estimate for the Lie-Poisson structure, where h is the integration step-size. We note that Lie-Poisson systems appear naturally in many areas of physical science and engineering, including theoretical mechanics of fluids and plasmas, satellite dynamics, and polarization dynamics. In the present paper we consider a series of progressively complicated examples related to rigid body systems. We also consider a dissipative example associated to a Lie-Poisson system. The behavior of the mid-point rule and an associated reconstruction rule is numerically explored. 24 refs., 9 figs
Inflatable Tubular Structures Rigidized with Foams
Tinker, Michael L.; Schnell, Andrew R.
2010-01-01
Inflatable tubular structures that have annular cross sections rigidized with foams, and the means of erecting such structures in the field, are undergoing development. Although the development effort has focused on lightweight structural booms to be transported in compact form and deployed in outer space, the principles of design and fabrication are also potentially applicable to terrestrial structures, including components of ultralightweight aircraft, lightweight storage buildings and shelters, lightweight insulation, and sales displays. The use of foams to deploy and harden inflatable structures was first proposed as early as the 1960s, and has been investigated in recent years by NASA, the U.S. Air Force Research Laboratory, industry, and academia. In cases of deployable booms, most of the investigation in recent years has focused on solid cross sections, because they can be constructed relatively easily. However, solid-section foam-filled booms can be much too heavy for some applications. In contrast, booms with annular cross sections according to the present innovation can be tailored to obtain desired combinations of stiffness and weight through choice of diameters, wall thicknesses, and foam densities. By far the most compelling advantage afforded by this innovation is the possibility of drastically reducing weights while retaining or increasing the stiffnesses, relative to comparable booms that have solid foamfilled cross sections. A typical boom according to this innovation includes inner and outer polyimide film sleeves to contain foam that is injected between them during deployment.
Spontaneous droplet trampolining on rigid superhydrophobic surfaces
Schutzius, Thomas M.; Jung, Stefan; Maitra, Tanmoy; Graeber, Gustav; Köhme, Moritz; Poulikakos, Dimos
2015-11-01
Spontaneous removal of condensed matter from surfaces is exploited in nature and in a broad range of technologies to achieve self-cleaning, anti-icing and condensation control. But despite much progress, our understanding of the phenomena leading to such behaviour remains incomplete, which makes it challenging to rationally design surfaces that benefit from its manifestation. Here we show that water droplets resting on superhydrophobic textured surfaces in a low-pressure environment can self-remove through sudden spontaneous levitation and subsequent trampoline-like bouncing behaviour, in which sequential collisions with the surface accelerate the droplets. These collisions have restitution coefficients (ratios of relative speeds after and before collision) greater than unity despite complete rigidity of the surface, and thus seemingly violate the second law of thermodynamics. However, these restitution coefficients result from an overpressure beneath the droplet produced by fast droplet vaporization while substrate adhesion and surface texture restrict vapour flow. We also show that the high vaporization rates experienced by the droplets and the associated cooling can result in freezing from a supercooled state that triggers a sudden increase in vaporization, which in turn boosts the levitation process. This effect can spontaneously remove surface icing by lifting away icy drops the moment they freeze. Although these observations are relevant only to systems in a low-pressure environment, they show how surface texturing can produce droplet-surface interactions that prohibit liquid and freezing water-droplet retention on surfaces.
Axisymmetric wave propagation in gas shear flow confined by a rigid-walled pipeline
International Nuclear Information System (INIS)
Chen Yong; Huang Yi-Yong; Chen Xiao-Qian; Bai Yu-Zhu; Tan Xiao-Dong
2015-01-01
The axisymmetric acoustic wave propagating in a perfect gas with a shear pipeline flow confined by a circular rigid wall is investigated. The governing equations of non-isentropic and isentropic acoustic assumptions are mathematically deduced while the constraint of Zwikker and Kosten is relaxed. An iterative method based on the Fourier–Bessel theory is proposed to semi-analytically solve the proposed models. A comparison of numerical results with literature contributions validates the present contribution. Meanwhile, the features of some high-order transverse modes, which cannot be analyzed based on the Zwikker and Kosten theory, are analyzed (paper)
BUTCHER, PR; KALVERBOER, A; MINDERAA, RB; VANDOORMAAL, EF; TENWOLDE, Y
1993-01-01
The associations between a mother's rigidity, her sensitivity in early (3 month) interaction and the quality of her premature infant's attachment at 13 months were investigated. Rigidity as a personality characteristic was not found to be significantly associated with sensitivity or quality of
Rotational modes of a simple Earth model
Seyed-Mahmoud, B.; Rochester, M. G.; Rogister, Y. J. G.
2017-12-01
We study the tilt-over mode (TOM), the spin-over mode (SOM), the free core nutation (FCN), and their relationships to each other using a simple Earth model with a homogeneous and incompressible liquid core and a rigid mantle. Analytical solutions for the periods of these modes as well as that of the Chandler wobble is found for the Earth model. We show that the FCN is the same mode as the SOM of a wobbling Earth. The reduced pressure, in terms of which the vector momentum equation is known to reduce to a scalar second order differential equation (the so called Poincaŕe equation), is used as the independent variable. Analytical solutions are then found for the displacement eigenfucntions in a meridional plane of the liquid core for the aforementioned modes. We show that the magnitude of motion in the mantle during the FCN is comparable to that in the liquid core, hence very small. The displacement eigenfunctions for these aforementioned modes as well as those for the free inner core nutation (FICN), computed numerically, are also given for a three layer Earth model which also includes a rigid but capable of wobbling inner core. We will discuss the slow convergence of the period of the FICN in terms of the characteristic surfaces of the Poincare equation.
Plasma surface modification of rigid contact lenses decreases bacterial adhesion.
Wang, Yingming; Qian, Xuefeng; Zhang, Xiaofeng; Xia, Wei; Zhong, Lei; Sun, Zhengtai; Xia, Jing
2013-11-01
Contact lens safety is an important topic in clinical studies. Corneal infections usually occur because of the use of bacteria-carrying contact lenses. The current study investigated the impact of plasma surface modification on bacterial adherence to rigid contact lenses made of fluorosilicone acrylate materials. Boston XO and XO2 contact lenses were modified using plasma technology (XO-P and XO2-P groups). Untreated lenses were used as controls. Plasma-treated and control lenses were incubated in solutions containing Staphylococcus aureus or Pseudomonas aeruginosa. MTT colorimetry, colony-forming unit counting method, and scanning electron microscopy were used to measure bacterial adhesion. MTT colorimetry measurements showed that the optical density (OD) values of XO-P and XO2-P were significantly lower than those of XO and XO2, respectively, after incubation with S. aureus (P lenses and to the XO2-P versus XO2 lenses incubated with S. aureus (P lenses incubated with P. aeruginosa (P lenses. Plasma surface modification can significantly decrease bacterial adhesion to fluorosilicone acrylate contact lenses. This study provides important evidence of a unique benefit of plasma technology in contact lens surface modification.
International Nuclear Information System (INIS)
Courant, E.D.; Ruth, R.D.; Wang, J.M.
1979-01-01
The name Tacoma refers to the Tacoma Narrows Bridge which collapsed on November 8, 1940 due to massive oscillations caused by high winds. One of the destructive modes was a torsion mode which was excited by transverse wind, a dipole force, and continued until the bridge collapsed. The name is used to refer to a coherent mode of oscillation of a spectrum of oscillators in which the amplitude vs frequency graph contains one node, where the node occurs near the driving frequency and a ω is not symmetric about zero. When this result is applied to vertical instabilities in coasting beams, it implies the existence of a coherent skew quadrupole moment, Q/sub xy/, whenever a coherent dipole oscillation exists
International Nuclear Information System (INIS)
Courant, E.D.; Ruth, R.D.; Wang, J.M.
1979-01-01
The name Tacoma refers to the Tacoma Narrows Bridge which collapsed on November 8, 1940 due to massive oscillations caused by high winds. One of the destructive modes was a torsion mode which was excited by transverse wind, a dipole force, and continued until the bridge collapsed. The name is used to refer to a coherent mode of oscillation of a spectrum of oscillators in which the amplitude vs frequency graph contains one node, where the node occurs near the driving frequency and a(ω) is not symmetric about zero. When this result is applied to vertical instabilities in coasting beams, it implies the existence of a coherent skew quadrupole moment, whenever a coherent dipole oscillation exists
2001-09-01
An increase in the detected and estimated transatlantic flow of cocaine smuggled from South America to the United States and Europe in 2000 has been reported by the U.S. Office of National Drug Control Policy (ONDCP). According to the ONDCP "Annual A...
Large scale Brownian dynamics of confined suspensions of rigid particles
Sprinkle, Brennan; Balboa Usabiaga, Florencio; Patankar, Neelesh A.; Donev, Aleksandar
2017-12-01
We introduce methods for large-scale Brownian Dynamics (BD) simulation of many rigid particles of arbitrary shape suspended in a fluctuating fluid. Our method adds Brownian motion to the rigid multiblob method [F. Balboa Usabiaga et al., Commun. Appl. Math. Comput. Sci. 11(2), 217-296 (2016)] at a cost comparable to the cost of deterministic simulations. We demonstrate that we can efficiently generate deterministic and random displacements for many particles using preconditioned Krylov iterative methods, if kernel methods to efficiently compute the action of the Rotne-Prager-Yamakawa (RPY) mobility matrix and its "square" root are available for the given boundary conditions. These kernel operations can be computed with near linear scaling for periodic domains using the positively split Ewald method. Here we study particles partially confined by gravity above a no-slip bottom wall using a graphical processing unit implementation of the mobility matrix-vector product, combined with a preconditioned Lanczos iteration for generating Brownian displacements. We address a major challenge in large-scale BD simulations, capturing the stochastic drift term that arises because of the configuration-dependent mobility. Unlike the widely used Fixman midpoint scheme, our methods utilize random finite differences and do not require the solution of resistance problems or the computation of the action of the inverse square root of the RPY mobility matrix. We construct two temporal schemes which are viable for large-scale simulations, an Euler-Maruyama traction scheme and a trapezoidal slip scheme, which minimize the number of mobility problems to be solved per time step while capturing the required stochastic drift terms. We validate and compare these schemes numerically by modeling suspensions of boomerang-shaped particles sedimented near a bottom wall. Using the trapezoidal scheme, we investigate the steady-state active motion in dense suspensions of confined microrollers, whose
General rigid motion correction for computed tomography imaging based on locally linear embedding
Chen, Mianyi; He, Peng; Feng, Peng; Liu, Baodong; Yang, Qingsong; Wei, Biao; Wang, Ge
2018-02-01
The patient motion can damage the quality of computed tomography images, which are typically acquired in cone-beam geometry. The rigid patient motion is characterized by six geometric parameters and are more challenging to correct than in fan-beam geometry. We extend our previous rigid patient motion correction method based on the principle of locally linear embedding (LLE) from fan-beam to cone-beam geometry and accelerate the computational procedure with the graphics processing unit (GPU)-based all scale tomographic reconstruction Antwerp toolbox. The major merit of our method is that we need neither fiducial markers nor motion-tracking devices. The numerical and experimental studies show that the LLE-based patient motion correction is capable of calibrating the six parameters of the patient motion simultaneously, reducing patient motion artifacts significantly.
DEFF Research Database (Denmark)
Jakobsen, K. P.; Burcharth, H. F.; Ibsen, Lars Bo
1999-01-01
The present appendix contains the derivation of ten different limit state equations divided on three different failure modes. Five of the limit state equations can be used independently of the characteristics of the subsoil, whereas the remaining five can be used for either drained or undrained s...
Reversible Rigidity Control Using Low Melting Temperature Alloys
Shan, Wanliang; Lu, Tong; Majidi, Carmel
2013-03-01
Inspired by nature, materials able to achieve rapid rigidity changes have important applications for human body protection in military and many other areas. This talk presents the fabrication and design of soft-matter technologies that exhibit rapid reversible rigidity control. Fabricated with a masked deposition technique, the soft-matter composite contains liquid-phase and phase-changing metal alloys embedded in a soft and highly stretchable elastomer. The composite material can reversibly change its rigidity by three orders of magnitude and sustain large deformation.
APPLICATION OF RIGID LINKS IN STRUCTURAL DESIGN MODELS
Directory of Open Access Journals (Sweden)
Sergey Yu. Fialko
2017-09-01
Full Text Available A special finite element modelling rigid links is proposed for the linear static and buckling analysis. Unlike the classical approach based on the theorems of rigid body kinematics, the proposed approach preserves the similarity between the adjacency graph for a sparse matrix and the adjacency graph for nodes of the finite element model, which allows applying sparse direct solvers more effectively. Besides, the proposed approach allows significantly reducing the number of nonzero entries in the factored stiffness matrix in comparison with the classical one, which greatly reduces the duration of the solution. For buckling problems of structures containing rigid bodies, this approach gives correct results. Several examples demonstrate its efficiency.
International Nuclear Information System (INIS)
Mitchell, T.P.; Blier, W.
1994-01-01
The historical Climatic Division record of monthly- and seasonal-mean wintertime precipitation totals are analyzed to document the dominant patterns of precipitation variability for the contiguous United States. The analysis technique employed is the Rotated Principal Component analysis. Time series for the leading patterns are related to global sea-surface temperatures (SSTs), and to gridded surface and upper-air analyses for the Northern Hemisphere
The Integrated Mode Management Interface
Hutchins, Edwin
1996-01-01
Mode management is the processes of understanding the character and consequences of autoflight modes, planning and selecting the engagement, disengagement and transitions between modes, and anticipating automatic mode transitions made by the autoflight system itself. The state of the art is represented by the latest designs produced by each of the major airframe manufacturers, the Boeing 747-400, the Boeing 777, the McDonnell Douglas MD-11, and the Airbus A320/A340 family of airplanes. In these airplanes autoflight modes are selected by manipulating switches on the control panel. The state of the autoflight system is displayed on the flight mode annunciators. The integrated mode management interface (IMMI) is a graphical interface to autoflight mode management systems for aircraft equipped with flight management computer systems (FMCS). The interface consists of a vertical mode manager and a lateral mode manager. Autoflight modes are depicted by icons on a graphical display. Mode selection is accomplished by touching (or mousing) the appropriate icon. The IMMI provides flight crews with an integrated interface to autoflight systems for aircraft equipped with flight management computer systems (FMCS). The current version is modeled on the Boeing glass-cockpit airplanes (747-400, 757/767). It runs on the SGI Indigo workstation. A working prototype of this graphics-based crew interface to the autoflight mode management tasks of glass cockpit airplanes has been installed in the Advanced Concepts Flight Simulator of the CSSRF of NASA Ames Research Center. This IMMI replaces the devices in FMCS equipped airplanes currently known as mode control panel (Boeing), flight guidance control panel (McDonnell Douglas), and flight control unit (Airbus). It also augments the functions of the flight mode annunciators. All glass cockpit airplanes are sufficiently similar that the IMMI could be tailored to the mode management system of any modern cockpit. The IMMI does not replace the
Verification of the Rigidity of the Coulomb Field in Motion
Blinov, S. V.; Bulyzhenkov, I. É.
2018-06-01
Laplace, analyzing the stability of the Solar System, was the first to calculate that the velocity of the motion of force fields can significantly exceed the velocity of light waves. In electrodynamics, the Coulomb field should rigidly accompany its source for instantaneous force action in distant regions. Such rigid motion was recently inferred from experiments at the Frascati Beam Test Facility with short beams of relativistic electrons. The comments of the authors on their observations are at odds with the comments of theoreticians on retarded potentials, which motivates a detailed study of the positions of both sides. Predictions of measurements, based on the Lienard-Wiechert potentials, are used to propose an unambiguous scheme for testing the rigidity of the Coulomb field. Realization of the proposed experimental scheme could independently refute or support the assertions of the Italian physicists regarding the rigid motion of Coulomb fields and likewise the nondual field approach to macroscopic reality.
Oscillations of rigid bar in the special relativity
International Nuclear Information System (INIS)
Paiva, F.M.; Teixeira, A.F.F.
2011-12-01
In the special relativity, a rigid bar slides on herself, with a extreme oscillating harmonically. We have discovered at the movement amplitude and in the bar length, indispensable for the elimination of non physical solutions
Rigid body motion in stereo 3D simulation
International Nuclear Information System (INIS)
Zabunov, Svetoslav
2010-01-01
This paper addresses the difficulties experienced by first-grade students studying rigid body motion at Sofia University. Most quantities describing the rigid body are in relations that the students find hard to visualize and understand. They also lose the notion of cause-result relations between vector quantities, such as the relation between torque and angular momentum. Consequently, the understanding of physical laws and conservation principles in free rigid body motion is hampered. This paper presents the capabilities of a 3D simulation, which aims to clarify these questions to the students, who are taught mechanics in the general physics course. The rigid body motion simulations may be observed at http://ialms.net/sim/, and are intended to complement traditional learning practices, not replace them, as the author shares the opinion that no simulation may fully resemble reality.
Resin Infusion Rigidized Inflatable Concept Development and Demonstration
National Aeronautics and Space Administration — A novel concept utilizing resin infusion to rigidize inflatable structures was developed at JSC ES. This ICA project intends to complete manufacturing of a prototype...
Genus Ranges of 4-Regular Rigid Vertex Graphs.
Buck, Dorothy; Dolzhenko, Egor; Jonoska, Nataša; Saito, Masahico; Valencia, Karin
2015-01-01
A rigid vertex of a graph is one that has a prescribed cyclic order of its incident edges. We study orientable genus ranges of 4-regular rigid vertex graphs. The (orientable) genus range is a set of genera values over all orientable surfaces into which a graph is embedded cellularly, and the embeddings of rigid vertex graphs are required to preserve the prescribed cyclic order of incident edges at every vertex. The genus ranges of 4-regular rigid vertex graphs are sets of consecutive integers, and we address two questions: which intervals of integers appear as genus ranges of such graphs, and what types of graphs realize a given genus range. For graphs with 2 n vertices ( n > 1), we prove that all intervals [ a, b ] for all a genus ranges. For graphs with 2 n - 1 vertices ( n ≥ 1), we prove that all intervals [ a, b ] for all a genus ranges. We also provide constructions of graphs that realize these ranges.
Re-analysis of exponential rigid-rotor astron equilibria
International Nuclear Information System (INIS)
Lovelace, R.V.; Larrabee, D.A.; Fleischmann, H.H.
1978-01-01
Previous studies of exponential rigid-rotor astron equilibria include particles which are not trapped in the self-field of the configuration. The modification of these studies required to exclude untrapped particles is derived
Rigidity theorem for Willmore surfaces in a sphere
Indian Academy of Sciences (India)
Home; Journals; Proceedings – Mathematical Sciences; Volume 126; Issue 2. Rigidity ... Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027, People's Republic of China; College of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330022, People's Republic of China ...
Role of Rigid Endoscopic Detorsion in the Management of Sigmoid ...
African Journals Online (AJOL)
had emergency surgery, with gangrenous bowel noted in 43 (72%) ... of any stable patient with clinical and radiological features ... peritonitis, underwent repeat rigid sigmoidoscopy. ... endoscopic detorsion was successful in all six cases.
Magnetism and magnetostriction in a degenerate rigid band
International Nuclear Information System (INIS)
Kulakowski, K.; Barbara, B.
1990-09-01
We investigate the influence of the spin-orbit coupling on the magnetic and magnetoelastic phenomena in ferromagnetic band systems. The description is within the Stoner model of a degenerate rigid band, for temperature T = O. (author). 14 refs
Stabilization of Rigid Body Dynamics by Internal and External Torques
National Research Council Canada - National Science Library
Bloch, A. M; Krishnaprasad, P. S; Marsden, J. E; Sanchez de Alvarez, G
1990-01-01
...] with quadratic feedback torques for internal rotors. We show that with such torques, the equations for the rigid body with momentum wheels are Hamiltonian with respect to a Lie-Poisson bracket structure. Further...
Anti-synchronization of the rigid body exhibiting chaotic dynamics ...
African Journals Online (AJOL)
Based on a method derived from nonlinear control theory, we present a ... In this framework, the active control technique is modified and employed to design control ... state space of the two rigid bodies was verified by numerical simulations.
Energy Technology Data Exchange (ETDEWEB)
Bratfisch, Christoph; Koch, Marco K. [Ruhr-Univ. Bochum (Germany). Reactor Simulation and Safety Group
2017-02-15
For extented application and analyses of the severe accident code ATHLET-CD, the course of the invessel accident in Unit 3 of Fukushima-Daiichi is simulated in the frame of the research project SUBA as a part of the BMBF sponsored collaborative project WASA-BOSS (Weiterentwicklung und Anwendung von Severe Accident Codes - Bewertung und Optimierung von Stoerfallmassnahmen). Investigations, carried out by TEPCO, had shown that the High-Pressure Coolant Injection system (HPCI) might have stopped earlier than expected. A parameter variation was performed to analyze the impact of the tripped HPCI injection regarding the thermohydraulic behaviour as well as the core degradation phenomena.
On the use of rigid body modes in the deflated preconditioned conjugate gradient method
Jönsthövel, T.B.; Van Gijzen, M.B.; Vuik, C.; Scarpas, A.
2013-01-01
Large discontinuities in material properties, such as those encountered in composite materials, lead to ill-conditioned systems of linear equations. These discontinuities give rise to small eigenvalues that may negatively affect the convergence of iterative solution methods such as the
On the use of rigid body modes in the deflated preconditioned conjugate gradient method
Jönsthövel, T.B.; Van Gijzen, M.B.; Vuik, C.; Scarpas, A.
2011-01-01
Large discontinuities in material properties, such as encountered in composite materials, lead to ill-conditioned systems of linear equations. These discontinuities give rise to small eigenvalues that may negatively affect the convergence of iterative solution methods such as the Preconditioned
Numerical algorithm for rigid body position estimation using the quaternion approach
Zigic, Miodrag; Grahovac, Nenad
2017-11-01
This paper deals with rigid body attitude estimation on the basis of the data obtained from an inertial measurement unit mounted on the body. The aim of this work is to present the numerical algorithm, which can be easily applied to the wide class of problems concerning rigid body positioning, arising in aerospace and marine engineering, or in increasingly popular robotic systems and unmanned aerial vehicles. Following the considerations of kinematics of rigid bodies, the relations between accelerations of different points of the body are given. A rotation matrix is formed using the quaternion approach to avoid singularities. We present numerical procedures for determination of the absolute accelerations of the center of mass and of an arbitrary point of the body expressed in the inertial reference frame, as well as its attitude. An application of the algorithm to the example of a heavy symmetrical gyroscope is presented, where input data for the numerical procedure are obtained from the solution of differential equations of motion, instead of using sensor measurements.
Influence of RNA Strand Rigidity on Polyion Complex Formation with Block Catiomers.
Hayashi, Kotaro; Chaya, Hiroyuki; Fukushima, Shigeto; Watanabe, Sumiyo; Takemoto, Hiroyasu; Osada, Kensuke; Nishiyama, Nobuhiro; Miyata, Kanjiro; Kataoka, Kazunori
2016-03-01
Polyion complexes (b-PICs) are prepared by mixing single- or double-stranded oligo RNA (aniomer) with poly(ethylene glycol)-b-poly(L-lysine) (PEG-PLL) (block catiomer) to clarify the effect of aniomer chain rigidity on association behaviors at varying concentrations. Here, a 21-mer single-stranded RNA (ssRNA) (persistence length: 1.0 nm) and a 21-mer double-stranded RNA (small interfering RNA, siRNA) (persistence length: 62 nm) are compared. Both oligo RNAs form a minimal charge-neutralized ionomer pair with a single PEG-PLL chain, termed unit b-PIC (uPIC), at low concentrations (<≈ 0.01 mg mL(-1)). Above the critical association concentration (≈ 0.01 mg mL(-1)), ssRNA b-PICs form secondary associates, PIC micelles, with sizes up to 30-70 nm, while no such multimolecular assembly is observed for siRNA b-PICs. The entropy gain associated with the formation of a segregated PIC phase in the multimolecular PIC micelles may not be large enough for rigid siRNA strands to compensate with appreciably high steric repulsion derived from PEG chains. Chain rigidity appears to be a critical parameter in polyion complex association. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vision based tunnel inspection using non-rigid registration
Badshah, Amir; Ullah, Shan; Shahzad, Danish
2015-04-01
Growing numbers of long tunnels across the globe has increased the need for safety measurements and inspections of tunnels in these days. To avoid serious damages, tunnel inspection is highly recommended at regular intervals of time to find any deformations or cracks at the right time. While following the stringent safety and tunnel accessibility standards, conventional geodetic surveying using techniques of civil engineering and other manual and mechanical methods are time consuming and results in troublesome of routine life. An automatic tunnel inspection by image processing techniques using non rigid registration has been proposed. There are many other image processing methods used for image registration purposes. Most of the processes are operation of images in its spatial domain like finding edges and corners by Harris edge detection method. These methods are quite time consuming and fail for some or other reasons like for blurred or images with noise. Due to use of image features directly by these methods in the process, are known by the group, correlation by image features. The other method is featureless correlation, in which the images are converted into its frequency domain and then correlated with each other. The shift in spatial domain is the same as in frequency domain, but the processing is order faster than in spatial domain. In the proposed method modified normalized phase correlation has been used to find any shift between two images. As pre pre-processing the tunnel images i.e. reference and template are divided into small patches. All these relative patches are registered by the proposed modified normalized phase correlation. By the application of the proposed algorithm we get the pixel movement of the images. And then these pixels shifts are converted to measuring units like mm, cm etc. After the complete process if there is any shift in the tunnel at described points are located.
Survey of Non-Rigid Registration Tools in Medicine.
Keszei, András P; Berkels, Benjamin; Deserno, Thomas M
2017-02-01
We catalogue available software solutions for non-rigid image registration to support scientists in selecting suitable tools for specific medical registration purposes. Registration tools were identified using non-systematic search in Pubmed, Web of Science, IEEE Xplore® Digital Library, Google Scholar, and through references in identified sources (n = 22). Exclusions are due to unavailability or inappropriateness. The remaining (n = 18) tools were classified by (i) access and technology, (ii) interfaces and application, (iii) living community, (iv) supported file formats, and (v) types of registration methodologies emphasizing the similarity measures implemented. Out of the 18 tools, (i) 12 are open source, 8 are released under a permissive free license, which imposes the least restrictions on the use and further development of the tool, 8 provide graphical processing unit (GPU) support; (ii) 7 are built on software platforms, 5 were developed for brain image registration; (iii) 6 are under active development but only 3 have had their last update in 2015 or 2016; (iv) 16 support the Analyze format, while 7 file formats can be read with only one of the tools; and (v) 6 provide multiple registration methods and 6 provide landmark-based registration methods. Based on open source, licensing, GPU support, active community, several file formats, algorithms, and similarity measures, the tools Elastics and Plastimatch are chosen for the platform ITK and without platform requirements, respectively. Researchers in medical image analysis already have a large choice of registration tools freely available. However, the most recently published algorithms may not be included in the tools, yet.
International Nuclear Information System (INIS)
Gaarde, C.
1985-01-01
An analysis of spectra of (p,n) reactions showed that they were very selective in exciting spin modes. Charge exchange reactions at intermediate energies give important new understanding of the M1-type of excitations and of the spin structure of continuum p spectra in general. In this paper, the author discusses three charge exchange reactions: (p,n); ( 3 H,t); and (d,2p) at several targets. Low-lying states and the Δ region are discussed separately. Finally, the charge exchange reaction with heavy ion beams is briefly discussed. (G.J.P./Auth.)
International Nuclear Information System (INIS)
Garbet, X.; Mourgues, F.; Samain, A.; Zou, X.
1990-01-01
A serious degradation of confinement with additional heating is commonly observed on most tokamaks. The microtearing modes could provide an explanation for this experimental fact. They are driven linearly unstable by diamagnetism in collisional regimes, but it may be shown that the collisions in non linear regimes provide a small diffusion coefficient which can be only significant at the plasme edge. In the bulk of the plasma, the microtearing turbulence could play a basic role if it is unstable in the collisionless regime. While it is linearly stable without collisions, it could be driven unstable in realistic regimes by the radial diffusion it induces. To study this effect, we have used a model where the non linear action of the modes on a given helicity component is represented by a diffusion operator. They are found unstable for reasonable β p =2μ o nT/B 2 p , with a special radial profile of the potential vector A. The problem arises the validity of this model where non linearities in the trajectories behaviour are replaced by the diffusion which broadens resonances. To test this procedure, we calculate the actual electron distribution function when it is determined by the ergodicity of the field lines. We compute the correlations of the distribution function with the magnetic perturbation and compare them with the analytical expressions derived from the resonance broadening model. (author) 3 refs., 2 figs
Soft-matter composites with electrically tunable elastic rigidity
International Nuclear Information System (INIS)
Shan, Wanliang; Lu, Tong; Majidi, Carmel
2013-01-01
We use a phase-changing metal alloy to reversibly tune the elastic rigidity of an elastomer composite. The elastomer is embedded with a sheet of low-melting-point Field’s metal and an electric Joule heater composed of a serpentine channel of liquid-phase gallium–indium–tin (Galinstan ® ) alloy. At room temperature, the embedded Field’s metal is solid and the composite remains elastically rigid. Joule heating causes the Field’s metal to melt and allows the surrounding elastomer to freely stretch and bend. Using a tensile testing machine, we measure that the effective elastic modulus of the composite reversibly changes by four orders of magnitude when powered on and off. This dramatic change in rigidity is accurately predicted with a model for an elastic composite. Reversible rigidity control is also accomplished by replacing the Field’s metal with shape memory polymer. In addition to demonstrating electrically tunable rigidity with an elastomer, we also introduce a new technique to rapidly produce soft-matter electronics and multifunctional materials in several minutes with laser-patterned adhesive film and masked deposition of liquid-phase metal alloy. (paper)
Soft-matter composites with electrically tunable elastic rigidity
Shan, Wanliang; Lu, Tong; Majidi, Carmel
2013-08-01
We use a phase-changing metal alloy to reversibly tune the elastic rigidity of an elastomer composite. The elastomer is embedded with a sheet of low-melting-point Field’s metal and an electric Joule heater composed of a serpentine channel of liquid-phase gallium-indium-tin (Galinstan®) alloy. At room temperature, the embedded Field’s metal is solid and the composite remains elastically rigid. Joule heating causes the Field’s metal to melt and allows the surrounding elastomer to freely stretch and bend. Using a tensile testing machine, we measure that the effective elastic modulus of the composite reversibly changes by four orders of magnitude when powered on and off. This dramatic change in rigidity is accurately predicted with a model for an elastic composite. Reversible rigidity control is also accomplished by replacing the Field’s metal with shape memory polymer. In addition to demonstrating electrically tunable rigidity with an elastomer, we also introduce a new technique to rapidly produce soft-matter electronics and multifunctional materials in several minutes with laser-patterned adhesive film and masked deposition of liquid-phase metal alloy.
Unified Creep Plasticity Damage (UCPD) Model for Rigid Polyurethane Foams.
Energy Technology Data Exchange (ETDEWEB)
Neilsen, Michael K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lu, Wei-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scherzinger, William M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hinnerichs, Terry D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lo, Chi S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-06-01
Numerous experiments were performed to characterize the mechanical response of several different rigid polyurethane foams (FR3712, PMDI10, PMDI20, and TufFoam35) to large deformation. In these experiments, the effects of load path, loading rate, and temperature were investigated. Results from these experiments indicated that rigid polyurethane foams exhibit significant volumetric and deviatoric plasticity when they are compressed. Rigid polyurethane foams were also found to be very strain-rate and temperature dependent. These foams are also rather brittle and crack when loaded to small strains in tension or to larger strains in compression. Thus, a new Unified Creep Plasticity Damage (UCPD) model was developed and implemented into SIERRA with the name Foam Damage to describe the mechanical response of these foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments and experimental findings. Next, development of a UCPD model for rigid, polyurethane foams is described. Selection of material parameters for a variety of rigid polyurethane foams is then discussed and finite element simulations with the new UCPD model are compared with experimental results to show behavior that can be captured with this model.
Evaluation for rigidity of box construction of nuclear reactor building
International Nuclear Information System (INIS)
Yamakawa, Tetsuo
1979-01-01
A huge box-shaped structure (hereafter, called box construction) of reinforced concrete is presently utilized as the reactor building structure in nuclear power plants. Evaluation of the rigidity of the huge box construction is required for making a vibration analysis model of nuclear reactor buildings. It is necessary to handle the box construction as the plates to which the force in plane is applied. This paper describes that the bending theory in elementary beam theory is equivalent to a peculiar, orthogonally anisotropic plate, the shearing rigidity and film rigidity in y direction of which are put to infinity and the Poisson's ratio is put to zero, viewed from the two-dimensional theory of elasticity. The form factor of 1.2 for shearing deformation in rectangular cross section was calculated from the parabolic distribution of shearing stress intensity, and it is the maximum value. The factor is equal to 1.2 for slender beams, but smaller than 1.2 for short and thick beams, having tendency to converge to 1.0. The non-conformity of boundary conditions regarding the shearing force at the both ends of cantilevers does not affect very seriously the evaluation of shearing rigidity. From the above results, it was found that the application of the theory to the box construction was able to give the rigidity evaluation with sufficient engineering accuracy. The theory can also be applied to the evaluation of tube type ultrahigh buildings. (Wakatsuki, Y.)
Rigid external maxillary distraction and rhinoplasty for pyknodysostosis.
Varol, Altan; Sabuncuoglu, Fidan Alakus; Sencimen, Metin; Akcam, Timur; Olmez, Hüseyin; Basa, Selçuk
2011-05-01
This article reports the treatment of an 33-year-old female patient with pyknodysostosis by rigid external distraction II midface distraction system. The patient with pyknodysostosis described in this report had severe midfacial hypoplasia. Correction of this by use of routine orthognathic surgery would require osteosynthesis and bone grafting. Risk of infection and/or nonunion after such a surgical procedure was considered too great, and therefore the possibility of treatment by distraction osteogenesis of the maxilla was evaluated. The rigid external distraction II midface distraction system was used to relocate the hypoplastic maxilla at anterior-inferior projection. Distraction osteogenesis should be considered as the primary reconstructive method for maxillofacial deformities in patients with sclerosing bone dysplasias, since this is the second reported case treated successfully with rigid external distraction.
Rigidity of outermost MOTS: the initial data version
Galloway, Gregory J.
2018-03-01
In the paper Commun Anal Geom 16(1):217-229, 2008, a rigidity result was obtained for outermost marginally outer trapped surfaces (MOTSs) that do not admit metrics of positive scalar curvature. This allowed one to treat the "borderline case" in the author's work with R. Schoen concerning the topology of higher dimensional black holes (Commun Math Phys 266(2):571-576, 2006). The proof of this rigidity result involved bending the initial data manifold in the vicinity of the MOTS within the ambient spacetime. In this note we show how to circumvent this step, and thereby obtain a pure initial data version of this rigidity result and its consequence concerning the topology of black holes.
Authoritarianism, cognitive rigidity, and the processing of ambiguous visual information.
Duncan, Lauren E; Peterson, Bill E
2014-01-01
Intolerance of ambiguity and cognitive rigidity are unifying aspects of authoritarianism as defined by Adorno, Frenkel-Brunswik, Levinson, and Sanford (1982/1950), who hypothesized that authoritarians view the world in absolute terms (e.g., good or evil). Past studies have documented the relationship between authoritarianism and intolerance of ambiguity and rigidity. Frenkel-Brunswik (1949) hypothesized that this desire for absolutism was rooted in perceptual processes. We present a study with three samples that directly tests the relationship between right wing authoritarianism (RWA) and the processing of ideologically neutral but ambiguous visual stimuli. As hypothesized, in all three samples we found that RWA was related to the slower processing of visual information that required participants to recategorize objects. In a fourth sample, RWA was unrelated to speed of processing visual information that did not require recategorization. Overall, results suggest a relationship between RWA and rigidity in categorization.
Mitral stenosis due to pannus overgrowth after rigid ring annuloplasty.
Oda, Takeshi; Kato, Seiya; Tayama, Eiki; Fukunaga, Shuji; Akashi, Hidetoshi; Aoyagi, Shigeaki
2010-03-01
Although mitral stenosis (MS) due to pannus overgrowth after mitral valve repair for rheumatic mitral regurgitation (MR) is not uncommon, it is extremely rare in relation to non-rheumatic mitral regurgitation. Whilst it has been suggested that the rigid annuloplasty ring induces pannus overgrowth in the same manner as the flexible ring, to date only in cases using the flexible ring has pannus formation been confirmed by a pathological examination after redo surgery. The case is described of a woman who had undergone mitral valve repair using a 28 mm rigid ring three years previously because of non-rheumatic MR, and subsequently suffered from MS due to pannus formation over the annuloplasty ring. To the present authors' knowledge, this is the first report of MS due to pannus formation after mitral valve repair using a rigid annuloplasty ring to treat non-rheumatic MR documented at reoperation.
Rigid-plastic seismic design of reinforced concrete structures
DEFF Research Database (Denmark)
Costa, Joao Domingues; Bento, R.; Levtchitch, V.
2007-01-01
structural strength with respect to a pre-defined performance parameter using a rigid-plastic response spectrum, which is characteristic of the ground motion alone. The maximum strength demand at any point is solely dependent on the intensity of the ground motion, which facilitates the task of distributing......In this paper a new seismic design procedure for Reinforced Concrete (R/C) structures is proposed-the Rigid-Plastic Seismic Design (RPSD) method. This is a design procedure based on Non-Linear Time-History Analysis (NLTHA) for systems expected to perform in the non-linear range during a lifetime...... earthquake event. The theoretical background is the Theory of Plasticity (Rigid-Plastic Structures). Firstly, a collapse mechanism is chosen and the corresponding stress field is made safe outside the regions where plastic behaviour takes place. It is shown that this allows the determination of the required...
A concise introduction to mechanics of rigid bodies multidisciplinary engineering
Huang, L
2017-01-01
This updated second edition broadens the explanation of rotational kinematics and dynamics — the most important aspect of rigid body motion in three-dimensional space and a topic of much greater complexity than linear motion. It expands treatment of vector and matrix, and includes quaternion operations to describe and analyze rigid body motion which are found in robot control, trajectory planning, 3D vision system calibration, and hand-eye coordination of robots in assembly work, etc. It features updated treatments of concepts in all chapters and case studies. The textbook retains its comprehensiveness in coverage and compactness in size, which make it easily accessible to the readers from multidisciplinary areas who want to grasp the key concepts of rigid body mechanics which are usually scattered in multiple volumes of traditional textbooks. Theoretical concepts are explained through examples taken from across engineering disciplines and links to applications and more advanced courses (e.g. industrial rob...
Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells
Arshi, Armin; Nakashima, Yasuhiro; Nakano, Haruko; Eaimkhong, Sarayoot; Evseenko, Denis; Reed, Jason; Stieg, Adam Z.; Gimzewski, James K.; Nakano, Atsushi
2013-04-01
While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell-cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examine the role of matrix rigidity on cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using a genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes.
Topology-Preserving Rigid Transformation of 2D Digital Images.
Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues
2014-02-01
We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping.
Non-rigid image registration using bone growth model
DEFF Research Database (Denmark)
Bro-Nielsen, Morten; Gramkow, Claus; Kreiborg, Sven
1997-01-01
Non-rigid registration has traditionally used physical models like elasticity and fluids. These models are very seldom valid models of the difference between the registered images. This paper presents a non-rigid registration algorithm, which uses a model of bone growth as a model of the change...... between time sequence images of the human mandible. By being able to register the images, this paper at the same time contributes to the validation of the growth model, which is based on the currently available medical theories and knowledge...
Rigid particle revisited: Extrinsic curvature yields the Dirac equation
Energy Technology Data Exchange (ETDEWEB)
Deriglazov, Alexei, E-mail: alexei.deriglazov@ufjf.edu.br [Depto. de Matemática, ICE, Universidade Federal de Juiz de Fora, MG (Brazil); Laboratory of Mathematical Physics, Tomsk Polytechnic University, 634050 Tomsk, Lenin Ave. 30 (Russian Federation); Nersessian, Armen, E-mail: arnerses@ysu.am [Yerevan State University, 1 Alex Manoogian St., Yerevan 0025 (Armenia); Laboratory of Mathematical Physics, Tomsk Polytechnic University, 634050 Tomsk, Lenin Ave. 30 (Russian Federation)
2014-03-01
We reexamine the model of relativistic particle with higher-derivative linear term on the first extrinsic curvature (rigidity). The passage from classical to quantum theory requires a number of rather unexpected steps which we report here. We found that, contrary to common opinion, quantization of the model in terms of so(3.2)-algebra yields massive Dirac equation. -- Highlights: •New way of canonical quantization of relativistic rigid particle is proposed. •Quantization made in terms of so(3.2) angular momentum algebra. •Quantization yields massive Dirac equation.
Extremal surfaces and the rigidity of null geodesic incompleteness
International Nuclear Information System (INIS)
Silva, I P Costa e; Flores, J L
2015-01-01
An important, if relatively less well known aspect of the singularity theorems in Lorentzian geometry, is to understand how their conclusions fare upon weakening or suppression of one or more of their hypotheses. Then, theorems with modified conclusion may arise, showing that those conclusions will fail only in special cases, at least some of which may be described. These are the so-called rigidity theorems, and have many important examples in the specialized literature. In this paper, we prove rigidity results for generalized plane waves and certain globally hyperbolic spacetimes in the presence of extremal compact surfaces. (paper)
Normal mode analysis of macromolecular systems with the mobile block Hessian method
International Nuclear Information System (INIS)
Ghysels, An; Van Speybroeck, Veronique; Van Neck, Dimitri; Waroquier, Michel; Brooks, Bernard R.
2015-01-01
Until recently, normal mode analysis (NMA) was limited to small proteins, not only because the required energy minimization is a computationally exhausting task, but also because NMA requires the expensive diagonalization of a 3N a ×3N a matrix with N a the number of atoms. A series of simplified models has been proposed, in particular the Rotation-Translation Blocks (RTB) method by Tama et al. for the simulation of proteins. It makes use of the concept that a peptide chain or protein can be seen as a subsequent set of rigid components, i.e. the peptide units. A peptide chain is thus divided into rigid blocks with six degrees of freedom each. Recently we developed the Mobile Block Hessian (MBH) method, which in a sense has similar features as the RTB method. The main difference is that MBH was developed to deal with partially optimized systems. The position/orientation of each block is optimized while the internal geometry is kept fixed at a plausible - but not necessarily optimized - geometry. This reduces the computational cost of the energy minimization. Applying the standard NMA on a partially optimized structure however results in spurious imaginary frequencies and unwanted coordinate dependence. The MBH avoids these unphysical effects by taking into account energy gradient corrections. Moreover the number of variables is reduced, which facilitates the diagonalization of the Hessian. In the original implementation of MBH, atoms could only be part of one rigid block. The MBH is now extended to the case where atoms can be part of two or more blocks. Two basic linkages can be realized: (1) blocks connected by one link atom, or (2) by two link atoms, where the latter is referred to as the hinge type connection. In this work we present the MBH concept and illustrate its performance with the crambin protein as an example
Liu, Hsin-yi; Pearlman, Jonathan; Cooper, Rosemarie; Hong, Eun-kyoung; Wang, Hongwu; Salatin, Benjamin; Cooper, Rory A
2010-01-01
Previous studies found that select titanium ultralight rigid wheelchairs (TURWs) had fewer equivalent cycles and less value than select aluminum ultralight folding wheelchairs (AUFWs). The causes of premature failure of TURWs were not clear because the TURWs had different frame material and design than the AUFWs. We tested 12 aluminum ultralight rigid wheelchairs (AURWs) with similar frame designs and dimensions as the TURWs using the American National Standards Institute/Rehabilitation Engineering and Assistive Technology Society of North America and International Organization for Standardization wheelchair standards and hypothesized that the AURWs would be more durable than the TURWs. Across wheelchair models, no significant differences were found in the test results between the AURWs and TURWs, except in their overall length. Tire pressure, tube-wall thickness, and tube manufacturing were proposed to be the factors affecting wheelchair durability through comparison of the failure modes, frames, and components. The frame material did not directly affect the performance of AURWs and TURWs, but proper wheelchair manufacture and design based on mechanical properties are important.
Multibody Dynamic Stress Simulation of Rigid-Flexible Shovel Crawler Shoes
Directory of Open Access Journals (Sweden)
Samuel Frimpong
2016-06-01
Full Text Available Electric shovels are used in surface mining operations to achieve economic production capacities. The capital investments and operating costs associated with the shovels deployed in the Athabasca oil sands formation are high due to the abrasive conditions. The shovel crawler shoes interact with sharp and abrasive sand particles, and, thus, are subjected to high transient dynamic stresses. These high stresses cause wear and tear leading to crack initiation, propagation and premature fatigue failure. The objective of this paper is to develop a model to characterize the crawler stresses and deformation for the P&H 4100C BOSS during propel and loading using rigid-flexible multi-body dynamic theory. A 3-D virtual prototype model of the rigid-flexible crawler track assembly and its interactions with oil sand formation is simulated to capture the model dynamics within multibody dynamics software MSC ADAMS. The modal and stress shapes and modal loads due to machine weight for each flexible crawler shoes are generated from finite element analysis (FEA. The modal coordinates from the simulation are combined with mode and stress shapes using modal superposition method to calculate real-time stresses and deformation of flexible crawler shoes. The results show a maximum von Mises stress value of 170 MPa occurring in the driving crawler shoe during the propel motion. This study provides a foundation for the subsequent fatigue life analysis of crawler shoes for extending crawler service life.
Pazderková, Markéta; Profant, Václav; Hodačová, Jana; Sebestík, Jaroslav; Pazderka, Tomáš; Novotná, Pavlína; Urbanová, Marie; Safařík, Martin; Buděšínský, Miloš; Tichý, Miloš; Bednárová, Lucie; Baumruk, Vladimír; Maloň, Petr
2013-08-22
We investigate amide nonplanarity in vibrational optical activity (VOA) spectra of tricyclic spirodilactams 5,8-diazatricyclo[6,3,0,0(1,5)]undecan-4,9-dione (I) and its 6,6',7,7'-tetradeuterio derivative (II). These rigid molecules constrain amide groups to nonplanar geometries with twisted pyramidal arrangements of bonds to amide nitrogen atoms. We have collected a full range vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra including signals of C-H and C-D stretching vibrations. We report normal-mode analysis and a comparison of calculated to experimental VCD and ROA. The data provide band-to-band assignment and offer a possibility to evaluate roles of constrained nonplanar tertiary amide groups and rigid chiral skeletons. Nonplanarity shows as single-signed VCD and ROA amide I signals, prevailing the couplets expected to arise from the amide-amide interaction. Amide-amide coupling dominates amide II (mainly C'-N stretching, modified in tertiary amides by the absence of a N-H bond) transitions (strong couplet in VCD, no significant ROA) probably due to the close proximity of amide nitrogen atoms. At lower wavenumbers, ROA spectra exhibit another likely manifestation of amide nonplanarity, showing signals of amide V (δ(oop)(N-C) at ~570 cm(-1)) and amide VI (δ(oop)(C'═O) at ~700 cm(-1) and ~650 cm(-1)) vibrations.
Nagle, Padraic S; McKeever, Caitriona; Rodriguez, Fernando; Nguyen, Binh; Wilson, W David; Rozas, Isabel
2014-09-25
In this paper we report the design and biophysical evaluation of novel rigid-core symmetric and asymmetric dicationic DNA binders containing 9H-fluorene and 9,10-dihydroanthracene cores as well as the synthesis of one of these fluorene derivatives. First, the affinity toward particular DNA sequences of these compounds and flexible core derivatives was evaluated by means of surface plasmon resonance and thermal denaturation experiments finding that the position of the cations significantly influence the binding strength. Then their affinity and mode of binding were further studied by performing circular dichroism and UV studies and the results obtained were rationalized by means of DFT calculations. We found that the fluorene derivatives prepared have the ability to bind to the minor groove of certain DNA sequences and intercalate to others, whereas the dihydroanthracene compounds bind via intercalation to all the DNA sequences studied here.
Dynamic Behavior of Wind Turbine by a Mixed Flexible-Rigid Multi-Body Model
Wang, Jianhong; Qin, Datong; Ding, Yi
A mixed flexible-rigid multi-body model is presented to study the dynamic behavior of a horizontal axis wind turbine. The special attention is given to flexible body: flexible rotor is modeled by a newly developed blade finite element, support bearing elasticities, variations in the number of teeth in contact as well as contact tooth's elasticities are mainly flexible components in the power train. The couple conditions between different subsystems are established by constraint equations. The wind turbine model is generated by coupling models of rotor, power train and generator with constraint equations together. Based on this model, an eigenproblem analysis is carried out to show the mode shape of rotor and power train at a few natural frequencies. The dynamic responses and contact forces among gears under constant wind speed and fixed pitch angle are analyzed.
International Nuclear Information System (INIS)
Jiang, Bin; Song, Hongwei; Yang, Minghui; Guo, Hua
2016-01-01
The quantum dynamics of water dissociative chemisorption on the rigid Ni(111) surface is investigated using a recently developed nine-dimensional potential energy surface. The quantum dynamical model includes explicitly seven degrees of freedom of D 2 O at fixed surface sites, and the final results were obtained with a site-averaging model. The mode specificity in the site-specific results is reported and analyzed. Finally, the approximate sticking probabilities for various vibrationally excited states of D 2 O are obtained considering surface lattice effects and formally all nine degrees of freedom. The comparison with experiment reveals the inaccuracy of the density functional theory and suggests the need to improve the potential energy surface.
Rigid-body rotation of an electron cloud in divergent magnetic fields
International Nuclear Information System (INIS)
Fruchtman, A.; Gueroult, R.; Fisch, N. J.
2013-01-01
For a given voltage across a divergent poloidal magnetic field, two electric potential distributions, each supported by a rigid-rotor electron cloud rotating with a different frequency, are found analytically. The two rotation frequencies correspond to the slow and fast rotation frequencies known in uniform plasma. Due to the centrifugal force, the equipotential surfaces, that correspond to the two electric potential distributions, diverge more than the magnetic surfaces do, the equipotential surfaces in the fast mode diverge largely in particular. The departure of the equipotential surfaces from the magnetic field surfaces may have a significant focusing effect on the ions accelerated by the electric field. The focusing effect could be important for laboratory plasma accelerators as well as for collimation of astrophysical jets
Global finite-time attitude stabilization for rigid spacecraft in the exponential coordinates
Shi, Xiao-Ning; Zhou, Zhi-Gang; Zhou, Di
2018-06-01
This paper addresses the global finite-time attitude stabilisation problem on the special orthogonal group (SO(3)) for a rigid spacecraft via homogeneous feedback approach. Considering the topological and geometric properties of SO(3), the logarithm map is utilised to transform the stabilisation problem on SO(3) into the one on its associated Lie algebra (?). A model-independent discontinuous state feedback plus dynamics compensation scheme is constructed to achieve the global finite-time attitude stabilisation in a coordinate-invariant way. In addition, to address the absence of angular velocity measurements, a sliding mode observer is proposed to reconstruct the unknown angular velocity information within finite time. Then, an observer-based finite-time output feedback control strategy is obtained. Numerical simulations are finally performed to demonstrate the effectiveness of the proposed finite-time controllers.
Optical phonon modes of wurtzite InP
Gadret, E. G.; de Lima, M. M.; Madureira, J. R.; Chiaramonte, T.; Cotta, M. A.; Iikawa, F.; Cantarero, A.
2013-03-01
Optical vibration modes of InP nanowires in the wurtzite phase were investigated by Raman scattering spectroscopy. The wires were grown along the [0001] axis by the vapor-liquid-solid method. The A1(TO), E2h, and E1(TO) phonon modes of the wurtzite symmetry were identified by using light linearly polarized along different directions in backscattering configuration. Additionally, forbidden longitudinal optical modes have also been observed. Furthermore, by applying an extended 11-parameter rigid-ion model, the complete dispersion relations of InP in the wurtzite phase have been calculated, showing a good agreement with the Raman experimental data.
Viscoelastic materials with anisotropic rigid particles: stress-deformation behavior
Sagis, L.M.C.; Linden, van der E.
2001-01-01
In this paper we have derived constitutive equations for the stress tensor of a viscoelastic material with anisotropic rigid particles. We have assumed that the material has fading memory. The expressions are valid for slow and small deformations from equilibrium, and for systems that are nearly
Rigidity and bradykinesia reduce interlimb coordination in Parkinsonian gait
Winogrodzka, Ania; Wagenaar, Robert C.; Booij, Jan; Wolters, Eric C.
2005-01-01
Objective: To assess the influence of rigidity and bradykinesia and the extent of dopaminergic degeneration on interlimb coordination during walking in early, drug-naive patients with Parkinson's disease (PD). Design: The interlimb coordination was examined during a systematic manipulation of
Calculating ensemble averaged descriptions of protein rigidity without sampling.
Directory of Open Access Journals (Sweden)
Luis C González
Full Text Available Previous works have demonstrated that protein rigidity is related to thermodynamic stability, especially under conditions that favor formation of native structure. Mechanical network rigidity properties of a single conformation are efficiently calculated using the integer body-bar Pebble Game (PG algorithm. However, thermodynamic properties require averaging over many samples from the ensemble of accessible conformations to accurately account for fluctuations in network topology. We have developed a mean field Virtual Pebble Game (VPG that represents the ensemble of networks by a single effective network. That is, all possible number of distance constraints (or bars that can form between a pair of rigid bodies is replaced by the average number. The resulting effective network is viewed as having weighted edges, where the weight of an edge quantifies its capacity to absorb degrees of freedom. The VPG is interpreted as a flow problem on this effective network, which eliminates the need to sample. Across a nonredundant dataset of 272 protein structures, we apply the VPG to proteins for the first time. Our results show numerically and visually that the rigidity characterizations of the VPG accurately reflect the ensemble averaged [Formula: see text] properties. This result positions the VPG as an efficient alternative to understand the mechanical role that chemical interactions play in maintaining protein stability.
Calculating ensemble averaged descriptions of protein rigidity without sampling.
González, Luis C; Wang, Hui; Livesay, Dennis R; Jacobs, Donald J
2012-01-01
Previous works have demonstrated that protein rigidity is related to thermodynamic stability, especially under conditions that favor formation of native structure. Mechanical network rigidity properties of a single conformation are efficiently calculated using the integer body-bar Pebble Game (PG) algorithm. However, thermodynamic properties require averaging over many samples from the ensemble of accessible conformations to accurately account for fluctuations in network topology. We have developed a mean field Virtual Pebble Game (VPG) that represents the ensemble of networks by a single effective network. That is, all possible number of distance constraints (or bars) that can form between a pair of rigid bodies is replaced by the average number. The resulting effective network is viewed as having weighted edges, where the weight of an edge quantifies its capacity to absorb degrees of freedom. The VPG is interpreted as a flow problem on this effective network, which eliminates the need to sample. Across a nonredundant dataset of 272 protein structures, we apply the VPG to proteins for the first time. Our results show numerically and visually that the rigidity characterizations of the VPG accurately reflect the ensemble averaged [Formula: see text] properties. This result positions the VPG as an efficient alternative to understand the mechanical role that chemical interactions play in maintaining protein stability.
Patient satisfaction related to rigid external distraction osteogenesis
van Eggermont, Bas; Jansma, J.; Bierman, M. W. J.; Stegenga, B.
2007-01-01
The aim of this study was to evaluate satisfaction with treatment among cleft lip and palate patients who underwent maxillary advancement using a rigid external distraction (RED) device. Nine patients (four boys, five girls), mean age 17.7 years (SD 4.0), were included in the study. Outcome measures
Short Communication: Statistical determination of the rigidity in ...
African Journals Online (AJOL)
From the graph of load against displacement, the rigidity in flexion at different moisture levels was determined from which the Young modulus was calculated. Linear regression models were fitted to the data and the results showed significant correlation coefficients between the Young modulus and moisture content for each ...
Connect-disconnect coupling for preadjusted rigid shafts
Bajkowski, F. W.; Holmberg, A.
1969-01-01
Coupling device enables a rigid shaft to be connected to or disconnected from a fixed base without disturbing the point of adjustment of the shaft in a socket or causing the shaft to rotate. The coupling consists of an externally threaded, internally slotted boss extending from the fixed base.
Rigidity percolation in dispersions with a structured viscoelastic matrix
Wilbrink, M.W.L.; Michels, M.A.J.; Vellinga, W.P.; Meijer, H.E.H.
2005-01-01
This paper deals with rigidity percolation in composite materials consisting of a dispersion of mineral particles in a microstructured viscoelastic matrix. The viscoelastic matrix in this specific case is a hydrocarbon refinery residue. In a set of model random composites the mean interparticle
Centrifuge modelling of rigid piles in soft clay
DEFF Research Database (Denmark)
Klinkvort, R.T.; Poder, M.; Truong, P.
2016-01-01
of this study is to employ centrifuge modelling in order to derive experimental p-y curves for rigid piles embedded in over-consolidated soft clay. A kaolin clay sample was prepared and pre-consolidated by applying a constant pressure at the soil surface, while different over-consolidation ratios were achieved...
Customizable rigid head fixation for infants: technical note.
Udayakumaran, Suhas; Onyia, Chiazor U
2016-01-01
The need and advantages of rigid fixation of the head in cranial surgeries are well documented (Berryhill et al., Otolaryngol Head Neck Surg 121:269-273, 1999). Head fixation for neurosurgical procedures in infants and in early years has been a challenge and is fraught with risk. Despite the fact that pediatric pins are designed, rigid head fixation involving direct application of pins to the head of infants and slightly older children is still generally not safe (Agrawal and Steinbok, Childs Nerv Syst 22:1473-1474, 2006). Yet, there are some surgeries in which some form of rigid fixation is required (Agrawal and Steinbok, Childs Nerv Syst 22:1473-1474, 2006). We describe a simple technique to achieve rigid fixation of the head in infants for neurosurgical procedures. This involves applying a head band made of Plaster of Paris (POP) around the head and then applying the fixation pins of the fixation frame directly on to the POP. We have used this technique of head fixation successfully for infants with no complications.
Study of rigidity of semiconducting vanadate glasses and its ...
Indian Academy of Sciences (India)
These parameters along with the coordination number of the glasses affect the glass transition temperature. The correlation between the elastic moduli and thermal properties of these samples showed that 0.25MoO3–0.25PbO–0.5V2O5 glass is the most rigid and has an applicable glass transition temperature for coating.
Rigidity theorem for Willmore surfaces in a sphere
Indian Academy of Sciences (India)
(Math. Sci.) Vol. 126, No. 2, May 2016, pp. 253–260. c Indian Academy of Sciences. Rigidity theorem for Willmore surfaces in a sphere. HONGWEI XU1 and DENGYUN YANG2,∗. 1Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027,. People's Republic of China. 2College of Mathematics and ...
Accuracy limit of rigid 3-point water models
Izadi, Saeed; Onufriev, Alexey V.
2016-08-01
Classical 3-point rigid water models are most widely used due to their computational efficiency. Recently, we introduced a new approach to constructing classical rigid water models [S. Izadi et al., J. Phys. Chem. Lett. 5, 3863 (2014)], which permits a virtually exhaustive search for globally optimal model parameters in the sub-space that is most relevant to the electrostatic properties of the water molecule in liquid phase. Here we apply the approach to develop a 3-point Optimal Point Charge (OPC3) water model. OPC3 is significantly more accurate than the commonly used water models of same class (TIP3P and SPCE) in reproducing a comprehensive set of liquid bulk properties, over a wide range of temperatures. Beyond bulk properties, we show that OPC3 predicts the intrinsic charge hydration asymmetry (CHA) of water — a characteristic dependence of hydration free energy on the sign of the solute charge — in very close agreement with experiment. Two other recent 3-point rigid water models, TIP3PFB and H2ODC, each developed by its own, completely different optimization method, approach the global accuracy optimum represented by OPC3 in both the parameter space and accuracy of bulk properties. Thus, we argue that an accuracy limit of practical 3-point rigid non-polarizable models has effectively been reached; remaining accuracy issues are discussed.
Rigid rod spaced fullerene as building block for nanoclusters
Indian Academy of Sciences (India)
By using phenylacetylene based rigid-rod linkers (PhA), we have successfully synthesized two fullerene derivatives, C60-PhA and C60-PhA-C60. The absorption spectral features of C60, as well as that of the phenylacetylene moiety are retained in the monomeric forms of these fullerene derivatives, ruling out the possibility ...
Hydrodynamics of a flexible plate between pitching rigid plates
Kim, Junyoung; Kim, Daegyoum
2017-11-01
The dynamics of a flexible plate have been studied as a model problem in swimming and flying of animals and fluid-structure interaction of plants and flags. Motivated by fish schooling and an array of sea grasses, we investigate the dynamics of a flexible plate closely placed between two pitching rigid plates. In most studies on passive deformation of the flexible plate, the plate is immersed in a uniform flow or a wavy flow. However, in this study, the flexible plate experiences periodic deformation by the oscillatory flow generated by the prescribed pitching motion of the rigid plates. In our model, the pitching axes of the rigid plates and the clamping position of the flexible plate are aligned on the same line. The flexible plate shows various responses depending on length and pitching frequency of rigid plates, thickness of a flexible plate, and free-stream velocity. To find the effect of each variable on the response of the flexible plate, amplitude of a trailing edge and modal contribution of a flapping motion are compared, and flow structure around the flexible plate is examined.
Flexible (Polyactive®) versus rigid (hydroxyapatite) dental implants
Meijer, G.J.; Heethaar, J.; Cune, M.S.; de Putter, C.; van Blitterswijk, Clemens
1997-01-01
In a beagle dog study, the peri-implant bone changes around flexible (Polyactive®) and rigid hydroxyapatite (HA) implants were investigated radiographically by quantitative digital subtraction analysis and by assessment of marginal bone height, with the aid of a computerized method. A loss of
"Mind the trap": mindfulness practice reduces cognitive rigidity.
Directory of Open Access Journals (Sweden)
Jonathan Greenberg
Full Text Available Two experiments examined the relation between mindfulness practice and cognitive rigidity by using a variation of the Einstellung water jar task. Participants were required to use three hypothetical jars to obtain a specific amount of water. Initial problems were solvable by the same complex formula, but in later problems ("critical" or "trap" problems solving was possible by an additional much simpler formula. A rigidity score was compiled through perseverance of the complex formula. In Experiment 1, experienced mindfulness meditators received significantly lower rigidity scores than non-meditators who had registered for their first meditation retreat. Similar results were obtained in randomized controlled Experiment 2 comparing non-meditators who underwent an eight meeting mindfulness program with a waiting list group. The authors conclude that mindfulness meditation reduces cognitive rigidity via the tendency to be "blinded" by experience. Results are discussed in light of the benefits of mindfulness practice regarding a reduced tendency to overlook novel and adaptive ways of responding due to past experience, both in and out of the clinical setting.
A survey on stability and rigidity results for Lie algebras
Crainic, Marius; Schätz, Florian; Struchiner, Ivan
2014-01-01
We give simple and unified proofs of the known stability and rigidity results for Lie algebras, Lie subalgebras and Lie algebra homomorphisms. Moreover, we investigate when a Lie algebra homomorphism is stable under all automorphisms of the codomain (including outer automorphisms).
21 CFR 886.5916 - Rigid gas permeable contact lens.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rigid gas permeable contact lens. 886.5916 Section 886.5916 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... against the cornea of the eye to correct vision conditions. The device is made of various materials, such...
Knowledge-In-Action: An Example with Rigid Body Motion
Da Costa, Sayonara Salvador Cabral; Moreira, Marco Antonio
2005-01-01
This paper reports the analysis of the resolution of a paper-and-pencil problem, by eight undergraduate students majoring in engineering (six) and physics (two) at the Pontifcia Universidade Catlica do Rio Grande do Sul, in Porto Alegre, Brazil. The problem concerns kinetics of a rigid body, and the analysis was done in the light of Johnson-Lairds…
Non-rigid registration by geometry-constrained diffusion
DEFF Research Database (Denmark)
Andresen, Per Rønsholt; Nielsen, Mads
1999-01-01
Assume that only partial knowledge about a non-rigid registration is given so that certain point, curves, or surfaces in one 3D image map to certain points, curves, or surfaces in another 3D image. We are facing the aperture problem because along the curves and surfaces, point correspondences...
Fast and anisotropic flexibility-rigidity index for protein flexibility and fluctuation analysis
Energy Technology Data Exchange (ETDEWEB)
Opron, Kristopher [Department of Biochemistry and Molecular Biology, Michigan State University, Michigan 48824 (United States); Xia, Kelin [Department of Mathematics, Michigan State University, Michigan 48824 (United States); Wei, Guo-Wei, E-mail: wei@math.msu.edu [Department of Biochemistry and Molecular Biology, Michigan State University, Michigan 48824 (United States); Department of Mathematics, Michigan State University, Michigan 48824 (United States); Department of Electrical and Computer Engineering, Michigan State University, Michigan 48824 (United States)
2014-06-21
Protein structural fluctuation, typically measured by Debye-Waller factors, or B-factors, is a manifestation of protein flexibility, which strongly correlates to protein function. The flexibility-rigidity index (FRI) is a newly proposed method for the construction of atomic rigidity functions required in the theory of continuum elasticity with atomic rigidity, which is a new multiscale formalism for describing excessively large biomolecular systems. The FRI method analyzes protein rigidity and flexibility and is capable of predicting protein B-factors without resorting to matrix diagonalization. A fundamental assumption used in the FRI is that protein structures are uniquely determined by various internal and external interactions, while the protein functions, such as stability and flexibility, are solely determined by the structure. As such, one can predict protein flexibility without resorting to the protein interaction Hamiltonian. Consequently, bypassing the matrix diagonalization, the original FRI has a computational complexity of O(N{sup 2}). This work introduces a fast FRI (fFRI) algorithm for the flexibility analysis of large macromolecules. The proposed fFRI further reduces the computational complexity to O(N). Additionally, we propose anisotropic FRI (aFRI) algorithms for the analysis of protein collective dynamics. The aFRI algorithms permit adaptive Hessian matrices, from a completely global 3N × 3N matrix to completely local 3 × 3 matrices. These 3 × 3 matrices, despite being calculated locally, also contain non-local correlation information. Eigenvectors obtained from the proposed aFRI algorithms are able to demonstrate collective motions. Moreover, we investigate the performance of FRI by employing four families of radial basis correlation functions. Both parameter optimized and parameter-free FRI methods are explored. Furthermore, we compare the accuracy and efficiency of FRI with some established approaches to flexibility analysis, namely
Strategic rigidity and foresight for technology adoption among electric utilities
International Nuclear Information System (INIS)
Shah, Arsalan Nisar; Palacios, Miguel; Ruiz, Felipe
2013-01-01
The variation in the adoption of a technology as a major source of competitive advantage has been attributed to the wide-ranging strategic foresight and the integrative capability of a firm. These possible areas of competitive advantage can exist in the periphery of the firm's strategic vision and can get easily blurred as a result of rigidness and can permeate in the decision-making process of the firm. This article explores how electric utility firms with a renewable energy portfolio can become strategically rigid in terms of adoption of newer technologies. The reluctance or delay in the adoption of new technology can be characterized as strategic rigidness, brought upon as a result of a firm's core competence or core capability in the other, more conventional technology arrangement. This paper explores the implications of such rigidness on the performance of a firm and consequently on the energy eco-system. The paper substantiates the results by emphasizing the case of Iberdrola S.A., an incumbent firm as a wind energy developer and its adoption decision behavior. We illustrate that the very routines that create competitive advantage for firms in the electric utility industry are vulnerable as they might also develop as sources of competitive disadvantage, when firms confront environmental change and uncertainty. - Highlights: • Present a firm-level perspective on technology adoption behavior among electric utilities. • Firms with mature technology can become rigid towards newer technologies. • Case study analysis of a major electric utility firm. • Implications of ‘technology rigidness’ on the energy eco-system
Matrix rigidity regulates cancer cell growth and cellular phenotype.
Directory of Open Access Journals (Sweden)
Robert W Tilghman
2010-09-01
Full Text Available The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness of the microenvironment and how this response varies among cancer cell lines.In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: "rigidity dependent" (those which show an increase in cell growth as extracellular rigidity is increased, and "rigidity independent" (those which grow equally on both soft and stiff substrates. Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug.These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models.
Matrix Rigidity Regulates Cancer Cell Growth and Cellular Phenotype
Tilghman, Robert W.; Cowan, Catharine R.; Mih, Justin D.; Koryakina, Yulia; Gioeli, Daniel; Slack-Davis, Jill K.; Blackman, Brett R.; Tschumperlin, Daniel J.; Parsons, J. Thomas
2010-01-01
Background The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness) of the microenvironment and how this response varies among cancer cell lines. Methodology/Principal Findings In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: “rigidity dependent” (those which show an increase in cell growth as extracellular rigidity is increased), and “rigidity independent” (those which grow equally on both soft and stiff substrates). Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug. Conclusions/Significance These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models. PMID:20886123
Initial Development of an Electronic Testis Rigidity Tester
Directory of Open Access Journals (Sweden)
Petros Mirilas
2011-01-01
Full Text Available We aimed to develop our previously presented mechanical device, the Testis Rigidity Tester (TRT, into an electronic system (Electronic Testis Rigidity Tester, ETRT by applying tactile imaging, which has been used successfully with other solid organs. A measuring device, located at the front end of the ETRT incorporates a tactile sensor comprising an array of microsensors. By application of a predetermined deformation of 2 mm, increased pressure alters linearly the resistance of each microsensor, producing changes of voltage. These signals were amplified, filtered, and digitized, and then processed by an electronic collector system, which presented them as a color-filled contour plot of the area of the testis coming into contact with the sensor. Testis models of different rigidity served for initial evaluation of ETRT; their evacuated central spaces contained different, increasing glue masses. An independent method of rigidity measurement, using an electric weight scale and a micrometer, showed that the more the glue injected, the greater the force needed for a 2-mm deformation. In a preliminary test, a single sensor connected to a multimeter showed similar force measurement for the same deformation in these phantoms. For each of the testis models compressed in the same manner, the ETRT system offered a map of pressures, represented by a color scale within the contour plot of the contact area with the sensor. ETRT found certain differences in rigidity between models that had escaped detection by a blind observer. ETRT is easy to use and provides a color-coded “insight“ of the testis internal structure. After experimental testing, it could be valuable in intraoperative evaluation of testes, so that the surgeon can decide about orchectomy or orcheopexy.
Pediatric mandibular fractures treated by rigid internal fixation.
Wong, G B
1993-09-01
Mandibular fractures in the pediatric patient population are relatively uncommon. These patients present with their own unique treatment requirements. Most fractures have been treated conservatively by dental splints. Closed reduction techniques with maxillomandibular fixation (MMF) in very young children can pose several concerns, including cooperation, compliance and adequate nutritional intake. Rigid internal fixation of unstable mandibular fractures using miniplates and screws circumvents the need for MMF and allows immediate jaw mobilization. At major pediatric trauma institutions, there has been an increasing trend toward the use of this treatment when open reduction is necessary. This article presents a report of a five-year-old child who presented with bilateral mandibular fractures and was treated by rigid internal fixation and immediate mandibular mobilization.
Rigid inclusions-Comparison between analytical and numerical methods
International Nuclear Information System (INIS)
Gomez Perez, R.; Melentijevic, S.
2014-01-01
This paper compares different analytical methods for analysis of rigid inclusions with finite element modeling. First of all, the load transfer in the distribution layer is analyzed for its different thicknesses and different inclusion grids to define the range between results obtained by analytical and numerical methods. The interaction between the soft soil and the inclusion in the estimation of settlements is studied as well. Considering different stiffness of the soft soil, settlements obtained analytical and numerically are compared. The influence of the soft soil modulus of elasticity on the neutral point depth was also performed by finite elements. This depth has a great importance for the definition of the total length of rigid inclusion. (Author)
Rigidity of complete noncompact bach-flat n-manifolds
Chu, Yawei; Feng, Pinghua
2012-11-01
Let (Mn,g) be a complete noncompact Bach-flat n-manifold with the positive Yamabe constant and constant scalar curvature. Assume that the L2-norm of the trace-free Riemannian curvature tensor R∘m is finite. In this paper, we prove that (Mn,g) is a constant curvature space if the L-norm of R∘m is sufficiently small. Moreover, we get a gap theorem for (Mn,g) with positive scalar curvature. This can be viewed as a generalization of our earlier results of 4-dimensional Bach-flat manifolds with constant scalar curvature R≥0 [Y.W. Chu, A rigidity theorem for complete noncompact Bach-flat manifolds, J. Geom. Phys. 61 (2011) 516-521]. Furthermore, when n>9, we derive a rigidity result for R<0.
MRS2016: Rigid Moon Rotation Series in the Relativistic Approximation
Pashkevich, V. V.
2017-03-01
The rigid Moon rotation problem is studied for the relativistic (kinematical) case, in which the geodetic perturbations in the Moon rotation are taken into account. As the result of this research the high-precision Moon Rotation Series MRS2016 in the relativistic approximation was constructed for the first time and the discrepancies between the high-precision numerical and the semi-analytical solutions of the rigid Moon rotation were investigated with respect to the fixed ecliptic of epoch J2000, by the numerical and analytical methods. The residuals between the numerical solution and MRS2016 in the perturbing terms of the physical librations do not exceed 80 mas and 10 arc seconds over 2000 and 6000 years, respectively.
Partial ring currents and cosmic ray magnetic cutoff rigidity variations
International Nuclear Information System (INIS)
Arens, M.
1978-01-01
A short introduction on cosmic ray modulation and a description of the magnetosphere, and of some physical processes occurring within its boundaries are presented. 20 geomagnetic storms are analysed together with the cosmic ray intensities during these storms as measured by Neutron Monitors. Using a semi-empirical method, the variations in the magnetic cutoff rigidity for the mountain stations Pic du Midi and Jungfraujoch are deduced. These stations are the most sensitive for measuring these variations. The analysis shows that all analyzed storms have an asymmetric development phase. Often the asymmetry even continues during part of the recovery phase. It is shown that variations in magnetic cutoff rigidity occur only during the asymmetric phase of the storm. The largest variations are found when the cosmic ray station is located in the late afternoon-midnight sector. (Auth.)
A rigid lamb syndrome in sheep in Rhodesia.
Rudert, C P; Lawrence, J A; Foggin, C; Barlow, R M
1978-04-29
A syndrome characterised by the birth of lambs with varying degrees of rigidity of the limbs and spine has been encountered on several occasions in Rhodesia. Outbreaks have occurred in autumn-born lambs from Dorper ewes grazing heavily fertilised Star grass cv No 2 (Cynodon aethiopicus) pastures. The condition appears to be exacerbated by the application of sulphur to the pasture and is partly prevented by the administration of selenium and vitamin E to the ewes before lambing. The aetiology is unknown.
Nonlinear dynamics mathematical models for rigid bodies with a liquid
Lukovsky, Ivan A
2015-01-01
This book is devoted to analytically approximate methods in the nonlinear dynamics of a rigid body with cavities partly filled by liquid. It combines several methods and compares the results with experimental data. It is useful for experienced and early-stage readers interested in analytical approaches to fluid-structure interaction problems, the fundamental mathematical background and modeling the dynamics of such complex mechanical systems.
Steady fall of a rigid body in viscous fluid
Czech Academy of Sciences Publication Activity Database
Nečasová, Šárka
2005-01-01
Roč. 63, Sp. Is. (2005), s. 2113-2119 ISSN 0362-546X. [Invited Talks from the Fourth World Congress of Nonlinear Analysts (WCNA 2004). Orlando , 30.7.2004-7.8.2004] R&D Projects: GA ČR(CZ) GA201/02/0684 Institutional research plan: CEZ:AV0Z1019905 Keywords : steady fall * rigid body * viscous fluid Subject RIV: BA - General Mathematics Impact factor: 0.519, year: 2005
Oscillations of manometric tubular springs with rigid end
Cherentsov, D. A.; Pirogov, S. P.; Dorofeev, S. M.; Ryabova, Y. S.
2018-05-01
The paper presents a mathematical model of attenuating oscillations of manometric tubular springs (MTS) taking into account the rigid tip. The dynamic MTS model is presented in the form of a thin-walled curved rod oscillating in the plane of curvature of the central axis. Equations for MTS oscillations are obtained in accordance with the d’Alembert principle in projections onto the normal and tangential. The Bubnov-Galerkin method is used to solve the equations obtained.
On Polya's inequality for torsional rigidity and first Dirichlet eigenvalue
Berg, M. van den; Ferone, V.; Nitsch, C.; Trombetti, C.
2016-01-01
Let $\\Omega$ be an open set in Euclidean space with finite Lebesgue measure $|\\Omega|$. We obtain some properties of the set function $F:\\Omega\\mapsto \\R^+$ defined by $$ F(\\Omega)=\\frac{T(\\Omega)\\lambda_1(\\Omega)}{|\\Omega|} ,$$ where $T(\\Omega)$ and $\\lambda_1(\\Omega)$ are the torsional rigidity and the first eigenvalue of the Dirichlet Laplacian respectively. We improve the classical P\\'olya bound $F(\\Omega)\\le 1,$ and show that $$F(\\Omega)\\le 1- \
Vortex statistics for turbulence in a container with rigid boundaries
DEFF Research Database (Denmark)
Clercx, H.J.H.; Nielsen, A.H.
2000-01-01
The evolution of vortex statistics for decaying two-dimensional turbulence in a square container with rigid no-slip walls is compared with a few available experimental results and with the scaling theory of two-dimensional turbulent decay as proposed by Carnevale et al. Power-law exponents......, computed from an ensemble average of several numerical runs, coincide with some experimentally obtained values, but not with data obtained from numerical simulations of decaying two-dimensional turbulence with periodic boundary conditions....
Gas-induced friction and diffusion of rigid rotors
Martinetz, Lukas; Hornberger, Klaus; Stickler, Benjamin A.
2018-05-01
We derive the Boltzmann equation for the rotranslational dynamics of an arbitrary convex rigid body in a rarefied gas. It yields as a limiting case the Fokker-Planck equation accounting for friction, diffusion, and nonconservative drift forces and torques. We provide the rotranslational friction and diffusion tensors for specular and diffuse reflection off particles with spherical, cylindrical, and cuboidal shape, and show that the theory describes thermalization, photophoresis, and the inverse Magnus effect in the free molecular regime.
Polyester Polyols from Waste PET Bottles for Polyurethane Rigid Foams
Evtimova, Rozeta; Lozeva, Yordanka; Schmidt, Karl-Heinz; Wotzka, Michael; Wagner, Peter; Behrendt, Gerhard
2003-01-01
This paper describes a modified process to produce polyester polyols from PET wastes derived from the “bottle fraction residue” of the German Dual System (DSD) [11] employing a waste oligoester condensate of the polyesterification process with the addition of some glycols of longer chain and occasional modification with further dicarboxylic acids to produce polyester polyols of a broad range of properties which are further reacted to form polyurethane or polyisocyanurate rigid foams for insul...
Modyfication of the Rigid Polyurethane-Polyisocyanurate Foams
Bogusław Czupryński; Joanna Liszkowska; Joanna Paciorek-Sadowska
2014-01-01
The effect of polyethylene glycol 1500 on physicomechanical properties of rigid polyurethane-polyisocyanurate (PUR-PIR) foams has been studied. It was found that application of polyethylene glycol 1500 for synthesis of foams in amount from 0% to 20% w/w had an effect on reduction of brittleness and softening point, while the greater the increase in compressive strength the higher its content in foam composition was. Wastes from production of these foams were ground and subjected to glycolysis...
The US Fire Learning Network: Springing a Rigidity Trap through Multiscalar Collaborative Networks
Directory of Open Access Journals (Sweden)
William Hale. Butler
2010-09-01
Full Text Available Wildland fire management in the United States is caught in a rigidity trap, an inability to apply novelty and innovation in the midst of crisis. Despite wide recognition that public agencies should engage in ecological fire restoration, fire suppression still dominates planning and management, and restoration has failed to gain traction. The U.S. Fire Learning Network (FLN, a multiscalar collaborative endeavor established in 2002 by federal land management agencies and The Nature Conservancy, offers the potential to overcome barriers that inhibit restoration planning and management. By circulating people, planning products, and information among landscape- and regional-scale collaboratives, this network has facilitated the development and dissemination of innovative approaches to ecological fire restoration. Through experimentation and innovation generated in the network, the FLN has fostered change by influencing fire and land management plans as well as federal policy. We suggest that multiscalar collaborative planning networks such as the FLN can facilitate overcoming the rigidity traps that prevent resource management agencies from responding to complex cross-scalar problems.
Simulating coupled dynamics of a rigid-flexible multibody system and compressible fluid
Hu, Wei; Tian, Qiang; Hu, HaiYan
2018-04-01
As a subsequent work of previous studies of authors, a new parallel computation approach is proposed to simulate the coupled dynamics of a rigid-flexible multibody system and compressible fluid. In this approach, the smoothed particle hydrodynamics (SPH) method is used to model the compressible fluid, the natural coordinate formulation (NCF) and absolute nodal coordinate formulation (ANCF) are used to model the rigid and flexible bodies, respectively. In order to model the compressible fluid properly and efficiently via SPH method, three measures are taken as follows. The first is to use the Riemann solver to cope with the fluid compressibility, the second is to define virtual particles of SPH to model the dynamic interaction between the fluid and the multibody system, and the third is to impose the boundary conditions of periodical inflow and outflow to reduce the number of SPH particles involved in the computation process. Afterwards, a parallel computation strategy is proposed based on the graphics processing unit (GPU) to detect the neighboring SPH particles and to solve the dynamic equations of SPH particles in order to improve the computation efficiency. Meanwhile, the generalized-alpha algorithm is used to solve the dynamic equations of the multibody system. Finally, four case studies are given to validate the proposed parallel computation approach.
LENUS (Irish Health Repository)
Ahmad, Nasir Zaheer
2012-06-01
Rigid sigmoidoscopy is sometimes performed at first presentation in colorectal clinics. We assessed the feasibility of flexible sigmoidoscopy in similar situations by comparing it with rigid sigmoidoscopy as a first investigative tool.
Towards Sub-Microarsecond Rigid Earth Nutation Series in the Hamiltonian Theory
National Research Council Canada - National Science Library
Souchay, Jean; Folgueira, M
2000-01-01
...) are based on the works of Kinoshita (1977) and Wahr (1979). In Kinoshita's work, the rigid Earth nutation series were calculated by the application of the Hamiltonian canonical equations to the rotation of the rigid and elliptical Earth...
Chiral Orientation of Skeletal Muscle Cells Requires Rigid Substrate
Directory of Open Access Journals (Sweden)
Ninghao Zhu
2017-06-01
Full Text Available Reconstitution of tissue morphology with inherent left–right (LR asymmetry is essential for tissue/organ functions. For skeletal muscle, the largest tissue in mammalian organisms, successful myogenesis requires the regulation of the LR asymmetry to form the appropriate muscle alignment. However, the key factor for reproducing the LR asymmetry of skeletal tissues in a controllable, engineering context remains largely unknown. Recent reports indicate that cell chirality may underlie the LR development in tissue morphogenesis. Here, we report that a rigid substrate is required for the chirality of skeletal muscle cells. By using alternating micropatterned cell-adherent and cell-repellent stripes on a rigid substrate, we found that C2C12 skeletal muscle myoblasts exhibited a unidirectional tilted orientation with respect to the stripe boundary. Importantly, such chiral orientation was reduced when soft substrates were used instead. In addition, we demonstrated the key role of actin stress fibers in the formation of the chiral orientation. This study reveals that a rigid substrate is required for the chiral pattern of myoblasts, paving the way for reconstructing damaged muscle tissue with inherent LR asymmetry in the future.
Experimental consequences of predicted charge rigidity of superconductors
Energy Technology Data Exchange (ETDEWEB)
Hirsch, J.E., E-mail: jhirsch@ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093-0319 (United States)
2012-08-15
The theory of hole superconductivity predicts that in superconductors the charged superfluid is about a million times more rigid than the normal electron fluid. We point out that this physics should give rise to large changes in the bulk and surface plasmon dispersion relations of metals entering the superconducting state, that have not yet been experimentally detected and would be in stark contradiction with the expected behavior within conventional BCS-London theory. We also propose that this explains the puzzling experimental observations of Avramenko et al. on electron sound propagation in superconductors and the puzzling experiments of de Heer et al. detecting large electric dipole moments in small metal clusters, as well as the Tao effect on aggregation of superconducting microparticles in an electric field. Associated with the enhanced charge rigidity is a large increase in the electric screening length of superconductors at low temperatures that has not yet been experimentally detected. The physical origin of the enhanced charge rigidity and its relation to other aspects of the theory of hole superconductivity is discussed.
Field dependent cosmic ray streaming at high rigidities
International Nuclear Information System (INIS)
Swinson, D.B.
1976-01-01
Data from underground μ meson telescopes at depths of 25, 40, and 80 mwe covering the period 1965--1973 have been analyzed as a function of interplanetary magnetic field direction. Cosmic ray streaming both in and perpendicular to the ecliptic plane, with directions dependent on the sense of the interplanetary magnetic field, is observed throughout the period at all depths. The field dependent streaming in the ecliptic plane exhibits some variability in amplitude and phase but contains a component in the direction perpendicular to the interplanetary magnetic field direction which is consistent with B x delN streaming due to a perpendicular cosmic ray density gradient pointing southward (higher density below the ecliptic plane than above it). In the case of the field dependent streaming perpendicular to the ecliptic plane the direction of the streaming has remained remarkably consistent over the 9-year period. One possible source of this streaming is B x delN streaming due to a radial heliocentric cosmic ray density gradient; this possibility is discussed along with other possible sources. There does not appear to be an obvious variation in the amplitude of the field dependent streaming either in or perpendicular to the ecliptic plane with increasing rigidity; both effects are still apparent at rigidities well above the 52-GV threshold rigidity of the Socorro 80-mwe telescope. The amplitudes of both anisotropies appear larger at solar maximum than at solar minimum
Rigid Body Energy Minimization on Manifolds for Molecular Docking.
Mirzaei, Hanieh; Beglov, Dmitri; Paschalidis, Ioannis Ch; Vajda, Sandor; Vakili, Pirooz; Kozakov, Dima
2012-11-13
Virtually all docking methods include some local continuous minimization of an energy/scoring function in order to remove steric clashes and obtain more reliable energy values. In this paper, we describe an efficient rigid-body optimization algorithm that, compared to the most widely used algorithms, converges approximately an order of magnitude faster to conformations with equal or slightly lower energy. The space of rigid body transformations is a nonlinear manifold, namely, a space which locally resembles a Euclidean space. We use a canonical parametrization of the manifold, called the exponential parametrization, to map the Euclidean tangent space of the manifold onto the manifold itself. Thus, we locally transform the rigid body optimization to an optimization over a Euclidean space where basic optimization algorithms are applicable. Compared to commonly used methods, this formulation substantially reduces the dimension of the search space. As a result, it requires far fewer costly function and gradient evaluations and leads to a more efficient algorithm. We have selected the LBFGS quasi-Newton method for local optimization since it uses only gradient information to obtain second order information about the energy function and avoids the far more costly direct Hessian evaluations. Two applications, one in protein-protein docking, and the other in protein-small molecular interactions, as part of macromolecular docking protocols are presented. The code is available to the community under open source license, and with minimal effort can be incorporated into any molecular modeling package.
Crack identification for rigid pavements using unmanned aerial vehicles
Bahaddin Ersoz, Ahmet; Pekcan, Onur; Teke, Turker
2017-09-01
Pavement condition assessment is an essential piece of modern pavement management systems as rehabilitation strategies are planned based upon its outcomes. For proper evaluation of existing pavements, they must be continuously and effectively monitored using practical means. Conventionally, truck-based pavement monitoring systems have been in-use in assessing the remaining life of in-service pavements. Although such systems produce accurate results, their use can be expensive and data processing can be time consuming, which make them infeasible considering the demand for quick pavement evaluation. To overcome such problems, Unmanned Aerial Vehicles (UAVs) can be used as an alternative as they are relatively cheaper and easier-to-use. In this study, we propose a UAV based pavement crack identification system for monitoring rigid pavements’ existing conditions. The system consists of recently introduced image processing algorithms used together with conventional machine learning techniques, both of which are used to perform detection of cracks on rigid pavements’ surface and their classification. Through image processing, the distinct features of labelled crack bodies are first obtained from the UAV based images and then used for training of a Support Vector Machine (SVM) model. The performance of the developed SVM model was assessed with a field study performed along a rigid pavement exposed to low traffic and serious temperature changes. Available cracks were classified using the UAV based system and obtained results indicate it ensures a good alternative solution for pavement monitoring applications.
Green waste cooking oil-based rigid polyurethane foam
Enderus, N. F.; Tahir, S. M.
2017-11-01
Polyurethane is a versatile polymer traditionally prepared using petroleum-based raw material. Petroleum, however, is a non-renewable material and polyurethane produced was found to be non-biodegradable. In quest for a more environmentally friendly alternative, wastecooking oil, a highly abundant domestic waste with easily derivatized structure, is a viable candidate to replace petroleum. In this study,an investigation to determine physical and chemical properties of rigid polyurethane (PU) foam from waste cooking oil (WCO) was carried out. WCO was first adsorbed by using coconut husk activated carbon adsorbent prior to be used for polyol synthesis. The purified WCO was then used to synthesize polyol via transesterification reaction to yield alcohol groups in the WCO chains structure. Finally, the WCO-based polyol was used to prepare rigid PU foam. The optimum formulation for PU formation was found to be 90 polyol: 60 glycerol: 54 water: 40 diethanolamine: 23 diisocyanate. The rigid PU foam has density of 208.4 kg/m3 with maximum compressive strength and capability to receive load at 0.03 MPa and 0.09 kN, respectively. WCO-based PU can potentially be used to replace petroleum-based PU as house construction materials such as insulation panels.
Mitri, F G; Fellah, Z E A
2011-08-01
The present investigation examines the instantaneous force resulting from the interaction of an acoustical high-order Bessel vortex beam (HOBVB) with a rigid sphere. The rigid sphere case is important in fluid dynamics applications because it perfectly simulates the interaction of instantaneous sound waves in a reduced gravity environment with a levitated spherical liquid soft drop in air. Here, a closed-form solution for the instantaneous force involving the total pressure field as well as the Bessel beam parameters is obtained for the case of progressive, stationary and quasi-stationary waves. Instantaneous force examples for progressive waves are computed for both a fixed and a movable rigid sphere. The results show how the instantaneous force per unit cross-sectional surface and unit pressure varies versus the dimensionless frequency ka (k is the wave number in the fluid medium and a is the sphere's radius), the half-cone angle β and the order m of the HOBVB. It is demonstrated here that the instantaneous force is determined only for (m,n) = (0,1) (where n is the partial-wave number), and vanishes for m>0 because of symmetry. In addition, the instantaneous force and normalized amplitude velocity results are computed and compared with those of a rigid immovable (fixed) sphere. It is shown that they differ significantly for ka values below 5. The proposed analysis may be of interest in the analysis of instantaneous forces on spherical particles for particle manipulation, filtering, trapping and drug delivery. The presented solutions may also serve as a method for comparison to other solutions obtained by strictly numerical or asymptotic approaches. Copyright © 2011 Elsevier B.V. All rights reserved.
Reduction of sound transmission across plenum windows by incorporating an array of rigid cylinders
Tang, S. K.
2018-02-01
The potential improvement of plenum window noise reduction by installing rigid circular cylinder arrays into the window cavity is investigated numerically using the finite-element method in this study. A two-dimensional approach is adopted. The sound transmission characteristics and propagation within the plenum window are also examined in detail. Results show that the installation of the cylinders in general gives rise to broadband improvement of noise reduction across a plenum window regardless of the direction of sound incidence. Such acoustical performance becomes better when more cylinder columns are installed, but it is suggested that the number of cylinder rows should not exceed two. Results also show that the cylinder positions relative to the nodal/anti-nodal planes of the acoustic modes are crucial in the noise reduction enhancement mechanisms. Noise reduction can further be enhanced by staggering the cylinder rows, such that each cylinder row supports the development of a different acoustic mode. For the simple cylinder arrangements considered in this study, the traffic noise reduction enhancement observed in this study can be as high as 4-5 dB, which is already comparable to or higher than the maximum achieved by installing sound absorption into a plenum window.
Multiscale multiphysics and multidomain models—Flexibility and rigidity
International Nuclear Information System (INIS)
Xia, Kelin; Opron, Kristopher; Wei, Guo-Wei
2013-01-01
The emerging complexity of large macromolecules has led to challenges in their full scale theoretical description and computer simulation. Multiscale multiphysics and multidomain models have been introduced to reduce the number of degrees of freedom while maintaining modeling accuracy and achieving computational efficiency. A total energy functional is constructed to put energies for polar and nonpolar solvation, chemical potential, fluid flow, molecular mechanics, and elastic dynamics on an equal footing. The variational principle is utilized to derive coupled governing equations for the above mentioned multiphysical descriptions. Among these governing equations is the Poisson-Boltzmann equation which describes continuum electrostatics with atomic charges. The present work introduces the theory of continuum elasticity with atomic rigidity (CEWAR). The essence of CEWAR is to formulate the shear modulus as a continuous function of atomic rigidity. As a result, the dynamics complexity of a macromolecular system is separated from its static complexity so that the more time-consuming dynamics is handled with continuum elasticity theory, while the less time-consuming static analysis is pursued with atomic approaches. We propose a simple method, flexibility-rigidity index (FRI), to analyze macromolecular flexibility and rigidity in atomic detail. The construction of FRI relies on the fundamental assumption that protein functions, such as flexibility, rigidity, and energy, are entirely determined by the structure of the protein and its environment, although the structure is in turn determined by all the interactions. As such, the FRI measures the topological connectivity of protein atoms or residues and characterizes the geometric compactness of the protein structure. As a consequence, the FRI does not resort to the interaction Hamiltonian and bypasses matrix diagonalization, which underpins most other flexibility analysis methods. FRI's computational complexity is of O
Bang-Bang Practical Stabilization of Rigid Bodies
Serpelloni, Edoardo
In this thesis, we study the problem of designing a practical stabilizer for a rigid body equipped with a set of actuators generating only constant thrust. Our motivation stems from the fact that modern space missions are required to accurately control the position and orientation of spacecraft actuated by constant-thrust jet-thrusters. To comply with the performance limitations of modern thrusters, we design a feedback controller that does not induce high-frequency switching of the actuators. The proposed controller is hybrid and it asymptotically stabilizes an arbitrarily small compact neighborhood of the target position and orientation of the rigid body. The controller is characterized by a hierarchical structure comprising of two control layers. At the low level of the hierarchy, an attitude controller stabilizes the target orientation of the rigid body. At the high level, after the attitude controller has steered the rigid body sufficiently close to its desired orientation, a position controller stabilizes the desired position. The size of the neighborhood being stabilized by the controller can be adjusted via a proper selection of the controller parameters. This allows us to stabilize the rigid body to virtually any degree of accuracy. It is shown that the controller, even in the presence of measurement noise, does not induce high-frequency switching of the actuators. The key component in the design of the controller is a hybrid stabilizer for the origin of double-integrators affected by bounded external perturbations. Specifically, both the position and the attitude stabilizers consist of multiple copies of such a double-integrator controller. The proposed controller is applied to two realistic spacecraft control problems. First, we apply the position controller to the problem of stabilizing the relative position between two spacecraft flying in formation in the vicinity of the L2 libration point of the Sun-Earth system as a part of a large space telescope
The diagnostic role of thoracoscope in undiagnosed pleural effusion: Rigid versus flexible
Directory of Open Access Journals (Sweden)
Mostafa Mahmoud Abdel Mageid Shaheen
2014-07-01
Conclusions: Thoracoscopy using either fibreoptic bronchoscope or rigid thoracoscope is safe and well tolerated. Rigid thoracoscope has a higher diagnostic yield, easier handling, better orientation and is less expensive. Nevertheless, fibreoptic bronchoscope is an alternative technique if rigid thoracoscopy is not available.
Zhang, Jiuquan; Wei, Luqing; Hu, Xiaofei; Xie, Bing; Zhang, Yanling; Wu, Guo-Rong; Wang, Jian
2015-01-01
Parkinson's disease (PD) is a surprisingly heterogeneous neurodegenerative disorder. It is well established that different subtypes of PD present with different clinical courses and prognoses. However, the neural mechanism underlying these disparate presentations is uncertain. Here we used resting-state fMRI (rs-fMRI) and the regional homogeneity (ReHo) method to determine neural activity patterns in the two main clinical subgroups of PD (akinetic-rigid and tremor-dominant). Compared with healthy controls, akinetic-rigid (AR) subjects had increased ReHo mainly in right amygdala, left putamen, bilateral angular gyrus, bilateral medial prefrontal cortex (MPFC), and decreased ReHo in left post cingulate gyrus/precuneus (PCC/PCu) and bilateral thalamus. In contrast, tremor-dominant (TD) patients showed higher ReHo mostly in bilateral angular gyrus, left PCC, cerebellum_crus1, and cerebellum_6, while ReHo was decreased in right putamen, primary sensory cortex (S1), vermis_3, and cerebellum_4_5. These results indicate that AR and TD subgroups both represent altered spontaneous neural activity in default-mode regions and striatum, and AR subjects exhibit more changed neural activity in the mesolimbic cortex (amygdala) but TD in the cerebellar regions. Of note, direct comparison of the two subgroups revealed a distinct ReHo pattern primarily located in the striatal-thalamo-cortical (STC) and cerebello-thalamo-cortical (CTC) loops. Overall, our findings highlight the involvement of default mode network (DMN) and STC circuit both in AR and TD subtypes, but also underscore the importance of integrating mesolimbic-striatal and CTC loops in understanding neural systems of akinesia and rigidity, as well as resting tremor in PD. This study provides improved understanding of the pathophysiological models of different subtypes of PD. Copyright © 2014 Elsevier Ltd. All rights reserved.
Conservative rigid body dynamics by convected base vectors with implicit constraints
DEFF Research Database (Denmark)
Krenk, Steen; Nielsen, Martin Bjerre
2014-01-01
of differential equations without additional algebraic constraints on the base vectors. A discretized form of the equations of motion is obtained by starting from a finite time increment of the Hamiltonian, and retracing the steps of the continuous formulation in discrete form in terms of increments and mean...... of the base vectors. Orthogonality and unit length of the base vectors are imposed by constraining the equivalent Green strain components, and the kinetic energy is represented corresponding to rigid body motion. The equations of motion are obtained via Hamilton’s equations including the zero...... values over each integration time increment. In this discrete form the Lagrange multipliers are given in terms of a representative value within the integration time interval, and the equations of motion are recast into a conservative mean-value and finite difference format. The Lagrange multipliers...
Barber, F Alan
2013-09-01
To compare the load-to-failure pullout strength of bone-patellar tendon-bone (BPTB) allografts in human cadaver tibias and rigid polyurethane foam blocks. Twenty BPTB allografts were trimmed creating 25 mm × 10 mm × 10 mm tibial plugs. Ten-millimeter tunnels were drilled in 10 human cadaver tibias and 10 rigid polyurethane foam blocks. The BPTB anterior cruciate ligament allografts were inserted into these tunnels and secured with metal interference screws, with placement of 10 of each type in each material. After preloading (10 N), cyclic loading (500 cycles, 10 to 150 N at 200 mm/min) and load-to-failure testing (200 mm/min) were performed. The endpoints were ultimate failure load, cyclic loading elongation, and failure mode. No difference in ultimate failure load existed between grafts inserted into rigid polyurethane foam blocks (705 N) and those in cadaver tibias (669 N) (P = .69). The mean rigid polyurethane foam block elongation (0.211 mm) was less than that in tibial bone (0.470 mm) (P = .038), with a smaller standard deviation (0.07 mm for foam) than tibial bone (0.34 mm). All BPTB grafts successfully completed 500 cycles. The rigid polyurethane foam block showed less variation in test results than human cadaver tibias. Rigid polyurethane foam blocks provide an acceptable substitute for human cadaver bone tibia for biomechanical testing of BPTB allografts and offer near-equivalent results. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Yuan, Gang; Shao, Kui-Zhan; Chen, Lei; Liu, Xin-Xin [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China); Su, Zhong-Min, E-mail: zmsu@nenu.edu.cn [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China); Ma, Jian-Fang [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China)
2012-12-15
Three new polymers, [Cd(L){sub 2}(H{sub 2}O){sub 2}]{sub n} (1), [Cd{sub 3}(L){sub 2}({mu}{sub 3}-OH){sub 2}({mu}{sub 2}-Cl){sub 2}(H{sub 2}O){sub 2}]{sub n} (2), {l_brace}[Cd{sub 2}(L){sub 2}(nic){sub 2}(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O{r_brace}{sub n} (3) (HL=5-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-1H-tetrazole, Hnic=nicotinic acid) have been prepared and structurally characterized. Compounds 1 and 2 display 2D monomolecular layers built by the inter-linking single helical chains and L{sup -} ligands connecting chain-like [Cd({mu}{sub 3}-OH)({mu}{sub 2}-Cl)]{sub n} secondary building units, respectively. Compound 3 is constructed from the mixed ligands and possesses a (3,4)-connected framework with (4{center_dot}8{sup 2})(4{center_dot}8{sup 2}{center_dot}10{sup 3}) topology. Moreover, the fluorescent properties of HL ligand and compounds 1-3 are also been investigated. - Graphical abstract: Three new coordination polymers based on the semi-rigid multidentate N-donor ligand have been successfully synthesized by hydrothermal reaction. Complexes 1 and 2 exhibit the 2D layers formed by inter-linking single helices and L{sup -} anions bridging 1D chain-like SBUs, respectively. Complex 3 is buit by L{sup -} and assistant nic{sup -} ligands connecting metal centers and possesses a (3,4)-connected framework with (4 Multiplication-Sign 8{sup 2})(4 Multiplication-Sign 8{sup 2} Multiplication-Sign 10{sup 3}) topology. Moreover, these complexes display fluorescent properties indicating that they may have potential applications as optical materials. Highlights: Black-Right-Pointing-Pointer Three Cd-compounds were prepared from semi-rigid HL ligand with different N-containing groups. Black-Right-Pointing-Pointer They exhibit diverse structures from 2D monomolecular layer to 3D covalent framework. Black-Right-Pointing-Pointer The HL ligands displayed various coordination modes under different reaction conditions. Black-Right-Pointing-Pointer These compounds exhibit
International Nuclear Information System (INIS)
Itoh, Sanae.
1991-06-01
After the discovery of the H-mode in ASDEX ( a tokamak in Germany ) the transition between the L-mode ( Low confinement mode ) and H-mode ( High confinement mode ) has been observed in many tokamaks in the world. The H-mode has made a breakthrough in improving the plasma parameters and has been recognized to be a universal phenomena. Since its discovery, the extensive studies both in experiments and in theory have been made. The research on H-mode has been casting new problems of an anomalous transport across the magnetic surface. This series of lectures will provide a brief review of experiments for explaining H-mode and a model theory of H-mode transition based on the electric field bifurcation. If the time is available, a new theoretical model of the temporal evolution of the H-mode will be given. (author)
Cohomological rigidity of manifolds defined by 3-dimensional polytopes
Buchstaber, V. M.; Erokhovets, N. Yu.; Masuda, M.; Panov, T. E.; Park, S.
2017-04-01
A family of closed manifolds is said to be cohomologically rigid if a cohomology ring isomorphism implies a diffeomorphism for any two manifolds in the family. Cohomological rigidity is established here for large families of 3-dimensional and 6-dimensional manifolds defined by 3-dimensional polytopes. The class \\mathscr{P} of 3-dimensional combinatorial simple polytopes P different from tetrahedra and without facets forming 3- and 4-belts is studied. This class includes mathematical fullerenes, that is, simple 3- polytopes with only 5-gonal and 6-gonal facets. By a theorem of Pogorelov, any polytope in \\mathscr{P} admits in Lobachevsky 3-space a right-angled realisation which is unique up to isometry. Our families of smooth manifolds are associated with polytopes in the class \\mathscr{P}. The first family consists of 3-dimensional small covers of polytopes in \\mathscr{P}, or equivalently, hyperbolic 3-manifolds of Löbell type. The second family consists of 6-dimensional quasitoric manifolds over polytopes in \\mathscr{P}. Our main result is that both families are cohomologically rigid, that is, two manifolds M and M' from either family are diffeomorphic if and only if their cohomology rings are isomorphic. It is also proved that if M and M' are diffeomorphic, then their corresponding polytopes P and P' are combinatorially equivalent. These results are intertwined with classical subjects in geometry and topology such as the combinatorics of 3-polytopes, the Four Colour Theorem, aspherical manifolds, a diffeomorphism classification of 6-manifolds, and invariance of Pontryagin classes. The proofs use techniques of toric topology. Bibliography: 69 titles.
Vertical dimensional stability and rigidity of occlusal registration materials.
Walker, Mary P; Wu, Edis; Heckman, M Elizabeth; Alderman, Nicholas
2009-01-01
Dimensionally accurate occlusal registration records are essential for restorative dentistry; moreover, since records are not used immediately or may be used more than once, the registration material should exhibit accuracy over time (a concept known as dimensional stability). It has been speculated that materials with increased hardness or rigidity should produce more accurate registration records due to an increased resistance to distortion. This study compared the rigidity and associated dimensional accuracy of a recently marketed bisacrylic occlusal registration material and a vinyl polysiloxane (VPS). Maxillary and mandibular typodont arches were mounted on a plasterless articulator from which teeth No. 3, 13, and 15 had been removed to simulate edentulous spaces. After preparing teeth No. 2, 4, 12, and 14 as bridge abutments, the remaining teeth were equilibrated selectively to produce even anterior contact. Four digital photographs were taken to make vertical interarch measurements at four locations (teeth No. 3, 7, 10, and 14). Following initial photos (controls), 10 interocclusal records were made using each registration material, with material placed only in the segments in which teeth were prepared. The records were used for mounting the maxillary arch against the mandibular arch after 48, 72, and 120 hours. There were significant effects on vertical dimensional change related to arch location, material, and mounting time. Both materials demonstrated significantly larger posterior vertical openings than anterior vertical openings, while the bisacrylate produced a larger posterior opening than VPS at 48 and 72 hours and a larger anterior opening at all mounting times. There also was a significant difference in hardness/rigidity due to material and measurement time; at all measurement times, bisacrylate exhibited a significantly higher hardness number.
Rigid body formulation in a finite element context with contact interaction
Refachinho de Campos, Paulo R.; Gay Neto, Alfredo
2018-03-01
The present work proposes a formulation to employ rigid bodies together with flexible bodies in the context of a nonlinear finite element solver, with contact interactions. Inertial contributions due to distribution of mass of a rigid body are fully developed, considering a general pole position associated with a single node, representing a rigid body element. Additionally, a mechanical constraint is proposed to connect a rigid region composed by several nodes, which is useful for linking rigid/flexible bodies in a finite element environment. Rodrigues rotation parameters are used to describe finite rotations, by an updated Lagrangian description. In addition, the contact formulation entitled master-surface to master-surface is employed in conjunction with the rigid body element and flexible bodies, aiming to consider their interaction in a rigid-flexible multibody environment. New surface parameterizations are presented to establish contact pairs, permitting pointwise interaction in a frictional scenario. Numerical examples are provided to show robustness and applicability of the methods.
Friction effects on lateral loading behavior of rigid piles
DEFF Research Database (Denmark)
Zania, Varvara; Hededal, Ole
2012-01-01
taking into account the shear frictional resistance along the pile. For this purpose efficient three dimensional finite element models of different diameter have been developed. The increase of the side friction and of the diameter of the pile is shown to alter the failure pattern and increase...... the lateral capacity of the pile. The obtained p - y curves demonstrate the importance of the aforementioned parameters in the design of rigid piles, as the reduction of friction along the interface reduces not only the ultimate load but also the stiffness of the soil-pile response. Read More: http...
Cosmic ray fluctuations at rigidities 4 to 180 GV
International Nuclear Information System (INIS)
Benko, G.; Erdoes, G.; Stehlik, M.; Katz, M.E.; Nosov, S.F.
1986-07-01
The power spectral density of cosmic ray fluctuations observed at both underground and ground level during the years 1976-1980 was calculated. The spectral index is independent of the phase of solar cycle in the frequency range of 5x10 -7 - 5x10 -5 Hz and its value is equal to 2. The level of fluctuations shows a weak dependence on the rigidity (R) of the particles P∼R -2/3 . The obtained experimental results are in agreement with the theoretical predictions. (author)
Microstructural Dynamics and Rheology of Suspensions of Rigid Fibers
Butler, Jason E.; Snook, Braden
2018-01-01
The dynamics and rheology of suspensions of rigid, non-Brownian fibers in Newtonian fluids are reviewed. Experiments, theories, and computer simulations are considered, with an emphasis on suspensions at semidilute and concentrated conditions. In these suspensions, interactions between the particles strongly influence the microstructure and rheological properties of the suspension. The interactions can arise from hydrodynamic disturbances, giving multibody interactions at long ranges and pairwise lubrication forces over short distances. For concentrated suspensions, additional interactions due to excluded volume (contacts) and adhesive forces are addressed. The relative importance of the various interactions as a function of fiber concentration is assessed.
On the surprising rigidity of the Pauli exclusion principle
International Nuclear Information System (INIS)
Greenberg, O.W.
1989-01-01
I review recent attempts to construct a local quantum field theory of small violations of the Pauli exclusion principle and suggest a qualitative reason for the surprising rigidity of the Pauli principle. I suggest that small violations can occur in our four-dimensional world as a consequence of the compactification of a higher-dimensional theory in which the exclusion principle is exactly valid. I briefly mention a recent experiment which places a severe limit on possible violations of the exclusion principle. (orig.)
Rigidity of minimal submanifolds with flat normal bundle
Indian Academy of Sciences (India)
Rigidity of minimal submanifolds with flat normal bundle. 461. = a. ∫. M u2(1+q)+ 2 a f 2 − 2. ∫. M u2q+1f 〈∇f, ∇u〉. − (2q + 1). ∫. M u2qf 2|∇u|2, which gives a .... that depends on n, ϵ and q. We now try to transform (2.15) the right hand side only involved u in the power two. For that, we use Young's inequality: ab ≤ βsas.
Rigid supersymmetry from conformal supergravity in five dimensions
International Nuclear Information System (INIS)
Pini, Alessandro; Rodriguez-Gomez, Diego; Schmude, Johannes
2015-01-01
We study the rigid limit of 5d conformal supergravity with minimal supersymmetry on Riemannian manifolds. The necessary and sufficient condition for the existence of a solution is the existence of a conformal Killing vector. Whenever a certain SU(2) curvature becomes abelian the backgrounds define a transversally holomorphic foliation. Subsequently we turn to the question under which circumstances these backgrounds admit a kinetic Yang-Mills term in the action of a vector multiplet. Here we find that the conformal Killing vector has to be Killing. We supplement the discussion with various appendices.
Nonlinear complex dynamics and Keynesian rigidity: A short introduction
Jovero, Edgardo
2005-09-01
The topic of this paper is to show that the greater acceptance and intense use of complex nonlinear dynamics in macroeconomics makes sense only within the neoKeynesian tradition. An example is presented regarding the behavior of an open-economy two-sector growth model endowed with Keynesian rigidity. The Keynesian view that structural instability globally exists in the aggregate economy is put forward, and therefore the need arises for policy to alleviate this instability in the form of dampened fluctuations is presented as an alternative view for macroeconomic theorizing.
Euler-Poincare Reduction of Externall Forced Rigid Body Motion
DEFF Research Database (Denmark)
Wisniewski, Rafal; Kulczycki, P.
2004-01-01
If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system affected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincaré reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modelling, estimation and control of mechanical systems......-known Euler-Poincaré reduction to a rigid body motion with forcing....
Euler-Poincare Reduction of a Rigid Body Motion
DEFF Research Database (Denmark)
Wisniewski, Rafal; Kulczycki, P.
2005-01-01
|If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system afected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincare reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modeling, estimation and control of mechanical systems......-known Euler-Poincare reduction to a rigid body motion with forcing....
Euler-Poincaré Reduction of a Rigid Body Motion
DEFF Research Database (Denmark)
Wisniewski, Rafal; Kulczycki, P.
2004-01-01
If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system affected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincaré reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modelling, estimation and control of mechanical systems......-known Euler-Poincaré reduction to a rigid body motion with forcing....
Directory of Open Access Journals (Sweden)
Seungjae Lee
2017-03-01
Full Text Available Modular systems have been mostly researched in relatively low-rise structures but, lately, their applications to mid- to high-rise structures began to be reviewed, and research interest in new modularization subjects has increased. The application of modular systems to mid- to high-rise structures requires the structural stability of the frame and connections that consist of units, and the evaluation of the stiffness of structures that are combined in units. However, the combination of general units causes loss of the cross-section of columns or beams, resulting in low seismic performance and hindering installation works in the field. In addition, the evaluation of a frame considering such a cross-sectional loss is not easy. Therefore, it is necessary to develop a joint that is stable and easy to install. In the study, a rigidly connected modular system was proposed as a moment-resisting frame for a unit modular system, and their joints were developed and their performances were compared. The proposed system changed the ceiling beam into a bracket type to fasten bolts. It can be merged with other seismic force-resisting systems. To verify the seismic performance of the proposed system, a cyclic loading test was conducted, and the rigidly connected joint performance and integrated behavior at the joint of modular units were investigated. From the experimental results, the maximum resisting force of the proposed connection exceeded the theoretical parameters, indicating that a rigid joint structural performance could be secured.
Wall compliance and violin cavity modes.
Bissinger, George
2003-03-01
Violin corpus wall compliance, which has a substantial effect on cavity mode frequencies, was added to Shaw's two-degree-of-freedom (2DOF) network model for A0 ("main air") and A1 (lowest length mode included in "main wood") cavity modes. The 2DOF model predicts a V(-0.25) volume dependence for A0 for rigid violin-shaped cavities, to which a semiempirical compliance correction term, V(-x(c)) (optimization parameter x(c)) consistent with cavity acoustical compliance and violin-based scaling was added. Optimizing x(c) over A0 and A1 frequencies measured for a Hutchins-Schelleng violin octet yielded x(c) approximately 0.08. This markedly improved A0 and A1 frequency predictions to within approximately +/- 10% of experiment over a range of about 4.5:1 in length, 10:1 in f-hole area, 3:1 in top plate thickness, and 128:1 in volume. Compliance is a plausible explanation for A1 falling close to the "main wood" resonance, not increasingly higher for the larger instruments, which were scaled successively shorter compared to the violin for ergonomic and practical reasons. Similarly incorporating compliance for A2 and A4 (lowest lower-/upper-bout modes, respectively) improves frequency predictions within +/-20% over the octet.
Design of semi-rigid type of flexible pavements
Directory of Open Access Journals (Sweden)
Pranshoo Solanki
2017-03-01
Full Text Available The primary objective of the study presented in this paper is to develop design curves for performance prediction of stabilized layers and to compare semi-rigid flexible pavement designs between the empirical AASHTO 1993 and the mechanistic-empirical pavement design methodologies. Specifically, comparisons were made for a range of different sections consisting of cementitious layers stabilized with different types and percentages of additives. It is found that the design thickness is influenced by the type of soil, additive, selection of material property and design method. Cost comparisons of sections stabilized with different percentage and type of additives showed that CKD-stabilization provides economically low cost sections as compared to lime- and CFA-stabilized sections. Knowledge gained from the parametric analysis of different sections using AASHTO 1993 and MEPDG is expected to be useful to pavement designers and others in implementation of the new MEPDG for future pavement design. Keywords: Semi-rigid, Mechanistic, Resilient modulus, Fatigue life, Reliability, Traffic
Normalized inverse characterization of sound absorbing rigid porous media.
Zieliński, Tomasz G
2015-06-01
This paper presents a methodology for the inverse characterization of sound absorbing rigid porous media, based on standard measurements of the surface acoustic impedance of a porous sample. The model parameters need to be normalized to have a robust identification procedure which fits the model-predicted impedance curves with the measured ones. Such a normalization provides a substitute set of dimensionless (normalized) parameters unambiguously related to the original model parameters. Moreover, two scaling frequencies are introduced, however, they are not additional parameters and for different, yet reasonable, assumptions of their values, the identification procedure should eventually lead to the same solution. The proposed identification technique uses measured and computed impedance curves for a porous sample not only in the standard configuration, that is, set to the rigid termination piston in an impedance tube, but also with air gaps of known thicknesses between the sample and the piston. Therefore, all necessary analytical formulas for sound propagation in double-layered media are provided. The methodology is illustrated by one numerical test and by two examples based on the experimental measurements of the acoustic impedance and absorption of porous ceramic samples of different thicknesses and a sample of polyurethane foam.
Dynamic response and stability of semi-rigid frames
Abu-Yasein, Omar Ali
This dissertation presents a method to determine the load capacity as well as end member forces and deformations of frames with partial rigid joint connections by using the direct stiffness method. The connections are modeled as rotational springs attached at the ends of framed members. The lumped mass method, which is an approximate method, and the distributed mass method, which is an exact method, are also presented to compute the natural frequency of frames. The effects of the axial forces and the flexibility of joint connections are both included. Furthermore, the time-dependent response of semi-rigid frames subjected to periodic axial forces is formulated. The harmonic function is approximated by dividing the periodic function into n intervals and the periodic axial forces are evaluated at each time interval as constant forces using 'piecewise approximation'. The regions of instability of frames with different joint stiffness were determined using the characteristic equation method. The time-dependent part of the differential equation for free vibration of a framed member subjected to a harmonic force can be written in the form of the Mathieu-Hill equation where all characteristics of the Mathieu-Hill equation solutions can be used to determine the boundaries of instability regions.
Jet Ventilation during Rigid Bronchoscopy in Adults: A Focused Review
Directory of Open Access Journals (Sweden)
Laurie Putz
2016-01-01
Full Text Available The indications for rigid bronchoscopy for interventional pulmonology have increased and include stent placements and transbronchial cryobiopsy procedures. The shared airway between anesthesiologist and pulmonologist and the open airway system, requiring specific ventilation techniques such as jet ventilation, need a good understanding of the procedure to reduce potentially harmful complications. Appropriate adjustment of the ventilator settings including pause pressure and peak inspiratory pressure reduces the risk of barotrauma. High frequency jet ventilation allows adequate oxygenation and carbon dioxide removal even in cases of tracheal stenosis up to frequencies of around 150 min−1; however, in an in vivo animal model, high frequency jet ventilation along with normal frequency jet ventilation (superimposed high frequency jet ventilation has been shown to improve oxygenation by increasing lung volume and carbon dioxide removal by increasing tidal volume across a large spectrum of frequencies without increasing barotrauma. General anesthesia with a continuous, intravenous, short-acting agent is safe and effective during rigid bronchoscopy procedures.
Non-rigid registration of tomographic images with Fourier transforms
International Nuclear Information System (INIS)
Osorio, Ar; Isoardi, Ra; Mato, G
2007-01-01
Spatial image registration of deformable body parts such as thorax and abdomen has important medical applications, but at the same time, it represents an important computational challenge. In this work we propose an automatic algorithm to perform non-rigid registration of tomographic images using a non-rigid model based on Fourier transforms. As a measure of similarity, we use the correlation coefficient, finding that the optimal order of the transformation is n = 3 (36 parameters). We apply this method to a digital phantom and to 7 pairs of patient images corresponding to clinical CT scans. The preliminary results indicate a fairly good agreement according to medical experts, with an average registration error of 2 mm for the case of clinical images. For 2D images (dimensions 512x512), the average running time for the algorithm is 15 seconds using a standard personal computer. Summarizing, we find that intra-modality registration of the abdomen can be achieved with acceptable accuracy for slight deformations and can be extended to 3D with a reasonable execution time
Biomimetic model systems of rigid hair beds: Part II - Experiment
Jammalamadaka, Mani S. S.; Hood, Kaitlyn; Hosoi, Anette
2017-11-01
Crustaceans - such as lobsters, crabs and stomapods - have hairy appendages that they use to recognize and track odorants in the surrounding fluid. An array of rigid hairs impedes flow at different rates depending on the spacing between hairs and the Reynolds number, Re. At larger Reynolds number (Re>1), fluid travels through the hairs rather than around them, a phenomenon called leakiness. Crustaceans flick their appendages at different speeds in order to manipulate the leakiness between the hairs, allowing the hairs to either detect the odors in a sample of fluid or collect a new sample. Theoretical and numerical studies predict that there is a fast flow region near the hairs that moves closer to the hairs as Re increases. Here, we test this theory experimentally. We 3D printed rigid hairs with an aspect ratio of 30:1 in rectangular arrays with different hair packing fractions. We custom built an experimental setup which establishes poiseuille flow at intermediate Re, Re <=200. We track the flow dynamics through the hair beds using tracer particles and Particle Imaging Velocimetry. We will then compare the modelling predictions with the experimental outcomes.
Modyfication of the Rigid Polyurethane-Polyisocyanurate Foams
Directory of Open Access Journals (Sweden)
Bogusław Czupryński
2014-01-01
Full Text Available The effect of polyethylene glycol 1500 on physicomechanical properties of rigid polyurethane-polyisocyanurate (PUR-PIR foams has been studied. It was found that application of polyethylene glycol 1500 for synthesis of foams in amount from 0% to 20% w/w had an effect on reduction of brittleness and softening point, while the greater the increase in compressive strength the higher its content in foam composition was. Wastes from production of these foams were ground and subjected to glycolysis in diethylene glycol with the addition of ethanolamine and zinc stearate. Liquid brown products were obtained. Properties of the resulting products were defined in order to determine their suitability for synthesis of new foams. It was found that glycolysate 6 was the most suitable for reuse and its application in different amounts allowed us to prepare 4 new foams (nos. 25, 26, 27, and 28. Properties of foams prepared in this manner were determined and, on their basis, the suitability of glycolysates for production of rigid PUR-PIR foams was evaluated.
Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation
Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.
2012-01-01
Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.
Finite-difference analysis of shells impacting rigid barriers
International Nuclear Information System (INIS)
Pirotin, S.D.; Witmer, E.A.
1977-01-01
Nuclear power plants must be protected from the adverse effects of missile impacts. A significant category of missile impact involves deformable structures (pressure vessel components, whipping pipes) striking relatively rigid targets (concrete walls, bumpers) which act as protective devices. The response and interaction of these structures is needed to assess the adequacy of these barriers for protecting vital safety related equipment. The present investigation represents an initial attempt to develop an efficient numerical procedure for predicting the deformations and impact force time-histories of shells which impact upon a rigid target. The general large-deflection equations of motion of the shell are expressed in finite-difference form in space and integrated in time through application of the central-difference temporal operator. The effect of material nonlinearities is treated by a mechanical sublayer material model which handles the strain-hardening, Bauschinger, and strain-rate effects. The general adequacy of this shell treatment has been validated by comparing predictions with the results of various experiments in which structures have been subjected to well-defined transient forcing functions (typically high-explosive impulse loading). The 'new' ingredient addressed in the present study involves an accounting for impact interaction and response of both the target structure and the attacking body. (Auth.)
Origami-Inspired Folding of Thick, Rigid Panels
Trease, Brian P.; Thomson, Mark W.; Sigel, Deborah A.; Walkemeyer, Phillip E.; Zirbel, Shannon; Howell, Larry; Lang, Robert
2014-01-01
To achieve power of 250 kW or greater, a large compression ratio of stowed-to-deployed area is needed. Origami folding patterns were used to inspire the folding of a solar array to achieve synchronous deployment; however, origami models are generally created for near-zero-thickness material. Panel thickness is one of the main challenges of origami-inspired design. Three origami-inspired folding techniques (flasher, square twist, and map fold) were created with rigid panels and hinges. Hinge components are added to the model to enable folding of thick, rigid materials. Origami models are created assuming zero (or near zero) thickness. When a material with finite thickness is used, the panels are required to bend around an increasingly thick fold as they move away from the center of the model. The two approaches for dealing with material thickness are to use membrane hinges to connect the panels, or to add panel hinges, or hinges of the same thickness, at an appropriate width to enable folding.
Awake craniotomy using electromagnetic navigation technology without rigid pin fixation.
Morsy, Ahmed A; Ng, Wai Hoe
2015-11-01
We report our institutional experience using an electromagnetic navigation system, without rigid head fixation, for awake craniotomy patients. The StealthStation® S7 AxiEM™ navigation system (Medtronic, Inc.) was used for this technique. Detailed preoperative clinical and neuropsychological evaluations, patient education and contrast-enhanced MRI (thickness 1.5mm) were performed for each patient. The AxiEM Mobile Emitter was typically placed in a holder, which was mounted to the operating room table, and a non-invasive patient tracker was used as the patient reference device. A monitored conscious sedation technique was used in all awake craniotomy patients, and the AxiEM Navigation Pointer was used for navigation during the procedure. This offers the same accuracy as optical navigation, but without head pin fixation or interference with intraoperative neurophysiological techniques and surgical instruments. The application of the electromagnetic neuronavigation technology without rigid head fixation during an awake craniotomy is accurate, and offers superior patient comfort. It is recommended as an effective adjunctive technique for the conduct of awake surgery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Quantum theory of gauge fields and rigid processes calculation
International Nuclear Information System (INIS)
Andreev, I.V.
1981-01-01
Elementary statement of the basic data on the nature of quark interactions and their role in the high energy processes is presented in the first part of the paper. The second part of the paper deals with gauge theory (GT) of strong interactions (chromodynamics (CD)) and its application in calculation of rigid processes with quark participation. It is based on the method of functional integration (MFI). A comparatively simple representation of the MFI in the quantum theory and formulation of the perturbation theory for gauge fields are given. A derivation of the rules of diagram technique is presented. Renormalization invariance of the theory and the basic for CD phenomenon of asymptotical freedom are discussed. Theory application in calculation of certain effects at high energies is considered. From the CD view point considered is a parton model on the base of which ''rigid'' stage of evolution of quark and gluon jets produced at high energies can be quantitatively described and some quantitative experimental tests of the CD are suggested [ru
Collisions of Constrained Rigid Body Systems with Friction
Directory of Open Access Journals (Sweden)
Haijun Shen
1998-01-01
Full Text Available A new approach is developed for the general collision problem of two rigid body systems with constraints (e.g., articulated systems, such as massy linkages in which the relative tangential velocity at the point of contact and the associated friction force can change direction during the collision. This is beyond the framework of conventional methods, which can give significant and very obvious errors for this problem, and both extends and consolidates recent work. A new parameterization and theory characterize if, when and how the relative tangential velocity changes direction during contact. Elastic and dissipative phenomena and different values for static and kinetic friction coefficients are included. The method is based on the explicitly physical analysis of events at the point of contact. Using this method, Example 1 resolves (and corrects a paradox (in the literature of the collision of a double pendulum with the ground. The method fundamentally subsumes other recent models and the collision of rigid bodies; it yields the same results as conventional methods when they would apply (Example 2. The new method reformulates and extends recent approaches in a completely physical context.
Dynamics of parallel robots from rigid bodies to flexible elements
Briot, Sébastien
2015-01-01
This book starts with a short recapitulation on basic concepts, common to any types of robots (serial, tree structure, parallel, etc.), that are also necessary for computation of the dynamic models of parallel robots. Then, as dynamics requires the use of geometry and kinematics, the general equations of geometric and kinematic models of parallel robots are given. After, it is explained that parallel robot dynamic models can be obtained by decomposing the real robot into two virtual systems: a tree-structure robot (equivalent to the robot legs for which all joints would be actuated) plus a free body corresponding to the platform. Thus, the dynamics of rigid tree-structure robots is analyzed and algorithms to obtain their dynamic models in the most compact form are given. The dynamic model of the real rigid parallel robot is obtained by closing the loops through the use of the Lagrange multipliers. The problem of the dynamic model degeneracy near singularities is treated and optimal trajectory planning for cro...
Iterative CT reconstruction with correction for known rigid motion
Energy Technology Data Exchange (ETDEWEB)
Nuyts, Johan [Katholieke Univ. Leuven (Belgium). Dept. of Nuclear Medicine; Kim, Jung-Ha; Fulton, Roger [Sydney Univ., NSW (Australia). School of Physics; Westmead Hospital, Sydney (Australia). Medical Physics
2011-07-01
In PET/CT brain imaging, correction for motion may be needed, in particular for children and psychiatric patients. Motion is more likely to occur in the lengthy PET measurement, but also during the short CT acquisition patient motion is possible. Rigid motion of the head can be measured independently from the PET/CT system with optical devices. In this paper, we propose a method and some preliminary simulation results for iterative CT reconstruction with correction for known rigid motion. We implemented an iterative algorithm for fully 3D reconstruction from helical CT scans. The motion of the head is incorporated in the system matrix as a view-dependent motion of the CT-system. The first simulation results indicate that some motion patterns may produce loss of essential data. This loss precludes exact reconstruction and results in artifacts in the reconstruction, even when motion is taken into account. However, by reducing the pitch during acquisition, the same motion pattern no longer caused artifacts in the motion corrected image. (orig.)
A method for measuring the inertia properties of rigid bodies
Gobbi, M.; Mastinu, G.; Previati, G.
2011-01-01
A method for the measurement of the inertia properties of rigid bodies is presented. Given a rigid body and its mass, the method allows to measure (identify) the centre of gravity location and the inertia tensor during a single test. The proposed technique is based on the analysis of the free motion of a multi-cable pendulum to which the body under consideration is connected. The motion of the pendulum and the forces acting on the system are recorded and the inertia properties are identified by means of a proper mathematical procedure based on a least square estimation. After the body is positioned on the test rig, the full identification procedure takes less than 10 min. The natural frequencies of the pendulum and the accelerations involved are quite low, making this method suitable for many practical applications. In this paper, the proposed method is described and two test rigs are presented: the first is developed for bodies up to 3500 kg and the second for bodies up to 400 kg. A validation of the measurement method is performed with satisfactory results. The test rig holds a third part quality certificate according to an ISO 9001 standard and could be scaled up to measure the inertia properties of huge bodies, such as trucks, airplanes or even ships.
Measurement of Spindle Rigidity by using a Magnet Loader
Yamazaki, Taku; Matsubara, Atsushi; Fujita, Tomoya; Muraki, Toshiyuki; Asano, Kohei; Kawashima, Kazuyuki
The static rigidity of a rotating spindle in the radial direction is investigated in this research. A magnetic loading device (magnet loader) has been developed for the measurement. The magnet loader, which has coils and iron cores, generates the electromagnetic force and attracts a dummy tool attached to the spindle. However, the eddy current is generated in the dummy tool with the spindle rotation and reduces the attractive force at high spindle speed. In order to understand the magnetic flux and eddy current in the dummy tool, the electromagnetic field analysis by FEM was carried out. Grooves on the attraction surface of the dummy tool were designed to cut the eddy current flow. The dimension of the groove were decided based on the FEM analysis, and the designed tool were manufactured and tested. The test result shows that the designed tool successfully reduces the eddy current and recovers the attractive force. By using the magnet loader and the grooved tool, the spindle rigidity can be measured when the spindle rotates with a speed up to 10,000 min-1.
Synthesis of rigid polyurethane foams from phosphorylated biopolyols.
de Haro, Juan Carlos; López-Pedrajas, Daniel; Pérez, Ángel; Rodríguez, Juan Francisco; Carmona, Manuel
2017-08-18
Renewable resources are playing a key role on the synthesis of biodegradable polyols. Moreover, the incorporation of covalently linked additives is increasing in importance in the polyurethane (PU) market. In this work, previously epoxidized grape seed oil and methyl oleate were transformed into phosphorylated biopolyols through an acid-catalyzed ring-opening hydrolysis in the presence of H 3 PO 4 . The formation of phosphate polyesters was confirmed by FT-IR and 31 P-NMR. However, the synthesis of a high-quality PU rigid foam was not possible using exclusively these polyols attending to their low hydroxyl value. In that way, different rigid PU foams were prepared from the phosphorylated biopolyols and the commercial polyol Alcupol R4520. It was observed that phosphorylated biopolyols can be incorporated up to a 57 wt.% in the PU synthesis without significant structural changes with respect to the commercial foam. Finally, thermogravimetric and EDAX analyses revealed an improvement of thermal stability by the formation of a protective phosphorocarbonaceous char layer.
Nonlinear coupling of the resistive tearing modes under the unperturbed shear flow
International Nuclear Information System (INIS)
Urata, Kazuhiro
1990-01-01
The influence of the unperturbed shear flow on the nonlinear evolution of the tearing mode is studied. In the case of single helicity, the shear flow activates the unstable mode which finally saturates to a rigid rotor state. In the case of multiple helicity, a variety of flow patterns is created depending on parameters, and always forms the current bubble soon after the collapse of the 3/2 magnetic island. (author)
Rigid rod spaced fullerene as building block for nanoclusters
Indian Academy of Sciences (India)
Unknown
The general method adopted for the synthesis of the monofullerene ..... derivatives form small nanoparticles with narrow size distribution,30 whereas template- ... tapping mode AFM (TM-AFM), since this method is more suited for studying soft.
International Nuclear Information System (INIS)
Satya, Y.; Schmidt, G.
1979-01-01
A fully developed tearing mode modifies the magnetic field profile. The effect of this profile modification on the linear growth rate of a different tearing mode in a slab and cylindrical geometry is investigated
Leonhard Euler and the mechanics of rigid bodies
Marquina, J. E.; Marquina, M. L.; Marquina, V.; Hernández-Gómez, J. J.
2017-01-01
In this work we present the original ideas and the construction of the rigid bodies theory realised by Leonhard Euler between 1738 and 1775. The number of treatises written by Euler on this subject is enormous, including the most notorious Scientia Navalis (1749), Decouverte d’un noveau principe de mecanique (1752), Du mouvement de rotation des corps solides autour d’un axe variable (1765), Theoria motus corporum solidorum seu rigidorum (1765) and Nova methodus motu corporum rigidorum determinandi (1776), in which he developed the ideas of the instantaneous rotation axis, the so-called Euler equations and angles, the components of what is now known as the inertia tensor, the principal axes of inertia, and, finally, the generalisation of the translation and rotation movement equations for any system. Euler, the man who ‘put most of mechanics into its modern form’ (Truesdell 1968 Essays in the History of Mechanics (Berlin: Springer) p 106).
Investigation of Drag Coefficient for Rigid Ballute-like Shapes
Carnasciali, Maria-Isabel; Mastromarino, Anthony
2014-11-01
One common method of decelerating an object during atmospheric entry, descent, and landing is the use of parachutes. Another deceleration technology is the ballute - a combination of balloon and parachute. A CFD study was conducted using commercially available software to investigate the flow-field and the coefficient of drag for various rigid ballute-like shapes at varying Reynolds numbers. The impact of size and placement of the burble-fence as well as number, size, and shape of inlets was considered. Recent experimental measurements conducted during NASA's Low-Density Supersonic Decelerator program revealed a much higher coefficient of drag (Cd) for ballutes than previously encountered. Using atmospheric drag to slow down and land reduces the need for heavy fuel and rocket engines and thus, high values of drag are desired. Funding for this work, in part, provided by the CT Space Grant Consortium.
Technical rigidity and appropriate technology in less-developed countries
Energy Technology Data Exchange (ETDEWEB)
Forsyth, D J.C. [Univ. of Strathyclyde, England; McBain, N S; Solomon, R F
1980-05-01
The extent to which the use of capital-intensive methods in LDCs can properly be ascribed to the inherent rigidity of the factor proportions embodied in modern technology - rather than to distortions and aberrrations in the process of technology choice - is still a matter of considerable uncertainty after two decades of debate. In this study, an engineering-based index is developed to summarize the opportunities for, and barriers to, substitution of labor for capital in a wide range of industries. The index is used to compare the technology actually installed in manufacturing in Ghana, the Philippines, Turkey, and Malaysia with the feasible alternatives. The finding that opportunities for use of labor-intensive methods are to a large extent exploited is interpreted as casting doubt on the ability of even the most appropriate choice from currently feasible technologies to reduce unemployment significantly. 46 references, 5 figures, 6 tables.
Radiographic evaluation of fracture healing after rigid plate fixation
International Nuclear Information System (INIS)
Paavolainen, P.; Karaharju, E.; Slaetis, P.; Waris, P.
1981-01-01
Experimental osteotomies were made in 35 rabbit tibio-fibular bones and fixed with rigid stainless steel osteosynthesis plates (DCP/ASIF). The radiographic and histopathologic appearances in the healing osteotomies and adjacent bone were analysed at intervals from 3 up to 24 weeks postoperatively. Radiologically the osteotomy had closed at 9 weeks and microscopically this could be confirmed as longitudinal orientation of the cutter heads across the osteotomy gap with longitudinal orientation of the bone structure. The healing of the osteotomy was accompanied by gross structural changes in the adjacent cortical bone with loss of intracortical and subendosteal osteons, cementing lines and intermediate tissue between the osteons. This was characterized by decreasing attenuation of the cortical bone after healing of the osteotomy and should clinically be regarded as an indication for removal of the implant. (Auth.)
Rigid Calabi-Yau threefolds, Picard Eisenstein series and instantons
International Nuclear Information System (INIS)
Bao, L; Kleinschmidt, A; Nilsson, B E W; Persson, D; Pioline, B
2013-01-01
Type IIA string theory compactified on a rigid Calabi-Yau threefold gives rise to a classical moduli space that carries an isometric action of U(2, 1). Various quantum corrections break this continuous isometry to a discrete subgroup. Focussing on the case where the intermediate Jacobian of the Calabi-Yau admits complex multiplication by the ring of quadratic imaginary integers O_d, we argue that the remaining quantum duality group is an arithmetic Picard modular group PU(2, 1; O_d). Based on this proposal we construct an Eisenstein series invariant under this duality group and study its non-Abelian Fourier expansion. This allows the prediction of non-perturbative effects, notably the contribution of D2- and NS5-brane instantons. The present work extends our previous analysis in 0909.4299 which was restricted to the special case of the Gaussian integers O_1 = Z[i].
Rigid Calabi-Yau threefolds, Picard Eisenstein series and instantons
Bao, L.; Kleinschmidt, A.; Nilsson, B. E. W.; Persson, D.; Pioline, B.
2013-12-01
Type IIA string theory compactified on a rigid Calabi-Yau threefold gives rise to a classical moduli space that carries an isometric action of U(2, 1). Various quantum corrections break this continuous isometry to a discrete subgroup. Focussing on the case where the intermediate Jacobian of the Calabi-Yau admits complex multiplication by the ring of quadratic imaginary integers d, we argue that the remaining quantum duality group is an arithmetic Picard modular group PU(2, 1; d). Based on this proposal we construct an Eisenstein series invariant under this duality group and study its non-Abelian Fourier expansion. This allows the prediction of non-perturbative effects, notably the contribution of D2- and NS5-brane instantons. The present work extends our previous analysis in 0909.4299 which was restricted to the special case of the Gaussian integers 1 = Bbb Z[i].
Slip Morphology of Elastic Strips on Frictional Rigid Substrates.
Sano, Tomohiko G; Yamaguchi, Tetsuo; Wada, Hirofumi
2017-04-28
The morphology of an elastic strip subject to vertical compressive stress on a frictional rigid substrate is investigated by a combination of theory and experiment. We find a rich variety of morphologies, which-when the bending elasticity dominates over the effect of gravity-are classified into three distinct types of states: pinned, partially slipped, and completely slipped, depending on the magnitude of the vertical strain and the coefficient of static friction. We develop a theory of elastica under mixed clamped-hinged boundary conditions combined with the Coulomb-Amontons friction law and find excellent quantitative agreement with simulations and controlled physical experiments. We also discuss the effect of gravity in order to bridge the difference in the qualitative behaviors of stiff strips and flexible strings or ropes. Our study thus complements recent work on elastic rope coiling and takes a significant step towards establishing a unified understanding of how a thin elastic object interacts vertically with a solid surface.
Controlling elastic waves with small phononic crystals containing rigid inclusions
Peng, Pai
2014-05-01
We show that a two-dimensional elastic phononic crystal comprising rigid cylinders in a solid matrix possesses a large complete band gap below a cut-off frequency. A mechanical model reveals that the band gap is induced by negative effective mass density, which is affirmed by an effective medium theory based on field averaging. We demonstrate, by two examples, that such elastic phononic crystals can be utilized to design small devices to control low-frequency elastic waves. One example is a waveguide made of a two-layer anisotropic elastic phononic crystal, which can guide and bend elastic waves with wavelengths much larger than the size of the waveguide. The other example is the enhanced elastic transmission of a single-layer elastic phononic crystal loaded with solid inclusions. The effective mass density and reciprocal of the modulus of the single-layer elastic phononic crystal are simultaneously near zero. © CopyrightEPLA, 2014.
Persistence-Driven Durotaxis: Generic, Directed Motility in Rigidity Gradients
Novikova, Elizaveta A.; Raab, Matthew; Discher, Dennis E.; Storm, Cornelis
2017-02-01
Cells move differently on substrates with different rigidities: the persistence time of their motion is higher on stiffer substrates. We show that this behavior—in and of itself—results in a net flux of cells directed up a soft-to-stiff gradient. Using simple random walk models with varying persistence and stochastic simulations, we characterize the propensity to move in terms of the durotactic index also measured in experiments. A one-dimensional model captures the essential features and highlights the competition between diffusive spreading and linear, wavelike propagation. Persistence-driven durokinesis is generic and may be of use in the design of instructive environments for cells and other motile, mechanosensitive objects.
Matrix methods applied to engineering rigid body mechanics
Crouch, T.
The purpose of this book is to present the solution of a range of rigorous body mechanics problems using a matrix formulation of vector algebra. Essential theory concerning kinematics and dynamics is formulated in terms of matrix algebra. The solution of kinematics and dynamics problems is discussed, taking into account the velocity and acceleration of a point moving in a circular path, the velocity and acceleration determination for a linkage, the angular velocity and angular acceleration of a roller in a taper-roller thrust race, Euler's theroem on the motion of rigid bodies, an automotive differential, a rotating epicyclic, the motion of a high speed rotor mounted in gimbals, and the vibration of a spinning projectile. Attention is given to the activity of a force, the work done by a conservative force, the work and potential in a conservative system, the equilibrium of a mechanism, bearing forces due to rotor misalignment, and the frequency of vibrations of a constrained rod.
JOINT RIGIDITY ASSESSMENT WITH PIEZOELECTRIC WAFERS AND ACOUSTIC WAVES
International Nuclear Information System (INIS)
Montoya, Angela C.; Maji, Arup K.
2010-01-01
There has been an interest in the development of rapid deployment satellites. In a modular satellite design, different panels of specific functions can be pre-manufactured. The satellite can then be assembled and tested just prior to deployment. Traditional vibration testing is time-consuming and expensive. An alternative test method to evaluate the connection between two plates will be proposed. The method investigated and described employs piezoelectric wafers to induce and sense lamb waves in two aluminum plates, which were joined by steel brackets to form an 'L-Style' joint. Lamb wave behavior and piezoelectric material properties will be discussed; the experimental setup and results will be presented. A set of 4 piezoelectric ceramic wafers were used alternately as source and sensor. The energy transmitted was shown to correlate with a mechanical assessment of the joint, demonstrating that this method of testing is a feasible and reliable way to inspect the rigidity of joints.
Percutaneous antegrade ureteric stent removal using a rigid alligator forceps.
LENUS (Irish Health Repository)
Given, M F
2008-12-01
To evaluate the safety and efficacy of percutaneous antegrade ureteric stent removal using a rigid alligator forceps. Twenty patients were included in our study. Indications for ureteric stent insertion included stone disease (n = 7), malignancy (n = 8) and transplant anastomotic strictures (n = 5). Stent retrieval was carried out for proximal stent placement\\/migration in seven patients and encrustation in the remaining 13. Twenty-two stents were successfully retrieved in 20 patients. There was one technical failure (5%). There were no major complications. We had four minor complications, which included nephrostomy site pain (n = 2), periprocedural sepsis (n = 1) and a small urinoma (n = 1). All patients settled with conservative management. Percutaneous radiologically guided antegrade ureteric stent removal with an alligator forceps is safe and effective, particularly when initial surgical removal has failed.
Liquid crystallinity in flexible and rigid rod polymers
International Nuclear Information System (INIS)
Pickett, Galen T.; Schweizer, Kenneth S.
2000-01-01
We apply an anisotropic version of the polymer reference interaction site model (PRISM) integral equation description of flexible polymers to analyze athermal liquid crystallinity. The polymers are characterized by a statistical segment length, σ o , and by a physical hard-core thickness, d, that prevents the overlap of monomers on different chains. At small segment densities, ρ, the microscopic length scale d is irrelevant (as it must be in the universal semidilute regime), but becomes important in concentrated solutions and melts. Under the influence of the excluded volume interactions alone, the chains undergo a lyotropic, first-order isotropic-nematic transition at a concentration dependent upon the dimensionless ''aspect ratio,'' σ o /d. The transition becomes weaker as d→0, becoming second order, as has been previously shown. We extend the theory to describe the transition of rigid, thin rods, and discuss the evolution of the anisotropic liquid structure in the ordered phase. (c) 2000 American Institute of Physics
Equilibrium stability of strained epitaxial layers on a rigid substrate
International Nuclear Information System (INIS)
Granato, E.; Kosterlitz, J.M.; Ying, S.C.
1987-07-01
A simple theory of the equilibrium stability of an strained epitaxial layer on a rigid substrate is presented. We generalise the Frankvan der Merwe model of a single layer and consider N layers of adsorbate on a substrate. Continuum elasticity theory is used to describe each layer, but the coupling between layers is treated ina discrete fashion. Our method interpolates between a few layers and the thick film limit of standard dislocation theory, and in this limit the standard results are obtained. In addition, we developed a variational approach which agrees well with our exact calculations. The advantage of our method over previous ores is that it allows to perform stability analyses of arbitrary superlattice configurations. (author) [pt
Damageable contact between an elastic body and a rigid foundation
Campo, M.; Fernández, J. R.; Silva, A.
2009-02-01
In this work, the contact problem between an elastic body and a rigid obstacle is studied, including the development of material damage which results from internal compression or tension. The variational problem is formulated as a first-kind variational inequality for the displacements coupled with a parabolic partial differential equation for the damage field. The existence of a unique local weak solution is stated. Then, a fully discrete scheme is introduced using the finite element method to approximate the spatial variable and an Euler scheme to discretize the time derivatives. Error estimates are derived on the approximate solutions, from which the linear convergence of the algorithm is deduced under suitable regularity conditions. Finally, three two-dimensional numerical simulations are performed to demonstrate the accuracy and the behaviour of the scheme.
Puncture mechanics of soft elastomeric membrane with large deformation by rigid cylindrical indenter
Liu, Junjie; Chen, Zhe; Liang, Xueya; Huang, Xiaoqiang; Mao, Guoyong; Hong, Wei; Yu, Honghui; Qu, Shaoxing
2018-03-01
Soft elastomeric membrane structures are widely used and commonly found in engineering and biological applications. Puncture is one of the primary failure modes of soft elastomeric membrane at large deformation when indented by rigid objects. In order to investigate the puncture failure mechanism of soft elastomeric membrane with large deformation, we study the deformation and puncture failure of silicone rubber membrane that results from the continuous axisymmetric indentation by cylindrical steel indenters experimentally and analytically. In the experiment, effects of indenter size and the friction between the indenter and the membrane on the deformation and puncture failure of the membrane are investigated. In the analytical study, a model within the framework of nonlinear field theory is developed to describe the large local deformation around the punctured area, as well as to predict the puncture failure of the membrane. The deformed membrane is divided into three parts and the friction contact between the membrane and indenter is modeled by Coulomb friction law. The first invariant of the right Cauchy-Green deformation tensor I1 is adopted to predict the puncture failure of the membrane. The experimental and analytical results agree well. This work provides a guideline in designing reliable soft devices featured with membrane structures, which are present in a wide variety of applications.
An ezrin-rich, rigid uropod-like structure directs movement of amoeboid blebbing cells.
Lorentzen, Anna; Bamber, Jeffrey; Sadok, Amine; Elson-Schwab, Ilan; Marshall, Christopher J
2011-04-15
Melanoma cells can switch between an elongated mesenchymal-type and a rounded amoeboid-type migration mode. The rounded 'amoeboid' form of cell movement is driven by actomyosin contractility resulting in membrane blebbing. Unlike elongated A375 melanoma cells, rounded A375 cells do not display any obvious morphological front-back polarisation, although polarisation is thought to be a prerequisite for cell movement. We show that blebbing A375 cells are polarised, with ezrin (a linker between the plasma membrane and actin cytoskeleton), F-actin, myosin light chain, plasma membrane, phosphatidylinositol (4,5)-bisphosphate and β1-integrin accumulating at the cell rear in a uropod-like structure. This structure does not have the typical protruding shape of classical leukocyte uropods, but, as for those structures, it is regulated by protein kinase C. We show that the ezrin-rich uropod-like structure (ERULS) is an inherent feature of polarised A375 cells and not a consequence of cell migration, and is necessary for cell invasion. Furthermore, we demonstrate that membrane blebbing is reduced at this site, leading to a model in which the rigid ezrin-containing structure determines the direction of a moving cell through localised inhibition of membrane blebbing.
How do rigid-lid assumption affect LES simulation results at high Reynolds flows?
Khosronejad, Ali; Farhadzadeh, Ali; SBU Collaboration
2017-11-01
This research is motivated by the work of Kara et al., JHE, 2015. They employed LES to model flow around a model of abutment at a Re number of 27,000. They showed that first-order turbulence characteristics obtained by rigid-lid (RL) assumption compares fairly well with those of level-set (LS) method. Concerning the second-order statistics, however, their simulation results showed a significant dependence on the method used to describe the free surface. This finding can have important implications for open channel flow modeling. The Reynolds number for typical open channel flows, however, could be much larger than that of Kara et al.'s test case. Herein, we replicate the reported study by augmenting the geometric and hydraulic scales to reach a Re number of one order of magnitude larger ( 200,000). The Virtual Flow Simulator (VFS-Geophysics) model in its LES mode is used to simulate the test case using both RL and LS methods. The computational results are validated using measured flow and free-surface data from our laboratory experiments. Our goal is to investigate the effects of RL assumption on both first-order and second order statistics at high Reynolds numbers that occur in natural waterways. Acknowledgment: Computational resources are provided by the Center of Excellence in Wireless & Information Technology (CEWIT) of Stony Brook University.
International Nuclear Information System (INIS)
Elzein, N.
2004-01-01
In this work with a use of molecular dynamic simulations we have reported the results of a quasiclassical simulation study of the interaction of H2/(D2) with Cu N (N=13-14) atoms in both rigid /(non rigid) clusters.The geometry of the cluster is obtained by an embedded-atom (EA) mode potential, and the interaction between the molecule and cIuster is described by a LEPS -London-Eyring -Polanyi-Sato) potential energy function.Both channels the reactive dissociative adsorption of the molecule on the cIuster) and non reactive (scattering of the molecule from the cluster) are considered. The dissociative chemisorption probability, cross section and rate constant are studied as functions of the initial quantal rovibrational state of the molecule, collision energy, impact parameter and the temperature (OK,296K,834K ,1014K,1554K) of the clusters
A virtual pebble game to ensemble average graph rigidity.
González, Luis C; Wang, Hui; Livesay, Dennis R; Jacobs, Donald J
2015-01-01
The body-bar Pebble Game (PG) algorithm is commonly used to calculate network rigidity properties in proteins and polymeric materials. To account for fluctuating interactions such as hydrogen bonds, an ensemble of constraint topologies are sampled, and average network properties are obtained by averaging PG characterizations. At a simpler level of sophistication, Maxwell constraint counting (MCC) provides a rigorous lower bound for the number of internal degrees of freedom (DOF) within a body-bar network, and it is commonly employed to test if a molecular structure is globally under-constrained or over-constrained. MCC is a mean field approximation (MFA) that ignores spatial fluctuations of distance constraints by replacing the actual molecular structure by an effective medium that has distance constraints globally distributed with perfect uniform density. The Virtual Pebble Game (VPG) algorithm is a MFA that retains spatial inhomogeneity in the density of constraints on all length scales. Network fluctuations due to distance constraints that may be present or absent based on binary random dynamic variables are suppressed by replacing all possible constraint topology realizations with the probabilities that distance constraints are present. The VPG algorithm is isomorphic to the PG algorithm, where integers for counting "pebbles" placed on vertices or edges in the PG map to real numbers representing the probability to find a pebble. In the VPG, edges are assigned pebble capacities, and pebble movements become a continuous flow of probability within the network. Comparisons between the VPG and average PG results over a test set of proteins and disordered lattices demonstrate the VPG quantitatively estimates the ensemble average PG results well. The VPG performs about 20% faster than one PG, and it provides a pragmatic alternative to averaging PG rigidity characteristics over an ensemble of constraint topologies. The utility of the VPG falls in between the most
A rigid motion correction method for helical computed tomography (CT)
International Nuclear Information System (INIS)
Kim, J-H; Kyme, A; Fulton, R; Nuyts, J; Kuncic, Z
2015-01-01
We propose a method to compensate for six degree-of-freedom rigid motion in helical CT of the head. The method is demonstrated in simulations and in helical scans performed on a 16-slice CT scanner. Scans of a Hoffman brain phantom were acquired while an optical motion tracking system recorded the motion of the bed and the phantom. Motion correction was performed by restoring projection consistency using data from the motion tracking system, and reconstructing with an iterative fully 3D algorithm. Motion correction accuracy was evaluated by comparing reconstructed images with a stationary reference scan. We also investigated the effects on accuracy of tracker sampling rate, measurement jitter, interpolation of tracker measurements, and the synchronization of motion data and CT projections. After optimization of these aspects, motion corrected images corresponded remarkably closely to images of the stationary phantom with correlation and similarity coefficients both above 0.9. We performed a simulation study using volunteer head motion and found similarly that our method is capable of compensating effectively for realistic human head movements. To the best of our knowledge, this is the first practical demonstration of generalized rigid motion correction in helical CT. Its clinical value, which we have yet to explore, may be significant. For example it could reduce the necessity for repeat scans and resource-intensive anesthetic and sedation procedures in patient groups prone to motion, such as young children. It is not only applicable to dedicated CT imaging, but also to hybrid PET/CT and SPECT/CT, where it could also ensure an accurate CT image for lesion localization and attenuation correction of the functional image data. (paper)
Psychological Prices and Price Rigidity in Grocery Retailing: Analysis of German Scanner Data
Herrmann, Roland; Moeser, Anke
2005-01-01
A substantial degree of price rigidity has been reported for branded foods in various studies with scanner data. One possible explanation for price rigidity is the existence of psychological pricing points. We analyze to which extent psychological pricing plays a role in grocery retailing and whether it contributes to price rigidity of branded foods in Germany. Psychological pricing defined here as just-below-the-round-figure-pricing is empirically analyzed with scanner data of weekly prices ...
Use of beam probes for rigidity calibration of the A1900 fragment separator
Energy Technology Data Exchange (ETDEWEB)
Ginter, T.N. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Farinon, F. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Baumann, T. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Hausmann, M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Kwan, E.; Naviliat Cuncic, O. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Portillo, M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Rogers, A.M.; Stetson, J.; Sumithrarachchi, C. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Villari, A.C.C. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Williams, S.J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States)
2016-06-01
Use of a beam-based approach is presented for establishing a rigidity calibration for the A1900 fragment separator located at the National Superconducting Cyclotron Laboratory. Also presented is why an alternative approach to the rigidity calibration – using detailed field maps of individual magnetic components – is not a feasible basis for deriving an accurate calibration. The level of accuracy achieved for the rigidity calibration is ±0.1%.
Sensing of substratum rigidity and directional migration by fast-crawling cells
Okimura, Chika; Sakumura, Yuichi; Shimabukuro, Katsuya; Iwadate, Yoshiaki
2018-05-01
Living cells sense the mechanical properties of their surrounding environment and respond accordingly. Crawling cells detect the rigidity of their substratum and migrate in certain directions. They can be classified into two categories: slow-moving and fast-moving cell types. Slow-moving cell types, such as fibroblasts, smooth muscle cells, mesenchymal stem cells, etc., move toward rigid areas on the substratum in response to a rigidity gradient. However, there is not much information on rigidity sensing in fast-moving cell types whose size is ˜10 μ m and migration velocity is ˜10 μ m /min . In this study, we used both isotropic substrata with different rigidities and an anisotropic substratum that is rigid on the x axis but soft on the y axis to demonstrate rigidity sensing by fast-moving Dictyostelium cells and neutrophil-like differentiated HL-60 cells. Dictyostelium cells exerted larger traction forces on a more rigid isotropic substratum. Dictyostelium cells and HL-60 cells migrated in the "soft" direction on the anisotropic substratum, although myosin II-null Dictyostelium cells migrated in random directions, indicating that rigidity sensing of fast-moving cell types differs from that of slow types and is induced by a myosin II-related process.
An evaluation of canonical forms for non-rigid 3D shape retrieval
Pickup, David; Liu, Juncheng; Sun, Xianfang; Rosin, Paul L.; Martin, Ralph R.; Cheng, Zhiquan; Lian, Zhouhui; Nie, Sipin; Jin, Longcun; Shamai, Gil; Sahillioğlu, Yusuf; Kavan, Ladislav
2018-01-01
Canonical forms attempt to factor out a non-rigid shape’s pose, giving a pose-neutral shape. This opens up the\\ud possibility of using methods originally designed for rigid shape retrieval for the task of non-rigid shape retrieval.\\ud We extend our recent benchmark for testing canonical form algorithms. Our new benchmark is used to evaluate a\\ud greater number of state-of-the-art canonical forms, on five recent non-rigid retrieval datasets, within two different\\ud retrieval frameworks. A tota...
Rigid-Plastic Post-Buckling Analysis of Columns and Quadratic Plates
DEFF Research Database (Denmark)
Jönsson, Jeppe
2008-01-01
the compressive load as a function of the transverse displacement. An estimate of the magnitude of the transverse displacement prior to the forming of the collapse mechanism is introduced into the compressive load function, determined by the virtual work equation, thereby revealing a qualified estimate...... yield lines accommodate differential rotations of rigid parts and the area “collapse” yield lines accommodate local area changes of the rigid parts thereby preserving compatibility of the rigid parts of a plate. The approach will be illustrated for rigid plastic column analysis and for a quadratic plate...
Botulinum toxin in myotonia congenita: it does not help against rigidity and pain.
Dressler, Dirk; Adib Saberi, Fereshte
2014-05-01
Botulinum toxin (BT) is a potent local muscle relaxant with analgetic properties. Myotonia congenita (MC) is a genetic disorder producing muscle rigidity and pain. BT injected into the trapezius produced mild paresis, but no effect on rigidity and pain. There were no signs of systemic effects. Lack of BT efficacy on MC rigidity confirms its origin from muscle membrane dysfunction rather than from inappropriate neuromuscular activation. Lack of BT efficacy on pain could be caused by lack of anti-rigidity effect. It could also be due to separate non-muscular pain mechanisms unresponsive to BT.
Directory of Open Access Journals (Sweden)
V. K. Shatalov
2014-01-01
Full Text Available Outboard elements (arms, towers are widely used in spacecraft structure for setting-out of a payload; their high stiffness-weight ratio provides an opportunity to decrease the mass. The deployment unit is considered as an example of outboard structure. Its strength beams work under special conditions in operation. At the transportation stage beams are under considerable vibration loads. Therefore for increasing the natural resonance frequency it is rational to increase their rigidity. Using the micro-arc oxide coating suggests itself because the modulus of elasticity of the micro-arc oxide coating is more than that of the aluminium alloy. The beams suffer considerable bending load at the step of deploying; therefore the aluminium alloy with the micro-arc oxide coating must have suitable loading capacity, in addition to increased rigidity.Influence of micro-arc oxide coating on the rigidity and strength of tubes f rom aluminium alloy is investigated. It is determined that forming the micro-arc oxide coating on thin-walled tubes with a ratio of the coating area to the cross-section area of more than 25% is the most rational. In this case the rigidity of composite material considerably exceeds the rigidity of the aluminium alloy of the same cross-section while the redistribution of stresses in the surface coating of heterogeneous elasticity cross-section doesn’t cause the sudden increase of stresses. Also forming an attainable thickness of the micro-arc oxide coating on the surface of tube from aluminium alloy will be rational solution because the increase of attainable thickness of the microarc oxide coating provides an opportunity to form it on thick-walled tubes saving an acceptable, in the context of the strength, ratio of the coating area to the overall cross-section area.Micro-arc oxidation is an advanced method to form the wear resistant, resistant to corrosion, heat-shielding and electrically insulating coatings, but depending on the
Shigeta, M.; Sato, T.; Dasgupta, B.
1985-01-01
The magnetohydrodynamic stability of streaming tearing mode is investigated numerically. A bulk plasma flow parallel to the antiparallel magnetic field lines and localized in the neutral sheet excites a streaming tearing mode more strongly than the usual tearing mode, particularly for the wavelength of the order of the neutral sheet width (or smaller), which is stable for the usual tearing mode. Interestingly, examination of the eigenfunctions of the velocity perturbation and the magnetic field perturbation indicates that the streaming tearing mode carries more energy in terms of the kinetic energy rather than the magnetic energy. This suggests that the streaming tearing mode instability can be a more feasible mechanism of plasma acceleration than the usual tearing mode instability.
Newer nonconventional modes of mechanical ventilation
Directory of Open Access Journals (Sweden)
Preet Mohinder Singh
2014-01-01
Full Text Available The conventional modes of ventilation suffer many limitations. Although they are popularly used and are well-understood, often they fail to match the patient-based requirements. Over the years, many small modifications in ventilators have been incorporated to improve patient outcome. The ventilators of newer generation respond to patient′s demands by additional feedback systems. In this review, we discuss the popular newer modes of ventilation that have been accepted in to clinical practice. Various intensive care units over the world have found these modes to improve patient ventilator synchrony, decrease ventilator days and improve patient safety. The various modes discusses in this review are: Dual control modes (volume assured pressure support, volume support, Adaptive support ventilation, proportional assist ventilation, mandatory minute ventilation, Bi-level airway pressure release ventilation, (BiPAP, neurally adjusted ventilatory assist and NeoGanesh. Their working principles with their advantages and clinical limitations are discussed in brief.
Localized surface plate modes via flexural Mie resonances
Farhat, M.; Chen, P. -Y.; Guenneau, S.; Salama, Khaled N.; Bagci, Hakan
2017-01-01
Surface-plasmon polaritons are naturally generated upon excitation of metals with high-frequency electromagnetic waves. However, the concept of spoof plasmons has made it possible to generate plasmoniclike effects in microwave electrodynamics, magnetics, and even acoustics. Similarly, in this paper, the concept of localized surface plate modes (SPMs) is introduced. It is demonstrated that SPMs can be generated on a two-dimensional (clamped or stress-free) cylindrical surface with subwavelength corrugations, which resides on a thin elastic plate, under excitation by an incident flexural plane wave. Numerical characterization of this corrugated rigid structure shows that it is elastically equivalent to a cylindrical scatterer with dispersive but uniformly negative flexural rigidity. This, indeed, suggests that plasmoniclike elastic materials can be engineered with potential applications in various areas including earthquake sensing and elastic imaging and cloaking.
Localized surface plate modes via flexural Mie resonances
Farhat, M.
2017-05-11
Surface-plasmon polaritons are naturally generated upon excitation of metals with high-frequency electromagnetic waves. However, the concept of spoof plasmons has made it possible to generate plasmoniclike effects in microwave electrodynamics, magnetics, and even acoustics. Similarly, in this paper, the concept of localized surface plate modes (SPMs) is introduced. It is demonstrated that SPMs can be generated on a two-dimensional (clamped or stress-free) cylindrical surface with subwavelength corrugations, which resides on a thin elastic plate, under excitation by an incident flexural plane wave. Numerical characterization of this corrugated rigid structure shows that it is elastically equivalent to a cylindrical scatterer with dispersive but uniformly negative flexural rigidity. This, indeed, suggests that plasmoniclike elastic materials can be engineered with potential applications in various areas including earthquake sensing and elastic imaging and cloaking.
International Nuclear Information System (INIS)
Nekrasov, A.A.; Gribkova, O.L.; Eremina, T.V.; Isakova, A.A.; Ivanov, V.F.; Tverskoj, V.A.; Vannikov, A.V.
2008-01-01
We have studied electrochemical matrix polymerization of aniline in the presence of poly(amidosulfonic acid)s of different nature: poly(2-acrylamido-2-methyl-1-propanosulfonic acid) (PAMPSA, flexible backbone); poly(p,p'-(2,2'-disulfoacid)-diphenylene-iso-phthalamid) (i-PASA, semi-rigid backbone); poly(p,p'-(2,2'-disulfoacid)-diphelylene-tere-phthalamid) (t-PASA, rigid backbone). Also, we have investigated spectral and electrochemical properties of the films obtained, as well as their surface morphology. The matrix polymerization results in the formation of interpolymer complexes of polyaniline (PANI) and the above-cited polyacids. The acceleration of aniline electropolymerization in the presence of poly(amidosulfonic acid)s was observed due to association of aniline molecules to sulfonic groups of the polyacid and higher local concentration of protons near the polyacid backbone. The rigid-chain polyacids interfere with the normal course of the electropolymerization, which manifests itself in the changes of the shape of time dependences of absorbance and charge. Cyclic voltammetry and spectroelectrochemical experiments showed that the formation of interpolymer complex with rigid-chain polyacids distorts spectroelectrochemical characteristics of PANI. This evidently results from steric hindrances in the formation of quinoid units
Schneider, Susanne A.; Marshall, Kate E.; Xiao, Jianfeng; LeDoux, Mark S.
2012-01-01
We report the clinical, neuropsychological, genetic and radiological features of a large five-generation African-American kindred from the southern United States presenting with a progressive akinetic-rigid syndrome and severe dementia, but clinically insignificant chorea, due to mutations in JPH3. Overt disease onset was in the mid-twenties to late thirties with cognitive decline, REM sleep disturbance or psychiatric features, followed by development of a levodopa-unresponsive akinetic-rigid motor syndrome. Dystonia and myoclonus were present in some subjects. A bedridden, non-verbal severely akinetic-rigid state developed within 10 to 15 years after onset. CTG repeat expansions ranged from 47 to 53. Imaging revealed generalized cerebral atrophy with severe striatal involvement and putaminal rim hyperintensity. Analysis of our kindred indicates that JPH3 mutations should be considered in the differential diagnosis of early-onset dementia and hypokinetic-rigid syndromes in individuals of African descent. Moreover, chorea may not be overtly manifest at presentation or during significant parts of the disease course. PMID:22447335
Larsson, Anders; Gustavsson, Johan S.
The only active transverse mode in a truly single-mode VCSEL is the fundamental mode with a near Gaussian field distribution. A single-mode VCSEL produces a light beam of higher spectral purity, higher degree of coherence and lower divergence than a multimode VCSEL and the beam can be more precisely shaped and focused to a smaller spot. Such beam properties are required in many applications. In this chapter, after discussing applications of single-mode VCSELs, we introduce the basics of fields and modes in VCSELs and review designs implemented for single-mode emission from VCSELs in different materials and at different wavelengths. This includes VCSELs that are inherently single-mode as well as inherently multimode VCSELs where higher-order modes are suppressed by mode selective gain or loss. In each case we present the current state-of-the-art and discuss pros and cons. At the end, a specific example with experimental results is provided and, as a summary, the most promising designs based on current technologies are identified.
Oxygen permeability (Dk) of thirty-seven rigid contact lens materials.
Benjamin, William J; Cappelli, Quido A
2002-02-01
achieved for the overwhelming majority of rigid contact lens materials up to at least 160 Dk units. The corrected, calibrated Dk values for the 37 test materials, in ANSI units, ranged from 13.8 to 175.1, having an overall mean of 43.2, median of 31.9, and standard error of 6.57 (N = 37).
Propagation of Finite Amplitude Sound in Multiple Waveguide Modes.
van Doren, Thomas Walter
1993-01-01
This dissertation describes a theoretical and experimental investigation of the propagation of finite amplitude sound in multiple waveguide modes. Quasilinear analytical solutions of the full second order nonlinear wave equation, the Westervelt equation, and the KZK parabolic wave equation are obtained for the fundamental and second harmonic sound fields in a rectangular rigid-wall waveguide. It is shown that the Westervelt equation is an acceptable approximation of the full nonlinear wave equation for describing guided sound waves of finite amplitude. A system of first order equations based on both a modal and harmonic expansion of the Westervelt equation is developed for waveguides with locally reactive wall impedances. Fully nonlinear numerical solutions of the system of coupled equations are presented for waveguides formed by two parallel planes which are either both rigid, or one rigid and one pressure release. These numerical solutions are compared to finite -difference solutions of the KZK equation, and it is shown that solutions of the KZK equation are valid only at frequencies which are high compared to the cutoff frequencies of the most important modes of propagation (i.e., for which sound propagates at small grazing angles). Numerical solutions of both the Westervelt and KZK equations are compared to experiments performed in an air-filled, rigid-wall, rectangular waveguide. Solutions of the Westervelt equation are in good agreement with experiment for low source frequencies, at which sound propagates at large grazing angles, whereas solutions of the KZK equation are not valid for these cases. At higher frequencies, at which sound propagates at small grazing angles, agreement between numerical solutions of the Westervelt and KZK equations and experiment is only fair, because of problems in specifying the experimental source condition with sufficient accuracy.
International Nuclear Information System (INIS)
Cox, A.N.
1982-01-01
Double mode pulsation is a very pervasive phenomenon in stars all over the Hertzsprung-Russell diagram. In order of increasing radius, examples are: ZZ Ceti stars, the sun, the delta Scuti stars, RR Lyrae variables, the β Cephei variables and those related to them, Cepheids, and maybe even the Mira stars. These many modes have been interpreted as both radial and nonradial modes, but in many cases the actual mode has not been clearly identified. Yellow giants seem to be the most simple pulsators with a large majority of the RR Lyrae variables and Cepheids showing only one pulsation period. We limit this review to those very few cases for classical Cepheids and RR Lyrae variables which display two modes. For these we know many facts about these stars, but the actual cause of the pulsation in two modes simultaneously remains unknown
Resistive m=o mode in reverse-field configurations
International Nuclear Information System (INIS)
Galvao, R.M.O.; Santiago, M.A.M.
1982-01-01
The resistive m=0 mode is studied. Where m is the azimuthal mode number in magnetic confinement configurations with parallel field lines such that the magnetic field reverses direction inside the plasma. A cylindrical plasma column which rotates rigidly with a rotation velocity Ω is considered. It is found that the growth rate of the mode γ scales differently with the plasma resistivity depending on whether Ω vanishes or not; γα sup(3/5) for Ω=0 and γα sup(1/3) for Ω different 0. When the Hall term is also included in the generalized Ohm's law, γα sup(1/2) is obtained. This last result is in disagreement with the results of Krappraff et al. (Author) [pt
Streaming gravity mode instability
International Nuclear Information System (INIS)
Wang Shui.
1989-05-01
In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs
Trefny, Charles J (Inventor); Dippold, Vance F (Inventor)
2013-01-01
A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.
Antipastorialism : Resistant Georgic Mode
National Research Council Canada - National Science Library
Zimmerman, Donald
2000-01-01
.... Abolitionists, women, Afro-British slaves, and those who protested land enclosure developed a multivalent, resistant mode of writing, which I name 'antipastoralism', that countered orthodox, poetical...
International Nuclear Information System (INIS)
Zelenyj, L.M.; Kuznetsova, M.M.
1989-01-01
Nonlinear study of magnetic perturbation development under single-mode conditions in collision-free plasma in configurations with the magnetic field shear is investigated. Results are obtained with regard of transverse component of electrical field and its effect on ion dynamics within wide range of ion Larmor radius value and values of magnetic field shear. Increments of nonlinear drift tearing mode are obtained and it is shown that excitation drastic conditions of even linearly stable modes are possible. Mechanism of instability nonlinear stabilization is considered and the value of magnetic island at the saturation threshold is estimeted. Energy of nonlinear drift tearing mode is discussed
Mixed Volume and Distance Geometry Techniques for Counting Euclidean Embeddings of Rigid Graphs
I.Z. Emiris; E.P. Tsigaridas; A. Varvitsiotis (Antonios); A. Mucherino (Antonio); C. Lavor; L. Liberti; N. Maculan
2013-01-01
htmlabstractA graph G is called generically minimally rigid in Rd if, for any choice of sufficiently generic edge lengths, it can be embedded in Rd in a finite number of distinct ways, modulo rigid transformations. Here, we deal with the problem of determining tight bounds on the number of such
Mental set and creative thought in social conflict : Threat rigidity versus motivated focus
De Dreu, Carsten K. W.; Nijstad, Bernard A.
According to the traditional threat-rigidity reasoning, people in social conflict will be less flexible, less creative, more narrow-minded, and more rigid in their thinking when they adopt a conflict rather than a cooperation mental set. The authors propose and test an alternative, motivated focus
On the rigidity of rank gradient in a group of intermediate growth
Grigorchuk, Rostislav; Kravchenko, Rostyslav
2018-01-01
We introduce and investigate the rigidity property of rank gradient in the case of the group $\\mathcal G$ of intermediate growth constructed by the first author. We show that $\\mathcal G$ is normally $(f,g)$-RG rigid where $f(n)=\\log(n)$ and $g(n) =\\log(\\log(n)).$
Risk of perforation using rigid oesophagoscopy in the distal part of oesophagus
DEFF Research Database (Denmark)
Wennervaldt, Kasper; Melchiors, Jacob
2012-01-01
Endoscopic examination and treatment of disorders in the oesophagus have been a part of the otolaryngological specialty since the introduction of the rigid endoscope. Today, both flexible and rigid oesophagoscopy (RO) is used to that end. The aim of this study was to evaluate the safety of the RO....
21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polymer modifiers in semirigid and rigid vinyl...: ADJUVANTS, PRODUCTION AIDS, AND SANITIZERS Certain Adjuvants and Production Aids § 178.3790 Polymer modifiers in semirigid and rigid vinyl chloride plastics. The polymers identified in paragraph (a) of this...
International Nuclear Information System (INIS)
Krashchenko, V.P.; Statsenko, V.E.; Rudnitskij, N.P.
1984-01-01
Investigation procedures are described for rigidity of testing machines and mechanical properties of tantalum and nickel in the temperature range 293-1873K. Temperature dependences are presented for strength characteristics of the investigated materials obtained with the use of installations of different rigidity. Dependence analysis is carried out and recommendations are given as to the characteristics application
Unifying Rigid and Soft Bodies Representation: The Sulfur Physics Engine
Directory of Open Access Journals (Sweden)
Dario Maggiorini
2014-01-01
Full Text Available Video games are (also real-time interactive graphic simulations: hence, providing a convincing physics simulation for each specific game environment is of paramount importance in the process of achieving a satisfying player experience. While the existing game engines appropriately address many aspects of physics simulation, some others are still in need of improvements. In particular, several specific physics properties of bodies not usually involved in the main game mechanics (e.g., properties useful to represent systems composed by soft bodies, are often poorly rendered by general-purpose engines. This issue may limit game designers when imagining innovative and compelling video games and game mechanics. For this reason, we dug into the problem of appropriately representing soft bodies. Subsequently, we have extended the approach developed for soft bodies to rigid ones, proposing and developing a unified approach in a game engine: Sulfur. To test the engine, we have also designed and developed “Escape from Quaoar,” a prototypal video game whose main game mechanic exploits an elastic rope, and a level editor for the game.
Use of Terrestrial Laser Scanner for Rigid Airport Pavement Management.
Barbarella, Maurizio; D'Amico, Fabrizio; De Blasiis, Maria Rosaria; Di Benedetto, Alessandro; Fiani, Margherita
2017-12-26
The evaluation of the structural efficiency of airport infrastructures is a complex task. Faulting is one of the most important indicators of rigid pavement performance. The aim of our study is to provide a new method for faulting detection and computation on jointed concrete pavements. Nowadays, the assessment of faulting is performed with the use of laborious and time-consuming measurements that strongly hinder aircraft traffic. We proposed a field procedure for Terrestrial Laser Scanner data acquisition and a computation flow chart in order to identify and quantify the fault size at each joint of apron slabs. The total point cloud has been used to compute the least square plane fitting those points. The best-fit plane for each slab has been computed too. The attitude of each slab plane with respect to both the adjacent ones and the apron reference plane has been determined by the normal vectors to the surfaces. Faulting has been evaluated as the difference in elevation between the slab planes along chosen sections. For a more accurate evaluation of the faulting value, we have then considered a few strips of data covering rectangular areas of different sizes across the joints. The accuracy of the estimated quantities has been computed too.
Evolution of flexibility and rigidity in retaliatory punishment.
Morris, Adam; MacGlashan, James; Littman, Michael L; Cushman, Fiery
2017-09-26
Natural selection designs some social behaviors to depend on flexible learning processes, whereas others are relatively rigid or reflexive. What determines the balance between these two approaches? We offer a detailed case study in the context of a two-player game with antisocial behavior and retaliatory punishment. We show that each player in this game-a "thief" and a "victim"-must balance two competing strategic interests. Flexibility is valuable because it allows adaptive differentiation in the face of diverse opponents. However, it is also risky because, in competitive games, it can produce systematically suboptimal behaviors. Using a combination of evolutionary analysis, reinforcement learning simulations, and behavioral experimentation, we show that the resolution to this tension-and the adaptation of social behavior in this game-hinges on the game's learning dynamics. Our findings clarify punishment's adaptive basis, offer a case study of the evolution of social preferences, and highlight an important connection between natural selection and learning in the resolution of social conflicts.
Obstacles to developing sustainable cities: the real estate rigidity trap
Directory of Open Access Journals (Sweden)
V. Kelly Turner
2017-06-01
Full Text Available Sprawl patterns of urbanization have large environmental consequences, and sustainable alternatives to conventional urban patterns of development have been promoted by a subset of planners, design professionals, and municipalities. These alternatives have not been widely adopted among real estate developers, actors with large influence over urban form and function. Existing explanations for this failure enumerate market and regulatory barriers but do not sufficiently describe the institutional structures that allow conventional approaches to prevail. A failure of real estate developers to adopt alternative forms of development can best be described in terms of a rigidity trap. Specifically, norms of practice within the real estate development industry combine with market and regulatory factors to favor existing practices and limit innovation. Moreover, these institutional factors also buffer the real estate development industry from feedback mechanisms and external signals that might otherwise trigger adaptation. Addressing the environmental consequences of urbanization not only requires novel approaches to urban design, but will also necessitate addressing systemic pathologies in the design implementation process.
Use of Terrestrial Laser Scanner for Rigid Airport Pavement Management
Directory of Open Access Journals (Sweden)
Maurizio Barbarella
2017-12-01
Full Text Available The evaluation of the structural efficiency of airport infrastructures is a complex task. Faulting is one of the most important indicators of rigid pavement performance. The aim of our study is to provide a new method for faulting detection and computation on jointed concrete pavements. Nowadays, the assessment of faulting is performed with the use of laborious and time-consuming measurements that strongly hinder aircraft traffic. We proposed a field procedure for Terrestrial Laser Scanner data acquisition and a computation flow chart in order to identify and quantify the fault size at each joint of apron slabs. The total point cloud has been used to compute the least square plane fitting those points. The best-fit plane for each slab has been computed too. The attitude of each slab plane with respect to both the adjacent ones and the apron reference plane has been determined by the normal vectors to the surfaces. Faulting has been evaluated as the difference in elevation between the slab planes along chosen sections. For a more accurate evaluation of the faulting value, we have then considered a few strips of data covering rectangular areas of different sizes across the joints. The accuracy of the estimated quantities has been computed too.
Ultimate Lateral Capacity of Rigid Pile in c- φ Soil
Zhang, Wei-min
2018-03-01
To date no analytical solution of the pile ultimate lateral capacity for the general c- φ soil has been obtained. In the present study, a new dimensionless embedded ratio was proposed and the analytical solutions of ultimate lateral capacity and rotation center of rigid pile in c- φ soils were obtained. The results showed that both the dimensionless ultimate lateral capacity and dimensionless rotation center were the univariate functions of the embedded ratio. Also, the ultimate lateral capacity in the c- φ soil was the combination of the ultimate lateral capacity ( f c ) in the clay, and the ultimate lateral capacity ( f φ ) in the sand. Therefore, the Broms chart for clay, solution for clay ( φ=0) put forward by Poulos and Davis, solution for sand ( c=0) obtained by Petrasovits and Awad, and Kondner's ultimate bending moment were all proven to be the special cases of the general solution in the present study. A comparison of the field and laboratory tests in 93 cases showed that the average ratios of the theoretical values to the experimental value ranged from 0.85 to 1.15. Also, the theoretical values displayed a good agreement with the test values.
Biomimetic model systems of rigid hair beds: Part I - Theory
Hood, Kaitlyn; Jammalamadaka, Mani S. S.; Hosoi, Anette
2017-11-01
Crustaceans - such as lobsters, crabs, and stomapods - have hairy appendages that they use to recognize and track odorants in the surrounding fluid. An array of rigid hairs impedes flow at different rates depending on the spacing between hairs and the Reynolds number, Re. At larger Reynolds numbers (Re >1), fluid travels through the hairs rather than around them, a phenomenon called leakiness. Crustaceans flick their appendages at different speeds in order to manipulate the leakiness between the hairs, allowing the hairs to either detect odors in a sample of fluid or collect a new sample. A single hair can be represented as a slender body attached at one end to a wall. Using both slender body theory and numerical methods, we observe that there is a region of flow around the hair that speeds up relative to the unobstructed flow. As the Reynolds number increases, this fast flow region moves closer to the hair. Using this model, we predict that an array of hairs can be engineered to have a desired leakiness profile.
Homogenization models for thin rigid structured surfaces and films.
Marigo, Jean-Jacques; Maurel, Agnès
2016-07-01
A homogenization method for thin microstructured surfaces and films is presented. In both cases, sound hard materials are considered, associated with Neumann boundary conditions and the wave equation in the time domain is examined. For a structured surface, a boundary condition is obtained on an equivalent flat wall, which links the acoustic velocity to its normal and tangential derivatives (of the Myers type). For a structured film, jump conditions are obtained for the acoustic pressure and the normal velocity across an equivalent interface (of the Ventcels type). This interface homogenization is based on a matched asymptotic expansion technique, and differs slightly from the classical homogenization, which is known to fail for small structuration thicknesses. In order to get insight into what causes this failure, a two-step homogenization is proposed, mixing classical homogenization and matched asymptotic expansion. Results of the two homogenizations are analyzed in light of the associated elementary problems, which correspond to problems of fluid mechanics, namely, potential flows around rigid obstacles.
Thermally-Induced Structural Disturbances of Rigid Panel Solar Arrays
Johnston, John D.; Thornton, Earl A.
1997-01-01
The performance of a significant number of spacecraft has been impacted negatively by attitude disturbances resulting from thermally-induced motions of flexible structures. Recent examples of spacecraft affected by these disturbances include the Hubble Space Telescope (HST) and the Upper Atmosphere Research Satellite (UARS). Thermally-induced structural disturbances occur as the result of rapid changes in thermal loading typically initiated as a satellite exits or enters the Earth's shadow. Temperature differences in flexible appendages give rise to structural deformations, which in turn result in disturbance torques reacting back on the spacecraft. Structures which have proven susceptible to these disturbances include deployable booms and solar arrays. This paper investigates disturbances resulting from thermally-induced deformations of rigid panel solar arrays. An analytical model for the thermal-structural response of the solar array and the corresponding disturbance torque are presented. The effect of these disturbances on the attitude dynamics of a simple spacecraft is then investigated using a coupled system of governing equations which includes the effects of thermally-induced deformations. Numerical results demonstrate the effect of varying solar array geometry on the dynamic response of the system.
Multiscale weighted colored graphs for protein flexibility and rigidity analysis
Bramer, David; Wei, Guo-Wei
2018-02-01
Protein structural fluctuation, measured by Debye-Waller factors or B-factors, is known to correlate to protein flexibility and function. A variety of methods has been developed for protein Debye-Waller factor prediction and related applications to domain separation, docking pose ranking, entropy calculation, hinge detection, stability analysis, etc. Nevertheless, none of the current methodologies are able to deliver an accuracy of 0.7 in terms of the Pearson correlation coefficients averaged over a large set of proteins. In this work, we introduce a paradigm-shifting geometric graph model, multiscale weighted colored graph (MWCG), to provide a new generation of computational algorithms to significantly change the current status of protein structural fluctuation analysis. Our MWCG model divides a protein graph into multiple subgraphs based on interaction types between graph nodes and represents the protein rigidity by generalized centralities of subgraphs. MWCGs not only predict the B-factors of protein residues but also accurately analyze the flexibility of all atoms in a protein. The MWCG model is validated over a number of protein test sets and compared with many standard methods. An extensive numerical study indicates that the proposed MWCG offers an accuracy of over 0.8 and thus provides perhaps the first reliable method for estimating protein flexibility and B-factors. It also simultaneously predicts all-atom flexibility in a molecule.
On removing interpolation and resampling artifacts in rigid image registration.
Aganj, Iman; Yeo, Boon Thye Thomas; Sabuncu, Mert R; Fischl, Bruce
2013-02-01
We show that image registration using conventional interpolation and summation approximations of continuous integrals can generally fail because of resampling artifacts. These artifacts negatively affect the accuracy of registration by producing local optima, altering the gradient, shifting the global optimum, and making rigid registration asymmetric. In this paper, after an extensive literature review, we demonstrate the causes of the artifacts by comparing inclusion and avoidance of resampling analytically. We show the sum-of-squared-differences cost function formulated as an integral to be more accurate compared with its traditional sum form in a simple case of image registration. We then discuss aliasing that occurs in rotation, which is due to the fact that an image represented in the Cartesian grid is sampled with different rates in different directions, and propose the use of oscillatory isotropic interpolation kernels, which allow better recovery of true global optima by overcoming this type of aliasing. Through our experiments on brain, fingerprint, and white noise images, we illustrate the superior performance of the integral registration cost function in both the Cartesian and spherical coordinates, and also validate the introduced radial interpolation kernel by demonstrating the improvement in registration.
[The development of gender identity beyond rigid dichotomy].
Quindeau, Ilka
2014-01-01
The conflicts individuals with ambiguous sexual characteristics suffer from are not the result of genetic features but of the rigid and dichotomous gender order, which is currently undergoing a renaissance. This also applies to individuals with an uncertain gender identity. In the best interests of the child a concept of gender seems necessary, that goes beyond a binary separation and allows gender-specific intermediary stages in the personal development of identity. Such a gender concept can be developed following psychoanalytic theories. The present discourse contains a scale of connecting factors for a differentiated and less normative conceptualization of gender development. Starting from Freud's concept of constitutional bisexuality, Robert Stoller's theory, which has been firmly rooted in the mainstream of psychoanalysis for more than 40 years, will be critically reviewed. By involving Reimut Reiche's and Jean Laplanche's arguments, a continuative psychological gender theory will be drafted, which does not normatively and reductively claim the demarcation of gender, but rather opens up a space for gender diversity.
Super rigid nature of super-deformed bands
International Nuclear Information System (INIS)
Sharma, Neha; Mittal, H.M.; Jain, A.K.
2012-01-01
The phenomenon of high-spin super-deformation represents one of the most remarkable discoveries in nuclear physics. A large number of SD bands have been observed in A = 60, 80, 130, 150, 190 mass regions. The cascades of SD bands are known to be connected by electric quadruple E2 transitions. Because of absence of linking transitions between superdeformed (SD) and normal deformed (ND) levels, the spin assignments of most of these bands carry a minimum uncertainty ≈ 1-2ħ. It was found in an analysis of SD bands in the context of semi classical approach that moment of inertia comes close to the rigid body value in most of the cases. Lack of knowledge of spins has led to an emphasis on the study of dynamical moment of inertia of SD bands and systematic of kinematic moment of inertia has not been examined so far. In this paper, we extract the band moment of inertia J 0 and softness parameter (σ) of all the SD bands corresponding to axes ratio (x) = 1.5 and present their systematic
Optical characterization and polarization calibration for rigid endoscopes
Garcia, Missael; Gruev, Viktor
2017-02-01
Polarization measurements give orthogonal information to spectral images making them a great tool in the characterization of environmental parameters in nature. Thus, polarization imagery has proven to be remarkably useful in a vast range of biomedical applications. One such application is the early diagnosis of flat cancerous lesions in murine colorectal tumor models, where polarization data complements NIR fluorescence analysis. Advances in nanotechnology have led to compact and precise bio-inspired imaging sensors capable of accurately co-registering multidimensional spectral and polarization information. As more applications emerge for these imagers, the optics used in these instruments get very complex and can potentially compromise the original polarization state of the incident light. Here we present a complete optical and polarization characterization of three rigid endoscopes of size 1.9mm x 10cm (Karl Storz, Germany), 5mm x 30cm, and 10mm x 33cm (Olympus, Germany), used in colonoscopy for the prevention of colitis-associated cancer. Characterization results show that the telescope optics act as retarders and effectively depolarize the linear component. These incorrect readings can cause false-positives or false-negatives leading to an improper diagnosis. In this paper, we offer a polarization calibration scheme for these endoscopes based on Mueller calculus. By modeling the optical properties from training data as real-valued Mueller matrices, we are able to successfully reconstruct the initial polarization state acquired by the imaging system.
Observations on the Darboux coordinates for rigid special geometry
Ferrara, Sergio; Ferrara, Sergio; Macia, Oscar
2006-01-01
We exploit some relations which exist when (rigid) special geometry is formulated in real symplectic special coordinates $P^I=(p^\\Lambda,q_\\Lambda), I=1,...,2n$. The central role of the real $2n\\times 2n$ matrix $M(\\Re \\mathcal{F},\\Im \\mathcal{F})$, where $\\mathcal{F} = \\partial_\\Lambda\\partial_\\Sigma F$ and $F$ is the holomorphic prepotential, is elucidated in the real formalism. The property $M\\Omega M=\\Omega$ with $\\Omega$ being the invariant symplectic form is used to prove several identities in the Darboux formulation. In this setting the matrix $M$ coincides with the (negative of the) Hessian matrix $H(S)=\\frac{\\partial^2 S}{\\partial P^I\\partial P^J}$ of a certain hamiltonian real function $S(P)$, which also provides the metric of the special K\\"ahler manifold. When $S(P)=S(U+\\bar U)$ is regarded as a "K\\"ahler potential'' of a complex manifold with coordinates $U^I=\\frac12(P^I+iZ^I)$, then it provides a K\\"ahler metric of an hyperk\\"ahler manifold which describes the hypermultiplet geometry obtained by...
Non-Invasive Ocular Rigidity Measurement: A Differential Tonometry Approach
Directory of Open Access Journals (Sweden)
Efstathios T. Detorakis
2015-12-01
Full Text Available Purpose: Taking into account the fact that Goldmann applanation tonometry (GAT geometrically deforms the corneal apex and displaces volume from the anterior segment whereas Dynamic Contour Tonometry (DCT does not, we aimed at developing an algorithm for the calculation of ocular rigidity (OR based on the differences in pressure and volume between deformed and non-deformed status according to the general Friedenwald principle of differential tonometry. Methods: To avoid deviations of GAT IOP from true IOP in eyes with corneas different from the “calibration cornea” we applied the previously described Orssengo-Pye algorithm to calculate an error coefficient “C/B”. To test the feasibility of the proposed model, we calculated the OR coefficient (r in 17 cataract surgery candidates (9 males and 8 females. Results: The calculated r according to our model (mean ± SD, range was 0.0174 ± 0.010 (0.0123–0.022 mmHg/μL. A negative statistically significant correlation between axial length and r was detected whereas correlations between r and other biometric parameters examined were statistically not significant. Conclusions: The proposed method may prove a valid non-invasive tool for the measurement method of OR, which could help in introducing OR in the decision-making of the routine clinical practice.
Dynamical analysis of an orbiting three-rigid-body system
Energy Technology Data Exchange (ETDEWEB)
Pagnozzi, Daniele, E-mail: daniele.pagnozzi@strath.ac.uk, E-mail: james.biggs@strath.ac.uk; Biggs, James D., E-mail: daniele.pagnozzi@strath.ac.uk, E-mail: james.biggs@strath.ac.uk [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, Scotland (United Kingdom)
2014-12-10
The development of multi-joint-spacecraft mission concepts calls for a deeper understanding of their nonlinear dynamics to inform and enhance system design. This paper presents a study of a three-finite-shape rigid-body system under the action of an ideal central gravitational field. The aim of this paper is to gain an insight into the natural dynamics of this system. The Hamiltonian dynamics is derived and used to identify relative attitude equilibria of the system with respect to the orbital reference frame. Then a numerical investigation of the behaviour far from the equilibria is provided using tools from modern dynamical systems theory such as energy methods, phase portraits and Poincarè maps. Results reveal a complex structure of the dynamics as well as the existence of connections between some of the equilibria. Stable equilibrium configurations appear to be surrounded by very narrow regions of regular and quasi-regular motions. Trajectories evolve on chaotic motions in the rest of the domain.
A Condition Number for Non-Rigid Shape Matching
Ovsjanikov, Maks
2011-08-01
© 2011 The Author(s). Despite the large amount of work devoted in recent years to the problem of non-rigid shape matching, practical methods that can successfully be used for arbitrary pairs of shapes remain elusive. In this paper, we study the hardness of the problem of shape matching, and introduce the notion of the shape condition number, which captures the intuition that some shapes are inherently more difficult to match against than others. In particular, we make a connection between the symmetry of a given shape and the stability of any method used to match it while optimizing a given distortion measure. We analyze two commonly used classes of methods in deformable shape matching, and show that the stability of both types of techniques can be captured by the appropriate notion of a condition number. We also provide a practical way to estimate the shape condition number and show how it can be used to guide the selection of landmark correspondences between shapes. Thus we shed some light on the reasons why general shape matching remains difficult and provide a way to detect and mitigate such difficulties in practice.
Microwave plasma mode conversion
International Nuclear Information System (INIS)
Torres, H.S.; Sakanaka, P.H.; Villarroel, C.H.
1985-01-01
The behavior of hot electrons during the process of laser-produced plasma is studied. The basic equations of mode conversion from electromagnetic waves to electrostatic waves are presented. It is shown by mode conversion, that, the resonant absorption and parametric instabilities appear simultaneously, but in different plasma regions. (M.C.K.) [pt
Rotational stabilization of q < 1 modes
International Nuclear Information System (INIS)
Waelbroeck, F.L.; Aydemir, A.Y.
1996-01-01
Analyses of high performance discharges with central safety factor below unity have shown that the ideal Magnetohydrodynamic stability threshold for the n=1 kink mode is often violated with impunity. For TFTR (Tokamak Fusion Test Reactor) supershots, the experimental observations can be explained by diamagnetic stabilization of the reconnecting model provided that the fluid free energy is suitably reduced by trapped particle effects. For the broader profiles typical of other high confinement regimes, however, diamagnetic effects cannot account for the experimental results. Furthermore, there is evidence that the Mercier stability condition can also be violated in some cases. Here, we show that toroidal rotation of the plasma can stabilize the kink mode even in the presence of resistivity in configurations that would otherwise be ideally unstable. Two effects can be distinguished. The first effect consists in a reduction of the ideal driving energy. This can be understood in view of the fact that, to a good approximation, the internal kink is a rigid body displacement combining a tilt of the plasma inside the q = 1 surface with a translation along the tilt axis. In the presence of rotation, this displacement must be accompanied by a precessional motion so as to conserve angular momentum. The kinetic energy of the precessional motion must be extracted from the energy driving the displacement. The second effect of rotation is to resolve the Alfven singularity. This is a consequence of the pressure perturbation caused by the equilibrium variation of the entropy within the flux surfaces. It results in the stabilization of resistive as well as weak ideal instabilities, including Mercier modes. For rotationally stabilized equilibria, it also implies the presence of a neutrally stable mode with frequency of the order of the growth rate of the internal kink
dos Santos, G. J.; Linares, D. H.; Ramirez-Pastor, A. J.
2018-04-01
The phase behaviour of aligned rigid rods of length k (k-mers) adsorbed on two-dimensional square lattices has been studied by Monte Carlo (MC) simulations and histogram reweighting technique. The k-mers, containing k identical units (each one occupying a lattice site) were deposited along one of the directions of the lattice. In addition, attractive lateral interactions were considered. The methodology was applied, particularly, to the study of the critical point of the condensation transition occurring in the system. The process was monitored by following the fourth order Binder cumulant as a function of temperature for different lattice sizes. The results, obtained for k ranging from 2 to 7, show that: (i) the transition coverage exhibits a decreasing behaviour when it is plotted as a function of the k-mer size and (ii) the transition temperature, Tc, exhibits a power law dependence on k, Tc ∼k 0 , 4, shifting to higher values as k increases. Comparisons with an analytical model based on a generalization of the Bragg-Williams approximation (BWA) were performed in order to support the simulation technique. A significant qualitative agreement was obtained between BWA and MC results.
Energy Technology Data Exchange (ETDEWEB)
Furuuchi, Kazuyuki [Manipal Centre for Natural Sciences, Manipal University,Manipal, Karnataka 576104 (India)
2016-07-07
In this article we study Kaluza-Klein (KK) dimensional reduction of massive Abelian gauge theories with charged matter fields on a circle. Since local gauge transformations change position dependence of the charged fields, the decomposition of the charged matter fields into KK modes is gauge dependent. While whole KK mass spectrum is independent of the gauge choice, the mode number depends on the gauge. The masses of the KK modes also depend on the field value of the zero-mode of the extra dimensional component of the gauge field. In particular, one of the KK modes in the KK tower of each massless 5D charged field becomes massless at particular values of the extra-dimensional component of the gauge field. When the extra-dimensional component of the gauge field is identified with the inflaton, this structure leads to recursive cosmological particle productions.
International Nuclear Information System (INIS)
Furuuchi, Kazuyuki
2016-01-01
In this article we study Kaluza-Klein (KK) dimensional reduction of massive Abelian gauge theories with charged matter fields on a circle. Since local gauge transformations change position dependence of the charged fields, the decomposition of the charged matter fields into KK modes is gauge dependent. While whole KK mass spectrum is independent of the gauge choice, the mode number depends on the gauge. The masses of the KK modes also depend on the field value of the zero-mode of the extra dimensional component of the gauge field. In particular, one of the KK modes in the KK tower of each massless 5D charged field becomes massless at particular values of the extra-dimensional component of the gauge field. When the extra-dimensional component of the gauge field is identified with the inflaton, this structure leads to recursive cosmological particle productions.
Post-Newtonian conservation laws in rigid quasilocal frames
International Nuclear Information System (INIS)
McGrath, Paul L; Chanona, Melanie; Epp, Richard J; Mann, Robert B; Koop, Michael J
2014-01-01
In recent work we constructed completely general conservation laws for energy (McGrath et al 2012 Class. Quantum Grav. 29 215012) and linear and angular momentum (Epp et al 2013 Class. Quantum Grav. 30 195019) of extended systems in general relativity based on the notion of a rigid quasilocal frame (RQF). We argued at a fundamental level that these RQF conservation laws are superior to conservation laws based on the local stress–energy–momentum tensor of matter because (1) they do not rely on spacetime symmetries and (2) they properly account for both matter and gravitational effects. Moreover, they provide simple, exact, operational expressions for fluxes of gravitational energy and linear and angular momentum. In this paper we derive the form of these laws in a general first post-Newtonian (1PN) approximation, and then apply these approximate laws to the problem of gravitational tidal interactions. We obtain formulas for tidal heating and tidal torque that agree with the literature, but without resorting to the use of pseudotensors. We describe the physical mechanism of these tidal interactions not in the traditional terms of a Newtonian gravitational force, but in terms of a much simpler and universal mechanism that is an exact, quasilocal manifestation of the equivalence principle in general relativity. As concrete examples, we look at the tidal heating of Jupiter’s moon Io and angular momentum transfer in the Earth–Moon system that causes a gradual spin-down of the Earth and recession of the Moon. In both examples we find agreement with observation. (paper)
Radiation reaction of a classical quasi-rigid extended particle
International Nuclear Information System (INIS)
Medina, Rodrigo
2006-01-01
The problem of the self-interaction of a quasi-rigid classical particle with an arbitrary spherically symmetric charge distribution is completely solved up to the first order in the acceleration. No ad hoc assumptions are made. The relativistic equations of conservation of energy and momentum in a continuous medium are used. The electromagnetic fields are calculated in the reference frame of instantaneous rest using the Coulomb gauge; in this way the troublesome power expansion is avoided. Most of the puzzles that this problem has aroused are due to the inertia of the negative pressure that equilibrates the electrostatic repulsion inside the particle. The effective mass of this pressure is -U e /(3c 2 ), where U e is the electrostatic energy. When the pressure mass is taken into account the dressed mass m turns out to be the bare mass plus the electrostatic mass m = m 0 + U e /c 2 . It is shown that a proper mechanical behaviour requires that m 0 > U e /3c 2 . This condition poses a lower bound on the radius that a particle of a given bare mass and charge may have. The violation of this condition is the reason why the Lorentz-Abraham-Dirac formula for the radiation reaction of a point charge predicts unphysical motions that run away or violate causality. Provided the mass condition is met the solutions of the exact equation of motion never run away and conform to causality and conservation of energy and momentum. When the radius is much smaller than the wavelength of the radiated fields, but the mass condition is still met, the exact expression reduces to the formula that Rohrlich (2002 Phys. Lett. A 303 307) has advocated for the radiation reaction of a quasi-point charge
Noise characteristics of barium ferrite particulate rigid disks
Kodama, Naoki; Inoue, Hitoshi; Spratt, Geoffrey; Uesaka, Yasutaro; Katsumoto, Masayuki
1991-04-01
This paper discusses the relationship between the noise characteristics and magnetic properties of longitudinal barium ferrite (Ba-F) rigid disks with different switching field distributions (SFD). The magnetomotive force dependencies of reverse dc-erase (RDC) noise are measured and compared with SFD values. Coated disks with acicular magnetic particles have dips and thin-film disks peaks in the RDC. In Ba-F disks, both cases are observed depending on the SFD values, though the depths or heights of the RDC noise are much smaller than those of coated disks with acicular particles or thin-film disks. Disks with small SFD values have peaks, and disks with large SFD values have dips. In order to find the relationship between noise properties and magnetic properties, interparticle interactions in Ba-F disks are investigated. Reverse dc remanence Id(H) and ac-demagnetized isothermal remanence Ir(H) are measured. Both are normalized by the saturation remanence. The deviation from the noninteracting system, ΔM = Id(H) - [1ΔM=Id(H)-[1- 2Ir(H)] and an interaction field factor (IFF) given by (H'r - Hr)/Hc, are derived from these remanent properties. Here, H'r is the field corresponding to 50% of the remanent magnetization, Hr is remanence coercivity. In Ba-F disks, ΔM shows positive interactions, and the peak heights of ΔM increase and IFF decrease with decreasing SFD values. Positive interactions between Ba-F particles seem to be caused by particle stacking. Therefore, particle stacking results in small SFD values and peak-type RDC noise.
Rigid Polyurethane Foam Thermal Insulation Protected with Mineral Intumescent Mat
Directory of Open Access Journals (Sweden)
Kirpluks Mikelis
2014-12-01
Full Text Available One of the biggest disadvantages of rigid polyurethane (PU foams is its low thermal resistance, high flammability and high smoke production. Greatest advantage of this thermal insulation material is its low thermal conductivity (λ, which at 18-28 mW/(m•K is superior to other materials. To lower the flammability of PU foams, different flame retardants (FR are used. Usually, industrially viable are halogenated liquid FRs but recent trends in EU regulations show that they are not desirable any more. Main concern is toxicity of smoke and health hazard form volatiles in PU foam materials. Development of intumescent passive fire protection for foam materials would answer problems with flammability without using halogenated FRs. It is possible to add expandable graphite (EG into PU foam structure but this increases the thermal conductivity greatly. Thus, the main advantage of PU foam is lost. To decrease the flammability of PU foams, three different contents 3%; 9% and 15% of EG were added to PU foam formulation. Sample with 15% of EG increased λ of PU foam from 24.0 to 30.0 mW/(m•K. This paper describes the study where PU foam developed from renewable resources is protected with thermally expandable intumescent mat from Technical Fibre Products Ltd. (TFP as an alternative to EG added into PU material. TFP produces range of mineral fibre mats with EG that produce passive fire barrier. Two type mats were used to develop sandwich-type PU foams. Also, synergy effect of non-halogenated FR, dimethyl propyl phosphate and EG was studied. Flammability of developed materials was assessed using Cone Calorimeter equipment. Density, thermal conductivity, compression strength and modulus of elasticity were tested for developed PU foams. PU foam morphology was assessed from scanning electron microscopy images.
An energy approach study of the penetration of concrete by rigid missiles
International Nuclear Information System (INIS)
Guirgis, Sameh; Guirguis, Ehab
2009-01-01
This paper presents an energy approach for investigating the penetration of concrete by rigid missiles and the associated phenomena. However, the principal assumptions made here must be validated experimentally before giving the proposed subject further considerations. In the following, a new measure for concrete resistance to penetration by hard missiles is presented. The suggested term for this measure is 'the Volumetric Crushing Energy Density' of concrete which can be described as the energy required for converting a unit volume of concrete to separate particles under compressive loading so that the particles of the crushed volume meet certain gradation criteria. Using this quantity, an explanation of the scale effect is postulated. Moreover, a dimensionless semi-analytical formula for the penetration depth of a rigid missile in a concrete target is proposed which includes a large number of the variables of the problem. The formula assumes that the penetration incident may include several successive phases where the set of variables that governs the impact is different during each phase, and the variables that characterize the impact during each phase correlate in a different manner as well. Furthermore, many of the penetration depth formulae available in the literature are rewritten according to the formula proposed here where the concrete penetration resistance of any incident is estimated by modifying the resistance of 'reference impact incidents.' The rewritten formulae show the wide variation of the values of concrete resistance which are implicitly included in the original formulae. Finally, the proposed formula is applied using data of penetration experiments presented by Forrestal et al. [Forrestal, M.J., Altman, B.S., Cargile, J.D., Hanchak, S.J., 1994. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets. Int. J. Impact Eng. 15(4), 395-405; Forrestal, M.J., Frew, D.J., Hickerson, J.P., Rohwer, T.A., 2003
Holograms for laser diode: Single mode optical fiber coupling
Fuhr, P. L.
1982-01-01
The low coupling efficiency of semiconductor laser emissions into a single mode optical fibers place a severe restriction on their use. Associated with these conventional optical coupling techniques are stringent alignment sensitivities. Using holographic elements, the coupling efficiency may be increased and the alignment sensitivity greatly reduced. Both conventional and computer methods used in the generation of the holographic couplers are described and diagrammed. The reconstruction geometries used are shown to be somewhat restrictive but substantially less rigid than their conventional optical counterparts. Single and double hologram techniques are examined concerning their respective ease of fabrication and relative merits.
International Nuclear Information System (INIS)
Alania, M V; Wawrzynczak, A; Sdobnov, V E; Kravtsova, M V
2013-01-01
Forbush decreases (Fd) of the galactic cosmic ray (GCR) intensity and geomagnetic storms are observed almost at the same time. Geomagnetic storm is a reason of significant disturbances of the magnetic cut off rigidity causing the distortion of the time profile of the Fd of the GCR intensity. We show some differences in the temporal changes of the rigidity spectra of Fd calculated by neutron monitors experimental data corrected and uncorrected for the changes of the geomagnetic cut off rigidity. Nevertheless, the general features of the temporal changes of the rigidity spectrum of Fd maintain as it was found in our previous investigations. Namely, at the beginning phase of Fd rigidity spectrum is relatively soft and gradually becomes hard up to reaching the minimum level of the GCR intensity; then the rigidity spectrum gradually becomes soft during the recovery phase of Fd. We also confirm that for the established temporal profiles of the rigidity spectrum of Fd a structural changes of the interplanetary magnetic field turbulence in the range of frequencies, 10 −-6 ÷10 −-5 Hz are responsible.
Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V
2013-09-05
Micelle formation in surfactant solutions is a self-assembly process governed by complex interplay of solvent-mediated interactions between hydrophilic and hydrophobic groups, which are commonly called heads and tails. However, the head-tail repulsion is not the only factor affecting the micelle formation. For the first time, we present a systematic study of the effect of chain rigidity on critical micelle concentration and micelle size, which is performed with the dissipative particle dynamics simulation method. Rigidity of the coarse-grained surfactant molecule was controlled by the harmonic bonds set between the second-neighbor beads. Compared to flexible molecules with the nearest-neighbor bonds being the only type of bonded interactions, rigid molecules exhibited a lower critical micelle concentration and formed larger and better-defined micelles. By varying the strength of head-tail repulsion and the chain rigidity, we constructed two-dimensional diagrams presenting how the critical micelle concentration and aggregation number depend on these parameters. We found that the solutions of flexible and rigid molecules that exhibited approximately the same critical micelle concentration could differ substantially in the micelle size and shape depending on the chain rigidity. With the increase of surfactant concentration, primary micelles of more rigid molecules were found less keen to agglomeration and formation of nonspherical aggregates characteristic of flexible molecules.
Connections rigidity effect on probability of fracture in steel moment frames
Directory of Open Access Journals (Sweden)
Gholamreza Abdollahzadeh
2017-08-01
Full Text Available Connections in steel moment frames are idealized in full pinned and full rigid conditions. Because with this assumption, in spite of real behavior of connection, real story drifts are less anticipated and maybe frame is designed without performance of bracing. There are several methods for modeling actual behavior of semi rigid connections. In this method a connection with certain rigidity is modeled by a rotational spring with corresponding stiffness. This stiffness is achieved by certain formula. In other words, each percent of rigidity corresponds to one rotational spring stiffness. In this research in order to evaluate the real behavior of connection in analysis and designing process and fracture probability one frame including four stories and one bay with three types of connection has been modeled and designed in ETABS. Each model has an individual rigidity which is equal to 10, 75 and 90 percent. With respect to maximum drift and different PGA in roof, probabilities of low, medium, high and complete fracture were calculated. For this purpose, with applying different PGA to modeled frames, amounts of drift in the roof are achieved. Then these values are compared with given values in American code. Finally, investigation showed that when rigidity in frame connections increases, the probability of frame fracture decreases. In other words, fully rigid assumption of connection in analysis process leads to decreasing in real probability of fracture in frames which is a noticeable risk in building designing processes.
Mitri, F G
2016-03-01
This work proposes a formal analytical theory using the partial-wave series expansion (PWSE) method in cylindrical coordinates, to calculate the acoustic backscattering form function as well as the radiation force-per-length on an infinitely long elliptical (non-circular) cylinder in plane progressive waves. The major (or minor) semi-axis of the ellipse coincides with the direction of the incident waves. The scattering coefficients for the rigid elliptical cylinder are determined by imposing the Neumann boundary condition for an immovable surface and solving a resulting system of linear equations by matrix inversion. The present method, which utilizes standard cylindrical (Bessel and Hankel) wave functions, presents an advantage over the solution for the scattering that is ordinarily expressed in a basis of elliptical Mathieu functions (which are generally non-orthogonal). Furthermore, an integral equation showing the direct connection of the radiation force function with the square of the scattering form function in the far-field from the scatterer (applicable for plane waves only), is noted and discussed. An important application of this integral equation is the adequate evaluation of the radiation force function from a bistatic measurement (i.e., in the polar plane) of the far-field scattering from any 2D object of arbitrary shape. Numerical predictions are evaluated for the acoustic backscattering form function and the radiation force function, which is the radiation force per unit length, per characteristic energy density, and per unit cross-sectional surface of the ellipse, with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes, as well as the dimensionless size parameter kb, without the restriction to a particular range of frequencies. The results are particularly relevant in acoustic levitation, acousto-fluidics and particle dynamics applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Effect of modes interaction on the resistive wall mode stability
International Nuclear Information System (INIS)
Chen Longxi; Wu Bin
2013-01-01
Effects of modes interaction on the resistive wall mode (RWM) stability are studied. When considering the modes interaction effects, the linear growth rate of the most unstable (3, 1) mode decreases. After linear evolution, the RWM saturates at the nonlinear phase. The saturation can be attributed to flux piling up on the resistive wall. When some modes exist, the (3, 1) mode saturates at lower level compared with single mode evolution. Meanwhile, the magnetic energy of the (5, 2) mode increases correspondingly, but the magnetic energy saturation level of the (2, 1) mode changes weakly. (authors)
Sernelius, Bo E
2011-01-01
Electromagnetic surface modes are present at all surfaces and interfaces between material of different dielectric properties. These modes have very important effects on numerous physical quantities: adhesion, capillary force, step formation and crystal growth, the Casimir effect etc. They cause surface tension and wetting and they give rise to forces which are important e.g. for the stability of colloids.This book is a useful and elegant approach to the topic, showing how the concept of electromagnetic modes can be developed as a unifying theme for a range of condensed matter physics. The
International Nuclear Information System (INIS)
Pastrnak, J.W.
1986-01-01
This eighteen-month study has been successful in providing the designer and analyst with qualitative guidelines on the occurrence of complex modes in the dynamics of linear structures, and also in developing computer codes for determining quantitatively which vibration modes are complex and to what degree. The presence of complex modes in a test structure has been verified. Finite element analysis of a structure with non-proportional dumping has been performed. A partial differential equation has been formed to eliminate possible modeling errors
International Nuclear Information System (INIS)
Kim, Hui Jun
1993-06-01
This book concentrates on switch mode power supply. It has four parts, which are introduction of switch mode power supply with DC-DC converter such as Buck converter boost converter, Buck-boost converter and PWM control circuit, explanation for SMPS with DC-DC converter modeling and power mode control, resonance converter like resonance switch, converter, multi resonance converter and series resonance and parallel resonance converters, basic test of SMPS with PWM control circuit, Buck converter, Boost converter, flyback converter, forward converter and IC for control circuit.
Dynamic Multi-Rigid-Body Systems with Concurrent Distributed Contacts: Theory and Examples
International Nuclear Information System (INIS)
TRINKLE, JEFFREY C.; TZITZOURIS, J.A.; PANG, J.S.
2001-01-01
Consider a system of rigid bodies with multiple concurrent contacts. The multi-rigid-body contact problem is to predict the accelerations of the bodies and the normal friction loads acting at the contacts. This paper presents theoretical results for the multi-rigid-body contact problem under the assumptions that one or more contacts occur over locally planar, finite regions and that friction forces are consistent with the maximum work inequality. Existence and uniqueness results are presented for this problem under mild assumptions on the system inputs. In addition, the performance of two different time-stepping methods for integrating the dynamics are compared on two simple multi-body systems
High frequency permeameter with semi-rigid pick-up coil
International Nuclear Information System (INIS)
Shin, Sung-Yong; Shin, Kwang-Ho . E-mail : khshin@star.ks.ac.kr; Kim, Jong-sung; Kim, Young-Hak; Lim, Sang-Ho; Sa-gong, Geon
2006-01-01
In this study, we propose the application of semi-rigid cable loop as a single turn shielded loop pick-up coil for the high frequency permeameter. Since the semi-rigid cable pick-up coil has simple structure, it is very easy to make the pick-up coil with bending and conventional soldering. The permeability of cobalt base amorphous ribbon was investigated using the developed permeameter for demonstrating its performance. The permeability of the amorphous ribbon was driven from the S-parameters measured using a network analyzer and permameter having the semi-rigid pick-up coil
Santillan, Arturo O; Cutanda-Henríquez, Vicente
2008-11-01
An investigation on the resonance frequency shift for a plane-wave mode in a cylindrical cavity produced by a rigid sphere is reported in this paper. This change of the resonance frequency has been previously considered as a cause of oscillational instabilities in single-mode acoustic levitation devices. It is shown that the use of the Boltzmann-Ehrenfest principle of adiabatic invariance allows the derivation of an expression for the resonance frequency shift in a simpler and more direct way than a method based on a Green's function reported in literature. The position of the sphere can be any point along the axis of the cavity. Obtained predictions of the resonance frequency shift with the deduced equation agree quite well with numerical simulations based on the boundary element method. The results are also confirmed by experiments. The equation derived from the Boltzmann-Ehrenfest principle appears to be more general, and for large spheres, it gives a better approximation than the equation previously reported.
Zero modes in de Sitter background
Energy Technology Data Exchange (ETDEWEB)
Einhorn, Martin B. [Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA 93106-4030 (United States); Jones, D.R. Timothy [Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA 93106-4030 (United States); Dept. of Mathematical Sciences, University of Liverpool,Liverpool L69 3BX (United Kingdom)
2017-03-28
There are five well-known zero modes among the fluctuations of the metric of de Sitter (dS) spacetime. For Euclidean signature, they can be associated with certain spherical harmonics on the S{sup 4} sphere, viz., the vector representation 5 of the global SO(5) isometry. They appear, for example, in the perturbative calculation of the on-shell effective action of dS space, as well as in models containing matter fields. These modes are shown to be associated with collective modes of S{sup 4} corresponding to certain coherent fluctuations. When dS space is embedded in flat five dimensions E{sup 5}, they may be seen as a legacy of translation of the center of the S{sup 4} sphere. Rigid translations of the S{sup 4}-sphere on E{sup 5} leave the classical action invariant but are unobservable displacements from the point of view of gravitational dynamics on S{sup 4}. Thus, unlike similar moduli, the center of the sphere is not promoted to a dynamical degree of freedom. As a result, these zero modes do not signify the possibility of physically realizable fluctuations or flat directions for the metric of dS space. They are not associated with Killing vectors on S{sup 4} but can be identified with certain non-isometric, conformal Killing forms that locally correspond to a rescaling of the volume element dV{sub 4}. We frame much of our discussion in the context of renormalizable gravity, but, to the extent that they only depend upon the global symmetry of the background, the conclusions should apply equally to the corresponding zero modes found in Einstein gravity. Although their existence has only been demonstrated at one-loop, we expect that these zero modes will be present to all orders in perturbation theory. They will occur for Lorentzian signature as well, so long as the hyperboloid H{sup 4} is locally stable, but there remain certain infrared issues that need to be clarified. We conjecture that they will appear in any gravitational theory having dS background as a
DEFF Research Database (Denmark)
Israelsen, Stine Møller
This PhD thesis considers higher order modes (HOMs) in optical fibers. That includes their excitation and characteristics. Within the last decades, HOMs have been applied both for space multiplexing in optical communications, group velocity dispersion management and sensing among others......-radial polarization as opposed to the linear polarization of the LP0X modes. The effect is investigated numerically in a double cladding fiber with an outer aircladding using a full vectorial modesolver. Experimentally, the bowtie modes are excited using a long period grating and their free space characteristics...... and polarization state are investigated. For this fiber, the onset of the bowtie effect is shown numerically to be LP011. The characteristics usually associated with Bessel-likes modes such as long diffraction free length and selfhealing are shown to be conserved despite the lack of azimuthal symmetry...
Aguilar, M.; Ali Cavasonza, L.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Başeǧmez-du Pree, S.; Battarbee, M.; Battiston, R.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bindel, K. F.; Bindi, V.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Boschini, M. J.; Bourquin, M.; Bueno, E. F.; Burger, J.; Burger, W. J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Castellini, G.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, G. M.; Chen, H. S.; Cheng, L.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Creus, W.; Crispoltoni, M.; Cui, Z.; Dadzie, K.; Dai, Y. M.; Datta, A.; Delgado, C.; Della Torre, S.; Demakov, O.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Dong, F.; Donnini, F.; Duranti, M.; D'Urso, D.; Egorov, A.; Eline, A.; Eronen, T.; Feng, J.; Fiandrini, E.; Fisher, P.; Formato, V.; Galaktionov, Y.; Gallucci, G.; García-López, R. J.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Giovacchini, F.; Gómez-Coral, D. M.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guo, K. H.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jia, Yi; Jinchi, H.; Kang, S. C.; Kanishev, K.; Khiali, B.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Konak, C.; Kounina, O.; Kounine, A.; Koutsenko, V.; Kulemzin, A.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. S.; Li, J. Q.; Li, Q.; Li, T. X.; Li, Y.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, Hu; Lordello, V. D.; Lu, S. Q.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lyu, S. S.; Machate, F.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mikuni, V. M.; Mo, D. C.; Mott, P.; Nelson, T.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Pauluzzi, M.; Pensotti, S.; Perrina, C.; Phan, H. D.; Picot-Clemente, N.; Pilo, F.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Quadrani, L.; Qi, X. M.; Qin, X.; Qu, Z. Y.; Räihä, T.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Schael, S.; Schmidt, S. M.; Schulz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shan, B. S.; Shi, J. Y.; Siedenburg, T.; Son, D.; Song, J. W.; Tacconi, M.; Tang, X. W.; Tang, Z. C.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Valtonen, E.; Vázquez Acosta, M.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Vitale, V.; Vitillo, S.; Wang, L. Q.; Wang, N. H.; Wang, Q. L.; Wang, X.; Wang, X. Q.; Wang, Z. X.; Wei, C. C.; Weng, Z. L.; Whitman, K.; Wu, H.; Wu, X.; Xiong, R. Q.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Yang, Y.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zannoni, M.; Zeissler, S.; Zhang, C.; Zhang, F.; Zhang, J.; Zhang, J. H.; Zhang, S. W.; Zhang, Z.; Zheng, Z. M.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; AMS Collaboration
2017-12-01
We report the observation of new properties of primary cosmic rays He, C, and O measured in the rigidity (momentum/charge) range 2 GV to 3 TV with 90 ×106 helium, 8.4 ×106 carbon, and 7.0 ×106 oxygen nuclei collected by the Alpha Magnetic Spectrometer (AMS) during the first five years of operation. Above 60 GV, these three spectra have identical rigidity dependence. They all deviate from a single power law above 200 GV and harden in an identical way.
Rigid Basement and the Evolution of the Pakistani Convergent Margin
Haq, S. S.; Davis, D. M.
2007-12-01
In Pakistan, along the western edge of the Indian-Eurasian collision there are a series of fold-and-thrust belts that have highly variable strikes and shortening directions with respect to the local relative plate motion. Much of the complexity in the deformation of this margin can easily be explained by the shape, location, and long-term motion of a fragment of relatively rigid oceanic lithosphere that is believed to underlie the Katawaz Basin. In particular, the deformation that has formed the Sulaiman Range and Lobe is a direct consequence of the Katawaz Basin's over all higher strength. The presence of deformed sedimentary strata in the basin comparable to those presently found in the Indus delta are indicative of the basins long-term motion parallel to the Chaman fault zone. In Pakistan, the transition in the strike and shortening directions occurs over a short distance compared to the width of the fold-belts and the length of the margin. We present a series of analog models along with detailed quantitative analysis that we compare to the observed deformation as indicated by both geologic and geophysical data. By quantitatively distinguishing the style and magnitude of deformation in each of a variety of analog experiments we are able to evaluate the viability of various alternative models that have been proposed for fold- belt formation and evolution of the Pakistani margin, including our favored model. The model that best fits the geological and geophysical evidence suggests that the complexity of the Pakistani margin is a result of the long- term northeastward migration of the Katawaz basin along the curving trend of the Chaman fault zone. The vertically integrated mechanical strength of the Katawaz basin allows it to act as a strong 'backstop' that has relative motion to both stable India and stable Eurasia. This northeastward motion and the resulting clockwise rotation of the Katawaz 'block' during the margin's development can explain the location and
A sequence-dependent rigid-base model of DNA
Gonzalez, O.; Petkevičiutė, D.; Maddocks, J. H.
2013-02-01
A novel hierarchy of coarse-grain, sequence-dependent, rigid-base models of B-form DNA in solution is introduced. The hierarchy depends on both the assumed range of energetic couplings, and the extent of sequence dependence of the model parameters. A significant feature of the models is that they exhibit the phenomenon of frustration: each base cannot simultaneously minimize the energy of all of its interactions. As a consequence, an arbitrary DNA oligomer has an intrinsic or pre-existing stress, with the level of this frustration dependent on the particular sequence of the oligomer. Attention is focussed on the particular model in the hierarchy that has nearest-neighbor interactions and dimer sequence dependence of the model parameters. For a Gaussian version of this model, a complete coarse-grain parameter set is estimated. The parameterized model allows, for an oligomer of arbitrary length and sequence, a simple and explicit construction of an approximation to the configuration-space equilibrium probability density function for the oligomer in solution. The training set leading to the coarse-grain parameter set is itself extracted from a recent and extensive database of a large number of independent, atomic-resolution molecular dynamics (MD) simulations of short DNA oligomers immersed in explicit solvent. The Kullback-Leibler divergence between probability density functions is used to make several quantitative assessments of our nearest-neighbor, dimer-dependent model, which is compared against others in the hierarchy to assess various assumptions pertaining both to the locality of the energetic couplings and to the level of sequence dependence of its parameters. It is also compared directly against all-atom MD simulation to assess its predictive capabilities. The results show that the nearest-neighbor, dimer-dependent model can successfully resolve sequence effects both within and between oligomers. For example, due to the presence of frustration, the model can
A sequence-dependent rigid-base model of DNA.
Gonzalez, O; Petkevičiūtė, D; Maddocks, J H
2013-02-07
A novel hierarchy of coarse-grain, sequence-dependent, rigid-base models of B-form DNA in solution is introduced. The hierarchy depends on both the assumed range of energetic couplings, and the extent of sequence dependence of the model parameters. A significant feature of the models is that they exhibit the phenomenon of frustration: each base cannot simultaneously minimize the energy of all of its interactions. As a consequence, an arbitrary DNA oligomer has an intrinsic or pre-existing stress, with the level of this frustration dependent on the particular sequence of the oligomer. Attention is focussed on the particular model in the hierarchy that has nearest-neighbor interactions and dimer sequence dependence of the model parameters. For a Gaussian version of this model, a complete coarse-grain parameter set is estimated. The parameterized model allows, for an oligomer of arbitrary length and sequence, a simple and explicit construction of an approximation to the configuration-space equilibrium probability density function for the oligomer in solution. The training set leading to the coarse-grain parameter set is itself extracted from a recent and extensive database of a large number of independent, atomic-resolution molecular dynamics (MD) simulations of short DNA oligomers immersed in explicit solvent. The Kullback-Leibler divergence between probability density functions is used to make several quantitative assessments of our nearest-neighbor, dimer-dependent model, which is compared against others in the hierarchy to assess various assumptions pertaining both to the locality of the energetic couplings and to the level of sequence dependence of its parameters. It is also compared directly against all-atom MD simulation to assess its predictive capabilities. The results show that the nearest-neighbor, dimer-dependent model can successfully resolve sequence effects both within and between oligomers. For example, due to the presence of frustration, the model can
Free-space communication with over 100 spatial modes
CSIR Research Space (South Africa)
Rosales-Guzmán, C
2016-10-01
Full Text Available Congress 2016: Advanced Solid State Lasers (ASSL); Applications of Lasers for Sensing and Free Space Communications (LS&C), 30 October - 3 November 2016, Boston, Massachusetts, United States Free-space communication with over 100 spatial modes...
Sheshadri, A.; Plumb, R. A.
2017-12-01
The leading "annular mode", defined as the dominant EOF of surface pressure or of zonal mean zonal wind variability, appears as a dipolar structure straddling the mean midlatitude jet and thus seems to describe north-south wobbling of the jet latitude. However, extratropical zonal wind anomalies frequently tend to migrate poleward. This behavior can be described by the first two EOFs, the first (AM1) being the dipolar structure, and the second (AM2) having a tripolar structure centered on the mean jet. Taken in isolation, AM1 thus describes a north-south wobbling of the jet position, while AM2 describes a strengthening and narrowing of the jet. However, despite the fact that they are spatially orthogonal, and their corresponding time series temporally orthogonal, AM1 and AM2 are not independent, but show significant lag-correlations which reveal the propagation. The EOFs are not modes of the underlying dynamical system governing the zonal flow evolution. The true modes can be estimated using principal oscillation pattern (POP) analysis. In the troposphere, the leading POPs manifest themselves as a pair of complex conjugate structures with conjugate eigenvalues thus, in reality, constituting a single, complex, mode that describes propagating anomalies. Even though the principal components associated with the two leading EOFs decay at different rates, each decays faster than the true mode. These facts have implications for eddy feedback and the susceptibility of the mode to external perturbations. If one interprets the annular modes as the modes of the system, then simple theory predicts that the response to steady forcing will usually be dominated by AM1 (with the longest time scale). However, such arguments should really be applied to the true modes. Experiments with a simplified GCM show that climate response to perturbations do not necessarily have AM1 structures. Implications of these results for stratosphere-troposphere interactions are explored. The POP
Frontal Tasks and Behavior in Rigid or Tremor-Dominant Parkinson Disease.
Moretti, Rita; Milner, Vera; Caruso, Paola; Gazzin, Silvia; Rumiati, Raffaella
2017-08-01
Parkinson disease (PD) is not an unambiguous entity, and there is a general consensus for the statement that an akinetic-rigid dominant type of presentation has a worse prognosis, in the follow-up. The aim of our study was to examine the differences in frontal tasks and behavior, in 2 PD naive groups: the rigid and the tremor-dominant types of presentation, according to motor scores. Our study has showed some important differences in frontal tasks and in behavior, performing more apathy, aggressiveness, and irritability in the rigid type, and more depression and anxiety in the tremor-dominant type. The former group causes the caregiver more distress and has a very rapid disease progression. It can be argued that rigid type PD presentation needs specific dedicated cares and more strong clinical attention.
Superplastic flow of two-phase ceramics containing rigid inclusions-zirconia/mullite composites
International Nuclear Information System (INIS)
Yoon, C.K.; Chen, I.W.
1990-01-01
A continuum theory for non-newtonian flow of a two-phase composite containing rigid inclusions is presented. It predicts flow suppression by a factor of (1 - V) q , where V is the volume fraction of the rigid inclusion and q depends on the stress exponent and the inclusion shape. Stress concentrations in the rigid inclusion have also been evaluated. As the stress exponent increases, flow suppression is more pronounced even though stress concentration is less severe. To test this theory, superplastic flow of zirconia/mullite composites, in which zirconia is a soft, non-Newtonian super-plastic matrix and mullite is a rigid phase of various size, shape, and amount, is studied. The continuum theory is found to describe the two-phase superplastic flow reasonably well
National Research Council Canada - National Science Library
Greer, James
2002-01-01
This dissertation presents a systematic design methodology for directed product evolution that uses both rigid body and compliant mechanisms to facilitate component combination in the domain of mechanical products...
Frictionless contact of a rigid punch indenting a transversely isotropic elastic layer
Directory of Open Access Journals (Sweden)
Rajesh Patra
2016-03-01
Full Text Available This article is concerned with the study of frictionless contact between a rigid punch and a transversely isotropic elastic layer. The rigid punch is assumed to be axially symmetric and is being pressed towards the layer by an applied concentrated load. The layer is resting on a rigid base and is assumed to be ufficiently thick in comparison with the amount of indentation by the rigid punch. The relationship between the applied load $P$ and the contact area is obtained by solving the mathematically formulated problem through use of Hankel transform of different order. Effect of indentation on the distribution of normal stress at the surface as well as the relationship between the applied load and the area of contact have been shown graphically.
Fiber Optic Systems for Light Curing Rigidization of Inflatable Structures, Phase I
National Aeronautics and Space Administration — Light (UV and visible) curing composite matrix resins are being explored as an attractive means for rigidizing inflatable spacecraft for large space-deployed...
Market structure, price rigidity, and performance in the Indonesian food and beverages industry
Setiawan, M.
2012-01-01
Keywords: industrial concentration, price rigidity, technical efficiency, price-cost margin, Structure-Conduct-Performance (SCP), new empirical industrial organization (NEIO), Indonesian food and beverages industry, Data Envelopment Analysis (DEA), system of equations
Heat Transfer Measurement and Modeling in Rigid High-Temperature Reusable Surface Insulation Tiles
Daryabeigi, Kamran; Knutson, Jeffrey R.; Cunnington, George R.
2011-01-01
Heat transfer in rigid reusable surface insulations was investigated. Steady-state thermal conductivity measurements in a vacuum were used to determine the combined contribution of radiation and solid conduction components of heat transfer. Thermal conductivity measurements at higher pressures were then used to estimate the effective insulation characteristic length for gas conduction modeling. The thermal conductivity of the insulation can then be estimated at any temperature and pressure in any gaseous media. The methodology was validated by comparing estimated thermal conductivities with published data on a rigid high-temperature silica reusable surface insulation tile. The methodology was also applied to the alumina enhanced thermal barrier tiles. Thermal contact resistance for thermal conductivity measurements on rigid tiles was also investigated. A technique was developed to effectively eliminate thermal contact resistance on the rigid tile s cold-side surface for the thermal conductivity measurements.
Positive semidefinite matrix completion, universal rigidity and the Strong Arnold Property
M. Laurent (Monique); A. Varvitsiotis (Antonios)
2014-01-01
htmlabstractThis paper addresses the following three topics: positive semidefinite (psd) matrix completions, universal rigidity of frameworks, and the Strong Arnold Property (SAP). We show some strong connections among these topics, using semidefinite programming as unifying theme. Our main
NUMERICAL SIMULATIONS FOR THE CASE OF RIGID ROTATING KINEMATIC COUPLING WITH BIG CLEARANCE
Directory of Open Access Journals (Sweden)
Jan-Cristian GRIGORE
2010-10-01
Full Text Available In this paper an algorithm based on [1] [2] are numerical simulations, achieving generalized coordinates of motion, positions, speeds of a rigid rotating kinematic coupling with big clearance in joint, case without friction
A model for an acoustically driven microbubble inside a rigid tube
Qamar, Adnan; Samtaney, Ravi
2014-01-01
A theoretical framework to model the dynamics of acoustically driven microbubble inside a rigid tube is presented. The proposed model is not a variant of the conventional Rayleigh-Plesset category of models. It is derived from the reduced Navier
Building America Top Innovations 2013 Profile – Exterior Rigid Insulation Best Practices
Energy Technology Data Exchange (ETDEWEB)
none,
2013-09-01
In this Top Innovation profile, field and lab studies by BSC, PHI, and NorthernSTAR characterize the thermal, air, and vapor resistance properties of rigid foam insulation and describe best practices for their use on walls, roofs, and foundations.
Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements
International Nuclear Information System (INIS)
Garcia-Vallejo, D.; Mayo, J.; Escalona, J. L.; Dominguez, J.
2008-01-01
Multibody systems generally contain solids with appreciable deformations and which decisively influence the dynamics of the system. These solids have to be modeled by means of special formulations for flexible solids. At the same time, other solids are of such a high stiffness that they may be considered rigid, which simplifies their modeling. For these reasons, for a rigid-flexible multibody system, two types of formulations coexist in the equations of the system. Among the different possibilities provided in the literature on the material, the formulation in natural coordinates and the formulation in absolute nodal coordinates are utilized in this paper to model the rigid and flexible solids, respectively. This paper contains a mixed formulation based on the possibility of sharing coordinates between a rigid solid and a flexible solid. The global mass matrix of the system is shown to be constant and, in addition, many of the constraint equations obtained upon utilizing these formulations are linear and can be eliminated
National Research Council Canada - National Science Library
Hammons, Michael
1998-01-01
.... The objective of this research was to obtain data on the response of the ng'id pavement slab-joint-foundation system by conducting laboratory-scale experiments on jointed rigid pavement models...
Body fixed frame, rigid gauge rotations and large N random fields in QCD
International Nuclear Information System (INIS)
Levit, S.
1995-01-01
The ''body fixed frame'' with respect to local gauge transformations is introduced. Rigid gauge ''rotations'' in QCD and their Schroedinger equation are studied for static and dynamic quarks. Possible choices of the rigid gauge field configuration corresponding to a non-vanishing static colormagnetic field in the ''body fixed'' frame are discussed. A gauge invariant variational equation is derived in this frame. For large number N of colors the rigid gauge field configuration is regarded as random with maximally random probability distribution under constraints on macroscopic-like quantities. For the uniform magnetic field the joint probability distribution of the field components is determined by maximizing the appropriate entropy under the area law constraint for the Wilson loop. In the quark sector the gauge invariance requires the rigid gauge field configuration to appear not only as a background but also as inducing an instantaneous quark-quark interaction. Both are random in the large N limit. (orig.)
Spontaneous breaking of N=2 to N=1 in rigid and local supersymmetric theories
Ferrara, Sergio; Porrati, Massimo
1996-01-01
We analyze the relation between rigid and local supersymmetric N=2 field theories, when half of the supersymmetries are spontaneously broken. In particular, we show that the recently found partial supersymmety breaking induced by electric and magnetic Fayet-Iliopoulos terms in rigid theories can be obtained by a suitable flat limit of previously constructed N=2 supergravity models with partial super-Higgs in the observable sector.
Fluctuations and rigidities in local labor markets. Part 2: reinterpreting contracts
G L Clark
1983-01-01
Local labor markets are characterized by rigidities in their patterns of adjustment to short-run fluctuations. With or without unions, fluctuations in employment, hours worked, and money wages are unlike the patterns predicted by conventional discrete-exchange labor-market theories. Moreover there are distinct geographical and industrial patterns in the observed rigidities. Neoclassical implicit contract theory has been vindicated. Or has it? Obvious empirical difficulties remain, especially ...
Almost-global tracking for a rigid body with internal rotors
Nayak, Aradhana; Banavar, Ravi N.
2017-01-01
Almost-global orientation trajectory tracking for a rigid body with external actuation has been well studied in the literature, and in the geometric setting as well. The tracking control law relies on the fact that a rigid body is a simple mechanical system (SMS) on the $3-$dimensional group of special orthogonal matrices. However, the problem of designing feedback control laws for tracking using internal actuation mechanisms, like rotors or control moment gyros, has received lesser attention...
Psychological prices of branded foods and price rigidity : evidence from German scanner data
Herrmann, Roland; Möser, Anke
2004-01-01
There is increasing evidence from scanner data that branded foods in the grocery retailing sector contain a substantial amount of price rigidity (HERRMANN/MÖSER 2003). One of the many alternative explanations for price rigidity is the existence of psychological pricing points. The economic literature has been most hesitant against this theory and, in a survey, BLINDER et al. (1998) found no confirmation at all based on the views of business managers. In that study, however, retail trade is un...
Tidal Evolution of Asteroidal Binaries. Ruled by Viscosity. Ignorant of Rigidity
Efroimsky, Michael
2015-01-01
The rate of tidal evolution of asteroidal binaries is defined by the dynamical Love numbers divided by quality factors. Common is the (often illegitimate) approximation of the dynamical Love numbers with their static counterparts. As the static Love numbers are, approximately, proportional to the inverse rigidity, this renders a popular fallacy that the tidal evolution rate is determined by the product of the rigidity by the quality factor: $\\,k_l/Q\\propto 1/(\\mu Q)\\,$. In reality, the dynami...
Truncated exponential-rigid-rotor model for strong electron and ion rings
International Nuclear Information System (INIS)
Larrabee, D.A.; Lovelace, R.V.; Fleischmann, H.H.
1979-01-01
A comprehensive study of exponential-rigid-rotor equilibria for strong electron and ion rings indicates the presence of a sizeable percentage of untrapped particles in all equilibria with aspect-ratios R/a approximately <4. Such aspect-ratios are required in fusion-relevant rings. Significant changes in the equilibria are observed when untrapped particles are excluded by the use of a truncated exponential-rigid-rotor distribution function. (author)
ANALYTIC EVALUATION OF RECTILINEARITY OF LOW RIGIDITY SHAFT DURING HARDENING PROCESS
Directory of Open Access Journals (Sweden)
Antoni Świć
2013-03-01
Full Text Available The essential influence of the unevenness of temperature distribution while heating in the technological process on dimensions stability of low rigidity elements was shown. The new approach was applied to formulate mathematical models, which describe the elastic and inelastic behaviour of piece using transfer functions and block diagrams, allowing to use frequency method for evaluation of the behaviour of dynamic semi-finished element as the rigid body.
Utility of semi-rigid thoracoscopy in undiagnosed exudative pleural effusion.
Nattusamy, Loganathan; Madan, Karan; Mohan, Anant; Hadda, Vijay; Jain, Deepali; Madan, Neha Kawatra; Arava, Sudheer; Khilnani, Gopi C; Guleria, Randeep
2015-01-01
Semi-rigid thoracoscopy is a safe and efficacious procedure in patients with undiagnosed pleural effusion. Literature on its utility from developing countries is limited. We herein describe our initial experience on the utility of semi-rigid thoracoscopy from a tertiary care teaching and referral center in north India. We also perform a systematic review of studies reporting the utility of semi-rigid thoracoscopy from India. The primary objective was to evaluate the diagnostic utility of semi-rigid thoracoscopy in patients with undiagnosed exudative pleural effusion. Semi-rigid thoracoscopy was performed under local anesthesia and conscious sedation in the bronchoscopy suite. A total of 48 patients underwent semi-rigid thoracoscopy between August 2012 and December 2013 for undiagnosed pleural effusion. Mean age was 50.9 ± 14.1 years (range: 17-78 years). Pre-procedure clinico-radiological diagnoses were malignant pleural effusion [36 patients (75%)], tuberculosis (TB) [10 (20.83%) patients], and empyema [2 patients (4.17%)]. Patients with empyema underwent the procedure for pleural biopsy, optimal placement of intercostal tube and adhesiolysis. Thoracoscopic pleural biopsy diagnosed pleural malignancy in 30 (62.5%) patients and TB in 2 (4.17%) patients. Fourteen (29.17%) patients were diagnosed with non-specific pleuritis and normal pleura was diagnosed on a pleural biopsy in 2 (4.17%) patients. Overall, a definitive diagnosis of either pleural malignancy or TB was obtained in 32 (66.7%) patients. Combined overall sensitivity, specificity, positive predictive value and negative predictive value of thoracoscopic pleural biopsy for malignant pleural effusion were 96.77%, 100%, 100% and 66.67%, respectively. There was no procedure-related mortality. On performing a systematic review of literature, four studies on semi-rigid thoracoscopy from India were identified. Semi-rigid thoracoscopy is a safe and efficacious procedure in patients with undiagnosed exudative
International Nuclear Information System (INIS)
Moon, Won Joo; Min, Oak Key; Kim, Yong Woo
1998-01-01
To improve the convergence and the accuracy of a finite element, the finite element has to describe not only displacement and stress distributions in a static analysis but also rigid body displacements. In this paper, we consider the in-plane-deformable curved beam element to understand the descriptive capability of rigid body displacements of a finite element. We derive the rigid body displacement fields of a single finite element under various essential boundary conditions when the nodal displacements are caused by the rigid body displacement. We also examine the rigid body displacement fields of a quadratic curved beam element by employing the reduced minimization theory
Pharmacological targeting of membrane rigidity: implications on cancer cell migration and invasion
International Nuclear Information System (INIS)
Braig, Simone; Stoiber, Katharina; Zahler, Stefan; Vollmar, Angelika M
2015-01-01
The invasive potential of cancer cells strongly depends on cellular stiffness, a physical quantity that is not only regulated by the mechanical impact of the cytoskeleton but also influenced by the membrane rigidity. To analyze the specific role of membrane rigidity in cancer progression, we treated cancer cells with the Acetyl-CoA carboxylase inhibitor Soraphen A and revealed an alteration of the phospholipidome via mass spectrometry. Migration, invasion, and cell death assays were employed to relate this alteration to functional consequences, and a decrease of migration and invasion without significant impact on cell death has been recorded. Fourier fluctuation analysis of giant plasma membrane vesicles showed that Soraphen A increases membrane rigidity of carcinoma cell membranes. Mechanical measurements of the creep deformation response of whole intact cells were performed using the optical stretcher. The increase in membrane rigidity was observed in one cell line without changing the creep deformation response indicating no restructuring of the cytoskeleton. These data indicate that the increase of membrane rigidity alone is sufficient to inhibit invasiveness of cancer cells, thus disclosing the eminent role of membrane rigidity in migratory processes. (paper)
A Component Mode Synthesis Algorithm for Multibody Dynamics of Wind Turbines
DEFF Research Database (Denmark)
Holm-Jørgensen, Kristian; Nielsen, Søren R.K.
2009-01-01
A system reduction scheme related to a multibody formulation of wind turbine dynamics is devised. Each substructure is described in its own frame of reference, which is moving freely in the vicinity of the moving substructure, in principle without any constraints to the rigid body part of the mot......A system reduction scheme related to a multibody formulation of wind turbine dynamics is devised. Each substructure is described in its own frame of reference, which is moving freely in the vicinity of the moving substructure, in principle without any constraints to the rigid body part...... of the motion of the substructure. The system reduction is based on a component mode synthesis method, where the response of the internal degrees of freedom of the substructure is described as the quasi-static response induced by the boundary degrees of freedom via the constraint modes superimposed...
Power unit-cargo space link in transport
Directory of Open Access Journals (Sweden)
Radmilović Zoran R.
2005-01-01
Full Text Available This paper deals with transportation technology regarding links between power unit and cargo space. These links can be divided into two groups: rigid and flexible. Rigid link, established between power unit and cargo space, is dominant in maritime and road transport (sea ships and trucks, and occasionally in transport on inland waterways (self- propelled barges. Flexible link is used in the railroad transport (systems with trailers and semi trailers, and in inland waterway transport (push - towing and pulling systems, and combinations of the systems. The main goal of this research is determination of possible link types and organization of the means of transportation.
Tsaousoglou, Phoebus; Michalakis, Konstantinos; Kang, Kiho; Weber, Hans-Peter; Sculean, Anton
2017-07-01
To assess survival, as well as technical and biological complication rates of partial fixed dental prostheses (FDPs) supported by implants and teeth. An electronic Medline search was conducted to identify articles, published in dental journals from January 1980 to August 2015, reporting on partial FDPs supported by implants and teeth. The search terms were categorized into four groups comprising the PICO question. Manual searches of published full-text articles and related reviews were also performed. The initial database search produced 3587 relevant titles. Three hundred and eighty-six articles were retrieved for abstract review, while 39 articles were selected for full-text review. A total of 10 studies were selected for inclusion. Overall survival rate for implants ranged between 90% and 100%, after follow-up periods with a mean range of 18-120 months. The survival of the abutment teeth was 94.1-100%, while the prostheses survival was 85-100% for the same time period. The most frequent complications were "periapical lesions" (11.53%). The most frequent technical complication was "porcelain occlusal fracture" (16.6%), followed by "screw loosening" (15%). According to the meta-analysis, no intrusion was noted on the rigid connection group, while five teeth (8.19%) were intruded in the non-rigid connection group [95% CI (0.013-0.151)]. The tooth-implant FDP seems to be a possible alternative to an implant-supported FDP. There is limited evidence that rigid connection between teeth and implants presents better results when compared with the non-rigid one. The major drawback of non-rigidly connected FDPs is tooth intrusion. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
International Nuclear Information System (INIS)
Takeuchi, Kazumasa A; Chaté, Hugues
2013-01-01
We show, using covariant Lyapunov vectors in addition to standard Lyapunov analysis, that there exists a set of collective Lyapunov modes in large chaotic systems exhibiting collective dynamics. Associated with delocalized Lyapunov vectors, they act collectively on the trajectory and hence characterize the instability of its collective dynamics. We further develop, for globally coupled systems, a connection between these collective modes and the Lyapunov modes in the corresponding Perron–Frobenius equation. We thereby address the fundamental question of the effective dimension of collective dynamics and discuss the extensivity of chaos in the presence of collective dynamics. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’. (paper)
Sliding mode control and observation
Shtessel, Yuri; Fridman, Leonid; Levant, Arie
2014-01-01
The sliding mode control methodology has proven effective in dealing with complex dynamical systems affected by disturbances, uncertainties and unmodeled dynamics. Robust control technology based on this methodology has been applied to many real-world problems, especially in the areas of aerospace control, electric power systems, electromechanical systems, and robotics. Sliding Mode Control and Observation represents the first textbook that starts with classical sliding mode control techniques and progresses toward newly developed higher-order sliding mode control and observation algorithms and their applications. The present volume addresses a range of sliding mode control issues, including: *Conventional sliding mode controller and observer design *Second-order sliding mode controllers and differentiators *Frequency domain analysis of conventional and second-order sliding mode controllers *Higher-order sliding mode controllers and differentiators *Higher-order sliding mode observers *Sliding mode disturbanc...
DEFF Research Database (Denmark)
2014-01-01
spatial reflector variations, may be combined to generate a laser beam containing a plurality of orthogonal modes. The laser beam may be injected into a few- mode optical fiber, e.g. for the purpose of optical communication. The VCSEL may have intra-cavity contacts (31,37) and a Tunnel junction (33......) for current confinement into the active layer (34). An air-gap layer (102) may be provided between the upper reflector (15) and the SOI wafer (50) acting as a substrate. The lower reflector may be designed as a high-contrast grating (51) by etching....
Failure modes and effects analysis as a design tool for nuclear safety systems
International Nuclear Information System (INIS)
Tashjian, B.M.
1975-01-01
The activities of nuclear power plant designers are monitored by government and industry to an unprecedented degree. This involves not only rigid design and quality assurance criteria, but extensive documentation and reporting. The failure modes and effects analysis (FMEA) is a technique for checking designs and assuring quality. Included in the FMEA is a system of documentation. A simplified example of the reactor protective system (RPS) is used to illustrate the method. (U.S.)
Directory of Open Access Journals (Sweden)
Linda Borellini
2017-08-01
Full Text Available IntroductionA 60-year-old man presented with a 6-month history of low back pain and progressive rigidity of the trunk and lower limbs, followed by pruritus, dysphonia, hyperhydrosis, and urinary retention. Brain and spinal imaging were normal. EMG showed involuntary motor unit hyperactivity. Onconeural, antiglutamic acid decarboxylase (anti-GAD, voltage-gated potassium channel, and dipeptidyl peptidase-like protein 6 (DPPX autoantibodies were negative. CSF was negative. Symptoms were partially responsive to baclofen, gabapentin, and clonazepam, but he eventually developed severe dysphagia. Antiglycine receptor (anti-GlyR antibodies turned out positive on both serum and CSF. A plasmapheresis cycle was completed with good clinical response. A PET scan highlighted an isolated metabolically active axillary lymphnode that turned out to be a classic type Hodgkin lymphoma (HL, in the absence of bone marrow infiltration nor B symptoms. Polychemotherapy with ABVD protocol was completed with good clinical response and at 1-year follow-up the neurological examination is normal.BackgroundProgressive encephalomyelitis with rigidity and myoclonus (PERM is a rare and severe neurological syndrome characterized by muscular rigidity and spasms as well as brain stem and autonomic dysfunction. It can be associated with anti-GAD, GlyR, and DPPX antibodies. All of these autoantibodies may be variably associated with malignant tumors and their response to immunotherapy, as well as to tumor removal, is not easily predictable.ConclusionProgressive encephalomyelitis with rigidity and myoclonus has already been described in association with HL, but this is the first case report of a HL manifesting as anti-GlyR antibodies related PERM. Our report highlights the importance of malignancy screening in autoimmune syndromes of suspected paraneoplastic origin.
DEFF Research Database (Denmark)
Sanderson, Hans; Thomsen, Marianne
2009-01-01
data. Pharmaceuticals were found to be more frequent than industrial chemicals in GHS category III. Acute toxicity was predictable (>92%) using a generic (Q)SAR ((Quantitative) Structure Activity Relationship) suggesting a narcotic MOA. Analysis of model prediction error suggests that 68...... a comprehensive database based on OECD's standardized measured ecotoxicological data and to evaluate if there is generally cause of greater concern with regards to pharmaceutical aquatic toxicological profiles relative to industrial chemicals. Comparisons were based upon aquatic ecotoxicity classification under...... the United Nations Global Harmonized System for classification and labeling of chemicals (GHS). Moreover, we statistically explored whether the predominant mode-of-action (MOA) for pharmaceuticals is narcosis. We found 275 pharmaceuticals with 569 acute aquatic effect data; 23 pharmaceuticals had chronic...
Testing non-rigid registration of nuclear medicine data using synthetic derived SPECT images
International Nuclear Information System (INIS)
Todd-Pokropek, A.
2002-01-01
Aim: Non-rigid registration is needed to build atlas data to make statistical tests of significance of uptake in nuclear medicine (NM). Non-rigid registration is much more difficult than rigid registration to validate since some kind of matching function must be defined throughout the volume being registered, and no suitable gold standards exist. The aim here has been to assess non-rigid methods of registration and deformation for NM to NM and NM to MRI data. An additional aim has been to derive good synthetic SPECT images from other NM and MRI data to be used after as reference standards. Material and Methods: Phantom and patient test images have been acquired for both NM and MRI, which are then used to generate projections, where the characteristics of the images are modified to change both signal and noise properties. These derived images are different in character but perfectly registered with the original data, and can then be deformed in a known manner. The registration algorithm is then run backwards to re-register the modified deformed data with the original images. A technique has been developed to assess the vector fields of the original deformation to the reverse non-rigid registration field. Results: The main purpose of this paper is to describe a methodology for optimising algorithms, not to develop the algorithms themselves. Two different algorithms based on optic flow and thin plate spline interpolation have been intercompared and in particular the constraints imposed tested. Considerable differences in matching can be observed in different regions for example edge and centre of brain. Conclusions: Quadratic distance between known makers is a bad estimate to use to assess non-rigid registration. A robust statistic has been developed which can be used to optimise non-rigid algorithms based on the use of synthetic SPECT reference datasets. While the task being tested is simpler than the real clinical task, it is the first essential step in the
Directory of Open Access Journals (Sweden)
Mefkur Bakan
2014-06-01
Full Text Available OBJECTIVE:Laryngoscopy and stimuli inside the trachea cause an intense sympatho-adrenal response. Remifentanil seems to be the optimal opioid for rigid bronchoscopy due to its potent and short-acting properties. The purpose of this study was to compare bolus propofol and ketamine as an adjuvant to remifentanil-based total intravenous anesthesia for pediatric rigid bronchoscopy.MATERIALS AND METHODS:Forty children under 12 years of age who had been scheduled for a rigid bronchoscopy were included in this study. After midazolam premedication, a 1 µg/kg/min remifentanil infusion was started, and patients were randomly allocated to receive either propofol (Group P or ketamine (Group K as well as mivacurium for muscle relaxation. Anesthesia was maintained with a 1 µg/kg/min remifentanil infusion and bolus doses of propofol or ketamine. After the rigid bronchoscopy, 0.05 µg/kg/min of remifentanil was maintained until extubation. Hemodynamic parameters, emergence characteristics, and adverse events were evaluated.RESULTS:The demographic variables were comparable between the two groups. The decrease in mean arterial pressure from baseline values to the lowest values during rigid bronchoscopy was greater in Group P (p= 0.049, while the reduction in the other parameters and the incidence of adverse events were comparable between the two groups. The need for assisted or controlled mask ventilation after extubation was higher in Group K.CONCLUSION:Remifentanil-based total intravenous anesthesia with propofol or ketamine as an adjuvant drug along with controlled ventilation is a viable technique for pediatric rigid bronchoscopy. Ketamine does not provide a definite advantage over propofol with respect to hemodynamic stability during rigid bronchoscopy, while propofol seems more suitable during the recovery period.
International Nuclear Information System (INIS)
Bacri, C.O.; Roussel, P.
1990-01-01
An original method based on the use of a double magnetic spectrometer in a telescopic mode is proposed for the studies of heavy ions collisions both at very forward angles and for magnetic rigidities close to that of the beam. It consists in the direct measurement of angular distributions on doubly - Bρ and angle - sorted events. The method has been tested on the LISE spectrometer at GANIL with a 44 MeV/A 40 Ar beam impinging on C, Al, Ni and Au targets. Milliradian angular accuracy have been obtained at magnetic rigidities as close as 0.9977 of that of the beam
Magnetic modes in superlattices
International Nuclear Information System (INIS)
Oliveira, F.A.
1990-04-01
A first discussion of reciprocal propagation of magnetic modes in a superlattice is presented. In the absence of an applied external magnetic field a superllatice made of alternate layers of the type antiferromagnetic-non-magnetic materials presents effects similar to those of phonons in a dielectric superlattice. (A.C.A.S.) [pt
Thermodynamics of Radiation Modes
Pina, Eduardo; de la Selva, Sara Maria Teresa
2010-01-01
We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…
International Nuclear Information System (INIS)
Bechtel SAIC Company
2002-01-01
Higher and lower temperature operating modes (e.g., above and below the boiling point of water) are alternative approaches to managing the heat produced by the radioactive decay of spent nuclear fuel. Current analyses indicate that a repository at the Yucca Mountain site is likely to comply with applicable safety standards regardless of the particular thermal operating mode. Both modes have potential advantages and disadvantages. With a higher temperature operating mode (HTOM), waste packages (WPs) can be placed closer together. This reduces the number of drifts, the required emplacement area, construction costs, and occupational risks to construction workers. In addition, the HTOM would minimize the amount of water that might contact the waste for hundreds of years after closure. On the other hand, higher temperatures introduce uncertainties in the understanding of the long-term performance of the repository because of uncertainties in the thermal effects on WP lifetime and the near-field environment around the drifts. A lower temperature operating mode (LTOM) has the potential to reduce uncertainties in long-term performance of the repository by limiting the effects of temperature on WP lifetime and on the near-field environment around the drifts. Depending on the combination of operating parameters, a LTOM could require construction of additional drifts, a larger emplacement area, increased construction costs, increased occupational risks to construction works, and a longer period of ventilation than a HTOM. The repository design for the potential Yucca Mountain site is flexible and can be constructed and operated in various operating modes to achieve specific technical objectives, accommodate future policy decisions, and use of new information. For example, the flexible design can be operated across a range of temperatures and can be tailored to achieve specific thermal requirements in the future. To accommodate future policy decisions, the repository can be
Real-time non-rigid target tracking for ultrasound-guided clinical interventions
Zachiu, C.; Ries, M.; Ramaekers, P.; Guey, J.-L.; Moonen, C. T. W.; de Senneville, B. Denis
2017-10-01
Biological motion is a problem for non- or mini-invasive interventions when conducted in mobile/deformable organs due to the targeted pathology moving/deforming with the organ. This may lead to high miss rates and/or incomplete treatment of the pathology. Therefore, real-time tracking of the target anatomy during the intervention would be beneficial for such applications. Since the aforementioned interventions are often conducted under B-mode ultrasound (US) guidance, target tracking can be achieved via image registration, by comparing the acquired US images to a separate image established as positional reference. However, such US images are intrinsically altered by speckle noise, introducing incoherent gray-level intensity variations. This may prove problematic for existing intensity-based registration methods. In the current study we address US-based target tracking by employing the recently proposed EVolution registration algorithm. The method is, by construction, robust to transient gray-level intensities. Instead of directly matching image intensities, EVolution aligns similar contrast patterns in the images. Moreover, the displacement is computed by evaluating a matching criterion for image sub-regions rather than on a point-by-point basis, which typically provides more robust motion estimates. However, unlike similar previously published approaches, which assume rigid displacements in the image sub-regions, the EVolution algorithm integrates the matching criterion in a global functional, allowing the estimation of an elastic dense deformation. The approach was validated for soft tissue tracking under free-breathing conditions on the abdomen of seven healthy volunteers. Contact echography was performed on all volunteers, while three of the volunteers also underwent standoff echography. Each of the two modalities is predominantly specific to a particular type of non- or mini-invasive clinical intervention. The method demonstrated on average an accuracy of
A geometrically controlled rigidity transition in a model for confluent 3D tissues
Merkel, Matthias; Manning, M. Lisa
2018-02-01
The origin of rigidity in disordered materials is an outstanding open problem in statistical physics. Previously, a class of 2D cellular models has been shown to undergo a rigidity transition controlled by a mechanical parameter that specifies cell shapes. Here, we generalize this model to 3D and find a rigidity transition that is similarly controlled by the preferred surface area S 0: the model is solid-like below a dimensionless surface area of {s}0\\equiv {S}0/{\\bar{V}}2/3≈ 5.413 with \\bar{V} being the average cell volume, and fluid-like above this value. We demonstrate that, unlike jamming in soft spheres, residual stresses are necessary to create rigidity. These stresses occur precisely when cells are unable to obtain their desired geometry, and we conjecture that there is a well-defined minimal surface area possible for disordered cellular structures. We show that the behavior of this minimal surface induces a linear scaling of the shear modulus with the control parameter at the transition point, which is different from the scaling observed in particulate matter. The existence of such a minimal surface may be relevant for biological tissues and foams, and helps explain why cell shapes are a good structural order parameter for rigidity transitions in biological tissues.
A DNA Origami Mechanical Device for the Regulation of Microcosmic Structural Rigidity.
Wan, Neng; Hong, Zhouping; Wang, Huading; Fu, Xin; Zhang, Ziyue; Li, Chao; Xia, Han; Fang, Yan; Li, Maoteng; Zhan, Yi; Yang, Xiangliang
2017-11-01
DNA origami makes it feasible to fabricate a tremendous number of DNA nanostructures with various geometries, dimensions, and functionalities. Moreover, an increasing amount of research on DNA nanostructures is focused on biological and biomedical applications. Here, the reversible regulation of microcosmic structural rigidity is accomplished using a DNA origami device in vitro. The designed DNA origami monomer is composed of an internal central axis and an external sliding tube. Due to the external tube sliding, the device transforms between flexible and rigid states. By transporting the device into the liposome, the conformational change of the origami device induces a structural change in the liposome. The results obtained demonstrate that the programmed DNA origami device can be applied to regulate the microcosmic structural rigidity of liposomes. Because microcosmic structural rigidity is important to cell proliferation and function, the results obtained potentially provide a foundation for the regulation of cell microcosmic structural rigidity using DNA nanostructures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kalotka-Bratek, H; Drobinski, G; Klimczak, K; Busquet, P; Fraysse, J B; Bejean-Lebuisson, A; Grosgogeat, Y
1989-02-01
In 20 patients with pure aortic regurgitation we studied the relationship between the severity of regurgitation, as assessed haemodynamically by the percentage of leakage (%L), and the half-pressure (T 1/2 P) and half-velocity (T 1/2 V) times, as obtained from doppler aortic blood velocity curves, taking into account the rigidity of the systemic vascular circuit characterized by the pressure wave propagation velocity (PWPV). The systemic arterial circuit was supple in 14 patients (PWPV less than 7.5 m/sec) and rigid in 6 patients (PWPV greater than 7.5 m/sec). The regression slopes between %L and T 1/2 P and between %L and T 1/2 V were calculated with their confidence limits in the 14 patients with supple arteries. The 6 patients with rigid arteries fitted into this nomogram, thus demonstrating that systemic arterial rigidity makes no difference in the relationship between %L and doppler indices. The half-velocity and half-pressure times measured by doppler ultrasound were acquired from a velocity signal directly determined by the aortic regurgitation, without any detectable effect of vascular circuit rigidity. Being equivalent by nature to the signal decrease time constant, they are independent of the absolute protodiastolic value of diastolic pressure gradient or blood flow velocity. For this reason these two doppler parameters are reliable to evaluate the severity of aortic regurgitation.
Directory of Open Access Journals (Sweden)
Vahid Reza Afkhami
2017-12-01
Full Text Available In the steel frames, beam-column connections are traditionally assumed to be rigid or pinned, but in the steel frames, most types of beam-column connections are semi-rigid. Recent studies and some new codes, especially EC3 and EC4, include methods and formulas to estimate the resistance and stiffness of the panel zone. Because of weaknesses of EC3 and EC4 in some cases, Bayo et al. proposed a new component-based method (cruciform element method to model internal and external semi-rigid connections that revived and modified EC methods. The nonlinear modelling of structures plays an important role in the analysis and design of structures and nonlinear static analysis is a rather simple and efficient technique for analysis of structures. This paper presents nonlinear static (pushover analysis technique by new nonlinearity factor and Bayo et al. model of two types of semi-rigid connections, end plate connection and top and seat angles connection. Two types of lateral loading, uniform and triangular distributions are considered. Results show that the frames with top and seat angles connection have fewer initial stiffness than frames with semi-rigid connection and P-Δ effect more decreases base shear capacity in the case of top and seat angles connection. P-Δ effect in decrease of base shear capacity increases with the increase of number of stories.
A novel mode-locking technique
International Nuclear Information System (INIS)
Chen Shaoh; Chen Youming; Chen Taolue; Si Xiangdong; Yang Yi; Deng Ximing
1993-01-01
A novel mode-locked Nd:YAG oscillator has been developed by using an ultrafast photoconductive feedback controlled loop, and mode-locked pulses with a duration of 100ps have been obtained. The energy instability of the pulse trains is ±5%. In this type of mode-locking technology, a type of deep-level doped GaAs (Cr-doped) photoconductive switch, which has a fast response in time and is free of avalance process, is used to drive a Pockels' cell to realize mode-locking. The dark resistance of this type of photoconductive switch is 6 orders of magnitude higher than that of the intrinsic single-crystal silicon, and it can reach a level as high as 10 9 ohms. Consequently, it is able to withstand longterm operation at several thousand DC volts. By means of the photoconductive ohmic switch characteristics, the authors have designed a positive feedback control network which has a very fast response time, and can couple a voltage of up to a thousand volts. Using this unit in a Nd:YAG laser, they have successfully realized a very stable mode-locked pulse train with pulse width shorter than 100 ps. The operation principle, and the results of the preliminary experiments are presented here. 1 ref., 3 figs
Observations on resistive wall modes
International Nuclear Information System (INIS)
Gerwin, R.A.; Finn, J.M.
1996-01-01
Several results on resistive wall modes and their application to tokamaks are presented. First, it is observed that in the presence of collisional parallel dynamics there is an exact cancellation to lowest order of the dissipative and sound wave effects for an ideal Ohm's law. This is easily traced to the fact that the parallel dynamics occurs along the perturbed magnetic field lines for such electromagnetic modes. Such a cancellation does not occur in the resistive layer of a tearing-like mode. The relevance to models for resistive wall modes using an electrostatic Hammett-Perkins type operator to model Landau damping will be discussed. Second, we observe that with an ideal Ohm's law, resistive wall modes can be destabilized by rotation in that part of parameter space in which the ideal MHD modes are stable with the wall at infinity. This effect can easily be explained by interpreting the resistive wall instability in terms of mode coupling between the backward stable MHD mode and a stable mode locked into the wall. Such an effect can occur for very small rotation for tearing-resistive wall modes in which inertia dominates viscosity in the layer, but the mode is stabilized by further rotation. For modes for which viscosity dominates in the layer, rotation is purely stabilizing. For both tearing models, a somewhat higher rotation frequency gives stability essentially whenever the tearing mode is stable with a perfectly conducting wall. These tearing/resistive wall results axe also simply explained in terms of mode coupling. It has been shown that resonant external ideal modes can be stabilized in the presence of resistive wall and resistive plasma with rotation of order the nominal tearing mode growth rate. We show that these modes behave as resistive wall tearing modes in the sense above. This strengthens the suggestion that rotational stabilization of the external kink with a resistive wall is due to the presence of resistive layers, even for ideal modes
International Nuclear Information System (INIS)
Getino, J.; Miguel, D.; Escapa, A.
2010-01-01
This paper is the first part of an investigation where we will present an analytical general theory of the rotation of the non-rigid Earth at the second order, which considers the effects of the interaction of the rotation of the Earth with itself, also named as the spin-spin coupling. Here, and as a necessary step in the development of that theory, we derive complete, explicit, analytical formulae of the rigid Earth rotation that account for the second-order rotation-rotation interaction. These expressions are not provided in this form by any current rigid Earth model. Working within the Hamiltonian framework established by Kinoshita, we study the second-order effects arising from the interaction of the main term in the Earth geopotential expansion with itself, and with the complementary term arising when referring the rotational motion to the moving ecliptic. To this aim, we apply a canonical perturbation method to solve analytically the canonical equations at the second order, determining the expressions that provide the nutation-precession, the polar motion, and the length of day. In the case of the motion of the equatorial plane, nutation-precession, we compare our general approach with the particular study for this motion developed by Souchay et al., showing the existence of new terms whose numerical values are within the truncation level of 0.1 μas adopted by those authors. These terms emerge as a consequence of not assuming in this work the same restrictive simplifications taken by Souchay et al. The importance of these additional contributions is that, as the analytical formulae show, they depend on the Earth model considered, in such a way that the fluid core resonance could amplify them significatively when extending this theory to the non-rigid Earth models.
Tunable deformation modes shape contractility in active biopolymer networks
Stam, Samantha; Banerjee, Shiladitya; Weirich, Kim; Freedman, Simon; Dinner, Aaron; Gardel, Margaret
Biological polymer-based materials remodel under active, molecular motor-driven forces to perform diverse physiological roles, such as force transmission and spatial self-organization. Critical to understanding these biomaterials is elucidating the role of microscopic polymer deformations, such as stretching, bending, buckling, and relative sliding, on material remodeling. Here, we report that the shape of motor-driven deformations can be used to identify microscopic deformation modes and determine how they propagate to longer length scales. In cross-linked actin networks with sufficiently low densities of the motor protein myosin II, microscopic network deformations are predominantly uniaxial, or dominated by sliding. However, longer-wavelength modes are mostly biaxial, or dominated by bending and buckling, indicating that deformations with uniaxial shapes do not propagate across length scales significantly larger than that of individual polymers. As the density of myosin II is increased, biaxial modes dominate on all length scales we examine due to buildup of sufficient stress to produce smaller-wavelength buckling. In contrast, when we construct networks from unipolar, rigid actin bundles, we observe uniaxial, sliding-based contractions on 1 to 100 μm length scales. Our results demonstrate the biopolymer mechanics can be used to tune deformation modes which, in turn, control shape changes in active materials.
PRICE RIGIDITY AND MONETARY NON-NEUTRALITY IN DEVELOPING COUNTRIES: EVIDENCE FROM NIGERIA
Directory of Open Access Journals (Sweden)
Nathaniel E. Urama
2013-04-01
Full Text Available In an attempt to find out the degree of monetary non-neutrality in Nigeria we started from finding out the size of price rigidity in the country. Computation with Ball and Romer method showed that price rigidity is optimal decision for firms in Nigeria only when the menu cost is well above 2.28% of the firm’s revenue which is on the high side, showing the likelihood of weak price rigidity in the country. Confirming this, the IRFs of the SVAR shows that the response of inflation to nominal shock has only one period lag. These combined results led to a small though persistent response of output to the nominal shock. The result of the study therefore points towards large nominal and small real effect of monetary policy in Nigeria and conclude that monetary policy will be a better option for contractionary plan but not for an expansionary plan.
Student understanding of the application of Newton's second law to rotating rigid bodies
Close, Hunter G.; Gomez, Luanna S.; Heron, Paula R. L.
2013-06-01
We report on an investigation of student understanding of rigid body dynamics in which we asked students in introductory calculus-based physics to compare the translational motions of identical rigid bodies subject to forces that differed only in the point of contact at which they were applied. There was a widespread tendency to claim that forces that cause rotational motion have a diminished effect on translational motion. A series of related problems was developed to examine whether similar errors would be made in other contexts, and interviews were conducted to probe student thinking in greater depth. In this paper, we describe the results of our investigation and also describe a series of different interventions that culminated in the development of a tutorial that improves student ability to apply Newton's second law to rotating rigid bodies.
Comparison and Implementation of a Rigid and a Flexible Multibody Planetary Gearbox Model
DEFF Research Database (Denmark)
Jørgensen, Martin Felix; Pedersen, Niels Leergaard; Sørensen, Jens Nørkær
2014-01-01
We propose algorithms for developing (1) a rigid (constrained) and (2) a flexible planetary gearbox model. The two methods are compared against each other and advantages/disadvantages of each method are discussed. The rigid model (1) has gear tooth reaction forces expressed by Lagrange multipliers...... between one and two gear teeth in mesh. The final results are from modelling the planetary gearbox in a 500 kW wind turbine which we also described in Jørgensen et al. (2013)........ The flexible approach (2) is being compared with the gear tooth forces from the rigid approach, first without damping and second the influence of damping is examined. Variable stiffness as a function of base circle arc length is implemented in the flexible approach such that it handles the realistic switch...
[Non-rigid medical image registration based on mutual information and thin-plate spline].
Cao, Guo-gang; Luo, Li-min
2009-01-01
To get precise and complete details, the contrast in different images is needed in medical diagnosis and computer assisted treatment. The image registration is the basis of contrast, but the regular rigid registration does not satisfy the clinic requirements. A non-rigid medical image registration method based on mutual information and thin-plate spline was present. Firstly, registering two images globally based on mutual information; secondly, dividing reference image and global-registered image into blocks and registering them; then getting the thin-plate spline transformation according to the shift of blocks' center; finally, applying the transformation to the global-registered image. The results show that the method is more precise than the global rigid registration based on mutual information and it reduces the complexity of getting control points and satisfy the clinic requirements better by getting control points of the thin-plate transformation automatically.
Estimating the orientation of a rigid body moving in space using inertial sensors
Energy Technology Data Exchange (ETDEWEB)
He, Peng, E-mail: peng.he.1@ulaval.ca; Cardou, Philippe, E-mail: pcardou@gmc.ulaval.ca [Université Laval, Robotics Laboratory, Department of Mechanical Engineering (Canada); Desbiens, André, E-mail: andre.desbiens@gel.ulaval.ca [Université Laval, Department of Electrical and Computer Engineering (Canada); Gagnon, Eric, E-mail: Eric.Gagnon@drdc-rddc.gc.ca [RDDC Valcartier (Canada)
2015-09-15
This paper presents a novel method of estimating the orientation of a rigid body moving in space from inertial sensors, by discerning the gravitational and inertial components of the accelerations. In this method, both a rigid-body kinematics model and a stochastic model of the human-hand motion are formulated and combined in a nonlinear state-space system. The state equation represents the rigid body kinematics and stochastic model, and the output equation represents the inertial sensor measurements. It is necessary to mention that, since the output equation is a nonlinear function of the state, the extended Kalman filter (EKF) is applied. The absolute value of the error from the proposed method is shown to be less than 5 deg in simulation and in experiments. It is apparently stable, unlike the time-integration of gyroscope measurements, which is subjected to drift, and remains accurate under large accelerations, unlike the tilt-sensor method.
Rheology of multiphase polymer systems using novel "melt rigidity" evaluation approach
Kracalik, Milan
2015-04-01
Multiphase polymer systems like blends, composites and nanocomposites exhibit complex rheological behaviour due to physical and also possibly chemical interactions between individual phases. Up to now, rheology of heterogeneous polymer systems has been usually described by evaluation of viscosity curve (shear thinning phenomenon), storage modulus curve (formation of secondary plateau) or plotting information about damping behaviour (e.g. Van Gurp-Palmen-plot). On the contrary to evaluation of damping behaviour, "melt rigidity" approach has been introduced for description of physical network of rigid particles in polymer matrix as relation of ∫G'/∫G" over specific frequency range. This approach has been experimentally proved for polymer nanocomposites in order to compare shear flow characteristics with elongational flow field. In this contribution, LDPE-clay nanocomposites with different dispersion grades (physical networks) have been prepared and characterized by both conventional as well as novel "melt rigidity" approach.
International Nuclear Information System (INIS)
Shea, M.A.; Smart, D.F.
1975-01-01
By using the trajectory-tracing technique, cutoff rigidities for Palestine, Dallas, and Midland, Texas, have been calculated as a function of various zenith and azimuth angles. Extensive analysis of the trajectory calculations shows that there is a systematic uncertainty involved in computing the lowest allowed rigidity, and this uncertainty may be a significant fraction of the penumbral width. Continuation of the trajectory-tracing process below the Stormer cutoff allows an evaluation of the reentrant albedo, showing that the average invariant latitude of the guiding center of the trajectory at the albedo origin is the same as the average invariant latitude of the guiding center of the particle trajectory at the detection point. No significant difference in the cutoff rigidities for these locations is found when the external magnetic fields present in the magnetosphere are added to the geomagnetic field of internal origin
Estimating the orientation of a rigid body moving in space using inertial sensors
International Nuclear Information System (INIS)
He, Peng; Cardou, Philippe; Desbiens, André; Gagnon, Eric
2015-01-01
This paper presents a novel method of estimating the orientation of a rigid body moving in space from inertial sensors, by discerning the gravitational and inertial components of the accelerations. In this method, both a rigid-body kinematics model and a stochastic model of the human-hand motion are formulated and combined in a nonlinear state-space system. The state equation represents the rigid body kinematics and stochastic model, and the output equation represents the inertial sensor measurements. It is necessary to mention that, since the output equation is a nonlinear function of the state, the extended Kalman filter (EKF) is applied. The absolute value of the error from the proposed method is shown to be less than 5 deg in simulation and in experiments. It is apparently stable, unlike the time-integration of gyroscope measurements, which is subjected to drift, and remains accurate under large accelerations, unlike the tilt-sensor method
Technical characteristics of rigid sprayed PUR and PIR foams used in construction industry
Gravit, Marina; Kuleshin, Aleksey; Khametgalieva, Elina; Karakozova, Irina
2017-10-01
The article describes the distinctive properties of rigid polyurethane foam and polyisocyanurate (PUR and PIR). A brief review of the research was carried out on their modification with an objective to improve the thermal insulation properties and reducing the combustibility. A comparative analysis of the technical characteristics of rigid PUR and PIR foams of various manufacturers is presented. The problems of the state of the market for the production of polyurethane foam and polyisocyanurate in Russia have been marked. It is established that the further development of the fabrication technology of heat-insulating sprayed rigid PUR and PIR foams requires uniformity of technical characteristics of original components and finished products. Moreover, it requires the creation of unified information base for raw materials and auxiliary materials used in the production of PUR and PIR foam.
Directory of Open Access Journals (Sweden)
Torsten Karzig
2013-11-01
Full Text Available One-dimensional topological superconductors are known to host Majorana zero modes at domain walls terminating the topological phase. Their non-Abelian nature allows for processing quantum information by braiding operations that are insensitive to local perturbations, making Majorana zero modes a promising platform for topological quantum computation. Motivated by the ultimate goal of executing quantum-information processing on a finite time scale, we study domain walls moving at a constant velocity. We exploit an effective Lorentz invariance of the Hamiltonian to obtain an exact solution of the associated quasiparticle spectrum and wave functions for arbitrary velocities. Essential features of the solution have a natural interpretation in terms of the familiar relativistic effects of Lorentz contraction and time dilation. We find that the Majorana zero modes remain stable as long as the domain wall moves at subluminal velocities with respect to the effective speed of light of the system. However, the Majorana bound state dissolves into a continuous quasiparticle spectrum after the domain wall propagates at luminal or even superluminal velocities. This relativistic catastrophe implies that there is an upper limit for possible braiding frequencies even in a perfectly clean system with an arbitrarily large topological gap. We also exploit our exact solution to consider domain walls moving past static impurities present in the system.
Park, So Hyun; Hwang, Min Seob; Park, Hye Jin; Shin, Hwa Kyoung; Baek, Jin Ung; Choi, Byung Tae
2018-03-27
Dongeuibogam (DongYiBaoGian), one of the most important books in Korean medicine, comprises a comprehensive summary of all traditional medicines of North-East Asia before the 17th century. This medicinal literature was mined to establish a list of candidate herbs to treat Parkinson-related rigidity. A systematic search for terms describing Parkinson-related rigidity and candidate prescriptions for the treatment of Parkinson-related rigidity in the Dongeuibogam was performed. A high-frequency medicinal herb combination group and candidates for the treatment of Parkinson-related rigidity were also selected through an analysis of medicinal herb combination frequencies. The existing literature pertaining to the potential effects of candidate herbs for Parkinson-related rigidity was reviewed. Ten medicinal herb candidates for the treatment of Parkinson-related rigidity were selected, and their respective precedent studies were analyzed.
Directory of Open Access Journals (Sweden)
Luciane Chiapinotto
2007-04-01
Full Text Available Neste artigo discute-se o modo de fazer saúde em uma Unidade Básica de Saúde de Porto Alegre-RS a partir da compreensão do processo histórico da constituição de formas de assistência à saúde no Brasil. Durante a experiência de trabalho na Residência Integrada em Saúde, surgiram questionamentos acerca do trabalho no contexto do Sistema Único de Saúde (SUS e os conceitos de saúde e cuidado que estavam operando no cotidiano de atendimento do serviço. A observação participante foi a ferramenta utilizada para a reflexão do cotidiano de trabalho desta Unidade. Desta forma, emergiram três categorias: a relação públicoprivado, o discurso da equipe sobre a população e a demanda da Residência Integrada em Saúde: transformação do modo de trabalhar. Assim, procura-se dar visibilidade aos elementos que atravessam o trabalho nesta Unidade, considerando os paradigmas que sustentam as práticas e apontando para a importância da discussão e dos espaços de escuta na construção de novos modos de trabalhar com saúde.This article discusses the mode of health care in a Primary Health Unit of Porto Alegre, in the state of Rio Grande do Sul, based on the understanding of the historical process of the constitution of types of health assistance in Brazil. During the experience in the Integrated Health Residency, some questions emerged regarding work in the context of Brazil's National Health System (SUS, and the concepts of health and care that were operating on the daily practice of this service. Participant observation was the tool used in this research for a reflection on the daily practice of the Unit. In this way, three categories emerged: the public/private relationship, the team's discourse about the population, and the demand of the Integrated Health Residency: changes in the manner of working. Thus, the article gives visibility to the elements pertaining to work in this Unit, pointing to the importance of the discussion and of
Dua, Gaurav; Navin Kumar, Andrews; Roy, Indranil Deb; Roy, Supriyo Kumar
2014-05-01
Patients with operated cleft lip and palate present with a problem of midface hypoplasia, and such patients have been traditionally treated with orthognathic surgery. Such a procedure has its own limitations of relapse and hence a newer modality of distraction osteogenesis with histiogenesis can be chosen to overcome such limitations for midfacial advancement. The purpose of this study is to evaluate an alternative technique and its postoperative stability in maxillary distraction osteogenesis in patients of cleft lip and cleft palate using a rigid external device (RED). Nine patients with midface bone stock deficiency were selected for maxillary advancement. At the first surgery under general anesthesia, after Le Fort I osteotomy, RED system was used with the alternative technique. After distraction, evaluation was done for ease of the procedure, stability, and complications. Lateral cephalograms were evaluated at 3 stages: T1, pre-distraction; T2, post-distraction; and T3, 1 year post-distraction. A mean 13.4-mm midface advancement was shown with bone formation at the pterygomaxillary region without losing the vector and having a standby mode in case the wire broke during distraction The results were stable even at 1 year of follow-up. Maxillary position improved in relation to the cranial base. This study showed that the RED was versatile in midface advancement.
Emotional rigidity negatively impacts remission from anxiety and recovery of well-being.
Wiltgen, Anika; Shepard, Christopher; Smith, Ryan; Fowler, J Christopher
2018-08-15
Emotional rigidity is described in clinical literature as a significant barrier to recovery; however, few there are few empirical measures of the construct. The current study had two aims: Study 1 aimed to identify latent factors that may bear on the construct of emotional rigidity while Study 2 assessed the potential impact of the latent factor(s) on anxiety remission rates and well-being. This study utilized data from 2472 adult inpatients (1176 females and 1296 males) with severe psychopathology. Study 1 utilized exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) to identify latent factors of emotional rigidity. Study 2 utilized hierarchical logistic regression analyses to assess the relationships among emotional rigidity factors and anxiety remission and well-being recovery at discharge. Study 1 yielded a two-factor solution identified in EFA was confirmed with CFA. Factor 1 consisted of neuroticism, experiential avoidance, non-acceptance of emotions, impaired goal-directed behavior, impulse control difficulties and limited access to emotion regulation strategies when experiencing negative emotions. Factor 2 consisted of lack of emotional awareness and lack of emotional clarity when experiencing negative emotions. Results of Study 2 indicated higher scores on Factor 1 was associated with lower remission rates from anxiety and poorer well-being upon discharge. Factor 2 was not predictive of outcome. Emotional rigidity appears to be a latent construct that negatively impacts remission rates from anxiety. Limitations of the present study include its retrospective design, and inefficient methods of assessing emotional rigidity. Copyright © 2018. Published by Elsevier B.V.
Computing the Free Energy along a Reaction Coordinate Using Rigid Body Dynamics.
Tao, Peng; Sodt, Alexander J; Shao, Yihan; König, Gerhard; Brooks, Bernard R
2014-10-14
The calculations of potential of mean force along complex chemical reactions or rare events pathways are of great interest because of their importance for many areas in chemistry, molecular biology, and material science. The major difficulty for free energy calculations comes from the great computational cost for adequate sampling of the system in high-energy regions, especially close to the reaction transition state. Here, we present a method, called FEG-RBD, in which the free energy gradients were obtained from rigid body dynamics simulations. Then the free energy gradients were integrated along a reference reaction pathway to calculate free energy profiles. In a given system, the reaction coordinates defining a subset of atoms (e.g., a solute, or the quantum mechanics (QM) region of a quantum mechanics/molecular mechanics simulation) are selected to form a rigid body during the simulation. The first-order derivatives (gradients) of the free energy with respect to the reaction coordinates are obtained through the integration of constraint forces within the rigid body. Each structure along the reference reaction path is separately subjected to such a rigid body simulation. The individual free energy gradients are integrated along the reference pathway to obtain the free energy profile. Test cases provided demonstrate both the strengths and weaknesses of the FEG-RBD method. The most significant benefit of this method comes from the fast convergence rate of the free energy gradient using rigid-body constraints instead of restraints. A correction to the free energy due to approximate relaxation of the rigid-body constraint is estimated and discussed. A comparison with umbrella sampling using a simple test case revealed the improved sampling efficiency of FEG-RBD by a factor of 4 on average. The enhanced efficiency makes this method effective for calculating the free energy of complex chemical reactions when the reaction coordinate can be unambiguously defined by a
Dimensional Metrology of Non-rigid Parts Without Specialized Inspection Fixtures =
Sabri, Vahid
Quality control is an important factor for manufacturing companies looking to prosper in an era of globalization, market pressures and technological advances. Functionality and product quality cannot be guaranteed without this important aspect. Manufactured parts have deviations from their nominal (CAD) shape caused by the manufacturing process. Thus, geometric inspection is a very important element in the quality control of mechanical parts. We will focus here on the geometric inspection of non-rigid (flexible) parts which are widely used in the aeronautic and automotive industries. Non-rigid parts can have different forms in a free-state condition compared with their nominal models due to residual stress and gravity loads. To solve this problem, dedicated inspection fixtures are generally used in industry to compensate for the displacement of such parts for simulating the use state in order to perform geometric inspections. These fixtures and the installation and inspection processes are expensive and time-consuming. Our aim in this thesis is therefore to develop an inspection method which eliminates the need for specialized fixtures. This is done by acquiring a point cloud from the part in a free-state condition using a contactless measuring device such as optical scanning and comparing it with the CAD model for the deviation identification. Using a non-rigid registration method and finite element analysis, we numerically inspect the profile of a non-rigid part. To do so, a simulated displacement is performed using an improved definition of displacement boundary conditions for simulating unfixed parts. In addition, we propose a numerical method for dimensional metrology of non-rigid parts in a free-state condition based on the arc length measurement by calculating the geodesic distance using the Fast Marching Method (FMM). In this thesis, we apply our developed methods on industrial non-rigid parts with free-form surfaces simulated with different types of
Doskocz, Joanna; Drabik, Dominik; Chodaczek, Grzegorz; Przybyło, Magdalena; Langner, Marek
2018-06-01
Bending rigidity coefficient describes propensity of a lipid bilayer to deform. In order to measure the parameter experimentally using flickering noise spectroscopy, the microscopic imaging is required, which necessitates the application of giant unilamellar vesicles (GUV) lipid bilayer model. The major difficulty associated with the application of the model is the statistical character of GUV population with respect to their size and the homogeneity of lipid bilayer composition, if a mixture of lipids is used. In the paper, the bending rigidity coefficient was measured using the fluorescence-enhanced flicker-noise spectroscopy. In the paper, the bending rigidity coefficient was determined for large populations of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphocholine vesicles. The quantity of obtained experimental data allows to perform statistical analysis aiming at the identification of the distribution, which is the most appropriate for the calculation of the value of the membrane bending rigidity coefficient. It has been demonstrated that the bending rigidity coefficient is characterized by an asymmetrical distribution, which is well approximated with the gamma distribution. Since there are no biophysical reasons for that we propose to use the difference between normal and gamma fits as a measure of the homogeneity of vesicle population. In addition, the effect of a fluorescent label and types of instrumental setups on determined values has been tested. Obtained results show that the value of the bending rigidity coefficient does not depend on the type of a fluorescent label nor on the type of microscope used.
Directory of Open Access Journals (Sweden)
Mirjam Ochsner
2010-03-01
Full Text Available Various physical parameters, including substrate rigidity, size of adhesive islands and micro-and nano-topographies, have been shown to differentially regulate cell fate in two-dimensional (2-D cell cultures. Cells anchored in a three-dimensional (3-D microenvironment show significantly altered phenotypes, from altered cell adhesions, to cell migration and differentiation. Yet, no systematic analysis has been performed that studied how the integrated cellular responses to the physical characteristics of the environment are regulated by dimensionality (2-D versus 3-D.Arrays of 5 or 10 microm deep microwells were fabricated in polydimethylsiloxane (PDMS. The actin cytoskeleton was compared for single primary fibroblasts adhering either to microfabricated adhesive islands (2-D or trapped in microwells (3-D of controlled size, shape, and wall rigidity. On rigid substrates (Young's Modulus = 1 MPa, cytoskeleton assembly within single fibroblast cells occurred in 3-D microwells of circular, rectangular, square, and triangular shapes with 2-D projected surface areas (microwell bottom surface area and total surface areas of adhesion (microwell bottom plus wall surface area that inhibited stress fiber assembly in 2-D. In contrast, cells did not assemble a detectable actin cytoskeleton in soft 3-D microwells (20 kPa, regardless of their shapes, but did so on flat, 2-D substrates. The dependency on environmental dimensionality was also reflected by cell viability and metabolism as probed by mitochondrial activities. Both were upregulated in 3-D cultured cells versus cells on 2-D patterns when surface area of adhesion and rigidity were held constant.These data indicate that cell shape and rigidity are not orthogonal parameters directing cell fate. The sensory toolbox of cells integrates mechanical (rigidity and topographical (shape and dimensionality information differently when cell adhesions are confined to 2-D or occur in a 3-D space.
Network rigidity and properties of SiO2 and GeO2 glasses under pressure.
Trachenko, Kostya; Dove, Martin T; Brazhkin, Vadim; El'kin, F S
2004-09-24
We report in situ studies of SiO2 glass under pressure and find that temperature-induced densification takes place in a pressure window. To explain this effect, we study how rigidity of glasses changes under pressure, with rigidity percolation affecting the dynamics of local relaxation events. We link rigidity percolation in glasses to other effects, including a large increase of crystallization temperature and logarithmic relaxation under pressure.
Guaranteed performance in reaching mode of sliding mode ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
addresses the design of constant plus proportional rate reaching law-based SMC for second-order ... Reaching mode; sliding mode controlled systems; output tracking ... The uncertainty in the input distribution function g is expressed as.
Evolution of motions of a rigid body about its center of mass
Chernousko, Felix L; Leshchenko, Dmytro D
2017-01-01
The book presents a unified and well-developed approach to the dynamics of angular motions of rigid bodies subjected to perturbation torques of different physical nature. It contains both the basic foundations of the rigid body dynamics and of the asymptotic method of averaging. The rigorous approach based on the averaging procedure is applicable to bodies with arbitrary ellopsoids of inertia. Action of various perturbation torques, both external (gravitational, aerodynamical, solar pressure) and internal (due to viscous fluid in tanks, elastic and visco-elastic properties of a body) is considered in detail. The book can be used by researchers, engineers and students working in attitude dynamics of spacecraft.
Method of convex rigid frames and applications in studies of multipartite quNit pure states
International Nuclear Information System (INIS)
Zhong Zaizhe
2005-01-01
In this letter, we suggest a method of convex rigid frames in the studies of multipartite quNit pure states. We illustrate what the convex rigid frames are, and what is their method. As applications, we use this method to solve some basic problems and give some new results (three theorems): the problem of the partial separability of the multipartite quNit pure states and its geometric explanation; the problem of the classification of multipartite quNit pure states, giving a perfect explanation of the local unitary transformations; thirdly, we discuss the invariants of classes and give a possible physical explanation. (letter to the editor)