WorldWideScience

Sample records for rigid ellipsoidal objects

  1. Visual Tracking of Deformation and Classification of Non-Rigid Objects with Robot Hand Probing

    Directory of Open Access Journals (Sweden)

    Fei Hui

    2017-03-01

    Full Text Available Performing tasks with a robot hand often requires a complete knowledge of the manipulated object, including its properties (shape, rigidity, surface texture and its location in the environment, in order to ensure safe and efficient manipulation. While well-established procedures exist for the manipulation of rigid objects, as well as several approaches for the manipulation of linear or planar deformable objects such as ropes or fabric, research addressing the characterization of deformable objects occupying a volume remains relatively limited. The paper proposes an approach for tracking the deformation of non-rigid objects under robot hand manipulation using RGB-D data. The purpose is to automatically classify deformable objects as rigid, elastic, plastic, or elasto-plastic, based on the material they are made of, and to support recognition of the category of such objects through a robotic probing process in order to enhance manipulation capabilities. The proposed approach combines advantageously classical color and depth image processing techniques and proposes a novel combination of the fast level set method with a log-polar mapping of the visual data to robustly detect and track the contour of a deformable object in a RGB-D data stream. Dynamic time warping is employed to characterize the object properties independently from the varying length of the tracked contour as the object deforms. The proposed solution achieves a classification rate over all categories of material of up to 98.3%. When integrated in the control loop of a robot hand, it can contribute to ensure stable grasp, and safe manipulation capability that will preserve the physical integrity of the object.

  2. Force-controlled robotic assembly processes of rigid and flexible objects methodologies and applications

    CERN Document Server

    Ghalyan, Ibrahim Fahad Jasim

    2016-01-01

    This book provides comprehensive and integrated approaches for rigid and flexible object assembly. It presents comparison studies with the available force-guided robotic processes and covers contact-state modeling, scheme control strategies, and position searching algorithms. Further, it includes experimental validations for different assembly situations, including those for the assembly of industrial parts taken from the automotive industry. .

  3. Encountered-Type Haptic Interface for Representation of Shape and Rigidity of 3D Virtual Objects.

    Science.gov (United States)

    Takizawa, Naoki; Yano, Hiroaki; Iwata, Hiroo; Oshiro, Yukio; Ohkohchi, Nobuhiro

    2017-01-01

    This paper describes the development of an encountered-type haptic interface that can generate the physical characteristics, such as shape and rigidity, of three-dimensional (3D) virtual objects using an array of newly developed non-expandable balloons. To alter the rigidity of each non-expandable balloon, the volume of air in it is controlled through a linear actuator and a pressure sensor based on Hooke's law. Furthermore, to change the volume of each balloon, its exposed surface area is controlled by using another linear actuator with a trumpet-shaped tube. A position control mechanism is constructed to display virtual objects using the balloons. The 3D position of each balloon is controlled using a flexible tube and a string. The performance of the system is tested and the results confirm the effectiveness of the proposed principle and interface.

  4. Dynamic Non-Rigid Objects Reconstruction with a Single RGB-D Sensor

    Directory of Open Access Journals (Sweden)

    Sen Wang

    2018-03-01

    Full Text Available This paper deals with the 3D reconstruction problem for dynamic non-rigid objects with a single RGB-D sensor. It is a challenging task as we consider the almost inevitable accumulation error issue in some previous sequential fusion methods and also the possible failure of surface tracking in a long sequence. Therefore, we propose a global non-rigid registration framework and tackle the drifting problem via an explicit loop closure. Our novel scheme starts with a fusion step to get multiple partial scans from the input sequence, followed by a pairwise non-rigid registration and loop detection step to obtain correspondences between neighboring partial pieces and those pieces that form a loop. Then, we perform a global registration procedure to align all those pieces together into a consistent canonical space as guided by those matches that we have established. Finally, our proposed model-update step helps fixing potential misalignments that still exist after the global registration. Both geometric and appearance constraints are enforced during our alignment; therefore, we are able to get the recovered model with accurate geometry as well as high fidelity color maps for the mesh. Experiments on both synthetic and various real datasets have demonstrated the capability of our approach to reconstruct complete and watertight deformable objects.

  5. An Innovative SIFT-Based Method for Rigid Video Object Recognition

    Directory of Open Access Journals (Sweden)

    Jie Yu

    2014-01-01

    Full Text Available This paper presents an innovative SIFT-based method for rigid video object recognition (hereafter called RVO-SIFT. Just like what happens in the vision system of human being, this method makes the object recognition and feature updating process organically unify together, using both trajectory and feature matching, and thereby it can learn new features not only in the training stage but also in the recognition stage, which can improve greatly the completeness of the video object’s features automatically and, in turn, increases the ratio of correct recognition drastically. The experimental results on real video sequences demonstrate its surprising robustness and efficiency.

  6. Blind source separation based on time-frequency morphological characteristics for rigid acoustic scattering by underwater objects

    Science.gov (United States)

    Yang, Yang; Li, Xiukun

    2016-06-01

    Separation of the components of rigid acoustic scattering by underwater objects is essential in obtaining the structural characteristics of such objects. To overcome the problem of rigid structures appearing to have the same spectral structure in the time domain, time-frequency Blind Source Separation (BSS) can be used in combination with image morphology to separate the rigid scattering components of different objects. Based on a highlight model, the separation of the rigid scattering structure of objects with time-frequency distribution is deduced. Using a morphological filter, different characteristics in a Wigner-Ville Distribution (WVD) observed for single auto term and cross terms can be simplified to remove any cross-term interference. By selecting time and frequency points of the auto terms signal, the accuracy of BSS can be improved. An experimental simulation has been used, with changes in the pulse width of the transmitted signal, the relative amplitude and the time delay parameter, in order to analyzing the feasibility of this new method. Simulation results show that the new method is not only able to separate rigid scattering components, but can also separate the components when elastic scattering and rigid scattering exist at the same time. Experimental results confirm that the new method can be used in separating the rigid scattering structure of underwater objects.

  7. Triaxial Ellipsoidal Quantum Billiards

    NARCIS (Netherlands)

    Waalkens, Holger; Wiersig, Jan; Dullin, Holger R.

    1999-01-01

    The classical mechanics, exact quantum mechanics and semiclassical quantum mechanics of the billiard in the triaxial ellipsoid are investigated. The system is separable in ellipsoidal coordinates. A smooth description of the motion is given in terms of a geodesic flow on a solid torus, which is a

  8. Circulation of a triaxial, charged ellipsoidal droplet

    International Nuclear Information System (INIS)

    Graber, J.L.; Rosensteel, G.

    2002-01-01

    The Kelvin circulation, which is the Casimir invariant of the general collective motion gcm(3) Lie algebra, is determined for a rapidly rotating triaxial nucleus in the classical domain. The potential energy is approximated by the sum of Coulomb repulsion and attractive surface energy terms, and the kinetic energy is adopted from the Riemann ellipsoidal model. An accurate approximation valid for both small and large deformations is reported for the potential energy. The Riemann ellipsoid theory allows for collective rotation in the continuum from rigid body motion to irrotational flow; the rigidity parametrizes this kinematical continuum. Analytic formulas are derived for the circulation, angular momentum, and energy as functions of the axis lengths, fissility, and rigidity. In particular, the bifurcation point to Jacobi triaxial shapes from noncollective oblate spheroids is given by a simple analytic formula. For a given fissility, the bifurcation point depends sensitive- ly on the rigidity. The Kelvin circulation remains approximately constant for triaxial ellipsoids as the angular momentum increases. This implies that gcm(3) is an approximate partial dynamical symmetry for rapidly rotating triaxial nuclei

  9. Ellipsoidal basis for isotropic oscillator

    International Nuclear Information System (INIS)

    Kallies, W.; Lukac, I.; Pogosyan, G.S.; Sisakyan, A.N.

    1994-01-01

    The solutions of the Schroedinger equation are derived for the isotropic oscillator potential in the ellipsoidal coordinate system. The explicit expression is obtained for the ellipsoidal integrals of motion through the components of the orbital moment and Demkov's tensor. The explicit form of the ellipsoidal basis is given for the lowest quantum numbers. 10 refs.; 1 tab. (author)

  10. A new technique for dynamic load distribution when two manipulators mutually lift a rigid object. Part 1, The proposed technique

    Energy Technology Data Exchange (ETDEWEB)

    Unseren, M.A.

    1994-04-01

    A general framework for solving the dynamic load distribution when two manipulators hold a rigid object is proposed. The underspecified problem of solving for the contact forces and torques based on the object`s equations of motion is transformed into a well specified problem. This is accomplished by augmenting the object`s equations of motion with additional equations which relate a new vector variable quantifying the internal contact force and torque degrees of freedom (DOF) as a linear function of the contact forces and torques. The resulting augmented system yields a well specified solution for the contact forces and torques in which they are separated into their motion inducing and internal components. A particular solution is suggested which enables the designer to conveniently specify what portion of the payload`s mass each manipulator is to bear. It is also shown that the results of the previous work are just a special case of the general load distribution framework described here.

  11. Design of a flexible tactile sensor for classification of rigid and deformable objects

    DEFF Research Database (Denmark)

    Drimus, Alin; Kootstra, Gert; Bilberg, Arne

    2014-01-01

    of the sensor in an active object-classification system. A robotic gripper with two sensors mounted on its fingers performs a palpation procedure on a set of objects. By squeezing an object, the robot actively explores the material properties, and the system acquires tactile information corresponding......For both humans and robots, tactile sensing is important for interaction with the environment: it is the core sensing used for exploration and manipulation of objects. In this paper, we present a novel tactile-array sensor based on flexible piezoresistive rubber.We describe the design of the sensor...... and data acquisition system.We evaluate the sensitivity and robustness of the sensor, and show that it is consistent over time with little relaxation. Furthermore, the sensor has the benefit of being flexible, having a high resolution, it is easy to mount, and simple to manufacture. We demonstrate the use...

  12. A proposal of multi-objective function for submarine rigid pipelines route optimization via evolutionary algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, D.H.; Medeiros, A.R. [Subsea7, Niteroi, RJ (Brazil); Jacob, B.P.; Lima, B.S.L.P.; Albrecht, C.H. [Universidade Federaldo Rio de Janeiro (COPPE/UFRJ), RJ (Brazil). Coordenacao de Programas de Pos-graduacao em Engenharia

    2009-07-01

    This work presents studies regarding the determination of optimal pipeline routes for offshore applications. The assembly of an objective function is presented; this function can be later associated with Evolutionary Algorithm to implement a computational tool for the automatic determination of the most advantageous pipeline route for a given scenario. This tool may reduce computational overheads, avoid mistakes with route interpretation, and minimize costs with respect to submarine pipeline design and installation. The following aspects can be considered in the assembly of the objective function: Geophysical and geotechnical data obtained from the bathymetry and sonography; the influence of the installation method, total pipeline length and number of free spans to be mitigated along the routes as well as vessel time for both cases. Case studies are presented to illustrate the use of the proposed objective function, including a sensitivity analysis intended to identify the relative influence of selected parameters in the evaluation of different routes. (author)

  13. Dynamic response of sand particles impacted by a rigid spherical object

    Science.gov (United States)

    Youplao, P.; Takita, A.; Nasbey, H.; Yupapin, P. P.; Fujii, Y.

    2018-06-01

    A method for measuring the dynamic impact responses that acting on a spherical object while dropping and colliding with dried sand, such as the velocity, displacement, acceleration, and resultant force, is presented and discussed. In the experiment, a Michelson-type laser interferometer is employed to obtain the velocity of the spherical stainless steel object. Then the obtained time velocity profile is used to calculate the acceleration, the displacement, and the inertial force acting on the observed sand particles. Furthermore, a high-speed camera is employed to observe the behavior of the sand during the collision. From the experimental results with the sampling interval for frequencies calculation of 1 ms, the combined standard uncertainty in the instantaneous value of the impact force acts on the observed object is obtained and approximated to 0.49 N, which is related to a corresponding 4.07% of the maximum value at 12.05 N of the impact force.

  14. How Do Object Size and Rigidity Affect Reaching and Grasping in Infants with Down Syndrome?

    Science.gov (United States)

    de Campos, Ana Carolina; Francisco, Kelly Regina; Savelsbergh, Geert J. P.; Rocha, Nelci Adriana Cicuto Ferreira

    2011-01-01

    Reaching and grasping skills have been described to emerge from a dynamic interaction between intrinsic and extrinsic factors. The purpose of the present study was to investigate the interaction between such an intrinsic factor, Down syndrome, and extrinsic factors, such as different object properties. Seven infants with Down syndrome and seven…

  15. Dynamic response of sand particles impacted by a rigid spherical object

    Directory of Open Access Journals (Sweden)

    P. Youplao

    2018-06-01

    Full Text Available A method for measuring the dynamic impact responses that acting on a spherical object while dropping and colliding with dried sand, such as the velocity, displacement, acceleration, and resultant force, is presented and discussed. In the experiment, a Michelson-type laser interferometer is employed to obtain the velocity of the spherical stainless steel object. Then the obtained time velocity profile is used to calculate the acceleration, the displacement, and the inertial force acting on the observed sand particles. Furthermore, a high-speed camera is employed to observe the behavior of the sand during the collision. From the experimental results with the sampling interval for frequencies calculation of 1 ms, the combined standard uncertainty in the instantaneous value of the impact force acts on the observed object is obtained and approximated to 0.49 N, which is related to a corresponding 4.07% of the maximum value at 12.05 N of the impact force. Keywords: Sand particle, Collision response, Dynamic force, Inertial mass, Optical interferometer

  16. Classification of rigid and deformable objects using a novel tactile sensor

    DEFF Research Database (Denmark)

    Drimus, Alin; Kootstra, Gert; Bilberg, Arne

    2011-01-01

    . A real time acquisition system scans the data from the array which is then further processed. We validate the properties of the sensor in an application that classifies a number of household objects while performing a palpation procedure with a robotic gripper. Based on the haptic feedback, we classify......In this paper, we present a novel array tactile sensor for use in robotic grippers based on a flexible piezoresistive rubber. We start by describing the physical principles of piezoresistive materials and continue by outlining how to build a flexible array tactile sensor using stitch electrodes...... the results with the ones obtained from an experimental setup that uses a Weiss Robotics tactile sensor with similar characteristics and we conclude by exemplifying how the results of the classification can be used in different industrial applications....

  17. Shape matters: The case for Ellipsoids and Ellipsoidal Water

    Energy Technology Data Exchange (ETDEWEB)

    Tillack, Andreas F. [ORNL; Robinson, Bruce H. [University of Washington, Seattle

    2017-11-01

    We describe the shape potentials used for the van der Waals interactions between soft-ellipsoids used to coarse-grain molecular moieties in our Metropolis Monte-Carlo simulation software. The morphologies resulting from different expressions for these van der Waals interaction potentials are discussed for the case of a prolate spheroid system with a strong dipole at the ellipsoid center. We also show that the calculation of ellipsoids is, at worst, only about fivefold more expensive computationally when compared to a simple Lennard- Jones sphere. Finally, as an application of the ellipsoidal shape we parametrize water from the original SPC water model and observe – just through the difference in shape alone – a significant improvement of the O-O radial distribution function when compared to experimental data.

  18. Hovering efficiency comparison of rotary and flapping flight for a rigid and rectangular wings via dimensionless multi-objective optimization.

    Science.gov (United States)

    Bayiz, Yagiz Efe; Ghanaatpishe, Mohammad; Fathy, Hosam; Cheng, Bo

    2018-03-20

    In this work, a multi-objective optimization framework is developed for optimizing low-Reynolds number (Re) hovering flight. This framework is then applied to compare the efficiency of rigid revolving and flapping wings with rectangular shape under varying Re and Rossby number (Ro, or aspect ratio). The proposed framework is capable of generating sets of optimal solutions and Pareto fronts for maximizing lift coefficient and minimizing power coefficient in dimensionless space, which explicitly reveal the trade off between lift generation and power consumption. The results indicate that revolving wings are more efficient if the required average lift coefficient CL is low (< 1 for Re = 100 and < 1.6 for Re = 8000), while flapping wings are more efficient in achieving higher CL. Using dimensionless power loading as the single objective performance measure to be maximized, rotary flight is more efficient than flapping wings for Re > 100 regardless of the amount of energy storage assumed in the flapping-wing actuation mechanism, while flapping flight becomes more efficient for Re < 100. It is observed that wings with low Ro perform better if higher CL is needed, whereas higher Ro cases are more efficient at CL < 0.9 region. However, for the selected geometry and Re, the efficiency is weakly dependent on Ro if the dimensionless power loading is maximized. © 2018 IOP Publishing Ltd.

  19. Magnetostatics of anisotropic superconducting ellipsoid

    International Nuclear Information System (INIS)

    Saif, A.G.

    1987-09-01

    The magnetization and the magnetic field distribution inside (outside) an anisotropic type II superconducting ellipsoid, with filamentary structure, is formulated. We have shown that the magnetic field in this case is different from that of the general anisotropic one. The nucleations of the flux lines for specimens with large demagnetization factors are theoretically studied. We have shown that the nucleations of the flux lines, for specimens with large demagnetization factor, appears at a field larger than that of ellipsoidal shape. (author). 15 refs

  20. Stability of congruent Darwin ellipsoids

    International Nuclear Information System (INIS)

    Tassoul, M.

    1975-01-01

    The problem of synchronous oscillations of congruent Darwin ellipsoids is reconsidered. Contrary to results obtained by Chandrasekhar, it is shown that along a Darwin sequence the configurations remain stable with respect to ellipsoidal disturbances until they become too closely spaced. The precise limit which separates stable from unstable systems is found. Apart from some minor differences the Darwin sequence is the exact analog of the Roche sequence

  1. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    KAUST Repository

    Vella, Dominic

    2012-10-01

    Thin shells are found in nature at scales ranging from viruses to hens\\' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus etal. [following paper, Phys. Rev. Lett. 109, 144301 (2012)PRLTAO0031-9007] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells. © 2012 American Physical Society.

  2. Attractive ellipsoids in robust control

    CERN Document Server

    Poznyak, Alexander; Azhmyakov, Vadim

    2014-01-01

    This monograph introduces a newly developed robust-control design technique for a wide class of continuous-time dynamical systems called the “attractive ellipsoid method.” Along with a coherent introduction to the proposed control design and related topics, the monograph studies nonlinear affine control systems in the presence of uncertainty and presents a constructive and easily implementable control strategy that guarantees certain stability properties. The authors discuss linear-style feedback control synthesis in the context of the above-mentioned systems. The development and physical implementation of high-performance robust-feedback controllers that work in the absence of complete information is addressed, with numerous examples to illustrate how to apply the attractive ellipsoid method to mechanical and electromechanical systems. While theorems are proved systematically, the emphasis is on understanding and applying the theory to real-world situations. Attractive Ellipsoids in Robust Control will a...

  3. Ellipsoid analysis of calvarial shape.

    Science.gov (United States)

    Jacobsen, Petra A; Becker, Devra; Govier, Daniel P; Krantz, Steven G; Kane, Alex

    2009-09-01

    The purpose of this research was to develop a novel quantitative method of describing calvarial shape by using ellipsoid geometry. The pilot application of Ellipsoid Analysis was to compare calvarial form among individuals with untreated unilateral coronal synostosis, metopic synostosis, and sagittal synostosis and normal subjects. The frontal, parietal, and occipital bones of 10 preoperative patients for each of the four study groups were bilaterally segmented into six regions using three-dimensional skull reconstructions generated by ANALYZE imaging software from high-resolution computed tomography scans. Points along each segment were extracted and manipulated using a MATLAB-based program. The points were fit to the least-squares nearest ellipsoid. Relationships between the six resultant right and left frontal, parietal, and occipital ellipsoidal centroids (FR, FL, PR, PL, OR, and OL, respectively) were tested for association with a synostotic group. Results from the pilot study showed meaningful differences between length ratio, angular, and centroid distance relationships among synostotic groups. The most substantial difference was exhibited in the centroid distance PL-PR between patients with sagittal synostosis and metopic synostosis. The measures most commonly significant were centroid distances FL-PR and FL-PL and the angle OR-FR-PR. Derived centroid relationships were reproducible. Ellipsoid Analysis may offer a more refined approach to quantitative analysis of cranial shape. Symmetric and asymmetric forms can be compared directly. Relevant shape information between traditional landmarks is characterized. These techniques may have wider applicability in quantifying craniofacial morphology with increase in both specificity and general applicability over current methods.

  4. Intersection of a Sure Ellipsoid and a Random Ellipsoid

    Directory of Open Access Journals (Sweden)

    Arjun K. Gupta

    2012-07-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} An Expression for the expected value of the intersection of a sure sphere and a random sphere has been derived by Laurent (1974. In the present paper we derive the expression for the expected intersection volume of a sure ellipsoid and a random ellipsoid

  5. Ellipsoidal fuzzy learning for smart car platoons

    Science.gov (United States)

    Dickerson, Julie A.; Kosko, Bart

    1993-12-01

    A neural-fuzzy system combined supervised and unsupervised learning to find and tune the fuzzy-rules. An additive fuzzy system approximates a function by covering its graph with fuzzy rules. A fuzzy rule patch can take the form of an ellipsoid in the input-output space. Unsupervised competitive learning found the statistics of data clusters. The covariance matrix of each synaptic quantization vector defined on ellipsoid centered at the centroid of the data cluster. Tightly clustered data gave smaller ellipsoids or more certain rules. Sparse data gave larger ellipsoids or less certain rules. Supervised learning tuned the ellipsoids to improve the approximation. The supervised neural system used gradient descent to find the ellipsoidal fuzzy patches. It locally minimized the mean-squared error of the fuzzy approximation. Hybrid ellipsoidal learning estimated the control surface for a smart car controller.

  6. A review of a method for dynamic load distribution, dynamical modeling, and explicit internal force control when two manipulators mutually lift and transport a rigid body object

    International Nuclear Information System (INIS)

    Unseren, M.A.

    1997-01-01

    The paper reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restrict the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system

  7. A review of a method for dynamic load distribution, dynamical modeling, and explicit internal force control when two manipulators mutually lift and transport a rigid body object

    Energy Technology Data Exchange (ETDEWEB)

    Unseren, M.A.

    1997-04-20

    The paper reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restrict the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.

  8. X-ray microfocusing with off-axis ellipsoidal mirror

    Energy Technology Data Exchange (ETDEWEB)

    Yumoto, Hirokatsu, E-mail: yumoto@spring8.or.jp; Koyama, Takahisa [Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Matsuyama, Satoshi; Yamauchi, Kazuto [Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Kohmura, Yoshiki; Ishikawa, Tetsuya [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Ohashi, Haruhiko [Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2016-07-27

    High-precision ellipsoidal mirrors for two-dimensionally focusing X-rays to nanometer sizes have not been realized because of technical problems in their fabrication processes. The objective of the present study is to develop fabrication techniques for ellipsoidal focusing mirrors in the hard-X-ray region. We design an off-axis ellipsoidal mirror for use under total reflection conditions up to the X-ray energy of 8 keV. We fabricate an ellipsoidal mirror with a surface roughness of 0.3 nm RMS (root-mean-square) and a surface figure error height of 3.0 nm RMS by utilizing a surface profiler and surface finishing method developed by us. The focusing properties of the mirror are evaluated at the BL29XUL beamline in SPring-8. A focusing beam size of 270 nm × 360 nm FWHM (full width at half maximum) at an X-ray energy of 7 keV is observed with the use of the knife-edge scanning method. We expect to apply the developed fabrication techniques to construct ellipsoidal nanofocusing mirrors.

  9. The equilibrium of rubble-pile satellites: The Darwin and Roche ellipsoids for gravitationally held granular aggregates

    Science.gov (United States)

    Sharma, Ishan

    2009-04-01

    Many new small moons of the giant planets have been discovered recently. In parallel, satellites of several asteroids, e.g., Ida, have been found. Strikingly, a majority of these new-found planetary moons are estimated to have very low densities, which, along with their hypothesized accretionary origins, suggests a rubble internal structure. This, coupled to the fact that many asteroids are also thought to be particle aggregates held together principally by self-gravity, motivates the present investigation into the possible ellipsoidal shapes that a rubble-pile satellite may achieve as it orbits an aspherical primary. Conversely, knowledge of the shape will constrain the granular aggregate's orbit—the closer it gets to a primary, both primary's tidal effect and the satellite's spin are greater. We will assume that the primary body is sufficiently massive so as not to be influenced by the satellite. However, we will incorporate the primary's possible ellipsoidal shape, e.g., flattening at its poles in the case of a planet, and the proloidal shape of asteroids. In this, the present investigation is an extension of the first classical Darwin problem to granular aggregates. General equations defining an ellipsoidal rubble pile's equilibrium about an ellipsoidal primary are developed. They are then utilized to scrutinize the possible granular nature of small inner moons of the giant planets. It is found that most satellites satisfy constraints necessary to exist as equilibrated granular aggregates. Objects like Naiad, Metis and Adrastea appear to violate these limits, but in doing so, provide clues to their internal density and/or structure. We also recover the Roche limit for a granular satellite of a spherical primary, and employ it to study the martian satellites, Phobos and Deimos, as well as to make contact with earlier work of Davidsson [Davidsson, B., 2001. Icarus 149, 375-383]. The satellite's interior will be modeled as a rigid-plastic, cohesion-less material

  10. Ellipsoids and matrix-valued valuations

    OpenAIRE

    Ludwig, Monika

    2003-01-01

    We obtain a classification of Borel measurable, GL(n) covariant, symmetric-matrix-valued valuations on the space of n-dimensional convex polytopes. The only ones turn out to be the moment matrix corresponding to the classical Legendre ellipsoid and the matrix corresponding to the ellipsoid recently discovered by E. Lutwak, D. Yang, and G. Zhang.

  11. Quantum Monodromy in Prolate Ellipsoidal Billiards

    NARCIS (Netherlands)

    Waalkens, Holger; Dullin, Holger R.

    2002-01-01

    This is the third in a series of three papers on quantum billiards with elliptic and ellipsoidal boundaries. In the present paper we show that the integrable billiard inside a prolate ellipsoid has an isolated singular point in its bifurcation diagram and, therefore, exhibits classical and quantum

  12. A new technique for dynamic load distribution when two manipulators mutually lift a rigid object. Part 2, Derivation of entire system model and control architecture

    Energy Technology Data Exchange (ETDEWEB)

    Unseren, M.A.

    1994-04-01

    A rigid body model for the entire system which accounts for the load distribution scheme proposed in Part 1 as well as for the dynamics of the manipulators and the kinematic constraints is derived in the joint space. A technique is presented for expressing the object dynamics in terms of the joint variables of both manipulators which leads to a positive definite and symmetric inertia matrix. The model is then transformed to obtain reduced order equations of motion and a separate set of equations which govern the behavior of the internal contact forces. The control architecture is applied to the model which results in the explicit decoupling of the position and internal contact force-controlled degrees of freedom (DOF).

  13. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    KAUST Repository

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2012-01-01

    Thin shells are found in nature at scales ranging from viruses to hens' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal

  14. Ellipsoidal prediction regions for multivariate uncertainty characterization

    DEFF Research Database (Denmark)

    Golestaneh, Faranak; Pinson, Pierre; Azizipanah-Abarghooee, Rasoul

    2018-01-01

    , for classes of decision-making problems based on robust, interval chance-constrained optimization, necessary inputs take the form of multivariate prediction regions rather than scenarios. The current literature is at very primitive stage of characterizing multivariate prediction regions to be employed...... in these classes of optimization problems. To address this issue, we introduce a new class of multivariate forecasts which form as multivariate ellipsoids for non-Gaussian variables. We propose a data-driven systematic framework to readily generate and evaluate ellipsoidal prediction regions, with predefined...... probability guarantees and minimum conservativeness. A skill score is proposed for quantitative assessment of the quality of prediction ellipsoids. A set of experiments is used to illustrate the discrimination ability of the proposed scoring rule for potential misspecification of ellipsoidal prediction regions...

  15. Reference Ellipsoid and Geoid in Chronometric Geodesy

    Science.gov (United States)

    Kopeikin, Sergei M.

    2016-02-01

    Chronometric geodesy applies general relativity to study the problem of the shape of celestial bodies including the earth, and their gravitational field. The present paper discusses the relativistic problem of construction of a background geometric manifold that is used for describing a reference ellipsoid, geoid, the normal gravity field of the earth and for calculating geoid's undulation (height). We choose the perfect fluid with an ellipsoidal mass distribution uniformly rotating around a fixed axis as a source of matter generating the geometry of the background manifold through the Einstein equations. We formulate the post-Newtonian hydrodynamic equations of the rotating fluid to find out the set of algebraic equations defining the equipotential surface of the gravity field. In order to solve these equations we explicitly perform all integrals characterizing the interior gravitational potentials in terms of elementary functions depending on the parameters defining the shape of the body and the mass distribution. We employ the coordinate freedom of the equations to choose these parameters to make the shape of the rotating fluid configuration to be an ellipsoid of rotation. We derive expressions of the post-Newtonian mass and angular momentum of the rotating fluid as functions of the rotational velocity and the parameters of the ellipsoid including its bare density, eccentricity and semi-major axes. We formulate the post-Newtonian Pizzetti and Clairaut theorems that are used in geodesy to connect the parameters of the reference ellipsoid to the polar and equatorial values of force of gravity. We expand the post-Newtonian geodetic equations characterizing the reference ellipsoid into the Taylor series with respect to the eccentricity of the ellipsoid, and discuss the small-eccentricity approximation. Finally, we introduce the concept of relativistic geoid and its undulation with respect to the reference ellipsoid, and discuss how to calculate it in chronometric

  16. Ellipsoidal bag model for heavy quark system

    International Nuclear Information System (INIS)

    Bi Pinzhen; Fudan Univ., Shanghai

    1991-01-01

    The ellipsoidal bag model is used to describe heavy quark systems such as Qanti Q, Qanti Qg and Q 2 anti Q 2 . Instead of two step model, these states are described by an uniform picture. The potential derived from the ellipsoidal bag for Qanti Q is almost equivalent to the Cornell potential. For a Q 2 anti Q 2 system with large quark pair separation, an improvement of 70 MeV is obtained comparing with the spherical bag. (orig.)

  17. Reference ellipsoid and geoid in chronometric geodesy

    Directory of Open Access Journals (Sweden)

    Sergei M Kopeikin

    2016-02-01

    Full Text Available Chronometric geodesy applies general relativity to study the problem of the shape of celestial bodies including the earth, and their gravitational field. The present paper discusses the relativistic problem of construction of a background geometric manifold that is used for describing a reference ellipsoid, geoid, the normal gravity field of the earth and for calculating geoid's undulation (height. We choose the perfect fluid with an ellipsoidal mass distribution uniformly rotating around a fixed axis as a source of matter generating the geometry of the background manifold through the Einstein equations. We formulate the post-Newtonian hydrodynamic equations of the rotating fluid to find out the set of algebraic equations defining the equipotential surface of the gravity field. In order to solve these equations we explicitly perform all integrals characterizing the interior gravitational potentials in terms of elementary functions depending on the parameters defining the shape of the body and the mass distribution. We employ the coordinate freedom of the equations to choose these parameters to make the shape of the rotating fluid configuration to be an ellipsoid of rotation. We derive expressions of the post-Newtonian mass and angular momentum of the rotating fluid as functions of the rotational velocity and the parameters of the ellipsoid including its bare density, eccentricity and semi-major axes. We formulate the post-Newtonian Pizzetti and Clairaut theorems that are used in geodesy to connect the parameters of the reference ellipsoid to the polar and equatorial values of force of gravity. We expand the post-Newtonian geodetic equations characterizing the reference ellipsoid into the Taylor series with respect to the eccentricity of the ellipsoid, and discuss the small-eccentricity approximation. Finally, we introduce the concept of relativistic geoid and its undulation with respect to the reference ellipsoid, and discuss how to calculate it

  18. Reference Ellipsoid and Geoid in Chronometric Geodesy

    Energy Technology Data Exchange (ETDEWEB)

    Kopeikin, Sergei M., E-mail: kopeikins@missouri.edu [Department of Physics and Astronomy, University of Missouri, Columbia, MO (United States); Department of Physical Geodesy and Remote Sensing, Siberian State University of Geosystems and Technologies, Novosibirsk (Russian Federation)

    2016-02-25

    Chronometric geodesy applies general relativity to study the problem of the shape of celestial bodies including the earth, and their gravitational field. The present paper discusses the relativistic problem of construction of a background geometric manifold that is used for describing a reference ellipsoid, geoid, the normal gravity field of the earth and for calculating geoid's undulation (height). We choose the perfect fluid with an ellipsoidal mass distribution uniformly rotating around a fixed axis as a source of matter generating the geometry of the background manifold through the Einstein equations. We formulate the post-Newtonian hydrodynamic equations of the rotating fluid to find out the set of algebraic equations defining the equipotential surface of the gravity field. In order to solve these equations we explicitly perform all integrals characterizing the interior gravitational potentials in terms of elementary functions depending on the parameters defining the shape of the body and the mass distribution. We employ the coordinate freedom of the equations to choose these parameters to make the shape of the rotating fluid configuration to be an ellipsoid of rotation. We derive expressions of the post-Newtonian mass and angular momentum of the rotating fluid as functions of the rotational velocity and the parameters of the ellipsoid including its bare density, eccentricity and semi-major axes. We formulate the post-Newtonian Pizzetti and Clairaut theorems that are used in geodesy to connect the parameters of the reference ellipsoid to the polar and equatorial values of force of gravity. We expand the post-Newtonian geodetic equations characterizing the reference ellipsoid into the Taylor series with respect to the eccentricity of the ellipsoid, and discuss the small-eccentricity approximation. Finally, we introduce the concept of relativistic geoid and its undulation with respect to the reference ellipsoid, and discuss how to calculate it in

  19. Hybrid ellipsoidal fuzzy systems in forecasting regional electricity loads

    Energy Technology Data Exchange (ETDEWEB)

    Pai, Ping-Feng [Department of Information Management, National Chi Nan University, 1 University Road, Puli, Nantou 545, Taiwan (China)

    2006-09-15

    Because of the privatization of electricity in many countries, load forecasting has become one of the most crucial issues in the planning and operations of electric utilities. In addition, accurate regional load forecasting can provide the transmission and distribution operators with more information. The hybrid ellipsoidal fuzzy system was originally designed to solve control and pattern recognition problems. The main objective of this investigation is to develop a hybrid ellipsoidal fuzzy system for time series forecasting (HEFST) and apply the proposed model to forecast regional electricity loads in Taiwan. Additionally, a scaled conjugate gradient learning method is employed in the supervised learning phase of the HEFST model. Subsequently, numerical data taken from the existing literature is used to demonstrate the forecasting performance of the HEFST model. Simulation results reveal that the proposed model has better forecasting performance than the artificial neural network model and the regression model. Thus, the HEFST model is a valid and promising alternative for forecasting regional electricity loads. (author)

  20. The structure of nematic model of liquid crystal with cylindrical and ellipsoidal molecules confined in between walls

    Directory of Open Access Journals (Sweden)

    M. Moradi

    2004-12-01

    Full Text Available   The density functional theory analogue of Percus Yevick (PY and Hyper-Netted chain (HNC has been used to write the grand potential of a liquid with cylindrical and ellipsoidal molecules. The integral equations for the density can be obtained by minimizing the grand potential with respect to the density. Some kinds of liquid crystals, can have the cylindrical or ellipsoidal rigid molecules. In this study we have calculated the density profile of this kind of liquids confined between hard walls and we compared the results. As it is seen from the graphs of the density profiles the molecules can be arranged as layers with respect to the walls.

  1. Dimension of the Earth's general ellipsoid

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Raděj, K.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    2002-01-01

    Roč. 91, č. 1 (2002), s. 31-41 ISSN 0167-9295 Institutional research plan: CEZ:AV0Z1003909 Keywords : Earth's dimensions * Earth's ellipsoid * fundamental constants Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.364, year: 2002

  2. On computing ellipsoidal harmonics using Jekeli's renormalization

    Czech Academy of Sciences Publication Activity Database

    Sebera, Josef; Bouman, J.; Bosch, W.

    2012-01-01

    Roč. 86, č. 9 (2012), s. 713-726 ISSN 0949-7714 Institutional support: RVO:67985815 Keywords : Earth's gravitational field * spherical and ellipsoidal harmonics * hypergeometric function Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.808, year: 2012

  3. An ellipsoidal calculus based on propagation and fusion.

    Science.gov (United States)

    Ros, L; Sabater, A; Thomas, F

    2002-01-01

    Presents an ellipsoidal calculus based solely on two basic operations: propagation and fusion. Propagation refers to the problem of obtaining an ellipsoid that must satisfy an affine relation with another ellipsoid, and fusion to that of computing the ellipsoid that tightly bounds the intersection of two given ellipsoids. These two operations supersede the Minkowski sum and difference, affine transformation and intersection tight bounding of ellipsoids on which other ellipsoidal calculi are based. Actually, a Minkowski operation can be seen as a fusion followed by a propagation and an affine transformation as a particular case of propagation. Moreover, the presented formulation is numerically stable in the sense that it is immune to degeneracies of the involved ellipsoids and/or affine relations. Examples arising when manipulating uncertain geometric information in the context of the spatial interpretation of line drawings are extensively used as a testbed for the presented calculus.

  4. Theory of coherent transition radiation generated by ellipsoidal electron bunches

    NARCIS (Netherlands)

    Root, op 't W.P.E.M.; Smorenburg, P.W.; Oudheusden, van T.; Wiel, van der M.J.; Luiten, O.J.

    2007-01-01

    We present the theory of coherent transition radiation (CTR) generated by ellipsoidal electron bunches. We calculate analytical expressions for the electric field spectrum, the power spectrum, and the temporal electric field of CTR, generated by cylindrically symmetric ellipsoidal electron bunches

  5. Ellipsoids (v1.0): 3-D magnetic modelling of ellipsoidal bodies

    Science.gov (United States)

    Takahashi, Diego; Oliveira, Vanderlei C., Jr.

    2017-09-01

    A considerable amount of literature has been published on the magnetic modelling of uniformly magnetized ellipsoids since the second half of the nineteenth century. Ellipsoids have flexibility to represent a wide range of geometrical forms, are the only known bodies which can be uniformly magnetized in the presence of a uniform inducing field and are the only finite bodies for which the self-demagnetization can be treated analytically. This property makes ellipsoids particularly useful for modelling compact orebodies having high susceptibility. In this case, neglecting the self-demagnetization may strongly mislead the interpretation of these bodies by using magnetic methods. A number of previous studies consider that the self-demagnetization can be neglected for the case in which the geological body has an isotropic susceptibility lower than or equal to 0.1 SI. This limiting value, however, seems to be determined empirically and there has been no discussion about how this value was determined. In addition, the geoscientific community lacks an easy-to-use tool to simulate the magnetic field produced by uniformly magnetized ellipsoids. Here, we present an integrated review of the magnetic modelling of arbitrarily oriented triaxial, prolate and oblate ellipsoids. Our review includes ellipsoids with both induced and remanent magnetization, as well as with isotropic or anisotropic susceptibility. We also discuss the ambiguity between confocal ellipsoids with the same magnetic moment and propose a way of determining the isotropic susceptibility above which the self-demagnetization must be taken into consideration. Tests with synthetic data validate our approach. Finally, we provide a set of routines to model the magnetic field produced by ellipsoids. The routines are written in Python language as part of the Fatiando a Terra, which is an open-source library for modelling and inversion in geophysics.

  6. Ellipsoids (v1.0: 3-D magnetic modelling of ellipsoidal bodies

    Directory of Open Access Journals (Sweden)

    D. Takahashi

    2017-09-01

    Full Text Available A considerable amount of literature has been published on the magnetic modelling of uniformly magnetized ellipsoids since the second half of the nineteenth century. Ellipsoids have flexibility to represent a wide range of geometrical forms, are the only known bodies which can be uniformly magnetized in the presence of a uniform inducing field and are the only finite bodies for which the self-demagnetization can be treated analytically. This property makes ellipsoids particularly useful for modelling compact orebodies having high susceptibility. In this case, neglecting the self-demagnetization may strongly mislead the interpretation of these bodies by using magnetic methods. A number of previous studies consider that the self-demagnetization can be neglected for the case in which the geological body has an isotropic susceptibility lower than or equal to 0.1 SI. This limiting value, however, seems to be determined empirically and there has been no discussion about how this value was determined. In addition, the geoscientific community lacks an easy-to-use tool to simulate the magnetic field produced by uniformly magnetized ellipsoids. Here, we present an integrated review of the magnetic modelling of arbitrarily oriented triaxial, prolate and oblate ellipsoids. Our review includes ellipsoids with both induced and remanent magnetization, as well as with isotropic or anisotropic susceptibility. We also discuss the ambiguity between confocal ellipsoids with the same magnetic moment and propose a way of determining the isotropic susceptibility above which the self-demagnetization must be taken into consideration. Tests with synthetic data validate our approach. Finally, we provide a set of routines to model the magnetic field produced by ellipsoids. The routines are written in Python language as part of the Fatiando a Terra, which is an open-source library for modelling and inversion in geophysics.

  7. Collisionless analogs of Riemann S ellipsoids with halo

    International Nuclear Information System (INIS)

    Abramyan, M.G.

    1987-01-01

    A spheroidal halo ensures equilibrium of the collisionless analogs of the Riemann S ellipsoids with oscillations of the particles along the direction of their rotation. Sequences of collisionless triaxial ellipsoids begin and end with dynamically stable members of collisionless embedded spheroids. Both liquid and collisionless Riemann S ellipsoids with weak halo have properties that resemble those of bars of SB galaxies

  8. Ellipsoidal prediction regions for multivariate uncertainty characterization

    DEFF Research Database (Denmark)

    Golestaneh, Faranak; Pinson, Pierre; Azizipanah-Abarghooee, Rasoul

    2018-01-01

    While substantial advances are observed in probabilistic forecasting for power system operation and electricity market applications, most approaches are still developed in a univariate framework. This prevents from informing about the interdependence structure among locations, lead times and vari......While substantial advances are observed in probabilistic forecasting for power system operation and electricity market applications, most approaches are still developed in a univariate framework. This prevents from informing about the interdependence structure among locations, lead times...... probability guarantees and minimum conservativeness. A skill score is proposed for quantitative assessment of the quality of prediction ellipsoids. A set of experiments is used to illustrate the discrimination ability of the proposed scoring rule for potential misspecification of ellipsoidal prediction regions...

  9. Elastic buckling of ellipsoids of revolution

    International Nuclear Information System (INIS)

    Solal, Roger; Hoffmann, Alain; Roche, Roland.

    1976-02-01

    The CEASEMT system of calculation by finite elements is used to determine critical internal pressures on a flattened ellipsoid of revolution. This case resembles that of an ellipsoidal head of a thin pressure vessel fitted onto a flexible colla. The calculations are performed assuming the geometry perfect, the deformations slight and the behaviour of the material perfectly elastic. The results obtained are presented favourably by plotting a reduced pressure p* against the geometry. A good definition of p* would be: p*=pπ 2 E/1-μ 2 .e 2 b 2 /a 4 (p* critical pressure, E Young's modulus, μ Poisson's coefficient, e thickness, a half large axis, b half small axis). When a/b is above 2 the p value remains close to 1. For lower a/b values the p value rises considerably with a/b [fr

  10. Application for coordinate transformation between Gaus - Kruger projection: Bessel ellipsoid and UTM projection: WGS84 ellipsoid

    Directory of Open Access Journals (Sweden)

    Zoran Gojković

    2017-01-01

    Full Text Available The physical surface of the earth has irregular shape which is not mathematically defined, therefore the shape of the Earth is approximated with mathematically defined surfaces such as ellipsoid and sphere. The developing of a global positioning systems, thus and modern navigation systems, as effect produce large amounts of data which contain the problem of homogeneity. This problem could be exceed if all the data are store in the same coordinate system. Hence the need for data transformation from local coordinate systems to the global coordinate systems. Global level implies WGS84 ellipsoid and UTM projection while national coordinate system of Republic Serbia is Gauss-Kruger with Bessel ellipsoid. This coordinate system of Republic Serbia on a global level has a local character. Applying appropriate mathematical models and functions it is possible to transform coordinates from one system to another and vice versa. The paper describes coordinate transformations from Gauss-Kruger coordinate system ellipsoid Bessel to UTM projection WGS84 ellipsoid and vice versa, and also an application which provides transformation of its kind that is made using open source environment. Name of the application is TRANS7_GK_UTM_GK and it can be found and used on the web page of the faculty for Mining and Geology under the link http://gk2utm.rgf.bg.ac.rs with a user guide.

  11. Influência do tamanho e da rigidez dos objetos nos ajustes proximais e distais do alcance de lactentes Influence of object size and rigidity on proximal and distal adjustments to infant reaching

    Directory of Open Access Journals (Sweden)

    NACF Rocha

    2006-09-01

    Full Text Available CONTEXTUALIZAÇÃO: Estudos têm identificado que as propriedades dos objetos induzem os ajustes no alcance; no entanto, poucos investigaram a influência específica do tamanho e rigidez dos objetos em lactentes jovens. OBJETIVO: Verificar se lactentes de 4 a 6 meses realizam ajustes proximais e distais ao alcançarem objetos de diferentes tamanhos e rigidez. MÉTODOS: Nove lactentes saudáveis foram posicionados em uma cadeira inclinada a 50º. Quatro objetos foram apresentados, um rígido grande (RG, um rígido pequeno (RP, um maleável grande (MG e um maleável pequeno (MP, por um período de 1 minuto cada. Em um total de 384 alcances, foram analisados os ajustes proximais (alcance uni e bimanual e distais (orientação da mão horizontal, vertical e oblíqua; mão aberta, fechada e semi-aberta e o sucesso do alcance dos objetos. RESULTADOS: Constatou-se ajuste bimanual para o objeto RG e unimanual para os demais. A orientação da mão oblíqua foi predominante no toque dos objetos, enquanto para a preensão dos mesmos, a predominância foi a vertical, principalmente para o objeto RG. A orientação horizontal não foi observada na preensão do objeto RG. A mão semi-aberta foi mais freqüente no início do alcance para todos os objetos, enquanto no toque do objeto RG a mão aberta foi predominante. O sucesso do alcance foi maior para os objetos maleáveis (MG, MP do que para os rígidos (RG e RP. CONCLUSÃO: Lactentes jovens estudados são capazes de planejar e ajustar seus movimentos baseados na percepção das propriedades físicas dos objetos, o que sugere interação percepção-ação.BACKGROUND: Studies have identified that object properties lead to adjustments to reaching. However, few have investigated the specific influence of object size and rigidity among young infants. OBJECTIVE: To verify whether four to six-month-old infants make proximal and distal adjustments when reaching for objects of different sizes and rigidity. METHOD

  12. A review of a method for dynamic load distribution, dynamic modeling, and explicit internal force control when two serial link manipulators mutually lift and transport a rigid body object

    International Nuclear Information System (INIS)

    Unseren, M.A.

    1997-09-01

    The report reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restricts the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system

  13. A review of a method for dynamic load distribution, dynamic modeling, and explicit internal force control when two serial link manipulators mutually lift and transport a rigid body object

    Energy Technology Data Exchange (ETDEWEB)

    Unseren, M.A.

    1997-09-01

    The report reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restricts the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.

  14. Libration-driven flows in ellipsoidal shells

    Science.gov (United States)

    Lemasquerier, D.; Grannan, A. M.; Vidal, J.; Cébron, D.; Favier, B.; Le Bars, M.; Aurnou, J. M.

    2017-09-01

    Planets and satellites can undergo physical librations, which consist of forced periodic variations in their rotation rate induced by gravitational interactions with nearby bodies. This mechanical forcing may drive turbulence in interior fluid layers such as subsurface oceans and metallic liquid cores through a libration-driven elliptical instability (LDEI) that refers to the resonance of two inertial modes with the libration-induced base flow. LDEI has been studied in the case of a full ellipsoid. Here we address for the first time the question of the persistence of LDEI in the more geophysically relevant ellipsoidal shell geometries. In the experimental setup, an ellipsoidal container with spherical inner cores of different sizes is filled with water. Direct side view flow visualizations are made in the librating frame using Kalliroscope particles. A Fourier analysis of the light intensity fluctuations extracted from recorded movies shows that the presence of an inner core leads to spatial heterogeneities but does not prevent LDEI. Particle image velocimetry and direct numerical simulations are performed on selected cases to confirm our results. Additionally, our survey at a fixed forcing frequency and variable rotation period (i.e., variable Ekman number, E) shows that the libration amplitude at the instability threshold varies as ˜E0.65. This scaling is explained by a competition between surface and bulk dissipation. When extrapolating to planetary interior conditions, this leads to the E1/2 scaling commonly considered. We argue that Enceladus' subsurface ocean and the core of the exoplanet 55 CnC e should both be unstable to LDEI.

  15. User defined function for transformation of ellipsoidal coordinates

    Directory of Open Access Journals (Sweden)

    Ganić Aleksandar

    2014-01-01

    Full Text Available The topographic plane of the Earth has irregular shape, and for the purpose of mathematical defining, it is to be approximated by rotational ellipsoid. As local geodetic datum, rotational ellipsoids of various sizes are used in the world. More widely usage of the GPS while performing surveying tasks has resulted in the need to define global geodetic datum in order to obtain the best approximation the entire Earth. For this purpose, geocentric rotational ellipsoid WGS84 was defined and the results of the GPS measurements are shown in relation to it. By applying the appropriate equations, the ellipsoidal coordinates are being transformed from WGS84 into the coordinates on the local rotational ellipsoid, i.e. on the view plane. The paper shows User Defined Function created for Excel, by which the coordinates in the territory of Belgrade are being transformed from WGS84 of rotational ellipsoid into the Gauss-Krüger projection plane.

  16. Internal ellipsoidal estimates of reachable set of impulsive control systems

    Energy Technology Data Exchange (ETDEWEB)

    Matviychuk, Oksana G. [Institute of Mathematics and Mechanics, Russian Academy of Sciences, 16 S. Kovalevskaya str., Ekaterinburg, 620990, Russia and Ural Federal University, 19 Mira str., Ekaterinburg, 620002 (Russian Federation)

    2014-11-18

    A problem of estimating reachable sets of linear impulsive control system with uncertainty in initial data is considered. The impulsive controls in the dynamical system belong to the intersection of a special cone with a generalized ellipsoid both taken in the space of functions of bounded variation. Assume that an ellipsoidal state constraints are imposed. The algorithms for constructing internal ellipsoidal estimates of reachable sets for such control systems and numerical simulation results are given.

  17. Post-Newtonian reference ellipsoid for relativistic geodesy

    Science.gov (United States)

    Kopeikin, Sergei; Han, Wenbiao; Mazurova, Elena

    2016-02-01

    We apply general relativity to construct the post-Newtonian background manifold that serves as a reference spacetime in relativistic geodesy for conducting a relativistic calculation of the geoid's undulation and the deflection of the plumb line from the vertical. We chose an axisymmetric ellipsoidal body made up of a perfect homogeneous fluid uniformly rotating around a fixed axis, as a source generating the reference geometry of the background manifold through Einstein's equations. We then reformulate and extend hydrodynamic calculations of rotating fluids done by a number of previous researchers for astrophysical applications to the realm of relativistic geodesy to set up algebraic equations defining the shape of the post-Newtonian reference ellipsoid. To complete this task, we explicitly perform all integrals characterizing gravitational field potentials inside the fluid body and represent them in terms of the elementary functions depending on the eccentricity of the ellipsoid. We fully explore the coordinate (gauge) freedom of the equations describing the post-Newtonian ellipsoid and demonstrate that the fractional deviation of the post-Newtonian level surface from the Maclaurin ellipsoid can be made much smaller than the previously anticipated estimate based on the astrophysical application of the coordinate gauge advocated by Bardeen and Chandrasekhar. We also derive the gauge-invariant relations of the post-Newtonian mass and the constant angular velocity of the rotating fluid with the parameters characterizing the shape of the post-Newtonian ellipsoid including its eccentricity, a semiminor axis, and a semimajor axis. We formulate the post-Newtonian theorems of Pizzetti and Clairaut that are used in geodesy to connect the geometric parameters of the reference ellipsoid to the physically measurable force of gravity at the pole and equator of the ellipsoid. Finally, we expand the post-Newtonian geodetic equations describing the post-Newtonian ellipsoid to

  18. Rotation of mercury: theoretical analysis of the dynamics of a rigid ellipsoidal planet.

    Science.gov (United States)

    Laslett, L J; Sessler, A M

    1966-03-18

    The second-order nonlinear differential equation for the rotation of Mercury implies locked-in motion when the period is within the range where e is the eccentricity and T is the period of Mercury's orbit, the time t is measured from perihelion, and lambda is a measure of the planet's disiortion. For values near 2T/3, the instantaneous period oscillates about 2T/3 with period (21lambdae/2)T.

  19. Objectivity

    CERN Document Server

    Daston, Lorraine

    2010-01-01

    Objectivity has a history, and it is full of surprises. In Objectivity, Lorraine Daston and Peter Galison chart the emergence of objectivity in the mid-nineteenth-century sciences--and show how the concept differs from its alternatives, truth-to-nature and trained judgment. This is a story of lofty epistemic ideals fused with workaday practices in the making of scientific images. From the eighteenth through the early twenty-first centuries, the images that reveal the deepest commitments of the empirical sciences--from anatomy to crystallography--are those featured in scientific atlases, the compendia that teach practitioners what is worth looking at and how to look at it. Galison and Daston use atlas images to uncover a hidden history of scientific objectivity and its rivals. Whether an atlas maker idealizes an image to capture the essentials in the name of truth-to-nature or refuses to erase even the most incidental detail in the name of objectivity or highlights patterns in the name of trained judgment is a...

  20. Elasticity of Relativistic Rigid Bodies?

    Science.gov (United States)

    Smarandache, Florentin

    2013-10-01

    In the classical Twin Paradox, according to the Special Theory of Relativity, when the traveling twin blasts off from the Earth to a relative velocity v =√{/3 } 2 c with respect to the Earth, his measuring stick and other physical objects in the direction of relative motion shrink to half their lengths. How is that possible in the real physical world to have let's say a rigid rocket shrinking to half and then later elongated back to normal as an elastic material when it stops? What is the explanation for the traveler's measuring stick and other physical objects, in effect, return to the same length to their original length in the Stay-At-Home, but there is no record of their having shrunk? If it's a rigid (not elastic) object, how can it shrink and then elongate back to normal? It might get broken in such situation.

  1. Needlelike motion of prolate ellipsoids in the sea of spheres

    Science.gov (United States)

    Vasanthi, R.; Ravichandran, S.; Bagchi, Biman

    2001-05-01

    Molecular dynamics simulations of translational motion of isolated prolate ellipsoids in the sea of spheres have been carried out for several different values of the aspect ratio (κ), obtained by changing either the length or the diameter of the ellipsoids, at several different solvent densities. The interaction among the spheres is given by the Lennard-Jones pair potential while that between spheres and ellipsoids is given by a modified Gay-Berne potential. Both the mean-square displacements of the center of mass of the ellipsoids and their orientational time correlation function have been calculated. It is found that at short to intermediate times, the motion of ellipsoids is anisotropic and primarily needlelike—the molecules prefer to move parallel to their long axis. The ratio of these two diffusion constants (D∥ and D⊥) approaches κ, suggesting a decoupling of D∥ from the length of the ellipsoid. The diffusion becomes isotropic in the long time with the total diffusion coefficient given by D∥+2D⊥. The crossover from the anisotropic to the isotropic diffusion is surprisingly sharp and clear in most cases.

  2. Ellipsoidal terrain correction based on multi-cylindrical equal-area map projection of the reference ellipsoid

    Science.gov (United States)

    Ardalan, A. A.; Safari, A.

    2004-09-01

    An operational algorithm for computation of terrain correction (or local gravity field modeling) based on application of closed-form solution of the Newton integral in terms of Cartesian coordinates in multi-cylindrical equal-area map projection of the reference ellipsoid is presented. Multi-cylindrical equal-area map projection of the reference ellipsoid has been derived and is described in detail for the first time. Ellipsoidal mass elements with various sizes on the surface of the reference ellipsoid are selected and the gravitational potential and vector of gravitational intensity (i.e. gravitational acceleration) of the mass elements are computed via numerical solution of the Newton integral in terms of geodetic coordinates {λ,ϕ,h}. Four base- edge points of the ellipsoidal mass elements are transformed into a multi-cylindrical equal-area map projection surface to build Cartesian mass elements by associating the height of the corresponding ellipsoidal mass elements to the transformed area elements. Using the closed-form solution of the Newton integral in terms of Cartesian coordinates, the gravitational potential and vector of gravitational intensity of the transformed Cartesian mass elements are computed and compared with those of the numerical solution of the Newton integral for the ellipsoidal mass elements in terms of geodetic coordinates. Numerical tests indicate that the difference between the two computations, i.e. numerical solution of the Newton integral for ellipsoidal mass elements in terms of geodetic coordinates and closed-form solution of the Newton integral in terms of Cartesian coordinates, in a multi-cylindrical equal-area map projection, is less than 1.6×10-8 m2/s2 for a mass element with a cross section area of 10×10 m and a height of 10,000 m. For a mass element with a cross section area of 1×1 km and a height of 10,000 m the difference is less than 1.5×10-4m2/s2. Since 1.5× 10-4 m2/s2 is equivalent to 1.5×10-5m in the vertical

  3. The Hubble IR cutoff in holographic ellipsoidal cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, Mauricio [Universidad del Bio-Bio, Departamento de Fisica, Facultad de Ciencias, Concepcion (Chile); Cruz, Norman [Grupo de Cosmologia y Gravitacion-UBB, Concepcion (Chile)

    2018-01-15

    It is well known that for spatially flat FRW cosmologies, the holographic dark energy disfavors the Hubble parameter as a candidate for the IR cutoff. For overcoming this problem, we explore the use of this cutoff in holographic ellipsoidal cosmological models, and derive the general ellipsoidal metric induced by a such holographic energy density. Despite the drawbacks that this cutoff presents in homogeneous and isotropic universes, based on this general metric, we developed a suitable ellipsoidal holographic cosmological model, filled with a dark matter and a dark energy components. At late time stages, the cosmic evolution is dominated by a holographic anisotropic dark energy with barotropic equations of state. The cosmologies expand in all directions in accelerated manner. Since the ellipsoidal cosmologies given here are not asymptotically FRW, the deviation from homogeneity and isotropy of the universe on large cosmological scales remains constant during all cosmic evolution. This feature allows the studied holographic ellipsoidal cosmologies to be ruled by an equation of state ω = p/ρ, whose range belongs to quintessence or even phantom matter. (orig.)

  4. Effective ellipsoidal models for wavefield extrapolation in tilted orthorhombic media

    KAUST Repository

    Waheed, Umair Bin

    2016-04-22

    Wavefield computations using the ellipsoidally anisotropic extrapolation operator offer significant cost reduction compared to that for the orthorhombic case, especially when the symmetry planes are tilted and/or rotated. However, ellipsoidal anisotropy does not provide accurate wavefield representation or imaging for media of orthorhombic symmetry. Therefore, we propose the use of ‘effective ellipsoidally anisotropic’ models that correctly capture the kinematic behaviour of wavefields for tilted orthorhombic (TOR) media. We compute effective velocities for the ellipsoidally anisotropic medium using kinematic high-frequency representation of the TOR wavefield, obtained by solving the TOR eikonal equation. The effective model allows us to use the cheaper ellipsoidally anisotropic wave extrapolation operators. Although the effective models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The proposed methodology offers a much better cost versus accuracy trade-off for wavefield computations in TOR media, particularly for media of low to moderate anisotropic strength. Furthermore, the computed wavefield solution is free from shear-wave artefacts as opposed to the conventional finite-difference based TOR wave extrapolation scheme. We demonstrate applicability and usefulness of our formulation through numerical tests on synthetic TOR models. © 2016 Institute of Geophysics of the ASCR, v.v.i

  5. Transverse mixing of ellipsoidal particles in a rotating drum

    Directory of Open Access Journals (Sweden)

    He Siyuan

    2017-01-01

    Full Text Available Rotating drums are widely used in industry for mixing, milling, coating and drying processes. In the past decades, mixing of granular materials in rotating drums has been extensively investigated, but most of the studies are based on spherical particles. Particle shape has an influence on the flow behaviour and thus mixing behaviour, though the shape effect has as-yet received limited study. In this work, discrete element method (DEM is employed to study the transverse mixing of ellipsoidal particles in a rotating drum. The effects of aspect ratio and rotating speed on mixing quality and mixing rate are investigated. The results show that mixing index increases exponentially with time for both spheres and ellipsoids. Particles with various aspect ratios are able to reach well-mixed states after sufficient revolutions in the rolling or cascading regime. Ellipsoids show higher mixing rate when rotational speed is set between 25 and 40 rpm. The relationship between mixing rate and aspect ratio of ellipsoids is established, demonstrating that, particles with aspect ratios of 0.5 and 2.0 achieve the highest mixing rates. Increasing rotating speed from 15 rpm to 40 rpm does not necessarily increase the mixing speed of spheres, while monotonous increase is observed for ellipsoids.

  6. Ellipsoidal all-dielectric Fano resonant core-shell metamaterials

    Science.gov (United States)

    Reena, Reena; Kalra, Yogita; Kumar, Ajeet

    2018-06-01

    In this paper, ellipsoidal core (Si) and shell (SiO2) metamaterial has been proposed for highly directional properties. At the wavelength of magnetic resonance, Fano dip occurs in the backward scattering cross section and forward scattering enhancement takes place at the same wavelength so that there is an increment in the directivity. Effect on the directivity by changing the length of ellipsoidal nanoparticle along semi-axes has been analyzed. Two Fano resonances have been observed by decreasing the length of the nanoparticle along the semi-axis having electric polarization, where first and second Fano resonances are attributed to the dipole and quadrupole moments, respectively. These Fano resonant wavelengths in ellipsoidal nanoparticle exhibit higher directivity than the Kerker's type scattering or forward scattering shown by symmetrical structures like sphere. So, this core-shell metamaterial can act as an efficient directional nanoantenna.

  7. Dislocation pile-ups, slip-bands, ellipsoids, and cracks

    International Nuclear Information System (INIS)

    Brown, Lawrence M.

    2005-01-01

    The classic theories of dislocation pile-ups, initiated by Eshelby, Frank and Nabarro, and by Leibfried, can be greatly simplified if it is recognised that the dislocations in the pile-up will experience uniform stress if they are lodged in an ellipsoidal interface. Elementary algebra then produces the familiar results from continuum theory. It seems possible that the ellipsoid construction may represent physical reality if it is taken to represent a three-dimensional slip-band. If so, there are concentrated forces spreading the band perpendicular to the slip band as well as parallel to it. Such ellipsoids also represent Mode II and Mode III cracks, and give a method for dealing with the more complicated Mode I cracks

  8. Microscopic analysis of Hopper flow with ellipsoidal particles

    Science.gov (United States)

    Liu, Sida; Zhou, Zongyan; Zou, Ruiping; Pinson, David; Yu, Aibing

    2013-06-01

    Hoppers are widely used in process industries. With such widespread application, difficulties in achieving desired operational behaviors have led to extensive experimental and mathematical studies in the past decades. Particularly, the discrete element method has become one of the most important simulation tools for design and analysis. So far, most studies are on spherical particles for computational convenience. In this work, ellipsoidal particles are used as they can represent a large variation of particle shapes. Hopper flow with ellipsoidal particles is presented highlighting the effect of particle shape on the microscopic properties.

  9. Computing the maximum volume inscribed ellipsoid of a polytopic projection

    NARCIS (Netherlands)

    Zhen, Jianzhe; den Hertog, Dick

    We introduce a novel scheme based on a blending of Fourier-Motzkin elimination (FME) and adjustable robust optimization techniques to compute the maximum volume inscribed ellipsoid (MVE) in a polytopic projection. It is well-known that deriving an explicit description of a projected polytope is

  10. Computing the Maximum Volume Inscribed Ellipsoid of a Polytopic Projection

    NARCIS (Netherlands)

    Zhen, J.; den Hertog, D.

    2015-01-01

    We introduce a novel scheme based on a blending of Fourier-Motzkin elimination (FME) and adjustable robust optimization techniques to compute the maximum volume inscribed ellipsoid (MVE) in a polytopic projection. It is well-known that deriving an explicit description of a projected polytope is

  11. Ramification of Datum and Ellipsoidal Parameters on Post ...

    African Journals Online (AJOL)

    Michael

    2015-06-01

    Jun 1, 2015 ... also post processed using Ghana War Office datum and ellipsoidal parameters. The results for the two ... rely on the datum (Kotzev, 2013). It is equally ..... Microsoft Excel spreadsheet (MS excel) was used for analysis of the ...

  12. Absorbed fractions for alpha particles in ellipsoidal volumes

    International Nuclear Information System (INIS)

    Amato, Ernesto; Baldari, Sergio; Italiano, Antonio

    2013-01-01

    Internal dosimetry of alpha particles is gaining attention due to the increasing applications in cancer treatment and also for the assessment of environmental contamination from radionuclides. We developed a Monte Carlo simulation in GEANT4 in order to calculate the absorbed fractions for monoenergetic alpha particles in the energy interval between 0.1 and 10 MeV, uniformly distributed in ellipsoids made of soft tissue. For each volume, we simulated a spherical shape, three oblate and three prolate ellipsoids, and one scalene shape. For each energy and for every geometrical configuration, an analytical relationship between the absorbed fraction and a ‘generalized radius’ was found; and the dependence of the fit parameters on the alpha energy is discussed and fitted by parametric functions. With the proposed formulation, the absorbed fraction for alpha particles in the energy range explored can be calculated for volumes and for ellipsoidal shapes of practical interest. This method can be applied to the evaluation of absorbed fraction from alpha-emitting radionuclides. The contribution to the deposited energy coming from electron and photon emissions can be accounted for exploiting the specific formulations previously introduced. As an example of application, the dosimetry of 213 Bi and its decay chain in ellipsoids is reported. (paper)

  13. Influence of flock coating on bending rigidity of woven fabrics

    Science.gov (United States)

    Ozdemir, O.; Kesimci, M. O.

    2017-10-01

    This work presents the preliminary results of our efforts that focused on the effect of the flock coating on the bending rigidity of woven fabrics. For this objective, a laboratory scale flocking unit is designed and flocked samples of controlled flock density are produced. Bending rigidity of the samples with different flock densities are measured on both flocked and unflocked sides. It is shown that the bending rigidity depends on both flock density and whether the side to be measured is flocked or not. Adhesive layer thickness on the bending rigidity is shown to be dramatic. And at higher basis weights, flock density gets less effective on bending rigidity.

  14. Rigidity and symmetry

    CERN Document Server

    Weiss, Asia; Whiteley, Walter

    2014-01-01

    This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures, and to explore the interaction of geometry, algebra, and combinatorics. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme.  Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology.  The volume will also be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and gradu...

  15. Birationally rigid varieties

    CERN Document Server

    Pukhlikov, Aleksandr

    2013-01-01

    Birational rigidity is a striking and mysterious phenomenon in higher-dimensional algebraic geometry. It turns out that certain natural families of algebraic varieties (for example, three-dimensional quartics) belong to the same classification type as the projective space but have radically different birational geometric properties. In particular, they admit no non-trivial birational self-maps and cannot be fibred into rational varieties by a rational map. The origins of the theory of birational rigidity are in the work of Max Noether and Fano; however, it was only in 1970 that Iskovskikh and Manin proved birational superrigidity of quartic three-folds. This book gives a systematic exposition of, and a comprehensive introduction to, the theory of birational rigidity, presenting in a uniform way, ideas, techniques, and results that so far could only be found in journal papers. The recent rapid progress in birational geometry and the widening interaction with the neighboring areas generate the growing interest ...

  16. Classical studies of the ellipsoidal shapes for dynamical deformation theories of the nucleus

    International Nuclear Information System (INIS)

    Remaud, B.

    1978-01-01

    The shape-dependent functions of the Liquid Drop and the Droplet Models are analytically calculated for an ellipsoid. Using the ellipsoidal symmetries, these functions (including the curvature function) are written in terms of three basic expressions. The nuclear deformation energy can be calculated in a simple way for axially symmetric and asymmetric ellipsoidal nuclei whatever the magnitude of the deformation is

  17. Simulation and application of micro X-ray fluorescence based on an ellipsoidal capillary

    Science.gov (United States)

    Yang, Jing; Li, Yude; Wang, Xingyi; Zhang, Xiaoyun; Lin, Xiaoyan

    2017-06-01

    A micro X-ray fluorescence setup was presented, based on an ellipsoidal capillary and a traditional laboratorial X-ray source. Using Ray-tracing principle, we have simulated the transmission path of X-ray beam in the ellipsoidal capillary and designed the optimal parameters of the ellipsoidal capillary for the micro X-ray fluorescence setup. We demonstrate that ellipsoidal capillary is well suited as condenser for the micro X-ray fluorescence based on traditional laboratorial X-ray source. Furthermore, we obtain the 2D mapping image of the leaf blade sample by using the ellipsoidal capillary we designed.

  18. Equidistant map projections of a triaxial ellipsoid with the use of reduced coordinates

    Directory of Open Access Journals (Sweden)

    Pędzich Paweł

    2017-12-01

    Full Text Available The paper presents a new method of constructing equidistant map projections of a triaxial ellipsoid as a function of reduced coordinates. Equations for x and y coordinates are expressed with the use of the normal elliptic integral of the second kind and Jacobian elliptic functions. This solution allows to use common known and widely described in literature methods of solving such integrals and functions. The main advantage of this method is the fact that the calculations of x and y coordinates are practically based on a single algorithm that is required to solve the elliptic integral of the second kind. Equations are provided for three types of map projections: cylindrical, azimuthal and pseudocylindrical. These types of projections are often used in planetary cartography for presentation of entire and polar regions of extraterrestrial objects. The paper also contains equations for the calculation of the length of a meridian and a parallel of a triaxial ellipsoid in reduced coordinates. Moreover, graticules of three coordinates systems (planetographic, planetocentric and reduced in developed map projections are presented. The basic properties of developed map projections are also described. The obtained map projections may be applied in planetary cartography in order to create maps of extraterrestrial objects.

  19. Effects of dipole magnet inhomogeneities on the beam ellipsoid

    International Nuclear Information System (INIS)

    Tsoupas, N.; Colman, J.; Levine, M.; McKenzie-Wilson, R.; Ward, T.; Grand, P.

    1986-01-01

    The RAYTRACE computer code has been modified to accept magnetic fields measured in the median plane of a dipole magnet. This modification allows one to study the effects of a non-ideal dipole magnet on the beam ellipsoid (as defined by the TRANSPORT code manual). The effects on the beam ellipsoid are due to: field inhomogeneities in the interior region of the dipole, and discrepancies from design conditions of the magnetic field values in the fringe field region. The results of the RAYTRACE code calculations based on experimentally measured fields will be compared with the results derived using both an ideal (no inhomogeneities) dipole with SCOFF boundaries and an ideal dipole with perfect (according to design) fringe fields

  20. Uncertainties, confidence ellipsoids and security polytopes in LSA

    Science.gov (United States)

    Grabe, Michael

    1992-05-01

    For a given error model, the uncertainties of and the couplings between parameters estimated by a least-squares adjustment (LSA) are formalized. The error model is restricted to normally distributed random errors and to systematic errors that remain constant during measurement, but whose magnitudes and signs are unknown. An outline of the associated, new formalism for estimating measurement uncertainties is sketched as regards its function as a measure of the consistency between theory and experiment. The couplings due to random errors lead to ellipsoids stemming from singular linear mappings of Hotelling's ellipsoids. Those introduced by systematic errors create convex polytopes, so-called security polytopes, which are singular linear mappings of hyperblocks caused by a ldworst-case treatment” of systematic errors.

  1. Electroencephalography in ellipsoidal geometry with fourth-order harmonics.

    Science.gov (United States)

    Alcocer-Sosa, M; Gutierrez, D

    2016-08-01

    We present a solution to the electroencephalographs (EEG) forward problem of computing the scalp electric potentials for the case when the head's geometry is modeled using a four-shell ellipsoidal geometry and the brain sources with an equivalent current dipole (ECD). The proposed solution includes terms up to the fourth-order ellipsoidal harmonics and we compare this new approximation against those that only considered up to second- and third-order harmonics. Our comparisons use as reference a solution in which a tessellated volume approximates the head and the forward problem is solved through the boundary element method (BEM). We also assess the solution to the inverse problem of estimating the magnitude of an ECD through different harmonic approximations. Our results show that the fourth-order solution provides a better estimate of the ECD in comparison to lesser order ones.

  2. ALEGRA-MHD Simulations for Magnetization of an Ellipsoidal Inclusion

    Science.gov (United States)

    2017-08-01

    The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized...diffusion has saturated. The simplicity of the interior solution lends itself well to verification of computational electromagnetic simulations...via computation with ALEGRA. The computed solution in the interior core of the ellipsoid converges to the exact solution at first order, as expected

  3. Simulation and application of micro X-ray fluorescence based on an ellipsoidal capillary

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jing; Li, Yude; Wang, Xingyi; Zhang, Xiaoyun; Lin, Xiaoyan, E-mail: yangjing_928@126.com

    2017-06-15

    Highlights: • A micro X-ray fluorescence setup based on an ellipsoidal capillary was presented. • The optimal parameters of ellipsoidal capillary were designed. • The 2D mapping image of biological sample was obtained. - Abstract: A micro X-ray fluorescence setup was presented, based on an ellipsoidal capillary and a traditional laboratorial X-ray source. Using Ray-tracing principle, we have simulated the transmission path of X-ray beam in the ellipsoidal capillary and designed the optimal parameters of the ellipsoidal capillary for the micro X-ray fluorescence setup. We demonstrate that ellipsoidal capillary is well suited as condenser for the micro X-ray fluorescence based on traditional laboratorial X-ray source. Furthermore, we obtain the 2D mapping image of the leaf blade sample by using the ellipsoidal capillary we designed.

  4. Dynamic cluster generation for a fuzzy classifier with ellipsoidal regions.

    Science.gov (United States)

    Abe, S

    1998-01-01

    In this paper, we discuss a fuzzy classifier with ellipsoidal regions that dynamically generates clusters. First, for the data belonging to a class we define a fuzzy rule with an ellipsoidal region. Namely, using the training data for each class, we calculate the center and the covariance matrix of the ellipsoidal region for the class. Then we tune the fuzzy rules, i.e., the slopes of the membership functions, successively until there is no improvement in the recognition rate of the training data. Then if the number of the data belonging to a class that are misclassified into another class exceeds a prescribed number, we define a new cluster to which those data belong and the associated fuzzy rule. Then we tune the newly defined fuzzy rules in the similar way as stated above, fixing the already obtained fuzzy rules. We iterate generation of clusters and tuning of the newly generated fuzzy rules until the number of the data belonging to a class that are misclassified into another class does not exceed the prescribed number. We evaluate our method using thyroid data, Japanese Hiragana data of vehicle license plates, and blood cell data. By dynamic cluster generation, the generalization ability of the classifier is improved and the recognition rate of the fuzzy classifier for the test data is the best among the neural network classifiers and other fuzzy classifiers if there are no discrete input variables.

  5. Rigid supersymmetry with boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, D.V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Van Nieuwenhuizen, P. [State Univ. of New York, Stony Brook, NY (United States). C.N. Yang Inst. for Theoretical Physics

    2008-01-15

    We construct rigidly supersymmetric bulk-plus-boundary actions, both in x-space and in superspace. For each standard supersymmetric bulk action a minimal supersymmetric bulk-plus-boundary action follows from an extended F- or D-term formula. Additional separately supersymmetric boundary actions can be systematically constructed using co-dimension one multiplets (boundary superfields). We also discuss the orbit of boundary conditions which follow from the Euler-Lagrange variational principle. (orig.)

  6. Libration-Driven Elliptical Instability Experiments in Ellipsoidal Shells

    Science.gov (United States)

    Grannan, A. M.; Lemasquerier, D. G.; Favier, B.; Cebron, D.; Le Bars, M.; Aurnou, J. M.

    2016-12-01

    Planets and satellites can be subjected to physical libration, which consists in forced periodic variations in their rotation rate induced by gravitational interactions with nearby bodies. These librations may mechanically drive turbulence in interior liquid layers such as subsurface oceans and metallic liquid cores. One possible driving-process is called the Libration-Driven Elliptical Instability (LDEI) and refers to the resonance of two inertial modes with the libration induced base flow. LDEI has been experimentally and numerically studied in the case of a full ellipsoid (e.g. Cébron et al. [2012c], Grannan et al. [2014] and Favier et al. [2015]). In this study, we address the question of the persistence of the LDEI in the theoretically complex case of an ellipsoidal shell which is more geophysically relevant to model planetary liquid layers. We use an ellipsoidal acrylic container filled with water and add spherical inner cores of different sizes. We perform direct side-view visualizations of the flow in the librating frame using Kalliroscope particles. A Fourier analysis of the light intensity extracted from the recorded movies shows that LDEI persists in a shell geometry for a libration frequency which is 4 and 2.4 time the rotation rate, and allows an identification of the mode coupling. Particle Image Velocimetry (PIV) is performed in vertical and horizontal planes on a selected case to confirm our light intensity results. Additionaly, our survey at a fixed forcing-frequency and variable Ekman number (E) allows a comparison with a local stability analysis, and shows that the libration amplitude at the threshold of the instability varies as ≈[E0.63, E0.72]. When extrapolating to planetary interiors conditions, such a scaling leads to an easier excitation of the elliptical instability than the E0.5 scaling commonly considered.

  7. New solutions of the generalized ellipsoidal wave equation

    Directory of Open Access Journals (Sweden)

    Harold Exton

    1999-10-01

    Full Text Available Certain aspects and a contribution to the theory of new forms of solutions of an algebraic form of the generalized ellipsoidal wave equation are deduced by considering the Laplace transform of a soluble system of linear differential equations. An ensuing system of non-linear algebraic equations is shown to be consistent and is numerically implemented by means of the computer algebra package MAPLE V. The main results are presented as series of hypergeometric type of there and four variables which readily lend themselves to numerical handling although this does not indicate all of the detailedanalytic properties of the solutions under consideration.

  8. Ellipsoidal reflector for measuring oto-acoustic emissions

    DEFF Research Database (Denmark)

    Epp, Bastian; Pulkki, Ville; Heiskanen, Vesa

    2014-01-01

    A truncated prolate ellipsoidal reflector having the ear canal of a listener at one focal point and large- diaphragm low-noise microphone at the other focal point is proposed for free-field recordings of oto-acoustic emissions. A prototype reflector consisting of three pieces is presented, which...... enables measuring the response of the system with different truncations. The response of the system is measured with a miniature loud- speaker, and proof-of-concept measurements of oto-acoustic emissions are presented. The effect of truncation and other physical parameters to the performance of the system...

  9. Optimal grasp planning for a dexterous robotic hand using the volume of a generalized force ellipsoid during accepted flattening

    Directory of Open Access Journals (Sweden)

    Peng Jia

    2017-01-01

    Full Text Available A grasp planning method based on the volume and flattening of a generalized force ellipsoid is proposed to improve the grasping ability of a dexterous robotic hand. First, according to the general solution of joint torques for a dexterous robotic hand, a grasping indicator for the dexterous hand—the maximum volume of a generalized external force ellipsoid and the minimum volume of a generalized contact internal force ellipsoid during accepted flattening—is proposed. Second, an optimal grasp planning method based on a task is established using the grasping indicator as an objective function. Finally, a simulation analysis and grasping experiment are performed. Results show that when the grasping experiment is conducted with the grasping configuration and positions of contact points optimized using the proposed grasping indicator, the root-mean-square values of the joint torques and contact internal forces of the dexterous hand are at a minimum. The effectiveness of the proposed grasping planning method is thus demonstrated.

  10. The design and test of ellipsoidal glass capillaries as condensers for X-ray microscope

    International Nuclear Information System (INIS)

    Tian Jinping; Li Wenjie; Chen Jie; Liu Gang; Xiong Ying; Liu Longhua; Huang Xinlong; Tian Yangchao

    2008-01-01

    A high resolution X-ray microscope endstation was constructed on a wiggler beamline at the National Synchrotron Radiation Laboratory (NSRL). Parameters of the ellipsoidal glass capillaries as condensers were calculated and designed based on the illumination requests in the X-ray microscope system. Performance of the ellipsoidal glass capillaries was tested. The results indicate that the beam size agrees with the designed parameters and focus efficiencies of the ellipsoidal glass capillary condensers are better than 85%. (authors)

  11. Analytical calculation of the solid angle subtended by an arbitrarily positioned ellipsoid to a point source

    International Nuclear Information System (INIS)

    Heitz, Eric

    2017-01-01

    We present a geometric method for computing an ellipse that subtends the same solid-angle domain as an arbitrarily positioned ellipsoid. With this method we can extend existing analytical solid-angle calculations of ellipses to ellipsoids. Our idea consists of applying a linear transformation on the ellipsoid such that it is transformed into a sphere from which a disk that covers the same solid-angle domain can be computed. We demonstrate that by applying the inverse linear transformation on this disk we obtain an ellipse that subtends the same solid-angle domain as the ellipsoid. We provide a MATLAB implementation of our algorithm and we validate it numerically.

  12. Analytical calculation of the solid angle subtended by an arbitrarily positioned ellipsoid to a point source

    Energy Technology Data Exchange (ETDEWEB)

    Heitz, Eric, E-mail: eheitz.research@gmail.com

    2017-04-21

    We present a geometric method for computing an ellipse that subtends the same solid-angle domain as an arbitrarily positioned ellipsoid. With this method we can extend existing analytical solid-angle calculations of ellipses to ellipsoids. Our idea consists of applying a linear transformation on the ellipsoid such that it is transformed into a sphere from which a disk that covers the same solid-angle domain can be computed. We demonstrate that by applying the inverse linear transformation on this disk we obtain an ellipse that subtends the same solid-angle domain as the ellipsoid. We provide a MATLAB implementation of our algorithm and we validate it numerically.

  13. Ellipsoidal and parabolic glass capillaries as condensers for x-ray microscopes

    International Nuclear Information System (INIS)

    Zeng Xianghui; Duewer, Fred; Feser, Michael; Huang, Carson; Lyon, Alan; Tkachuk, Andrei; Yun Wenbing

    2008-01-01

    Single-bounce ellipsoidal and paraboloidal glass capillary focusing optics have been fabricated for use as condenser lenses for both synchrotron and tabletop x-ray microscopes in the x-ray energy range of 2.5-18 keV. The condenser numerical apertures (NAs) of these devices are designed to match the NA of x-ray zone plate objectives, which gives them a great advantage over zone plate condensers in laboratory microscopes. The fabricated condensers have slope errors as low as 20 μrad rms. These capillaries provide a uniform hollow-cone illumination with almost full focusing efficiency, which is much higher than what is available with zone plate condensers. Sub-50 nm resolution at 8 keV x-ray energy was achieved by utilizing this high-efficiency condenser in a laboratory microscope based on a rotating anode generator

  14. Torsional Rigidity of Minimal Submanifolds

    DEFF Research Database (Denmark)

    Markvorsen, Steen; Palmer, Vicente

    2006-01-01

    We prove explicit upper bounds for the torsional rigidity of extrinsic domains of minimal submanifolds $P^m$ in ambient Riemannian manifolds $N^n$ with a pole $p$. The upper bounds are given in terms of the torsional rigidities of corresponding Schwarz symmetrizations of the domains in warped...

  15. Quantum charged rigid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Ruben [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N., Unidad Adolfo Lopez Mateos, Edificio 9, 07738 Mexico, D.F. (Mexico); Molgado, Alberto [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Zacatecas Zac. (Mexico); Rojas, Efrain, E-mail: cordero@esfm.ipn.mx, E-mail: amolgado@fisica.uaz.edu.mx, E-mail: efrojas@uv.mx [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)

    2011-03-21

    The early Dirac proposal to model the electron as a charged membrane is reviewed. A rigidity term, instead of the natural membrane tension, involving linearly the extrinsic curvature of the worldvolume swept out by the membrane is considered in the action modeling the bubble in the presence of an electromagnetic field. We set up this model as a genuine second-order derivative theory by considering a non-trivial boundary term which plays a relevant part in our formulation. The Lagrangian in question is linear in the bubble acceleration and by means of the Ostrogradski-Hamiltonian approach, we observed that the theory comprises the management of both first- and second-class constraints. We thus show that our second-order approach is robust allowing for a proper quantization. We found an effective quantum potential which permits us to compute bounded states for the system. We comment on the possibility of describing brane world universes by invoking this kind of second-order correction terms.

  16. Quantum charged rigid membrane

    International Nuclear Information System (INIS)

    Cordero, Ruben; Molgado, Alberto; Rojas, Efrain

    2011-01-01

    The early Dirac proposal to model the electron as a charged membrane is reviewed. A rigidity term, instead of the natural membrane tension, involving linearly the extrinsic curvature of the worldvolume swept out by the membrane is considered in the action modeling the bubble in the presence of an electromagnetic field. We set up this model as a genuine second-order derivative theory by considering a non-trivial boundary term which plays a relevant part in our formulation. The Lagrangian in question is linear in the bubble acceleration and by means of the Ostrogradski-Hamiltonian approach, we observed that the theory comprises the management of both first- and second-class constraints. We thus show that our second-order approach is robust allowing for a proper quantization. We found an effective quantum potential which permits us to compute bounded states for the system. We comment on the possibility of describing brane world universes by invoking this kind of second-order correction terms.

  17. Anisotropic hypersonic phonon propagation in films of aligned ellipsoids.

    Science.gov (United States)

    Beltramo, Peter J; Schneider, Dirk; Fytas, George; Furst, Eric M

    2014-11-14

    A material with anisotropic elastic mechanical properties and a direction-dependent hypersonic band gap is fabricated using ac electric field-directed convective self-assembly of colloidal ellipsoids. The frequency of the gap, which is detected in the direction perpendicular to particle alignment and entirely absent parallel to alignment, and the effective sound velocities can be tuned by the particle aspect ratio. We hypothesize that the band gap originates from the primary eigenmode peak, the m-splitted (s,1,2) mode, of the particle resonating with the effective medium. These results reveal the potential for powerful control of the hypersonic phononic band diagram by combining anisotropic particles and self-assembly.

  18. Entropies from Coarse-graining: Convex Polytopes vs. Ellipsoids

    Directory of Open Access Journals (Sweden)

    Nikos Kalogeropoulos

    2015-09-01

    Full Text Available We examine the Boltzmann/Gibbs/Shannon SBGS and the non-additive Havrda-Charvát/Daróczy/Cressie-Read/Tsallis Sq and the Kaniadakis κ-entropy Sκ from the viewpoint of coarse-graining, symplectic capacities and convexity. We argue that the functional form of such entropies can be ascribed to a discordance in phase-space coarse-graining between two generally different approaches: the Euclidean/Riemannian metric one that reflects independence and picks cubes as the fundamental cells in coarse-graining and the symplectic/canonical one that picks spheres/ellipsoids for this role. Our discussion is motivated by and confined to the behaviour of Hamiltonian systems of many degrees of freedom. We see that Dvoretzky’s theorem provides asymptotic estimates for the minimal dimension beyond which these two approaches are close to each other. We state and speculate about the role that dualities may play in this viewpoint.

  19. Discrete ellipsoidal statistical BGK model and Burnett equations

    Science.gov (United States)

    Zhang, Yu-Dong; Xu, Ai-Guo; Zhang, Guang-Cai; Chen, Zhi-Hua; Wang, Pei

    2018-06-01

    A new discrete Boltzmann model, the discrete ellipsoidal statistical Bhatnagar-Gross-Krook (ESBGK) model, is proposed to simulate nonequilibrium compressible flows. Compared with the original discrete BGK model, the discrete ES-BGK has a flexible Prandtl number. For the discrete ES-BGK model in the Burnett level, two kinds of discrete velocity model are introduced and the relations between nonequilibrium quantities and the viscous stress and heat flux in the Burnett level are established. The model is verified via four benchmark tests. In addition, a new idea is introduced to recover the actual distribution function through the macroscopic quantities and their space derivatives. The recovery scheme works not only for discrete Boltzmann simulation but also for hydrodynamic ones, for example, those based on the Navier-Stokes or the Burnett equations.

  20. Understanding geological processes: Visualization of rigid and non-rigid transformations

    Science.gov (United States)

    Shipley, T. F.; Atit, K.; Manduca, C. A.; Ormand, C. J.; Resnick, I.; Tikoff, B.

    2012-12-01

    Visualizations are used in the geological sciences to support reasoning about structures and events. Research in cognitive sciences offers insights into the range of skills of different users, and ultimately how visualizations might support different users. To understand the range of skills needed to reason about earth processes we have developed a program of research that is grounded in the geosciences' careful description of the spatial and spatiotemporal patterns associated with earth processes. In particular, we are pursuing a research program that identifies specific spatial skills and investigates whether and how they are related to each other. For this study, we focus on a specific question: Is there an important distinction in the geosciences between rigid and non-rigid deformation? To study a general spatial thinking skill we employed displays with non-geological objects that had been altered by rigid change (rotation), and two types of non-rigid change ("brittle" (or discontinuous) and "ductile" (or continuous) deformation). Disciplinary scientists (geosciences and chemistry faculty), and novices (non-science faculty and undergraduate psychology students) answered questions that required them to visualize the appearance of the object before the change. In one study, geologists and chemists were found to be superior to non-science faculty in reasoning about rigid rotations (e.g., what an object would look like from a different perspective). Geologists were superior to chemists in reasoning about brittle deformations (e.g., what an object looked like before it was broken - here the object was a word cut into many fragments displaced in different directions). This finding is consistent with two hypotheses: 1) Experts are good at visualizing the types of changes required for their domain; and 2) Visualization of rigid and non-rigid changes are not the same skill. An additional important finding is that there was a broad range of skill in both rigid and non-rigid

  1. Simulation of enhanced deposition due to magnetic field alignment of ellipsoidal particles in a lung bifurcation.

    Science.gov (United States)

    Martinez, R C; Roshchenko, A; Minev, P; Finlay, W H

    2013-02-01

    Aerosolized chemotherapy has been recognized as a potential treatment for lung cancer. The challenge of providing sufficient therapeutic effects without reaching dose-limiting toxicity levels hinders the development of aerosolized chemotherapy. This could be mitigated by increasing drug-delivery efficiency with a noninvasive drug-targeting delivery method. The purpose of this study is to use direct numerical simulations to study the resulting local enhancement of deposition due to magnetic field alignment of high aspect ratio particles. High aspect ratio particles were approximated by a rigid ellipsoid with a minor diameter of 0.5 μm and fluid particle density ratio of 1,000. Particle trajectories were calculated by solving the coupled fluid particle equations using an in-house micro-macro grid finite element algorithm based on a previously developed fictitious domain approach. Particle trajectories were simulated in a morphologically realistic geometry modeling a symmetrical terminal bronchiole bifurcation. Flow conditions were steady inspiratory air flow due to typical breathing at 18 L/min. Deposition efficiency was estimated for two different cases: [1] particles aligned with the streamlines and [2] particles with fixed angular orientation simulating the magnetic field alignment of our previous in vitro study. The local enhancement factor defined as the ratio between deposition efficiency of Case [1] and Case [2] was found to be 1.43 and 3.46 for particles with an aspect ratio of 6 and 20, respectively. Results indicate that externally forcing local alignment of high aspect ratio particles can increase local deposition considerably.

  2. On Classical Dynamics of Affinely-Rigid Bodies Subject to the Kirchhoff-Love Constraints

    Directory of Open Access Journals (Sweden)

    Vasyl Kovalchuk

    2010-04-01

    Full Text Available In this article we consider the affinely-rigid body moving in the three-dimensional physical space and subject to the Kirchhoff-Love constraints, i.e., while it deforms homogeneously in the two-dimensional central plane of the body it simultaneously performs one-dimensional oscillations orthogonal to this central plane. For the polar decomposition we obtain the stationary ellipsoids as special solutions of the general, strongly nonlinear equations of motion. It is also shown that these solutions are conceptually different from those obtained earlier for the two-polar (singular value decomposition.

  3. Rigid Spine Syndrome among Children in Oman

    Directory of Open Access Journals (Sweden)

    Roshan Koul

    2015-08-01

    Full Text Available Objectives: Rigidity of the spine is common in adults but is rarely observed in children. The aim of this study was to report on rigid spine syndrome (RSS among children in Oman. Methods: Data on children diagnosed with RSS were collected consecutively at presentation between 1996 and 2014 at the Sultan Qaboos University Hospital (SQUH in Muscat, Oman. A diagnosis of RSS was based on the patient’s history, clinical examination, biochemical investigations, electrophysiological findings, neuro-imaging and muscle biopsy. Atrophy of the paraspinal muscles, particularly the erector spinae, was the diagnostic feature; this was noted using magnetic resonance imaging of the spine. Children with disease onset in the paraspinal muscles were labelled as having primary RSS or rigid spinal muscular dystrophy. Secondary RSS was classified as RSS due to the late involvement of other muscle diseases. Results: Over the 18-year period, 12 children were included in the study, with a maleto- female ratio of 9:3. A total of 10 children were found to have primary RSS or rigid spinal muscular dystrophy syndrome while two had secondary RSS. Onset of the disease ranged from birth to 18 months of age. A family history was noted, with two siblings from one family and three siblings from another (n = 5. On examination, children with primary RSS had typical features of severe spine rigidity at onset, with the rest of the neurological examination being normal. Conclusion: RSS is a rare disease with only 12 reported cases found at SQUH during the study period. Cases of primary RSS should be differentiated from the secondary type.

  4. On flexible and rigid nouns

    DEFF Research Database (Denmark)

    Rijkhoff, Jan

    2010-01-01

    classes. Finally this article wants to claim that the distinction between rigid and flexible noun categories (a) adds a new dimension to current classifications of parts of speech systems, (b) correlates with certain grammatical phenomena (e.g. so-called number discord), and (c) helps to explain the parts......This article argues that in addition to the major flexible lexical categories in Hengeveld’s classification of parts of speech systems (Contentive, Non-Verb, Modifier), there are also flexible word classes within the rigid lexical category Noun (Set Noun, Sort Noun, General Noun). Members...... by the flexible item in the external world. I will then argue that flexible word classes constitute a proper category (i.e. they are not the result of a merger of some rigid word classes) in that members of flexible word categories display the same properties regarding category membership as members of rigid word...

  5. Trophic transfer potential of aluminium oxide nanoparticles using representative primary producer (Chlorella ellipsoides) and a primary consumer (Ceriodaphnia dubia)

    Energy Technology Data Exchange (ETDEWEB)

    Pakrashi, Sunandan; Dalai, Swayamprava; Chandrasekaran, Natarajan; Mukherjee, Amitava, E-mail: amit.mookerjea@gmail.com

    2014-07-01

    Highlights: • Trophic transfer of alumina nanoparticles using Chlorella ellipsoides and Ceriodaphnia dubia. • Subtle alterations in the feeding behaviour of the daphnids. • Disruption the energy flow through the food chain. • Transmission electron microscopy validated the disrupted feeding behaviour. - Abstract: The transfer of nanoparticles through the food chain can lead to bioaccumulation and biomagnification resulting in a long term negative impact on the ecosystem functions. The primary objective of this study was evaluation of aluminium oxide nanoparticles transfer from primary producers to primary consumers. A simple set up consisting of a primary producer (Chlorella ellipsoides) and a primary consumer (Ceriodaphnia dubia) was used. Here, C. ellipsoides were exposed to the varying concentrations of the nanoparticles ranging from 20 to 120 μg/mL (196 to 1176 μM) for 48 h and the infested algal cells were used as the feed to C. dubia. The bioaccumulation of the nanoparticles into the daphnids was noted and the biomagnification factors were computed. The exposure was noted to cause subtle alterations in the feeding behaviour of the daphnids. This might have long term consequences in the energy flow through the food chain. The reproductive behaviour of the daphnids remained unaffected upon exposure to nanoparticle infested algal feed. Distinct observations at ultra-structural scale using transmission electron microscopy provided visual evidences for the disrupted feeding behaviour upon exposure to nanoparticle treated algae. Internalization of nanoparticle like inclusion bodies in the intracellular space of algae was also detected. The findings were further substantiated by a detailed analysis of hydrodynamic stability, bioavailability and dissolution of ions from the nanoparticles over the exposure period. Altogether, the study brings out the first of its kind of observation of trophic transfer potential/behaviour of aluminium oxide nanoparticles and

  6. Trophic transfer potential of aluminium oxide nanoparticles using representative primary producer (Chlorella ellipsoides) and a primary consumer (Ceriodaphnia dubia)

    International Nuclear Information System (INIS)

    Pakrashi, Sunandan; Dalai, Swayamprava; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2014-01-01

    Highlights: • Trophic transfer of alumina nanoparticles using Chlorella ellipsoides and Ceriodaphnia dubia. • Subtle alterations in the feeding behaviour of the daphnids. • Disruption the energy flow through the food chain. • Transmission electron microscopy validated the disrupted feeding behaviour. - Abstract: The transfer of nanoparticles through the food chain can lead to bioaccumulation and biomagnification resulting in a long term negative impact on the ecosystem functions. The primary objective of this study was evaluation of aluminium oxide nanoparticles transfer from primary producers to primary consumers. A simple set up consisting of a primary producer (Chlorella ellipsoides) and a primary consumer (Ceriodaphnia dubia) was used. Here, C. ellipsoides were exposed to the varying concentrations of the nanoparticles ranging from 20 to 120 μg/mL (196 to 1176 μM) for 48 h and the infested algal cells were used as the feed to C. dubia. The bioaccumulation of the nanoparticles into the daphnids was noted and the biomagnification factors were computed. The exposure was noted to cause subtle alterations in the feeding behaviour of the daphnids. This might have long term consequences in the energy flow through the food chain. The reproductive behaviour of the daphnids remained unaffected upon exposure to nanoparticle infested algal feed. Distinct observations at ultra-structural scale using transmission electron microscopy provided visual evidences for the disrupted feeding behaviour upon exposure to nanoparticle treated algae. Internalization of nanoparticle like inclusion bodies in the intracellular space of algae was also detected. The findings were further substantiated by a detailed analysis of hydrodynamic stability, bioavailability and dissolution of ions from the nanoparticles over the exposure period. Altogether, the study brings out the first of its kind of observation of trophic transfer potential/behaviour of aluminium oxide nanoparticles and

  7. Entropy production of a Brownian ellipsoid in the overdamped limit.

    Science.gov (United States)

    Marino, Raffaele; Eichhorn, Ralf; Aurell, Erik

    2016-01-01

    We analyze the translational and rotational motion of an ellipsoidal Brownian particle from the viewpoint of stochastic thermodynamics. The particle's Brownian motion is driven by external forces and torques and takes place in an heterogeneous thermal environment where friction coefficients and (local) temperature depend on space and time. Our analysis of the particle's stochastic thermodynamics is based on the entropy production associated with single particle trajectories. It is motivated by the recent discovery that the overdamped limit of vanishing inertia effects (as compared to viscous fricion) produces a so-called "anomalous" contribution to the entropy production, which has no counterpart in the overdamped approximation, when inertia effects are simply discarded. Here we show that rotational Brownian motion in the overdamped limit generates an additional contribution to the "anomalous" entropy. We calculate its specific form by performing a systematic singular perturbation analysis for the generating function of the entropy production. As a side result, we also obtain the (well-known) equations of motion in the overdamped limit. We furthermore investigate the effects of particle shape and give explicit expressions of the "anomalous entropy" for prolate and oblate spheroids and for near-spherical Brownian particles.

  8. Quantifying the Rate of Ellipsoid Zone Loss in Stargardt Disease.

    Science.gov (United States)

    Cai, Cindy X; Light, Jacob G; Handa, James T

    2018-02-01

    To determine a reliable method of using the ellipsoid zone (EZ) on optical coherence tomography (OCT) to track disease progression in Stardgardt disease (STGD). Retrospective reliability study. STGD patients with genetically confirmed ABCA4 gene mutations seen at the Wilmer Eye Institute with follow-up visits separated by at least 12 months were identified. Spectral-domain optical coherence tomography (SD-OCT) macula volume scans centered at the fovea and fundus autofluorescence (FAF) images were obtained. The area of EZ loss was calculated from the SD-OCT and the area of retinal pigment epithelium (RPE) loss from the FAF. Scans were reanalyzed by the primary grader to assess intragrader reliability, and reanalyzed by a second grader to assess intergrader reliability. Sixteen STGD patients (total of 31 eyes) were followed for a mean of 2 years (range 1-4.7 years). The mean rate of EZ loss, 0.31 ± 0.31 mm 2 /year, was similar to the average rate of RPE loss, 0.33 ± 0.38 mm 2 /year. The average area of EZ loss at the initial examination, 4.18 ± 1.91 mm 2 , was larger than the initial area of RPE loss, 2.25 ± 1.66 mm 2 (P disease progression in STGD. This could be used as a sensitive anatomic outcome measure in clinical trials related to STGD. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Electromagnetic characteristics of systems of prolate and oblate ellipsoids

    Science.gov (United States)

    Karimi, Pouyan; Amiri-Hezaveh, Amirhossein; Ostoja-Starzewski, Martin; Jin, Jian-Ming

    2017-11-01

    The present study suggests a novel model for simulating electromagnetic characteristics of spheroidal nanofillers. The electromagnetic interference shielding efficiency of prolate and oblate ellipsoids in the X-band frequency range is studied. Different multilayered nanocomposite configurations incorporating carbon nanotubes, graphene nanoplatelets, and carbon blacks are fabricated and tested. The best performance for a specific thickness is observed for the multilayered composite with a gradual increase in the thickness and electrical conductivity of layers. The simulation results based on the proposed model are shown to be in good agreement with the experimental data. The effect of filler alignment on shielding efficiency is also studied by using the nematic order parameter. The ability of a nanocomposite to shield the incident power is found to decrease by increasing alignment especially for high volume fractions of prolate fillers. The interaction of the electromagnetic wave and the fillers is mainly affected by the polarization of the electric field; when the electric field is perpendicular to the equatorial axis of a spheroid, the interaction is significantly reduced and results in a lower shielding efficiency. Apart from the filler alignment, size polydispersity is found to have a significant effect on reflected and transmitted powers. It is demonstrated that the nanofillers with a higher aspect ratio mainly contribute to the shielding performance. The results are of interest in both shielding structures and microwave absorbing materials.

  10. Rigid multibody system dynamics with uncertain rigid bodies

    Energy Technology Data Exchange (ETDEWEB)

    Batou, A., E-mail: anas.batou@univ-paris-est.fr; Soize, C., E-mail: christian.soize@univ-paris-est.fr [Universite Paris-Est, Laboratoire Modelisation et Simulation Multi Echelle, MSME UMR 8208 CNRS (France)

    2012-03-15

    This paper is devoted to the construction of a probabilistic model of uncertain rigid bodies for multibody system dynamics. We first construct a stochastic model of an uncertain rigid body by replacing the mass, the center of mass, and the tensor of inertia by random variables. The prior probability distributions of the stochastic model are constructed using the maximum entropy principle under the constraints defined by the available information. The generators of independent realizations corresponding to the prior probability distribution of these random quantities are further developed. Then several uncertain rigid bodies can be linked to each other in order to calculate the random response of a multibody dynamical system. An application is proposed to illustrate the theoretical development.

  11. Equilibrium and dynamics of uniform density ellipsoidal non-neutral plasmas

    International Nuclear Information System (INIS)

    Dubin, D.H.E.

    1993-01-01

    When a single-species plasma is confined in a harmonic Penning trap at cryogenic temperature, the thermal equilibrium is approximately a uniform density spheroid (ellipsoid of revolution). Normal modes corresponding to quadrupole excitations of this plasma have recently been measured. In this paper, nonlinear equations of motion are derived for these quadrupole oscillations. For large amplitudes, the oscillations deform a spheroidal plasma into a triaxial ellipsoid with time-dependent shape and orientation. The integrals of the motion are found and the cylindrically symmetric finite-amplitude oscillations of a spheroid are studied. An analysis of all possible ellipsoidal equilibria is also carried out. New equilibria are discovered which correspond to finite-amplitude versions of the noncylindrically symmetric linear quadrupole oscillations. The equilibria are shown to fall into two classes in which the ellipsoids are either tilted or aligned with respect to the magnetic field. Some of these equilibria have densities well above the Brillouin limit

  12. Gravitational potential of perturbed ellipsoidal inhomogeneous configurations with the account of the 'fifth' force

    International Nuclear Information System (INIS)

    Masyukov, V.V.; Tsvetkov, V.P.

    1990-01-01

    The analytical representations of the gravitational potential of perturbed inhomogeneous ellipsoidal configurations with the account of the 'fifth' force are obtained in the form of the series in the parameter of perturbation. 11 refs

  13. Rigidity of Glasses and Macromolecules

    Science.gov (United States)

    Thorpe, M. F.

    1998-03-01

    The simple yet powerful ideas of percolation theory have found their way into many different areas of research. In this talk we show how RIGIDITY PERCOLATION can be studied at a similar level of sophistication, using a powerful new program THE PEBBLE GAME (D. J. Jacobs and M. F. Thorpe, Phys. Rev. E) 53, 3682 (1996). that uses an integer algorithm. This program can analyse the rigidity of two and three dimensional networks containing more than one million bars and joints. We find the total number of floppy modes, and find the critical behavior as the network goes from floppy to rigid as more bars are added. We discuss the relevance of this work to network glasses, and how it relates to experiments that involve the mechanical properties like hardness and elasticity of covalent glassy networks like Ge_xAs_ySe_1-x-y and dicuss recent experiments that suggest that the rigidity transition may be first order (Xingwei Feng, W. J.Bresser and P. Boolchand, Phys. Rev. Lett 78), 4422 (1997).. This approach is also useful in macromolecules and proteins, where detailed information about the rigid domain structure can be obtained.

  14. Longitudinal phase-space manipulation of ellipsoidal electron bunches in realistic fields

    Directory of Open Access Journals (Sweden)

    S. B. van der Geer

    2006-04-01

    Full Text Available Since the recent publication of a practical recipe to create “pancake” electron bunches which evolve into uniformly filled ellipsoids, a number of papers have addressed both an alternative method to create such ellipsoids as well as their behavior in realistic fields. So far, the focus has been on the possibilities to preserve the initial “thermal” transverse emittance. This paper addresses the linear longitudinal phase space of ellipsoidal bunches. It is shown that ellipsoidal bunches allow ballistic compression at subrelativistic energies, without the detrimental effects of nonlinear space-charge forces. This in turn eliminates the need for the large correlated energy spread normally required for longitudinal compression of relativistic particle beams, while simultaneously avoiding all problems related to magnetic compression. Furthermore, the linear space-charge forces of ellipsoidal bunches can be used to reduce the remaining energy spread even further, by carefully choosing the beam transverse size, in a process that is essentially the time-reversed process of the creation of an ellipsoid at the cathode. The feasibility of compression of ellipsoidal bunches is illustrated with a relatively simple setup, consisting of a half-cell S-band photogun and a two-cell booster compressor. Detailed GPT simulations in realistic fields predict that 100 pC ellipsoidal bunches can be ballistically compressed to 100 fs, at a transverse emittance of 0.7   μm, with a final energy of 3.7 MeV and an energy spread of only 50 keV.

  15. Self-consistent Analysis of Three-dimensional Uniformly Charged Ellipsoid with Zero Emittance

    International Nuclear Information System (INIS)

    Batygin, Yuri K.

    2001-01-01

    A self-consistent treatment of a three-dimensional ellipsoid with negligible emittance in time-dependent external field is performed. Envelope equations describing the evolution of an ellipsoid boundary are discussed. For a complete model it is required that the initial particle momenta be a linear function of the coordinates. Numerical example and verification of the problem by a 3-dimensional particle-in-cell simulations are given

  16. Rigidly foldable origami gadgets and tessellations

    Science.gov (United States)

    Evans, Thomas A.; Lang, Robert J.; Magleby, Spencer P.; Howell, Larry L.

    2015-01-01

    Rigidly foldable origami allows for motion where all deflection occurs at the crease lines and facilitates the application of origami in materials other than paper. In this paper, we use a recently discovered method for determining rigid foldability to identify existing flat-foldable rigidly foldable tessellations, which are also categorized. We introduce rigidly foldable origami gadgets which may be used to modify existing tessellations or to create new tessellations. Several modified and new rigidly foldable tessellations are presented. PMID:26473037

  17. A new Ellipsoidal Gravimetric-Satellite Altimetry Boundary Value Problem; Case study: High Resolution Geoid of Iran

    Science.gov (United States)

    Ardalan, A.; Safari, A.; Grafarend, E.

    2003-04-01

    A new ellipsoidal gravimetric-satellite altimetry boundary value problem has been developed and successfully tested. This boundary value problem has been constructed for gravity observables of the type (i) gravity potential (ii) gravity intensity (iii) deflection of vertical and (iv) satellite altimetry data. The developed boundary value problem is enjoying the ellipsoidal nature and as such can take advantage of high precision GPS observations in the set-up of the problem. The highlights of the solution are as follows: begin{itemize} Application of ellipsoidal harmonic expansion up to degree/order and ellipsoidal centrifugal field for the reduction of global gravity and isostasy effects from the gravity observable at the surface of the Earth. Application of ellipsoidal Newton integral on the equal area map projection surface for the reduction of residual mass effects within a radius of 55 km around the computational point. Ellipsoidal harmonic downward continuation of the residual observables from the surface of the earth down to the surface of reference ellipsoid using the ellipsoidal height of the observation points derived from GPS. Restore of the removed effects at the application points on the surface of reference ellipsoid. Conversion of the satellite altimetry derived heights of the water bodies into potential. Combination of the downward continued gravity information with the potential equivalent of the satellite altimetry derived heights of the water bodies. Application of ellipsoidal Bruns formula for converting the potential values on the surface of the reference ellipsoid into the geoidal heights (i.e. ellipsoidal heights of the geoid) with respect to the reference ellipsoid. Computation of the high-resolution geoid of Iran has successfully tested this new methodology!

  18. Rigidity-tuning conductive elastomer

    Science.gov (United States)

    Shan, Wanliang; Diller, Stuart; Tutcuoglu, Abbas; Majidi, Carmel

    2015-06-01

    We introduce a conductive propylene-based elastomer (cPBE) that rapidly and reversibly changes its mechanical rigidity when powered with electrical current. The elastomer is rigid in its natural state, with an elastic (Young’s) modulus of 175.5 MPa, and softens when electrically activated. By embedding the cPBE in an electrically insulating sheet of polydimethylsiloxane (PDMS), we create a cPBE-PDMS composite that can reversibly change its tensile modulus between 37 and 1.5 MPa. The rigidity change takes ˜6 s and is initiated when a 100 V voltage drop is applied across the two ends of the cPBE film. This magnitude of change in elastic rigidity is similar to that observed in natural skeletal muscle and catch connective tissue. We characterize the tunable load-bearing capability of the cPBE-PDMS composite with a motorized tensile test and deadweight experiment. Lastly, we demonstrate the ability to control the routing of internal forces by embedding several cPBE-PDMS ‘active tendons’ into a soft robotic pneumatic bending actuator. Selectively activating the artificial tendons controls the neutral axis and direction of bending during inflation.

  19. Rigidity-tuning conductive elastomer

    International Nuclear Information System (INIS)

    Shan, Wanliang; Diller, Stuart; Tutcuoglu, Abbas; Majidi, Carmel

    2015-01-01

    We introduce a conductive propylene-based elastomer (cPBE) that rapidly and reversibly changes its mechanical rigidity when powered with electrical current. The elastomer is rigid in its natural state, with an elastic (Young’s) modulus of 175.5 MPa, and softens when electrically activated. By embedding the cPBE in an electrically insulating sheet of polydimethylsiloxane (PDMS), we create a cPBE–PDMS composite that can reversibly change its tensile modulus between 37 and 1.5 MPa. The rigidity change takes ∼6 s and is initiated when a 100 V voltage drop is applied across the two ends of the cPBE film. This magnitude of change in elastic rigidity is similar to that observed in natural skeletal muscle and catch connective tissue. We characterize the tunable load-bearing capability of the cPBE–PDMS composite with a motorized tensile test and deadweight experiment. Lastly, we demonstrate the ability to control the routing of internal forces by embedding several cPBE–PDMS ‘active tendons’ into a soft robotic pneumatic bending actuator. Selectively activating the artificial tendons controls the neutral axis and direction of bending during inflation. (paper)

  20. Optimized imaging using non-rigid registration

    International Nuclear Information System (INIS)

    Berkels, Benjamin; Binev, Peter; Blom, Douglas A.; Dahmen, Wolfgang; Sharpley, Robert C.; Vogt, Thomas

    2014-01-01

    The extraordinary improvements of modern imaging devices offer access to data with unprecedented information content. However, widely used image processing methodologies fall far short of exploiting the full breadth of information offered by numerous types of scanning probe, optical, and electron microscopies. In many applications, it is necessary to keep measurement intensities below a desired threshold. We propose a methodology for extracting an increased level of information by processing a series of data sets suffering, in particular, from high degree of spatial uncertainty caused by complex multiscale motion during the acquisition process. An important role is played by a non-rigid pixel-wise registration method that can cope with low signal-to-noise ratios. This is accompanied by formulating objective quality measures which replace human intervention and visual inspection in the processing chain. Scanning transmission electron microscopy of siliceous zeolite material exhibits the above-mentioned obstructions and therefore serves as orientation and a test of our procedures. - Highlights: • Developed a new process for extracting more information from a series of STEM images. • An objective non-rigid registration process copes with distortions. • Images of zeolite Y show retrieval of all information available from the data set. • Quantitative measures of registration quality were implemented. • Applicable to any serially acquired data, e.g. STM, AFM, STXM, etc

  1. Infrared photometry of cataclysmic variables. II - Evidence for ellipsoidal variations in CW MoN, X Leo, IP Peg, and AF CaM

    Science.gov (United States)

    Szkody, P.; Mateo, M.

    1986-08-01

    Broadband H or K light curves of the dwarf novae CM Mon, X Leo, IP Peg, and AF Cam reveal variations that can be attributed to ellipsoidal modulation of the secondaries in these systems. The present data imply orbital periods of 4.23 + or - 0.01 hr for CW Mon and 5.0 + or - 0.1 hr for X Leo. The high-amplitude ellipsoidal modulation of the secondary of CW Mon implies a large orbital inclination. The interpretation of the low-amplitude variability seen in X Leo is complicated by details in its light curve and a recent determination of its orbital period by Shafter and Harkness (1986) which differs significantly from the period inferred from the present observations. The light variations of the eclipsing system IP Peg are interpreted as showing a 0.2 mag ellipsoidal variation from the secondary superposed on a deep eclipse of the IR light of the white dwarf and hotspot. AF Cam shows marginal evidence for a low-amplitude variation implying a very short orbital period of 76 min. IR colors of SS Aur, AH Eri, and IR Gem as well as the above four objects are used to place limits on the properties of the secondaries and the distances to these systems.

  2. Parameters of the CGCS 2000 Ellipsoid and Comparisons with GRS 80 and WGS 84

    Directory of Open Access Journals (Sweden)

    CHENG Pengfei

    2016-02-01

    Full Text Available According to the definition of China Geodetic Coordinate System 2000(CGCS 2000 and defined constants of the ellipsoid adopted by CGCS 2000,the other geometrical and physical parameters of this ellipsoid are derived and compared with that from GRS 80 and WGS 84,respectively.Meanwhile the coordinates and normal gravity on the CGCS 2000 ellipsoid are compared with that on WGS 84 and GRS 80.The difference between the normal gravity on CGCS 2000 ellipsoid and that on GRS 80 is about -143.54×10-8 m/s2,while it is 0.02×10-8 m/s2 compared to WGS 84.The longitudes of a point on these three ellipsoids are the same,but the maximum difference of latitude between CGCS 2000 and GRS 80 is 8.26×10-11 arc seconds,which is about 2.5×10-6 mm,and the maximum difference of latitude between CGCS 2000 and WGS 84 is 3.6×10-6 arc seconds,which is about 0.11 mm.

  3. CdMoO{sub 4} micro-ellipsoids: controllable synthesis, growth mechanism, and photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Ke; Gao, Tianyu [College of Resources and Environment, Huazhong Agricultural University, Hubei, Wuhan (China); Liu, Hui; Chen, Hao, E-mail: hchenhao@mail.hzau.edu.cn [College of Science, Huazhong Agricultural University, Hubei, Wuhan (China); Wang, Qi, E-mail: hchenhao@mail.hzau.edu.cn [School of Environment Sciences and Engineering, Zhejiang Gongshang University, Zhejiang, Hangzhou (China)

    2017-01-15

    CdMoO{sub 4} micro-ellipsoids were synthesized by a simple hydrothermal route with the assistance of nonionic surfactant Triton X-100 and characterized by X-ray diffraction, scanning electron microscopy and UV-Vis diffuse reflectance spectroscopy. The effects of hydrothermal pH, temperature, and time on the morphology and photocatalytic activity of CdMoO{sub 4} were investigated. With an initial hydrothermal pH of 5.00, CdMoO{sub 4} micro-ellipsoids were obtained at 180 °C for 24 h and found to possess the highest photocatalytic activity - 89% Rhodamine B can be degraded for 30 minutes presented in the 0.4 g/L CdMoO{sub 4} suspension. The formation mechanism of the CdMoO{sub 4} micro-ellipsoids was initiated by the formation of small nanoparticles and bulk structures afterwards, which was followed by the growth of micro-ellipsoids. Experiment results showed that the evolution of the micro-ellipsoids was an Ostwald ripening process. (author)

  4. Revisiting the Low-Frequency Dipolar Perturbation by an Impenetrable Ellipsoid in a Conductive Surrounding

    Directory of Open Access Journals (Sweden)

    Panayiotis Vafeas

    2017-01-01

    Full Text Available This contribution deals with the scattering by a metallic ellipsoidal target, embedded in a homogeneous conductive medium, which is stimulated when a 3D time-harmonic magnetic dipole is operating at the low-frequency realm. The incident, the scattered, and the total three-dimensional electromagnetic fields, which satisfy Maxwell’s equations, yield low-frequency expansions in terms of positive integral powers of the complex-valued wave number of the exterior medium. We preserve the static Rayleigh approximation and the first three dynamic terms, while the additional terms of minor contribution are neglected. The Maxwell-type problem is transformed into intertwined potential-type boundary value problems with impenetrable boundary conditions, whereas the environment of a genuine ellipsoidal coordinate system provides the necessary setting for tackling such problems in anisotropic space. The fields are represented via nonaxisymmetric infinite series expansions in terms of harmonic eigenfunctions, affiliated with the ellipsoidal system, obtaining analytical closed-form solutions in a compact fashion. Until nowadays, such problems were attacked by using the very few ellipsoidal harmonics exhibiting an analytical form. In the present article, we address this issue by incorporating the full series expansion of the potentials and utilizing the entire subspace of ellipsoidal harmonic eigenfunctions.

  5. Radial velocity curves of ellipsoidal red giant binaries in the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Nie, J. D.; Wood, P. R.

    2014-01-01

    Ellipsoidal red giant binaries are close binary systems where an unseen, relatively close companion distorts the red giant, leading to light variations as the red giant moves around its orbit. These binaries are likely to be the immediate evolutionary precursors of close binary planetary nebula and post-asymptotic giant branch and post-red giant branch stars. Due to the MACHO and OGLE photometric monitoring projects, the light variability nature of these ellipsoidal variables has been well studied. However, due to the lack of radial velocity curves, the nature of their masses, separations, and other orbital details has so far remained largely unknown. In order to improve this situation, we have carried out spectral monitoring observations of a large sample of 80 ellipsoidal variables in the Large Magellanic Cloud and we have derived radial velocity curves. At least 12 radial velocity points with good quality were obtained for most of the ellipsoidal variables. The radial velocity data are provided with this paper. Combining the photometric and radial velocity data, we present some statistical results related to the binary properties of these ellipsoidal variables.

  6. En-face imaging of the ellipsoid zone in the retina from optical coherence tomography B-scans

    Science.gov (United States)

    Holmes, T.; Larkin, S.; Downing, M.; Csaky, K.

    2015-03-01

    It is generally believed that photoreceptor integrity is related to the ellipsoid zone appearance in optical coherence tomography (OCT) B-scans. Algorithms and software were developed for viewing and analyzing the ellipsoid zone. The software performs the following: (a), automated ellipsoid zone isolation in the B-scans, (b), en-face view of the ellipsoid-zone reflectance, (c), alignment and overlay of (b) onto reflectance images of the retina, and (d), alignment and overlay of (c) with microperimetry sensitivity points. Dataset groups were compared from normal and dry age related macular degeneration (DAMD) subjects. Scalar measurements for correlation against condition included the mean and standard deviation of the ellipsoid zone's reflectance. The imageprocessing techniques for automatically finding the ellipsoid zone are based upon a calculation of optical flow which tracks the edges of laminated structures across an image. Statistical significance was shown in T-tests of these measurements with the population pools separated as normal and DAMD subjects. A display of en-face ellipsoid-zone reflectance shows a clear and recognizable difference between any of the normal and DAMD subjects in that they show generally uniform and nonuniform reflectance, respectively, over the region near the macula. Regions surrounding points of low microperimetry (μP) sensitivity have nonregular and lower levels of ellipsoid-zone reflectance nearby. These findings support the idea that the photoreceptor integrity could be affecting both the ellipsoid-zone reflectance and the sensitivity measurements.

  7. On flexible and rigid nouns

    DEFF Research Database (Denmark)

    Rijkhoff, Jan

    2008-01-01

    Studies in Language 32-3 (2008), 727-752. Special issue: Parts of Speech: Descriptive tools, theoretical constructs Jan Rijkhoff - On flexible and rigid nouns This article argues that in addition to the flexible lexical categories in Hengeveld’s classification of parts-of-speech systems (Contentive......, Non-Verb, Modifier), there are also flexible word classes within the rigid lexical category Noun (Set Noun, Sort Noun, General Noun). Members of flexible word classes are characterized by their vague semantics, which in the case of nouns means that values for the semantic features Shape...... and Homogeneity are either left undetermined or they are specified in such a way that they do not quite match the properties of the kind of entity denoted by the flexible item in the external world. I will then argue that flexible word classes constitute a proper category (i.e. they are not the result of a merger...

  8. Functionally rigid bistable [2]rotaxanes

    DEFF Research Database (Denmark)

    Nygaard, Sune; Leung, Ken C-F; Aprahamian, Ivan

    2007-01-01

    defines an unambiguous distance of 1.5 nm over which the ring moves between the MPTTF and NP units. The degenerate NP/NP [2]rotaxane was used to investigate the shuttling barrier by dynamic 1H NMR spectroscopy for the movement of the CBPQT4+ ring across the new rigid spacer. It is evident from...... better control over the position of the ring component in the ground state but also for control over the location of the CBPQT4+ ring during solution-state switching experiments, triggered either chemically (1H NMR) or electrochemically (cyclic voltammetry). In this instance, the use of the rigid spacer......Two-station [2]rotaxanes in the shape of a degenerate naphthalene (NP) shuttle and a nondegenerate monopyrrolotetrathiafulvalene (MPTTF)/NP redox-controllable switch have been synthesized and characterized in solution. Their dumbbell-shaped components are composed of polyether chains interrupted...

  9. Rigid body dynamics of mechanisms

    CERN Document Server

    Hahn, Hubert

    2003-01-01

    The second volume of Rigid Body Dynamics of Mechanisms covers applications via a systematic method for deriving model equations of planar and spatial mechanisms. The necessary theoretical foundations have been laid in the first volume that introduces the theoretical mechanical aspects of mechatronic systems. Here the focus is on the application of the modeling methodology to various examples of rigid-body mechanisms, simple planar ones as well as more challenging spatial problems. A rich variety of joint models, active constraints, plus active and passive force elements is treated. The book is intended for self-study by working engineers and students concerned with the control of mechanical systems, i.e. robotics, mechatronics, vehicles, and machine tools. The examples included are a likely source from which to choose models for university lectures.

  10. Associative memory through rigid origami

    Science.gov (United States)

    Murugan, Arvind; Brenner, Michael

    2015-03-01

    Mechanisms such as Miura Ori have proven useful in diverse contexts since they have only one degree of freedom that is easily controlled. We combine the theory of rigid origami and associative memory in frustrated neural networks to create structures that can ``learn'' multiple generic folding mechanisms and yet can be robustly controlled. We show that such rigid origami structures can ``recall'' a specific learned mechanism when induced by a physical impulse that only need resemble the desired mechanism (i.e. robust recall through association). Such associative memory in matter, seen before in self-assembly, arises due to a balance between local promiscuity (i.e., many local degrees of freedom) and global frustration which minimizes interference between different learned behaviors. Origami with associative memory can lead to a new class of deployable structures and kinetic architectures with multiple context-dependent behaviors.

  11. Rigidity spectrum of Forbush decrease

    International Nuclear Information System (INIS)

    Sakakibara, S.; Munakata, K.; Nagashima, K.

    1985-01-01

    Using data from neutron monitors and muon telescopes at surface and underground stations, the average rigidity spectrum of Forbush decreases (Fds) during the period of 1978-1982 were obtained. Thirty eight Ed-events are classified into two groups, Hard Fd and Soft FD according to size of Fd at the Sakashita station. It is found that a spectral form of a fractional-power type (P to the-gamma sub 1 (P+P sub c) to the -gamma sub2) is more suitable than that of a power-exponential type or of a power type with an upper limiting rigidity. The best fitted spectrum of the fractional-power type is expressed by gamma sub1 = 0.37, gamma sub2 = 0.89 and P subc = 10 GV for Hard Fd and gamma sub1 = 0.77, gamma sub2 = 1.02 and P sub c - 14GV for Soft Fd

  12. Signature of Thermal Rigidity Percolation

    International Nuclear Information System (INIS)

    Huerta, Adrián

    2013-01-01

    To explore the role that temperature and percolation of rigidity play in determining the macroscopic properties, we propose a model that adds translational degrees of freedom to the spins of the well known Ising hamiltonian. In particular, the Ising model illustrate the longstanding idea that the growth of correlations on approach to a critical point could be describable in terms of the percolation of some sort of p hysical cluster . For certain parameters of this model we observe two well defined peaks of C V , that suggest the existence of two kinds of p hysical percolation , namely connectivity and rigidity percolation. Thermal fluctuations give rise to two different kinds of elementary excitations, i.e. droplets and configuron, as suggested by Angell in the framework of a bond lattice model approach. The later is reflected in the fluctuations of redundant constraints that gives stability to the structure and correlate with the order parameter

  13. Torsional rigidity, isospectrality and quantum graphs

    International Nuclear Information System (INIS)

    Colladay, Don; McDonald, Patrick; Kaganovskiy, Leon

    2017-01-01

    We study torsional rigidity for graph and quantum graph analogs of well-known pairs of isospectral non-isometric planar domains. We prove that such isospectral pairs are distinguished by torsional rigidity. (paper)

  14. Minimization of stress concentration factor in cylindrical pressure vessels with ellipsoidal heads

    International Nuclear Information System (INIS)

    Magnucki, K.; Szyc, W.; Lewinski, J.

    2002-01-01

    The paper presents the problem of stress concentration in a cylindrical pressure vessel with ellipsoidal heads subject to internal pressure. At the line, where the ellipsoidal head is adjacent to the circular cylindrical shell, a shear force and bending moment occur, disturbing the membrane stress state in the vessel. The degree of stress concentration depends on the ratio of thicknesses of both the adjacent parts of the shells and on the relative convexity of the ellipsoidal head, with the range for radius-to-thickness ratio between 75 and 125. The stress concentration was analytically described and, afterwards, the effect of these values on the stress concentration ratio was numerically examined. Results of the analysis are shown on charts

  15. The microwave properties of composites including lightweight core–shell ellipsoids

    International Nuclear Information System (INIS)

    Yuan, Liming; Xu, Yonggang; Dai, Fei; Liao, Yi; Zhang, Deyuan

    2016-01-01

    In order to study the microwave properties of suspensions including lightweight core–shell ellipsoids, the calculation formula was obtained by substituting an equivalent ellipsoid for the original core–shell ellipsoid. Simulations for Fe-coated diatomite/paraffin suspensions were performed. Results reveal that the calculated results fitted the measured results very well when the inclusion concentration was no more than 15 vol%, but there was an obvious deviation when the inclusion concentration reached 24 vol%. By comparisons, the formula for less diluted suspensions was more suitable for calculating the electromagnetic parameter of suspensions especially when the ratio was smaller between the electromagnetic parameter of the inclusion and that of the host medium. - Highlights: • The microwave properties of suspensions with core-shell inclusions were studied. • Less diluted suspensions were considered. • Flaky Fe-coated diatomite/paraffin suspensions were studied. • The microwave properties could be simulated successfully.

  16. Plug and Play Robust Distributed Control with Ellipsoidal Parametric Uncertainty System

    Directory of Open Access Journals (Sweden)

    Hong Wang-jian

    2016-01-01

    Full Text Available We consider a continuous linear time invariant system with ellipsoidal parametric uncertainty structured into subsystems. Since the design of a local controller uses only information on a subsystem and its neighbours, we combine the plug and play idea and robust distributed control to propose one distributed control strategy for linear system with ellipsoidal parametric uncertainty. Firstly for linear system with ellipsoidal parametric uncertainty, a necessary and sufficient condition for robust state feedback control is proposed by means of linear matrix inequality. If this necessary and sufficient condition is satisfied, this robust state feedback gain matrix can be easily derived to guarantee robust stability and prescribed closed loop performance. Secondly the plug and play idea is introduced in the design process. Finally by one example of aircraft flutter model parameter identification, the efficiency of the proposed control strategy can be easily realized.

  17. The microwave properties of composites including lightweight core–shell ellipsoids

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Liming, E-mail: lming_y@163.com [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai 200438 (China); Xu, Yonggang; Dai, Fei; Liao, Yi [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai 200438 (China); Zhang, Deyuan [School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2016-12-01

    In order to study the microwave properties of suspensions including lightweight core–shell ellipsoids, the calculation formula was obtained by substituting an equivalent ellipsoid for the original core–shell ellipsoid. Simulations for Fe-coated diatomite/paraffin suspensions were performed. Results reveal that the calculated results fitted the measured results very well when the inclusion concentration was no more than 15 vol%, but there was an obvious deviation when the inclusion concentration reached 24 vol%. By comparisons, the formula for less diluted suspensions was more suitable for calculating the electromagnetic parameter of suspensions especially when the ratio was smaller between the electromagnetic parameter of the inclusion and that of the host medium. - Highlights: • The microwave properties of suspensions with core-shell inclusions were studied. • Less diluted suspensions were considered. • Flaky Fe-coated diatomite/paraffin suspensions were studied. • The microwave properties could be simulated successfully.

  18. Stick it! Articulated tracking using spatial rigid object priors

    DEFF Research Database (Denmark)

    Hauberg, Søren; Pedersen, Kim Steenstrup

    2010-01-01

    the phrased problem is interesting, the resulting algorithm is computationally too demanding to be of practical use. We present a simple and elegant model for describing this problem. The resulting algorithm is computationally much more efficient, while it at the same time produces superior results....

  19. Rigidity of monodromies for Appell's hypergeometric functions

    Directory of Open Access Journals (Sweden)

    Yoshishige Haraoka

    2015-01-01

    Full Text Available For monodromy representations of holonomic systems, the rigidity can be defined. We examine the rigidity of the monodromy representations for Appell's hypergeometric functions, and get the representations explicitly. The results show how the topology of the singular locus and the spectral types of the local monodromies work for the study of the rigidity.

  20. Rigidity and bradykinesia reduce interlimb coordination in Parkinsonian gait

    NARCIS (Netherlands)

    Winogrodzka, Ania; Wagenaar, Robert C.; Booij, Jan; Wolters, Eric C.

    2005-01-01

    Objective: To assess the influence of rigidity and bradykinesia and the extent of dopaminergic degeneration on interlimb coordination during walking in early, drug-naive patients with Parkinson's disease (PD). Design: The interlimb coordination was examined during a systematic manipulation of

  1. The Discovery of Ellipsoidal Variations in the Kepler Light Curve of HAT-P-7

    OpenAIRE

    Welsh, William F.; Orosz, Jerome A.; Seager, Sara; Fortney, Jonathan J.; Jenkins, Jon; Rowe, Jason F.; Koch, David; Borucki, William J.

    2010-01-01

    We present an analysis of the early Kepler observations of the previously discovered transiting planet HAT-P-7b. The light curve shows the transit of the star, the occultation of the planet, and the orbit phase-dependent light from the planet. In addition, phase-dependent light from the star is present, known as "ellipsoidal variations". The very nearby planet (only 4 stellar radii away) gravitationally distorts the star and results in a flux modulation twice per orbit. The ellipsoidal variat...

  2. The structural and thermodynamical properties of binary ellipsoidal fluid mixture Gay-Berne interaction

    Directory of Open Access Journals (Sweden)

    M. Moradi

    2007-06-01

    Full Text Available  In this paper, a uniform classical fluid mixture comprising ellipsoidal molecules is studied. This mixture is composed of two types of ellipsoidal molecules interacting through the Gay-Berne potential with different sizes at temperature T. For this system, the Ornstein-Zernike equation using the Percus-Yevick closure relation is solved. Then the direct correlation function, pair correlation function and the pressure of the fluid at temperature T are calculated. The obtained results are in agreement with the previous theories and the results of molecular dynamic computer simulation.

  3. Bäcklund transformations for the Jacobi system on an ellipsoid

    Science.gov (United States)

    Tsiganov, A. V.

    2017-09-01

    We consider analogues of auto- and hetero-Bäcklund transformations for the Jacobi system on a threeaxis ellipsoid. Using the results in a Weierstrass paper, where the change of times reduces integrating the equations of motion to inverting the Abel mapping, we construct the differential Abel equations and auto-Bäcklund transformations preserving the Poisson bracket with respect to which the equations of motion written in the Weierstrass form are Hamiltonian. Transforming this bracket to the canonical form, we can construct a new integrable system on the ellipsoid with a Hamiltonian of the natural form and with a fourth-degree integral of motion in momenta.

  4. Radiative transfer theory for active remote sensing of a layer of small ellipsoidal scatterers. [of vegetation

    Science.gov (United States)

    Tsang, L.; Kubacsi, M. C.; Kong, J. A.

    1981-01-01

    The radiative transfer theory is applied within the Rayleigh approximation to calculate the backscattering cross section of a layer of randomly positioned and oriented small ellipsoids. The orientation of the ellipsoids is characterized by a probability density function of the Eulerian angles of rotation. The radiative transfer equations are solved by an iterative approach to first order in albedo. In the half space limit the results are identical to those obtained via the approach of Foldy's and distorted Born approximation. Numerical results of the theory are illustrated using parameters encountered in active remote sensing of vegetation layers. A distinctive characteristic is the strong depolarization shown by vertically aligned leaves.

  5. Off-diagonal deformations of Kerr metrics and black ellipsoids in heterotic supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Vacaru, Sergiu I. [Quantum Gravity Research, Topanga, CA (United States); University ' ' Al. I. Cuza' ' , Project IDEI, Iasi (Romania); Irwin, Klee [Quantum Gravity Research, Topanga, CA (United States)

    2017-01-15

    Geometric methods for constructing exact solutions of equations of motion with first order α{sup '} corrections to the heterotic supergravity action implying a nontrivial Yang-Mills sector and six-dimensional, 6-d, almost-Kaehler internal spaces are studied. In 10-d spacetimes, general parametrizations for generic off-diagonal metrics, nonlinear and linear connections, and matter sources, when the equations of motion decouple in very general forms are considered. This allows us to construct a variety of exact solutions when the coefficients of fundamental geometric/physical objects depend on all higher-dimensional spacetime coordinates via corresponding classes of generating and integration functions, generalized effective sources and integration constants. Such generalized solutions are determined by generic off-diagonal metrics and nonlinear and/or linear connections; in particular, as configurations which are warped/compactified to lower dimensions and for Levi-Civita connections. The corresponding metrics can have (non-) Killing and/or Lie algebra symmetries and/or describe (1+2)-d and/or (1+3)-d domain wall configurations, with possible warping nearly almost-Kaehler manifolds, with gravitational and gauge instantons for nonlinear vacuum configurations and effective polarizations of cosmological and interaction constants encoding string gravity effects. A series of examples of exact solutions describing generic off-diagonal supergravity modifications to black hole/ellipsoid and solitonic configurations are provided and analyzed. We prove that it is possible to reproduce the Kerr and other type black solutions in general relativity (with certain types of string corrections) in the 4-d case and to generalize the solutions to non-vacuum configurations in (super-) gravity/string theories. (orig.)

  6. Off-diagonal deformations of Kerr metrics and black ellipsoids in heterotic supergravity

    International Nuclear Information System (INIS)

    Vacaru, Sergiu I.; Irwin, Klee

    2017-01-01

    Geometric methods for constructing exact solutions of equations of motion with first order α ' corrections to the heterotic supergravity action implying a nontrivial Yang-Mills sector and six-dimensional, 6-d, almost-Kaehler internal spaces are studied. In 10-d spacetimes, general parametrizations for generic off-diagonal metrics, nonlinear and linear connections, and matter sources, when the equations of motion decouple in very general forms are considered. This allows us to construct a variety of exact solutions when the coefficients of fundamental geometric/physical objects depend on all higher-dimensional spacetime coordinates via corresponding classes of generating and integration functions, generalized effective sources and integration constants. Such generalized solutions are determined by generic off-diagonal metrics and nonlinear and/or linear connections; in particular, as configurations which are warped/compactified to lower dimensions and for Levi-Civita connections. The corresponding metrics can have (non-) Killing and/or Lie algebra symmetries and/or describe (1+2)-d and/or (1+3)-d domain wall configurations, with possible warping nearly almost-Kaehler manifolds, with gravitational and gauge instantons for nonlinear vacuum configurations and effective polarizations of cosmological and interaction constants encoding string gravity effects. A series of examples of exact solutions describing generic off-diagonal supergravity modifications to black hole/ellipsoid and solitonic configurations are provided and analyzed. We prove that it is possible to reproduce the Kerr and other type black solutions in general relativity (with certain types of string corrections) in the 4-d case and to generalize the solutions to non-vacuum configurations in (super-) gravity/string theories. (orig.)

  7. Authoritarianism, cognitive rigidity, and the processing of ambiguous visual information.

    Science.gov (United States)

    Duncan, Lauren E; Peterson, Bill E

    2014-01-01

    Intolerance of ambiguity and cognitive rigidity are unifying aspects of authoritarianism as defined by Adorno, Frenkel-Brunswik, Levinson, and Sanford (1982/1950), who hypothesized that authoritarians view the world in absolute terms (e.g., good or evil). Past studies have documented the relationship between authoritarianism and intolerance of ambiguity and rigidity. Frenkel-Brunswik (1949) hypothesized that this desire for absolutism was rooted in perceptual processes. We present a study with three samples that directly tests the relationship between right wing authoritarianism (RWA) and the processing of ideologically neutral but ambiguous visual stimuli. As hypothesized, in all three samples we found that RWA was related to the slower processing of visual information that required participants to recategorize objects. In a fourth sample, RWA was unrelated to speed of processing visual information that did not require recategorization. Overall, results suggest a relationship between RWA and rigidity in categorization.

  8. Geometry, rigidity, and group actions

    CERN Document Server

    Farb, Benson; Zimmer, Robert J

    2011-01-01

    The study of group actions is more than a hundred years old but remains to this day a vibrant and widely studied topic in a variety of mathematic fields. A central development in the last fifty years is the phenomenon of rigidity, whereby one can classify actions of certain groups, such as lattices in semi-simple Lie groups. This provides a way to classify all possible symmetries of important spaces and all spaces admitting given symmetries. Paradigmatic results can be found in the seminal work of George Mostow, Gergory Margulis, and Robert J. Zimmer, among others.The p

  9. Unusual CoS2 ellipsoids with anisotropic tube-like cavities and their application in supercapacitors.

    Science.gov (United States)

    Zhang, Lei; Wu, Hao Bin; Lou, Xiong Wen

    2012-07-14

    Unusual CoS(2) ellipsoids with anisotropic tube-like cavities have been synthesized from the simultaneous thermal decomposition and sulfidation of a preformed cobalt carbonate precursor. The as-prepared CoS(2) ellipsoids show interesting supercapacitive properties with high capacitance and good cycling performance.

  10. Terrain Correction on the moving equal area cylindrical map projection of the surface of a reference ellipsoid

    Science.gov (United States)

    Ardalan, A.; Safari, A.; Grafarend, E.

    2003-04-01

    An operational algorithm for computing the ellipsoidal terrain correction based on application of closed form solution of the Newton integral in terms of Cartesian coordinates in the cylindrical equal area map projected surface of a reference ellipsoid has been developed. As the first step the mapping of the points on the surface of a reference ellipsoid onto the cylindrical equal area map projection of a cylinder tangent to a point on the surface of reference ellipsoid closely studied and the map projection formulas are computed. Ellipsoidal mass elements with various sizes on the surface of the reference ellipsoid is considered and the gravitational potential and the vector of gravitational intensity of these mass elements has been computed via the solution of Newton integral in terms of ellipsoidal coordinates. The geographical cross section areas of the selected ellipsoidal mass elements are transferred into cylindrical equal area map projection and based on the transformed area elements Cartesian mass elements with the same height as that of the ellipsoidal mass elements are constructed. Using the close form solution of the Newton integral in terms of Cartesian coordinates the potential of the Cartesian mass elements are computed and compared with the same results based on the application of the ellipsoidal Newton integral over the ellipsoidal mass elements. The results of the numerical computations show that difference between computed gravitational potential of the ellipsoidal mass elements and Cartesian mass element in the cylindrical equal area map projection is of the order of 1.6 × 10-8m^2/s^2 for a mass element with the cross section size of 10 km × 10 km and the height of 1000 m. For a 1 km × 1 km mass element with the same height, this difference is less than 1.5 × 10-4 m^2}/s^2. The results of the numerical computations indicate that a new method for computing the terrain correction based on the closed form solution of the Newton integral in

  11. Simple and Multi-collision of an Ellipsoid with Planar Surfaces. Part I: Theory

    Directory of Open Access Journals (Sweden)

    Nicolae–Doru Stănescu

    2017-11-01

    Full Text Available This paper discusses the problem of simultaneous collisions between an ellipsoid and some planar surfaces. The approach is one based on the theory of screws and uses the notion of inertance. The authors consider that the coefficients of restitution are different for each planar surface and they obtain the velocities after the collision. An example concludes the theory.

  12. Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study

    Czech Academy of Sciences Publication Activity Database

    Trojek, Jan; Chvátal, Lukáš; Zemánek, Pavel

    2012-01-01

    Roč. 29, č. 7 (2012), s. 1224-1236 ISSN 1084-7529 R&D Projects: GA ČR GA202/09/0348; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : ellipsoidal nanorod * optical tweezers * Rayleigh approximation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.665, year: 2012

  13. A DEEP CUT ELLIPSOID ALGORITHM FOR CONVEX-PROGRAMMING - THEORY AND APPLICATIONS

    NARCIS (Netherlands)

    FRENK, JBG; GROMICHO, J; ZHANG, S

    1994-01-01

    This paper proposes a deep cut version of the ellipsoid algorithm for solving a general class of continuous convex programming problems. In each step the algorithm does not require more computational effort to construct these deep cuts than its corresponding central cut version. Rules that prevent

  14. The hard ellipsoid-of-revolution fluid II. The y-expansion equation of state

    NARCIS (Netherlands)

    Mulder, B.M.; Frenkel, D.

    1985-01-01

    The γ-expansion as introduced by Barboy and Gelbart is applied to a system of hard ellipsoids-of-revolution. The expansion is truncated after the third order term yielding an approximate theory requiring the second- and third-virial coefficients as inputs. As the third virial coefficient is not

  15. Application of covariance clouds for estimating the anisotropy ellipsoid eigenvectors, with case study in uranium deposit

    International Nuclear Information System (INIS)

    Jamali Esfahlan, D.; Madani, H.; Tahmaseb Nazemi, M. T.; Mahdavi, F.; Ghaderi, M. R.; Najafi, M.

    2010-01-01

    Various methods of Kriging and nonlinear geostatistical methods considered as acceptable methods for resource and reserve estimations have characters such as the least estimation variance in their nature, and accurate results in the acceptable confidence levels range could be achieved if the required parameters for the estimation are determined accurately. If the determined parameters don't have the sufficient accuracy, 3-D geostatistical estimations will not be reliable any more, and by this, all the quantitative parameters of the mineral deposit (e.g. grade-tonnage variations) will be misinterpreted. One of the most significant parameters for 3-D geostatistical estimation is the anisotropy ellipsoid. The anisotropy ellipsoid is important for geostatistical estimations because it determines the samples in different directions required for accomplishing the estimation. The aim of this paper is to illustrate a more simple and time preserving analytical method that can apply geophysical or geochemical analysis data from the core-length of boreholes for modeling the anisotropy ellipsoid. By this method which is based on the distribution of covariance clouds in a 3-D sampling space of a deposit, quantities, ratios, azimuth and plunge of the major-axis, semi-major axis and the minor-axis determine the ore-grade continuity within the deposit and finally the anisotropy ellipsoid of the deposit will be constructed. A case study of an uranium deposit is also analytically discussed for illustrating the application of this method.

  16. Plastic deformation and contact area of an elastic-plastic contact of ellipsoid bodies after unloading

    NARCIS (Netherlands)

    Jamari, Jamari; Schipper, Dirk J.

    2007-01-01

    This paper presents theoretical and experimental results of the residual or plastic deformation and the plastic contact area of an elastic–plastic contact of ellipsoid bodies after unloading. There are three regime responses of the deformation and contact area: elastic, elastic–plastic and fully

  17. Orientational dynamics of a triaxial ellipsoid in simple shear flow: Influence of inertia.

    Science.gov (United States)

    Rosén, Tomas; Kotsubo, Yusuke; Aidun, Cyrus K; Do-Quang, Minh; Lundell, Fredrik

    2017-07-01

    The motion of a single ellipsoidal particle in simple shear flow can provide valuable insights toward understanding suspension flows with nonspherical particles. Previously, extensive studies have been performed on the ellipsoidal particle with rotational symmetry, a so-called spheroid. The nearly prolate ellipsoid (one major and two minor axes of almost equal size) is known to perform quasiperiodic or even chaotic orbits in the absence of inertia. With small particle inertia, the particle is also known to drift toward this irregular motion. However, it is not previously understood what effects from fluid inertia could be, which is of highest importance for particles close to neutral buoyancy. Here, we find that fluid inertia is acting strongly to suppress the chaotic motion and only very weak fluid inertia is sufficient to stabilize a rotation around the middle axis. The mechanism responsible for this transition is believed to be centrifugal forces acting on fluid, which is dragged along with the rotational motion of the particle. With moderate fluid inertia, it is found that nearly prolate triaxial particles behave similarly to the perfectly spheroidal particles. Finally, we also are able to provide predictions about the stable rotational states for the general triaxial ellipsoid in simple shear with weak inertia.

  18. Pancreatic mucinous cystic neoplasm size using CT volumetry, spherical and ellipsoid formulas: validation study.

    Science.gov (United States)

    Chalian, Hamid; Seyal, Adeel Rahim; Rezai, Pedram; Töre, Hüseyin Gürkan; Miller, Frank H; Bentrem, David J; Yaghmai, Vahid

    2014-01-10

    The accuracy for determining pancreatic cyst volume with commonly used spherical and ellipsoid methods is unknown. The role of CT volumetry in volumetric assessment of pancreatic cysts needs to be explored. To compare volumes of the pancreatic cysts by CT volumetry, spherical and ellipsoid methods and determine their accuracy by correlating with actual volume as determined by EUS-guided aspiration. Setting This is a retrospective analysis performed at a tertiary care center. Patients Seventy-eight pathologically proven pancreatic cysts evaluated with CT and endoscopic ultrasound (EUS) were included. Design The volume of fourteen cysts that had been fully aspirated by EUS was compared to CT volumetry and the routinely used methods (ellipsoid and spherical volume). Two independent observers measured all cysts using commercially available software to evaluate inter-observer reproducibility for CT volumetry. The volume of pancreatic cysts as determined by various methods was compared using repeated measures analysis of variance. Bland-Altman plot and intraclass correlation coefficient were used to determine mean difference and correlation between observers and methods. The error was calculated as the percentage of the difference between the CT estimated volumes and the aspirated volume divided by the aspirated one. CT volumetry was comparable to aspirated volume (P=0.396) with very high intraclass correlation (r=0.891, Pvolumetry. There was excellent inter-observer correlation in volumetry of the entire cohort (r=0.997, Pvolumetry is accurate and reproducible. Ellipsoid and spherical volume overestimate the true volume of pancreatic cysts.

  19. Acoustic wave focusing in an ellipsoidal reflector for extracorporeal shock-wave lithotripsy

    Science.gov (United States)

    Lottati, Itzhak; Eidelman, Shmuel

    1993-07-01

    Simulations of acoustic wave focusing in an ellipsoidal reflector for extracorporeal shock-wave lithotripsy (ESWL) are presented. The simulations are done on a structured/unstructured grid with a modified Tait equation of state for water. The Euler equations are solved by applying a second-order Godunov method. The computed results compare very well with the experimental results.

  20. Application of the ellipsoid modeling of the average shape of nanosized crystallites in powder diffraction

    DEFF Research Database (Denmark)

    Katerinopoulou, Anna; Balic Zunic, Tonci; Lundegaard, Lars Fahl

    2012-01-01

    Anisotropic broadening correction in X-ray powder diffraction by an ellipsoidal formula is applied on samples with nanosized crystals. Two cases of minerals with largely anisotropic crystallite shapes are presented. The properly applied formalism not only improves the fitting of the theoretical...

  1. A Deep Cut Ellipsoid Algorithm for convex Programming: theory and Applications

    NARCIS (Netherlands)

    Frenk, J.B.G.; Gromicho Dos Santos, J.A.; Zhang, S.

    1994-01-01

    This paper proposes a deep cut version of the ellipsoid algorithm for solving a general class of continuous convex programming problems. In each step the algorithm does not require more computational effort to construct these deep cuts than its corresponding central cut version. Rules that prevent

  2. A deep cut ellipsoid algorithm for convex programming : Theory and applications

    NARCIS (Netherlands)

    J.B.G. Frenk (Hans); J.A.S. Gromicho (Joaquim); S. Zhang (Shuzhong)

    1994-01-01

    textabstractThis paper proposes a deep cut version of the ellipsoid algorithm for solving a general class of continuous convex programming problems. In each step the algorithm does not require more computational effort to construct these deep cuts than its corresponding central cut version. Rules

  3. Advanced Pavement Design: Finite Element Modeling for Rigid Pavement Joints, Report II: Model Development

    National Research Council Canada - National Science Library

    Hammons, Michael

    1998-01-01

    .... The objective of this research was to obtain data on the response of the ng'id pavement slab-joint-foundation system by conducting laboratory-scale experiments on jointed rigid pavement models...

  4. Osteocyte Lacunae are Lenticular/Ellipsoid Spaces or Spiral/Helical Tubules

    Directory of Open Access Journals (Sweden)

    Bijit Kanti Guha

    2017-10-01

    Full Text Available Introduction: According to the current concept of bone structure, the osteocyte lacunae are lenticular or ellipsoid spaces occupied by osteocytes. These osteocytes are thought to communicate with each other through a tubular system made up of Canaliculi. The rest of the structures i.e., Haversian canal, and Volkmann’s canal are also tubular in shape. Considering this existing concept of bone microstructure described by various authors, it is highly unlikely that the lacunae alone would be lenticular/ellipsoid structure. In the present study author wanted to know that amongst the all tubular spaces, what is the reason that only the osteocyte lacunae are lenticular or ellipsoid structure? Also to investigate whether these lenticular spaces are really lenticular/ellipsoid or they are cut sections of tubes, which are lying helically or spirally. It is well known from various previous studies that Haversian canal, Volkmann’s canal and Canaliculi are tubular shaped structures and how it is possible that lenticular/ellipsoid structure can present amongst them. So we thought that, it may be possible that these lenticular spaces are not actually lenticular but this lenticular shape is due to the cut sections of any type of tubule in various possible planes (i.e., transverse, longitudinal and various degrees of oblique plane. Aim: The present study was carried out to reinvestigate the shape of the osteocyte lacunae amongst the tubular system (i.e., Haversian canal, Volkmann’s canal and Canaliculi of compact bone. Materials and Methods: The study is carried out by preparing thin sections of adult bones (ground glass preparation and visualizing them under binocular light microscope and scanelectron microscope after following proper procedure. Results: We observed that the lacunae are actually spirally/helically placed tubules with several branching. These branching are considered as canaliculi. These branching are of various diameters and they

  5. Spreading Dynamics of an Ellipsoidal Drop Impacting on a Heated Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Sungchan [Korea Nat’l. Univ. of Transportation, Chungju (Korea, Republic of)

    2017-03-15

    Unlike spherical drop impact, ellipsoidal drop impact can control the bouncing height on a heated surface by significantly altering impact behavior. To scrutinize the effect of the aspect ratio (AR) of the drop on the bounce suppression, in this study, non-axisymmetric spreading behaviors are observed from two side views and characterized based on the spreading width of the drop for horizontal principal axes. In addition, the maximum spreading width is investigated for various ARs. The results show that as the AR increases, the maximum spreading width of the minor axis increases, whereas that of the major axis shows no significant variation. In the regime of high AR and high impact velocity, liquid fragmentations by three parts are observed during bouncing. These fragmentations are discussed in this work. The hydrodynamic features of ellipsoidal drop impact will help understand bouncing control on non-wetting surfaces for several applications, such as self-cleaning and spray cooling.

  6. New fabrication method for an ellipsoidal neutron focusing mirror with a metal substrate.

    Science.gov (United States)

    Guo, Jiang; Takeda, Shin; Morita, Shin-ya; Hino, Masahiro; Oda, Tatsuro; Kato, Jun-ichi; Yamagata, Yutaka; Furusaka, Michihiro

    2014-10-06

    We propose an ellipsoidal neutron focusing mirror using a metal substrate made with electroless nickel-phosphorus (NiP) plated material for the first time. Electroless NiP has great advantages for realizing an ellipsoidal neutron mirror because of its amorphous structure, good machinability and relatively large critical angle of total reflection for neutrons. We manufactured the mirror by combining ultrahigh precision cutting and fine polishing to generate high form accuracy and low surface roughness. The form accuracy of the mirror was estimated to be 5.3 μm P-V and 0.8 μm P-V for the minor-axis and major-axis direction respectively, while the surface roughness was reduced to 0.2 nm rms. The effect of form error on focusing spot size was evaluated by using a laser beam and the focusing performance of the mirror was verified by neutron experiments.

  7. Quark self-energy in an ellipsoidally anisotropic quark-gluon plasma

    Science.gov (United States)

    Kasmaei, Babak S.; Nopoush, Mohammad; Strickland, Michael

    2016-12-01

    We calculate the quark self-energy in a quark-gluon plasma that possesses an ellipsoidal momentum-space anisotropy in the local rest frame. By introducing additional transverse-momentum anisotropy parameters into the parton distribution functions, we generalize previous results which were obtained for the case of a spheroidal anisotropy. Our results demonstrate that the presence of anisotropies in the transverse directions affects the real and imaginary parts of quark self-energy and, consequently, the self-energy depends on both the polar and azimuthal angles in the local rest frame of the matter. Our results for the quark self-energy set the stage for the calculation of the effects of ellipsoidal momentum-space anisotropy on quark-gluon plasma photon spectra and collective flow.

  8. Topological orders in rigid states

    International Nuclear Information System (INIS)

    Wen, X.G.

    1990-01-01

    The authors study a new kind of ordering topological order in rigid states (the states with no local gapless excitations). This paper concentrates on characterization of the different topological orders. As an example the authors discuss in detail chiral spin states of 2+1 dimensional spin systems. Chiral spin states are described by the topological Chern-Simons theories in the continuum limit. The authors show that the topological orders can be characterized by a non-Abelian gauge structure over the moduli space which parametrizes a family of the model Hamiltonians supporting topologically ordered ground states. In 2 + 1 dimensions, the non-Abelian gauge structure determines possible fractional statistics of the quasi-particle excitations over the topologically ordered ground states. The dynamics of the low lying global excitations is shown to be independent of random spatial dependent perturbations. The ground state degeneracy and the non-Abelian gauge structures discussed in this paper are very robust, even against those perturbations that break translation symmetry. The authors also discuss the symmetry properties of the degenerate ground states of chiral spin states. The authors find that some degenerate ground states of chiral spin states on torus carry non-trivial quantum numbers of the 90 degrees rotation

  9. Measuring stone volume - three-dimensional software reconstruction or an ellipsoid algebra formula?

    Science.gov (United States)

    Finch, William; Johnston, Richard; Shaida, Nadeem; Winterbottom, Andrew; Wiseman, Oliver

    2014-04-01

    To determine the optimal method for assessing stone volume, and thus stone burden, by comparing the accuracy of scalene, oblate, and prolate ellipsoid volume equations with three-dimensional (3D)-reconstructed stone volume. Kidney stone volume may be helpful in predicting treatment outcome for renal stones. While the precise measurement of stone volume by 3D reconstruction can be accomplished using modern computer tomography (CT) scanning software, this technique is not available in all hospitals or with routine acute colic scanning protocols. Therefore, maximum diameters as measured by either X-ray or CT are used in the calculation of stone volume based on a scalene ellipsoid formula, as recommended by the European Association of Urology. In all, 100 stones with both X-ray and CT (1-2-mm slices) were reviewed. Complete and partial staghorn stones were excluded. Stone volume was calculated using software designed to measure tissue density of a certain range within a specified region of interest. Correlation coefficients among all measured outcomes were compared. Stone volumes were analysed to determine the average 'shape' of the stones. The maximum stone diameter on X-ray was 3-25 mm and on CT was 3-36 mm, with a reasonable correlation (r = 0.77). Smaller stones (15 mm towards scalene ellipsoids. There was no difference in stone shape by location within the kidney. As the average shape of renal stones changes with diameter, no single equation for estimating stone volume can be recommended. As the maximum diameter increases, calculated stone volume becomes less accurate, suggesting that larger stones have more asymmetric shapes. We recommend that research looking at stone clearance rates should use 3D-reconstructed stone volumes when available, followed by prolate, oblate, or scalene ellipsoid formulas depending on the maximum stone diameter. © 2013 The Authors. BJU International © 2013 BJU International.

  10. ORTEP-III: Oak Ridge Thermal Ellipsoid Plot Program for crystal structure illustrations

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, M.N.; Johnson, C.K.

    1996-07-01

    This report describes a computer program for drawing crystal structure illustrations. Ball-and-stick type illustrations of a quality suitable for publication are produced with either spheres or thermal-motion probability ellipsoids on the atomic sites. The program can also produce stereoscopic pairs of illustrations which aid in the visualization of complex packing arrangements of atoms and thermal motion patterns. Interatomic distances, bond angles, and principal axes of thermal motion are also calculated to aid the structural study.

  11. INFLUENCE OF LASER BEAM PROFILE ON LIGHT SCATTERING BY HUMAN SKIN DURING PHOTOMETRY BY ELLIPSOIDAL REFLECTORS

    Directory of Open Access Journals (Sweden)

    M. A. Bezuglyi

    2018-01-01

    Full Text Available The correct accounting of laser emitter parameters for improvement of diagnostic authenticity of methods of optical biomedical diagnostic is important problem for applied biophotonic tasks. The purpose of the current research is estimation of influence of energy distribution profile in transversal section of laser beam on light scattering by human skin layers at photometry by ellipsoidal reflectors.Biomedical photometer with ellipsoidal reflectors for investigation of biological tissue specimens in transmitted and reflected light uses laser probing radiation with infinitely thin, Gauss-type and uniform cross-section profile. Distribution of beams with denoted profiles, which consist of 20 million photons with wavelength 632.8 nm, was modeled by using of Monte-Carlo simulation in human skin layers (corneous layer, epidermis, derma and adipose tissue of various anatomic thickness and with ellipsoidal reflectors with focal parameter equal to 16.875 mm and eccentricity of 0.66.The modeling results represent that illuminance distribution in zones of photometric imaging is significantly influenced by the laser beam cross-section profile for various thickness of corneous layer and epidermis in transmitted and reflected light, and also derma in reflected light. Illuminance distribution for adipose tissue in reflected and transmitted light, and also derma in transmitted light, practically do not depend of laser beam profile for anatomic thicknesses, which are appropriate for human skin on various sections of body.There are represented results of modified Monte-Carlo simulation method for biomedical photometer with ellipsoidal reflectors during biometry of human skin layers. For highly scattered corneous layer and epidermis the illumination of middle and external rings of photometric images changes depending from the laser beam profile for more than 50 % in transmitted and 30 % in reflected light. For weakly scattering skin layers (derma and adipose layer

  12. Aging linear viscoelasticity of matrix-inclusion composite materials featuring ellipsoidal inclusions

    OpenAIRE

    LAVERGNE, Francis; SAB, Karam; SANAHUJA, Julien; BORNERT, Michel; TOULEMONDE, Charles

    2016-01-01

    A multi-scale homogenization scheme is proposed to estimate the time-dependent strains of fiber-reinforced concrete. This material is modeled as an aging linear viscoelastic composite material featuring ellipsoidal inclusions embedded in a viscoelastic cementitious matrix characterized by a time-dependent Poisson's ratio. To this end, the homogenization scheme proposed in Lavergne et al. [1] is adapted to the case of a time-dependent Poisson's ratio and it is successfully validated on a non-a...

  13. Experimental study of the moment of inertia of a cone-angular variation and inertia ellipsoid

    International Nuclear Information System (INIS)

    Pintao, Carlos A F; Souza de Filho, Moacir P; Usida, Wesley F; Xavier, Jose A

    2007-01-01

    In this paper, an experimental set-up which differs from the traditional ones is established in order to determine the moment of inertia of a right circular cone. Its angular variation and inertia ellipsoid are determined by means of an experimental study. In addition, a system that allows for the evaluation of the angular acceleration and torque through electric current or frequency measurement is utilized

  14. Manufacturing method for hard x-ray focusing mirrors with ellipsoidal surface

    International Nuclear Information System (INIS)

    Yumoto, Hirokatsu; Koyama, Takahisa; Ohashi, Haruhiko; Matsuyama, Satoshi; Yamauchi, Kazuto

    2014-01-01

    The aim of this study is to establishing the manufacturing method for hard x-ray nano-focusing mirrors with ellipsoidal surface. Ellipsoidal mirror optics, which can produce point focus with a mirror, has a noticeable feature of a high focusing efficiency, although an ultra-precise surface figure with an accuracy of a few nanometers is required for nano-focusing mirrors. Here, we examined the effectiveness of the manufacturing process for ellipsoidal mirrors, which is consisted of a precision grinding process, a removal process of surface roughness, and a computer-controlled shape correction. The precision processing machine for both a removal of surface roughness and a shape correction was developed. This validated the utility of removing surface roughness with a spatial wavelength of 40 μm, which is the tool mark of the grinding process. The developed process achieved the improvement of surface roughness from 1.6 nm to 0.1 nm (RMS), and the figure correction with a high accuracy of < 10 nm and a spatial resolution of < 2 mm. (author)

  15. Measurement of self-shaped ellipsoidal bunches from a photoinjector with postacceleration

    Directory of Open Access Journals (Sweden)

    Brendan O’Shea

    2011-01-01

    Full Text Available Recent work has shown the possibility of generating self-shaped ellipsoidal beams with properties commensurate with the requirements of future light sources such as free-electron lasers and inverse Compton sources. In this so-termed “blowout” regime, short laser bunches are transformed via photoemission into short electron bunches which then self-consistently evolve into nearly uniform-density ellipsoids under space-charge forces. We report here on the first blowout studies conducted in collaboration between the UCLA Particle Beam Physics Lab and the Photo Injector Test Facility, Zeuthen (PITZ. The measurements conducted at the PITZ photoinjector facility examine the evolution of 750 pC, 2.7 ps FWHM electron bunches born in an L-band photoinjector and subsequently accelerated through a nine-cell L-band booster for a resulting energy of 12 MeV. These measurements represent the first observations of self-shaped ellipsoid evolution under postinjector acceleration, a key step in demonstrating the utility of such self-shaped beams at higher energy, where the advantages in both transverse and longitudinal and transverse phase space may be exploited in creating very high brightness beams.

  16. The TMS-1 corneal topography measurement applied to calibrated ellipsoidal convex surfaces.

    Science.gov (United States)

    Douthwaite, W A; Matilla, M T

    1996-03-01

    The purpose of this report is to assess the accuracy of the TMS-1 videokeratoscope (Computed Anatomy Inc.) by using convex ellipsoidal surfaces. The ellipsoids were calibrated using Form Talysurf analysis, which allowed for subsequent calculation of the vertex radius and p value. The videokeratoscope was used to examine the same ellipsoids. The data provided by the instrument software were used to plot a graph of r2 verses y2, where r is the measured radius at y, the distance from the corneal point being measured to the optical axis of the instrument. The intercept on the ordinate of this graph gives the vertex radius, and the slope give the p value. The results arising from the Talysurf and the TMS-1 techniques were compared. The TMS-1 videokeratoscope gave readings for the vertex radius that were generally higher than those of the Talysurf analysis. The vertex radius was up to 0.09 mm greater. The p value results were similar by the two methods for p values of approximately 0.8; however, the TMS-1 results were higher, and the discrepancy increased as the p value approached that of a paraboloid. Although the videokeratoscope may be useful in comparative studies of the cornea, there must be some doubt about the absolute values displayed as the surface becomes increasingly aspheric.

  17. Error Ellipsoid Analysis for the Diameter Measurement of Cylindroid Components Using a Laser Radar Measurement System

    Directory of Open Access Journals (Sweden)

    Zhengchun Du

    2016-05-01

    Full Text Available The use of three-dimensional (3D data in the industrial measurement field is becoming increasingly popular because of the rapid development of laser scanning techniques based on the time-of-flight principle. However, the accuracy and uncertainty of these types of measurement methods are seldom investigated. In this study, a mathematical uncertainty evaluation model for the diameter measurement of standard cylindroid components has been proposed and applied to a 3D laser radar measurement system (LRMS. First, a single-point error ellipsoid analysis for the LRMS was established. An error ellipsoid model and algorithm for diameter measurement of cylindroid components was then proposed based on the single-point error ellipsoid. Finally, four experiments were conducted using the LRMS to measure the diameter of a standard cylinder in the laboratory. The experimental results of the uncertainty evaluation consistently matched well with the predictions. The proposed uncertainty evaluation model for cylindrical diameters can provide a reliable method for actual measurements and support further accuracy improvement of the LRMS.

  18. Local fields and effective conductivity tensor of ellipsoidal particle composite with anisotropic constituents

    Science.gov (United States)

    Kushch, Volodymyr I.; Sevostianov, Igor; Giraud, Albert

    2017-11-01

    An accurate semi-analytical solution of the conductivity problem for a composite with anisotropic matrix and arbitrarily oriented anisotropic ellipsoidal inhomogeneities has been obtained. The developed approach combines the superposition principle with the multipole expansion of perturbation fields of inhomogeneities in terms of ellipsoidal harmonics and reduces the boundary value problem to an infinite system of linear algebraic equations for the induced multipole moments of inhomogeneities. A complete full-field solution is obtained for the multi-particle models comprising inhomogeneities of diverse shape, size, orientation and properties which enables an adequate account for the microstructure parameters. The solution is valid for the general-type anisotropy of constituents and arbitrary orientation of the orthotropy axes. The effective conductivity tensor of the particulate composite with anisotropic constituents is evaluated in the framework of the generalized Maxwell homogenization scheme. Application of the developed method to composites with imperfect ellipsoidal interfaces is straightforward. Their incorporation yields probably the most general model of a composite that may be considered in the framework of analytical approach.

  19. Piles of objects

    KAUST Repository

    Hsu, Shu-Wei

    2010-01-01

    We present a method for directly modeling piles of objects in multi-body simulations. Piles of objects represent some of the more interesting, but also most time-consuming portion of simulation. We propose a method for reducing computation in many of these situations by explicitly modeling the piles that the objects may form into. By modeling pile behavior rather than the behavior of all individual objects, we can achieve realistic results in less time, and without directly modeling the frictional component that leads to desired pile shapes. Our method is simple to implement and can be easily integrated with existing rigid body simulations. We observe notable speedups in several rigid body examples, and generate a wider variety of piled structures than possible with strict impulse-based simulation. © 2010 ACM.

  20. Numerical design of in-line X-ray phase-contrast imaging based on ellipsoidal single-bounce monocapillary

    International Nuclear Information System (INIS)

    Sun, Weiyuan; Liu, Zhiguo; Sun, Tianxi; Peng, Song; Ma, Yongzhong; Ding, Xunliang

    2014-01-01

    A new device using an ellipsoidal single-bounce monocapillary X-ray optics was numerically designed to realize in-line X-ray phase-contrast imaging by using conventional laboratory X-ray source with a large spot. Numerical simulation results validated the effectiveness of the proposed device and approach. The ellipsoidal single-bounce monocapillary X-ray optics had potential applications in the in-line phase contrast imaging with polychromatic X-rays

  1. Numerical design of in-line X-ray phase-contrast imaging based on ellipsoidal single-bounce monocapillary

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Weiyuan; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Peng, Song [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-05-11

    A new device using an ellipsoidal single-bounce monocapillary X-ray optics was numerically designed to realize in-line X-ray phase-contrast imaging by using conventional laboratory X-ray source with a large spot. Numerical simulation results validated the effectiveness of the proposed device and approach. The ellipsoidal single-bounce monocapillary X-ray optics had potential applications in the in-line phase contrast imaging with polychromatic X-rays.

  2. Atomic level simulations of interaction between edge dislocations and irradiation induced ellipsoidal voids in alpha-iron

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Bida [Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074 (China); Huang, Minsheng, E-mail: mshuang@hust.edu.cn [Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074 (China); Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, Luoyu Road 1037, Wuhan 430074 (China); Li, Zhenhuan [Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074 (China); Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, Luoyu Road 1037, Wuhan 430074 (China)

    2017-04-15

    High concentrations of vacancies tend to be formed inside the metal materials under irradiation, and then accumulate and cluster together gradually to promote the formation of nanovoids. Generally, these voids act as obstacles for dislocation glide and thereby change/degrade the mechanical behavior of irradiated materials. In this work, the interaction between ellipsoidal nanovoids with edge dislocations in alpha-iron has been studied by atomic simulations. The results illuminate that the ellipsoidal void’s semi-major axis on the slip plane and parallel to the dislocation line is the dominant factor controlling the obstacle strength of ellipsoidal nanovoids. Two other semi-major axes, which are perpendicular to the glide plane and parallel to the Burgers vector, respectively, can also influence the critical resolved shear stress (CRSS) for dislocation shearing the ellipsoidal void. The intrinsic atomic mechanisms controlling above phenomena, such as nanovoid-geometry spatial constraint and nanovoid-surface curvature on dislocation evolution, have been discussed carefully. The classical continuum model has been amended to describe the dislocation-ellipsoidal nanovoid interaction base on current results. In addition, the influence of temperature on the CRSS of ellipsoidal nanovoids has also been investigated.

  3. Optical levitation and long-working-distance trapping: From spherical up to high aspect ratio ellipsoidal particles

    International Nuclear Information System (INIS)

    Mihiretie, Besira; Loudet, Jean-Christophe; Pouligny, Bernard

    2013-01-01

    Radiation pressure forces from a moderately focused vertical laser beam are used to levitate transparent particles, a few micrometers in size. Having recalled basic results about levitation of spheres, and applications to long-working distance trapping, we turn to ellipsoid-shaped particles. Experiments are carried out with polystyrene particles, inside a glass chamber filled with water. The particles are lifted up to contact with the chamber top surface. We examine particle equilibrium in such conditions and show that the system “bifurcates” between static on-axis equilibrium with short ellipsoids, to sustained oscillations with longer ones. A similar Hopf bifurcation is found using a simple ray-optics model of the laser-ellipsoid interaction, providing a qualitative account of the observed oscillations. -- Highlights: ► We study optical levitation of non-spherical micrometer-sized particles. ► Short ellipsoids get trapped on laser beam axis, similarly to spheres. ► Long ellipsoids oscillate, through coupled translation and tilt motions. ► We propose a simple ray-optics model of light interaction with an ellipsoid. ► From computed radiation pressure forces, we explain the observed oscillations

  4. The theory of pseudo-rigid bodies

    CERN Document Server

    Cohen, Harley

    1988-01-01

    This monograph concerns the development, analysis, and application of the theory of pseudo-rigid bodies. It collects together our work on that subject over the last five years. While some results have appeared else­ where, much of the work is new. Our objective in writing this mono­ graph has been to present a new theory of the deformation of bodies, one that has not only a firm theoretical basis, but also the simplicity to serve as an effective tool in practical problems. Consequently, the main body of the treatise is a multifaceted development of the theory, from foundations to explicit solutions to linearizations to methods of approximation. The fact that this variety of aspects, each examined in considerable detail, can be collected together in a single, unified treat­ ment gives this theory an elegance that we feel sets it apart from many others. While our goal has always been to give a complete treatment of the theory as it now stands, the work here is not meant to be definitive. Theories are not ent...

  5. Analysis of Switched-Rigid Floating Oscillator

    Directory of Open Access Journals (Sweden)

    Prabhakar R. Marur

    2009-01-01

    Full Text Available In explicit finite element simulations, a technique called deformable-to-rigid (D2R switching is used routinely to reduce the computation time. Using the D2R option, the deformable parts in the model can be switched to rigid and reverted back to deformable when needed during the analysis. The time of activation of D2R however influences the overall dynamics of the system being analyzed. In this paper, a theoretical basis for the selection of time of rigid switching based on system energy is established. A floating oscillator problem is investigated for this purpose and closed-form analytical expressions are derived for different phases in rigid switching. The analytical expressions are validated by comparing the theoretical results with numerical computations.

  6. Rigid pricing and rationally inattentive consumer

    Czech Academy of Sciences Publication Activity Database

    Matějka, Filip

    158 B, July (2015), s. 656-678 ISSN 0022-0531 Institutional support: PRVOUK-P23 Keywords : rational inattention * imperfect information * nominal rigidity Subject RIV: AH - Economics Impact factor: 1.097, year: 2015

  7. Rigid pricing and rationally inattentive consumer

    Czech Academy of Sciences Publication Activity Database

    Matějka, Filip

    158 B, July (2015), s. 656-678 ISSN 0022-0531 Institutional support: RVO:67985998 Keywords : rational inattention * imperfect information * nominal rigidity Subject RIV: AH - Economics Impact factor: 1.097, year: 2015

  8. Soft soils reinforced by rigid vertical inclusions

    Directory of Open Access Journals (Sweden)

    Iulia-Victoria NEAGOE

    2013-12-01

    Full Text Available Reinforcement of soft soils by rigid vertical inclusions is an increasingly used technique over the last few years. The system consists of rigid or semi-rigid vertical inclusions and a granular platform for the loads transfer from the structure to the inclusions. This technique aims to reduce the differential settlements both at ground level as below the structure. Reinforcement by rigid inclusions is mainly used for foundation works for large commercial and industrial platforms, storage tanks, wastewater treatment plants, wind farms, bridges, roads, railway embankments. The subject is one of interest as it proves the recently concerns at international level in research and design; however, most studies deal more with the static behavior and less with the dynamic one.

  9. Flexible and rigid cystoscopy in women.

    Science.gov (United States)

    Gee, Jason R; Waterman, Bradley J; Jarrard, David F; Hedican, Sean P; Bruskewitz, Reginald C; Nakada, Stephen Y

    2009-01-01

    Previous studies have evaluated the tolerability of rigid versus flexible cystoscopy in men. Similar studies, however, have not been performed in women. We sought to determine whether office-based flexible cystoscopy was better tolerated than rigid cystoscopy in women. Following full IRB approval, women were prospectively randomized in a single-blind manner. Patients were randomized to flexible or rigid cystoscopy and draped in the lithotomy position to maintain blinding of the study. Questionnaires evaluated discomfort before, during, and after cystoscopy. Thirty-six women were randomized to flexible (18) or rigid (18) cystoscopy. Indications were surveillance (16), hematuria (15), recurrent UTIs (2), voiding dysfunction (1), and other (2). All questionnaires were returned by 31/36 women. Using a 10-point visual analog scale (VAS), median discomfort during the procedure for flexible and rigid cystoscopy were 1.4 and 1.8, respectively, in patients perceiving pain. Median recalled pain 1 week later was similar at 0.8 and 1.15, respectively. None of these differences were statistically significant. Flexible and rigid cystoscopy are well tolerated in women. Discomfort during and after the procedure is minimal in both groups. Urologists should perform either procedure in women based on their preference and skill level.

  10. The combined geodetic network adjusted on the reference ellipsoid – a comparison of three functional models for GNSS observations

    Directory of Open Access Journals (Sweden)

    Kadaj Roman

    2016-12-01

    Full Text Available The adjustment problem of the so-called combined (hybrid, integrated network created with GNSS vectors and terrestrial observations has been the subject of many theoretical and applied works. The network adjustment in various mathematical spaces was considered: in the Cartesian geocentric system on a reference ellipsoid and on a mapping plane. For practical reasons, it often takes a geodetic coordinate system associated with the reference ellipsoid. In this case, the Cartesian GNSS vectors are converted, for example, into geodesic parameters (azimuth and length on the ellipsoid, but the simple form of converted pseudo-observations are the direct differences of the geodetic coordinates. Unfortunately, such an approach may be essentially distorted by a systematic error resulting from the position error of the GNSS vector, before its projection on the ellipsoid surface. In this paper, an analysis of the impact of this error on the determined measures of geometric ellipsoid elements, including the differences of geodetic coordinates or geodesic parameters is presented. Assuming that the adjustment of a combined network on the ellipsoid shows that the optimal functional approach in relation to the satellite observation, is to create the observational equations directly for the original GNSS Cartesian vector components, writing them directly as a function of the geodetic coordinates (in numerical applications, we use the linearized forms of observational equations with explicitly specified coefficients. While retaining the original character of the Cartesian vector, one avoids any systematic errors that may occur in the conversion of the original GNSS vectors to ellipsoid elements, for example the vector of the geodesic parameters. The problem is theoretically developed and numerically tested. An example of the adjustment of a subnet loaded from the database of reference stations of the ASG-EUPOS system was considered for the preferred functional

  11. THE TILT OF THE HALO VELOCITY ELLIPSOID AND THE SHAPE OF THE MILKY WAY HALO

    International Nuclear Information System (INIS)

    Smith, Martin C.; Wyn Evans, N.; An, Jin H.

    2009-01-01

    A sample of ∼1800 halo subdwarf stars with radial velocities and proper motions is assembled from Bramich et al.'s light-motion catalog of 2008. This is based on the repeated multiband Sloan Digital Sky Survey photometric measurements in Stripe 82. Our sample of halo subdwarfs is extracted via a reduced proper motion diagram and distances are obtained using photometric parallaxes, thus giving full phase-space information. The tilt of the velocity ellipsoid with respect to the spherical polar coordinate system is computed and found to be consistent with zero for two of the three tilt angles, and very small for the third. We prove that if the inner halo is in a steady state and the triaxial velocity ellipsoid is everywhere aligned in spherical polar coordinates, then the potential must be spherically symmetric. The detectable, but very mild, misalignment with spherical polars is consistent with the perturbative effects of the Galactic disk on a spherical dark halo. Banana orbits are generated at the 1:1 resonance (in horizontal and vertical frequencies) by the disk. They populate Galactic potentials at the typical radii of our subdwarf sample, along with the much more dominant short-axis tubes. However, on geometric grounds alone, the tilt cannot vanish for the banana orbits and this leads to a slight, but detectable, misalignment. We argue that the tilt of the stellar halo velocity ellipsoid therefore provides a hitherto largely neglected but important line of argument that the Milky Way's dark halo, which dominates the potential, must be nearly spherical.

  12. Novel design for centrifugal counter-current chromatography: VI. Ellipsoid column.

    Science.gov (United States)

    Gu, Dongyu; Yang, Yi; Xin, Xuelei; Aisa, Haji Akber; Ito, Yoichiro

    2015-01-01

    A novel ellipsoid column was designed for centrifugal counter-current chromatography. Performance of the ellipsoid column with a capacity of 3.4 mL was examined with three different solvent systems composed of 1-butanol-acetic acid-water (4:1:5, v/v) (BAW), hexane-ethyl acetate-methanol-0.1 M HCl (1:1:1:1, v/v) (HEMH), and 12.5% (w/w) PEG1000 and 12.5% (w/w) dibasic potassium phosphate in water (PEG-DPP) each with suitable test samples. In dipeptide separation with BAW system, both stationary phase retention (Sf) and peak resolution (Rs) of the ellipsoid column were much higher at 0° column angle (column axis parallel to the centrifugal force) than at 90° column angle (column axis perpendicular to the centrifugal force), where elution with the lower phase at a low flow rate produced the best separation yielding Rs at 2.02 with 27.8% Sf at a flow rate of 0.07 ml/min. In the DNP-amino acid separation with HEMW system, the best results were obtained at a flow rate of 0.05 ml/min with 31.6% Sf yielding high Rs values at 2.16 between DNP-DL-glu and DNP-β-ala peaks and 1.81 between DNP-β-ala and DNP-L-ala peaks. In protein separation with PEG-DPP system, lysozyme and myolobin were resolved at Rs of 1.08 at a flow rate of 0.03 ml/min with 38.9% Sf. Most of those Rs values exceed those obtained from the figure-8 column under similar experimental conditions previously reported.

  13. Self-consistent imbedding and the ellipsoidal model model for porous rocks

    International Nuclear Information System (INIS)

    Korringa, J.; Brown, R.J.S.; Thompson, D.D.; Runge, R.J.

    1979-01-01

    Equations are obtained for the effective elastic moduli for a model of an isotropic, heterogeneous, porous medium. The mathematical model used for computation is abstract in that it is not simply a rigorous computation for a composite medium of some idealized geometry, although the computation contains individual steps which are just that. Both the solid part and pore space are represented by ellipsoidal or spherical 'grains' or 'pores' of various sizes and shapes. The strain of each grain, caused by external forces applied to the medium, is calculated in a self-consistent imbedding (SCI) approximation, which replaces the true surrounding of any given grain or pore by an isotropic medium defined by the effective moduli to be computed. The ellipsoidal nature of the shapes allows us to use Eshelby's theoretical treatment of a single ellipsoidal inclusion in an infiinte homogeneous medium. Results are compared with the literature, and discrepancies are found with all published accounts of this problem. Deviations from the work of Wu, of Walsh, and of O'Connell and Budiansky are attributed to a substitution made by these authors which though an identity for the exact quantities involved, is only approximate in the SCI calculation. This reduces the validity of the equations to first-order effects only. Differences with the results of Kuster and Toksoez are attributed to the fact that the computation of these authors is not self-consistent in the sense used here. A result seems to be the stiffening of the medium as if the pores are held apart. For spherical grains and pores, their calculated moduli are those given by the Hashin-Shtrikman upper bounds. Our calculation reproduces, in the case of spheres, an early result of Budiansky. An additional feature of our work is that the algebra is simpler than in earlier work. We also incorporate into the theory the possibility that fluid-filled pores are interconnected

  14. Rigid Body Sampling and Individual Time Stepping for Rigid-Fluid Coupling of Fluid Simulation

    Directory of Open Access Journals (Sweden)

    Xiaokun Wang

    2017-01-01

    Full Text Available In this paper, we propose an efficient and simple rigid-fluid coupling scheme with scientific programming algorithms for particle-based fluid simulation and three-dimensional visualization. Our approach samples the surface of rigid bodies with boundary particles that interact with fluids. It contains two procedures, that is, surface sampling and sampling relaxation, which insures uniform distribution of particles with less iterations. Furthermore, we present a rigid-fluid coupling scheme integrating individual time stepping to rigid-fluid coupling, which gains an obvious speedup compared to previous method. The experimental results demonstrate the effectiveness of our approach.

  15. Towards high resolution polarisation analysis using double polarisation and ellipsoidal analysers

    CERN Document Server

    Martin-Y-Marero, D

    2002-01-01

    Classical polarisation analysis methods lack the combination of high resolution and high count rate necessary to cope with the demand of modern condensed-matter experiments. In this work, we present a method to achieve high resolution polarisation analysis based on a double polarisation system. Coupling this method with an ellipsoidal wavelength analyser, a high count rate can be achieved whilst delivering a resolution of around 10 mu eV. This method is ideally suited to pulsed sources, although it can be adapted to continuous sources as well. (orig.)

  16. Three-dimensional nonstationary dynamics of a charged bunches-ellipsoids

    International Nuclear Information System (INIS)

    Budanov, Yu.A.

    2000-01-01

    The work is aimed at studying the changes in the beam dynamics at the beginning of acceleration, when the zero longitudinal emittance is transformed into the final longitudinal phase volume. This process is studied on the bunch-ellipsoid self-consistent model with the charge uniform distribution. The results obtained present the evaluation of the parameters, whereby the longitudinal dynamics in the bunch significantly changes, namely, the particles bunch with increase in the spatial charge transfers into a new state with doubled frequency of the longitudinal oscillations [ru

  17. Shape matters: Near-field fluid mechanics dominate the collective motions of ellipsoidal squirmers.

    Science.gov (United States)

    Kyoya, K; Matsunaga, D; Imai, Y; Omori, T; Ishikawa, T

    2015-12-01

    Microswimmers show a variety of collective motions. Despite extensive study, questions remain regarding the role of near-field fluid mechanics in collective motion. In this paper, we describe precisely the Stokes flow around hydrodynamically interacting ellipsoidal squirmers in a monolayer suspension. The results showed that various collective motions, such as ordering, aggregation, and whirls, are dominated by the swimming mode and the aspect ratio. The collective motions are mainly induced by near-field fluid mechanics, despite Stokes flow propagation over a long range. These results emphasize the importance of particle shape in collective motion.

  18. OR TEP-II: a FORTRAN Thermal-Ellipsoid Plot Program for crystal structure illustrations

    International Nuclear Information System (INIS)

    Johnson, C.K.

    1976-03-01

    A computer program is described for drawing crystal structure illustrations using a mechanical plotter. Ball-and-stick type illustrations of a quality suitable for publication are produced with either spheres or thermal-motion probability ellipsoids on the atomic sites. The program can produce stereoscopic pairs of illustrations which aid in the visualization of complex packing arrangements of atoms and thermal motion patterns. Interatomic distances, bond angles, and principal axes of thermal motion are also calculated to aid the structural study. The most recent version of the program, OR TEP-II, has a hidden-line-elimination feature to omit those portions of atoms or bonds behind other atoms or bonds

  19. Ellipsoidal diffraction grating as output coupler for quasi-optical gyrotrons

    International Nuclear Information System (INIS)

    Hogge, J.P.; Cao, H.; Tran, T.M.; Tran, M.Q.; Paris, P.J.; Kasparek, W.

    1991-01-01

    The use of a diffraction grating arranged in the -1 Littrow mount as an output coupler for a quasi-optical Fabry-Perot resonator at microwave frequencies (100 GHz) was suggested in 1990. A planar grating with curvilinear grooves (in order to match the Littrow condition everywhere on the surface for a given Gaussian beam) gives a power coupling efficiency of 85% which is limited by the depolarization but gave approximately the same global efficiency because of distortion. We report low power tests on an improvement of the second scheme, based on curved grooves on an ellipsoidal surface, which gives a global efficiency of 94%. (author) 3 figs., 3 refs

  20. OR TEP-II: a FORTRAN Thermal-Ellipsoid Plot Program for crystal structure illustrations

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.K.

    1976-03-01

    A computer program is described for drawing crystal structure illustrations using a mechanical plotter. Ball-and-stick type illustrations of a quality suitable for publication are produced with either spheres or thermal-motion probability ellipsoids on the atomic sites. The program can produce stereoscopic pairs of illustrations which aid in the visualization of complex packing arrangements of atoms and thermal motion patterns. Interatomic distances, bond angles, and principal axes of thermal motion are also calculated to aid the structural study. The most recent version of the program, OR TEP-II, has a hidden-line-elimination feature to omit those portions of atoms or bonds behind other atoms or bonds.

  1. Computational science and re-discovery: open-source implementation of ellipsoidal harmonics for problems in potential theory

    International Nuclear Information System (INIS)

    Bardhan, Jaydeep P; Knepley, Matthew G

    2012-01-01

    We present two open-source (BSD) implementations of ellipsoidal harmonic expansions for solving problems of potential theory using separation of variables. Ellipsoidal harmonics are used surprisingly infrequently, considering their substantial value for problems ranging in scale from molecules to the entire solar system. In this paper, we suggest two possible reasons for the paucity relative to spherical harmonics. The first is essentially historical—ellipsoidal harmonics developed during the late 19th century and early 20th, when it was found that only the lowest-order harmonics are expressible in closed form. Each higher-order term requires the solution of an eigenvalue problem, and tedious manual computation seems to have discouraged applications and theoretical studies. The second explanation is practical: even with modern computers and accurate eigenvalue algorithms, expansions in ellipsoidal harmonics are significantly more challenging to compute than those in Cartesian or spherical coordinates. The present implementations reduce the 'barrier to entry' by providing an easy and free way for the community to begin using ellipsoidal harmonics in actual research. We demonstrate our implementation using the specific and physiologically crucial problem of how charged proteins interact with their environment, and ask: what other analytical tools await re-discovery in an era of inexpensive computation?

  2. How soft is that pillow? The perceptual localization of the hand and the haptic assessment of contact rigidity.

    Science.gov (United States)

    Pressman, Assaf; Karniel, Amir; Mussa-Ivaldi, Ferdinando A

    2011-04-27

    A new haptic illusion is described, in which the location of the mobile object affects the perception of its rigidity. There is theoretical and experimental support for the notion that limb position sense results from the brain combining ongoing sensory information with expectations arising from prior experience. How does this probabilistic state information affect one's tactile perception of the environment mechanics? In a simple estimation process, human subjects were asked to report the relative rigidity of two simulated virtual objects. One of the objects remained fixed in space and had various coefficients of stiffness. The other virtual object had constant stiffness but moved with respect to the subjects. Earlier work suggested that the perception of an object's rigidity is consistent with a process of regression between the contact force and the perceived amount of penetration inside the object's boundary. The amount of penetration perceived by the subject was affected by varying the position of the object. This, in turn, had a predictable effect on the perceived rigidity of the contact. Subjects' reports on the relative rigidity of the object are best accounted for by a probabilistic model in which the perceived boundary of the object is estimated based on its current location and on past observations. Therefore, the perception of contact rigidity is accounted for by a stochastic process of state estimation underlying proprioceptive localization of the hand.

  3. Identifying Floppy and Rigid Regions in Proteins

    Science.gov (United States)

    Jacobs, D. J.; Thorpe, M. F.; Kuhn, L. A.

    1998-03-01

    In proteins it is possible to separate hard covalent forces involving bond lengths and bond angles from other weak forces. We model the microstructure of the protein as a generic bar-joint truss framework, where the hard covalent forces and strong hydrogen bonds are regarded as rigid bar constraints. We study the mechanical stability of proteins using FIRST (Floppy Inclusions and Rigid Substructure Topography) based on a recently developed combinatorial constraint counting algorithm (the 3D Pebble Game), which is a generalization of the 2D pebble game (D. J. Jacobs and M. F. Thorpe, ``Generic Rigidity: The Pebble Game'', Phys. Rev. Lett.) 75, 4051-4054 (1995) for the special class of bond-bending networks (D. J. Jacobs, "Generic Rigidity in Three Dimensional Bond-bending Networks", Preprint Aug (1997)). This approach is useful in identifying rigid motifs and flexible linkages in proteins, and thereby determines the essential degrees of freedom. We will show some preliminary results from the FIRST analysis on the myohemerythrin and lyozyme proteins.

  4. Exact reconstruction formula for the spherical mean Radon transform on ellipsoids

    International Nuclear Information System (INIS)

    Haltmeier, Markus

    2014-01-01

    Many modern imaging and remote sensing applications require reconstructing a function from spherical averages (mean values). Examples include photoacoustic tomography, ultrasound imaging or SONAR. Several formulas of the back-projection type for recovering a function in n spatial dimensions from mean values over spheres centered on a sphere have been derived by D Finch, S K Patch and Rakesh (2004 SIAM J. Math. Anal. 35 1213–1240) for odd spatial dimension and by D Finch, M Haltmeier and Rakesh (2007 SIAM J. Appl. Math. 68 392–412) for even spatial dimension. In this paper we generalize some of these formulas to the case where the centers of integration lie on the boundary of an arbitrary ellipsoid. For the special cases n = 2 and n = 3 our results have recently been established by Y Salman (2014 J. Math. Anal. Appl. 420 612–20). For the higher dimensional case n>3 we establish proof techniques extending the ones in the above references. Back-projection type inversion formulas for recovering a function from spherical means with centers on an ellipsoid have first been derived by F Natterer (2012 Inverse Problems Imaging 6 315–20) for n = 3 and by V Palamodov (2012 Inverse Problems 28 065014) for arbitrary dimension. The results of Natterer have later been generalized to arbitrary dimension by M Haltmeier (2014 SIAM J. Math. Anal. 46 214–32). Note that these formulas are different from the ones derived in the present paper. (paper)

  5. An efficient wave extrapolation method for tilted orthorhombic media using effective ellipsoidal models

    KAUST Repository

    Waheed, Umair bin; Alkhalifah, Tariq Ali

    2014-01-01

    The wavefield extrapolation operator for ellipsoidally anisotropic (EA) media offers significant cost reduction compared to that for the orthorhombic case, especially when the symmetry planes are tilted and/or rotated. However, ellipsoidal anisotropy does not provide accurate focusing for media of orthorhombic anisotropy. Therefore, we develop effective EA models that correctly capture the kinematic behavior of the wavefield for tilted orthorhombic (TOR) media. Specifically, we compute effective source-dependent velocities for the EA model using kinematic high-frequency representation of the TOR wavefield. The effective model allows us to use the cheaper EA wavefield extrapolation operator to obtain approximate wavefield solutions for a TOR model. Despite the fact that the effective EA models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TOR media, particularly for media of low to moderate complexity. We demonstrate applicability of the proposed approach on a layered TOR model.

  6. Numerical and Experimental Investigation on Electromagnetic Attenuation by Semi-Ellipsoidal Shaped Plasma

    International Nuclear Information System (INIS)

    He Xiang; Tang Chunmei; Chen Jianping; Chen Yudong; Zeng Xiaojun; Zhang Yachun

    2015-01-01

    Some reports presented that the radar cross section (RCS) from the radar antenna of military airplanes can be reduced by using a low-temperature plasma screen. This paper gives a numerical and experimental analysis of this RCS-reduction method. The shape of the plasma screen was designed as a semi-ellipsoid in order to make full use of the space in the radar dome. In simulations, we discussed the scattering of the electromagnetic (EM) wave by a perfect electric conductor (PEC) covered with this plasma screen using the finite-difference-time-domain (FDTD) method. The variations of their return loss as a function of wave frequency, plasma density profile, and collision frequency were presented. In the experiments, a semi-ellipsoidal shaped plasma screen was produced. Electromagnetic attenuation of 1.5 GHz EM wave was measured for a radio frequency (RF) power of 5 kW at an argon pressure of 200-1150 Pa. A good agreement is found between simulated and experimental results. It can be confirmed that the plasma screen is useful in applications for stealth of radar antenna. (paper)

  7. All-optical temporal fractional order differentiator using an in-fiber ellipsoidal air-microcavity

    Science.gov (United States)

    Zhang, Lihong; Sun, Shuqian; Li, Ming; Zhu, Ninghua

    2017-12-01

    An all-optical temporal fractional order differentiator with ultrabroad bandwidth (~1.6 THz) and extremely simple fabrication is proposed and experimentally demonstrated based on an in-fiber ellipsoidal air-microcavity. The ellipsoidal air-microcavity is fabricated by splicing a single mode fiber (SMF) and a photonic crystal fiber (PCF) together using a simple arc-discharging technology. By changing the arc-discharging times, the propagation loss can be adjusted and then the differentiation order is tuned. A nearly Gaussian-like optical pulse with 3 dB bandwidth of 8 nm is launched into the differentiator and a 0.65 order differentiation of the input pulse is achieved with a processing error of 2.55%. Project supported by the the National Natural Science Foundation of China (Nos. 61522509, 61377002, 61535012), the National High-Tech Research & Development Program of China (No. SS2015AA011002), and the Beijing Natural Science Foundation (No. 4152052). Ming Li was supported in part by the Thousand Young Talent Program.

  8. Production of quasi ellipsoidal laser pulses for next generation high brightness photoinjectors

    Energy Technology Data Exchange (ETDEWEB)

    Rublack, T., E-mail: Tino.Rublack@desy.de [DESY, Zeuthen (Germany); Good, J.; Khojoyan, M.; Krasilnikov, M.; Stephan, F. [DESY, Zeuthen (Germany); Hartl, I.; Schreiber, S. [DESY, Hamburg (Germany); Andrianov, A.; Gacheva, E.; Khazanov, E.; Mironov, S.; Potemkin, A.; Zelenogorskii, V.V. [IAP/RAS, Nizhny Novgorod (Russian Federation); Syresin, E. [JINR, Dubna (Russian Federation)

    2016-09-01

    The use of high brightness electron beams in Free Electron Laser (FEL) applications is of increasing importance. One of the most promising methods to generate such beams is the usage of shaped photocathode laser pulses. It has already demonstrated that temporal and transverse flat-top laser pulses can produce very low emittance beams [1]. Nevertheless, based on beam simulations further improvements can be achieved using quasi-ellipsoidal laser pulses, e.g. 30% reduction in transverse projected emittance at 1 nC bunch charge. In a collaboration between DESY, the Institute of Applied Physics of the Russian Academy of Science (IAP RAS) in Nizhny Novgorod and the Joint Institute of Nuclear Research (JINR) in Dubna such a laser system capable of producing trains of laser pulses with a quasi-ellipsoidal distribution, has been developed. The prototype of the system was installed at the Photo Injector Test facility at DESY in Zeuthen (PITZ) and is currently in the commissioning phase. In the following, the laser system will be introduced, the procedure of pulse shaping will be described and the last experimental results will be shown.

  9. Probability distribution of distance in a uniform ellipsoid: Theory and applications to physics

    International Nuclear Information System (INIS)

    Parry, Michelle; Fischbach, Ephraim

    2000-01-01

    A number of authors have previously found the probability P n (r) that two points uniformly distributed in an n-dimensional sphere are separated by a distance r. This result greatly facilitates the calculation of self-energies of spherically symmetric matter distributions interacting by means of an arbitrary radially symmetric two-body potential. We present here the analogous results for P 2 (r;ε) and P 3 (r;ε) which respectively describe an ellipse and an ellipsoid whose major and minor axes are 2a and 2b. It is shown that for ε=(1-b 2 /a 2 ) 1/2 ≤1, P 2 (r;ε) and P 3 (r;ε) can be obtained as an expansion in powers of ε, and our results are valid through order ε 4 . As an application of these results we calculate the Coulomb energy of an ellipsoidal nucleus, and compare our result to an earlier result quoted in the literature. (c) 2000 American Institute of Physics

  10. Photoreceptor inner segment ellipsoid band integrity on spectral domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Saxena S

    2014-12-01

    Full Text Available Sandeep Saxena,1 Khushboo Srivastav,1 Chui M Cheung,2 Joanne YW Ng,3 Timothy YY Lai3 1Retina Service, Department of Ophthalmology, King George’s Medical University Lucknow, India; 2Singapore National Eye Centre, Singapore; 3Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong Abstract: Spectral domain optical coherence tomography cross-sectional imaging of the macula has conventionally been resolved into four bands. However, some doubts were raised regarding authentication of the existence of these bands. Recently, a number of studies have suggested that the second band appeared to originate from the inner segment ellipsoids of the foveal cone photoreceptors, and therefore the previously called inner segment-outer segment junction is now referred to as inner segment ellipsoidband. Photoreceptor dysfunction may be a significant predictor of visual acuity in a spectrum of surgical and medical retinal diseases. This review aims to provide an overview and summarizes the role of the photoreceptor inner segment ellipsoid band in the management and prognostication of various vitreoretinal diseases. Keywords: spectral domain optical coherence tomography, inner segment-outer segment junction, external limiting membrane, macular hole, diabetic macular edema, age relate macular degeneration

  11. An efficient wave extrapolation method for tilted orthorhombic media using effective ellipsoidal models

    KAUST Repository

    Waheed, Umair bin

    2014-08-01

    The wavefield extrapolation operator for ellipsoidally anisotropic (EA) media offers significant cost reduction compared to that for the orthorhombic case, especially when the symmetry planes are tilted and/or rotated. However, ellipsoidal anisotropy does not provide accurate focusing for media of orthorhombic anisotropy. Therefore, we develop effective EA models that correctly capture the kinematic behavior of the wavefield for tilted orthorhombic (TOR) media. Specifically, we compute effective source-dependent velocities for the EA model using kinematic high-frequency representation of the TOR wavefield. The effective model allows us to use the cheaper EA wavefield extrapolation operator to obtain approximate wavefield solutions for a TOR model. Despite the fact that the effective EA models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TOR media, particularly for media of low to moderate complexity. We demonstrate applicability of the proposed approach on a layered TOR model.

  12. Design stresses in probabilistic form for ellipsoidal and toroidal pressure vessels

    International Nuclear Information System (INIS)

    Smith, C.O.

    1979-01-01

    Design has customarily been based on applied loading, geometry, and handbook values for strength to give a deterministic solution. The engineering profession, however, has become increasingly concerned with the adequacy of design calculations. This concern indicates a need for critical evaluation of designs based on arbitrary multipliers, such as factors of safety or worst-case treatment. Ellipsoids are frequently used for end closure of cylindrical pressure shells. Toroids of elliptic or circular cross-section, are widely used, e.g., for connecting two parallel legs in a U-shape. This paper gives equations for means and standard deviations of stresses developed in ellipsoids and toroids with internal pressure. Inherent are: (1) design variables are generally characterized by spectra of values (assumed to be normally distributed), rather than by unique values, and (2) a small, but finite, probability of failure must be recognized in any design. By coupling stresses due to applied loading as calculated by the given equations with strength available in a material, reliability (or the alternative probability of failure) can be calculated. Conversely, for a given reliability the appropriate size can be determined. (orig.)

  13. Robe's Restricted Problem of 2 + 2 Bodies with a Roche Ellipsoid - Triaxial System

    Science.gov (United States)

    Aggarwal, Rajiv; Kaur, Bhavneet; Yadav, Sushil

    2018-03-01

    This paper investigates the motion of two infinitesimal masses on the location and stability of the equilibrium points in Robe's restricted problem of 2 + 2 bodies with the bigger primary a Roche ellipsoid and the smaller a triaxial body. We suppose the bigger primary of mass m 1 to be filled with a homogeneous incompressible fluid of density ρ 1. The third and the fourth bodies (of mass m 3 and m 4 respectively) are small solid spheres of density ρ 3 and ρ 4 respectively inside the ellipsoid, with the assumption that the mass and the radius of the third and the fourth body are infinitesimal. We assume that m 2 is describing a circle around m 1. The masses m 3 and m 4 mutually attract each other, do not influence the motion of m 1 and m 2 but are influenced by them. We have taken into consideration all the three components of the pressure field in deriving the expression for the buoyancy force viz (i) due to the own gravitational field of the fluid (ii) that originating in the attraction of m 2 (iii) that arising from the centrifugal force. In this paper, equilibrium solutions of m 3 and m 4 and their linear stability are analyzed.

  14. Quantum mechanics of a generalised rigid body

    International Nuclear Information System (INIS)

    Gripaios, Ben; Sutherland, Dave

    2016-01-01

    We consider the quantum version of Arnold’s generalisation of a rigid body in classical mechanics. Thus, we quantise the motion on an arbitrary Lie group manifold of a particle whose classical trajectories correspond to the geodesics of any one-sided-invariant metric. We show how the derivation of the spectrum of energy eigenstates can be simplified by making use of automorphisms of the Lie algebra and (for groups of type I) by methods of harmonic analysis. We show how the method can be extended to cosets, generalising the linear rigid rotor. As examples, we consider all connected and simply connected Lie groups up to dimension 3. This includes the universal cover of the archetypical rigid body, along with a number of new exactly solvable models. We also discuss a possible application to the topical problem of quantising a perfect fluid. (paper)

  15. Durable bistable auxetics made of rigid solids

    Science.gov (United States)

    Shang, Xiao; Liu, Lu; Rafsanjani, Ahmad; Pasini, Damiano

    2018-02-01

    Bistable Auxetic Metamaterials (BAMs) are a class of monolithic perforated periodic structures with negative Poisson's ratio. Under tension, a BAM can expand and reach a second state of equilibrium through a globally large shape transformation that is ensured by the flexibility of its elastomeric base material. However, if made from a rigid polymer, or metal, BAM ceases to function due to the inevitable rupture of its ligaments. The goal of this work is to extend the unique functionality of the original kirigami architecture of BAM to a rigid solid base material. We use experiments and numerical simulations to assess performance, bistability and durability of rigid BAMs at 10,000 cycles. Geometric maps are presented to elucidate the role of the main descriptors of BAM architecture. The proposed design enables the realization of BAM from a large palette of materials, including elastic-perfectly plastic materials and potentially brittle materials.

  16. Non-steady homogeneous deformations: Computational techniques using Lie theory, and application to ellipsoidal markers in naturally deformed rocks

    Science.gov (United States)

    Davis, Joshua R.; Titus, Sarah J.; Horsman, Eric

    2013-11-01

    The dynamic theory of deformable ellipsoidal inclusions in slow viscous flows was worked out by J.D. Eshelby in the 1950s, and further developed and applied by various authors. We describe three approaches to computing Eshelby's ellipsoid dynamics and other homogeneous deformations. The most sophisticated of our methods uses differential-geometric techniques on Lie groups. This Lie group method is faster and more precise than earlier methods, and perfectly preserves certain geometric properties of the ellipsoids, including volume. We apply our method to the analysis of naturally deformed clasts from the Gem Lake shear zone in the Sierra Nevada mountains of California, USA. This application demonstrates how, given three-dimensional strain data, we can solve simultaneously for best-fit bulk kinematics of the shear zone, as well as relative viscosities of clasts and matrix rocks.

  17. Effect of rigid inclusions on sintering

    International Nuclear Information System (INIS)

    Rahaman, M.N.; De Jonghe, L.C.

    1988-01-01

    The predictions of recent theoretical studies on the effect of inert, rigid inclusions on the sintering of ceramic powder matrices are examined and compared with experimental data. The densification of glass matrix composites with inclusion volume fractions of ≤0.15 can be adequately explained by Scherer's theory for viscous sintering with rigid inclusions. Inclusions cause a vast reduction in the densification rates of polycrystalline matrix composites even at low inclusion volume fractions. Models put forward to explain the sintering of polycrystalline matrix composites are discussed

  18. Type number and rigidity of fibred surfaces

    International Nuclear Information System (INIS)

    Markov, P E

    2001-01-01

    Infinitesimal l-th order bendings, 1≤l≤∞, of higher-dimensional surfaces are considered in higher-dimensional flat spaces (for l=∞ an infinitesimal bending is assumed to be an analytic bending). In terms of the Allendoerfer type number, criteria are established for the (r,l)-rigidity (in the terminology of Sabitov) of such surfaces. In particular, an (r,l)-infinitesimal analogue is proved of the classical theorem of Allendoerfer on the unbendability of surfaces with type number ≥3 and the class of (r,l)-rigid fibred surfaces is distinguished

  19. Rigid origami vertices: conditions and forcing sets

    Directory of Open Access Journals (Sweden)

    Zachary Abel

    2016-04-01

    Full Text Available We develop an intrinsic necessary and sufficient condition for single-vertex origami crease patterns to be able to fold rigidly.  We classify such patterns in the case where the creases are pre-assigned to be mountains and valleys as well as in the unassigned case.  We also illustrate the utility of this result by applying it to the new concept of minimal forcing sets for rigid origami models, which are the smallest collection of creases that, when folded, will force all the other creases to fold in a prescribed way.

  20. Evaluating a method for automated rigid registration

    DEFF Research Database (Denmark)

    Darkner, Sune; Vester-Christensen, Martin; Larsen, Rasmus

    2007-01-01

    to point distance. T-test for common mean are used to determine the performance of the two methods (supported by a Wilcoxon signed rank test). The performance influence of sampling density, sampling quantity, and norms is analyzed using a similar method.......We evaluate a novel method for fully automated rigid registration of 2D manifolds in 3D space based on distance maps, the Gibbs sampler and Iterated Conditional Modes (ICM). The method is tested against the ICP considered as the gold standard for automated rigid registration. Furthermore...

  1. A new approach of recognition of ellipsoidal micro- and nanoparticles on AFM images and determination of their sizes

    International Nuclear Information System (INIS)

    Akhmadeev, Albert A; Kh Salakhov, Myakzyum

    2016-01-01

    In this work we develop an approach of automatic recognition of ellipsoidal particles on the atomic force microscopy (AFM) image and determination of their size, which is based on image segmentation and the surface approximation by ellipsoids. In addition to the comparative simplicity and rapidity of processing, this method allows us to determine the size of particles, the surface of which is not completely visible on the image. The proposed method showed good results on simulated images including noisy ones. Using this algorithm the size distributions of silica particles on experimental AFM images have been determined. (paper)

  2. Birth of the Object: Detection of Objectness and Extraction of Object Shape through Object Action Complexes

    DEFF Research Database (Denmark)

    Kraft, Dirk; Pugeault, Nicolas; Baseski, Emre

    2008-01-01

    We describe a process in which the segmentation of objects as well as the extraction of the object shape becomes realized through active exploration of a robot vision system. In the exploration process, two behavioral modules that link robot actions to the visual and haptic perception of objects...... interact. First, by making use of an object independent grasping mechanism, physical control over potential objects can be gained. Having evaluated the initial grasping mechanism as being successful, a second behavior extracts the object shape by making use of prediction based on the motion induced...... system, knowledge about its own embodiment as well as knowledge about geometric relationships such as rigid body motion. This prior knowledge allows the extraction of representations that are semantically richer compared to many other approaches....

  3. Geometric integrators for stochastic rigid body dynamics

    KAUST Repository

    Tretyakov, Mikhail

    2016-01-05

    Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.

  4. Combinatorial and Algorithmic Rigidity: Beyond Two Dimensions

    Science.gov (United States)

    2012-12-01

    44]. Theorems of Maxwell- Laman type were ob- tained in [9, 15, 43]. 2 3. Counting and Enumeration. As anticipated in the project, we relied on methods...decompositions. Graphs and Combinatorics, 25:219–238, 2009. [43] I. Streinu and L. Theran. Slider-pinning rigidity: a Maxwell- Laman -type theorem. Discrete and

  5. Birationally rigid varieties. I. Fano varieties

    International Nuclear Information System (INIS)

    Pukhlikov, A V

    2007-01-01

    The theory of birational rigidity of rationally connected varieties generalises the classical rationality problem. This paper gives a survey of the current state of this theory and traces its history from Noether's theorem and the Lueroth problem to the latest results on the birational superrigidity of higher-dimensional Fano varieties. The main components of the method of maximal singularities are considered.

  6. Rigid polyurethane and kenaf core composite foams

    Science.gov (United States)

    Rigid polyurethane foams are valuable in many construction applications. Kenaf is a bast fiber plant where the surface stem skin provides bast fibers whose strength-to-weight ratio competes with glass fiber. The higher volume product of the kenaf core is an under-investigated area in composite appli...

  7. Geometric integrators for stochastic rigid body dynamics

    KAUST Repository

    Tretyakov, Mikhail

    2016-01-01

    Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.

  8. Rigidity Sensing Explained by Active Matter Theory

    OpenAIRE

    Marcq, Philippe; Yoshinaga, Natsuhiko; Prost, Jacques

    2011-01-01

    The magnitude of traction forces exerted by living animal cells on their environment is a monotonically increasing and approximately sigmoidal function of the stiffness of the external medium. We rationalize this observation using active matter theory, and propose that adaptation to substrate rigidity results from an interplay between passive elasticity and active contractility.

  9. About deformation and rigidity in relativity

    International Nuclear Information System (INIS)

    Coll, Bartolome

    2007-01-01

    The notion of deformation involves that of rigidity. In relativity, starting from Born's early definition of rigidity, some other ones have been proposed, offering more or less interesting aspects but also accompanied of undesired or even pathological properties. In order to clarify the origin of these difficulties presented by the notion of rigidity in relativity, we analyze with some detail significant aspects of the unambiguous classical, Newtonian, notion. In particular, the relative character of its kinetic definition is pointed out, allowing to predict and to understand the limitations imposed by Herglotz-Noether theorem. Also, its equivalent dynamic definition is obtained and, in contrast, its absolute character is shown. But in spite of this absolute character, the dynamic definition is shown to be not extensible to relativity. The metric deformation of Minkowski space by the presence of a gravitational field is interpreted as a universal deformation, and it is shown that, under natural conditions, only a simple deformation law is possible, relating locally, but in an one-to-one way, gravitational fields and gauge classes of two-forms. We argue that fields of unit vectors associated to the internal gauge class of two-forms of every space-time (and, in particular, of Minkowski space-time) are the relativistic analogues of the classical accelerated observers, i.e. of the classical rigid motions. Some other consequences of the universal law of gravitational deformation are commented

  10. Rigid pricing and rationally inattentive consumer

    Czech Academy of Sciences Publication Activity Database

    Matějka, Filip

    2010-01-01

    Roč. 20, č. 2 (2010), s. 1-40 ISSN 1211-3298 R&D Projects: GA MŠk LC542 Institutional research plan: CEZ:AV0Z70850503 Keywords : rational inattention * nominal rigidity Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp409.pdf

  11. Cracking of open traffic rigid pavement

    Directory of Open Access Journals (Sweden)

    Niken Chatarina

    2017-01-01

    Full Text Available The research is done by observing the growth of real structure cracking in Natar, Lampung, Indonesia compared to C. Niken’s et al research and literature study. The rigid pavement was done with open traffic system. There are two main crack types on Natar rigid pavement: cracks cross the road, and cracks spreads on rigid pavement surface. The observation of cracks was analyzed by analyzing material, casting, curing, loading and shrinkage mechanism. The relationship between these analysis and shrinkage mechanism was studied in concrete micro structure. Open traffic make hydration process occur under vibration; therefore, fresh concrete was compressed and tensioned alternately since beginning. High temperature together with compression, cement dissociation, the growth of Ca2+ at very early age leads abnormal swelling. No prevention from outside water movement leads hydration process occur with limited water which caused spreads fine cracks. Limited water improves shrinkage and plastic phase becomes shorter; therefore, rigid pavement can’t accommodate the abnormal swelling and shrinking alternately and creates the spread of cracks. Discontinuing casting the concrete makes both mix under different condition, the first is shrink and the second is swell and creates weak line on the border; so, the cracks appear as cracks across the road.

  12. Experimental tests on buckling of ellipsoidal vessel heads subjected to internal pressure

    International Nuclear Information System (INIS)

    Roche, R.L.; Alix, M.

    1980-05-01

    Tests were performed on 17 ellipsoidal vessel heads of three different materials and different geometries. The results include the following: 1) Accurate definition of the geometry and particularly a direct measurement of the thickness along the meridian. 2) The properties of the material of each head, obtained from test specimens cut from the head itself after the test. 3) The recording of deflection/pressure curves with indication of the pressure at which buckling occurred. These results can be used for validation and qualification of methods for calculating the buckling load when plasticity occurs before buckling. It was possible to develop an empirical equation representing the experimental results obtained with satisfactory accuracy. This equation may be useful in pressure vessel design

  13. Design of an ellipsoidal mirror for freewave characterization of materials at microwave frequencies

    International Nuclear Information System (INIS)

    Rojo, M; Muñoz, J; Molina-Cuberos, G J; Margineda, J; García-Collado, Á J

    2016-01-01

    Free-wave characterization of the electromagnetic properties of materials at microwave frequencies requires that scattering at the edges of the samples and/or holder be minimized. Here, an ellipsoidal mirror is designed and characterized in order to decrease the size of the beam, thereby avoiding the scattering problems, even when relatively small samples are used. In the experimental configuration, both the emitting antenna and sample are located at the mirror focuses. Since both the emitted and reflected (focused) beams are Gaussian in nature, we make use of Gaussian beam theory to carry out the design. The mirror parameters are optimized by numerical simulations (COMSOL Multiphysics ® ) and then experimentally tested. An experimental setup is presented for dielectric, magnetic and chiral measurement in the 4.5–18 GHz band. (paper)

  14. Effects of tidal distortion on binary-star velocity curves and ellipsoidal variation

    International Nuclear Information System (INIS)

    Wilson, R.E.; Sofia, S.

    1976-01-01

    Radial velocity curves for the more massive components of binaries with extreme mass ratios can show a large distortion due to tides, as first recognized by Sterne. Binaries in which the effect is large should be rare because nearly all such binaries would be in the rapid phase of mass transfer. However, the optical counterparts of some X-ray binaries may show the effect, which would then serve as a new means of extracting considerable information from the observations. The essential parts of the computational procedure are given. Light curves for ellipsoidal variables with extreme mass ratios were also computed, and were found to be less sinusoidal than those with normal mass ratios

  15. Space-charge calculation for bunched beams with 3-D ellipsoidal symmetry

    International Nuclear Information System (INIS)

    Garnett, R.W.; Wangler, T.P.

    1991-01-01

    A method for calculating 3-D space-charge forces has been developed that is suitable for bunched beams of either ions or relativistic electrons. The method is based on the analytic relations between charge-density and electric fields for a distribution with 3-D ellipsoidal symmetry in real space. At each step we use a Fourier-series representation for the smooth particle-density function obtained from the distribution of the macroparticles being tracked through the elements of the system. The resulting smooth electric fields reduce the problem of noise from artificial collisions, associated with small numbers of interacting macroparticles. Example calculations will be shown for comparison with other methods. 4 refs., 2 figs., 1 tab

  16. Degenerate Quadtree Latitude/Longitude Grid Based on WGS-84 Ellipsoidal Facet

    Directory of Open Access Journals (Sweden)

    HU Bailin

    2016-12-01

    Full Text Available For the needs of digital earth development and solving many global problems, a new discrete global grid system-DQLLG (degenerate quadtree latitude/longitude grid was put forward, which was based on WGS-84 ellipsoidal facet. The hierarchical subdivision method, characteristics and grid column/row coordinate system were detailed. The Latitude/Longitude coordinate, area and side length of multi-resolution meshes on different subdivision levels were calculated. Then the changes of mesh areas and side lengths were analyzed and compared that with spherical DQLLG. The research indicates that the DQLLG had many excellent features:uniformity, hierarchy, consistency of direction, extensive data compatibility and so on. It has certain practicality for Global GIS in the future.

  17. PID Based on Attractive Ellipsoid Method for Dynamic Uncertain and External Disturbances Rejection in Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Jesus Patricio Ordaz Oliver

    2015-01-01

    Full Text Available This paper presents a stability analysis for LNDS (Lagrangian nonlinear dynamical systems with dynamic uncertain using a PID controller with external disturbances rejection based on attractive ellipsoid methods, since the PID-CT (proportional integral derivative computed torque compensator has been used for the nonlinear trajectory tracking of an LNDS, when there are external perturbations and system uncertainties. The global system convergence of the trivial solution has not been proved. In this sense, we propose an approach to find the gains of the nonlinear PID-CT controller to guarantee the boundedness of the trivial solution by means of the concept of the UUB (uniform-ultimately bounded stability. In order to show the effectiveness of the methodology proposed, we applied it in a real 2-DoF robot system.

  18. Geometrical optimization of an ellipsoidal plasma mirror toward tight focusing of ultra-intense laser pulse

    International Nuclear Information System (INIS)

    Kon, A; Nakatsutsumi, M; Chen, Z L; Kodama, R; Buffechoux, S; Fuchs, J; Jin, Z

    2010-01-01

    We developed for the first time, very compact ( 3 ) extremely low f-number (f/number = 0.4) confocal ellipsoid focusing systems. Direct measurement of the laser focal spot using a low-energy laser beam indicates 1/5 reduction of the spot size compared to standard focusing (using a f/2.7 optics). Such mirror is thus able to achieve significant enhancement of the focused laser intensity without modifying the laser system itself. The mirror is then used under plasma mirror regime which enables us to compactify the size, to liberate us from the anxiety of protecting the optics from target debris after shots, and to enhance the temporal contrast. In this paper, we focus our attention to designing and optimizing the geometry of such innovative plasma optics.

  19. Revisiting the stellar velocity ellipsoid-Hubble-type relation: observations versus simulations

    Science.gov (United States)

    Pinna, F.; Falcón-Barroso, J.; Martig, M.; Martínez-Valpuesta, I.; Méndez-Abreu, J.; van de Ven, G.; Leaman, R.; Lyubenova, M.

    2018-04-01

    The stellar velocity ellipsoid (SVE) in galaxies can provide important information on the processes that participate in the dynamical heating of their disc components (e.g. giant molecular clouds, mergers, spiral density waves, and bars). Earlier findings suggested a strong relation between the shape of the disc SVE and Hubble type, with later-type galaxies displaying more anisotropic ellipsoids and early types being more isotropic. In this paper, we revisit the strength of this relation using an exhaustive compilation of observational results from the literature on this issue. We find no clear correlation between the shape of the disc SVE and morphological type, and show that galaxies with the same Hubble type display a wide range of vertical-to-radial velocity dispersion ratios. The points are distributed around a mean value and scatter of σz/σR = 0.7 ± 0.2. With the aid of numerical simulations, we argue that different mechanisms might influence the shape of the SVE in the same manner and that the same process (e.g. mergers) does not have the same impact in all the galaxies. The complexity of the observational picture is confirmed by these simulations, which suggest that the vertical-to-radial axis ratio of the SVE is not a good indicator of the main source of disc heating. Our analysis of those simulations also indicates that the observed shape of the disc SVE may be affected by several processes simultaneously and that the signatures of some of them (e.g. mergers) fade over time.

  20. A Soft Gripper with Rigidity Tunable Elastomer Strips as Ligaments.

    Science.gov (United States)

    Nasab, Amir Mohammadi; Sabzehzar, Amin; Tatari, Milad; Majidi, Carmel; Shan, Wanliang

    2017-12-01

    Like their natural counterparts, soft bioinspired robots capable of actively tuning their mechanical rigidity can rapidly transition between a broad range of motor tasks-from lifting heavy loads to dexterous manipulation of delicate objects. Reversible rigidity tuning also enables soft robot actuators to reroute their internal loading and alter their mode of deformation in response to intrinsic activation. In this study, we demonstrate this principle with a three-fingered pneumatic gripper that contains "programmable" ligaments that change stiffness when activated with electrical current. The ligaments are composed of a conductive, thermoplastic elastomer composite that reversibly softens under resistive heating. Depending on which ligaments are activated, the gripper will bend inward to pick up an object, bend laterally to twist it, and bend outward to release it. All of the gripper motions are generated with a single pneumatic source of pressure. An activation-deactivation cycle can be completed within 15 s. The ability to incorporate electrically programmable ligaments in a pneumatic or hydraulic actuator has the potential to enhance versatility and reduce dependency on tubing and valves.

  1. Utility of semi-rigid thoracoscopy in undiagnosed exudative pleural effusion.

    Science.gov (United States)

    Nattusamy, Loganathan; Madan, Karan; Mohan, Anant; Hadda, Vijay; Jain, Deepali; Madan, Neha Kawatra; Arava, Sudheer; Khilnani, Gopi C; Guleria, Randeep

    2015-01-01

    Semi-rigid thoracoscopy is a safe and efficacious procedure in patients with undiagnosed pleural effusion. Literature on its utility from developing countries is limited. We herein describe our initial experience on the utility of semi-rigid thoracoscopy from a tertiary care teaching and referral center in north India. We also perform a systematic review of studies reporting the utility of semi-rigid thoracoscopy from India. The primary objective was to evaluate the diagnostic utility of semi-rigid thoracoscopy in patients with undiagnosed exudative pleural effusion. Semi-rigid thoracoscopy was performed under local anesthesia and conscious sedation in the bronchoscopy suite. A total of 48 patients underwent semi-rigid thoracoscopy between August 2012 and December 2013 for undiagnosed pleural effusion. Mean age was 50.9 ± 14.1 years (range: 17-78 years). Pre-procedure clinico-radiological diagnoses were malignant pleural effusion [36 patients (75%)], tuberculosis (TB) [10 (20.83%) patients], and empyema [2 patients (4.17%)]. Patients with empyema underwent the procedure for pleural biopsy, optimal placement of intercostal tube and adhesiolysis. Thoracoscopic pleural biopsy diagnosed pleural malignancy in 30 (62.5%) patients and TB in 2 (4.17%) patients. Fourteen (29.17%) patients were diagnosed with non-specific pleuritis and normal pleura was diagnosed on a pleural biopsy in 2 (4.17%) patients. Overall, a definitive diagnosis of either pleural malignancy or TB was obtained in 32 (66.7%) patients. Combined overall sensitivity, specificity, positive predictive value and negative predictive value of thoracoscopic pleural biopsy for malignant pleural effusion were 96.77%, 100%, 100% and 66.67%, respectively. There was no procedure-related mortality. On performing a systematic review of literature, four studies on semi-rigid thoracoscopy from India were identified. Semi-rigid thoracoscopy is a safe and efficacious procedure in patients with undiagnosed exudative

  2. The two-body problem of a pseudo-rigid body and a rigid sphere

    DEFF Research Database (Denmark)

    Kristiansen, Kristian Uldall; Vereshchagin, M.; Gózdziewski, K.

    2012-01-01

    n this paper we consider the two-body problem of a spherical pseudo-rigid body and a rigid sphere. Due to the rotational and "re-labelling" symmetries, the system is shown to possess conservation of angular momentum and circulation. We follow a reduction procedure similar to that undertaken...... in the study of the two-body problem of a rigid body and a sphere so that the computed reduced non-canonical Hamiltonian takes a similar form. We then consider relative equilibria and show that the notions of locally central and planar equilibria coincide. Finally, we show that Riemann's theorem on pseudo......-rigid bodies has an extension to this system for planar relative equilibria....

  3. Effect of surface slope errors of the ellipsoidal mirror on the resolution of the PGM beamline at Indus-1

    International Nuclear Information System (INIS)

    Singh, M.R.; Mukund, R.; Sahni, V.C.

    1999-01-01

    The influence of geometrical shape errors and surface errors on the characteristics and performance of grazing incidence optics used in the design of beamlines at synchrotron radiation facilities is considered. The methodology adopted for the simulation of slope errors is described and results presented for the ellipsoidal focussing mirror used in the design of PGM beamline at Indus-1. (author)

  4. Shape Evolution Synthesis of Monodisperse Spherical, Ellipsoidal, and Elongated Hematite (alpha-Fe2O3) Nanoparticles Using Ascorbic Acid

    NARCIS (Netherlands)

    Tan, W.F.; Yu, Y.T.; Wang, M.X.; Liu, F.; Koopal, L.K.

    2014-01-01

    Spherical, ellipsoidal, and elongated hematite particles have been obtained via a simple chemical precipitation reaction of FeCl3 and NaOH in the presence of ascorbic acid,(AA). The effects of pH, molar ratio of AA/Fe(III), and time on the formation and shape of the hematite particles were

  5. From Wage Rigidities to Labour Market Rigidities: A Turning-Point in Explaining Equilibrium Unemployment?

    OpenAIRE

    Marco Guerrazzi; Nicola Meccheri

    2009-01-01

    This paper offers a critical discussion of the concept of labour market rigidity relevant to explaining unemployment. Starting from Keynes’s own view, we discuss how the concept of labour market flexibility has changed over time, involving nominal or real wage flexibility, contract flexibility or labour market institution flexibility. We also provide a critical assessment of the factors that lead the search framework highlighting labour market rigidities (frictions) to challenge the more wide...

  6. Financial Constraints and Nominal Price Rigidities

    DEFF Research Database (Denmark)

    Menno, Dominik Francesco; Balleer, Almut; Hristov, Nikolay

    This paper investigates how financial market imperfections and the frequency of price adjustment interact. Based on new firm-level evidence for Germany, we document that financially constrained firms adjust prices more often than their unconstrained counterparts, both upwards and downwards. We show...... that these empirical patterns are consistent with a partial equilibrium menu-cost model with a working capital constraint. We then use the model to show how the presence of financial frictions changes profits and the price distribution of firms compared to a model without financial frictions. Our results suggest...... that tighter financial constraints are associated with higher nominal rigidities, higher prices and lower output. Moreover, in response to aggregate shocks, aggregate price rigidity moves substantially, the response of inflation is dampened, while output reacts more in the presence of financial frictions...

  7. Rigidity of the magic pentagram game

    Science.gov (United States)

    Kalev, Amir; Miller, Carl A.

    2018-01-01

    A game is rigid if a near-optimal score guarantees, under the sole assumption of the validity of quantum mechanics, that the players are using an approximately unique quantum strategy. Rigidity has a vital role in quantum cryptography as it permits a strictly classical user to trust behavior in the quantum realm. This property can be traced back as far as 1998 (Mayers and Yao) and has been proved for multiple classes of games. In this paper we prove ridigity for the magic pentagram game, a simple binary constraint satisfaction game involving two players, five clauses and ten variables. We show that all near-optimal strategies for the pentagram game are approximately equivalent to a unique strategy involving real Pauli measurements on three maximally-entangled qubit pairs.

  8. Rigidity of the magic pentagram game.

    Science.gov (United States)

    Kalev, Amir; Miller, Carl A

    2018-01-01

    A game is rigid if a near-optimal score guarantees, under the sole assumption of the validity of quantum mechanics, that the players are using an approximately unique quantum strategy. Rigidity has a vital role in quantum cryptography as it permits a strictly classical user to trust behavior in the quantum realm. This property can be traced back as far as 1998 (Mayers and Yao) and has been proved for multiple classes of games. In this paper we prove ridigity for the magic pentagram game, a simple binary constraint satisfaction game involving two players, five clauses and ten variables. We show that all near-optimal strategies for the pentagram game are approximately equivalent to a unique strategy involving real Pauli measurements on three maximally-entangled qubit pairs.

  9. Rigid cohomology over Laurent series fields

    CERN Document Server

    Lazda, Christopher

    2016-01-01

    In this monograph, the authors develop a new theory of p-adic cohomology for varieties over Laurent series fields in positive characteristic, based on Berthelot's theory of rigid cohomology. Many major fundamental properties of these cohomology groups are proven, such as finite dimensionality and cohomological descent, as well as interpretations in terms of Monsky-Washnitzer cohomology and Le Stum's overconvergent site. Applications of this new theory to arithmetic questions, such as l-independence and the weight monodromy conjecture, are also discussed. The construction of these cohomology groups, analogous to the Galois representations associated to varieties over local fields in mixed characteristic, fills a major gap in the study of arithmetic cohomology theories over function fields. By extending the scope of existing methods, the results presented here also serve as a first step towards a more general theory of p-adic cohomology over non-perfect ground fields. Rigid Cohomology over Laurent Series Fields...

  10. Modeling the Flexural Rigidity of Rod Photoreceptors

    Science.gov (United States)

    Haeri, Mohammad; Knox, Barry E.; Ahmadi, Aphrodite

    2013-01-01

    In vertebrate eyes, the rod photoreceptor has a modified cilium with an extended cylindrical structure specialized for phototransduction called the outer segment (OS). The OS has numerous stacked membrane disks and can bend or break when subjected to mechanical forces. The OS exhibits axial structural variation, with extended bands composed of a few hundred membrane disks whose thickness is diurnally modulated. Using high-resolution confocal microscopy, we have observed OS flexing and disruption in live transgenic Xenopus rods. Based on the experimental observations, we introduce a coarse-grained model of OS mechanical rigidity using elasticity theory, representing the axial OS banding explicitly via a spring-bead model. We calculate a bending stiffness of ∼105 nN⋅μm2, which is seven orders-of-magnitude larger than that of typical cilia and flagella. This bending stiffness has a quadratic relation to OS radius, so that thinner OS have lower fragility. Furthermore, we find that increasing the spatial frequency of axial OS banding decreases OS rigidity, reducing its fragility. Moreover, the model predicts a tendency for OS to break in bands with higher spring number density, analogous to the experimental observation that transgenic rods tended to break preferentially in bands of high fluorescence. We discuss how pathological alterations of disk membrane properties by mutant proteins may lead to increased OS rigidity and thus increased breakage, ultimately contributing to retinal degeneration. PMID:23442852

  11. Blast wave interaction with a rigid surface

    International Nuclear Information System (INIS)

    Josey, T.; Whitehouse, D.R.; Ripley, R.C.; Dionne, J.P.

    2004-01-01

    A simple model used to investigate blast wave interactions with a rigid surface is presented. The model uses a constant volume energy source analogue to predict pressure histories at gauges located directly above the charge. A series of two-dimensional axi-symmetric CFD calculations were performed, varying the height of the charge relative to the ground. Pressure histories, along with isopycnic plots are presented to evaluate the effects of placing a charge in close proximity to a rigid surface. When a charge is placed near a solid surface the pressure histories experienced at gauges above the charge indicate the presence of two distinct pressure peaks. The first peak is caused by the primary shock and the second peak is a result of the wave reflections from the rigid surface. As the distance from the charge to the wall is increased the magnitude of the second pressure peak is reduced, provided that the distance between the charge and the gauge is maintained constant. The simple model presented is able to capture significant, predictable flow features. (author)

  12. Lateral rigidity of cracked concrete structures

    International Nuclear Information System (INIS)

    Castellani, A.; Chesi, C.

    1979-01-01

    Numerical results are discussed on the lateral rigidity of reinforced concrete structures with a given crack distribution. They have been favourably checked with experimental results for cylindrical shells under the effect of a thermal gradient producing vertical cracking or vertical plus horizontal cracking. The main effects characterizing the concrete behaviour are: (1) The shear transfer across a crack; (2) The shear transfer degradation after cyclic loading; (3) The tension stiffening provided by the concrete between crack and crack, in the normal stress transfer; (4) The temperature effect on the elastic moduli of concrete, when cracks are of thermal origin. Only the 1st effect is discussed on an experimental basis. Two broad cathegories of reinforced concrete structures have been investigated in this respect: shear walls of buildings and cylindrical containment structures. The main conclusions so far reached are: (1) Vertical cracks are unlikely to decrease the lateral rigidity to less than 80% of the original one, and to less than 90% when they do not involve the entire thickness of the wall; (2) The appearence of horizontal cracks can reduce the lateral rigidity by some 30% or more; (3) A noticeable but not yet evaluated influence is shown by cyclic loading. (orig.)

  13. Stresses in Circular Plates with Rigid Elements

    Science.gov (United States)

    Velikanov, N. L.; Koryagin, S. I.; Sharkov, O. V.

    2018-05-01

    Calculations of residual stress fields are carried out by numerical and static methods, using the flat cross-section hypothesis. The failure of metal when exposed to residual stresses is, in most cases, brittle. The presence in the engineering structures of rigid elements often leads to the crack initiation and structure failure. This is due to the fact that rigid elements under the influence of external stresses are stress concentrators. In addition, if these elements are fixed by welding, the residual welding stresses can lead to an increase in stress concentration and, ultimately, to failure. The development of design schemes for such structures is a very urgent task for complex technical systems. To determine the stresses in a circular plate with a welded circular rigid insert under the influence of an external load, one can use the solution of the plane stress problem for annular plates in polar coordinates. The polar coordinates of the points are the polar radius and the polar angle, and the stress state is determined by normal radial stresses, tangential and shearing stresses. The use of the above mentioned design schemes, formulas, will allow more accurate determination of residual stresses in annular welded structures. This will help to establish the most likely directions of failure and take measures at the stages of designing, manufacturing and repairing engineering structures to prevent these failures. However, it must be taken into account that the external load, the presence of insulation can lead to a change in the residual stress field.

  14. 49 CFR 587.18 - Dimensions of fixed rigid barrier.

    Science.gov (United States)

    2010-10-01

    ... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) DEFORMABLE BARRIERS Offset Deformable Barrier § 587.18 Dimensions of fixed rigid barrier. (a) The fixed rigid barrier has a mass of not... 49 Transportation 7 2010-10-01 2010-10-01 false Dimensions of fixed rigid barrier. 587.18 Section...

  15. Design of semi-rigid type of flexible pavements

    Directory of Open Access Journals (Sweden)

    Pranshoo Solanki

    2017-03-01

    Full Text Available The primary objective of the study presented in this paper is to develop design curves for performance prediction of stabilized layers and to compare semi-rigid flexible pavement designs between the empirical AASHTO 1993 and the mechanistic-empirical pavement design methodologies. Specifically, comparisons were made for a range of different sections consisting of cementitious layers stabilized with different types and percentages of additives. It is found that the design thickness is influenced by the type of soil, additive, selection of material property and design method. Cost comparisons of sections stabilized with different percentage and type of additives showed that CKD-stabilization provides economically low cost sections as compared to lime- and CFA-stabilized sections. Knowledge gained from the parametric analysis of different sections using AASHTO 1993 and MEPDG is expected to be useful to pavement designers and others in implementation of the new MEPDG for future pavement design. Keywords: Semi-rigid, Mechanistic, Resilient modulus, Fatigue life, Reliability, Traffic

  16. Rigid Body Motion Calculated From Spatial Co-ordinates of Markers ...

    African Journals Online (AJOL)

    In this paper, we present a unified method for calculating spatial coordinates of markers for a rigid body motion such as in bones. Kinematical analysis of bone movement in cadaveric specimens or living objects had been developed. Here, we show how spatial co-ordinates of markers in or on bone can be calculated from ...

  17. CT-3DRA registration for radiosurgery treatments: a comparison among rigid, affine and non rigid approaches

    International Nuclear Information System (INIS)

    Stancanello, J.; Loeckx, D.; Francescon, P.; Calvedon, C.; Avanzo, M.; Cora, S.; Scalchi, P.; Cerveri, P.; Ferrigno, G.

    2004-01-01

    This work aims at comparing rigid, affine and Local Non Rigid (LNR) CT-3D Rotational Angiography (CT-3DRA) registrations based on mutual information. 10 cranial and 1 spinal cases have been registered by rigid and affine transformations; while LNR has been applied to the cases where residual deformation must be corrected. An example of CT-3DRA registration without regularization term and an example of LNR using the similarity criterion and the regularization term as well as 3D superposition of the 3DRA before and after the registration without the regularization term are presented. All the registrations performed by rigid transformation converged to an acceptable solution. The results about the robustness test in axial direction are reported. Conclusions: For cranial cases, affine transformation endowed with threshold-segmentation pre-processing can be considered the most favourable solution for almost all registrations; for some cases, LNR provides more accurate results. For the spinal case rigid transformation is the most suitable when immobilizing patient during examinations; in this case the increase of accuracy by using LNR registrations seems to be not significant

  18. A UNIFIED FRAMEWORK FOR THE ORBITAL STRUCTURE OF BARS AND TRIAXIAL ELLIPSOIDS

    Energy Technology Data Exchange (ETDEWEB)

    Valluri, Monica; Abbott, Caleb [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Shen, Juntai [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Debattista, Victor P., E-mail: mvalluri@umich.edu, E-mail: calebga@umich.edu, E-mail: jshen@shao.ac.cn, E-mail: vpdebattista@uclan.ac.uk [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, PR1 2HE (United Kingdom)

    2016-02-20

    We examine a large random sample of orbits in two self-consistent simulations of N-body bars. Orbits in these bars are classified both visually and with a new automated orbit classification method based on frequency analysis. The well-known prograde x1 orbit family originates from the same parent orbit as the box orbits in stationary and rotating triaxial ellipsoids. However, only a small fraction of bar orbits (∼4%) have predominately prograde motion like their periodic parent orbit. Most bar orbits arising from the x1 orbit have little net angular momentum in the bar frame, making them equivalent to box orbits in rotating triaxial potentials. In these simulations a small fraction of bar orbits (∼7%) are long-axis tubes that behave exactly like those in triaxial ellipsoids: they are tipped about the intermediate axis owing to the Coriolis force, with the sense of tipping determined by the sign of their angular momentum about the long axis. No orbits parented by prograde periodic x2 orbits are found in the pure bar model, but a tiny population (∼2%) of short-axis tube orbits parented by retrograde x4 orbits are found. When a central point mass representing a supermassive black hole (SMBH) is grown adiabatically at the center of the bar, those orbits that lie in the immediate vicinity of the SMBH are transformed into precessing Keplerian orbits that belong to the same major families (short-axis tubes, long-axis tubes and boxes) occupying the bar at larger radii. During the growth of an SMBH, the inflow of mass and outward transport of angular momentum transform some x1 and long-axis tube orbits into prograde short-axis tubes. This study has important implications for future attempts to constrain the masses of SMBHs in barred galaxies using orbit-based methods like the Schwarzschild orbit superposition scheme and for understanding the observed features in barred galaxies.

  19. Remifentanil-based total intravenous anesthesia for pediatric rigid bronchoscopy: comparison of adjuvant propofol and ketamine

    Directory of Open Access Journals (Sweden)

    Mefkur Bakan

    2014-06-01

    Full Text Available OBJECTIVE:Laryngoscopy and stimuli inside the trachea cause an intense sympatho-adrenal response. Remifentanil seems to be the optimal opioid for rigid bronchoscopy due to its potent and short-acting properties. The purpose of this study was to compare bolus propofol and ketamine as an adjuvant to remifentanil-based total intravenous anesthesia for pediatric rigid bronchoscopy.MATERIALS AND METHODS:Forty children under 12 years of age who had been scheduled for a rigid bronchoscopy were included in this study. After midazolam premedication, a 1 µg/kg/min remifentanil infusion was started, and patients were randomly allocated to receive either propofol (Group P or ketamine (Group K as well as mivacurium for muscle relaxation. Anesthesia was maintained with a 1 µg/kg/min remifentanil infusion and bolus doses of propofol or ketamine. After the rigid bronchoscopy, 0.05 µg/kg/min of remifentanil was maintained until extubation. Hemodynamic parameters, emergence characteristics, and adverse events were evaluated.RESULTS:The demographic variables were comparable between the two groups. The decrease in mean arterial pressure from baseline values to the lowest values during rigid bronchoscopy was greater in Group P (p= 0.049, while the reduction in the other parameters and the incidence of adverse events were comparable between the two groups. The need for assisted or controlled mask ventilation after extubation was higher in Group K.CONCLUSION:Remifentanil-based total intravenous anesthesia with propofol or ketamine as an adjuvant drug along with controlled ventilation is a viable technique for pediatric rigid bronchoscopy. Ketamine does not provide a definite advantage over propofol with respect to hemodynamic stability during rigid bronchoscopy, while propofol seems more suitable during the recovery period.

  20. Object and Objective Lost?

    DEFF Research Database (Denmark)

    Lopdrup-Hjorth, Thomas

    2015-01-01

    This paper explores the erosion and problematization of ‘the organization’ as a demarcated entity. Utilizing Foucault's reflections on ‘state-phobia’ as a source of inspiration, I show how an organization-phobia has gained a hold within Organization Theory (OT). By attending to the history...... of this organization-phobia, the paper argues that OT has become increasingly incapable of speaking about its core object. I show how organizations went from being conceptualized as entities of major importance to becoming theoretically deconstructed and associated with all kinds of ills. Through this history......, organizations as distinct entities have been rendered so problematic that they have gradually come to be removed from the center of OT. The costs of this have been rather significant. Besides undermining the grounds that gave OT intellectual credibility and legitimacy to begin with, the organization-phobia...

  1. Two clusters of GABAergic ellipsoid body neurons modulate olfactory labile memory in Drosophila.

    Science.gov (United States)

    Zhang, Zhiping; Li, Xiaoting; Guo, Jing; Li, Yan; Guo, Aike

    2013-03-20

    In Drosophila, aversive olfactory memory is believed to be stored in a prominent brain structure, the mushroom body (MB), and two pairs of MB intrinsic neurons, the dorsal paired medial (DPM) and the anterior paired lateral (APL) neurons, are found to regulate the consolidation of middle-term memory (MTM). Here we report that another prominent brain structure, the ellipsoid body (EB), is also involved in the modulation of olfactory MTM. Activating EB R2/R4m neurons does not affect the learning index, but specifically eliminates anesthesia-sensitive memory (ASM), the labile component of olfactory MTM. We further demonstrate that approximately two-thirds of these EB neurons are GABAergic and are responsible for the suppression of ASM. Using GRASP (GFP reconstitution across synaptic partners), we reveal potential synaptic connections between the EB and MB in regions covering both the presynaptic and postsynaptic sites of EB neurons, suggesting the presence of bidirectional connections between these two important brain structures. These findings suggest the existence of direct connections between the MB and EB, and provide new insights into the neural circuit basis for olfactory labile memory in Drosophila.

  2. Correlation of Macular Focal Electroretinogram with Ellipsoid Zone Extension in Stargardt Disease

    Directory of Open Access Journals (Sweden)

    Edoardo Abed

    2017-01-01

    Full Text Available Stargardt disease (STGD1 is the most common cause of inherited juvenile macular degeneration. This disease is characterized by a progressive accumulation of lipofuscin in the outer retina and subsequent loss of photoreceptors and retinal pigment epithelium. The aim of this study was to evaluate the relationship between cone photoreceptor function and structure in STGD1. Macular function was assessed by visual acuity measurement and focal electroretinogram (FERG recording while spectral domain optical coherence tomography (SD-OCT imaging was performed to evaluate the integrity of photoreceptors. FERG amplitude was significantly reduced in patients with Stargardt disease (p<0.0001. The amplitude of FERG showed a negative relationship with interruption of ellipsoid zone (EZ (R2=0.54, p<0.0001 and a positive correlation with average macular thickness (AMT. Conversely, visual acuity was only weakly correlated with central macular thickness (CMT (R2=0.12, p=0.04. In conclusion, this study demonstrates that FERG amplitude is a reliable indicator of macular cone function while visual acuity reflects the activity of the foveal region. A precise assessment of macular cone function by FERG recording may be useful to monitor the progression of STGD1 and to select the optimal candidates to include in future clinical trials to treat this disease.

  3. Detection of Methanol with Fast Response by Monodispersed Indium Tungsten Oxide Ellipsoidal Nanospheres.

    Science.gov (United States)

    Wang, Chong; Kou, Xueying; Xie, Ning; Guo, Lanlan; Sun, Yanfeng; Chuai, Xiaohong; Ma, Jian; Sun, Peng; Wang, Yue; Lu, Geyu

    2017-05-26

    Indium tungsten oxide ellipsoidal nanospheres were prepared with different In/W ratios by using a simple hydrothermal method without any surfactant for the first time. Sensors based on different In/W ratios samples were fabricated, and one of the samples exhibited better response to methanol compared with others. High content of defective oxygen (Ov) and proper output proportion of In to W might be the main reasons for the better gas sensing properties. The length of the nanosphere was about 150-200 nm, and the width was about 100 nm. Various techniques were applied to investigate the nanospheres. Sensing characteristics toward methanol were investigated. Significantly, the sensor exhibited ultrafast response to methanol. The response time to 400 ppm methanol was no more than 2 s and the recovery time was 9 s at 312 °C. Most importantly, the humidity almost had no effect on the response of the sensor fabricated here, which is hard to achieve in gas-sensing applications.

  4. Micro-macro-discrepancies in nonlinear microrheology: I. Quantifying mechanisms in a suspension of Brownian ellipsoids

    International Nuclear Information System (INIS)

    DePuit, Ryan J; Squires, Todd M

    2012-01-01

    Active and nonlinear microrheology experiments involve a colloidal probe that is forced to move within a material, with the goal of recovering the nonlinear rheological response properties of the material. Various mechanisms cause discrepancies between the nonlinear rheology measured microrheologically and macroscopically, including direct probe-bath collisions, the Lagrangian unsteadiness experienced by the material elements, and the spatially inhomogeneous and rheologically mixed strain field set up around the probe. Here, we perform computational nonlinear microrheology experiments, in which a colloidal probe translates through a dilute suspension of Brownian ellipsoids, whose results we compare against analogous computational experiments on the macroscopic shear rheology of the same model material. The quantitative impact of each of the mechanisms for micro-macro-discrepancy can thus be computed directly, with additional computational experiments performed where the processes in question are ‘turned off’. We show that all three discrepancy mechanisms impact the microrheological measurement quantitatively, and that none can be neglected. This motivates a search for microrheological probes whose geometry or forcing is optimized to minimize these impacts, which we present in a companion article.

  5. Behaviors of ellipsoidal micro-particles within a two-beam optical levitator

    International Nuclear Information System (INIS)

    Petkov, T.; Yang, M.; Ren, K.F.; Pouligny, B.; Loudet, J.-C.

    2017-01-01

    The two-beam levitator (TBL) is a standard optical setup made of a couple of counter-propagating beams. Note worthily, TBLs allow the manipulation and trapping of particles at long working distances. While much experience has been accumulated in the trapping of single spherical particles in TBLs, the behaviors of asymmetrical particles turn out to be more complex, and even surprising. Here, we report observations with prolate ellipsoidal polystyrene particles, with varying aspect ratio and ratio of the two beam powers. Generalizing the earlier work by Mihiretie et al. in single beam geometries [JQSRT 126, 61 (2013)], we observe that particles may be either static, or permanently oscillating, and that the two-beam geometry produces new particle responses: some of them are static, but non-symmetrical, while others correspond to new types of oscillations. A two-dimensional model based on ray-optics qualitatively accounts for these configurations and for the “primary” oscillations of the particles. Furthermore, levitation powers measured in the experiments are in fair agreement with those computed from GLMT (Generalized Lorentz Mie Theory), MLFMA (Multilevel Fast Multipole Algorithm) and approximate ray-optics methods. - Highlights: • Spheroids in two-laser beam geometry may stabilize in asymmetric configurations. • Particles undergo different types of oscillations, in polar and azimuthal angles. • Polar angle oscillations and asymmetric equilibriums are predicted by ray-optics. • The basic levitation force decreases with particle aspect ratio. • Experiments, simple ray optics and MLFMA calculations show similar tendencies.

  6. Probabilistic homogenization of random composite with ellipsoidal particle reinforcement by the iterative stochastic finite element method

    Science.gov (United States)

    Sokołowski, Damian; Kamiński, Marcin

    2018-01-01

    This study proposes a framework for determination of basic probabilistic characteristics of the orthotropic homogenized elastic properties of the periodic composite reinforced with ellipsoidal particles and a high stiffness contrast between the reinforcement and the matrix. Homogenization problem, solved by the Iterative Stochastic Finite Element Method (ISFEM) is implemented according to the stochastic perturbation, Monte Carlo simulation and semi-analytical techniques with the use of cubic Representative Volume Element (RVE) of this composite containing single particle. The given input Gaussian random variable is Young modulus of the matrix, while 3D homogenization scheme is based on numerical determination of the strain energy of the RVE under uniform unit stretches carried out in the FEM system ABAQUS. The entire series of several deterministic solutions with varying Young modulus of the matrix serves for the Weighted Least Squares Method (WLSM) recovery of polynomial response functions finally used in stochastic Taylor expansions inherent for the ISFEM. A numerical example consists of the High Density Polyurethane (HDPU) reinforced with the Carbon Black particle. It is numerically investigated (1) if the resulting homogenized characteristics are also Gaussian and (2) how the uncertainty in matrix Young modulus affects the effective stiffness tensor components and their PDF (Probability Density Function).

  7. Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows

    Science.gov (United States)

    Meng, Jianping; Zhang, Yonghao; Hadjiconstantinou, Nicolas G.; Radtke, Gregg A.; Shan, Xiaowen

    2013-03-01

    A thermal lattice Boltzmann model is constructed on the basis of the ellipsoidal statistical Bhatnagar-Gross-Krook (ES-BGK) collision operator via the Hermite moment representation. The resulting lattice ES-BGK model uses a single distribution function and features an adjustable Prandtl number. Numerical simulations show that using a moderate discrete velocity set, this model can accurately recover steady and transient solutions of the ES-BGK equation in the slip-flow and early transition regimes in the small Mach number limit that is typical of microscale problems of practical interest. In the transition regime in particular, comparisons with numerical solutions of the ES-BGK model, direct Monte Carlo and low-variance deviational Monte Carlo simulations show good accuracy for values of the Knudsen number up to approximately 0.5. On the other hand, highly non-equilibrium phenomena characterized by high Mach numbers, such as viscous heating and force-driven Poiseuille flow for large values of the driving force, are more difficult to capture quantitatively in the transition regime using discretizations chosen with computational efficiency in mind such as the one used here, although improved accuracy is observed as the number of discrete velocities is increased.

  8. Numerical solutions of ideal quantum gas dynamical flows governed by semiclassical ellipsoidal-statistical distribution.

    Science.gov (United States)

    Yang, Jaw-Yen; Yan, Chih-Yuan; Diaz, Manuel; Huang, Juan-Chen; Li, Zhihui; Zhang, Hanxin

    2014-01-08

    The ideal quantum gas dynamics as manifested by the semiclassical ellipsoidal-statistical (ES) equilibrium distribution derived in Wu et al. (Wu et al . 2012 Proc. R. Soc. A 468 , 1799-1823 (doi:10.1098/rspa.2011.0673)) is numerically studied for particles of three statistics. This anisotropic ES equilibrium distribution was derived using the maximum entropy principle and conserves the mass, momentum and energy, but differs from the standard Fermi-Dirac or Bose-Einstein distribution. The present numerical method combines the discrete velocity (or momentum) ordinate method in momentum space and the high-resolution shock-capturing method in physical space. A decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. Computations of two-dimensional Riemann problems are presented, and various contours of the quantities unique to this ES model are illustrated. The main flow features, such as shock waves, expansion waves and slip lines and their complex nonlinear interactions, are depicted and found to be consistent with existing calculations for a classical gas.

  9. Numerical simulation of performance of heavy ion inertial confinement fusion target with ellipsoidal chamber

    International Nuclear Information System (INIS)

    Basin, A.A.; Vatulin, V.V.; Vakhlamova, L.L.; Vinokurov, P.A.; Dement'ev, Yu.A.; Eliseev, G.M.; Ermolovich, V.F.; Morenko, L.Z.; Morenko, A.I.; Remizov, G.N.; Romanov, Yu.A.; Ryabikina, N.A.; Skrypnik, S.I.; Skidan, G.I.; Tikhomirov, B.P.; Shagaliev, R.M.

    1996-01-01

    To solve the design problem of an inertial thermonuclear fusion facility requires the united efforts of scientists in various countries. In the field of heavy ion fusion a collaboration between scientists in Germany and Russia is under successful development. VNIIEF possesses advanced software for numerical simulation of the processes in thermonuclear target operation. This paper describes a target design suggested and being studied by scientists of Frankfurt University and GSI which is based on 2D non-stationary calculation of the X-ray energy transport and capsule compression. The target consists of a spherical capsule with DT fuel and an ellipsoidal chamber containment. The ion beam energy is released in two fixed converters located on the chamber axis symmetricall with respect to the capsule. The X-ray field is formed on the capsule surface with a set of special shields. The basic aim of our research is to estimate the effect of gas dynamic expansion of the chamber walls, shields and capsule on the target operation. To increase the reliability of the obtained results and the assessment of probable errors in predicting radiation field parameters and the capsule state, the calculations were accomplished in a kinetic arrangement with various techniques. (orig.)

  10. Numerical solutions of the semiclassical Boltzmann ellipsoidal-statistical kinetic model equation

    Science.gov (United States)

    Yang, Jaw-Yen; Yan, Chin-Yuan; Huang, Juan-Chen; Li, Zhihui

    2014-01-01

    Computations of rarefied gas dynamical flows governed by the semiclassical Boltzmann ellipsoidal-statistical (ES) kinetic model equation using an accurate numerical method are presented. The semiclassical ES model was derived through the maximum entropy principle and conserves not only the mass, momentum and energy, but also contains additional higher order moments that differ from the standard quantum distributions. A different decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. The numerical method in phase space combines the discrete-ordinate method in momentum space and the high-resolution shock capturing method in physical space. Numerical solutions of two-dimensional Riemann problems for two configurations covering various degrees of rarefaction are presented and various contours of the quantities unique to this new model are illustrated. When the relaxation time becomes very small, the main flow features a display similar to that of ideal quantum gas dynamics, and the present solutions are found to be consistent with existing calculations for classical gas. The effect of a parameter that permits an adjustable Prandtl number in the flow is also studied. PMID:25104904

  11. Numerical solutions of ideal quantum gas dynamical flows governed by semiclassical ellipsoidal-statistical distribution

    Science.gov (United States)

    Yang, Jaw-Yen; Yan, Chih-Yuan; Diaz, Manuel; Huang, Juan-Chen; Li, Zhihui; Zhang, Hanxin

    2014-01-01

    The ideal quantum gas dynamics as manifested by the semiclassical ellipsoidal-statistical (ES) equilibrium distribution derived in Wu et al. (Wu et al. 2012 Proc. R. Soc. A 468, 1799–1823 (doi:10.1098/rspa.2011.0673)) is numerically studied for particles of three statistics. This anisotropic ES equilibrium distribution was derived using the maximum entropy principle and conserves the mass, momentum and energy, but differs from the standard Fermi–Dirac or Bose–Einstein distribution. The present numerical method combines the discrete velocity (or momentum) ordinate method in momentum space and the high-resolution shock-capturing method in physical space. A decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. Computations of two-dimensional Riemann problems are presented, and various contours of the quantities unique to this ES model are illustrated. The main flow features, such as shock waves, expansion waves and slip lines and their complex nonlinear interactions, are depicted and found to be consistent with existing calculations for a classical gas. PMID:24399919

  12. The velocity ellipsoid in the Galactic disc using Gaia DR1

    Science.gov (United States)

    Anguiano, Borja; Majewski, Steven R.; Freeman, Kenneth C.; Mitschang, Arik W.; Smith, Martin C.

    2018-02-01

    The stellar velocity ellipsoid of the solar neighbour (d Standard of Rest in Galactic rotation to be V⊙ = 13.9 ± 3.4 km s-1. A relation is found between the vertex deviation and the chemical abundances for the thin disc, ranging from -5 to +40° as iron abundance increases. For the thick disc we find a vertex deviation of luv ˜- 15°. The tilt angle (luw) in the U-W plane for the thin disc groups ranges from -10 to +15°, but there is no evident relation between luw and the mean abundances. However, we find a weak relation for luw as a function of iron abundances and α-elements for most of the groups in the thick disc, where the tilt angle decreases from -5 to -20° when [Fe/H] decreases and [α/Fe] increases. The velocity anisotropy parameter is independent of the chemical group abundances and its value is nearly constant for both discs (β ˜ 0.5), suggesting that the combined disc is dynamically relaxed.

  13. Gaze3DFix: Detecting 3D fixations with an ellipsoidal bounding volume.

    Science.gov (United States)

    Weber, Sascha; Schubert, Rebekka S; Vogt, Stefan; Velichkovsky, Boris M; Pannasch, Sebastian

    2017-10-26

    Nowadays, the use of eyetracking to determine 2-D gaze positions is common practice, and several approaches to the detection of 2-D fixations exist, but ready-to-use algorithms to determine eye movements in three dimensions are still missing. Here we present a dispersion-based algorithm with an ellipsoidal bounding volume that estimates 3D fixations. Therefore, 3D gaze points are obtained using a vector-based approach and are further processed with our algorithm. To evaluate the accuracy of our method, we performed experimental studies with real and virtual stimuli. We obtained good congruence between stimulus position and both the 3D gaze points and the 3D fixation locations within the tested range of 200-600 mm. The mean deviation of the 3D fixations from the stimulus positions was 17 mm for the real as well as for the virtual stimuli, with larger variances at increasing stimulus distances. The described algorithms are implemented in two dynamic linked libraries (Gaze3D.dll and Fixation3D.dll), and we provide a graphical user interface (Gaze3DFixGUI.exe) that is designed for importing 2-D binocular eyetracking data and calculating both 3D gaze points and 3D fixations using the libraries. The Gaze3DFix toolkit, including both libraries and the graphical user interface, is available as open-source software at https://github.com/applied-cognition-research/Gaze3DFix .

  14. Technical characteristics of rigid sprayed PUR and PIR foams used in construction industry

    Science.gov (United States)

    Gravit, Marina; Kuleshin, Aleksey; Khametgalieva, Elina; Karakozova, Irina

    2017-10-01

    The article describes the distinctive properties of rigid polyurethane foam and polyisocyanurate (PUR and PIR). A brief review of the research was carried out on their modification with an objective to improve the thermal insulation properties and reducing the combustibility. A comparative analysis of the technical characteristics of rigid PUR and PIR foams of various manufacturers is presented. The problems of the state of the market for the production of polyurethane foam and polyisocyanurate in Russia have been marked. It is established that the further development of the fabrication technology of heat-insulating sprayed rigid PUR and PIR foams requires uniformity of technical characteristics of original components and finished products. Moreover, it requires the creation of unified information base for raw materials and auxiliary materials used in the production of PUR and PIR foam.

  15. A rigid porous filter and filtration method

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Ta-Kuan; Straub, Douglas, Straub L.; Dennis, Richard A.

    1998-12-01

    The present invention involves a porous rigid filter comprising a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulate from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulate. The present filter has the advantage of requiring fewer filter elements due to the high surface area- to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.

  16. Mechanical Characterization of Rigid Polyurethane Foams

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Mechanics of Materials

    2014-12-01

    Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.

  17. Rigidity of complete generic shrinking Ricci solitons

    Science.gov (United States)

    Chu, Yawei; Zhou, Jundong; Wang, Xue

    2018-01-01

    Let (Mn , g , X) be a complete generic shrinking Ricci soliton of dimension n ≥ 3. In this paper, by employing curvature inequalities, the formula of X-Laplacian for the norm square of the trace-free curvature tensor, the weak maximum principle and the estimate of the scalar curvature of (Mn , g) , we prove some rigidity results for (Mn , g , X) . In particular, it is showed that (Mn , g , X) is isometric to Rn or a finite quotient of Sn under a pointwise pinching condition. Moreover, we establish several optimal inequalities and classify those shrinking solitons for equalities.

  18. Investigation of Drag Coefficient for Rigid Ballute-like Shapes

    Science.gov (United States)

    Carnasciali, Maria-Isabel; Mastromarino, Anthony

    2014-11-01

    One common method of decelerating an object during atmospheric entry, descent, and landing is the use of parachutes. Another deceleration technology is the ballute - a combination of balloon and parachute. A CFD study was conducted using commercially available software to investigate the flow-field and the coefficient of drag for various rigid ballute-like shapes at varying Reynolds numbers. The impact of size and placement of the burble-fence as well as number, size, and shape of inlets was considered. Recent experimental measurements conducted during NASA's Low-Density Supersonic Decelerator program revealed a much higher coefficient of drag (Cd) for ballutes than previously encountered. Using atmospheric drag to slow down and land reduces the need for heavy fuel and rocket engines and thus, high values of drag are desired. Funding for this work, in part, provided by the CT Space Grant Consortium.

  19. Slip Morphology of Elastic Strips on Frictional Rigid Substrates.

    Science.gov (United States)

    Sano, Tomohiko G; Yamaguchi, Tetsuo; Wada, Hirofumi

    2017-04-28

    The morphology of an elastic strip subject to vertical compressive stress on a frictional rigid substrate is investigated by a combination of theory and experiment. We find a rich variety of morphologies, which-when the bending elasticity dominates over the effect of gravity-are classified into three distinct types of states: pinned, partially slipped, and completely slipped, depending on the magnitude of the vertical strain and the coefficient of static friction. We develop a theory of elastica under mixed clamped-hinged boundary conditions combined with the Coulomb-Amontons friction law and find excellent quantitative agreement with simulations and controlled physical experiments. We also discuss the effect of gravity in order to bridge the difference in the qualitative behaviors of stiff strips and flexible strings or ropes. Our study thus complements recent work on elastic rope coiling and takes a significant step towards establishing a unified understanding of how a thin elastic object interacts vertically with a solid surface.

  20. Persistence-Driven Durotaxis: Generic, Directed Motility in Rigidity Gradients

    Science.gov (United States)

    Novikova, Elizaveta A.; Raab, Matthew; Discher, Dennis E.; Storm, Cornelis

    2017-02-01

    Cells move differently on substrates with different rigidities: the persistence time of their motion is higher on stiffer substrates. We show that this behavior—in and of itself—results in a net flux of cells directed up a soft-to-stiff gradient. Using simple random walk models with varying persistence and stochastic simulations, we characterize the propensity to move in terms of the durotactic index also measured in experiments. A one-dimensional model captures the essential features and highlights the competition between diffusive spreading and linear, wavelike propagation. Persistence-driven durokinesis is generic and may be of use in the design of instructive environments for cells and other motile, mechanosensitive objects.

  1. Generalization of Eshelby close-quote s Formula for a Single Ellipsoidal Elastic Inclusion to Poroelasticity and Thermoelasticity

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1997-01-01

    Eshelby close-quote s formula gives the response of a single ellipsoidal elastic inclusion in an elastic whole space to a uniform strain imposed at infinity. Using a linear combination of results from two simple thought experiments, we show how this formula may be generalized to both poroelasticity and thermoelasticity. The resulting new formulas are important for applications to analysis of poroelastic and thermoelastic composites, including but not restricted to rocks. copyright 1997 The American Physical Society

  2. Outer Retinal Changes Including the Ellipsoid Zone Band in Usher Syndrome 1B due to MYO7A Mutations.

    Science.gov (United States)

    Sumaroka, Alexander; Matsui, Rodrigo; Cideciyan, Artur V; McGuigan, David B; Sheplock, Rebecca; Schwartz, Sharon B; Jacobson, Samuel G

    2016-07-01

    To study transition zones from normal to abnormal retina in Usher syndrome IB (USH1B) caused by myosin 7A (MYO7A) mutations. Optical coherence tomography (OCT) scattering layers in outer retina were segmented in patients (n = 16, ages 2-42; eight patients had serial data, average interval 4.5 years) to quantify outer nuclear layer (ONL) and outer segments (OS) as well as the locus of EZ (ellipsoid zone) edge and its extent from the fovea. Static perimetry was measured under dark-adapted (DA) and light-adapted (LA) conditions. Ellipsoid zone edge in USH1B-MYO7A could be located up to 23° from the fovea. Ellipsoid zone extent constricted at a rate of 0.51°/year with slower rates at smaller eccentricities. A well-defined EZ line could be associated with normal or abnormal ONL and/or OS thickness; detectable ONL extended well beyond EZ edge. At the EZ edge, the local slope of LA sensitivity loss was 2.6 (±1.7) dB/deg for central transition zones. At greater eccentricities, the local slope of cone sensitivity loss was shallower (1.1 ± 0.4 dB/deg for LA) than that of rod sensitivity loss (2.8 ± 1.2 dB/deg for DA). In USH1B-MYO7A, constriction rate of EZ extent depends on the initial eccentricity of the transition. Ellipsoid zone edges in the macula correspond to large local changes in cone vision, but extramacular EZ edges show more pronounced losses on rod-based vision tests. It is advisable to use not only the EZ line but also other structural and functional parameters for estimating natural history of disease and possible therapeutic effects in future clinical trials of USH1B-MYO7A.

  3. A 3D DLM/FD method for simulating the motion of spheres and ellipsoids under creeping flow conditions

    Science.gov (United States)

    Pan, Tsorng-Whay; Guo, Aixia; Chiu, Shang-Huan; Glowinski, Roland

    2018-01-01

    We present in this article a novel distributed Lagrange multiplier/fictitious domain (DLM/FD) method for simulating fluid-particle interaction in three-dimensional (3D) Stokes flow. The methodology is validated by comparing the numerical results for a neutrally buoyant particle, of either spherical or prolate shape, with the associated Jeffrey's solutions for a simple shear flow. The results concerning two balls, interacting under creeping flow conditions in a bounded shear flow, are consistent with those available in the literature. We will discuss also the interactions of two balls in a bounded shear flow, when these balls are very close initially. For a prolate ellipsoid rotating in a shear flow under the sole effect of the particle inertia, shear plane tumbling is stable, while log-rolling is unstable. For two prolate ellipsoids interacting in a bounded shear flow, the results are similar to those for two balls if the major axes are initially orthogonal to the shear plane (a result not at all surprising considering that the intersections of the ellipsoids with the shear pane are circular).

  4. Public policies targeting labour market rigidities

    Directory of Open Access Journals (Sweden)

    Andreea Claudia ŞERBAN

    2013-02-01

    Full Text Available Labour market rigidity becomes an issue of increasing importance under conditions of shocks associated with the economic crisis due to the need to increase the adaptability and responsiveness to them. Thus, labour market policies must be directed towards mitigating rigidities caused by institutional or demographic factors or certain mismatch between demand and supply of education qualifications. This paper highlights the major role of the active labour market policies targeting the increase of labour flexibility, stressing the importance and impact on the ability to adapt quickly and effectively to macroeconomic shocks. Located on a declining trend in the years preceding the crisis, spending on labour market policies increased in 2009 in all the Member States of the European Union. Spending differences are significant between countries, Romania being at the lowest end of the European Union. This requires special attention because the increased adaptability of workers through training, as active measure, is of major importance considering the increased speed of changes in the labour market.

  5. Vertebral Column Resection for Rigid Spinal Deformity.

    Science.gov (United States)

    Saifi, Comron; Laratta, Joseph L; Petridis, Petros; Shillingford, Jamal N; Lehman, Ronald A; Lenke, Lawrence G

    2017-05-01

    Broad narrative review. To review the evolution, operative technique, outcomes, and complications associated with posterior vertebral column resection. A literature review of posterior vertebral column resection was performed. The authors' surgical technique is outlined in detail. The authors' experience and the literature regarding vertebral column resection are discussed at length. Treatment of severe, rigid coronal and/or sagittal malalignment with posterior vertebral column resection results in approximately 50-70% correction depending on the type of deformity. Surgical site infection rates range from 2.9% to 9.7%. Transient and permanent neurologic injury rates range from 0% to 13.8% and 0% to 6.3%, respectively. Although there are significant variations in EBL throughout the literature, it can be minimized by utilizing tranexamic acid intraoperatively. The ability to correct a rigid deformity in the spine relies on osteotomies. Each osteotomy is associated with a particular magnitude of correction at a single level. Posterior vertebral column resection is the most powerful posterior osteotomy method providing a successful correction of fixed complex deformities. Despite meticulous surgical technique and precision, this robust osteotomy technique can be associated with significant morbidity even in the most experienced hands.

  6. Fabrication of an 8:1 ellipsoidal mirror for a synchrotron x-ray microprobe

    International Nuclear Information System (INIS)

    Jones, K.W.; Takacs, P.Z.; Hastings, J.B.; Casstevens, J.M.; Pionke, C.D.

    1987-01-01

    The fabrication of an 8:1 demagnifying ellipsoidal mirror to be used for an x-ray microprobe at the National Synchrotron Light Source X-26 beam port is described. The design aim was to produce a mirror that could be used over the photon energy range from about 3 to 17 keV. The 300-mm long mirror was required to operate at a grazing angle of 5 mr. The semimajor axis was 4500 mm and the semiminor axis 14.142 mm. Surface roughness of 1 nm or less and slope errors of 1 arc second parallel to the long axis and 200 arc seconds parallel to the short direction were specified. Production of the first electroless nickel-coated aluminum mirror using a diamond-turning technique has been completed. The mirror meets the 1 arc sec surface figure specification except for areas near the ends of the mirror. The reasons for these deviations arise from subtle details of the diamond-turning process which have not been fully incorporated in to the computer program that controls the diamond-turning machines. Further work in computer correction of repeatable errors of the diamond-turning machine can eliminate the waviness at the ends of the mirror. The diamond-turned mirror surface was not fully polished under this effort and therefore does not meet the roughness specification; however, surface smoothness of a fully polished cylindrical mirror manufactured using the same techniques does not meet the specification. It can be concluded that it is now technically feasible to meet the required specifications for the mirror and that the x-ray microprobe based on its use can be achieved

  7. KIC 7599132: an ellipsoidal variable in a close SB1 system

    Science.gov (United States)

    Catanzaro, G.; Frasca, A.; Giarrusso, M.; Ripepi, V.; Leone, F.; Tognelli, E.; Munari, M.; Scuderi, S.

    2018-03-01

    In this paper we present a spectroscopic and photometric analysis of the suspected ellipsoidal variable star KIC 7599132. New spectroscopic observations have been obtained with Catania Astrophysical Observatory Spectropolarimeter (CAOS). From the fit of Hα and Hβ we determined the effective temperature and gravity of the primary component, Teff = 10200 ± 150 K and log g = 4.1 ± 0.1, while from a number of metal lines we derive the rotational velocity, vesin i = 60 ± 2 km s-1. We found almost solar abundances with the exception of silicon (0.50 dex) overabundance. A Bayesian analysis, based on the comparison between observational data and theoretical predictions of PROSECCO evolutionary models, allows us to estimate the mass and the age of the primary. We obtained M1 = 2.4 ± 0.2 M⊙ and τs = 3.8 _{-0.7}^{+0.9} Myr. A new model for the system was obtained combining Kepler photometric time-series (Q0-Q17) and our radial velocities by using the code PHOEBE. As a result, the system appears to be a detached binary system with a mass ratio q = 0.30 ± 0.01, a semi-major axis a = 7.3 ± 0.1 R⊙ and an inclination angle i = 35° ± 2°. This modelling allowed us to derive: M2 = 0.7 ± 0.1 M⊙, R1 = 3.0 ± 0.2 R⊙ and R2 = 1.5 ± 0.2 R⊙. Numerical simulations show that if the secondary star had been hotter than 4000 K we would have observed its spectral features in our spectra.

  8. KIC 7599132: an ellipsoidal variable in a close SB1 system

    Science.gov (United States)

    Catanzaro, G.; Frasca, A.; Giarrusso, M.; Ripepi, V.; Leone, F.; Tognelli, E.; Munari, M.; Scuderi, S.

    2018-06-01

    In this paper, we present a spectroscopic and photometric analysis of the suspected ellipsoidal variable star KIC 7599132. New spectroscopic observations have been obtained with Catania Astrophysical Observatory Spectropolarimeter. From the fit of Hα and Hβ, we determined the effective temperature and gravity of the primary component, Teff = 10200 ± 150 K and log g = 4.1 ± 0.1, while from a number of metal lines, we derive the rotational velocity, v esin i = 60 ± 2 km s-1. We found almost solar abundances with the exception of silicon (0.50 dex) overabundance. A Bayesian analysis, based on the comparison between observational data and theoretical predictions of PROSECCO evolutionary models, allows us to estimate the mass and the age of the primary. We obtained M1 = 2.4 ± 0.2 M⊙ and τs = 3.8 _{-0.7}^{+0.9} Myr. A new model for the system was obtained combining Kepler photometric time series (Q0-Q17) and our radial velocities by using the code PHOEBE. As a result, the system appears to be a detached binary system with a mass ratio q = 0.30 ± 0.01, a semimajor axis a = 7.3 ± 0.1 R⊙ and an inclination angle i = 35° ± 2°. This modelling allowed us to derive: M2 = 0.7 ± 0.1 M⊙, R1 = 3.0 ± 0.2 R⊙, and R2 = 1.5 ± 0.2 R⊙. Numerical simulations show that if the secondary star had been hotter than 4000 K, we would have observed its spectral features in our spectra.

  9. Thermostability in rubredoxin and its relationship to mechanical rigidity

    Science.gov (United States)

    Rader, A. J.

    2010-03-01

    The source of increased stability in proteins from organisms that thrive in extreme thermal environments is not well understood. Previous experimental and theoretical studies have suggested many different features possibly responsible for such thermostability. Many of these thermostabilizing mechanisms can be accounted for in terms of structural rigidity. Thus a plausible hypothesis accounting for this remarkable stability in thermophilic enzymes states that these enzymes have enhanced conformational rigidity at temperatures below their native, functioning temperature. Experimental evidence exists to both support and contradict this supposition. We computationally investigate the relationship between thermostability and rigidity using rubredoxin as a case study. The mechanical rigidity is calculated using atomic models of homologous rubredoxin structures from the hyperthermophile Pyrococcus furiosus and mesophile Clostridium pasteurianum using the FIRST software. A global increase in structural rigidity (equivalently a decrease in flexibility) corresponds to an increase in thermostability. Locally, rigidity differences (between mesophilic and thermophilic structures) agree with differences in protection factors.

  10. Thermostability in rubredoxin and its relationship to mechanical rigidity

    International Nuclear Information System (INIS)

    Rader, A J

    2010-01-01

    The source of increased stability in proteins from organisms that thrive in extreme thermal environments is not well understood. Previous experimental and theoretical studies have suggested many different features possibly responsible for such thermostability. Many of these thermostabilizing mechanisms can be accounted for in terms of structural rigidity. Thus a plausible hypothesis accounting for this remarkable stability in thermophilic enzymes states that these enzymes have enhanced conformational rigidity at temperatures below their native, functioning temperature. Experimental evidence exists to both support and contradict this supposition. We computationally investigate the relationship between thermostability and rigidity using rubredoxin as a case study. The mechanical rigidity is calculated using atomic models of homologous rubredoxin structures from the hyperthermophile Pyrococcus furiosus and mesophile Clostridium pasteurianum using the FIRST software. A global increase in structural rigidity (equivalently a decrease in flexibility) corresponds to an increase in thermostability. Locally, rigidity differences (between mesophilic and thermophilic structures) agree with differences in protection factors

  11. Coherent distributions for the rigid rotator

    Energy Technology Data Exchange (ETDEWEB)

    Grigorescu, Marius [CP 15-645, Bucharest 014700 (Romania)

    2016-06-15

    Coherent solutions of the classical Liouville equation for the rigid rotator are presented as positive phase-space distributions localized on the Lagrangian submanifolds of Hamilton-Jacobi theory. These solutions become Wigner-type quasiprobability distributions by a formal discretization of the left-invariant vector fields from their Fourier transform in angular momentum. The results are consistent with the usual quantization of the anisotropic rotator, but the expected value of the Hamiltonian contains a finite “zero point” energy term. It is shown that during the time when a quasiprobability distribution evolves according to the Liouville equation, the related quantum wave function should satisfy the time-dependent Schrödinger equation.

  12. Static friction between rigid fractal surfaces.

    Science.gov (United States)

    Alonso-Marroquin, Fernando; Huang, Pengyu; Hanaor, Dorian A H; Flores-Johnson, E A; Proust, Gwénaëlle; Gan, Yixiang; Shen, Luming

    2015-09-01

    Using spheropolygon-based simulations and contact slope analysis, we investigate the effects of surface topography and atomic scale friction on the macroscopically observed friction between rigid blocks with fractal surface structures. From our mathematical derivation, the angle of macroscopic friction is the result of the sum of the angle of atomic friction and the slope angle between the contact surfaces. The latter is obtained from the determination of all possible contact slopes between the two surface profiles through an alternative signature function. Our theory is validated through numerical simulations of spheropolygons with fractal Koch surfaces and is applied to the description of frictional properties of Weierstrass-Mandelbrot surfaces. The agreement between simulations and theory suggests that for interpreting macroscopic frictional behavior, the descriptors of surface morphology should be defined from the signature function rather than from the slopes of the contacting surfaces.

  13. Observational properties of rigidly rotating dust configurations

    Energy Technology Data Exchange (ETDEWEB)

    Ilyas, Batyr; Malafarina, Daniele [Nazarbayev University, Department of Physics, Astana (Kazakhstan); Yang, Jinye [Fudan University, Center for Field Theory and Particle Physics and Department of Physics, Shanghai (China); Bambi, Cosimo [Fudan University, Center for Field Theory and Particle Physics and Department of Physics, Shanghai (China); Eberhard-Karls Universitaet Tuebingen, Theoretical Astrophysics, Tuebingen (Germany)

    2017-07-15

    We study the observational properties of a class of exact solutions of Einstein's field equations describing stationary, axially symmetric, rigidly rotating dust (i.e. non-interacting particles). We ask the question whether such solutions can describe astrophysical rotating dark matter clouds near the center of galaxies and we probe the possibility that they may constitute an alternative to supermassive black holes at the center of galaxies. We show that light emission from accretion disks made of ordinary baryonic matter in this space-time has several differences with respect to the emission of light from similar accretion disks around black holes. The shape of the iron Kα line in the reflection spectrum of accretion disks can potentially distinguish this class of solutions from the Kerr metric, but this may not be possible with current X-ray missions. (orig.)

  14. On real structures on rigid surfaces

    International Nuclear Information System (INIS)

    Kulikov, Vik S; Kharlamov, V M

    2002-01-01

    We construct examples of rigid surfaces (that is, surfaces whose deformation class consists of a unique surface) with a particular behaviour with respect to real structures. In one example the surface has no real structure. In another it has a unique real structure, which is not maximal with respect to the Smith-Thom inequality. These examples give negative answers to the following problems: the existence of real surfaces in each deformation class of complex surfaces, and the existence of maximal real surfaces in every complex deformation class that contains real surfaces. Moreover, we prove that there are no real surfaces among surfaces of general type with p g =q=0 and K 2 =9. These surfaces also provide new counterexamples to the 'Dif = Def' problem

  15. On real structures on rigid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kulikov, Vik S [Steklov Mathematical Institute, Russian Academy of Sciences (Russian Federation); Kharlamov, V M [Institut de Recherche Matematique Avanee Universite Louis Pasteur et CNRS 7 rue Rene Descartes (France)

    2002-02-28

    We construct examples of rigid surfaces (that is, surfaces whose deformation class consists of a unique surface) with a particular behaviour with respect to real structures. In one example the surface has no real structure. In another it has a unique real structure, which is not maximal with respect to the Smith-Thom inequality. These examples give negative answers to the following problems: the existence of real surfaces in each deformation class of complex surfaces, and the existence of maximal real surfaces in every complex deformation class that contains real surfaces. Moreover, we prove that there are no real surfaces among surfaces of general type with p{sub g}=q=0 and K{sup 2}=9. These surfaces also provide new counterexamples to the 'Dif = Def' problem.

  16. Management of rigid post-traumatic kyphosis.

    Science.gov (United States)

    Wu, S S; Hwa, S Y; Lin, L C; Pai, W M; Chen, P Q; Au, M K

    1996-10-01

    Rigid post-traumatic kyphosis after fracture of the thoracolumbar and lumbar spine represents a failure of initial management of the injury. Kyphosis moves the center of gravity anterior. The kyphosis and instability may result in pain, deformity, and increased neurologic deficits. Management for symptomatic post-traumatic kyphosis always has presented a challenge to orthopedic surgeons. To evaluate the surgical results of one stage posterior correction for rigid symptomatic post-traumatic kyphosis of the thoracolumbar and lumbar spine. The management for post-traumatic kyphosis remains controversial. Anterior, posterior, or combined anterior and posterior procedures have been advocated by different authors and show various degrees of success. One vertebra immediately above and below the level of the deformity was instrumented posteriorly by a transpedicular system (internal fixator AO). Posterior decompression was performed by excision of the spinal process and bilateral laminectomy. With the deformed vertebra through the pedicle, the vertebral body carefully is removed around the pedicle level, approximating a wedge shape. The extent to which the deformed vertebral body should be removed is determined by the attempted correction. Correction of the deformity is achieved by manipulation of the operating table and compression of the adjacent Schanz screws above and below the lesion. Thirteen patients with post-traumatic kyphosis with symptoms of fatigue and pain caused by slow progression of kyphotic deformities received posterior decompression, correction, and stabilization as a definitive treatment. The precorrection kyphosis ranged from 30-60 degrees, with a mean of 40 degrees +/- 10.8 degrees. After correction, kyphosis was reduced to an average of 1.5 degrees +/- 3.8 degrees, with a range from -5 degrees to 5 degrees. The average angle of correction was 38.8 degrees +/- 10.4 degrees, with a range from 25 degrees to 60 degrees. Significant difference was found

  17. Dual Quaternion Variational Integrator for Rigid Body Dynamic Simulation

    OpenAIRE

    Xu, Jiafeng; Halse, Karl Henning

    2016-01-01

    In rigid body dynamic simulations, often the algorithm is required to deal with general situations where both reference point and inertia matrix are arbitrarily de- fined. We introduce a novel Lie group variational integrator using dual quaternion for simulating rigid body dynamics in all six degrees of freedom. Dual quaternion is used to represent rigid body kinematics and one-step Lie group method is used to derive dynamic equations. The combination of these two becomes the first Lie group ...

  18. Tile-based rigidization surface parametric design study

    Science.gov (United States)

    Giner Munoz, Laura; Luntz, Jonathan; Brei, Diann; Kim, Wonhee

    2018-03-01

    Inflatable technologies have proven useful in consumer goods as well as in more recent applications including civil structures, aerospace, medical, and robotics. However, inflatable technologies are typically lacking in their ability to provide rigid structural support. Particle jamming improves upon this by providing structures which are normally flexible and moldable but become rigid when air is removed. Because these are based on an airtight bladder filled with loose particles, they always occupy the full volume of its rigid state, even when not rigidized. More recent developments in layer jamming have created thin, compact rigidizing surfaces replacing the loose volume of particles with thinly layered surface materials. Work in this area has been applied to several specific applications with positive results but have not generally provided the broader understanding of the rigidization performance as a function of design parameters required for directly adapting layer rigidization technology to other applications. This paper presents a parametric design study of a new layer jamming vacuum rigidization architecture: tile-based vacuum rigidization. This form of rigidization is based on layers of tiles contained within a thin vacuum bladder which can be bent, rolled, or otherwise compactly stowed, but when deployed flat, can be vacuumed and form a large, flat, rigid plate capable of supporting large forces both localized and distributed over the surface. The general architecture and operation detailing rigidization and compliance mechanisms is introduced. To quantitatively characterize the rigidization behavior, prototypes rigidization surfaces are fabricated and an experimental technique is developed based on a 3-point bending test. Performance evaluation metrics are developed to describe the stiffness, load-bearing capacity, and internal slippage of tested prototypes. A set of experimental parametric studies are performed to better understand the impact of

  19. In silico Interrogation of Insect Central Complex Suggests Computational Roles for the Ellipsoid Body in Spatial Navigation

    Directory of Open Access Journals (Sweden)

    Vincenzo G. Fiore

    2017-08-01

    Full Text Available The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed

  20. In silico Interrogation of Insect Central Complex Suggests Computational Roles for the Ellipsoid Body in Spatial Navigation.

    Science.gov (United States)

    Fiore, Vincenzo G; Kottler, Benjamin; Gu, Xiaosi; Hirth, Frank

    2017-01-01

    The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed computational features

  1. A MIT-Based Nonlinear Adaptive Set-Membership Filter for the Ellipsoidal Estimation of Mobile Robots' States

    Directory of Open Access Journals (Sweden)

    Dalei Song

    2012-10-01

    Full Text Available The adaptive extended set-membership filter (AESMF for nonlinear ellipsoidal estimation suffers a mismatch between real process noise and its set boundaries, which may result in unstable estimation. In this paper, a MIT method-based adaptive set-membership filter, for the optimization of the set boundaries of process noise, is developed and applied to the nonlinear joint estimation of both time-varying states and parameters. As a result of using the proposed MIT-AESMF, the estimation effectiveness and boundary accuracy of traditional AESMF are substantially improved. Simulation results have shown the efficiency and robustness of the proposed method.

  2. An elementary treatise on Fourier's series and spherical, cylindrical, and ellipsoidal harmonics, with applications to problems in mathematical

    CERN Document Server

    Byerly, William Elwood

    2003-01-01

    Originally published over a century ago, this work remains among the most useful and practical expositions of Fourier's series, and spherical, cylindrical, and ellipsoidal harmonics. The subsequent growth of science into a diverse range of specialties has enhanced the value of this classic, whose thorough, basic treatment presents material that is assumed in many other studies but seldom available in such concise form. The development of functions, series, and their differential equations receives detailed explanations, and throughout the text, theory is applied to practical problems, with the

  3. Research on Rigid Body Motion Tracing in Space based on NX MCD

    Science.gov (United States)

    Wang, Junjie; Dai, Chunxiang; Shi, Karen; Qin, Rongkang

    2018-03-01

    In the use of MCD (Mechatronics Concept Designer) which is a module belong to SIEMENS Ltd industrial design software UG (Unigraphics NX), user can define rigid body and kinematic joint to make objects move according to the existing plan in simulation. At this stage, user may have the desire to see the path of some points in the moving object intuitively. In response to this requirement, this paper will compute the pose through the transformation matrix which can be available from the solver engine, and then fit these sampling points through B-spline curve. Meanwhile, combined with the actual constraints of rigid bodies, the traditional equal interval sampling strategy was optimized. The result shown that this method could satisfy the demand and make up for the deficiency in traditional sampling method. User can still edit and model on this 3D curve. Expected result has been achieved.

  4. Algebraic Methods for Counting Euclidean Embeddings of Rigid Graphs

    NARCIS (Netherlands)

    I.Z. Emiris; E.P. Tsigaridas; A. Varvitsiotis (Antonios); E.R. Gasner

    2009-01-01

    textabstract The study of (minimally) rigid graphs is motivated by numerous applications, mostly in robotics and bioinformatics. A major open problem concerns the number of embeddings of such graphs, up to rigid motions, in Euclidean space. We capture embeddability by polynomial systems

  5. First Case of Glufosinate-Resistant Rigid Ryegrass (Lolium rigidum Gaud. in Greece

    Directory of Open Access Journals (Sweden)

    Ilias S. Travlos

    2018-03-01

    Full Text Available Repeated applications of the same herbicide(s, which are characterized by the same mode of action, increase selection pressure, which in turn favours the evolution of herbicide-resistant weeds. Glufosinate is a broad-spectrum non-selective herbicide being used for weed control for many years around the world. Rigid ryegrass (Lolium rigidum Gaud. is an economically important grass weed in Greece. Recent complaints by growers about control failure of rigid ryegrass with glufosinate require further investigation and have been the basis of this study. The objectives of this study were to confirm the existence of glufosinate-resistant L. rigidum in Greece and evaluate the effect of L. rigidum growth stage on glufosinate efficacy. Twenty populations of rigid ryegrass from Greece were sampled from five regions, and whole plant dose–response studies were conducted for five populations under controlled conditions with eight rates of glufosinate (0.0, 0.098, 0.187, 0.375, 0.75, 1.5, 3.0, and 6.0 kg a.i. ha−1. Glufosinate resistance was confirmed in three out of five populations with the level of resistance ranging from three-to seven-fold compared with the susceptible populations based on above-ground biomass reduction. Results also revealed that the level of glufosinate-resistance of rigid ryegrass was dependent on the growth stage at which it was applied.

  6. Laparoscopic - assisted transpyelic rigid nephroscopy - simple alternative when flexible ureteroscopy is not available

    Directory of Open Access Journals (Sweden)

    Marcos Tobias-Machado

    Full Text Available ABSTRACT Introduction: In special situations such as malrotated or ectopic kidneys and UPJ stenosis treatment of renal lithiasis can be challenging. In these rare cases laparoscopy can be indicated. Objective: Describe the Laparoscopic-assisted rigid nephroscopy performed via transpyelic approach and report the feasibility. Patients and methods: We present two cases of caliceal lithiasis. The first is a patient that ESWL and previous percutaneous lithotripsy have failed, with pelvic kidney where laparoscopic dissection of renal pelvis was carried out followed by nephroscopy utilizing the 30 Fr rigid nephroscope to remove the calculus. Ideal angle between the major axis of renal pelvis and the rigid nephroscope to allow success with this technique was 60-90 grades. In the second case, the kidney had a dilated infundibulum. Results: The operative time was 180 minutes for both procedures. No significant blood loss or perioperative complications occurred. The bladder catheter was removed in the postoperative day 1 and Penrose drain on day 2 when patients were discharged. The convalescence was completed after 3 weeks. Patients were stone free without symptons in one year of follow-up. Conclusions: Laparoscopic-assisted rigid nephroscopy performed via tranpyelic approach can be done safely with proper patient selection and adherence to standard laparoscopic surgical principles. This approach is an alternative in cases where flexible endoscope is not available and when standard procedure is unlikely to produce a stone-free status.

  7. THE RIGIDITY OF THE EARTH'S INNER CORE

    Directory of Open Access Journals (Sweden)

    K. E. BULLEN

    1953-06-01

    Full Text Available The purpose of this paper is to examine and assess, in the
    light of recent evidence, the theory lliat the Earth's inner core has
    a significant rigidity.
    The presenee of an inner core in the Earth is revealed from
    observations of the seismie pliase PKP in the « sliadow zone » for
    which the epicentral distance A lies in the range 105" < A < 143".
    Miss I. Lehmann (r in 1936, followed by Gutenberg and Richter (2
    in 1938, atlrihuted these observations to tlie presence of an inner
    core; and Jeffreys (3 in 1939 applied Airy's theory of diffraetion
    near a caustic to sliow that the alternative theory of diffraetion
    round the outer boundary of the centrai core was not capable of
    explaining tlie observations in the shadow zone. The existence of the
    inner core has been fairly generallv accepted sinee tliis ealculation
    of Jeffreys.

  8. Almost Poisson integration of rigid body systems

    International Nuclear Information System (INIS)

    Austin, M.A.; Krishnaprasad, P.S.; Li-Sheng Wang

    1993-01-01

    In this paper we discuss the numerical integration of Lie-Poisson systems using the mid-point rule. Since such systems result from the reduction of hamiltonian systems with symmetry by lie group actions, we also present examples of reconstruction rules for the full dynamics. A primary motivation is to preserve in the integration process, various conserved quantities of the original dynamics. A main result of this paper is an O(h 3 ) error estimate for the Lie-Poisson structure, where h is the integration step-size. We note that Lie-Poisson systems appear naturally in many areas of physical science and engineering, including theoretical mechanics of fluids and plasmas, satellite dynamics, and polarization dynamics. In the present paper we consider a series of progressively complicated examples related to rigid body systems. We also consider a dissipative example associated to a Lie-Poisson system. The behavior of the mid-point rule and an associated reconstruction rule is numerically explored. 24 refs., 9 figs

  9. Rigid multipodal platforms for metal surfaces

    Directory of Open Access Journals (Sweden)

    Michal Valášek

    2016-03-01

    Full Text Available In this review the recent progress in molecular platforms that form rigid and well-defined contact to a metal surface are discussed. Most of the presented examples have at least three anchoring units in order to control the spatial arrangement of the protruding molecular subunit. Another interesting feature is the lateral orientation of these foot structures which, depending on the particular application, is equally important as the spatial arrangement of the molecules. The numerous approaches towards assembling and organizing functional molecules into specific architectures on metal substrates are reviewed here. Particular attention is paid to variations of both, the core structures and the anchoring groups. Furthermore, the analytical methods enabling the investigation of individual molecules as well as monomolecular layers of ordered platform structures are summarized. The presented multipodal platforms bearing several anchoring groups form considerably more stable molecule–metal contacts than corresponding monopodal analogues and exhibit an enlarged separation of the functional molecules due to the increased footprint, as well as restrict tilting of the functional termini with respect to the metal surface. These platforms are thus ideally suited to tune important properties of the molecule–metal interface. On a single-molecule level, several of these platforms enable the control over the arrangement of the protruding rod-type molecular structures (e.g., molecular wires, switches, rotors, sensors with respect to the surface of the substrate.

  10. Inflatable Tubular Structures Rigidized with Foams

    Science.gov (United States)

    Tinker, Michael L.; Schnell, Andrew R.

    2010-01-01

    Inflatable tubular structures that have annular cross sections rigidized with foams, and the means of erecting such structures in the field, are undergoing development. Although the development effort has focused on lightweight structural booms to be transported in compact form and deployed in outer space, the principles of design and fabrication are also potentially applicable to terrestrial structures, including components of ultralightweight aircraft, lightweight storage buildings and shelters, lightweight insulation, and sales displays. The use of foams to deploy and harden inflatable structures was first proposed as early as the 1960s, and has been investigated in recent years by NASA, the U.S. Air Force Research Laboratory, industry, and academia. In cases of deployable booms, most of the investigation in recent years has focused on solid cross sections, because they can be constructed relatively easily. However, solid-section foam-filled booms can be much too heavy for some applications. In contrast, booms with annular cross sections according to the present innovation can be tailored to obtain desired combinations of stiffness and weight through choice of diameters, wall thicknesses, and foam densities. By far the most compelling advantage afforded by this innovation is the possibility of drastically reducing weights while retaining or increasing the stiffnesses, relative to comparable booms that have solid foamfilled cross sections. A typical boom according to this innovation includes inner and outer polyimide film sleeves to contain foam that is injected between them during deployment.

  11. Spontaneous droplet trampolining on rigid superhydrophobic surfaces

    Science.gov (United States)

    Schutzius, Thomas M.; Jung, Stefan; Maitra, Tanmoy; Graeber, Gustav; Köhme, Moritz; Poulikakos, Dimos

    2015-11-01

    Spontaneous removal of condensed matter from surfaces is exploited in nature and in a broad range of technologies to achieve self-cleaning, anti-icing and condensation control. But despite much progress, our understanding of the phenomena leading to such behaviour remains incomplete, which makes it challenging to rationally design surfaces that benefit from its manifestation. Here we show that water droplets resting on superhydrophobic textured surfaces in a low-pressure environment can self-remove through sudden spontaneous levitation and subsequent trampoline-like bouncing behaviour, in which sequential collisions with the surface accelerate the droplets. These collisions have restitution coefficients (ratios of relative speeds after and before collision) greater than unity despite complete rigidity of the surface, and thus seemingly violate the second law of thermodynamics. However, these restitution coefficients result from an overpressure beneath the droplet produced by fast droplet vaporization while substrate adhesion and surface texture restrict vapour flow. We also show that the high vaporization rates experienced by the droplets and the associated cooling can result in freezing from a supercooled state that triggers a sudden increase in vaporization, which in turn boosts the levitation process. This effect can spontaneously remove surface icing by lifting away icy drops the moment they freeze. Although these observations are relevant only to systems in a low-pressure environment, they show how surface texturing can produce droplet-surface interactions that prohibit liquid and freezing water-droplet retention on surfaces.

  12. Estimation of the ground shaking from the response of rigid bodies

    Directory of Open Access Journals (Sweden)

    Filomena de Silva

    2016-12-01

    Full Text Available The paper illustrates and compares simplified approaches to interpret the mechanisms of damage observed on rigid bodies in the cemetery of Amatrice, after the main shock (August 24, 2016, MW=6.0 of the Central Italy earthquake. The final goal of the work is to link the observed movements of the fallen objects to specific characteristics of the ground motion occurred at the specific site.

  13. A thermodynamically consistent constitutive theory for a rigid solid-stokesian fluid mixture

    International Nuclear Information System (INIS)

    Mattos, H.C.; Costa, M.L.M.; Sampaio, R.; Gama, R.M.S. da.

    1992-01-01

    This work is concerned with the modelling for the flow of a stokesian fluid through a rigid porous medium, using a Theory of Mixtures viewpoint. A systematic procedure to obtain constitutive relations that verify automatically the principle of objectivity and a local version of the second law of Thermodynamics is proposed. The prescription of two thermodynamic potentials for each constituent is sufficient to define a complete set of constitutive relations. (author)

  14. RIGIDITY, SENSITIVITY AND QUALITY OF ATTACHMENT - THE ROLE OF MATERNAL RIGIDITY IN THE EARLY SOCIOEMOTIONAL DEVELOPMENT OF PREMATURE-INFANTS

    NARCIS (Netherlands)

    BUTCHER, PR; KALVERBOER, A; MINDERAA, RB; VANDOORMAAL, EF; TENWOLDE, Y

    1993-01-01

    The associations between a mother's rigidity, her sensitivity in early (3 month) interaction and the quality of her premature infant's attachment at 13 months were investigated. Rigidity as a personality characteristic was not found to be significantly associated with sensitivity or quality of

  15. Hierarchical and successive approximate registration of the non-rigid medical image based on thin-plate splines

    Science.gov (United States)

    Hu, Jinyan; Li, Li; Yang, Yunfeng

    2017-06-01

    The hierarchical and successive approximate registration method of non-rigid medical image based on the thin-plate splines is proposed in the paper. There are two major novelties in the proposed method. First, the hierarchical registration based on Wavelet transform is used. The approximate image of Wavelet transform is selected as the registered object. Second, the successive approximation registration method is used to accomplish the non-rigid medical images registration, i.e. the local regions of the couple images are registered roughly based on the thin-plate splines, then, the current rough registration result is selected as the object to be registered in the following registration procedure. Experiments show that the proposed method is effective in the registration process of the non-rigid medical images.

  16. An exact solution for orbit view-periods from a station on a tri-axial ellipsoidal planet

    Science.gov (United States)

    Tang, C. C. H.

    1986-01-01

    This paper presents the concise exact solution for predicting view-periods to be observed from a masked or unmasked tracking station on a tri-axial ellipsoidal surface. The new exact approach expresses the azimuth and elevation angles of a spacecraft in terms of the station-centered geodetic topocentric coordinates in an elegantly concise manner. A simple and efficient algorithm is developed to avoid costly repetitive computations in searching for neighborhoods near the rise and set times of each satellite orbit for each station. Only one search for each orbit is necessary for each station. Sample results indicate that the use of an assumed spherical earth instead of an 'actual' tri-axial ellipsoidal earth could introduce an error up to a few minutes in a view-period prediction for circular orbits of low or medium altitude. For an elliptical orbit of high eccentricity and long period, the maximum error could be even larger. The analytic treatment and the efficient algorithm are designed for geocentric orbits, but they should be applicable to interplanetary trajectories by an appropriate coordinates transformation at each view-period calculation. This analysis can be accomplished only by not using the classical orbital elements.

  17. An exact solution for orbit view-periods from a station on a tri-axial ellipsoidal planet

    Science.gov (United States)

    Tang, C. C. H.

    1986-08-01

    This paper presents the concise exact solution for predicting view-periods to be observed from a masked or unmasked tracking station on a tri-axial ellipsoidal surface. The new exact approach expresses the azimuth and elevation angles of a spacecraft in terms of the station-centered geodetic topocentric coordinates in an elegantly concise manner. A simple and efficient algorithm is developed to avoid costly repetitive computations in searching for neighborhoods near the rise and set times of each satellite orbit for each station. Only one search for each orbit is necessary for each station. Sample results indicate that the use of an assumed spherical earth instead of an 'actual' tri-axial ellipsoidal earth could introduce an error up to a few minutes in a view-period prediction for circular orbits of low or medium altitude. For an elliptical orbit of high eccentricity and long period, the maximum error could be even larger. The analytic treatment and the efficient algorithm are designed for geocentric orbits, but they should be applicable to interplanetary trajectories by an appropriate coordinates transformation at each view-period calculation. This analysis can be accomplished only by not using the classical orbital elements.

  18. Is the Ellipsoid Formula the New Standard for 3-Tesla MRI Prostate Volume Calculation without Endorectal Coil?

    Science.gov (United States)

    Haas, Matthias; Günzel, Karsten; Miller, Kurt; Hamm, Bernd; Cash, Hannes; Asbach, Patrick

    2017-01-01

    Prostate volume in multiparametric MRI (mpMRI) is of clinical importance. For 3-Tesla mpMRI without endorectal coil, there is no distinctive standard for volume calculation. We tested the accuracy of the ellipsoid formula with planimetric volume measurements as reference and investigated the correlation of gland volume and cancer detection rate on MRI/ultrasound (MRI/US) fusion-guided biopsy. One hundred forty-three patients with findings on 3-Tesla mpMRI suspicious of cancer and subsequent MRI/US fusion-guided targeted biopsy and additional systematic biopsy were analyzed. T2-weighted images were used for measuring the prostate diameters and for planimetric volume measurement by a segmentation software. Planimetric and calculated prostate volumes were compared with clinical data. The median prostate volume was 48.1 ml (interquartile range (IQR) 36.9-62.1 ml). Volume calculated by the ellipsoid formula showed a strong concordance with planimetric volume, with a tendency to underestimate prostate volume (median volume 43.1 ml (IQR 31.2-58.8 ml); r = 0.903, p Tesla mpMRI without endorectal coil. It allows a fast, valid volume calculation in prostate MRI datasets. © 2016 S. Karger AG, Basel.

  19. Wavefront error measurement of the concave ellipsoidal mirrors of the METIS coronagraph on ESA Solar Orbiter mission

    Science.gov (United States)

    Sandri, P.

    2017-12-01

    The paper describes the alignment technique developed for the wavefront error measurement of ellipsoidal mirrors presenting a central hole. The achievement of a good alignment with a classic setup at the finite conjugates when mirrors are uncoated cannot be based on the identification and materialization at naked eye of the retro-reflected spot by the mirror under test as the intensity of the retro-reflected spot results to be ≈1E-3 of the intensity of the injected laser beam of the interferometer. We present the technique developed for the achievement of an accurate alignment in the setup at the finite conjugate even in condition of low intensity based on the use of an autocollimator adjustable in focus position and a small polished flat surface on the rear side of the mirror. The technique for the alignment has successfully been used for the optical test of the concave ellipsoidal mirrors of the METIS coronagraph of the ESA Solar Orbiter mission. The presented method results to be advantageous in terms of precision and of time saving also when the mirrors are reflective coated and integrated into their mechanical hardware.

  20. Necessity of using heterogeneous ellipsoidal Earth model with terrain to calculate co-seismic effect

    Science.gov (United States)

    Cheng, Huihong; Zhang, Bei; Zhang, Huai; Huang, Luyuan; Qu, Wulin; Shi, Yaolin

    2016-04-01

    -seismic displacement and strain are no longer symmetric with different latitudes in plane model while always theoretically symmetrical in spherical model. 2) The errors of co-seismic strain will be increased when using corresponding formulas in plane coordinate. When we set the strike-slip fault along the equator, the maximum relative error can reach to several tens of thousand times in high latitude while 30 times near the fault. 3) The style of strain changes are eight petals while the errors are four petals, and apparent distortion at high latitudes. Furthermore, the influence of the earth's ellipticity and heterogeneity and terrain were calculated respectively. Especially the effect of terrain, which induced huge differences, should not be overlooked during the co-seismic calculations. Finally, taking all those affecting factors into account, we calculated the co-seismic effect of the 2008 Wenchuan earthquake and its adjacent area and faults using the heterogeneous ellipsoidal Earth model with terrain.

  1. Reversible Rigidity Control Using Low Melting Temperature Alloys

    Science.gov (United States)

    Shan, Wanliang; Lu, Tong; Majidi, Carmel

    2013-03-01

    Inspired by nature, materials able to achieve rapid rigidity changes have important applications for human body protection in military and many other areas. This talk presents the fabrication and design of soft-matter technologies that exhibit rapid reversible rigidity control. Fabricated with a masked deposition technique, the soft-matter composite contains liquid-phase and phase-changing metal alloys embedded in a soft and highly stretchable elastomer. The composite material can reversibly change its rigidity by three orders of magnitude and sustain large deformation.

  2. The Almost Periodic Rigidity of Crystallographic Bar-Joint Frameworks

    Directory of Open Access Journals (Sweden)

    Ghada Badri

    2014-04-01

    Full Text Available A crystallographic bar-joint framework, C in Rd, is shown to be almost periodically infinitesimally rigid if and only if it is strictly periodically infinitesimally rigid and the rigid unit mode (RUM spectrum, Ω (C, is a singleton. Moreover, the almost periodic infinitesimal flexes of C are characterised in terms of a matrix-valued function, ΦC(z, on the d-torus, Td, determined by a full rank translation symmetry group and an associated motif of joints and bars.

  3. APPLICATION OF RIGID LINKS IN STRUCTURAL DESIGN MODELS

    Directory of Open Access Journals (Sweden)

    Sergey Yu. Fialko

    2017-09-01

    Full Text Available A special finite element modelling rigid links is proposed for the linear static and buckling analysis. Unlike the classical approach based on the theorems of rigid body kinematics, the proposed approach preserves the similarity between the adjacency graph for a sparse matrix and the adjacency graph for nodes of the finite element model, which allows applying sparse direct solvers more effectively. Besides, the proposed approach allows significantly reducing the number of nonzero entries in the factored stiffness matrix in comparison with the classical one, which greatly reduces the duration of the solution. For buckling problems of structures containing rigid bodies, this approach gives correct results. Several examples demonstrate its efficiency.

  4. Study by the Prandtl-Glauert method of compressibility effects and critical Mach number for ellipsoids of various aspect ratios and thickness ratios

    Science.gov (United States)

    Hess, Robert V; Gardner, Clifford S

    1947-01-01

    By using the Prandtl-Glauert method that is valid for three-dimensional flow problems, the value of the maximum incremental velocity for compressible flow about thin ellipsoids at zero angle of attack is calculated as a function of the Mach number for various aspect ratios and thickness ratios. The critical Mach numbers of the various ellipsoids are also determined. The results indicate an increase in critical Mach number with decrease in aspect ratio which is large enough to explain experimental results on low-aspect-ratio wings at zero lift.

  5. MULTIPLE OBJECTS

    Directory of Open Access Journals (Sweden)

    A. A. Bosov

    2015-04-01

    Full Text Available Purpose. The development of complicated techniques of production and management processes, information systems, computer science, applied objects of systems theory and others requires improvement of mathematical methods, new approaches for researches of application systems. And the variety and diversity of subject systems makes necessary the development of a model that generalizes the classical sets and their development – sets of sets. Multiple objects unlike sets are constructed by multiple structures and represented by the structure and content. The aim of the work is the analysis of multiple structures, generating multiple objects, the further development of operations on these objects in application systems. Methodology. To achieve the objectives of the researches, the structure of multiple objects represents as constructive trio, consisting of media, signatures and axiomatic. Multiple object is determined by the structure and content, as well as represented by hybrid superposition, composed of sets, multi-sets, ordered sets (lists and heterogeneous sets (sequences, corteges. Findings. In this paper we study the properties and characteristics of the components of hybrid multiple objects of complex systems, proposed assessments of their complexity, shown the rules of internal and external operations on objects of implementation. We introduce the relation of arbitrary order over multiple objects, we define the description of functions and display on objects of multiple structures. Originality.In this paper we consider the development of multiple structures, generating multiple objects.Practical value. The transition from the abstract to the subject of multiple structures requires the transformation of the system and multiple objects. Transformation involves three successive stages: specification (binding to the domain, interpretation (multiple sites and particularization (goals. The proposed describe systems approach based on hybrid sets

  6. Localization switching of a large object in a crowded cavity: A rigid/soft object prefers surface/inner positioning

    Science.gov (United States)

    Shew, Chwen-Yang; Oda, Soutaro; Yoshikawa, Kenichi

    2017-11-01

    For living cells in the real world, a large organelle is commonly positioned in the inner region away from membranes, such as the nucleus of eukaryotic cells, the nucleolus of nuclei, mitochondria, chloroplast, Golgi body, etc. It contradicts the expectation by the current depletion-force theory in that the larger particle should be excluded from the inner cell space onto cell boundaries in a crowding media. Here we simply model a sizable organelle as a soft-boundary large particle allowing crowders, which are smaller hard spheres in the model, to intrude across its boundary. The results of Monte Carlo simulation indicate that the preferential location of the larger particle switches from the periphery into the inner region of the cavity by increasing its softness. An integral equation theory is further developed to account for the structural features of the model, and the theoretical predictions are found consistent with our simulation results.

  7. Emission trading and international competition: The impact of labor market rigidity on technology adoption and output

    International Nuclear Information System (INIS)

    Caparrós, Alejandro; Péreau, Jean-Christophe; Tazdaït, Tarik

    2013-01-01

    Emission trading systems have been proposed in different regions to reduce polluting emissions and are in use in the European Union for carbon dioxide emissions. One of the objectives of these systems is to encourage firms to adopt advanced abatement technologies. However, permits also create an incentive to reduce output, which may be seen as negative by policy makers. We analyze the impact of a rigid labour market on these two outcomes, showing the conditions necessary to avoid reductions in production while keeping the incentives to improve abatement technologies. The analysis is done for oligopolistic firms engaged in international rivalry. - Highlights: ► Emission trading reduces production and improves abatement technologies. ► Policy makers see the first outcome as negative and the second as positive. ► This paper studies the impact of market rigidity on these two outcomes. ► It shows conditions to avoid the first outcome and maintain or enhance the second

  8. Verification of the Rigidity of the Coulomb Field in Motion

    Science.gov (United States)

    Blinov, S. V.; Bulyzhenkov, I. É.

    2018-06-01

    Laplace, analyzing the stability of the Solar System, was the first to calculate that the velocity of the motion of force fields can significantly exceed the velocity of light waves. In electrodynamics, the Coulomb field should rigidly accompany its source for instantaneous force action in distant regions. Such rigid motion was recently inferred from experiments at the Frascati Beam Test Facility with short beams of relativistic electrons. The comments of the authors on their observations are at odds with the comments of theoreticians on retarded potentials, which motivates a detailed study of the positions of both sides. Predictions of measurements, based on the Lienard-Wiechert potentials, are used to propose an unambiguous scheme for testing the rigidity of the Coulomb field. Realization of the proposed experimental scheme could independently refute or support the assertions of the Italian physicists regarding the rigid motion of Coulomb fields and likewise the nondual field approach to macroscopic reality.

  9. Oscillations of rigid bar in the special relativity

    International Nuclear Information System (INIS)

    Paiva, F.M.; Teixeira, A.F.F.

    2011-12-01

    In the special relativity, a rigid bar slides on herself, with a extreme oscillating harmonically. We have discovered at the movement amplitude and in the bar length, indispensable for the elimination of non physical solutions

  10. Rigid body motion in stereo 3D simulation

    International Nuclear Information System (INIS)

    Zabunov, Svetoslav

    2010-01-01

    This paper addresses the difficulties experienced by first-grade students studying rigid body motion at Sofia University. Most quantities describing the rigid body are in relations that the students find hard to visualize and understand. They also lose the notion of cause-result relations between vector quantities, such as the relation between torque and angular momentum. Consequently, the understanding of physical laws and conservation principles in free rigid body motion is hampered. This paper presents the capabilities of a 3D simulation, which aims to clarify these questions to the students, who are taught mechanics in the general physics course. The rigid body motion simulations may be observed at http://ialms.net/sim/, and are intended to complement traditional learning practices, not replace them, as the author shares the opinion that no simulation may fully resemble reality.

  11. Resin Infusion Rigidized Inflatable Concept Development and Demonstration

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel concept utilizing resin infusion to rigidize inflatable structures was developed at JSC ES. This ICA project intends to complete manufacturing of a prototype...

  12. Genus Ranges of 4-Regular Rigid Vertex Graphs.

    Science.gov (United States)

    Buck, Dorothy; Dolzhenko, Egor; Jonoska, Nataša; Saito, Masahico; Valencia, Karin

    2015-01-01

    A rigid vertex of a graph is one that has a prescribed cyclic order of its incident edges. We study orientable genus ranges of 4-regular rigid vertex graphs. The (orientable) genus range is a set of genera values over all orientable surfaces into which a graph is embedded cellularly, and the embeddings of rigid vertex graphs are required to preserve the prescribed cyclic order of incident edges at every vertex. The genus ranges of 4-regular rigid vertex graphs are sets of consecutive integers, and we address two questions: which intervals of integers appear as genus ranges of such graphs, and what types of graphs realize a given genus range. For graphs with 2 n vertices ( n > 1), we prove that all intervals [ a, b ] for all a genus ranges. For graphs with 2 n - 1 vertices ( n ≥ 1), we prove that all intervals [ a, b ] for all a genus ranges. We also provide constructions of graphs that realize these ranges.

  13. Re-analysis of exponential rigid-rotor astron equilibria

    International Nuclear Information System (INIS)

    Lovelace, R.V.; Larrabee, D.A.; Fleischmann, H.H.

    1978-01-01

    Previous studies of exponential rigid-rotor astron equilibria include particles which are not trapped in the self-field of the configuration. The modification of these studies required to exclude untrapped particles is derived

  14. Rigidity theorem for Willmore surfaces in a sphere

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 126; Issue 2. Rigidity ... Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027, People's Republic of China; College of Mathematics and Information Science, Jiangxi Normal University, Nanchang 330022, People's Republic of China ...

  15. Role of Rigid Endoscopic Detorsion in the Management of Sigmoid ...

    African Journals Online (AJOL)

    had emergency surgery, with gangrenous bowel noted in 43 (72%) ... of any stable patient with clinical and radiological features ... peritonitis, underwent repeat rigid sigmoidoscopy. ... endoscopic detorsion was successful in all six cases.

  16. Magnetism and magnetostriction in a degenerate rigid band

    International Nuclear Information System (INIS)

    Kulakowski, K.; Barbara, B.

    1990-09-01

    We investigate the influence of the spin-orbit coupling on the magnetic and magnetoelastic phenomena in ferromagnetic band systems. The description is within the Stoner model of a degenerate rigid band, for temperature T = O. (author). 14 refs

  17. Stabilization of Rigid Body Dynamics by Internal and External Torques

    National Research Council Canada - National Science Library

    Bloch, A. M; Krishnaprasad, P. S; Marsden, J. E; Sanchez de Alvarez, G

    1990-01-01

    ...] with quadratic feedback torques for internal rotors. We show that with such torques, the equations for the rigid body with momentum wheels are Hamiltonian with respect to a Lie-Poisson bracket structure. Further...

  18. Anti-synchronization of the rigid body exhibiting chaotic dynamics ...

    African Journals Online (AJOL)

    Based on a method derived from nonlinear control theory, we present a ... In this framework, the active control technique is modified and employed to design control ... state space of the two rigid bodies was verified by numerical simulations.

  19. Elegant objects

    CERN Document Server

    Bugayenko, Yegor

    2017-01-01

    There are 23 practical recommendations for object-oriented programmers. Most of them are completely against everything you've read in other books. For example, static methods, NULL references, getters, setters, and mutable classes are called evil. Compound variable names, validators, private static literals, configurable objects, inheritance, annotations, MVC, dependency injection containers, reflection, ORM and even algorithms are our enemies.

  20. Objective lens

    Science.gov (United States)

    Olczak, Eugene G. (Inventor)

    2011-01-01

    An objective lens and a method for using same. The objective lens has a first end, a second end, and a plurality of optical elements. The optical elements are positioned between the first end and the second end and are at least substantially symmetric about a plane centered between the first end and the second end.

  1. An oblate ellipsoidal approach to update a high-resolution geopotential model over the oceans: Study case of EGM2008 and DTU10

    Czech Academy of Sciences Publication Activity Database

    Sebera, Josef; Bezděk, Aleš; Kostelecký, J.; Pešek, I.; Shum, C.K.

    2016-01-01

    Roč. 57, č. 1 (2016), s. 2-18 ISSN 0273-1177 R&D Projects: GA MŠk LH13071 Institutional support: RVO:67985815 Keywords : Earth's gravitational field * oblate ellipsoidal harmonics * harmonic analysis Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.401, year: 2016

  2. Extended objects

    International Nuclear Information System (INIS)

    Creutz, M.

    1976-01-01

    After some disconnected comments on the MIT bag and string models for extended hadrons, I review current understanding of extended objects in classical conventional relativistic field theories and their quantum mechanical interpretation

  3. Trusted Objects

    International Nuclear Information System (INIS)

    CAMPBELL, PHILIP L.; PIERSON, LYNDON G.; WITZKE, EDWARD L.

    1999-01-01

    In the world of computers a trusted object is a collection of possibly-sensitive data and programs that can be allowed to reside and execute on a computer, even on an adversary's machine. Beyond the scope of one computer we believe that network-based agents in high-consequence and highly reliable applications will depend on this approach, and that the basis for such objects is what we call ''faithful execution.''

  4. Surgical treatment of double thoracic adolescent idiopathic scoliosis with a rigid proximal thoracic curve.

    Science.gov (United States)

    Sudo, Hideki; Abe, Yuichiro; Abumi, Kuniyoshi; Iwasaki, Norimasa; Ito, Manabu

    2016-02-01

    There is limited consensus on the optimal surgical strategy for double thoracic adolescent idiopathic scoliosis (AIS). Recent studies have reported that pedicle screw constructs to maximize scoliosis correction cause further thoracic spine lordosis. The objective of this study was to apply a new surgical technique for double thoracic AIS with rigid proximal thoracic (PT) curves and assess its clinical outcomes. Twenty one consecutive patients with Lenke 2 AIS and a rigid PT curve (Cobb angle ≥30º on side-bending radiographs, flexibility ≤30 %) treated with the simultaneous double-rod rotation technique (SDRRT) were included. In this technique, a temporary rod is placed at the concave side of the PT curve. Then, distraction force is applied to correct the PT curve, which reforms a sigmoid double thoracic curve into an approximate single thoracic curve. As a result, the PT curve is typically converted from an apex left to an apex right curve before applying the correction rod for PT and main thoracic curve. All patients were followed for at least 2 years (average 2.7 years). The average main thoracic and PT Cobb angle correction rate at the final follow-up was 74.7 and 58.0 %, respectively. The average preoperative T5-T12 thoracic kyphosis was 9.3°, which improved significantly to 19.0° (p corrected using SDRRT for Lenke 2 AIS with a rigid PT curve.

  5. CFD Simulation of rigid venting of the containment of a BWR-5 Mark-II reactor

    International Nuclear Information System (INIS)

    Galindo G, I. F.; Vazquez B, A. K.; Velazquez E, L.; Tijerina S, F.; Tapia M, R.

    2016-09-01

    In conditions of prolonged loss of external energy or a severe accident, venting to the atmosphere is an alternative to prevent overpressure and release of fission products from the primary containment of a nuclear reactor. Due to the importance of flow determination through rigid vents, a computational fluid dynamics (CFD) model is proposed to verify the capacity of rigid vents in the primary containment of a boiling water reactor (BWR) under different operating conditions (pressure, temperature and compositions of the fluids). The model predicts and provides detailed information on variables such as mass flow and velocity of the venting gases. In the proposed model the primary containment gas is vented to the atmosphere via rigid vents (pipes) from the dry and wet pit. Is assumed that the container is pressurized because is in a defined scenario, and at one point the venting is open and the gas released into the atmosphere. The objective is to characterize the flow and validate the CFD model for the overpressure conditions that occur in an accident such as a LOCA, Sbo, etc. The model is implemented with Ansys-Fluent general-purpose CFD software based on the geometry of the venting ducts of the containment of a BWR. The model is developed three-dimensional and resolves at steady state for compressible flow and includes the effects of the turbulence represented by the Reynolds stress model. The CFD results are compared with the values of a one-dimensional and isentropic model for compressible flow. The relative similarity of results leads to the conclusion that the proposed CFD model can help to predict the rigid venting capacity of the containment of a BWR, however more information is required for full validation of the proposed model. (Author)

  6. Soft-matter composites with electrically tunable elastic rigidity

    International Nuclear Information System (INIS)

    Shan, Wanliang; Lu, Tong; Majidi, Carmel

    2013-01-01

    We use a phase-changing metal alloy to reversibly tune the elastic rigidity of an elastomer composite. The elastomer is embedded with a sheet of low-melting-point Field’s metal and an electric Joule heater composed of a serpentine channel of liquid-phase gallium–indium–tin (Galinstan ® ) alloy. At room temperature, the embedded Field’s metal is solid and the composite remains elastically rigid. Joule heating causes the Field’s metal to melt and allows the surrounding elastomer to freely stretch and bend. Using a tensile testing machine, we measure that the effective elastic modulus of the composite reversibly changes by four orders of magnitude when powered on and off. This dramatic change in rigidity is accurately predicted with a model for an elastic composite. Reversible rigidity control is also accomplished by replacing the Field’s metal with shape memory polymer. In addition to demonstrating electrically tunable rigidity with an elastomer, we also introduce a new technique to rapidly produce soft-matter electronics and multifunctional materials in several minutes with laser-patterned adhesive film and masked deposition of liquid-phase metal alloy. (paper)

  7. Soft-matter composites with electrically tunable elastic rigidity

    Science.gov (United States)

    Shan, Wanliang; Lu, Tong; Majidi, Carmel

    2013-08-01

    We use a phase-changing metal alloy to reversibly tune the elastic rigidity of an elastomer composite. The elastomer is embedded with a sheet of low-melting-point Field’s metal and an electric Joule heater composed of a serpentine channel of liquid-phase gallium-indium-tin (Galinstan®) alloy. At room temperature, the embedded Field’s metal is solid and the composite remains elastically rigid. Joule heating causes the Field’s metal to melt and allows the surrounding elastomer to freely stretch and bend. Using a tensile testing machine, we measure that the effective elastic modulus of the composite reversibly changes by four orders of magnitude when powered on and off. This dramatic change in rigidity is accurately predicted with a model for an elastic composite. Reversible rigidity control is also accomplished by replacing the Field’s metal with shape memory polymer. In addition to demonstrating electrically tunable rigidity with an elastomer, we also introduce a new technique to rapidly produce soft-matter electronics and multifunctional materials in several minutes with laser-patterned adhesive film and masked deposition of liquid-phase metal alloy.

  8. Unified Creep Plasticity Damage (UCPD) Model for Rigid Polyurethane Foams.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lu, Wei-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scherzinger, William M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hinnerichs, Terry D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lo, Chi S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    Numerous experiments were performed to characterize the mechanical response of several different rigid polyurethane foams (FR3712, PMDI10, PMDI20, and TufFoam35) to large deformation. In these experiments, the effects of load path, loading rate, and temperature were investigated. Results from these experiments indicated that rigid polyurethane foams exhibit significant volumetric and deviatoric plasticity when they are compressed. Rigid polyurethane foams were also found to be very strain-rate and temperature dependent. These foams are also rather brittle and crack when loaded to small strains in tension or to larger strains in compression. Thus, a new Unified Creep Plasticity Damage (UCPD) model was developed and implemented into SIERRA with the name Foam Damage to describe the mechanical response of these foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments and experimental findings. Next, development of a UCPD model for rigid, polyurethane foams is described. Selection of material parameters for a variety of rigid polyurethane foams is then discussed and finite element simulations with the new UCPD model are compared with experimental results to show behavior that can be captured with this model.

  9. Evaluation for rigidity of box construction of nuclear reactor building

    International Nuclear Information System (INIS)

    Yamakawa, Tetsuo

    1979-01-01

    A huge box-shaped structure (hereafter, called box construction) of reinforced concrete is presently utilized as the reactor building structure in nuclear power plants. Evaluation of the rigidity of the huge box construction is required for making a vibration analysis model of nuclear reactor buildings. It is necessary to handle the box construction as the plates to which the force in plane is applied. This paper describes that the bending theory in elementary beam theory is equivalent to a peculiar, orthogonally anisotropic plate, the shearing rigidity and film rigidity in y direction of which are put to infinity and the Poisson's ratio is put to zero, viewed from the two-dimensional theory of elasticity. The form factor of 1.2 for shearing deformation in rectangular cross section was calculated from the parabolic distribution of shearing stress intensity, and it is the maximum value. The factor is equal to 1.2 for slender beams, but smaller than 1.2 for short and thick beams, having tendency to converge to 1.0. The non-conformity of boundary conditions regarding the shearing force at the both ends of cantilevers does not affect very seriously the evaluation of shearing rigidity. From the above results, it was found that the application of the theory to the box construction was able to give the rigidity evaluation with sufficient engineering accuracy. The theory can also be applied to the evaluation of tube type ultrahigh buildings. (Wakatsuki, Y.)

  10. Rigid external maxillary distraction and rhinoplasty for pyknodysostosis.

    Science.gov (United States)

    Varol, Altan; Sabuncuoglu, Fidan Alakus; Sencimen, Metin; Akcam, Timur; Olmez, Hüseyin; Basa, Selçuk

    2011-05-01

    This article reports the treatment of an 33-year-old female patient with pyknodysostosis by rigid external distraction II midface distraction system. The patient with pyknodysostosis described in this report had severe midfacial hypoplasia. Correction of this by use of routine orthognathic surgery would require osteosynthesis and bone grafting. Risk of infection and/or nonunion after such a surgical procedure was considered too great, and therefore the possibility of treatment by distraction osteogenesis of the maxilla was evaluated. The rigid external distraction II midface distraction system was used to relocate the hypoplastic maxilla at anterior-inferior projection. Distraction osteogenesis should be considered as the primary reconstructive method for maxillofacial deformities in patients with sclerosing bone dysplasias, since this is the second reported case treated successfully with rigid external distraction.

  11. Rigidity of outermost MOTS: the initial data version

    Science.gov (United States)

    Galloway, Gregory J.

    2018-03-01

    In the paper Commun Anal Geom 16(1):217-229, 2008, a rigidity result was obtained for outermost marginally outer trapped surfaces (MOTSs) that do not admit metrics of positive scalar curvature. This allowed one to treat the "borderline case" in the author's work with R. Schoen concerning the topology of higher dimensional black holes (Commun Math Phys 266(2):571-576, 2006). The proof of this rigidity result involved bending the initial data manifold in the vicinity of the MOTS within the ambient spacetime. In this note we show how to circumvent this step, and thereby obtain a pure initial data version of this rigidity result and its consequence concerning the topology of black holes.

  12. Mitral stenosis due to pannus overgrowth after rigid ring annuloplasty.

    Science.gov (United States)

    Oda, Takeshi; Kato, Seiya; Tayama, Eiki; Fukunaga, Shuji; Akashi, Hidetoshi; Aoyagi, Shigeaki

    2010-03-01

    Although mitral stenosis (MS) due to pannus overgrowth after mitral valve repair for rheumatic mitral regurgitation (MR) is not uncommon, it is extremely rare in relation to non-rheumatic mitral regurgitation. Whilst it has been suggested that the rigid annuloplasty ring induces pannus overgrowth in the same manner as the flexible ring, to date only in cases using the flexible ring has pannus formation been confirmed by a pathological examination after redo surgery. The case is described of a woman who had undergone mitral valve repair using a 28 mm rigid ring three years previously because of non-rheumatic MR, and subsequently suffered from MS due to pannus formation over the annuloplasty ring. To the present authors' knowledge, this is the first report of MS due to pannus formation after mitral valve repair using a rigid annuloplasty ring to treat non-rheumatic MR documented at reoperation.

  13. Rigid-plastic seismic design of reinforced concrete structures

    DEFF Research Database (Denmark)

    Costa, Joao Domingues; Bento, R.; Levtchitch, V.

    2007-01-01

    structural strength with respect to a pre-defined performance parameter using a rigid-plastic response spectrum, which is characteristic of the ground motion alone. The maximum strength demand at any point is solely dependent on the intensity of the ground motion, which facilitates the task of distributing......In this paper a new seismic design procedure for Reinforced Concrete (R/C) structures is proposed-the Rigid-Plastic Seismic Design (RPSD) method. This is a design procedure based on Non-Linear Time-History Analysis (NLTHA) for systems expected to perform in the non-linear range during a lifetime...... earthquake event. The theoretical background is the Theory of Plasticity (Rigid-Plastic Structures). Firstly, a collapse mechanism is chosen and the corresponding stress field is made safe outside the regions where plastic behaviour takes place. It is shown that this allows the determination of the required...

  14. A concise introduction to mechanics of rigid bodies multidisciplinary engineering

    CERN Document Server

    Huang, L

    2017-01-01

    This updated second edition broadens the explanation of rotational kinematics and dynamics — the most important aspect of rigid body motion in three-dimensional space and a topic of much greater complexity than linear motion. It expands treatment of vector and matrix, and includes quaternion operations to describe and analyze rigid body motion which are found in robot control, trajectory planning, 3D vision system calibration, and hand-eye coordination of robots in assembly work, etc. It features updated treatments of concepts in all chapters and case studies. The textbook retains its comprehensiveness in coverage and compactness in size, which make it easily accessible to the readers from multidisciplinary areas who want to grasp the key concepts of rigid body mechanics which are usually scattered in multiple volumes of traditional textbooks. Theoretical concepts are explained through examples taken from across engineering disciplines and links to applications and more advanced courses (e.g. industrial rob...

  15. Radiometric temperature reading of a hot ellipsoidal object inside the oral cavity by a shielded microwave antenna put flush to the cheek.

    Science.gov (United States)

    Klemetsen, Øystein; Jacobsen, Svein; Birkelund, Yngve

    2012-05-07

    A new scheme for detection of vesicoureteral reflux (VUR) in children has recently been proposed in the literature. The idea is to warm bladder urine via microwave exposure to at least fever temperatures and observe potential urine reflux from the bladder back to the kidney(s) by medical radiometry. As a preliminary step toward realization of this detection device, we present non-invasive temperature monitoring by use of microwave radiometry in adults to observe temperature dynamics in vivo of a water-filled balloon placed within the oral cavity. The relevance of the approach with respect to detection of VUR in children is motivated by comparing the oral cavity and cheek tissue with axial CT images of young children in the bladder region. Both anatomical locations reveal a triple-layered tissue structure consisting of skin-fat-muscle with a total thickness of about 8-10 mm. In order to mimic variations in urine temperature, the target balloon was flushed with water coupled to a heat exchanger, that was moved between water baths of different temperatures, to induce measurable temperature gradients. The applied radiometer has a center frequency of 3.5 GHz and provides a sensitivity (accuracy) of 0.03 °C for a data acquisition time of 2 s. Three different scenarios were tested and included observation through the cheek tissue with and without an intervening water bolus compartment present. In all cases, radiometric readings observed over a time span of 900 s were shown to be highly correlated (R ~ 0.93) with in situ temperatures obtained by fiberoptic probes.

  16. Shock absorbing evaluation of the rigid polyurethane foam and styrofoam applied to a small transportation package

    International Nuclear Information System (INIS)

    Seo, K.S.; Lee, J.C.; Bang, K.S.; Han, H.S.; Chung, S.H.; Choi, B.I.; Ha, J.H.

    2004-01-01

    The package design objectives for the drop condition are to maintain the integrity of the structural material by reducing the impact force. There are two kinds of the shock absorbing materials such as rigid polyurethane foam (PU) and Styrofoam (EPS: Expanded Poly Styrene). These materials are generally used in small transportation packages. The stress-strain curves were obtained by the compression tests until the PU and EPS reached their lock-up strain. This paper describes that, in the case of a small transportation package of a cylindrical shape, the shock absorbing effects were evaluated by utilizing the compression properties of the PU and EPS foam

  17. Rigid Polyurethane Foam (RPF) Technology for Countermines (Sea) Program Phase II

    Energy Technology Data Exchange (ETDEWEB)

    WOODFIN,RONALD L.; FAUCETT,DAVID L.; HANCE,BRADLEY G.; LATHAM,AMY E.; SCHMIDT,C.O.

    1999-10-01

    This Phase II report documents the results of one subtask initiated under the joint Department of Energy (DOE)/Department of Defense (DoD) Memorandum of Understanding (MOU) for Countermine Warfare. The development of Rigid Polyurethane Foams for neutralization of mines and barriers in amphibious assault was the objective of the tasking. This phase of the program concentrated on formation of RPF in water, explosive mine simulations, and development of foam and fabric pontoons. Field experimentation was done primarily at the Energetic Materials Research and Testing Center (EMRTC) of the New Mexico Institute of Mining and Technology, Socorro, NM between February 1996 and September 1998.

  18. Topology-Preserving Rigid Transformation of 2D Digital Images.

    Science.gov (United States)

    Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues

    2014-02-01

    We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping.

  19. Non-rigid image registration using bone growth model

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten; Gramkow, Claus; Kreiborg, Sven

    1997-01-01

    Non-rigid registration has traditionally used physical models like elasticity and fluids. These models are very seldom valid models of the difference between the registered images. This paper presents a non-rigid registration algorithm, which uses a model of bone growth as a model of the change...... between time sequence images of the human mandible. By being able to register the images, this paper at the same time contributes to the validation of the growth model, which is based on the currently available medical theories and knowledge...

  20. Rigid particle revisited: Extrinsic curvature yields the Dirac equation

    Energy Technology Data Exchange (ETDEWEB)

    Deriglazov, Alexei, E-mail: alexei.deriglazov@ufjf.edu.br [Depto. de Matemática, ICE, Universidade Federal de Juiz de Fora, MG (Brazil); Laboratory of Mathematical Physics, Tomsk Polytechnic University, 634050 Tomsk, Lenin Ave. 30 (Russian Federation); Nersessian, Armen, E-mail: arnerses@ysu.am [Yerevan State University, 1 Alex Manoogian St., Yerevan 0025 (Armenia); Laboratory of Mathematical Physics, Tomsk Polytechnic University, 634050 Tomsk, Lenin Ave. 30 (Russian Federation)

    2014-03-01

    We reexamine the model of relativistic particle with higher-derivative linear term on the first extrinsic curvature (rigidity). The passage from classical to quantum theory requires a number of rather unexpected steps which we report here. We found that, contrary to common opinion, quantization of the model in terms of so(3.2)-algebra yields massive Dirac equation. -- Highlights: •New way of canonical quantization of relativistic rigid particle is proposed. •Quantization made in terms of so(3.2) angular momentum algebra. •Quantization yields massive Dirac equation.

  1. Elastic properties of rigid fiber-reinforced composites

    Science.gov (United States)

    Chen, J.; Thorpe, M. F.; Davis, L. C.

    1995-05-01

    We study the elastic properties of rigid fiber-reinforced composites with perfect bonding between fibers and matrix, and also with sliding boundary conditions. In the dilute region, there exists an exact analytical solution. Around the rigidity threshold we find the elastic moduli and Poisson's ratio by decomposing the deformation into a compression mode and a rotation mode. For perfect bonding, both modes are important, whereas only the compression mode is operative for sliding boundary conditions. We employ the digital-image-based method and a finite element analysis to perform computer simulations which confirm our analytical predictions.

  2. Extremal surfaces and the rigidity of null geodesic incompleteness

    International Nuclear Information System (INIS)

    Silva, I P Costa e; Flores, J L

    2015-01-01

    An important, if relatively less well known aspect of the singularity theorems in Lorentzian geometry, is to understand how their conclusions fare upon weakening or suppression of one or more of their hypotheses. Then, theorems with modified conclusion may arise, showing that those conclusions will fail only in special cases, at least some of which may be described. These are the so-called rigidity theorems, and have many important examples in the specialized literature. In this paper, we prove rigidity results for generalized plane waves and certain globally hyperbolic spacetimes in the presence of extremal compact surfaces. (paper)

  3. Fashion Objects

    DEFF Research Database (Denmark)

    Andersen, Bjørn Schiermer

    2009-01-01

    -- an outline which at the same time indicates the need for transformations of the Durkheimian model on decisive points. Thus, thirdly, it returns to Durkheim and undertakes to develop his concepts in a direction suitable for a sociological theory of fashion. Finally, it discusses the theoretical implications......This article attempts to create a framework for understanding modern fashion phenomena on the basis of Durkheim's sociology of religion. It focuses on Durkheim's conception of the relation between the cult and the sacred object, on his notion of 'exteriorisation', and on his theory of the social...... symbol in an attempt to describe the peculiar attraction of the fashion object and its social constitution. However, Durkheim's notions of cult and ritual must undergo profound changes if they are to be used in an analysis of fashion. The article tries to expand the Durkheimian cult, radically enlarging...

  4. Utilities objectives

    International Nuclear Information System (INIS)

    Cousin, Y.; Fabian, H.U.

    1996-01-01

    The policy of French and german utilities is to make use of nuclear energy as a long term, competitive and environmentally friendly power supply. The world electricity generation is due to double within the next 30 years. In the next 20 to 30 years the necessity of nuclear energy will be broadly recognized. More than for most industries, to deal properly with nuclear energy requires the combination of a consistent political will, of a proper institutional framework, of strong and legitimate control authorities, of a sophisticated industry and of operators with skilled management and human resources. One of the major risk facing nuclear energy is the loss of competitiveness. This can be achieved only through the combination of an optimized design, a consistent standardization, a proper industrial partnership and a stable long term strategy. Although the existing plants in Western Europe are already very safe, the policy is clearly to enhance the safety of the next generation of nuclear plants which are designing today. The French and German utilities have chosen an evolutionary approach based on experience and proven technologies, with an enhanced defense in depth and an objective of easier operation and maintenance. The cost objective is to maintain and improve what has been achieved in the best existing power plants in both countries. This calls for rational choices and optimized design to meet the safety objectives, a strong standardization policy, short construction times, high availability and enough flexibility to enable optimization of the fuel cycle throughout the lifetime of the plants. The conceptual design phase has proven that the French and German teams from industry and from the utilities are able to pursue both the safety and the cost objectives, basing their decision on a rational approach which could be accepted by the safety authorities. (J.S.)

  5. Viscoelastic materials with anisotropic rigid particles: stress-deformation behavior

    NARCIS (Netherlands)

    Sagis, L.M.C.; Linden, van der E.

    2001-01-01

    In this paper we have derived constitutive equations for the stress tensor of a viscoelastic material with anisotropic rigid particles. We have assumed that the material has fading memory. The expressions are valid for slow and small deformations from equilibrium, and for systems that are nearly

  6. Calculating ensemble averaged descriptions of protein rigidity without sampling.

    Directory of Open Access Journals (Sweden)

    Luis C González

    Full Text Available Previous works have demonstrated that protein rigidity is related to thermodynamic stability, especially under conditions that favor formation of native structure. Mechanical network rigidity properties of a single conformation are efficiently calculated using the integer body-bar Pebble Game (PG algorithm. However, thermodynamic properties require averaging over many samples from the ensemble of accessible conformations to accurately account for fluctuations in network topology. We have developed a mean field Virtual Pebble Game (VPG that represents the ensemble of networks by a single effective network. That is, all possible number of distance constraints (or bars that can form between a pair of rigid bodies is replaced by the average number. The resulting effective network is viewed as having weighted edges, where the weight of an edge quantifies its capacity to absorb degrees of freedom. The VPG is interpreted as a flow problem on this effective network, which eliminates the need to sample. Across a nonredundant dataset of 272 protein structures, we apply the VPG to proteins for the first time. Our results show numerically and visually that the rigidity characterizations of the VPG accurately reflect the ensemble averaged [Formula: see text] properties. This result positions the VPG as an efficient alternative to understand the mechanical role that chemical interactions play in maintaining protein stability.

  7. Calculating ensemble averaged descriptions of protein rigidity without sampling.

    Science.gov (United States)

    González, Luis C; Wang, Hui; Livesay, Dennis R; Jacobs, Donald J

    2012-01-01

    Previous works have demonstrated that protein rigidity is related to thermodynamic stability, especially under conditions that favor formation of native structure. Mechanical network rigidity properties of a single conformation are efficiently calculated using the integer body-bar Pebble Game (PG) algorithm. However, thermodynamic properties require averaging over many samples from the ensemble of accessible conformations to accurately account for fluctuations in network topology. We have developed a mean field Virtual Pebble Game (VPG) that represents the ensemble of networks by a single effective network. That is, all possible number of distance constraints (or bars) that can form between a pair of rigid bodies is replaced by the average number. The resulting effective network is viewed as having weighted edges, where the weight of an edge quantifies its capacity to absorb degrees of freedom. The VPG is interpreted as a flow problem on this effective network, which eliminates the need to sample. Across a nonredundant dataset of 272 protein structures, we apply the VPG to proteins for the first time. Our results show numerically and visually that the rigidity characterizations of the VPG accurately reflect the ensemble averaged [Formula: see text] properties. This result positions the VPG as an efficient alternative to understand the mechanical role that chemical interactions play in maintaining protein stability.

  8. Patient satisfaction related to rigid external distraction osteogenesis

    NARCIS (Netherlands)

    van Eggermont, Bas; Jansma, J.; Bierman, M. W. J.; Stegenga, B.

    2007-01-01

    The aim of this study was to evaluate satisfaction with treatment among cleft lip and palate patients who underwent maxillary advancement using a rigid external distraction (RED) device. Nine patients (four boys, five girls), mean age 17.7 years (SD 4.0), were included in the study. Outcome measures

  9. Short Communication: Statistical determination of the rigidity in ...

    African Journals Online (AJOL)

    From the graph of load against displacement, the rigidity in flexion at different moisture levels was determined from which the Young modulus was calculated. Linear regression models were fitted to the data and the results showed significant correlation coefficients between the Young modulus and moisture content for each ...

  10. Connect-disconnect coupling for preadjusted rigid shafts

    Science.gov (United States)

    Bajkowski, F. W.; Holmberg, A.

    1969-01-01

    Coupling device enables a rigid shaft to be connected to or disconnected from a fixed base without disturbing the point of adjustment of the shaft in a socket or causing the shaft to rotate. The coupling consists of an externally threaded, internally slotted boss extending from the fixed base.

  11. Rigidity percolation in dispersions with a structured viscoelastic matrix

    NARCIS (Netherlands)

    Wilbrink, M.W.L.; Michels, M.A.J.; Vellinga, W.P.; Meijer, H.E.H.

    2005-01-01

    This paper deals with rigidity percolation in composite materials consisting of a dispersion of mineral particles in a microstructured viscoelastic matrix. The viscoelastic matrix in this specific case is a hydrocarbon refinery residue. In a set of model random composites the mean interparticle

  12. Centrifuge modelling of rigid piles in soft clay

    DEFF Research Database (Denmark)

    Klinkvort, R.T.; Poder, M.; Truong, P.

    2016-01-01

    of this study is to employ centrifuge modelling in order to derive experimental p-y curves for rigid piles embedded in over-consolidated soft clay. A kaolin clay sample was prepared and pre-consolidated by applying a constant pressure at the soil surface, while different over-consolidation ratios were achieved...

  13. Customizable rigid head fixation for infants: technical note.

    Science.gov (United States)

    Udayakumaran, Suhas; Onyia, Chiazor U

    2016-01-01

    The need and advantages of rigid fixation of the head in cranial surgeries are well documented (Berryhill et al., Otolaryngol Head Neck Surg 121:269-273, 1999). Head fixation for neurosurgical procedures in infants and in early years has been a challenge and is fraught with risk. Despite the fact that pediatric pins are designed, rigid head fixation involving direct application of pins to the head of infants and slightly older children is still generally not safe (Agrawal and Steinbok, Childs Nerv Syst 22:1473-1474, 2006). Yet, there are some surgeries in which some form of rigid fixation is required (Agrawal and Steinbok, Childs Nerv Syst 22:1473-1474, 2006). We describe a simple technique to achieve rigid fixation of the head in infants for neurosurgical procedures. This involves applying a head band made of Plaster of Paris (POP) around the head and then applying the fixation pins of the fixation frame directly on to the POP. We have used this technique of head fixation successfully for infants with no complications.

  14. Study of rigidity of semiconducting vanadate glasses and its ...

    Indian Academy of Sciences (India)

    These parameters along with the coordination number of the glasses affect the glass transition temperature. The correlation between the elastic moduli and thermal properties of these samples showed that 0.25MoO3–0.25PbO–0.5V2O5 glass is the most rigid and has an applicable glass transition temperature for coating.

  15. Rigidity theorem for Willmore surfaces in a sphere

    Indian Academy of Sciences (India)

    (Math. Sci.) Vol. 126, No. 2, May 2016, pp. 253–260. c Indian Academy of Sciences. Rigidity theorem for Willmore surfaces in a sphere. HONGWEI XU1 and DENGYUN YANG2,∗. 1Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027,. People's Republic of China. 2College of Mathematics and ...

  16. Accuracy limit of rigid 3-point water models

    Science.gov (United States)

    Izadi, Saeed; Onufriev, Alexey V.

    2016-08-01

    Classical 3-point rigid water models are most widely used due to their computational efficiency. Recently, we introduced a new approach to constructing classical rigid water models [S. Izadi et al., J. Phys. Chem. Lett. 5, 3863 (2014)], which permits a virtually exhaustive search for globally optimal model parameters in the sub-space that is most relevant to the electrostatic properties of the water molecule in liquid phase. Here we apply the approach to develop a 3-point Optimal Point Charge (OPC3) water model. OPC3 is significantly more accurate than the commonly used water models of same class (TIP3P and SPCE) in reproducing a comprehensive set of liquid bulk properties, over a wide range of temperatures. Beyond bulk properties, we show that OPC3 predicts the intrinsic charge hydration asymmetry (CHA) of water — a characteristic dependence of hydration free energy on the sign of the solute charge — in very close agreement with experiment. Two other recent 3-point rigid water models, TIP3PFB and H2ODC, each developed by its own, completely different optimization method, approach the global accuracy optimum represented by OPC3 in both the parameter space and accuracy of bulk properties. Thus, we argue that an accuracy limit of practical 3-point rigid non-polarizable models has effectively been reached; remaining accuracy issues are discussed.

  17. Rigid rod spaced fullerene as building block for nanoclusters

    Indian Academy of Sciences (India)

    By using phenylacetylene based rigid-rod linkers (PhA), we have successfully synthesized two fullerene derivatives, C60-PhA and C60-PhA-C60. The absorption spectral features of C60, as well as that of the phenylacetylene moiety are retained in the monomeric forms of these fullerene derivatives, ruling out the possibility ...

  18. Hydrodynamics of a flexible plate between pitching rigid plates

    Science.gov (United States)

    Kim, Junyoung; Kim, Daegyoum

    2017-11-01

    The dynamics of a flexible plate have been studied as a model problem in swimming and flying of animals and fluid-structure interaction of plants and flags. Motivated by fish schooling and an array of sea grasses, we investigate the dynamics of a flexible plate closely placed between two pitching rigid plates. In most studies on passive deformation of the flexible plate, the plate is immersed in a uniform flow or a wavy flow. However, in this study, the flexible plate experiences periodic deformation by the oscillatory flow generated by the prescribed pitching motion of the rigid plates. In our model, the pitching axes of the rigid plates and the clamping position of the flexible plate are aligned on the same line. The flexible plate shows various responses depending on length and pitching frequency of rigid plates, thickness of a flexible plate, and free-stream velocity. To find the effect of each variable on the response of the flexible plate, amplitude of a trailing edge and modal contribution of a flapping motion are compared, and flow structure around the flexible plate is examined.

  19. Flexible (Polyactive®) versus rigid (hydroxyapatite) dental implants

    NARCIS (Netherlands)

    Meijer, G.J.; Heethaar, J.; Cune, M.S.; de Putter, C.; van Blitterswijk, Clemens

    1997-01-01

    In a beagle dog study, the peri-implant bone changes around flexible (Polyactive®) and rigid hydroxyapatite (HA) implants were investigated radiographically by quantitative digital subtraction analysis and by assessment of marginal bone height, with the aid of a computerized method. A loss of

  20. "Mind the trap": mindfulness practice reduces cognitive rigidity.

    Directory of Open Access Journals (Sweden)

    Jonathan Greenberg

    Full Text Available Two experiments examined the relation between mindfulness practice and cognitive rigidity by using a variation of the Einstellung water jar task. Participants were required to use three hypothetical jars to obtain a specific amount of water. Initial problems were solvable by the same complex formula, but in later problems ("critical" or "trap" problems solving was possible by an additional much simpler formula. A rigidity score was compiled through perseverance of the complex formula. In Experiment 1, experienced mindfulness meditators received significantly lower rigidity scores than non-meditators who had registered for their first meditation retreat. Similar results were obtained in randomized controlled Experiment 2 comparing non-meditators who underwent an eight meeting mindfulness program with a waiting list group. The authors conclude that mindfulness meditation reduces cognitive rigidity via the tendency to be "blinded" by experience. Results are discussed in light of the benefits of mindfulness practice regarding a reduced tendency to overlook novel and adaptive ways of responding due to past experience, both in and out of the clinical setting.

  1. A survey on stability and rigidity results for Lie algebras

    NARCIS (Netherlands)

    Crainic, Marius; Schätz, Florian; Struchiner, Ivan

    2014-01-01

    We give simple and unified proofs of the known stability and rigidity results for Lie algebras, Lie subalgebras and Lie algebra homomorphisms. Moreover, we investigate when a Lie algebra homomorphism is stable under all automorphisms of the codomain (including outer automorphisms).

  2. 21 CFR 886.5916 - Rigid gas permeable contact lens.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rigid gas permeable contact lens. 886.5916 Section 886.5916 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... against the cornea of the eye to correct vision conditions. The device is made of various materials, such...

  3. Knowledge-In-Action: An Example with Rigid Body Motion

    Science.gov (United States)

    Da Costa, Sayonara Salvador Cabral; Moreira, Marco Antonio

    2005-01-01

    This paper reports the analysis of the resolution of a paper-and-pencil problem, by eight undergraduate students majoring in engineering (six) and physics (two) at the Pontifcia Universidade Catlica do Rio Grande do Sul, in Porto Alegre, Brazil. The problem concerns kinetics of a rigid body, and the analysis was done in the light of Johnson-Lairds…

  4. Non-rigid registration by geometry-constrained diffusion

    DEFF Research Database (Denmark)

    Andresen, Per Rønsholt; Nielsen, Mads

    1999-01-01

    Assume that only partial knowledge about a non-rigid registration is given so that certain point, curves, or surfaces in one 3D image map to certain points, curves, or surfaces in another 3D image. We are facing the aperture problem because along the curves and surfaces, point correspondences...

  5. A Stepwise "Micellization-Crystallization" Route to Oblate Ellipsoidal, Cylindrical, and Bilayer Micelles with Polyethylene Cores in Water

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ligeng; Lodge, Timothy P; Hillmyer, Marc A [UMM

    2012-11-26

    Micellar polymorphism from block copolymers has been well documented, but most attention has focused on noncrystalline hydrophobic systems. We have investigated the micellization in water of model diblock copolymers with semicrystalline polyethylene (PE) as the core-forming component. Poly(N,N-dimethylacrylamide)–polyethylene (AE) diblock copolymers were synthesized by a combination of anionic and RAFT polymerizations. The bulk nanostructures were probed by small-angle X-ray scattering (SAXS) and AE diblock copolymers were found to be moderately segregated at 140 °C. Dispersions of AE amphiphiles in water were prepared by direct dissolution at 120 °C (i.e., above the melting transition of PE) followed by cooling to 25 °C. By manipulating the composition of AE diblock copolymers, discrete structures with oblate ellipsoidal, cylindrical, and bilayer morphologies were produced, as evidenced in cryogenic transmission electron microscopy (cryo-TEM). The self-assembled aggregates were also studied by small-angle neutron scattering (SANS) and dilute solution rheology. The semicrystalline nature of the nanostructures was further revealed by differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS). A stepwise “micellization–crystallization” process was proposed as the micelle formation mechanism, as supported by the existence of similar nanostructures at 120 °C using SANS. This strategy holds promise for a general protocol toward the production of giant wormlike micelles and vesicles with semicrystalline polymeric cores.

  6. Forward calculation of gravity and its gradient using polyhedral representation of density interfaces: an application of spherical or ellipsoidal topographic gravity effect

    Science.gov (United States)

    Zhang, Yi; Chen, Chao

    2018-02-01

    A density interface modeling method using polyhedral representation is proposed to construct 3-D models of spherical or ellipsoidal interfaces such as the terrain surface of the Earth and applied to forward calculating gravity effect of topography and bathymetry for regional or global applications. The method utilizes triangular facets to fit undulation of the target interface. The model maintains almost equal accuracy and resolution at different locations of the globe. Meanwhile, the exterior gravitational field of the model, including its gravity and gravity gradients, is obtained simultaneously using analytic solutions. Additionally, considering the effect of distant relief, an adaptive computation process is introduced to reduce the computational burden. Then features and errors of the method are analyzed. Subsequently, the method is applied to an area for the ellipsoidal Bouguer shell correction as an example and the result is compared to existing methods, which shows our method provides high accuracy and great computational efficiency. Suggestions for further developments and conclusions are drawn at last.

  7. Formation and acceleration of uniformly filled ellipsoidal electron bunches obtained via space-charge-driven expansion from a cesium-telluride photocathode

    Directory of Open Access Journals (Sweden)

    P. Piot

    2013-01-01

    Full Text Available We report the experimental generation, acceleration, and characterization of a uniformly filled electron bunch obtained via space-charge-driven expansion (often referred to as “blow-out regime” in an L-band (1.3-GHz radiofrequency photoinjector. The beam is photoemitted from a cesium-telluride semiconductor photocathode using a short (<200  fs ultraviolet laser pulse. The produced electron bunches are characterized with conventional diagnostics and the signatures of their ellipsoidal character are observed. We especially demonstrate the production of ellipsoidal bunches with charges up to ∼0.5  nC corresponding to a ∼20-fold increase compared to previous experiments with metallic photocathodes.

  8. Strategic rigidity and foresight for technology adoption among electric utilities

    International Nuclear Information System (INIS)

    Shah, Arsalan Nisar; Palacios, Miguel; Ruiz, Felipe

    2013-01-01

    The variation in the adoption of a technology as a major source of competitive advantage has been attributed to the wide-ranging strategic foresight and the integrative capability of a firm. These possible areas of competitive advantage can exist in the periphery of the firm's strategic vision and can get easily blurred as a result of rigidness and can permeate in the decision-making process of the firm. This article explores how electric utility firms with a renewable energy portfolio can become strategically rigid in terms of adoption of newer technologies. The reluctance or delay in the adoption of new technology can be characterized as strategic rigidness, brought upon as a result of a firm's core competence or core capability in the other, more conventional technology arrangement. This paper explores the implications of such rigidness on the performance of a firm and consequently on the energy eco-system. The paper substantiates the results by emphasizing the case of Iberdrola S.A., an incumbent firm as a wind energy developer and its adoption decision behavior. We illustrate that the very routines that create competitive advantage for firms in the electric utility industry are vulnerable as they might also develop as sources of competitive disadvantage, when firms confront environmental change and uncertainty. - Highlights: • Present a firm-level perspective on technology adoption behavior among electric utilities. • Firms with mature technology can become rigid towards newer technologies. • Case study analysis of a major electric utility firm. • Implications of ‘technology rigidness’ on the energy eco-system

  9. Matrix rigidity regulates cancer cell growth and cellular phenotype.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    2010-09-01

    Full Text Available The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness of the microenvironment and how this response varies among cancer cell lines.In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: "rigidity dependent" (those which show an increase in cell growth as extracellular rigidity is increased, and "rigidity independent" (those which grow equally on both soft and stiff substrates. Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug.These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models.

  10. Matrix Rigidity Regulates Cancer Cell Growth and Cellular Phenotype

    Science.gov (United States)

    Tilghman, Robert W.; Cowan, Catharine R.; Mih, Justin D.; Koryakina, Yulia; Gioeli, Daniel; Slack-Davis, Jill K.; Blackman, Brett R.; Tschumperlin, Daniel J.; Parsons, J. Thomas

    2010-01-01

    Background The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness) of the microenvironment and how this response varies among cancer cell lines. Methodology/Principal Findings In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: “rigidity dependent” (those which show an increase in cell growth as extracellular rigidity is increased), and “rigidity independent” (those which grow equally on both soft and stiff substrates). Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug. Conclusions/Significance These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models. PMID:20886123

  11. Initial Development of an Electronic Testis Rigidity Tester

    Directory of Open Access Journals (Sweden)

    Petros Mirilas

    2011-01-01

    Full Text Available We aimed to develop our previously presented mechanical device, the Testis Rigidity Tester (TRT, into an electronic system (Electronic Testis Rigidity Tester, ETRT by applying tactile imaging, which has been used successfully with other solid organs. A measuring device, located at the front end of the ETRT incorporates a tactile sensor comprising an array of microsensors. By application of a predetermined deformation of 2 mm, increased pressure alters linearly the resistance of each microsensor, producing changes of voltage. These signals were amplified, filtered, and digitized, and then processed by an electronic collector system, which presented them as a color-filled contour plot of the area of the testis coming into contact with the sensor. Testis models of different rigidity served for initial evaluation of ETRT; their evacuated central spaces contained different, increasing glue masses. An independent method of rigidity measurement, using an electric weight scale and a micrometer, showed that the more the glue injected, the greater the force needed for a 2-mm deformation. In a preliminary test, a single sensor connected to a multimeter showed similar force measurement for the same deformation in these phantoms. For each of the testis models compressed in the same manner, the ETRT system offered a map of pressures, represented by a color scale within the contour plot of the contact area with the sensor. ETRT found certain differences in rigidity between models that had escaped detection by a blind observer. ETRT is easy to use and provides a color-coded “insight“ of the testis internal structure. After experimental testing, it could be valuable in intraoperative evaluation of testes, so that the surgeon can decide about orchectomy or orcheopexy.

  12. An efficient direct method for image registration of flat objects

    Science.gov (United States)

    Nikolaev, Dmitry; Tihonkih, Dmitrii; Makovetskii, Artyom; Voronin, Sergei

    2017-09-01

    Image alignment of rigid surfaces is a rapidly developing area of research and has many practical applications. Alignment methods can be roughly divided into two types: feature-based methods and direct methods. Known SURF and SIFT algorithms are examples of the feature-based methods. Direct methods refer to those that exploit the pixel intensities without resorting to image features and image-based deformations are general direct method to align images of deformable objects in 3D space. Nevertheless, it is not good for the registration of images of 3D rigid objects since the underlying structure cannot be directly evaluated. In the article, we propose a model that is suitable for image alignment of rigid flat objects under various illumination models. The brightness consistency assumptions used for reconstruction of optimal geometrical transformation. Computer simulation results are provided to illustrate the performance of the proposed algorithm for computing of an accordance between pixels of two images.

  13. Well device for removing small objects

    Energy Technology Data Exchange (ETDEWEB)

    Rastorguyev, M.A.; Mubashirov, S.G.; Nikolayev, G.I.; Prokopov, O.I.

    1982-01-01

    A well device is proposed for removing small objects. It contains a hollow housing with worm and crown installed with the possibility of rotation in relation to the housing. It is distinguished by the fact that in order to increase reliability of holding the trapped objects, on the lower end of the housing there is a disc which forms with the housing a chamber for the trapped objects. In this case the disc is made with sector slit, one of whose sidewalls is superposed with the worm blade rigidly connected to the disc, while along the other side wall a plate is vertically attached.

  14. THE EVIL-MC MODEL FOR ELLIPSOIDAL VARIATIONS OF PLANET-HOSTING STARS AND APPLICATIONS TO THE HAT-P-7 SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Brian K. [Carnegie Institution for Science, Washington, DC 20015 (United States); Lewis, Nikole K.; Showman, Adam P. [Lunar and Planetary Laboratory, University of Arizona, Kuiper Space Sciences Building, Tucson, AZ 85721 (United States); Barnes, Jason W. [Department of Physics, University of Idaho, Engineering-Physics Building, Moscow, ID 83844 (United States); Deming, L. Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Fortney, Jonathan J., E-mail: bjackson@dtm.ciw.edu [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States)

    2012-06-01

    We present a new model for Ellipsoidal Variations Induced by a Low-Mass Companion, the EVIL-MC model. We employ several approximations appropriate for planetary systems to substantially increase the computational efficiency of our model relative to more general ellipsoidal variation models and improve upon the accuracy of simpler models. This new approach gives us a unique ability to rapidly and accurately determine planetary system parameters. We use the EVIL-MC model to analyze Kepler Quarter 0-2 (Q0-2) observations of the HAT-P-7 system, an F-type star orbited by a {approx} Jupiter-mass companion. Our analysis corroborates previous estimates of the planet-star mass ratio q = (1.10 {+-} 0.06) Multiplication-Sign 10{sup -3}, and we have revised the planet's dayside brightness temperature to 2680{sup +10}{sub -20} K. We also find a large difference between the day- and nightside planetary flux, with little nightside emission. Preliminary dynamical+radiative modeling of the atmosphere indicates that this result is qualitatively consistent with high altitude absorption of stellar heating. Similar analyses of Kepler and CoRoT photometry of other planets using EVIL-MC will play a key role in providing constraints on the properties of many extrasolar systems, especially given the limited resources for follow-up and characterization of these systems. However, as we highlight, there are important degeneracies between the contributions from ellipsoidal variations and planetary emission and reflection. Consequently, for many of the hottest and brightest Kepler and CoRoT planets, accurate estimates of the planetary emission and reflection, diagnostic of atmospheric heat budgets, will require accurate modeling of the photometric contribution from the stellar ellipsoidal variation.

  15. Ellipsoidal capillary as condenser for the BESSY full-field x-ray microscope

    International Nuclear Information System (INIS)

    Guttmann, P; Heim, S; Schneider, G; Zeng, X; Feser, M; Yun, W

    2009-01-01

    The BESSY x-ray microscopy group has developed a new full-field x-ray microscope which employs an advanced x-ray optical concept. Traditionally, zone plate based condensers are used in x-ray microscopes providing an energy resolution of only E/ΔE ≤ 500. In addition, this conventional monochromator concept requires a pinhole close to the sample restricting the available space for tomography applications. In our new BESSY microscope, a standard monochromator beam line provides a high energy resolution of up to 10,000 which permits NEXAFS studies. An elliptically shaped mono-capillary is used to form the hollow cone illumination necessary for sample illumination and to match the aperture of the objective. Calculations regarding the performance and accuracies needed are presented and characterizations of capillaries especially made for the BESSY soft x-ray microscope are shown. For the first time, we demonstrate that glass capillaries are well suited as condensers in the soft x-ray energy domain. Their focusing efficiency was measured to be 80% which is about an order of magnitude higher than the diffraction efficiency of zone plate based condensers.

  16. A new method using insert-based systems (IBS) to improve cell behavior study on flexible and rigid biomaterials

    OpenAIRE

    Grenade, Charlotte; Moniotte, Nicolas; Rompen, Eric; Vanheusden, Alain; Mainjot, Amélie; De Pauw-Gillet, Marie-Claire

    2016-01-01

    In vitro studies about biomaterials biological properties are essential screening tests. Yet cell cultures encounter difficulties related to cell retention on material surface or to the observation of both faces of permeable materials. The objective of the present study was to develop a reliable in vitro method to study cell behavior on rigid and flexible/permeable biomaterials elaborating two specific insert-based systems (IBS-R and IBS-F respectively). IBS-R was designed as a specific cylin...

  17. A framework for automatic creation of gold-standard rigid 3D-2D registration datasets.

    Science.gov (United States)

    Madan, Hennadii; Pernuš, Franjo; Likar, Boštjan; Špiclin, Žiga

    2017-02-01

    Advanced image-guided medical procedures incorporate 2D intra-interventional information into pre-interventional 3D image and plan of the procedure through 3D/2D image registration (32R). To enter clinical use, and even for publication purposes, novel and existing 32R methods have to be rigorously validated. The performance of a 32R method can be estimated by comparing it to an accurate reference or gold standard method (usually based on fiducial markers) on the same set of images (gold standard dataset). Objective validation and comparison of methods are possible only if evaluation methodology is standardized, and the gold standard  dataset is made publicly available. Currently, very few such datasets exist and only one contains images of multiple patients acquired during a procedure. To encourage the creation of gold standard 32R datasets, we propose an automatic framework. The framework is based on rigid registration of fiducial markers. The main novelty is spatial grouping of fiducial markers on the carrier device, which enables automatic marker localization and identification across the 3D and 2D images. The proposed framework was demonstrated on clinical angiograms of 20 patients. Rigid 32R computed by the framework was more accurate than that obtained manually, with the respective target registration error below 0.027 mm compared to 0.040 mm. The framework is applicable for gold standard setup on any rigid anatomy, provided that the acquired images contain spatially grouped fiducial markers. The gold standard datasets and software will be made publicly available.

  18. Pediatric mandibular fractures treated by rigid internal fixation.

    Science.gov (United States)

    Wong, G B

    1993-09-01

    Mandibular fractures in the pediatric patient population are relatively uncommon. These patients present with their own unique treatment requirements. Most fractures have been treated conservatively by dental splints. Closed reduction techniques with maxillomandibular fixation (MMF) in very young children can pose several concerns, including cooperation, compliance and adequate nutritional intake. Rigid internal fixation of unstable mandibular fractures using miniplates and screws circumvents the need for MMF and allows immediate jaw mobilization. At major pediatric trauma institutions, there has been an increasing trend toward the use of this treatment when open reduction is necessary. This article presents a report of a five-year-old child who presented with bilateral mandibular fractures and was treated by rigid internal fixation and immediate mandibular mobilization.

  19. Handedness in shearing auxetics creates rigid and compliant structures

    Science.gov (United States)

    Lipton, Jeffrey Ian; MacCurdy, Robert; Manchester, Zachary; Chin, Lillian; Cellucci, Daniel; Rus, Daniela

    2018-05-01

    In nature, repeated base units produce handed structures that selectively bond to make rigid or compliant materials. Auxetic tilings are scale-independent frameworks made from repeated unit cells that expand under tension. We discovered how to produce handedness in auxetic unit cells that shear as they expand by changing the symmetries and alignments of auxetic tilings. Using the symmetry and alignment rules that we developed, we made handed shearing auxetics that tile planes, cylinders, and spheres. By compositing the handed shearing auxetics in a manner inspired by keratin and collagen, we produce both compliant structures that expand while twisting and deployable structures that can rigidly lock. This work opens up new possibilities in designing chemical frameworks, medical devices like stents, robotic systems, and deployable engineering structures.

  20. Rigid inclusions-Comparison between analytical and numerical methods

    International Nuclear Information System (INIS)

    Gomez Perez, R.; Melentijevic, S.

    2014-01-01

    This paper compares different analytical methods for analysis of rigid inclusions with finite element modeling. First of all, the load transfer in the distribution layer is analyzed for its different thicknesses and different inclusion grids to define the range between results obtained by analytical and numerical methods. The interaction between the soft soil and the inclusion in the estimation of settlements is studied as well. Considering different stiffness of the soft soil, settlements obtained analytical and numerically are compared. The influence of the soft soil modulus of elasticity on the neutral point depth was also performed by finite elements. This depth has a great importance for the definition of the total length of rigid inclusion. (Author)

  1. Rigidity of complete noncompact bach-flat n-manifolds

    Science.gov (United States)

    Chu, Yawei; Feng, Pinghua

    2012-11-01

    Let (Mn,g) be a complete noncompact Bach-flat n-manifold with the positive Yamabe constant and constant scalar curvature. Assume that the L2-norm of the trace-free Riemannian curvature tensor R∘m is finite. In this paper, we prove that (Mn,g) is a constant curvature space if the L-norm of R∘m is sufficiently small. Moreover, we get a gap theorem for (Mn,g) with positive scalar curvature. This can be viewed as a generalization of our earlier results of 4-dimensional Bach-flat manifolds with constant scalar curvature R≥0 [Y.W. Chu, A rigidity theorem for complete noncompact Bach-flat manifolds, J. Geom. Phys. 61 (2011) 516-521]. Furthermore, when n>9, we derive a rigidity result for R<0.

  2. Rigid-beam model of a high-efficiency magnicon

    International Nuclear Information System (INIS)

    Rees, D.E.; Tallerico, P.J.; Humphries, S.J. Jr.

    1993-01-01

    The magnicon is a new type of high-efficiency deflection-modulated amplifier developed at the Institute of Nuclear Physics in Novosibirsk, Russia. The prototype pulsed magnicon achieved an output power of 2.4 MW and an efficiency of 73% at 915 MHz. This paper presents the results of a rigid-beam model for a 700-MHz, 2.5-MW 82%-efficient magnicon. The rigid-beam model allows for characterization of the beam dynamics by tracking only a single electron. The magnicon design presented consists of a drive cavity; passive cavities; a pi-mode, coupled-deflection cavity; and an output cavity. It represents an optimized design. The model is fully self-consistent, and this paper presents the details of the model and calculated performance of a 2.5-MW magnicon

  3. MRS2016: Rigid Moon Rotation Series in the Relativistic Approximation

    Science.gov (United States)

    Pashkevich, V. V.

    2017-03-01

    The rigid Moon rotation problem is studied for the relativistic (kinematical) case, in which the geodetic perturbations in the Moon rotation are taken into account. As the result of this research the high-precision Moon Rotation Series MRS2016 in the relativistic approximation was constructed for the first time and the discrepancies between the high-precision numerical and the semi-analytical solutions of the rigid Moon rotation were investigated with respect to the fixed ecliptic of epoch J2000, by the numerical and analytical methods. The residuals between the numerical solution and MRS2016 in the perturbing terms of the physical librations do not exceed 80 mas and 10 arc seconds over 2000 and 6000 years, respectively.

  4. Partial ring currents and cosmic ray magnetic cutoff rigidity variations

    International Nuclear Information System (INIS)

    Arens, M.

    1978-01-01

    A short introduction on cosmic ray modulation and a description of the magnetosphere, and of some physical processes occurring within its boundaries are presented. 20 geomagnetic storms are analysed together with the cosmic ray intensities during these storms as measured by Neutron Monitors. Using a semi-empirical method, the variations in the magnetic cutoff rigidity for the mountain stations Pic du Midi and Jungfraujoch are deduced. These stations are the most sensitive for measuring these variations. The analysis shows that all analyzed storms have an asymmetric development phase. Often the asymmetry even continues during part of the recovery phase. It is shown that variations in magnetic cutoff rigidity occur only during the asymmetric phase of the storm. The largest variations are found when the cosmic ray station is located in the late afternoon-midnight sector. (Auth.)

  5. A rigid lamb syndrome in sheep in Rhodesia.

    Science.gov (United States)

    Rudert, C P; Lawrence, J A; Foggin, C; Barlow, R M

    1978-04-29

    A syndrome characterised by the birth of lambs with varying degrees of rigidity of the limbs and spine has been encountered on several occasions in Rhodesia. Outbreaks have occurred in autumn-born lambs from Dorper ewes grazing heavily fertilised Star grass cv No 2 (Cynodon aethiopicus) pastures. The condition appears to be exacerbated by the application of sulphur to the pasture and is partly prevented by the administration of selenium and vitamin E to the ewes before lambing. The aetiology is unknown.

  6. Nonlinear dynamics mathematical models for rigid bodies with a liquid

    CERN Document Server

    Lukovsky, Ivan A

    2015-01-01

    This book is devoted to analytically approximate methods in the nonlinear dynamics of a rigid body with cavities partly filled by liquid. It combines several methods and compares the results with experimental data. It is useful for experienced and early-stage readers interested in analytical approaches to fluid-structure interaction problems, the fundamental mathematical background and modeling the dynamics of such complex mechanical systems.

  7. Steady fall of a rigid body in viscous fluid

    Czech Academy of Sciences Publication Activity Database

    Nečasová, Šárka

    2005-01-01

    Roč. 63, Sp. Is. (2005), s. 2113-2119 ISSN 0362-546X. [Invited Talks from the Fourth World Congress of Nonlinear Analysts (WCNA 2004). Orlando , 30.7.2004-7.8.2004] R&D Projects: GA ČR(CZ) GA201/02/0684 Institutional research plan: CEZ:AV0Z1019905 Keywords : steady fall * rigid body * viscous fluid Subject RIV: BA - General Mathematics Impact factor: 0.519, year: 2005

  8. NOLB: Nonlinear Rigid Block Normal Mode Analysis Method

    OpenAIRE

    Hoffmann , Alexandre; Grudinin , Sergei

    2017-01-01

    International audience; We present a new conceptually simple and computationally efficient method for nonlinear normal mode analysis called NOLB. It relies on the rotations-translations of blocks (RTB) theoretical basis developed by Y.-H. Sanejouand and colleagues. We demonstrate how to physically interpret the eigenvalues computed in the RTB basis in terms of angular and linear velocities applied to the rigid blocks and how to construct a nonlinear extrapolation of motion out of these veloci...

  9. Oscillations of manometric tubular springs with rigid end

    Science.gov (United States)

    Cherentsov, D. A.; Pirogov, S. P.; Dorofeev, S. M.; Ryabova, Y. S.

    2018-05-01

    The paper presents a mathematical model of attenuating oscillations of manometric tubular springs (MTS) taking into account the rigid tip. The dynamic MTS model is presented in the form of a thin-walled curved rod oscillating in the plane of curvature of the central axis. Equations for MTS oscillations are obtained in accordance with the d’Alembert principle in projections onto the normal and tangential. The Bubnov-Galerkin method is used to solve the equations obtained.

  10. On Polya's inequality for torsional rigidity and first Dirichlet eigenvalue

    OpenAIRE

    Berg, M. van den; Ferone, V.; Nitsch, C.; Trombetti, C.

    2016-01-01

    Let $\\Omega$ be an open set in Euclidean space with finite Lebesgue measure $|\\Omega|$. We obtain some properties of the set function $F:\\Omega\\mapsto \\R^+$ defined by $$ F(\\Omega)=\\frac{T(\\Omega)\\lambda_1(\\Omega)}{|\\Omega|} ,$$ where $T(\\Omega)$ and $\\lambda_1(\\Omega)$ are the torsional rigidity and the first eigenvalue of the Dirichlet Laplacian respectively. We improve the classical P\\'olya bound $F(\\Omega)\\le 1,$ and show that $$F(\\Omega)\\le 1- \

  11. Vortex statistics for turbulence in a container with rigid boundaries

    DEFF Research Database (Denmark)

    Clercx, H.J.H.; Nielsen, A.H.

    2000-01-01

    The evolution of vortex statistics for decaying two-dimensional turbulence in a square container with rigid no-slip walls is compared with a few available experimental results and with the scaling theory of two-dimensional turbulent decay as proposed by Carnevale et al. Power-law exponents......, computed from an ensemble average of several numerical runs, coincide with some experimentally obtained values, but not with data obtained from numerical simulations of decaying two-dimensional turbulence with periodic boundary conditions....

  12. Gas-induced friction and diffusion of rigid rotors

    Science.gov (United States)

    Martinetz, Lukas; Hornberger, Klaus; Stickler, Benjamin A.

    2018-05-01

    We derive the Boltzmann equation for the rotranslational dynamics of an arbitrary convex rigid body in a rarefied gas. It yields as a limiting case the Fokker-Planck equation accounting for friction, diffusion, and nonconservative drift forces and torques. We provide the rotranslational friction and diffusion tensors for specular and diffuse reflection off particles with spherical, cylindrical, and cuboidal shape, and show that the theory describes thermalization, photophoresis, and the inverse Magnus effect in the free molecular regime.

  13. Polyester Polyols from Waste PET Bottles for Polyurethane Rigid Foams

    OpenAIRE

    Evtimova, Rozeta; Lozeva, Yordanka; Schmidt, Karl-Heinz; Wotzka, Michael; Wagner, Peter; Behrendt, Gerhard

    2003-01-01

    This paper describes a modified process to produce polyester polyols from PET wastes derived from the “bottle fraction residue” of the German Dual System (DSD) [11] employing a waste oligoester condensate of the polyesterification process with the addition of some glycols of longer chain and occasional modification with further dicarboxylic acids to produce polyester polyols of a broad range of properties which are further reacted to form polyurethane or polyisocyanurate rigid foams for insul...

  14. Modyfication of the Rigid Polyurethane-Polyisocyanurate Foams

    OpenAIRE

    Bogusław Czupryński; Joanna Liszkowska; Joanna Paciorek-Sadowska

    2014-01-01

    The effect of polyethylene glycol 1500 on physicomechanical properties of rigid polyurethane-polyisocyanurate (PUR-PIR) foams has been studied. It was found that application of polyethylene glycol 1500 for synthesis of foams in amount from 0% to 20% w/w had an effect on reduction of brittleness and softening point, while the greater the increase in compressive strength the higher its content in foam composition was. Wastes from production of these foams were ground and subjected to glycolysis...

  15. Surface Area Distribution Descriptor for object matching

    Directory of Open Access Journals (Sweden)

    Mohamed F. Gafar

    2010-07-01

    Full Text Available Matching 3D objects by their similarity is a fundamental problem in computer vision, computer graphics and many other fields. The main challenge in object matching is to find a suitable shape representation that can be used to accurately and quickly discriminate between similar and dissimilar shapes. In this paper we present a new volumetric descriptor to represent 3D objects. The proposed descriptor is used to match objects under rigid transformations including uniform scaling. The descriptor represents the object by dividing it into shells, acquiring the area distribution of the object through those shells. The computed areas are normalised to make the descriptor scale-invariant in addition to rotation and translation invariant. The effectiveness and stability of the proposed descriptor to noise and variant sampling density as well as the effectiveness of the similarity measures are analysed and demonstrated through experimental results.

  16. Rigid or flexible sigmoidoscopy in colorectal clinics? Appraisal through a systematic review and meta-analysis.

    LENUS (Irish Health Repository)

    Ahmad, Nasir Zaheer

    2012-06-01

    Rigid sigmoidoscopy is sometimes performed at first presentation in colorectal clinics. We assessed the feasibility of flexible sigmoidoscopy in similar situations by comparing it with rigid sigmoidoscopy as a first investigative tool.

  17. Towards Sub-Microarsecond Rigid Earth Nutation Series in the Hamiltonian Theory

    National Research Council Canada - National Science Library

    Souchay, Jean; Folgueira, M

    2000-01-01

    ...) are based on the works of Kinoshita (1977) and Wahr (1979). In Kinoshita's work, the rigid Earth nutation series were calculated by the application of the Hamiltonian canonical equations to the rotation of the rigid and elliptical Earth...

  18. Chiral Orientation of Skeletal Muscle Cells Requires Rigid Substrate

    Directory of Open Access Journals (Sweden)

    Ninghao Zhu

    2017-06-01

    Full Text Available Reconstitution of tissue morphology with inherent left–right (LR asymmetry is essential for tissue/organ functions. For skeletal muscle, the largest tissue in mammalian organisms, successful myogenesis requires the regulation of the LR asymmetry to form the appropriate muscle alignment. However, the key factor for reproducing the LR asymmetry of skeletal tissues in a controllable, engineering context remains largely unknown. Recent reports indicate that cell chirality may underlie the LR development in tissue morphogenesis. Here, we report that a rigid substrate is required for the chirality of skeletal muscle cells. By using alternating micropatterned cell-adherent and cell-repellent stripes on a rigid substrate, we found that C2C12 skeletal muscle myoblasts exhibited a unidirectional tilted orientation with respect to the stripe boundary. Importantly, such chiral orientation was reduced when soft substrates were used instead. In addition, we demonstrated the key role of actin stress fibers in the formation of the chiral orientation. This study reveals that a rigid substrate is required for the chiral pattern of myoblasts, paving the way for reconstructing damaged muscle tissue with inherent LR asymmetry in the future.

  19. Experimental consequences of predicted charge rigidity of superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, J.E., E-mail: jhirsch@ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093-0319 (United States)

    2012-08-15

    The theory of hole superconductivity predicts that in superconductors the charged superfluid is about a million times more rigid than the normal electron fluid. We point out that this physics should give rise to large changes in the bulk and surface plasmon dispersion relations of metals entering the superconducting state, that have not yet been experimentally detected and would be in stark contradiction with the expected behavior within conventional BCS-London theory. We also propose that this explains the puzzling experimental observations of Avramenko et al. on electron sound propagation in superconductors and the puzzling experiments of de Heer et al. detecting large electric dipole moments in small metal clusters, as well as the Tao effect on aggregation of superconducting microparticles in an electric field. Associated with the enhanced charge rigidity is a large increase in the electric screening length of superconductors at low temperatures that has not yet been experimentally detected. The physical origin of the enhanced charge rigidity and its relation to other aspects of the theory of hole superconductivity is discussed.

  20. Field dependent cosmic ray streaming at high rigidities

    International Nuclear Information System (INIS)

    Swinson, D.B.

    1976-01-01

    Data from underground μ meson telescopes at depths of 25, 40, and 80 mwe covering the period 1965--1973 have been analyzed as a function of interplanetary magnetic field direction. Cosmic ray streaming both in and perpendicular to the ecliptic plane, with directions dependent on the sense of the interplanetary magnetic field, is observed throughout the period at all depths. The field dependent streaming in the ecliptic plane exhibits some variability in amplitude and phase but contains a component in the direction perpendicular to the interplanetary magnetic field direction which is consistent with B x delN streaming due to a perpendicular cosmic ray density gradient pointing southward (higher density below the ecliptic plane than above it). In the case of the field dependent streaming perpendicular to the ecliptic plane the direction of the streaming has remained remarkably consistent over the 9-year period. One possible source of this streaming is B x delN streaming due to a radial heliocentric cosmic ray density gradient; this possibility is discussed along with other possible sources. There does not appear to be an obvious variation in the amplitude of the field dependent streaming either in or perpendicular to the ecliptic plane with increasing rigidity; both effects are still apparent at rigidities well above the 52-GV threshold rigidity of the Socorro 80-mwe telescope. The amplitudes of both anisotropies appear larger at solar maximum than at solar minimum

  1. Rigid Body Energy Minimization on Manifolds for Molecular Docking.

    Science.gov (United States)

    Mirzaei, Hanieh; Beglov, Dmitri; Paschalidis, Ioannis Ch; Vajda, Sandor; Vakili, Pirooz; Kozakov, Dima

    2012-11-13

    Virtually all docking methods include some local continuous minimization of an energy/scoring function in order to remove steric clashes and obtain more reliable energy values. In this paper, we describe an efficient rigid-body optimization algorithm that, compared to the most widely used algorithms, converges approximately an order of magnitude faster to conformations with equal or slightly lower energy. The space of rigid body transformations is a nonlinear manifold, namely, a space which locally resembles a Euclidean space. We use a canonical parametrization of the manifold, called the exponential parametrization, to map the Euclidean tangent space of the manifold onto the manifold itself. Thus, we locally transform the rigid body optimization to an optimization over a Euclidean space where basic optimization algorithms are applicable. Compared to commonly used methods, this formulation substantially reduces the dimension of the search space. As a result, it requires far fewer costly function and gradient evaluations and leads to a more efficient algorithm. We have selected the LBFGS quasi-Newton method for local optimization since it uses only gradient information to obtain second order information about the energy function and avoids the far more costly direct Hessian evaluations. Two applications, one in protein-protein docking, and the other in protein-small molecular interactions, as part of macromolecular docking protocols are presented. The code is available to the community under open source license, and with minimal effort can be incorporated into any molecular modeling package.

  2. Crack identification for rigid pavements using unmanned aerial vehicles

    Science.gov (United States)

    Bahaddin Ersoz, Ahmet; Pekcan, Onur; Teke, Turker

    2017-09-01

    Pavement condition assessment is an essential piece of modern pavement management systems as rehabilitation strategies are planned based upon its outcomes. For proper evaluation of existing pavements, they must be continuously and effectively monitored using practical means. Conventionally, truck-based pavement monitoring systems have been in-use in assessing the remaining life of in-service pavements. Although such systems produce accurate results, their use can be expensive and data processing can be time consuming, which make them infeasible considering the demand for quick pavement evaluation. To overcome such problems, Unmanned Aerial Vehicles (UAVs) can be used as an alternative as they are relatively cheaper and easier-to-use. In this study, we propose a UAV based pavement crack identification system for monitoring rigid pavements’ existing conditions. The system consists of recently introduced image processing algorithms used together with conventional machine learning techniques, both of which are used to perform detection of cracks on rigid pavements’ surface and their classification. Through image processing, the distinct features of labelled crack bodies are first obtained from the UAV based images and then used for training of a Support Vector Machine (SVM) model. The performance of the developed SVM model was assessed with a field study performed along a rigid pavement exposed to low traffic and serious temperature changes. Available cracks were classified using the UAV based system and obtained results indicate it ensures a good alternative solution for pavement monitoring applications.

  3. Green waste cooking oil-based rigid polyurethane foam

    Science.gov (United States)

    Enderus, N. F.; Tahir, S. M.

    2017-11-01

    Polyurethane is a versatile polymer traditionally prepared using petroleum-based raw material. Petroleum, however, is a non-renewable material and polyurethane produced was found to be non-biodegradable. In quest for a more environmentally friendly alternative, wastecooking oil, a highly abundant domestic waste with easily derivatized structure, is a viable candidate to replace petroleum. In this study,an investigation to determine physical and chemical properties of rigid polyurethane (PU) foam from waste cooking oil (WCO) was carried out. WCO was first adsorbed by using coconut husk activated carbon adsorbent prior to be used for polyol synthesis. The purified WCO was then used to synthesize polyol via transesterification reaction to yield alcohol groups in the WCO chains structure. Finally, the WCO-based polyol was used to prepare rigid PU foam. The optimum formulation for PU formation was found to be 90 polyol: 60 glycerol: 54 water: 40 diethanolamine: 23 diisocyanate. The rigid PU foam has density of 208.4 kg/m3 with maximum compressive strength and capability to receive load at 0.03 MPa and 0.09 kN, respectively. WCO-based PU can potentially be used to replace petroleum-based PU as house construction materials such as insulation panels.

  4. Multiscale multiphysics and multidomain models—Flexibility and rigidity

    International Nuclear Information System (INIS)

    Xia, Kelin; Opron, Kristopher; Wei, Guo-Wei

    2013-01-01

    The emerging complexity of large macromolecules has led to challenges in their full scale theoretical description and computer simulation. Multiscale multiphysics and multidomain models have been introduced to reduce the number of degrees of freedom while maintaining modeling accuracy and achieving computational efficiency. A total energy functional is constructed to put energies for polar and nonpolar solvation, chemical potential, fluid flow, molecular mechanics, and elastic dynamics on an equal footing. The variational principle is utilized to derive coupled governing equations for the above mentioned multiphysical descriptions. Among these governing equations is the Poisson-Boltzmann equation which describes continuum electrostatics with atomic charges. The present work introduces the theory of continuum elasticity with atomic rigidity (CEWAR). The essence of CEWAR is to formulate the shear modulus as a continuous function of atomic rigidity. As a result, the dynamics complexity of a macromolecular system is separated from its static complexity so that the more time-consuming dynamics is handled with continuum elasticity theory, while the less time-consuming static analysis is pursued with atomic approaches. We propose a simple method, flexibility-rigidity index (FRI), to analyze macromolecular flexibility and rigidity in atomic detail. The construction of FRI relies on the fundamental assumption that protein functions, such as flexibility, rigidity, and energy, are entirely determined by the structure of the protein and its environment, although the structure is in turn determined by all the interactions. As such, the FRI measures the topological connectivity of protein atoms or residues and characterizes the geometric compactness of the protein structure. As a consequence, the FRI does not resort to the interaction Hamiltonian and bypasses matrix diagonalization, which underpins most other flexibility analysis methods. FRI's computational complexity is of O

  5. Bang-Bang Practical Stabilization of Rigid Bodies

    Science.gov (United States)

    Serpelloni, Edoardo

    In this thesis, we study the problem of designing a practical stabilizer for a rigid body equipped with a set of actuators generating only constant thrust. Our motivation stems from the fact that modern space missions are required to accurately control the position and orientation of spacecraft actuated by constant-thrust jet-thrusters. To comply with the performance limitations of modern thrusters, we design a feedback controller that does not induce high-frequency switching of the actuators. The proposed controller is hybrid and it asymptotically stabilizes an arbitrarily small compact neighborhood of the target position and orientation of the rigid body. The controller is characterized by a hierarchical structure comprising of two control layers. At the low level of the hierarchy, an attitude controller stabilizes the target orientation of the rigid body. At the high level, after the attitude controller has steered the rigid body sufficiently close to its desired orientation, a position controller stabilizes the desired position. The size of the neighborhood being stabilized by the controller can be adjusted via a proper selection of the controller parameters. This allows us to stabilize the rigid body to virtually any degree of accuracy. It is shown that the controller, even in the presence of measurement noise, does not induce high-frequency switching of the actuators. The key component in the design of the controller is a hybrid stabilizer for the origin of double-integrators affected by bounded external perturbations. Specifically, both the position and the attitude stabilizers consist of multiple copies of such a double-integrator controller. The proposed controller is applied to two realistic spacecraft control problems. First, we apply the position controller to the problem of stabilizing the relative position between two spacecraft flying in formation in the vicinity of the L2 libration point of the Sun-Earth system as a part of a large space telescope

  6. The diagnostic role of thoracoscope in undiagnosed pleural effusion: Rigid versus flexible

    Directory of Open Access Journals (Sweden)

    Mostafa Mahmoud Abdel Mageid Shaheen

    2014-07-01

    Conclusions: Thoracoscopy using either fibreoptic bronchoscope or rigid thoracoscope is safe and well tolerated. Rigid thoracoscope has a higher diagnostic yield, easier handling, better orientation and is less expensive. Nevertheless, fibreoptic bronchoscope is an alternative technique if rigid thoracoscopy is not available.

  7. Homogenization for rigid suspensions with random velocity-dependent interfacial forces

    KAUST Repository

    Gorb, Yuliya

    2014-12-01

    We study suspensions of solid particles in a viscous incompressible fluid in the presence of random velocity-dependent interfacial forces. The flow at a small Reynolds number is modeled by the Stokes equations, coupled with the motion of rigid particles arranged in a periodic array. The objective is to perform homogenization for the given suspension and obtain an equivalent description of a homogeneous (effective) medium, the macroscopic effect of the interfacial forces and the effective viscosity are determined using the analysis on a periodicity cell. In particular, the solutions uωε to a family of problems corresponding to the size of microstructure ε and describing suspensions of rigid particles with random surface forces imposed on the interface, converge H1-weakly as ε→0 a.s. to a solution of a Stokes homogenized problem, with velocity dependent body forces. A corrector to a homogenized solution that yields a strong H1-convergence is also determined. The main technical construction is built upon the Γ-convergence theory. © 2014 Elsevier Inc.

  8. Multibody Dynamic Stress Simulation of Rigid-Flexible Shovel Crawler Shoes

    Directory of Open Access Journals (Sweden)

    Samuel Frimpong

    2016-06-01

    Full Text Available Electric shovels are used in surface mining operations to achieve economic production capacities. The capital investments and operating costs associated with the shovels deployed in the Athabasca oil sands formation are high due to the abrasive conditions. The shovel crawler shoes interact with sharp and abrasive sand particles, and, thus, are subjected to high transient dynamic stresses. These high stresses cause wear and tear leading to crack initiation, propagation and premature fatigue failure. The objective of this paper is to develop a model to characterize the crawler stresses and deformation for the P&H 4100C BOSS during propel and loading using rigid-flexible multi-body dynamic theory. A 3-D virtual prototype model of the rigid-flexible crawler track assembly and its interactions with oil sand formation is simulated to capture the model dynamics within multibody dynamics software MSC ADAMS. The modal and stress shapes and modal loads due to machine weight for each flexible crawler shoes are generated from finite element analysis (FEA. The modal coordinates from the simulation are combined with mode and stress shapes using modal superposition method to calculate real-time stresses and deformation of flexible crawler shoes. The results show a maximum von Mises stress value of 170 MPa occurring in the driving crawler shoe during the propel motion. This study provides a foundation for the subsequent fatigue life analysis of crawler shoes for extending crawler service life.

  9. Research of vibration resistance of non-rigid shafts turning with various technological set-ups

    Directory of Open Access Journals (Sweden)

    Vasilevykh Sergey L.

    2017-01-01

    Full Text Available The article considers the definition of the stability range of a dynamic system for turning non-rigid shafts with different technological set-ups: standard and developed ones; they are improved as a result of this research. The topicality of the study is due to the fact that processing such parts is associated with significant difficulties caused by deformation of the workpiece under the cutting force as well as occurrence of vibration of the part during processing, they are so intense and in practice they force to significantly reduce the cutting regime, recur to multiple-pass operation, lead to premature deterioration of the cutter, as a result, reduce the productivity of machining shafts on metal-cutting machines. In this connection, the purpose of the present research is to determine the boundaries of the stability regions with intensive turning of non-rigid shafts. In the article the basic theoretical principles of construction of a mathematical system focused on the process of non-free cutting of a dynamic machine are justified. By means of the developed mathematical model interrelations are established and legitimacies of influence of various technological set-ups on stability of the dynamic system of the machine-tool-device-tool-blank are revealed. The conducted researches allow to more objectively represent difficult processes that occur in a closed dynamic system of a machine.

  10. Strongly coupled partitioned six degree-of-freedom rigid body motion solver with Aitken's dynamic under-relaxation

    Directory of Open Access Journals (Sweden)

    Jeng Hei Chow

    2016-07-01

    Full Text Available An implicit method of solving the six degree-of-freedom rigid body motion equations based on the second order Adams-Bashforth-Moulten method was utilised as an improvement over the leapfrog scheme by making modifications to the rigid body motion solver libraries directly. The implementation will depend on predictor-corrector steps still residing within the hybrid Pressure Implicit with Splitting of Operators - Semi-Implicit Method for Pressure Linked Equations (PIMPLE outer corrector loops to ensure strong coupling between fluid and motion. Aitken's under-relaxation is also introduced in this study to optimise the convergence rate and stability of the coupled solver. The resulting coupled solver ran on a free floating object tutorial test case when converged matches the original solver. It further allows a varying 70%–80% reduction in simulation times compared using a fixed under-relaxation to achieve the required stability.

  11. Cohomological rigidity of manifolds defined by 3-dimensional polytopes

    Science.gov (United States)

    Buchstaber, V. M.; Erokhovets, N. Yu.; Masuda, M.; Panov, T. E.; Park, S.

    2017-04-01

    A family of closed manifolds is said to be cohomologically rigid if a cohomology ring isomorphism implies a diffeomorphism for any two manifolds in the family. Cohomological rigidity is established here for large families of 3-dimensional and 6-dimensional manifolds defined by 3-dimensional polytopes. The class \\mathscr{P} of 3-dimensional combinatorial simple polytopes P different from tetrahedra and without facets forming 3- and 4-belts is studied. This class includes mathematical fullerenes, that is, simple 3- polytopes with only 5-gonal and 6-gonal facets. By a theorem of Pogorelov, any polytope in \\mathscr{P} admits in Lobachevsky 3-space a right-angled realisation which is unique up to isometry. Our families of smooth manifolds are associated with polytopes in the class \\mathscr{P}. The first family consists of 3-dimensional small covers of polytopes in \\mathscr{P}, or equivalently, hyperbolic 3-manifolds of Löbell type. The second family consists of 6-dimensional quasitoric manifolds over polytopes in \\mathscr{P}. Our main result is that both families are cohomologically rigid, that is, two manifolds M and M' from either family are diffeomorphic if and only if their cohomology rings are isomorphic. It is also proved that if M and M' are diffeomorphic, then their corresponding polytopes P and P' are combinatorially equivalent. These results are intertwined with classical subjects in geometry and topology such as the combinatorics of 3-polytopes, the Four Colour Theorem, aspherical manifolds, a diffeomorphism classification of 6-manifolds, and invariance of Pontryagin classes. The proofs use techniques of toric topology. Bibliography: 69 titles.

  12. Vertical dimensional stability and rigidity of occlusal registration materials.

    Science.gov (United States)

    Walker, Mary P; Wu, Edis; Heckman, M Elizabeth; Alderman, Nicholas

    2009-01-01

    Dimensionally accurate occlusal registration records are essential for restorative dentistry; moreover, since records are not used immediately or may be used more than once, the registration material should exhibit accuracy over time (a concept known as dimensional stability). It has been speculated that materials with increased hardness or rigidity should produce more accurate registration records due to an increased resistance to distortion. This study compared the rigidity and associated dimensional accuracy of a recently marketed bisacrylic occlusal registration material and a vinyl polysiloxane (VPS). Maxillary and mandibular typodont arches were mounted on a plasterless articulator from which teeth No. 3, 13, and 15 had been removed to simulate edentulous spaces. After preparing teeth No. 2, 4, 12, and 14 as bridge abutments, the remaining teeth were equilibrated selectively to produce even anterior contact. Four digital photographs were taken to make vertical interarch measurements at four locations (teeth No. 3, 7, 10, and 14). Following initial photos (controls), 10 interocclusal records were made using each registration material, with material placed only in the segments in which teeth were prepared. The records were used for mounting the maxillary arch against the mandibular arch after 48, 72, and 120 hours. There were significant effects on vertical dimensional change related to arch location, material, and mounting time. Both materials demonstrated significantly larger posterior vertical openings than anterior vertical openings, while the bisacrylate produced a larger posterior opening than VPS at 48 and 72 hours and a larger anterior opening at all mounting times. There also was a significant difference in hardness/rigidity due to material and measurement time; at all measurement times, bisacrylate exhibited a significantly higher hardness number.

  13. Dose dependence of tensoresistance for the symmetrical orientation of the deformation axis relatively to all isoenergetic ellipsoids in γ-irradiated (60Co n-Si crystals

    Directory of Open Access Journals (Sweden)

    G.P. Gaidar

    2018-03-01

    Full Text Available The dose dependence of tensoresistance X /0, which was measured at the symmetrical orientation of the deformation axis (compression relatively to all isoenergetic ellipsoids both in the initial and in -irradiated samples, was investigated in n-Si crystals. It has been shown that changing the irradiation doses is accompanied by not only quantitative but also qualitative changes in the functional dependence X /0 = f (Х. Features of tensoresistance in n-Si irradiated samples were found depending on three crystallographic directions, along which the samples were cut out and the mechanical stress Х was applied.

  14. The Downward Continuation to the Earth’s Surface of Truncated Spherical and Ellipsoidal Harmonic Series of the Gravity and Height Anomalies,

    Science.gov (United States)

    1981-12-01

    triangle OBQ, we obtain r c =COtI ose + sine (411) Hence with (4.10) e 2 sinecose (412)tan ip = (__o__2)_ 1 - e 2sin2 0 Pythagoras ’ theorem then easily...coordinate system. Strictly, this theorem tinds no application in our physical world since it guarantees convergence only outside the sphere enclosing...Junq, 1956, p.54 3 ; Moritz, 1980, p.52) is found, using the above theorem , to be f =E, the focal distance of the ellipsoid, shoving also that the

  15. Rigid body formulation in a finite element context with contact interaction

    Science.gov (United States)

    Refachinho de Campos, Paulo R.; Gay Neto, Alfredo

    2018-03-01

    The present work proposes a formulation to employ rigid bodies together with flexible bodies in the context of a nonlinear finite element solver, with contact interactions. Inertial contributions due to distribution of mass of a rigid body are fully developed, considering a general pole position associated with a single node, representing a rigid body element. Additionally, a mechanical constraint is proposed to connect a rigid region composed by several nodes, which is useful for linking rigid/flexible bodies in a finite element environment. Rodrigues rotation parameters are used to describe finite rotations, by an updated Lagrangian description. In addition, the contact formulation entitled master-surface to master-surface is employed in conjunction with the rigid body element and flexible bodies, aiming to consider their interaction in a rigid-flexible multibody environment. New surface parameterizations are presented to establish contact pairs, permitting pointwise interaction in a frictional scenario. Numerical examples are provided to show robustness and applicability of the methods.

  16. Friction effects on lateral loading behavior of rigid piles

    DEFF Research Database (Denmark)

    Zania, Varvara; Hededal, Ole

    2012-01-01

    taking into account the shear frictional resistance along the pile. For this purpose efficient three dimensional finite element models of different diameter have been developed. The increase of the side friction and of the diameter of the pile is shown to alter the failure pattern and increase...... the lateral capacity of the pile. The obtained p - y curves demonstrate the importance of the aforementioned parameters in the design of rigid piles, as the reduction of friction along the interface reduces not only the ultimate load but also the stiffness of the soil-pile response. Read More: http...

  17. Cosmic ray fluctuations at rigidities 4 to 180 GV

    International Nuclear Information System (INIS)

    Benko, G.; Erdoes, G.; Stehlik, M.; Katz, M.E.; Nosov, S.F.

    1986-07-01

    The power spectral density of cosmic ray fluctuations observed at both underground and ground level during the years 1976-1980 was calculated. The spectral index is independent of the phase of solar cycle in the frequency range of 5x10 -7 - 5x10 -5 Hz and its value is equal to 2. The level of fluctuations shows a weak dependence on the rigidity (R) of the particles P∼R -2/3 . The obtained experimental results are in agreement with the theoretical predictions. (author)

  18. Microstructural Dynamics and Rheology of Suspensions of Rigid Fibers

    Science.gov (United States)

    Butler, Jason E.; Snook, Braden

    2018-01-01

    The dynamics and rheology of suspensions of rigid, non-Brownian fibers in Newtonian fluids are reviewed. Experiments, theories, and computer simulations are considered, with an emphasis on suspensions at semidilute and concentrated conditions. In these suspensions, interactions between the particles strongly influence the microstructure and rheological properties of the suspension. The interactions can arise from hydrodynamic disturbances, giving multibody interactions at long ranges and pairwise lubrication forces over short distances. For concentrated suspensions, additional interactions due to excluded volume (contacts) and adhesive forces are addressed. The relative importance of the various interactions as a function of fiber concentration is assessed.

  19. On the surprising rigidity of the Pauli exclusion principle

    International Nuclear Information System (INIS)

    Greenberg, O.W.

    1989-01-01

    I review recent attempts to construct a local quantum field theory of small violations of the Pauli exclusion principle and suggest a qualitative reason for the surprising rigidity of the Pauli principle. I suggest that small violations can occur in our four-dimensional world as a consequence of the compactification of a higher-dimensional theory in which the exclusion principle is exactly valid. I briefly mention a recent experiment which places a severe limit on possible violations of the exclusion principle. (orig.)

  20. Rigidity of minimal submanifolds with flat normal bundle

    Indian Academy of Sciences (India)

    Rigidity of minimal submanifolds with flat normal bundle. 461. = a. ∫. M u2(1+q)+ 2 a f 2 − 2. ∫. M u2q+1f 〈∇f, ∇u〉. − (2q + 1). ∫. M u2qf 2|∇u|2, which gives a .... that depends on n, ϵ and q. We now try to transform (2.15) the right hand side only involved u in the power two. For that, we use Young's inequality: ab ≤ βsas.

  1. Tilting mode in rigidly rotating field-reversed configurations

    International Nuclear Information System (INIS)

    Clemente, R.A.; Milovich, J.L.

    1983-01-01

    The tilting-mode stability of field-reversed configurations is analyzed taking into account plasma rotational effects that had not been included in previous theoretical treatments. It is shown that for a rigidly rotating plasma in stationary equilibrium, stability can be attained if the plasma rotational energy is of the same order as the thermal energy. Since presently available values of the rotational velocities are quite lower than required by the stabilization mechanism considered here, the contribution of this effect to the overall stability of the mode does not appear to be significant

  2. Rigid supersymmetry from conformal supergravity in five dimensions

    International Nuclear Information System (INIS)

    Pini, Alessandro; Rodriguez-Gomez, Diego; Schmude, Johannes

    2015-01-01

    We study the rigid limit of 5d conformal supergravity with minimal supersymmetry on Riemannian manifolds. The necessary and sufficient condition for the existence of a solution is the existence of a conformal Killing vector. Whenever a certain SU(2) curvature becomes abelian the backgrounds define a transversally holomorphic foliation. Subsequently we turn to the question under which circumstances these backgrounds admit a kinetic Yang-Mills term in the action of a vector multiplet. Here we find that the conformal Killing vector has to be Killing. We supplement the discussion with various appendices.

  3. Numerical rigid plastic modelling of shear capacity of keyed joints

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao

    2015-01-01

    Keyed shear joints are currently designed using simple and conservative design formulas, yet these formulas do not take the local mechanisms in the concrete core of the joint into account. To investigate this phenomenon a rigid, perfectly plastic finite element model of keyed joints is used....... The model is formulated for second-order conic optimisation as a lower bound problem, which yields a statically admissible stress field that satisfies the yield condition in every point. The dual solution to the problem can be interpreted as the collapse mode and will be used to analyse the properties...

  4. Nonlinear complex dynamics and Keynesian rigidity: A short introduction

    Science.gov (United States)

    Jovero, Edgardo

    2005-09-01

    The topic of this paper is to show that the greater acceptance and intense use of complex nonlinear dynamics in macroeconomics makes sense only within the neoKeynesian tradition. An example is presented regarding the behavior of an open-economy two-sector growth model endowed with Keynesian rigidity. The Keynesian view that structural instability globally exists in the aggregate economy is put forward, and therefore the need arises for policy to alleviate this instability in the form of dampened fluctuations is presented as an alternative view for macroeconomic theorizing.

  5. Euler-Poincare Reduction of Externall Forced Rigid Body Motion

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2004-01-01

    If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system affected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincaré reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modelling, estimation and control of mechanical systems......-known Euler-Poincaré reduction to a rigid body motion with forcing....

  6. Euler-Poincare Reduction of a Rigid Body Motion

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2005-01-01

    |If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system afected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincare reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modeling, estimation and control of mechanical systems......-known Euler-Poincare reduction to a rigid body motion with forcing....

  7. Euler-Poincaré Reduction of a Rigid Body Motion

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2004-01-01

    If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system affected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincaré reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modelling, estimation and control of mechanical systems......-known Euler-Poincaré reduction to a rigid body motion with forcing....

  8. Acoustic scattering of a Bessel vortex beam by a rigid fixed spheroid

    Science.gov (United States)

    Mitri, F. G.

    2015-12-01

    Partial-wave series representation of the acoustic scattering field of high-order Bessel vortex beams by rigid oblate and prolate spheroids using the modal matching method is developed. The method, which is applicable to slightly elongated objects at low-to-moderate frequencies, requires solving a system of linear equations which depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated partial-wave series expansions (PWSEs), and satisfying the Neumann boundary condition for a rigid immovable surface in the least-squares sense. This original semi-analytical approach developed for Bessel vortex beams is demonstrated for finite oblate and prolate spheroids, where the mathematical functions describing the spheroidal geometry are written in a form involving single angular (polar) integrals that are numerically computed. The transverse (θ = π / 2) and 3D scattering directivity patterns are evaluated in the far-field for both prolate and oblate spheroids, with particular emphasis on the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid) not exceeding 3:1, the half-cone angle β and order m of the Bessel vortex beam, as well as the dimensionless size parameter kr0. Periodic oscillations in the magnitude plots of the far-field scattering form function are observed, which result from the interference of the reflected waves with the circumferential (Franz') waves circumnavigating the surface of the spheroid in the surrounding fluid. Moreover, the 3D directivity patterns illustrate the far-field scattering from the spheroid, that vanishes in the forward (θ = 0) and backward (θ = π) directions. Particular applications in underwater acoustics and scattering, acoustic levitation and the detection of submerged elongated objects using Bessel vortex waves to name a few, would benefit from the results of the present investigation.

  9. Normalized inverse characterization of sound absorbing rigid porous media.

    Science.gov (United States)

    Zieliński, Tomasz G

    2015-06-01

    This paper presents a methodology for the inverse characterization of sound absorbing rigid porous media, based on standard measurements of the surface acoustic impedance of a porous sample. The model parameters need to be normalized to have a robust identification procedure which fits the model-predicted impedance curves with the measured ones. Such a normalization provides a substitute set of dimensionless (normalized) parameters unambiguously related to the original model parameters. Moreover, two scaling frequencies are introduced, however, they are not additional parameters and for different, yet reasonable, assumptions of their values, the identification procedure should eventually lead to the same solution. The proposed identification technique uses measured and computed impedance curves for a porous sample not only in the standard configuration, that is, set to the rigid termination piston in an impedance tube, but also with air gaps of known thicknesses between the sample and the piston. Therefore, all necessary analytical formulas for sound propagation in double-layered media are provided. The methodology is illustrated by one numerical test and by two examples based on the experimental measurements of the acoustic impedance and absorption of porous ceramic samples of different thicknesses and a sample of polyurethane foam.

  10. Dynamic response and stability of semi-rigid frames

    Science.gov (United States)

    Abu-Yasein, Omar Ali

    This dissertation presents a method to determine the load capacity as well as end member forces and deformations of frames with partial rigid joint connections by using the direct stiffness method. The connections are modeled as rotational springs attached at the ends of framed members. The lumped mass method, which is an approximate method, and the distributed mass method, which is an exact method, are also presented to compute the natural frequency of frames. The effects of the axial forces and the flexibility of joint connections are both included. Furthermore, the time-dependent response of semi-rigid frames subjected to periodic axial forces is formulated. The harmonic function is approximated by dividing the periodic function into n intervals and the periodic axial forces are evaluated at each time interval as constant forces using 'piecewise approximation'. The regions of instability of frames with different joint stiffness were determined using the characteristic equation method. The time-dependent part of the differential equation for free vibration of a framed member subjected to a harmonic force can be written in the form of the Mathieu-Hill equation where all characteristics of the Mathieu-Hill equation solutions can be used to determine the boundaries of instability regions.

  11. Jet Ventilation during Rigid Bronchoscopy in Adults: A Focused Review

    Directory of Open Access Journals (Sweden)

    Laurie Putz

    2016-01-01

    Full Text Available The indications for rigid bronchoscopy for interventional pulmonology have increased and include stent placements and transbronchial cryobiopsy procedures. The shared airway between anesthesiologist and pulmonologist and the open airway system, requiring specific ventilation techniques such as jet ventilation, need a good understanding of the procedure to reduce potentially harmful complications. Appropriate adjustment of the ventilator settings including pause pressure and peak inspiratory pressure reduces the risk of barotrauma. High frequency jet ventilation allows adequate oxygenation and carbon dioxide removal even in cases of tracheal stenosis up to frequencies of around 150 min−1; however, in an in vivo animal model, high frequency jet ventilation along with normal frequency jet ventilation (superimposed high frequency jet ventilation has been shown to improve oxygenation by increasing lung volume and carbon dioxide removal by increasing tidal volume across a large spectrum of frequencies without increasing barotrauma. General anesthesia with a continuous, intravenous, short-acting agent is safe and effective during rigid bronchoscopy procedures.

  12. Non-rigid registration of tomographic images with Fourier transforms

    International Nuclear Information System (INIS)

    Osorio, Ar; Isoardi, Ra; Mato, G

    2007-01-01

    Spatial image registration of deformable body parts such as thorax and abdomen has important medical applications, but at the same time, it represents an important computational challenge. In this work we propose an automatic algorithm to perform non-rigid registration of tomographic images using a non-rigid model based on Fourier transforms. As a measure of similarity, we use the correlation coefficient, finding that the optimal order of the transformation is n = 3 (36 parameters). We apply this method to a digital phantom and to 7 pairs of patient images corresponding to clinical CT scans. The preliminary results indicate a fairly good agreement according to medical experts, with an average registration error of 2 mm for the case of clinical images. For 2D images (dimensions 512x512), the average running time for the algorithm is 15 seconds using a standard personal computer. Summarizing, we find that intra-modality registration of the abdomen can be achieved with acceptable accuracy for slight deformations and can be extended to 3D with a reasonable execution time

  13. Biomimetic model systems of rigid hair beds: Part II - Experiment

    Science.gov (United States)

    Jammalamadaka, Mani S. S.; Hood, Kaitlyn; Hosoi, Anette

    2017-11-01

    Crustaceans - such as lobsters, crabs and stomapods - have hairy appendages that they use to recognize and track odorants in the surrounding fluid. An array of rigid hairs impedes flow at different rates depending on the spacing between hairs and the Reynolds number, Re. At larger Reynolds number (Re>1), fluid travels through the hairs rather than around them, a phenomenon called leakiness. Crustaceans flick their appendages at different speeds in order to manipulate the leakiness between the hairs, allowing the hairs to either detect the odors in a sample of fluid or collect a new sample. Theoretical and numerical studies predict that there is a fast flow region near the hairs that moves closer to the hairs as Re increases. Here, we test this theory experimentally. We 3D printed rigid hairs with an aspect ratio of 30:1 in rectangular arrays with different hair packing fractions. We custom built an experimental setup which establishes poiseuille flow at intermediate Re, Re <=200. We track the flow dynamics through the hair beds using tracer particles and Particle Imaging Velocimetry. We will then compare the modelling predictions with the experimental outcomes.

  14. Modyfication of the Rigid Polyurethane-Polyisocyanurate Foams

    Directory of Open Access Journals (Sweden)

    Bogusław Czupryński

    2014-01-01

    Full Text Available The effect of polyethylene glycol 1500 on physicomechanical properties of rigid polyurethane-polyisocyanurate (PUR-PIR foams has been studied. It was found that application of polyethylene glycol 1500 for synthesis of foams in amount from 0% to 20% w/w had an effect on reduction of brittleness and softening point, while the greater the increase in compressive strength the higher its content in foam composition was. Wastes from production of these foams were ground and subjected to glycolysis in diethylene glycol with the addition of ethanolamine and zinc stearate. Liquid brown products were obtained. Properties of the resulting products were defined in order to determine their suitability for synthesis of new foams. It was found that glycolysate 6 was the most suitable for reuse and its application in different amounts allowed us to prepare 4 new foams (nos. 25, 26, 27, and 28. Properties of foams prepared in this manner were determined and, on their basis, the suitability of glycolysates for production of rigid PUR-PIR foams was evaluated.

  15. Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation

    Science.gov (United States)

    Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.

    2012-01-01

    Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.

  16. Finite-difference analysis of shells impacting rigid barriers

    International Nuclear Information System (INIS)

    Pirotin, S.D.; Witmer, E.A.

    1977-01-01

    Nuclear power plants must be protected from the adverse effects of missile impacts. A significant category of missile impact involves deformable structures (pressure vessel components, whipping pipes) striking relatively rigid targets (concrete walls, bumpers) which act as protective devices. The response and interaction of these structures is needed to assess the adequacy of these barriers for protecting vital safety related equipment. The present investigation represents an initial attempt to develop an efficient numerical procedure for predicting the deformations and impact force time-histories of shells which impact upon a rigid target. The general large-deflection equations of motion of the shell are expressed in finite-difference form in space and integrated in time through application of the central-difference temporal operator. The effect of material nonlinearities is treated by a mechanical sublayer material model which handles the strain-hardening, Bauschinger, and strain-rate effects. The general adequacy of this shell treatment has been validated by comparing predictions with the results of various experiments in which structures have been subjected to well-defined transient forcing functions (typically high-explosive impulse loading). The 'new' ingredient addressed in the present study involves an accounting for impact interaction and response of both the target structure and the attacking body. (Auth.)

  17. Origami-Inspired Folding of Thick, Rigid Panels

    Science.gov (United States)

    Trease, Brian P.; Thomson, Mark W.; Sigel, Deborah A.; Walkemeyer, Phillip E.; Zirbel, Shannon; Howell, Larry; Lang, Robert

    2014-01-01

    To achieve power of 250 kW or greater, a large compression ratio of stowed-to-deployed area is needed. Origami folding patterns were used to inspire the folding of a solar array to achieve synchronous deployment; however, origami models are generally created for near-zero-thickness material. Panel thickness is one of the main challenges of origami-inspired design. Three origami-inspired folding techniques (flasher, square twist, and map fold) were created with rigid panels and hinges. Hinge components are added to the model to enable folding of thick, rigid materials. Origami models are created assuming zero (or near zero) thickness. When a material with finite thickness is used, the panels are required to bend around an increasingly thick fold as they move away from the center of the model. The two approaches for dealing with material thickness are to use membrane hinges to connect the panels, or to add panel hinges, or hinges of the same thickness, at an appropriate width to enable folding.

  18. Awake craniotomy using electromagnetic navigation technology without rigid pin fixation.

    Science.gov (United States)

    Morsy, Ahmed A; Ng, Wai Hoe

    2015-11-01

    We report our institutional experience using an electromagnetic navigation system, without rigid head fixation, for awake craniotomy patients. The StealthStation® S7 AxiEM™ navigation system (Medtronic, Inc.) was used for this technique. Detailed preoperative clinical and neuropsychological evaluations, patient education and contrast-enhanced MRI (thickness 1.5mm) were performed for each patient. The AxiEM Mobile Emitter was typically placed in a holder, which was mounted to the operating room table, and a non-invasive patient tracker was used as the patient reference device. A monitored conscious sedation technique was used in all awake craniotomy patients, and the AxiEM Navigation Pointer was used for navigation during the procedure. This offers the same accuracy as optical navigation, but without head pin fixation or interference with intraoperative neurophysiological techniques and surgical instruments. The application of the electromagnetic neuronavigation technology without rigid head fixation during an awake craniotomy is accurate, and offers superior patient comfort. It is recommended as an effective adjunctive technique for the conduct of awake surgery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Quantum theory of gauge fields and rigid processes calculation

    International Nuclear Information System (INIS)

    Andreev, I.V.

    1981-01-01

    Elementary statement of the basic data on the nature of quark interactions and their role in the high energy processes is presented in the first part of the paper. The second part of the paper deals with gauge theory (GT) of strong interactions (chromodynamics (CD)) and its application in calculation of rigid processes with quark participation. It is based on the method of functional integration (MFI). A comparatively simple representation of the MFI in the quantum theory and formulation of the perturbation theory for gauge fields are given. A derivation of the rules of diagram technique is presented. Renormalization invariance of the theory and the basic for CD phenomenon of asymptotical freedom are discussed. Theory application in calculation of certain effects at high energies is considered. From the CD view point considered is a parton model on the base of which ''rigid'' stage of evolution of quark and gluon jets produced at high energies can be quantitatively described and some quantitative experimental tests of the CD are suggested [ru

  20. Collisions of Constrained Rigid Body Systems with Friction

    Directory of Open Access Journals (Sweden)

    Haijun Shen

    1998-01-01

    Full Text Available A new approach is developed for the general collision problem of two rigid body systems with constraints (e.g., articulated systems, such as massy linkages in which the relative tangential velocity at the point of contact and the associated friction force can change direction during the collision. This is beyond the framework of conventional methods, which can give significant and very obvious errors for this problem, and both extends and consolidates recent work. A new parameterization and theory characterize if, when and how the relative tangential velocity changes direction during contact. Elastic and dissipative phenomena and different values for static and kinetic friction coefficients are included. The method is based on the explicitly physical analysis of events at the point of contact. Using this method, Example 1 resolves (and corrects a paradox (in the literature of the collision of a double pendulum with the ground. The method fundamentally subsumes other recent models and the collision of rigid bodies; it yields the same results as conventional methods when they would apply (Example 2. The new method reformulates and extends recent approaches in a completely physical context.

  1. Dynamics of parallel robots from rigid bodies to flexible elements

    CERN Document Server

    Briot, Sébastien

    2015-01-01

    This book starts with a short recapitulation on basic concepts, common to any types of robots (serial, tree structure, parallel, etc.), that are also necessary for computation of the dynamic models of parallel robots. Then, as dynamics requires the use of geometry and kinematics, the general equations of geometric and kinematic models of parallel robots are given. After, it is explained that parallel robot dynamic models can be obtained by decomposing the real robot into two virtual systems: a tree-structure robot (equivalent to the robot legs for which all joints would be actuated) plus a free body corresponding to the platform. Thus, the dynamics of rigid tree-structure robots is analyzed and algorithms to obtain their dynamic models in the most compact form are given. The dynamic model of the real rigid parallel robot is obtained by closing the loops through the use of the Lagrange multipliers. The problem of the dynamic model degeneracy near singularities is treated and optimal trajectory planning for cro...

  2. Iterative CT reconstruction with correction for known rigid motion

    Energy Technology Data Exchange (ETDEWEB)

    Nuyts, Johan [Katholieke Univ. Leuven (Belgium). Dept. of Nuclear Medicine; Kim, Jung-Ha; Fulton, Roger [Sydney Univ., NSW (Australia). School of Physics; Westmead Hospital, Sydney (Australia). Medical Physics

    2011-07-01

    In PET/CT brain imaging, correction for motion may be needed, in particular for children and psychiatric patients. Motion is more likely to occur in the lengthy PET measurement, but also during the short CT acquisition patient motion is possible. Rigid motion of the head can be measured independently from the PET/CT system with optical devices. In this paper, we propose a method and some preliminary simulation results for iterative CT reconstruction with correction for known rigid motion. We implemented an iterative algorithm for fully 3D reconstruction from helical CT scans. The motion of the head is incorporated in the system matrix as a view-dependent motion of the CT-system. The first simulation results indicate that some motion patterns may produce loss of essential data. This loss precludes exact reconstruction and results in artifacts in the reconstruction, even when motion is taken into account. However, by reducing the pitch during acquisition, the same motion pattern no longer caused artifacts in the motion corrected image. (orig.)

  3. A method for measuring the inertia properties of rigid bodies

    Science.gov (United States)

    Gobbi, M.; Mastinu, G.; Previati, G.

    2011-01-01

    A method for the measurement of the inertia properties of rigid bodies is presented. Given a rigid body and its mass, the method allows to measure (identify) the centre of gravity location and the inertia tensor during a single test. The proposed technique is based on the analysis of the free motion of a multi-cable pendulum to which the body under consideration is connected. The motion of the pendulum and the forces acting on the system are recorded and the inertia properties are identified by means of a proper mathematical procedure based on a least square estimation. After the body is positioned on the test rig, the full identification procedure takes less than 10 min. The natural frequencies of the pendulum and the accelerations involved are quite low, making this method suitable for many practical applications. In this paper, the proposed method is described and two test rigs are presented: the first is developed for bodies up to 3500 kg and the second for bodies up to 400 kg. A validation of the measurement method is performed with satisfactory results. The test rig holds a third part quality certificate according to an ISO 9001 standard and could be scaled up to measure the inertia properties of huge bodies, such as trucks, airplanes or even ships.

  4. Measurement of Spindle Rigidity by using a Magnet Loader

    Science.gov (United States)

    Yamazaki, Taku; Matsubara, Atsushi; Fujita, Tomoya; Muraki, Toshiyuki; Asano, Kohei; Kawashima, Kazuyuki

    The static rigidity of a rotating spindle in the radial direction is investigated in this research. A magnetic loading device (magnet loader) has been developed for the measurement. The magnet loader, which has coils and iron cores, generates the electromagnetic force and attracts a dummy tool attached to the spindle. However, the eddy current is generated in the dummy tool with the spindle rotation and reduces the attractive force at high spindle speed. In order to understand the magnetic flux and eddy current in the dummy tool, the electromagnetic field analysis by FEM was carried out. Grooves on the attraction surface of the dummy tool were designed to cut the eddy current flow. The dimension of the groove were decided based on the FEM analysis, and the designed tool were manufactured and tested. The test result shows that the designed tool successfully reduces the eddy current and recovers the attractive force. By using the magnet loader and the grooved tool, the spindle rigidity can be measured when the spindle rotates with a speed up to 10,000 min-1.

  5. Synthesis of rigid polyurethane foams from phosphorylated biopolyols.

    Science.gov (United States)

    de Haro, Juan Carlos; López-Pedrajas, Daniel; Pérez, Ángel; Rodríguez, Juan Francisco; Carmona, Manuel

    2017-08-18

    Renewable resources are playing a key role on the synthesis of biodegradable polyols. Moreover, the incorporation of covalently linked additives is increasing in importance in the polyurethane (PU) market. In this work, previously epoxidized grape seed oil and methyl oleate were transformed into phosphorylated biopolyols through an acid-catalyzed ring-opening hydrolysis in the presence of H 3 PO 4 . The formation of phosphate polyesters was confirmed by FT-IR and 31 P-NMR. However, the synthesis of a high-quality PU rigid foam was not possible using exclusively these polyols attending to their low hydroxyl value. In that way, different rigid PU foams were prepared from the phosphorylated biopolyols and the commercial polyol Alcupol R4520. It was observed that phosphorylated biopolyols can be incorporated up to a 57 wt.% in the PU synthesis without significant structural changes with respect to the commercial foam. Finally, thermogravimetric and EDAX analyses revealed an improvement of thermal stability by the formation of a protective phosphorocarbonaceous char layer.

  6. Laboratory Investigation for the Effects of Using Fiber Reinforcement in Rigid Pavements on Compressive and Flexural Properties

    Directory of Open Access Journals (Sweden)

    Ahmed Abbas Jasim Alsabbagh

    2016-03-01

    Full Text Available Rigid pavements provide durable service life and have remarkable application under heavy traffic loading. But, though the rigid pavements have several advantages, it suffers from some disadvantages that are relating with concrete is brittle material. One solution have been carried out in order to overcome this problem is using fibers reinforced to improve tensile strength and provides ductility. The main objective of this study is to investigating the effects of using fiber reinforced concrete (Polyvinyl alcohol and steel fiber in Rigid Pavements on Compressive and Flexural Properties. The study results shown the compressive strength has been increased by (20% when adding (0.5% of Polyvinyl alcohol concrete mixture. While modulus of elasticity has been decreasing by (23% when adding the same content of Polyvinyl alcohol. On the other hand, the study results show that using steel fiber (1.5% in concrete mixtures increase compressive strength by more than 145%.However modulus of elasticity slightly decrease. Also the addition of PVA fiber by 0.5% increase of about (51% in the Modulus of Rupture, while using steel fiber (1.5% increase Modulus of Rupture by more than (24%.

  7. Decomposition characteristics of humic-like matters with the hollow ellipsoid structure sludge inoculated from decayed soil in mature landfill leachate.

    Science.gov (United States)

    Zhang, Jie; Lan, Sijie; Niu, Dongjie; Zhao, Youcai

    2016-01-01

    The organics in mature leachate are mainly humic-like matters, which account for over 80% weight of the total organics. In this work, the microorganisms in decayed soil were found to be capable of decomposing the humic-like matters evidently using an anaerobic-aerobic/anoxic bioprocess in two sequencing bio-reactors. The 3D excitation-emission matrix and Fourier transform infrared (FT-IR) were applied to characterize the variation of dissolved organic matters in mature leachate while sludge morphology was characterized by scanning electron microscopy. The intensities of fluorescence peaks A and C of leachate effluents were 71.66% and 48.75% lower than those of influents, respectively, which indicated the extraordinary degradation ability of microorganisms inoculated from the decayed soil. Meanwhile a kind of distinctive hollow ellipsoid structure sludge organized by tiny soil particles was observed, which might favour the humic-like matters' decomposition and has never been reported before as we know. The formation mechanisms of hollow ellipsoid structure sludge will need further study.

  8. The value of shear wave elastography in the quantification of corpus cavernosum penis rigidity and its alteration with age

    International Nuclear Information System (INIS)

    Inci, Ercan; Turkay, Rustu; Nalbant, Mustafa Orhan; Yenice, Mustafa Gurkan; Tugcu, Volkan

    2017-01-01

    Highlights: • Shear wave elastography is a new method that can calculate tissue stiffness. • The structure of corpus cavernosum is mainly responsible for erectile function. • The corpus cavernosum rigidity can be used to evaluate tissue structure. • Shear wave elastography can provide information regarding penile structure. - Abstract: Objective: The goal of this study was to measure corpus cavernosum (CC) penis rigidity with shear wave elastography (SWE) in healthy volunteers and to evaluate the change of rigidity with age. Methods: SWE was performed in 60 healthy volunteers (age range 20–71, mean 47 ± 12,83 years). Volunteers were divided into 2 groups by age (Group 1 age <50, group 2 age ≥50). We assessed SWE in 3 parts of penis (proximal, middle and glans penis) on both sides of CC. All values of SWE (in kilo Pascal) were noted along with volunteers’ ages. The measurements were done both with transverse (T) and longitudinal (L) sections. We compared all SW values of penis parts and their alterations with age. Results: The shear wave elastography values of CC penis increased with increasing age (p < 0,01). There was no significant difference between both sides of CC penis (p < 0,05). We calculated no significant difference between T and L sections of all parts of penis (p < 0,05). Conclusions: SWE can provide noninvasive quantitative data of CC penis rigidity and its alteration with age. These data may create a new approach in the evaluation process and treatment options for penile pathologies.

  9. The value of shear wave elastography in the quantification of corpus cavernosum penis rigidity and its alteration with age

    Energy Technology Data Exchange (ETDEWEB)

    Inci, Ercan, E-mail: ercan@inci.com [Radiology Department, University of Health Sciences Istanbul Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Bakirkoy, Istanbul (Turkey); Turkay, Rustu, E-mail: rustuturkay@hotmail.com [Radiology Department, University of Health Sciences Istanbul Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Bakirkoy, Istanbul (Turkey); Nalbant, Mustafa Orhan, E-mail: musnalbant88@hotmail.com [Radiology Department, University of Health Sciences Istanbul Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Bakirkoy, Istanbul (Turkey); Yenice, Mustafa Gurkan, E-mail: yenicegurkan@gmail.com [Urology Department, University of Health Sciences Istanbul Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Bakirkoy, Istanbul (Turkey); Tugcu, Volkan, E-mail: volkantugcu@yahoo.com [Urology Department, University of Health Sciences Istanbul Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Bakirkoy, Istanbul (Turkey)

    2017-04-15

    Highlights: • Shear wave elastography is a new method that can calculate tissue stiffness. • The structure of corpus cavernosum is mainly responsible for erectile function. • The corpus cavernosum rigidity can be used to evaluate tissue structure. • Shear wave elastography can provide information regarding penile structure. - Abstract: Objective: The goal of this study was to measure corpus cavernosum (CC) penis rigidity with shear wave elastography (SWE) in healthy volunteers and to evaluate the change of rigidity with age. Methods: SWE was performed in 60 healthy volunteers (age range 20–71, mean 47 ± 12,83 years). Volunteers were divided into 2 groups by age (Group 1 age <50, group 2 age ≥50). We assessed SWE in 3 parts of penis (proximal, middle and glans penis) on both sides of CC. All values of SWE (in kilo Pascal) were noted along with volunteers’ ages. The measurements were done both with transverse (T) and longitudinal (L) sections. We compared all SW values of penis parts and their alterations with age. Results: The shear wave elastography values of CC penis increased with increasing age (p < 0,01). There was no significant difference between both sides of CC penis (p < 0,05). We calculated no significant difference between T and L sections of all parts of penis (p < 0,05). Conclusions: SWE can provide noninvasive quantitative data of CC penis rigidity and its alteration with age. These data may create a new approach in the evaluation process and treatment options for penile pathologies.

  10. Query Load Balancing For Visible Object Extraction

    DEFF Research Database (Denmark)

    Bukauskas, Linas; Bøhlen, Michael Hanspeter

    2004-01-01

    Interactive visual data explorations impose rigid real-time requirements on the extraction of visible objects. Often these requirements are met by deploying powerful hardware that maintains the entire data set in huge main memory structures. In this paper we propose an approach that retrieves...... the visible data on demand and is based on a tight integration of the database and visualization systems. We propose to incrementally adjust the observer path by adding and dropping path points. The result is an optimal path that minimizes the interaction with the database system and retrieves all visible...

  11. Why is Interstellar Object 1I/2017 U1 (`Oumuamua) Rocky, Tumbling and Possibly Very Prolate?

    Science.gov (United States)

    Katz, J. I.

    2018-05-01

    The recently discovered first interstellar object 1I/2017 U1 (`Oumuamua) has brightness that varies by a factor of 10, a range greater than that of any Solar System asteroid, a spectrum characteristic of Type D asteroids, and no evidence of evaporating volatiles, contrary to expectation for exo-Oort clouds. `Oumuamua is possibly the first example of the proposed "Jurads", objects depleted in volatiles and ejected from planetary systems during the post-main sequence evolution of their parent stars. I suggest that heating by the star's giant stage fluidized a precursor object as well as driving off any volatiles, causing it to assume the Jacobi ellipsoidal shape of a self-gravitating incompressible liquid. The collision that produced the inferred tumbling motion may have occurred thousands of years after the formation of 1I/2017 U1 `Oumuamua. Jacobi ellipsoids have a unique relation among rotation rate, density and axial ratio. The inferred axial ratio ⪆ 5 suggests a lower bound on the density of 1.6 g/cm3, apparently excluding an icy interior unless it is almost entirely frozen CO2. `Oumuamua may be related to accreting objects that pollute white dwarf atmospheres and that may make Soft Gamma Repeaters.

  12. Leonhard Euler and the mechanics of rigid bodies

    Science.gov (United States)

    Marquina, J. E.; Marquina, M. L.; Marquina, V.; Hernández-Gómez, J. J.

    2017-01-01

    In this work we present the original ideas and the construction of the rigid bodies theory realised by Leonhard Euler between 1738 and 1775. The number of treatises written by Euler on this subject is enormous, including the most notorious Scientia Navalis (1749), Decouverte d’un noveau principe de mecanique (1752), Du mouvement de rotation des corps solides autour d’un axe variable (1765), Theoria motus corporum solidorum seu rigidorum (1765) and Nova methodus motu corporum rigidorum determinandi (1776), in which he developed the ideas of the instantaneous rotation axis, the so-called Euler equations and angles, the components of what is now known as the inertia tensor, the principal axes of inertia, and, finally, the generalisation of the translation and rotation movement equations for any system. Euler, the man who ‘put most of mechanics into its modern form’ (Truesdell 1968 Essays in the History of Mechanics (Berlin: Springer) p 106).

  13. Technical rigidity and appropriate technology in less-developed countries

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, D J.C. [Univ. of Strathyclyde, England; McBain, N S; Solomon, R F

    1980-05-01

    The extent to which the use of capital-intensive methods in LDCs can properly be ascribed to the inherent rigidity of the factor proportions embodied in modern technology - rather than to distortions and aberrrations in the process of technology choice - is still a matter of considerable uncertainty after two decades of debate. In this study, an engineering-based index is developed to summarize the opportunities for, and barriers to, substitution of labor for capital in a wide range of industries. The index is used to compare the technology actually installed in manufacturing in Ghana, the Philippines, Turkey, and Malaysia with the feasible alternatives. The finding that opportunities for use of labor-intensive methods are to a large extent exploited is interpreted as casting doubt on the ability of even the most appropriate choice from currently feasible technologies to reduce unemployment significantly. 46 references, 5 figures, 6 tables.

  14. On the dynamics of semi-rigid chains

    International Nuclear Information System (INIS)

    Rodriguez Talavera, R.; Alexander-Katz, R.

    1993-01-01

    The dynamics of a semi-rigid polymer chain is studied. The force structure of the chain is derived from the statistics generated through a Wiener measure whose end-to-end distance is that of a Kratky-Porod chain. Additionally, the dissipative terms in the equation of motion will contain, besides the usual Stokes' term, a non-local friction term (internal viscosity) which is quadratic in the normal mode q, in order to take into account the resistance to changes in curvature. The analytical shape of this term is the same as the one introduced by Edwards and Freed. We show that this model of stiff chain reproduces both asymptotic limits: the flexible and the rod limits for the elastic moduli. A form for the internal viscosity coefficient is deduced from a phenomenological approach, which has the right solvent viscosity dependency as obtained by MacInnes. (Author)

  15. Radiographic evaluation of fracture healing after rigid plate fixation

    International Nuclear Information System (INIS)

    Paavolainen, P.; Karaharju, E.; Slaetis, P.; Waris, P.

    1981-01-01

    Experimental osteotomies were made in 35 rabbit tibio-fibular bones and fixed with rigid stainless steel osteosynthesis plates (DCP/ASIF). The radiographic and histopathologic appearances in the healing osteotomies and adjacent bone were analysed at intervals from 3 up to 24 weeks postoperatively. Radiologically the osteotomy had closed at 9 weeks and microscopically this could be confirmed as longitudinal orientation of the cutter heads across the osteotomy gap with longitudinal orientation of the bone structure. The healing of the osteotomy was accompanied by gross structural changes in the adjacent cortical bone with loss of intracortical and subendosteal osteons, cementing lines and intermediate tissue between the osteons. This was characterized by decreasing attenuation of the cortical bone after healing of the osteotomy and should clinically be regarded as an indication for removal of the implant. (Auth.)

  16. Rigid Calabi-Yau threefolds, Picard Eisenstein series and instantons

    International Nuclear Information System (INIS)

    Bao, L; Kleinschmidt, A; Nilsson, B E W; Persson, D; Pioline, B

    2013-01-01

    Type IIA string theory compactified on a rigid Calabi-Yau threefold gives rise to a classical moduli space that carries an isometric action of U(2, 1). Various quantum corrections break this continuous isometry to a discrete subgroup. Focussing on the case where the intermediate Jacobian of the Calabi-Yau admits complex multiplication by the ring of quadratic imaginary integers O_d, we argue that the remaining quantum duality group is an arithmetic Picard modular group PU(2, 1; O_d). Based on this proposal we construct an Eisenstein series invariant under this duality group and study its non-Abelian Fourier expansion. This allows the prediction of non-perturbative effects, notably the contribution of D2- and NS5-brane instantons. The present work extends our previous analysis in 0909.4299 which was restricted to the special case of the Gaussian integers O_1 = Z[i].

  17. Rigid Calabi-Yau threefolds, Picard Eisenstein series and instantons

    Science.gov (United States)

    Bao, L.; Kleinschmidt, A.; Nilsson, B. E. W.; Persson, D.; Pioline, B.

    2013-12-01

    Type IIA string theory compactified on a rigid Calabi-Yau threefold gives rise to a classical moduli space that carries an isometric action of U(2, 1). Various quantum corrections break this continuous isometry to a discrete subgroup. Focussing on the case where the intermediate Jacobian of the Calabi-Yau admits complex multiplication by the ring of quadratic imaginary integers d, we argue that the remaining quantum duality group is an arithmetic Picard modular group PU(2, 1; d). Based on this proposal we construct an Eisenstein series invariant under this duality group and study its non-Abelian Fourier expansion. This allows the prediction of non-perturbative effects, notably the contribution of D2- and NS5-brane instantons. The present work extends our previous analysis in 0909.4299 which was restricted to the special case of the Gaussian integers 1 = Bbb Z[i].

  18. Controlling elastic waves with small phononic crystals containing rigid inclusions

    KAUST Repository

    Peng, Pai

    2014-05-01

    We show that a two-dimensional elastic phononic crystal comprising rigid cylinders in a solid matrix possesses a large complete band gap below a cut-off frequency. A mechanical model reveals that the band gap is induced by negative effective mass density, which is affirmed by an effective medium theory based on field averaging. We demonstrate, by two examples, that such elastic phononic crystals can be utilized to design small devices to control low-frequency elastic waves. One example is a waveguide made of a two-layer anisotropic elastic phononic crystal, which can guide and bend elastic waves with wavelengths much larger than the size of the waveguide. The other example is the enhanced elastic transmission of a single-layer elastic phononic crystal loaded with solid inclusions. The effective mass density and reciprocal of the modulus of the single-layer elastic phononic crystal are simultaneously near zero. © CopyrightEPLA, 2014.

  19. Matrix methods applied to engineering rigid body mechanics

    Science.gov (United States)

    Crouch, T.

    The purpose of this book is to present the solution of a range of rigorous body mechanics problems using a matrix formulation of vector algebra. Essential theory concerning kinematics and dynamics is formulated in terms of matrix algebra. The solution of kinematics and dynamics problems is discussed, taking into account the velocity and acceleration of a point moving in a circular path, the velocity and acceleration determination for a linkage, the angular velocity and angular acceleration of a roller in a taper-roller thrust race, Euler's theroem on the motion of rigid bodies, an automotive differential, a rotating epicyclic, the motion of a high speed rotor mounted in gimbals, and the vibration of a spinning projectile. Attention is given to the activity of a force, the work done by a conservative force, the work and potential in a conservative system, the equilibrium of a mechanism, bearing forces due to rotor misalignment, and the frequency of vibrations of a constrained rod.

  20. JOINT RIGIDITY ASSESSMENT WITH PIEZOELECTRIC WAFERS AND ACOUSTIC WAVES

    International Nuclear Information System (INIS)

    Montoya, Angela C.; Maji, Arup K.

    2010-01-01

    There has been an interest in the development of rapid deployment satellites. In a modular satellite design, different panels of specific functions can be pre-manufactured. The satellite can then be assembled and tested just prior to deployment. Traditional vibration testing is time-consuming and expensive. An alternative test method to evaluate the connection between two plates will be proposed. The method investigated and described employs piezoelectric wafers to induce and sense lamb waves in two aluminum plates, which were joined by steel brackets to form an 'L-Style' joint. Lamb wave behavior and piezoelectric material properties will be discussed; the experimental setup and results will be presented. A set of 4 piezoelectric ceramic wafers were used alternately as source and sensor. The energy transmitted was shown to correlate with a mechanical assessment of the joint, demonstrating that this method of testing is a feasible and reliable way to inspect the rigidity of joints.

  1. Capital-Skill Complementarity and Rigid Relative Wages

    DEFF Research Database (Denmark)

    Rose Skaksen, Jan; Sørensen, Anders

    2004-01-01

    be countercyclical. The labor market is competitivein the United States and therefore relative wages of skilled labor are expected to becountercyclical. We find that the business cycle development of the two economiesis consistent with capital-skill complementarity.Keywords: capital-skill complementarity, relative......The relative demand for skills has increased considerably in many OECD countriesduring recent decades. This development is potentially explained by capital-skillcomplementarity and high growth rates of capital equipment. When productionfunctions are characterized by capital-skill complementarity......, relative wages and employmentof skilled labor are countercyclical because capital equipment is a quasi-fixed factor in the short run. The exact behavior of the two variables depends onrelative wage flexibility. Relative wages are rigid in Denmark, implying that the employmentshare of skills should...

  2. Percutaneous antegrade ureteric stent removal using a rigid alligator forceps.

    LENUS (Irish Health Repository)

    Given, M F

    2008-12-01

    To evaluate the safety and efficacy of percutaneous antegrade ureteric stent removal using a rigid alligator forceps. Twenty patients were included in our study. Indications for ureteric stent insertion included stone disease (n = 7), malignancy (n = 8) and transplant anastomotic strictures (n = 5). Stent retrieval was carried out for proximal stent placement\\/migration in seven patients and encrustation in the remaining 13. Twenty-two stents were successfully retrieved in 20 patients. There was one technical failure (5%). There were no major complications. We had four minor complications, which included nephrostomy site pain (n = 2), periprocedural sepsis (n = 1) and a small urinoma (n = 1). All patients settled with conservative management. Percutaneous radiologically guided antegrade ureteric stent removal with an alligator forceps is safe and effective, particularly when initial surgical removal has failed.

  3. Dynamics of Rigid Bodies and Flexible Beam Structures

    DEFF Research Database (Denmark)

    Nielsen, Martin Bjerre

    of rigid bodies and flexible beam structures with emphasis on the rotational motion. The first part deals with motion in a rotating frame of reference. A novel approach where the equations of motion are formulated in a hybrid state-space in terms of local displacements and global velocities is presented...... quaternion parameters or nine convected base vector components. In both cases, the equations of motion are obtained via Hamilton’s equations by including the kinematic constraints associated with the redundant rotation description by means of Lagrange multipliers. A special feature of the formulation...... of the global components of the position vectors and associated convected base vectors for the element nodes. The kinematics is expressed in a homogeneous quadratic form and the constitutive stiffness is derived from complementary energy of a set of equilibrium modes, each representing a state of constant...

  4. Liquid crystallinity in flexible and rigid rod polymers

    International Nuclear Information System (INIS)

    Pickett, Galen T.; Schweizer, Kenneth S.

    2000-01-01

    We apply an anisotropic version of the polymer reference interaction site model (PRISM) integral equation description of flexible polymers to analyze athermal liquid crystallinity. The polymers are characterized by a statistical segment length, σ o , and by a physical hard-core thickness, d, that prevents the overlap of monomers on different chains. At small segment densities, ρ, the microscopic length scale d is irrelevant (as it must be in the universal semidilute regime), but becomes important in concentrated solutions and melts. Under the influence of the excluded volume interactions alone, the chains undergo a lyotropic, first-order isotropic-nematic transition at a concentration dependent upon the dimensionless ''aspect ratio,'' σ o /d. The transition becomes weaker as d→0, becoming second order, as has been previously shown. We extend the theory to describe the transition of rigid, thin rods, and discuss the evolution of the anisotropic liquid structure in the ordered phase. (c) 2000 American Institute of Physics

  5. Equilibrium stability of strained epitaxial layers on a rigid substrate

    International Nuclear Information System (INIS)

    Granato, E.; Kosterlitz, J.M.; Ying, S.C.

    1987-07-01

    A simple theory of the equilibrium stability of an strained epitaxial layer on a rigid substrate is presented. We generalise the Frankvan der Merwe model of a single layer and consider N layers of adsorbate on a substrate. Continuum elasticity theory is used to describe each layer, but the coupling between layers is treated ina discrete fashion. Our method interpolates between a few layers and the thick film limit of standard dislocation theory, and in this limit the standard results are obtained. In addition, we developed a variational approach which agrees well with our exact calculations. The advantage of our method over previous ores is that it allows to perform stability analyses of arbitrary superlattice configurations. (author) [pt

  6. Damageable contact between an elastic body and a rigid foundation

    Science.gov (United States)

    Campo, M.; Fernández, J. R.; Silva, A.

    2009-02-01

    In this work, the contact problem between an elastic body and a rigid obstacle is studied, including the development of material damage which results from internal compression or tension. The variational problem is formulated as a first-kind variational inequality for the displacements coupled with a parabolic partial differential equation for the damage field. The existence of a unique local weak solution is stated. Then, a fully discrete scheme is introduced using the finite element method to approximate the spatial variable and an Euler scheme to discretize the time derivatives. Error estimates are derived on the approximate solutions, from which the linear convergence of the algorithm is deduced under suitable regularity conditions. Finally, three two-dimensional numerical simulations are performed to demonstrate the accuracy and the behaviour of the scheme.

  7. A virtual pebble game to ensemble average graph rigidity.

    Science.gov (United States)

    González, Luis C; Wang, Hui; Livesay, Dennis R; Jacobs, Donald J

    2015-01-01

    The body-bar Pebble Game (PG) algorithm is commonly used to calculate network rigidity properties in proteins and polymeric materials. To account for fluctuating interactions such as hydrogen bonds, an ensemble of constraint topologies are sampled, and average network properties are obtained by averaging PG characterizations. At a simpler level of sophistication, Maxwell constraint counting (MCC) provides a rigorous lower bound for the number of internal degrees of freedom (DOF) within a body-bar network, and it is commonly employed to test if a molecular structure is globally under-constrained or over-constrained. MCC is a mean field approximation (MFA) that ignores spatial fluctuations of distance constraints by replacing the actual molecular structure by an effective medium that has distance constraints globally distributed with perfect uniform density. The Virtual Pebble Game (VPG) algorithm is a MFA that retains spatial inhomogeneity in the density of constraints on all length scales. Network fluctuations due to distance constraints that may be present or absent based on binary random dynamic variables are suppressed by replacing all possible constraint topology realizations with the probabilities that distance constraints are present. The VPG algorithm is isomorphic to the PG algorithm, where integers for counting "pebbles" placed on vertices or edges in the PG map to real numbers representing the probability to find a pebble. In the VPG, edges are assigned pebble capacities, and pebble movements become a continuous flow of probability within the network. Comparisons between the VPG and average PG results over a test set of proteins and disordered lattices demonstrate the VPG quantitatively estimates the ensemble average PG results well. The VPG performs about 20% faster than one PG, and it provides a pragmatic alternative to averaging PG rigidity characteristics over an ensemble of constraint topologies. The utility of the VPG falls in between the most

  8. A rigid motion correction method for helical computed tomography (CT)

    International Nuclear Information System (INIS)

    Kim, J-H; Kyme, A; Fulton, R; Nuyts, J; Kuncic, Z

    2015-01-01

    We propose a method to compensate for six degree-of-freedom rigid motion in helical CT of the head. The method is demonstrated in simulations and in helical scans performed on a 16-slice CT scanner. Scans of a Hoffman brain phantom were acquired while an optical motion tracking system recorded the motion of the bed and the phantom. Motion correction was performed by restoring projection consistency using data from the motion tracking system, and reconstructing with an iterative fully 3D algorithm. Motion correction accuracy was evaluated by comparing reconstructed images with a stationary reference scan. We also investigated the effects on accuracy of tracker sampling rate, measurement jitter, interpolation of tracker measurements, and the synchronization of motion data and CT projections. After optimization of these aspects, motion corrected images corresponded remarkably closely to images of the stationary phantom with correlation and similarity coefficients both above 0.9. We performed a simulation study using volunteer head motion and found similarly that our method is capable of compensating effectively for realistic human head movements. To the best of our knowledge, this is the first practical demonstration of generalized rigid motion correction in helical CT. Its clinical value, which we have yet to explore, may be significant. For example it could reduce the necessity for repeat scans and resource-intensive anesthetic and sedation procedures in patient groups prone to motion, such as young children. It is not only applicable to dedicated CT imaging, but also to hybrid PET/CT and SPECT/CT, where it could also ensure an accurate CT image for lesion localization and attenuation correction of the functional image data. (paper)

  9. Inertial modes of rigidly rotating neutron stars in Cowling approximation

    International Nuclear Information System (INIS)

    Kastaun, Wolfgang

    2008-01-01

    In this article, we investigate inertial modes of rigidly rotating neutron stars, i.e. modes for which the Coriolis force is dominant. This is done using the assumption of a fixed spacetime (Cowling approximation). We present frequencies and eigenfunctions for a sequence of stars with a polytropic equation of state, covering a broad range of rotation rates. The modes were obtained with a nonlinear general relativistic hydrodynamic evolution code. We further show that the eigenequations for the oscillation modes can be written in a particularly simple form for the case of arbitrary fast but rigid rotation. Using these equations, we investigate some general characteristics of inertial modes, which are then compared to the numerically obtained eigenfunctions. In particular, we derive a rough analytical estimate for the frequency as a function of the number of nodes of the eigenfunction, and find that a similar empirical relation matches the numerical results with unexpected accuracy. We investigate the slow rotation limit of the eigenequations, obtaining two different sets of equations describing pressure and inertial modes. For the numerical computations we only considered axisymmetric modes, while the analytic part also covers nonaxisymmetric modes. The eigenfunctions suggest that the classification of inertial modes by the quantum numbers of the leading term of a spherical harmonic decomposition is artificial in the sense that the largest term is not strongly dominant, even in the slow rotation limit. The reason for the different structure of pressure and inertial modes is that the Coriolis force remains important in the slow rotation limit only for inertial modes. Accordingly, the scalar eigenequation we obtain in that limit is spherically symmetric for pressure modes, but not for inertial modes

  10. Psychological Prices and Price Rigidity in Grocery Retailing: Analysis of German Scanner Data

    OpenAIRE

    Herrmann, Roland; Moeser, Anke

    2005-01-01

    A substantial degree of price rigidity has been reported for branded foods in various studies with scanner data. One possible explanation for price rigidity is the existence of psychological pricing points. We analyze to which extent psychological pricing plays a role in grocery retailing and whether it contributes to price rigidity of branded foods in Germany. Psychological pricing defined here as just-below-the-round-figure-pricing is empirically analyzed with scanner data of weekly prices ...

  11. Use of beam probes for rigidity calibration of the A1900 fragment separator

    Energy Technology Data Exchange (ETDEWEB)

    Ginter, T.N. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Farinon, F. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Baumann, T. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Hausmann, M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Kwan, E.; Naviliat Cuncic, O. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Portillo, M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Rogers, A.M.; Stetson, J.; Sumithrarachchi, C. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Villari, A.C.C. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Williams, S.J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States)

    2016-06-01

    Use of a beam-based approach is presented for establishing a rigidity calibration for the A1900 fragment separator located at the National Superconducting Cyclotron Laboratory. Also presented is why an alternative approach to the rigidity calibration – using detailed field maps of individual magnetic components – is not a feasible basis for deriving an accurate calibration. The level of accuracy achieved for the rigidity calibration is ±0.1%.

  12. Treatment of midfacial hypoplasia in syndromic and cleft lip and palate patients by means of a rigid external distractor (RED

    Directory of Open Access Journals (Sweden)

    Eduardo Franzotti Sant'Anna

    2013-08-01

    Full Text Available INTRODUCTION: Distraction Osteogenesis (DO became an alternative for the treatment of severe craniofacial skeletal dysplasias. The rigid external distraction device (RED is successfully used to advance the maxilla and all the maxillary-orbital-frontal complex (monobloc in children, adolescents and adults. This approach provides predictable and stable results, and it can be applied alone or with craniofacial orthognathic surgical procedures. OBJECTIVE: In the present article, the technical aspects relevant to an adequate application of the RED will be described, including the planning, surgical and orthodontic procedures.

  13. Shape fabric development in rigid clast populations under pure shear: The influence of no-slip versus slip boundary conditions

    Science.gov (United States)

    Mulchrone, Kieran F.; Meere, Patrick A.

    2015-09-01

    Shape fabrics of elliptical objects in rocks are usually assumed to develop by passive behavior of inclusions with respect to the surrounding material leading to shape-based strain analysis methods belonging to the Rf/ϕ family. A probability density function is derived for the orientational characteristics of populations of rigid ellipses deforming in a pure shear 2D deformation with both no-slip and slip boundary conditions. Using maximum likelihood a numerical method is developed for estimating finite strain in natural populations deforming for both mechanisms. Application to a natural example indicates the importance of the slip mechanism in explaining clast shape fabrics in deformed sediments.

  14. Simulating Dynamics of the System of Articulated Rigid Bodies with Joint Friction

    Directory of Open Access Journals (Sweden)

    M. V. Michaylyuk

    2016-01-01

    Full Text Available The subject of the work is to simulate dynamics of the system of articulated rigid bodies in the virtual environment complexes. The work aim is to develop algorithms and methods to simulate the multi-body system dynamics with joint friction to ensure all calculations in real time in line with visual realistic behavior of objects in a scene.The paper describes the multibody system based on a maximal set of coordinates, and to simulate the joint friction is used a Coulomb's law of dry friction. Joints are described using the holonomic constraints and their derivatives that specify the constraints on velocities of joined bodies. Based on The Coulomb’s law a correlation for the friction impulse values has been derived as an inequality. If the friction impulse performs a constraint that is a lack of relative motion of two joint-joined bodies, there is a static friction in the joint. Otherwise, there is a dynamic friction in the joint. Using a semi-implicit Euler method allows us to describe dynamics of articulated rigid bodies with joint friction as a system of linear algebraic equations and inequalities for the unknown velocities and impulse values.To solve the obtained system of equations and inequalities is used an iterative method of sequential impulses, which sequentially processes constraints for each joint with impulse calculation and its application to the joined bodies rather than considers the entire system. To improve the method convergence, at each iteration the calculated impulses are accumulated for their further using as an initial approximation at the next step of simulation.The proposed algorithms and methods have been implemented in the training complex dynamics subsystem, developed in SRISA RAS. Evaluation of these methods and algorithms has demonstrated their full adequacy to requirements for virtual environment systems and training complexes.

  15. Sensing of substratum rigidity and directional migration by fast-crawling cells

    Science.gov (United States)

    Okimura, Chika; Sakumura, Yuichi; Shimabukuro, Katsuya; Iwadate, Yoshiaki

    2018-05-01

    Living cells sense the mechanical properties of their surrounding environment and respond accordingly. Crawling cells detect the rigidity of their substratum and migrate in certain directions. They can be classified into two categories: slow-moving and fast-moving cell types. Slow-moving cell types, such as fibroblasts, smooth muscle cells, mesenchymal stem cells, etc., move toward rigid areas on the substratum in response to a rigidity gradient. However, there is not much information on rigidity sensing in fast-moving cell types whose size is ˜10 μ m and migration velocity is ˜10 μ m /min . In this study, we used both isotropic substrata with different rigidities and an anisotropic substratum that is rigid on the x axis but soft on the y axis to demonstrate rigidity sensing by fast-moving Dictyostelium cells and neutrophil-like differentiated HL-60 cells. Dictyostelium cells exerted larger traction forces on a more rigid isotropic substratum. Dictyostelium cells and HL-60 cells migrated in the "soft" direction on the anisotropic substratum, although myosin II-null Dictyostelium cells migrated in random directions, indicating that rigidity sensing of fast-moving cell types differs from that of slow types and is induced by a myosin II-related process.

  16. An evaluation of canonical forms for non-rigid 3D shape retrieval

    OpenAIRE

    Pickup, David; Liu, Juncheng; Sun, Xianfang; Rosin, Paul L.; Martin, Ralph R.; Cheng, Zhiquan; Lian, Zhouhui; Nie, Sipin; Jin, Longcun; Shamai, Gil; Sahillioğlu, Yusuf; Kavan, Ladislav

    2018-01-01

    Canonical forms attempt to factor out a non-rigid shape’s pose, giving a pose-neutral shape. This opens up the\\ud possibility of using methods originally designed for rigid shape retrieval for the task of non-rigid shape retrieval.\\ud We extend our recent benchmark for testing canonical form algorithms. Our new benchmark is used to evaluate a\\ud greater number of state-of-the-art canonical forms, on five recent non-rigid retrieval datasets, within two different\\ud retrieval frameworks. A tota...

  17. Rigid-Plastic Post-Buckling Analysis of Columns and Quadratic Plates

    DEFF Research Database (Denmark)

    Jönsson, Jeppe

    2008-01-01

    the compressive load as a function of the transverse displacement. An estimate of the magnitude of the transverse displacement prior to the forming of the collapse mechanism is introduced into the compressive load function, determined by the virtual work equation, thereby revealing a qualified estimate...... yield lines accommodate differential rotations of rigid parts and the area “collapse” yield lines accommodate local area changes of the rigid parts thereby preserving compatibility of the rigid parts of a plate. The approach will be illustrated for rigid plastic column analysis and for a quadratic plate...

  18. Botulinum toxin in myotonia congenita: it does not help against rigidity and pain.

    Science.gov (United States)

    Dressler, Dirk; Adib Saberi, Fereshte

    2014-05-01

    Botulinum toxin (BT) is a potent local muscle relaxant with analgetic properties. Myotonia congenita (MC) is a genetic disorder producing muscle rigidity and pain. BT injected into the trapezius produced mild paresis, but no effect on rigidity and pain. There were no signs of systemic effects. Lack of BT efficacy on MC rigidity confirms its origin from muscle membrane dysfunction rather than from inappropriate neuromuscular activation. Lack of BT efficacy on pain could be caused by lack of anti-rigidity effect. It could also be due to separate non-muscular pain mechanisms unresponsive to BT.

  19. Raman Monte Carlo simulation for light propagation for tissue with embedded objects

    Science.gov (United States)

    Periyasamy, Vijitha; Jaafar, Humaira Bte; Pramanik, Manojit

    2018-02-01

    Monte Carlo (MC) stimulation is one of the prominent simulation technique and is rapidly becoming the model of choice to study light-tissue interaction. Monte Carlo simulation for light transport in multi-layered tissue (MCML) is adapted and modelled with different geometry by integrating embedded objects of various shapes (i.e., sphere, cylinder, cuboid and ellipsoid) into the multi-layered structure. These geometries would be useful in providing a realistic tissue structure such as modelling for lymph nodes, tumors, blood vessels, head and other simulation medium. MC simulations were performed on various geometric medium. Simulation of MCML with embedded object (MCML-EO) was improvised for propagation of the photon in the defined medium with Raman scattering. The location of Raman photon generation is recorded. Simulations were experimented on a modelled breast tissue with tumor (spherical and ellipsoidal) and blood vessels (cylindrical). Results were presented in both A-line and B-line scans for embedded objects to determine spatial location where Raman photons were generated. Studies were done for different Raman probabilities.

  20. A pulsation analysis of K2 observations of the subdwarf B star PG 1142-037 during Campaign 1: A subsynchronously rotating ellipsoidal variable

    DEFF Research Database (Denmark)

    Reed, M. D.; Baran, A. S.; Østensen, R. H.

    2016-01-01

    We report a new subdwarf B pulsator, PG 1142-037, discovered during the first full-length campaign of K2, the two-gyro mission of the Kepler space telescope. 14 periodicities have been detected between 0.9 and 2.5 hr with amplitudes below 0.35 parts-per-thousand. We have been able to associate all...... of the pulsations with low-degree, ℓ ≤ 2 modes. Follow-up spectroscopy of PG 1142 has revealed it to be in a binary with a period of 0.54 d. Phase-folding the K2 photometry reveals a two-component variation including both Doppler boosting and ellipsoidal deformation. Perhaps the most surprising and interesting...