Rigid multibody system dynamics with uncertain rigid bodies
Energy Technology Data Exchange (ETDEWEB)
Batou, A., E-mail: anas.batou@univ-paris-est.fr; Soize, C., E-mail: christian.soize@univ-paris-est.fr [Universite Paris-Est, Laboratoire Modelisation et Simulation Multi Echelle, MSME UMR 8208 CNRS (France)
2012-03-15
This paper is devoted to the construction of a probabilistic model of uncertain rigid bodies for multibody system dynamics. We first construct a stochastic model of an uncertain rigid body by replacing the mass, the center of mass, and the tensor of inertia by random variables. The prior probability distributions of the stochastic model are constructed using the maximum entropy principle under the constraints defined by the available information. The generators of independent realizations corresponding to the prior probability distribution of these random quantities are further developed. Then several uncertain rigid bodies can be linked to each other in order to calculate the random response of a multibody dynamical system. An application is proposed to illustrate the theoretical development.
Almost Poisson integration of rigid body systems
International Nuclear Information System (INIS)
Austin, M.A.; Krishnaprasad, P.S.; Li-Sheng Wang
1993-01-01
In this paper we discuss the numerical integration of Lie-Poisson systems using the mid-point rule. Since such systems result from the reduction of hamiltonian systems with symmetry by lie group actions, we also present examples of reconstruction rules for the full dynamics. A primary motivation is to preserve in the integration process, various conserved quantities of the original dynamics. A main result of this paper is an O(h 3 ) error estimate for the Lie-Poisson structure, where h is the integration step-size. We note that Lie-Poisson systems appear naturally in many areas of physical science and engineering, including theoretical mechanics of fluids and plasmas, satellite dynamics, and polarization dynamics. In the present paper we consider a series of progressively complicated examples related to rigid body systems. We also consider a dissipative example associated to a Lie-Poisson system. The behavior of the mid-point rule and an associated reconstruction rule is numerically explored. 24 refs., 9 figs
Collisions of Constrained Rigid Body Systems with Friction
Directory of Open Access Journals (Sweden)
Haijun Shen
1998-01-01
Full Text Available A new approach is developed for the general collision problem of two rigid body systems with constraints (e.g., articulated systems, such as massy linkages in which the relative tangential velocity at the point of contact and the associated friction force can change direction during the collision. This is beyond the framework of conventional methods, which can give significant and very obvious errors for this problem, and both extends and consolidates recent work. A new parameterization and theory characterize if, when and how the relative tangential velocity changes direction during contact. Elastic and dissipative phenomena and different values for static and kinetic friction coefficients are included. The method is based on the explicitly physical analysis of events at the point of contact. Using this method, Example 1 resolves (and corrects a paradox (in the literature of the collision of a double pendulum with the ground. The method fundamentally subsumes other recent models and the collision of rigid bodies; it yields the same results as conventional methods when they would apply (Example 2. The new method reformulates and extends recent approaches in a completely physical context.
Dynamical analysis of an orbiting three-rigid-body system
Energy Technology Data Exchange (ETDEWEB)
Pagnozzi, Daniele, E-mail: daniele.pagnozzi@strath.ac.uk, E-mail: james.biggs@strath.ac.uk; Biggs, James D., E-mail: daniele.pagnozzi@strath.ac.uk, E-mail: james.biggs@strath.ac.uk [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, Scotland (United Kingdom)
2014-12-10
The development of multi-joint-spacecraft mission concepts calls for a deeper understanding of their nonlinear dynamics to inform and enhance system design. This paper presents a study of a three-finite-shape rigid-body system under the action of an ideal central gravitational field. The aim of this paper is to gain an insight into the natural dynamics of this system. The Hamiltonian dynamics is derived and used to identify relative attitude equilibria of the system with respect to the orbital reference frame. Then a numerical investigation of the behaviour far from the equilibria is provided using tools from modern dynamical systems theory such as energy methods, phase portraits and Poincarè maps. Results reveal a complex structure of the dynamics as well as the existence of connections between some of the equilibria. Stable equilibrium configurations appear to be surrounded by very narrow regions of regular and quasi-regular motions. Trajectories evolve on chaotic motions in the rest of the domain.
Dynamic Multi-Rigid-Body Systems with Concurrent Distributed Contacts: Theory and Examples
International Nuclear Information System (INIS)
TRINKLE, JEFFREY C.; TZITZOURIS, J.A.; PANG, J.S.
2001-01-01
Consider a system of rigid bodies with multiple concurrent contacts. The multi-rigid-body contact problem is to predict the accelerations of the bodies and the normal friction loads acting at the contacts. This paper presents theoretical results for the multi-rigid-body contact problem under the assumptions that one or more contacts occur over locally planar, finite regions and that friction forces are consistent with the maximum work inequality. Existence and uniqueness results are presented for this problem under mild assumptions on the system inputs. In addition, the performance of two different time-stepping methods for integrating the dynamics are compared on two simple multi-body systems
International Nuclear Information System (INIS)
Ahn, Byungseong; Kim, Suh In; Kim, Yoon Young
2016-01-01
When a system consisting of rigid and flexible bodies is optimized to improve its dynamic characteristics, its eigenfrequencies are typically maximized. While topology optimization formulations dealing with simultaneous design of a system of rigid and flexible bodies are available, studies on eigenvalue maximization of the system are rare. In particular, no work has solved for the case when the target frequency becomes one of the repeated eigenfrequencies. The problem involving repeated eigenfrequencies is solved in this study, and a topology optimization formulation and sensitivity analysis are presented. Further, several numerical case studies are considered to demonstrate the validity of the proposed formulation
Hamiltonian Dynamics of Spider-Type Multirotor Rigid Bodies Systems
International Nuclear Information System (INIS)
Doroshin, Anton V.
2010-01-01
This paper sets out to develop a spider-type multiple-rotor system which can be used for attitude control of spacecraft. The multirotor system contains a large number of rotor-equipped rays, so it was called a 'Spider-type System', also it can be called 'Rotary Hedgehog'. These systems allow using spinups and captures of conjugate rotors to perform compound attitude motion of spacecraft. The paper describes a new method of spacecraft attitude reorientation and new mathematical model of motion in Hamilton form. Hamiltonian dynamics of the system is investigated with the help of Andoyer-Deprit canonical variables. These variables allow obtaining exact solution for hetero- and homoclinic orbits in phase space of the system motion, which are very important for qualitative analysis.
Modeling of a light elastic beam by a system of rigid bodies
Directory of Open Access Journals (Sweden)
Šalinić Slaviša
2004-01-01
Full Text Available This paper has shown that a light elastic beam, in the case of small elastic deformations, can be modeled by a kinematic chain without branching composed of rigid bodies which are connected by passive revolute or prismatic joints with corresponding springs in them. Elastic properties of the beam are modeled by the springs introduced. The potential energy of the elastic beam is expressed as a function of components of the vector of elastic displacement and the vector of elastic rotation calculated for the elastic centre of the beam, which results in the diagonal stiffness matrix of the beam. As the potential energy of the introduced system of bodies with springs is expressed in the function of relative joint displacements, the diagonal stiffness matrix is obtained. In addition, these two stiffness matrices are equal. The modeling process has been demonstrated on the example of an elastic beam rotating about a fixed vertical axis, with a rigid body whose mass is considerably larger than the beam mass fixed to its free end. Differential equations of motion have been formed for this mechanical system. The modeling technique described here aims at expanding of usage of well developed methods of dynamics of systems of rigid bodies to the analysis of systems with elastic bodies. .
Rigid body dynamics of mechanisms
Hahn, Hubert
2003-01-01
The second volume of Rigid Body Dynamics of Mechanisms covers applications via a systematic method for deriving model equations of planar and spatial mechanisms. The necessary theoretical foundations have been laid in the first volume that introduces the theoretical mechanical aspects of mechatronic systems. Here the focus is on the application of the modeling methodology to various examples of rigid-body mechanisms, simple planar ones as well as more challenging spatial problems. A rich variety of joint models, active constraints, plus active and passive force elements is treated. The book is intended for self-study by working engineers and students concerned with the control of mechanical systems, i.e. robotics, mechatronics, vehicles, and machine tools. The examples included are a likely source from which to choose models for university lectures.
Simulating Dynamics of the System of Articulated Rigid Bodies with Joint Friction
Directory of Open Access Journals (Sweden)
M. V. Michaylyuk
2016-01-01
Full Text Available The subject of the work is to simulate dynamics of the system of articulated rigid bodies in the virtual environment complexes. The work aim is to develop algorithms and methods to simulate the multi-body system dynamics with joint friction to ensure all calculations in real time in line with visual realistic behavior of objects in a scene.The paper describes the multibody system based on a maximal set of coordinates, and to simulate the joint friction is used a Coulomb's law of dry friction. Joints are described using the holonomic constraints and their derivatives that specify the constraints on velocities of joined bodies. Based on The Coulomb’s law a correlation for the friction impulse values has been derived as an inequality. If the friction impulse performs a constraint that is a lack of relative motion of two joint-joined bodies, there is a static friction in the joint. Otherwise, there is a dynamic friction in the joint. Using a semi-implicit Euler method allows us to describe dynamics of articulated rigid bodies with joint friction as a system of linear algebraic equations and inequalities for the unknown velocities and impulse values.To solve the obtained system of equations and inequalities is used an iterative method of sequential impulses, which sequentially processes constraints for each joint with impulse calculation and its application to the joined bodies rather than considers the entire system. To improve the method convergence, at each iteration the calculated impulses are accumulated for their further using as an initial approximation at the next step of simulation.The proposed algorithms and methods have been implemented in the training complex dynamics subsystem, developed in SRISA RAS. Evaluation of these methods and algorithms has demonstrated their full adequacy to requirements for virtual environment systems and training complexes.
Generalized Predictive Control of Dynamic Systems with Rigid-Body Modes
Kvaternik, Raymond G.
2013-01-01
Numerical simulations to assess the effectiveness of Generalized Predictive Control (GPC) for active control of dynamic systems having rigid-body modes are presented. GPC is a linear, time-invariant, multi-input/multi-output predictive control method that uses an ARX model to characterize the system and to design the controller. Although the method can accommodate both embedded (implicit) and explicit feedforward paths for incorporation of disturbance effects, only the case of embedded feedforward in which the disturbances are assumed to be unknown is considered here. Results from numerical simulations using mathematical models of both a free-free three-degree-of-freedom mass-spring-dashpot system and the XV-15 tiltrotor research aircraft are presented. In regulation mode operation, which calls for zero system response in the presence of disturbances, the simulations showed reductions of nearly 100%. In tracking mode operations, where the system is commanded to follow a specified path, the GPC controllers produced the desired responses, even in the presence of disturbances.
The two-body problem of a pseudo-rigid body and a rigid sphere
DEFF Research Database (Denmark)
Kristiansen, Kristian Uldall; Vereshchagin, M.; Gózdziewski, K.
2012-01-01
n this paper we consider the two-body problem of a spherical pseudo-rigid body and a rigid sphere. Due to the rotational and "re-labelling" symmetries, the system is shown to possess conservation of angular momentum and circulation. We follow a reduction procedure similar to that undertaken...... in the study of the two-body problem of a rigid body and a sphere so that the computed reduced non-canonical Hamiltonian takes a similar form. We then consider relative equilibria and show that the notions of locally central and planar equilibria coincide. Finally, we show that Riemann's theorem on pseudo......-rigid bodies has an extension to this system for planar relative equilibria....
Geometric integrators for stochastic rigid body dynamics
Tretyakov, Mikhail
2016-01-05
Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.
Geometric integrators for stochastic rigid body dynamics
Tretyakov, Mikhail
2016-01-01
Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.
Analysis of the Gyroscopic Stabilization of a System of Rigid Bodies
DEFF Research Database (Denmark)
Kliem, Wolfhard; Kliem, Wolfhard
1996-01-01
We study the gyroscopic of a three-body system. A new method offinding stability regions, based on mechanism and criteria for gyroscopicstabilization, is presented. Of particular interest in this connection isthe theory of interaction of eigenvalues. This leads to a complete 3-dimensionalanalysis......, which shows the regions of stability, divergence, and flutter ofa simple model of a rotating spaceship....
Elasticity of Relativistic Rigid Bodies?
Smarandache, Florentin
2013-10-01
In the classical Twin Paradox, according to the Special Theory of Relativity, when the traveling twin blasts off from the Earth to a relative velocity v =√{/3 } 2 c with respect to the Earth, his measuring stick and other physical objects in the direction of relative motion shrink to half their lengths. How is that possible in the real physical world to have let's say a rigid rocket shrinking to half and then later elongated back to normal as an elastic material when it stops? What is the explanation for the traveler's measuring stick and other physical objects, in effect, return to the same length to their original length in the Stay-At-Home, but there is no record of their having shrunk? If it's a rigid (not elastic) object, how can it shrink and then elongate back to normal? It might get broken in such situation.
Analysis of the gyroscopic stabilization of a system of rigid bodies
DEFF Research Database (Denmark)
Kliem, Wolfhard; Seyranian, Alexander P.
1997-01-01
We study the gyroscopic stability of a three-body system. A new method of finding stability regions, based on mechanism and criteria for gyroscopic stabilization, is presented. Of particular interest in this connection is the theory of interaction of eigenvalues. This leads to a complete 3......-dimensional analysis, which shows the regions of stability, divergence, and flutter of a simple model of a rotating spaceship....
Quantum mechanics of a generalised rigid body
International Nuclear Information System (INIS)
Gripaios, Ben; Sutherland, Dave
2016-01-01
We consider the quantum version of Arnold’s generalisation of a rigid body in classical mechanics. Thus, we quantise the motion on an arbitrary Lie group manifold of a particle whose classical trajectories correspond to the geodesics of any one-sided-invariant metric. We show how the derivation of the spectrum of energy eigenstates can be simplified by making use of automorphisms of the Lie algebra and (for groups of type I) by methods of harmonic analysis. We show how the method can be extended to cosets, generalising the linear rigid rotor. As examples, we consider all connected and simply connected Lie groups up to dimension 3. This includes the universal cover of the archetypical rigid body, along with a number of new exactly solvable models. We also discuss a possible application to the topical problem of quantising a perfect fluid. (paper)
A heterogeneous system based on GPU and multi-core CPU for real-time fluid and rigid body simulation
da Silva Junior, José Ricardo; Gonzalez Clua, Esteban W.; Montenegro, Anselmo; Lage, Marcos; Dreux, Marcelo de Andrade; Joselli, Mark; Pagliosa, Paulo A.; Kuryla, Christine Lucille
2012-03-01
Computational fluid dynamics in simulation has become an important field not only for physics and engineering areas but also for simulation, computer graphics, virtual reality and even video game development. Many efficient models have been developed over the years, but when many contact interactions must be processed, most models present difficulties or cannot achieve real-time results when executed. The advent of parallel computing has enabled the development of many strategies for accelerating the simulations. Our work proposes a new system which uses some successful algorithms already proposed, as well as a data structure organisation based on a heterogeneous architecture using CPUs and GPUs, in order to process the simulation of the interaction of fluids and rigid bodies. This successfully results in a two-way interaction between them and their surrounding objects. As far as we know, this is the first work that presents a computational collaborative environment which makes use of two different paradigms of hardware architecture for this specific kind of problem. Since our method achieves real-time results, it is suitable for virtual reality, simulation and video game fluid simulation problems.
A concise introduction to mechanics of rigid bodies multidisciplinary engineering
Huang, L
2017-01-01
This updated second edition broadens the explanation of rotational kinematics and dynamics — the most important aspect of rigid body motion in three-dimensional space and a topic of much greater complexity than linear motion. It expands treatment of vector and matrix, and includes quaternion operations to describe and analyze rigid body motion which are found in robot control, trajectory planning, 3D vision system calibration, and hand-eye coordination of robots in assembly work, etc. It features updated treatments of concepts in all chapters and case studies. The textbook retains its comprehensiveness in coverage and compactness in size, which make it easily accessible to the readers from multidisciplinary areas who want to grasp the key concepts of rigid body mechanics which are usually scattered in multiple volumes of traditional textbooks. Theoretical concepts are explained through examples taken from across engineering disciplines and links to applications and more advanced courses (e.g. industrial rob...
A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid
International Nuclear Information System (INIS)
Nikolaenko, S S
2014-01-01
The paper is concerned with the topological analysis of the Chaplygin integrable case in the dynamics of a rigid body in a fluid. A full list of the topological types of Chaplygin systems in their dependence on the energy level is compiled on the basis of the Fomenko-Zieschang theory. An effective description of the topology of the Liouville foliation in terms of natural coordinate variables is also presented, which opens a direct way to calculating topological invariants. It turns out that on all nonsingular energy levels Chaplygin systems are Liouville equivalent to the well-known Euler case in the dynamics of a rigid body with fixed point. Bibliography: 23 titles
The theory of pseudo-rigid bodies
Cohen, Harley
1988-01-01
This monograph concerns the development, analysis, and application of the theory of pseudo-rigid bodies. It collects together our work on that subject over the last five years. While some results have appeared else where, much of the work is new. Our objective in writing this mono graph has been to present a new theory of the deformation of bodies, one that has not only a firm theoretical basis, but also the simplicity to serve as an effective tool in practical problems. Consequently, the main body of the treatise is a multifaceted development of the theory, from foundations to explicit solutions to linearizations to methods of approximation. The fact that this variety of aspects, each examined in considerable detail, can be collected together in a single, unified treat ment gives this theory an elegance that we feel sets it apart from many others. While our goal has always been to give a complete treatment of the theory as it now stands, the work here is not meant to be definitive. Theories are not ent...
Dual Quaternion Variational Integrator for Rigid Body Dynamic Simulation
Xu, Jiafeng; Halse, Karl Henning
2016-01-01
In rigid body dynamic simulations, often the algorithm is required to deal with general situations where both reference point and inertia matrix are arbitrarily de- fined. We introduce a novel Lie group variational integrator using dual quaternion for simulating rigid body dynamics in all six degrees of freedom. Dual quaternion is used to represent rigid body kinematics and one-step Lie group method is used to derive dynamic equations. The combination of these two becomes the first Lie group ...
Nonlinear dynamics mathematical models for rigid bodies with a liquid
Lukovsky, Ivan A
2015-01-01
This book is devoted to analytically approximate methods in the nonlinear dynamics of a rigid body with cavities partly filled by liquid. It combines several methods and compares the results with experimental data. It is useful for experienced and early-stage readers interested in analytical approaches to fluid-structure interaction problems, the fundamental mathematical background and modeling the dynamics of such complex mechanical systems.
Directory of Open Access Journals (Sweden)
Pål Johan From
2012-04-01
Full Text Available This paper presents the explicit dynamic equations of a mechanical system. The equations are presented so that they can easily be implemented in a simulation software or controller environment and are also well suited for system and controller analysis. The dynamics of a general mechanical system consisting of one or more rigid bodies can be derived from the Lagrangian. We can then use several well known properties of Lie groups to guarantee that these equations are well defined. This will, however, often lead to rather abstract formulation of the dynamic equations that cannot be implemented in a simulation software directly. In this paper we close this gap and show what the explicit dynamic equations look like. These equations can then be implemented directly in a simulation software and no background knowledge on Lie theory and differential geometry on the practitioner's side is required. This is the first of two papers on this topic. In this paper we derive the dynamics for single rigid bodies, while in the second part we study multibody systems. In addition to making the equations more accessible to practitioners, a motivation behind the papers is to correct a few errors commonly found in literature. For the first time, we show the detailed derivations and how to arrive at the correct set of equations. We also show through some simple examples that these correspond with the classical formulations found from Lagrange's equations. The dynamics is derived from the Boltzmann--Hamel equations of motion in terms of local position and velocity variables and the mapping to the corresponding quasi-velocities. Finally we present a new theorem which states that the Boltzmann--Hamel formulation of the dynamics is valid for all transformations with a Lie group topology. This has previously only been indicated through examples, but here we also present the formal proof. The main motivation of these papers is to allow practitioners not familiar with
A method for measuring the inertia properties of rigid bodies
Gobbi, M.; Mastinu, G.; Previati, G.
2011-01-01
A method for the measurement of the inertia properties of rigid bodies is presented. Given a rigid body and its mass, the method allows to measure (identify) the centre of gravity location and the inertia tensor during a single test. The proposed technique is based on the analysis of the free motion of a multi-cable pendulum to which the body under consideration is connected. The motion of the pendulum and the forces acting on the system are recorded and the inertia properties are identified by means of a proper mathematical procedure based on a least square estimation. After the body is positioned on the test rig, the full identification procedure takes less than 10 min. The natural frequencies of the pendulum and the accelerations involved are quite low, making this method suitable for many practical applications. In this paper, the proposed method is described and two test rigs are presented: the first is developed for bodies up to 3500 kg and the second for bodies up to 400 kg. A validation of the measurement method is performed with satisfactory results. The test rig holds a third part quality certificate according to an ISO 9001 standard and could be scaled up to measure the inertia properties of huge bodies, such as trucks, airplanes or even ships.
Euler-Poincare Reduction of Externall Forced Rigid Body Motion
DEFF Research Database (Denmark)
Wisniewski, Rafal; Kulczycki, P.
2004-01-01
If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system affected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincaré reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modelling, estimation and control of mechanical systems......-known Euler-Poincaré reduction to a rigid body motion with forcing....
Euler-Poincare Reduction of a Rigid Body Motion
DEFF Research Database (Denmark)
Wisniewski, Rafal; Kulczycki, P.
2005-01-01
|If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system afected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincare reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modeling, estimation and control of mechanical systems......-known Euler-Poincare reduction to a rigid body motion with forcing....
Euler-Poincaré Reduction of a Rigid Body Motion
DEFF Research Database (Denmark)
Wisniewski, Rafal; Kulczycki, P.
2004-01-01
If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system affected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincaré reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modelling, estimation and control of mechanical systems......-known Euler-Poincaré reduction to a rigid body motion with forcing....
Rigid Body Sampling and Individual Time Stepping for Rigid-Fluid Coupling of Fluid Simulation
Directory of Open Access Journals (Sweden)
Xiaokun Wang
2017-01-01
Full Text Available In this paper, we propose an efficient and simple rigid-fluid coupling scheme with scientific programming algorithms for particle-based fluid simulation and three-dimensional visualization. Our approach samples the surface of rigid bodies with boundary particles that interact with fluids. It contains two procedures, that is, surface sampling and sampling relaxation, which insures uniform distribution of particles with less iterations. Furthermore, we present a rigid-fluid coupling scheme integrating individual time stepping to rigid-fluid coupling, which gains an obvious speedup compared to previous method. The experimental results demonstrate the effectiveness of our approach.
Bang-Bang Practical Stabilization of Rigid Bodies
Serpelloni, Edoardo
In this thesis, we study the problem of designing a practical stabilizer for a rigid body equipped with a set of actuators generating only constant thrust. Our motivation stems from the fact that modern space missions are required to accurately control the position and orientation of spacecraft actuated by constant-thrust jet-thrusters. To comply with the performance limitations of modern thrusters, we design a feedback controller that does not induce high-frequency switching of the actuators. The proposed controller is hybrid and it asymptotically stabilizes an arbitrarily small compact neighborhood of the target position and orientation of the rigid body. The controller is characterized by a hierarchical structure comprising of two control layers. At the low level of the hierarchy, an attitude controller stabilizes the target orientation of the rigid body. At the high level, after the attitude controller has steered the rigid body sufficiently close to its desired orientation, a position controller stabilizes the desired position. The size of the neighborhood being stabilized by the controller can be adjusted via a proper selection of the controller parameters. This allows us to stabilize the rigid body to virtually any degree of accuracy. It is shown that the controller, even in the presence of measurement noise, does not induce high-frequency switching of the actuators. The key component in the design of the controller is a hybrid stabilizer for the origin of double-integrators affected by bounded external perturbations. Specifically, both the position and the attitude stabilizers consist of multiple copies of such a double-integrator controller. The proposed controller is applied to two realistic spacecraft control problems. First, we apply the position controller to the problem of stabilizing the relative position between two spacecraft flying in formation in the vicinity of the L2 libration point of the Sun-Earth system as a part of a large space telescope
Rigid body motion in stereo 3D simulation
International Nuclear Information System (INIS)
Zabunov, Svetoslav
2010-01-01
This paper addresses the difficulties experienced by first-grade students studying rigid body motion at Sofia University. Most quantities describing the rigid body are in relations that the students find hard to visualize and understand. They also lose the notion of cause-result relations between vector quantities, such as the relation between torque and angular momentum. Consequently, the understanding of physical laws and conservation principles in free rigid body motion is hampered. This paper presents the capabilities of a 3D simulation, which aims to clarify these questions to the students, who are taught mechanics in the general physics course. The rigid body motion simulations may be observed at http://ialms.net/sim/, and are intended to complement traditional learning practices, not replace them, as the author shares the opinion that no simulation may fully resemble reality.
Stabilization of Rigid Body Dynamics by Internal and External Torques
National Research Council Canada - National Science Library
Bloch, A. M; Krishnaprasad, P. S; Marsden, J. E; Sanchez de Alvarez, G
1990-01-01
...] with quadratic feedback torques for internal rotors. We show that with such torques, the equations for the rigid body with momentum wheels are Hamiltonian with respect to a Lie-Poisson bracket structure. Further...
Anti-synchronization of the rigid body exhibiting chaotic dynamics ...
African Journals Online (AJOL)
Based on a method derived from nonlinear control theory, we present a ... In this framework, the active control technique is modified and employed to design control ... state space of the two rigid bodies was verified by numerical simulations.
Matrix methods applied to engineering rigid body mechanics
Crouch, T.
The purpose of this book is to present the solution of a range of rigorous body mechanics problems using a matrix formulation of vector algebra. Essential theory concerning kinematics and dynamics is formulated in terms of matrix algebra. The solution of kinematics and dynamics problems is discussed, taking into account the velocity and acceleration of a point moving in a circular path, the velocity and acceleration determination for a linkage, the angular velocity and angular acceleration of a roller in a taper-roller thrust race, Euler's theroem on the motion of rigid bodies, an automotive differential, a rotating epicyclic, the motion of a high speed rotor mounted in gimbals, and the vibration of a spinning projectile. Attention is given to the activity of a force, the work done by a conservative force, the work and potential in a conservative system, the equilibrium of a mechanism, bearing forces due to rotor misalignment, and the frequency of vibrations of a constrained rod.
Almost-global tracking for a rigid body with internal rotors
Nayak, Aradhana; Banavar, Ravi N.
2017-01-01
Almost-global orientation trajectory tracking for a rigid body with external actuation has been well studied in the literature, and in the geometric setting as well. The tracking control law relies on the fact that a rigid body is a simple mechanical system (SMS) on the $3-$dimensional group of special orthogonal matrices. However, the problem of designing feedback control laws for tracking using internal actuation mechanisms, like rotors or control moment gyros, has received lesser attention...
Dynamics of parallel robots from rigid bodies to flexible elements
Briot, Sébastien
2015-01-01
This book starts with a short recapitulation on basic concepts, common to any types of robots (serial, tree structure, parallel, etc.), that are also necessary for computation of the dynamic models of parallel robots. Then, as dynamics requires the use of geometry and kinematics, the general equations of geometric and kinematic models of parallel robots are given. After, it is explained that parallel robot dynamic models can be obtained by decomposing the real robot into two virtual systems: a tree-structure robot (equivalent to the robot legs for which all joints would be actuated) plus a free body corresponding to the platform. Thus, the dynamics of rigid tree-structure robots is analyzed and algorithms to obtain their dynamic models in the most compact form are given. The dynamic model of the real rigid parallel robot is obtained by closing the loops through the use of the Lagrange multipliers. The problem of the dynamic model degeneracy near singularities is treated and optimal trajectory planning for cro...
Unifying Rigid and Soft Bodies Representation: The Sulfur Physics Engine
Directory of Open Access Journals (Sweden)
Dario Maggiorini
2014-01-01
Full Text Available Video games are (also real-time interactive graphic simulations: hence, providing a convincing physics simulation for each specific game environment is of paramount importance in the process of achieving a satisfying player experience. While the existing game engines appropriately address many aspects of physics simulation, some others are still in need of improvements. In particular, several specific physics properties of bodies not usually involved in the main game mechanics (e.g., properties useful to represent systems composed by soft bodies, are often poorly rendered by general-purpose engines. This issue may limit game designers when imagining innovative and compelling video games and game mechanics. For this reason, we dug into the problem of appropriately representing soft bodies. Subsequently, we have extended the approach developed for soft bodies to rigid ones, proposing and developing a unified approach in a game engine: Sulfur. To test the engine, we have also designed and developed “Escape from Quaoar,” a prototypal video game whose main game mechanic exploits an elastic rope, and a level editor for the game.
Leonhard Euler and the mechanics of rigid bodies
Marquina, J. E.; Marquina, M. L.; Marquina, V.; Hernández-Gómez, J. J.
2017-01-01
In this work we present the original ideas and the construction of the rigid bodies theory realised by Leonhard Euler between 1738 and 1775. The number of treatises written by Euler on this subject is enormous, including the most notorious Scientia Navalis (1749), Decouverte d’un noveau principe de mecanique (1752), Du mouvement de rotation des corps solides autour d’un axe variable (1765), Theoria motus corporum solidorum seu rigidorum (1765) and Nova methodus motu corporum rigidorum determinandi (1776), in which he developed the ideas of the instantaneous rotation axis, the so-called Euler equations and angles, the components of what is now known as the inertia tensor, the principal axes of inertia, and, finally, the generalisation of the translation and rotation movement equations for any system. Euler, the man who ‘put most of mechanics into its modern form’ (Truesdell 1968 Essays in the History of Mechanics (Berlin: Springer) p 106).
Leuridan, Steven; Goossens, Quentin; Roosen, Jorg; Pastrav, Leonard; Denis, Kathleen; Mulier, Michiel; Desmet, Wim; Vander Sloten, Jos
2017-02-01
Accurate pre-clinical evaluation of the initial stability of new cementless hip stems using in vitro micromotion measurements is an important step in the design process to assess the new stem's potential. Several measuring systems, linear variable displacement transducer-based and other, require assuming bone or implant to be rigid to obtain micromotion values or to calculate derived quantities such as relative implant tilting. An alternative linear variable displacement transducer-based measuring system not requiring a rigid body assumption was developed in this study. The system combined advantages of local unidirectional and frame-and-bracket micromotion measuring concepts. The influence and possible errors that would be made by adopting a rigid body assumption were quantified. Furthermore, as the system allowed emulating local unidirectional and frame-and-bracket systems, the influence of adopting rigid body assumptions were also analyzed for both concepts. Synthetic and embalmed bone models were tested in combination with primary and revision implants. Single-legged stance phase loading was applied to the implant - bone constructs. Adopting a rigid body assumption resulted in an overestimation of mediolateral micromotion of up to 49.7μm at more distal measuring locations. Maximal average relative rotational motion was overestimated by 0.12° around the anteroposterior axis. Frontal and sagittal tilting calculations based on a unidirectional measuring concept underestimated the true tilting by an order of magnitude. Non-rigid behavior is a factor that should not be dismissed in micromotion stability evaluations of primary and revision femoral implants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Knowledge-In-Action: An Example with Rigid Body Motion
Da Costa, Sayonara Salvador Cabral; Moreira, Marco Antonio
2005-01-01
This paper reports the analysis of the resolution of a paper-and-pencil problem, by eight undergraduate students majoring in engineering (six) and physics (two) at the Pontifcia Universidade Catlica do Rio Grande do Sul, in Porto Alegre, Brazil. The problem concerns kinetics of a rigid body, and the analysis was done in the light of Johnson-Lairds…
Steady fall of a rigid body in viscous fluid
Czech Academy of Sciences Publication Activity Database
Nečasová, Šárka
2005-01-01
Roč. 63, Sp. Is. (2005), s. 2113-2119 ISSN 0362-546X. [Invited Talks from the Fourth World Congress of Nonlinear Analysts (WCNA 2004). Orlando , 30.7.2004-7.8.2004] R&D Projects: GA ČR(CZ) GA201/02/0684 Institutional research plan: CEZ:AV0Z1019905 Keywords : steady fall * rigid body * viscous fluid Subject RIV: BA - General Mathematics Impact factor: 0.519, year: 2005
Rigid Body Energy Minimization on Manifolds for Molecular Docking.
Mirzaei, Hanieh; Beglov, Dmitri; Paschalidis, Ioannis Ch; Vajda, Sandor; Vakili, Pirooz; Kozakov, Dima
2012-11-13
Virtually all docking methods include some local continuous minimization of an energy/scoring function in order to remove steric clashes and obtain more reliable energy values. In this paper, we describe an efficient rigid-body optimization algorithm that, compared to the most widely used algorithms, converges approximately an order of magnitude faster to conformations with equal or slightly lower energy. The space of rigid body transformations is a nonlinear manifold, namely, a space which locally resembles a Euclidean space. We use a canonical parametrization of the manifold, called the exponential parametrization, to map the Euclidean tangent space of the manifold onto the manifold itself. Thus, we locally transform the rigid body optimization to an optimization over a Euclidean space where basic optimization algorithms are applicable. Compared to commonly used methods, this formulation substantially reduces the dimension of the search space. As a result, it requires far fewer costly function and gradient evaluations and leads to a more efficient algorithm. We have selected the LBFGS quasi-Newton method for local optimization since it uses only gradient information to obtain second order information about the energy function and avoids the far more costly direct Hessian evaluations. Two applications, one in protein-protein docking, and the other in protein-small molecular interactions, as part of macromolecular docking protocols are presented. The code is available to the community under open source license, and with minimal effort can be incorporated into any molecular modeling package.
Computing the Free Energy along a Reaction Coordinate Using Rigid Body Dynamics.
Tao, Peng; Sodt, Alexander J; Shao, Yihan; König, Gerhard; Brooks, Bernard R
2014-10-14
The calculations of potential of mean force along complex chemical reactions or rare events pathways are of great interest because of their importance for many areas in chemistry, molecular biology, and material science. The major difficulty for free energy calculations comes from the great computational cost for adequate sampling of the system in high-energy regions, especially close to the reaction transition state. Here, we present a method, called FEG-RBD, in which the free energy gradients were obtained from rigid body dynamics simulations. Then the free energy gradients were integrated along a reference reaction pathway to calculate free energy profiles. In a given system, the reaction coordinates defining a subset of atoms (e.g., a solute, or the quantum mechanics (QM) region of a quantum mechanics/molecular mechanics simulation) are selected to form a rigid body during the simulation. The first-order derivatives (gradients) of the free energy with respect to the reaction coordinates are obtained through the integration of constraint forces within the rigid body. Each structure along the reference reaction path is separately subjected to such a rigid body simulation. The individual free energy gradients are integrated along the reference pathway to obtain the free energy profile. Test cases provided demonstrate both the strengths and weaknesses of the FEG-RBD method. The most significant benefit of this method comes from the fast convergence rate of the free energy gradient using rigid-body constraints instead of restraints. A correction to the free energy due to approximate relaxation of the rigid-body constraint is estimated and discussed. A comparison with umbrella sampling using a simple test case revealed the improved sampling efficiency of FEG-RBD by a factor of 4 on average. The enhanced efficiency makes this method effective for calculating the free energy of complex chemical reactions when the reaction coordinate can be unambiguously defined by a
Estimating the orientation of a rigid body moving in space using inertial sensors
Energy Technology Data Exchange (ETDEWEB)
He, Peng, E-mail: peng.he.1@ulaval.ca; Cardou, Philippe, E-mail: pcardou@gmc.ulaval.ca [Université Laval, Robotics Laboratory, Department of Mechanical Engineering (Canada); Desbiens, André, E-mail: andre.desbiens@gel.ulaval.ca [Université Laval, Department of Electrical and Computer Engineering (Canada); Gagnon, Eric, E-mail: Eric.Gagnon@drdc-rddc.gc.ca [RDDC Valcartier (Canada)
2015-09-15
This paper presents a novel method of estimating the orientation of a rigid body moving in space from inertial sensors, by discerning the gravitational and inertial components of the accelerations. In this method, both a rigid-body kinematics model and a stochastic model of the human-hand motion are formulated and combined in a nonlinear state-space system. The state equation represents the rigid body kinematics and stochastic model, and the output equation represents the inertial sensor measurements. It is necessary to mention that, since the output equation is a nonlinear function of the state, the extended Kalman filter (EKF) is applied. The absolute value of the error from the proposed method is shown to be less than 5 deg in simulation and in experiments. It is apparently stable, unlike the time-integration of gyroscope measurements, which is subjected to drift, and remains accurate under large accelerations, unlike the tilt-sensor method.
Estimating the orientation of a rigid body moving in space using inertial sensors
International Nuclear Information System (INIS)
He, Peng; Cardou, Philippe; Desbiens, André; Gagnon, Eric
2015-01-01
This paper presents a novel method of estimating the orientation of a rigid body moving in space from inertial sensors, by discerning the gravitational and inertial components of the accelerations. In this method, both a rigid-body kinematics model and a stochastic model of the human-hand motion are formulated and combined in a nonlinear state-space system. The state equation represents the rigid body kinematics and stochastic model, and the output equation represents the inertial sensor measurements. It is necessary to mention that, since the output equation is a nonlinear function of the state, the extended Kalman filter (EKF) is applied. The absolute value of the error from the proposed method is shown to be less than 5 deg in simulation and in experiments. It is apparently stable, unlike the time-integration of gyroscope measurements, which is subjected to drift, and remains accurate under large accelerations, unlike the tilt-sensor method
Rigid body formulation in a finite element context with contact interaction
Refachinho de Campos, Paulo R.; Gay Neto, Alfredo
2018-03-01
The present work proposes a formulation to employ rigid bodies together with flexible bodies in the context of a nonlinear finite element solver, with contact interactions. Inertial contributions due to distribution of mass of a rigid body are fully developed, considering a general pole position associated with a single node, representing a rigid body element. Additionally, a mechanical constraint is proposed to connect a rigid region composed by several nodes, which is useful for linking rigid/flexible bodies in a finite element environment. Rodrigues rotation parameters are used to describe finite rotations, by an updated Lagrangian description. In addition, the contact formulation entitled master-surface to master-surface is employed in conjunction with the rigid body element and flexible bodies, aiming to consider their interaction in a rigid-flexible multibody environment. New surface parameterizations are presented to establish contact pairs, permitting pointwise interaction in a frictional scenario. Numerical examples are provided to show robustness and applicability of the methods.
Dynamics of Rigid Bodies and Flexible Beam Structures
DEFF Research Database (Denmark)
Nielsen, Martin Bjerre
of rigid bodies and flexible beam structures with emphasis on the rotational motion. The first part deals with motion in a rotating frame of reference. A novel approach where the equations of motion are formulated in a hybrid state-space in terms of local displacements and global velocities is presented...... quaternion parameters or nine convected base vector components. In both cases, the equations of motion are obtained via Hamilton’s equations by including the kinematic constraints associated with the redundant rotation description by means of Lagrange multipliers. A special feature of the formulation...... of the global components of the position vectors and associated convected base vectors for the element nodes. The kinematics is expressed in a homogeneous quadratic form and the constitutive stiffness is derived from complementary energy of a set of equilibrium modes, each representing a state of constant...
Damageable contact between an elastic body and a rigid foundation
Campo, M.; Fernández, J. R.; Silva, A.
2009-02-01
In this work, the contact problem between an elastic body and a rigid obstacle is studied, including the development of material damage which results from internal compression or tension. The variational problem is formulated as a first-kind variational inequality for the displacements coupled with a parabolic partial differential equation for the damage field. The existence of a unique local weak solution is stated. Then, a fully discrete scheme is introduced using the finite element method to approximate the spatial variable and an Euler scheme to discretize the time derivatives. Error estimates are derived on the approximate solutions, from which the linear convergence of the algorithm is deduced under suitable regularity conditions. Finally, three two-dimensional numerical simulations are performed to demonstrate the accuracy and the behaviour of the scheme.
New integrable problems in a rigid body dynamics with cubic integral in velocities
Elmandouh, A. A.
2018-03-01
We introduce a new family of the 2D integrable mechanical system possessing an additional integral of the third degree in velocities. This system contains 20 arbitrary parameters. We also clarify that the majority of the previous systems with a cubic integral can be reconstructed from it as a special version for certain values of those parameters. The applications of this system are extended to include the problem of motion of a particle and rigid body about its fixed point. We announce new integrable problems describing the motion of a particle in the plane, pseudosphere, and surfaces of variable curvature. We also present a new integrable problem in a rigid body dynamics and this problem generalizes some of the previous results for Sokolov-Tsiganov, Yehia, Stretensky, and Goriachev.
Numerical algorithm for rigid body position estimation using the quaternion approach
Zigic, Miodrag; Grahovac, Nenad
2017-11-01
This paper deals with rigid body attitude estimation on the basis of the data obtained from an inertial measurement unit mounted on the body. The aim of this work is to present the numerical algorithm, which can be easily applied to the wide class of problems concerning rigid body positioning, arising in aerospace and marine engineering, or in increasingly popular robotic systems and unmanned aerial vehicles. Following the considerations of kinematics of rigid bodies, the relations between accelerations of different points of the body are given. A rotation matrix is formed using the quaternion approach to avoid singularities. We present numerical procedures for determination of the absolute accelerations of the center of mass and of an arbitrary point of the body expressed in the inertial reference frame, as well as its attitude. An application of the algorithm to the example of a heavy symmetrical gyroscope is presented, where input data for the numerical procedure are obtained from the solution of differential equations of motion, instead of using sensor measurements.
Topological classification of the Goryachev integrable case in rigid body dynamics
International Nuclear Information System (INIS)
Nikolaenko, S S
2016-01-01
A topological analysis of the Goryachev integrable case in rigid body dynamics is made on the basis of the Fomenko-Zieschang theory. The invariants (marked molecules) which are obtained give a complete description, from the standpoint of Liouville classification, of the systems of Goryachev type on various level sets of the energy. It turns out that on appropriate energy levels the Goryachev case is Liouville equivalent to many classical integrable systems and, in particular, the Joukowski, Clebsch, Sokolov and Kovalevskaya-Yehia cases in rigid body dynamics, as well as to some integrable billiards in plane domains bounded by confocal quadrics -- in other words, the foliations given by the closures of generic solutions of these systems have the same structure. Bibliography: 15 titles
Motion of a Rigid Body Supported at One Point by a Rotating Arm
Directory of Open Access Journals (Sweden)
Jeffrey D. Stoen
1993-01-01
Full Text Available This article details a scheme for evaluating the stability of motions of a system consisting of a rigid body connected at one point to a rotating arm. The nonlinear equations of motion for the system are formulated, and a method for finding exact solutions representing motions that resemble a state of rest is presented. The equations are then linearized and roots of the eigensystem are classified and used to construct stability diagrams that facilitate the assessment of effects of varying the body's mass properties and system geometry, changing the position of the attachment joint, and adding energy dissipation in the joint.
Contact point generation for convex polytopes in interactive rigid body dynamics
DEFF Research Database (Denmark)
Silcowitz-Hansen, Morten; Abel, Sarah Maria Niebe; Erleben, Kenny
When computing contact forces in rigid body dynamics systems, most state-of-the-art solutions use iterative methods such as the projected Gauss–Seidel (PGS) method. Methods such as the PGS method are preferred for their robustness. However, the time-critical nature of interactive applications...... combined with the linear convergence rates of such methods, will often result in visual artifacts in the final simulation. With this paper, we address an issue which is of major impact on the animation quality, when using methods such as the PGS method. The issue is robust generation of contact points...... for convex polytopes. A novel contact point generation method is presented, which is based on growth distances and Gauss maps. We demonstrate improvements when using our method in the context of interactive rigid body simulation...
Euler-Poincaré Reduction of Externally Forced Rigid Body Motion
DEFF Research Database (Denmark)
Wisniewski, Rafal; Kulczycki, P.
2004-01-01
If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system affected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincaré reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modelling, estimation and control of mechanical systems......-known Euler-Poincaré reduction to a rigid body motion with forcing....
Modeling and experimentation with asymmetric rigid bodies: a variation on disks and inclines
International Nuclear Information System (INIS)
Raviola, Lisandro A; Zárate, Oscar; Rodríguez, Eduardo E
2014-01-01
We study the ascending motion of a disk rolling on an incline when its centre of mass lies outside the disk axis. The problem is suitable as laboratory project for a first course in mechanics at the undergraduate level and goes beyond typical textbook problems about bi-dimensional rigid body motions. We develop a theoretical model for the disk motion based on mechanical energy conservation and compare its predictions with experimental data obtained by digital video recording. Using readily available resources, a very satisfactory agreement is obtained between the model and the experimental observations. These results complement previous ones that have been reported in the literature for similar systems. (paper)
National Research Council Canada - National Science Library
Greer, James
2002-01-01
This dissertation presents a systematic design methodology for directed product evolution that uses both rigid body and compliant mechanisms to facilitate component combination in the domain of mechanical products...
Overveld, van C.W.A.M.
1991-01-01
A method is presented for approximating the motions of linked 3-dimensional rigid body systems that may be applied in the context of interactive motion specification for computer animation. The method is based on decoupling the ballistic (free) component of the motion of the points that constitute
International Nuclear Information System (INIS)
Moon, Won Joo; Min, Oak Key; Kim, Yong Woo
1998-01-01
To improve the convergence and the accuracy of a finite element, the finite element has to describe not only displacement and stress distributions in a static analysis but also rigid body displacements. In this paper, we consider the in-plane-deformable curved beam element to understand the descriptive capability of rigid body displacements of a finite element. We derive the rigid body displacement fields of a single finite element under various essential boundary conditions when the nodal displacements are caused by the rigid body displacement. We also examine the rigid body displacement fields of a quadratic curved beam element by employing the reduced minimization theory
Evolution of motions of a rigid body about its center of mass
Chernousko, Felix L; Leshchenko, Dmytro D
2017-01-01
The book presents a unified and well-developed approach to the dynamics of angular motions of rigid bodies subjected to perturbation torques of different physical nature. It contains both the basic foundations of the rigid body dynamics and of the asymptotic method of averaging. The rigorous approach based on the averaging procedure is applicable to bodies with arbitrary ellopsoids of inertia. Action of various perturbation torques, both external (gravitational, aerodynamical, solar pressure) and internal (due to viscous fluid in tanks, elastic and visco-elastic properties of a body) is considered in detail. The book can be used by researchers, engineers and students working in attitude dynamics of spacecraft.
Charles, Alexandre; Ballard, Patrick
2016-08-01
The dynamics of mechanical systems with a finite number of degrees of freedom (discrete mechanical systems) is governed by the Lagrange equation which is a second-order differential equation on a Riemannian manifold (the configuration manifold). The handling of perfect (frictionless) unilateral constraints in this framework (that of Lagrange's analytical dynamics) was undertaken by Schatzman and Moreau at the beginning of the 1980s. A mathematically sound and consistent evolution problem was obtained, paving the road for many subsequent theoretical investigations. In this general evolution problem, the only reaction force which is involved is a generalized reaction force, consistently with the virtual power philosophy of Lagrange. Surprisingly, such a general formulation was never derived in the case of frictional unilateral multibody dynamics. Instead, the paradigm of the Coulomb law applying to reaction forces in the real world is generally invoked. So far, this paradigm has only enabled to obtain a consistent evolution problem in only some very few specific examples and to suggest numerical algorithms to produce computational examples (numerical modeling). In particular, it is not clear what is the evolution problem underlying the computational examples. Moreover, some of the few specific cases in which this paradigm enables to write down a precise evolution problem are known to show paradoxes: the Painlevé paradox (indeterminacy) and the Kane paradox (increase in kinetic energy due to friction). In this paper, we follow Lagrange's philosophy and formulate the frictional unilateral multibody dynamics in terms of the generalized reaction force and not in terms of the real-world reaction force. A general evolution problem that governs the dynamics is obtained for the first time. We prove that all the solutions are dissipative; that is, this new formulation is free of Kane paradox. We also prove that some indeterminacy of the Painlevé paradox is fixed in this
Body fixed frame, rigid gauge rotations and large N random fields in QCD
International Nuclear Information System (INIS)
Levit, S.
1995-01-01
The ''body fixed frame'' with respect to local gauge transformations is introduced. Rigid gauge ''rotations'' in QCD and their Schroedinger equation are studied for static and dynamic quarks. Possible choices of the rigid gauge field configuration corresponding to a non-vanishing static colormagnetic field in the ''body fixed'' frame are discussed. A gauge invariant variational equation is derived in this frame. For large number N of colors the rigid gauge field configuration is regarded as random with maximally random probability distribution under constraints on macroscopic-like quantities. For the uniform magnetic field the joint probability distribution of the field components is determined by maximizing the appropriate entropy under the area law constraint for the Wilson loop. In the quark sector the gauge invariance requires the rigid gauge field configuration to appear not only as a background but also as inducing an instantaneous quark-quark interaction. Both are random in the large N limit. (orig.)
Dynamics on strata of trigonal Jacobians and some integrable problems of rigid body motion
International Nuclear Information System (INIS)
Braden, H W; Enolski, V Z; Fedorov, Yu N
2013-01-01
We present an algebraic geometrical and analytical description of the Goryachev case of rigid body motion. It belongs to a family of systems sharing the same properties: although completely integrable, they are not algebraically integrable, their solution is not meromorphic in the complex time and involves dynamics on the strata of the Jacobian varieties of trigonal curves. Although the strata of hyperelliptic Jacobians have already appeared in the literature in the context of some dynamical systems, the Goryachev case is the first example of an integrable system whose solution involves a more general curve. Several new features (and formulae) are encountered in the solution given in terms of sigma-functions of such a curve. (paper)
Simulation Methods in the Contact with Impact of Rigid Bodies
Directory of Open Access Journals (Sweden)
Cristina Basarabă-Opritescu
2007-10-01
Full Text Available The analysis of impacts of elastic bodies is topical and it has many applications, practical and theoretical, too. The elastic character of collision is put in evidence, especially by the velocities of some parts of a particular body, named “ring”. In the presented paper, the situation of elastic collisions is put in evidence by the simulation with the help of the program ANSYS and it refers to the particular case of the ring, with the mechanical characteristics, given in the paper
On potential energies and constraints in the dynamics of rigid bodies and particles
Directory of Open Access Journals (Sweden)
O'reilly Oliver M.
2002-01-01
Full Text Available A new treatment of kinematical constraints and potential energies arising in the dynamics of systems of rigid bodies and particles is presented which is suited to Newtonian and Lagrangian formulations. Its novel feature is the imposing of invariance requirements on the constraint functions and potential energy functions. These requirements are extensively used in continuum mechanics and, in the present context, one finds certain generalizations of Newton's third law of motion and an elucidation of the nature of constraint forces and moments. One motivation for such a treatment can be found by considering approaches where invariance requirements are ignored. In contrast to the treatment presented in this paper, it is shown that this may lead to a difficulty in formulating the equations governing the motion of the system.
Student understanding of the application of Newton's second law to rotating rigid bodies
Close, Hunter G.; Gomez, Luanna S.; Heron, Paula R. L.
2013-06-01
We report on an investigation of student understanding of rigid body dynamics in which we asked students in introductory calculus-based physics to compare the translational motions of identical rigid bodies subject to forces that differed only in the point of contact at which they were applied. There was a widespread tendency to claim that forces that cause rotational motion have a diminished effect on translational motion. A series of related problems was developed to examine whether similar errors would be made in other contexts, and interviews were conducted to probe student thinking in greater depth. In this paper, we describe the results of our investigation and also describe a series of different interventions that culminated in the development of a tutorial that improves student ability to apply Newton's second law to rotating rigid bodies.
Energy Technology Data Exchange (ETDEWEB)
Ismail, Norilmi Amilia, E-mail: aenorilmi@usm.my [School of Aerospace Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia)
2016-02-01
The motorized momentum exchange tether (MMET) is capable of generating useful velocity increments through spin–orbit coupling. This study presents a comparative study of the velocity increments between the rigid body and flexible models of MMET. The equations of motions of both models in the time domain are transformed into a function of true anomaly. The equations of motion are integrated, and the responses in terms of the velocity increment of the rigid body and flexible models are compared and analysed. Results show that the initial conditions, eccentricity, and flexibility of the tether have significant effects on the velocity increments of the tether.
Control of fluid-containing rotating rigid bodies
Gurchenkov, Anatoly A
2013-01-01
This book is devoted to the study of the dynamics of rotating bodies with cavities containing liquid. Two basic classes of motions are analyzed: rotation and libration. Cases of complete and partial filling of cavities with ideal liquid and complete filling with viscous liquid are treated. The volume presents a method for obtaining relations between angular velocities perpendicular to main rotation and external force momentums, which are treated as control. The developed models and methods of solving dynamical problems as well as numerical methods for solving problems of optimal control can be
Higher order coupling between rigid-body and elastic motion in flexible mechanisms
International Nuclear Information System (INIS)
Esat, I.I.; Ianakiev, A.
1995-01-01
The paper presents an investigation of the influence of the higher order coupling terms between the rigid-body and elastic motion into flexible mechanism dynamics. The configuration of the mechanical system is obtained by using the so called hybrid coordinates. The kinematic description of the mechanism was obtained using the D-H 4 x 4 transformation matrices. The elastic deformation of each point of the mechanism is described by the finite element modeling (FEM) type interpolation scheme. The dynamic model of the flexible mechanism consists due to the hybrid coordinates of two groups of differential equations. The first group describes the manipulator transport motion and the second group describes the vibration. In this paper the authors evaluated the contribution of the coupling terms between the two groups of differential equations and selected only those with high contribution
Motion control of rigid bodies in SE(3)
Roza, Ashton
This thesis investigates the control of motion for a general class of vehicles that rotate and translate in three-space, and are propelled by a thrust vector which has fixed direction in body frame. The thesis addresses the problems of path following and position control. For path following, a feedback linearization controller is presented that makes the vehicle follow an arbitrary closed curve while simultaneously allowing the designer to specify the velocity profile of the vehicle on the path and its heading. For position control, a two-stage approach is presented that decouples position control from attitude control, allowing for a modular design and yielding almost global asymptotic stability of any desired hovering equilibrium. The effectiveness of the proposed method is verified both in simulation and experimentally by means of a hardware-in-the-loop setup emulating a co-axial helicopter.
DEFF Research Database (Denmark)
Nielsen, Martin Bjerre; Krenk, Steen
2012-01-01
A conservative time integration algorithm for rigid body rotations is presented in a purely algebraic form in terms of the four quaternions components and the four conjugate momentum variables via Hamilton’s equations. The introduction of an extended mass matrix leads to a symmetric set of eight...
Rigid Body Time Integration by Convected Base Vectors with Implicit Constraints
DEFF Research Database (Denmark)
Krenk, Steen; Nielsen, Martin Bjerre
2013-01-01
of the kinetic energy used in the present formulation is deliberately chosen to correspond to a rigid body rotation, and the orthonormality constraints are introduced via the equivalent Green strain components of the base vectors. The particular form of the extended inertia tensor used here implies a set...
A rigid-body least-squares program with angular and translation scan facilities
Kutschabsky, L
1981-01-01
The described computer program, written in CERN Fortran, is designed to enlarge the convergence radius of the rigid-body least-squares method by allowing a stepwise change of the angular and/or translational parameters within a chosen range. (6 refs).
Diffusion-accomodated rigid-body translations along grain boundaries in nanostructured materials
International Nuclear Information System (INIS)
Bachurin, D.V.; Nazarov, A.A.; Shenderova, O.A.; Brenner, D.W.
2003-01-01
A model for the structural relaxation of grain boundaries (GBs) in nanostructured materials (NSMs) by diffusion-accommodated rigid body translations along GBs is proposed. The model is based on the results of recent computer simulations that have demonstrated that the GBs in NSMs retain a high-energy structure with random translational states due to severe geometrical constraints applied from neighboring grains (J. Appl. Phys. 78 (1995) 847; Scripta Metall. Mater. 33 (1995) 1245). The shear stresses within a GB caused by non-optimized rigid-body translations (RBTs) can be accommodated by diffusive flow of atoms along a GB. This mechanism is particularly important for low-angle and vicinal GBs, the energy of which noticeably depends on the rigid body translations. At moderate and high temperatures the model yields relaxation times that are very short and therefore GBs in NSMs can attain an equilibrium structure with optimized rigid body translations. In contrast, at room temperature the model predicts that in some metals non-equilibrium structures can be preserved for a long time, which may result in the observation of grain boundary structures different from those in coarse grained polycrystals
On the linear problem arising from motion of a fluid around a moving rigid body
Czech Academy of Sciences Publication Activity Database
Nečasová, Šárka; Wolf, J.
2015-01-01
Roč. 140, č. 2 (2015), s. 241-259 ISSN 0862-7959 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : incompressible fluid * rotating rigid body * strong solution Subject RIV: BA - General Mathematics http://hdl.handle.net/10338.dmlcz/144329
Reconstructing rotations and rigid body motions from exact point correspondences through reflections
Fontijne, D.; Dorst, L.; Dorst, L.; Lasenby, J.
2011-01-01
We describe a new algorithm to reconstruct a rigid body motion from point correspondences. The algorithm works by constructing a series of reflections which align the points with their correspondences one by one. This is naturally and efficiently implemented in the conformal model of geometric
Rigid Body Motion Calculated From Spatial Co-ordinates of Markers ...
African Journals Online (AJOL)
In this paper, we present a unified method for calculating spatial coordinates of markers for a rigid body motion such as in bones. Kinematical analysis of bone movement in cadaveric specimens or living objects had been developed. Here, we show how spatial co-ordinates of markers in or on bone can be calculated from ...
Flutter Instability of a Fluid-Conveying Fluid-Immersed Pipe Affixed to a Rigid Body
2011-01-01
rigid body, denoted by y in Fig. 4, is small. This is in addition to the Euler– Bernoulli beam assumption that the slope of the tail is small everywhere...here. These include the efficiency with which the prime mover can generate fluid momentum , pipe losses, and external drag acting on both the hull and the
Lorentz Contraction, Bell's Spaceships and Rigid Body Motion in Special Relativity
Franklin, Jerrold
2010-01-01
The meaning of Lorentz contraction in special relativity and its connection with Bell's spaceships parable is discussed. The motion of Bell's spaceships is then compared with the accelerated motion of a rigid body. We have tried to write this in a simple form that could be used to correct students' misconceptions due to conflicting earlier…
Lorentz contraction, Bell's spaceships and rigid body motion in special relativity
International Nuclear Information System (INIS)
Franklin, Jerrold
2010-01-01
The meaning of Lorentz contraction in special relativity and its connection with Bell's spaceships parable is discussed. The motion of Bell's spaceships is then compared with the accelerated motion of a rigid body. We have tried to write this in a simple form that could be used to correct students' misconceptions due to conflicting earlier treatments.
Reorientation of Asymmetric Rigid Body Using Two Controls
Directory of Open Access Journals (Sweden)
Donghoon Kim
2013-01-01
Full Text Available Most spacecrafts are designed to be maneuvered to achieve pointing goals. This is accomplished usually by designing a three-axis control system, which can achieve arbitrary maneuvers, where the goal is to repoint the spacecraft and match a desired angular velocity at the end of the maneuver. New control laws are required, however, if one of the three-axis control actuators fails. This paper explores suboptimal maneuver strategies when only two control torque inputs are available. To handle this underactuated system control problem, the three-axis maneuver strategy is transformed to two successive independent submaneuver strategies. The first maneuver is conducted on one of the available torque axes. Next, the second maneuver is conducted on the torque available plane using two available control torques. However, the resulting control law is more complicated than the general three-axis control law. This is because an optimal switch time needs to be found for determining the end time for the single-axis maneuver or the start time for the second maneuver. Numerical simulation results are presented that compare optimal maneuver strategies for both nominal and failed actuator cases.
Modeling meniscus rise in capillary tubes using fluid in rigid-body motion approach
Hamdan, Mohammad O.; Abu-Nabah, Bassam A.
2018-04-01
In this study, a new term representing net flux rate of linear momentum is introduced to Lucas-Washburn equation. Following a fluid in rigid-body motion in modeling the meniscus rise in vertical capillary tubes transforms the nonlinear Lucas-Washburn equation to a linear mass-spring-damper system. The linear nature of mass-spring-damper system with constant coefficients offers a nondimensional analytical solution where meniscus dynamics are dictated by two parameters, namely the system damping ratio and its natural frequency. This connects the numerous fluid-surface interaction physical and geometrical properties to rather two nondimensional parameters, which capture the underlying physics of meniscus dynamics in three distinct cases, namely overdamped, critically damped, and underdamped systems. Based on experimental data available in the literature and the understanding meniscus dynamics, the proposed model brings a new approach of understanding the system initial conditions. Accordingly, a closed form relation is produced for the imbibition velocity, which equals half of the Bosanquet velocity divided by the damping ratio. The proposed general analytical model is ideal for overdamped and critically damped systems. While for underdamped systems, the solution shows fair agreement with experimental measurements once the effective viscosity is determined. Moreover, the presented model shows meniscus oscillations around equilibrium height occur if the damping ratio is less than one.
Directory of Open Access Journals (Sweden)
S Hadji
2008-09-01
Full Text Available This study deals with the simulation of transport and interaction betweenbodies considered as a rectangular shape particles, in urban flow. We usedan hydrodynamic two-dimensional finite elements model coupled to theparticles model based on Maxey-Riley equations, and taking into accountof contact between bodies. The finite element discretization is based onthe velocity field richer than pressure field, and the particles displacementsare computed by using a rigid body motion method. A collision strategy isalso developed to handle cases in which bodies touch.
On the monoaxial stabilization of a rigid body under vanishing restoring torque
Aleksandrov, A. Yu.; Aleksandrova, E. B.; Tikhonov, A. A.
2018-05-01
The problem of monoaxial stabilization of a rigid body is studied. It is assumed that a linear time-invariant dissipative torque and a time-varying restoring torque vanishing as time increases act on the body. Both the case of linear restoring torque and that of essentially nonlinear one are considered. With the aid of the decomposition method, conditions are obtained under which we can guarantee the asymptotic stability of an equilibrium position of the body despite the vanishing of the restoring torque. A numerical simulation is provided to demonstrate the effectiveness of our theoretical results.
Efficient time-symmetric simulation of torqued rigid bodies using Jacobi elliptic functions
International Nuclear Information System (INIS)
Celledoni, E; Saefstroem, N
2006-01-01
If the three moments of inertia are distinct, the solution to the Euler equations for the free rigid body is given in terms of Jacobi elliptic functions. Using the arithmetic-geometric mean algorithm (Abramowitz and Stegun 1992 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover)), these functions can be calculated efficiently and accurately. Compared to standard numerical ODE and Lie-Poisson solvers, the overall approach yields a faster and more accurate numerical solution to the Euler equations. This approach is designed for mass asymmetric rigid bodies. In the case of symmetric bodies, the exact solution is available in terms of trigonometric functions, see Dullweber et al (1997 J. Chem. Phys. 107 5840-51), Reich (1996 Fields Inst. Commun. 10 181-91) and Benettin et al (2001 SIAM J. Sci. Comp. 23 1189-203) for details. In this paper, we consider the case of asymmetric rigid bodies subject to external forces. We consider a strategy similar to the symplectic splitting method proposed in Reich (1996 Fields Inst. Commun. 10 181-91) and Dullweber et al (1997 J. Chem. Phys. 107 5840-51). The method proposed here is time-symmetric. We decompose the vector field of our problem into a free rigid body (FRB) problem and another completely integrable vector field. The FRB problem consists of the Euler equations and a differential equation for the 3 x 3 orientation matrix. The Euler equations are integrated exactly while the matrix equation is approximated using a truncated Magnus series. In our experiments, we observe that the overall numerical solution benefits greatly from the very accurate solution of the Euler equations. We apply the method to the heavy top and the simulation of artificial satellite attitude dynamics
High-order conservative discretizations for some cases of the rigid body motion
International Nuclear Information System (INIS)
Kozlov, Roman
2008-01-01
Modified vector fields can be used to construct high-order structure-preserving numerical integrators for ordinary differential equations. In the present Letter we consider high-order integrators based on the implicit midpoint rule, which conserve quadratic first integrals. It is shown that these integrators are particularly suitable for the rigid body motion with an additional quadratic first integral. In this case high-order integrators preserve all four first integrals of motion. The approach is illustrated on the Lagrange top (a rotationally symmetric rigid body with a fixed point on the symmetry axis). The equations of motion are considered in the space fixed frame because in this frame Lagrange top admits a neat description. The Lagrange top motion includes the spherical pendulum and the planar pendulum, which swings in a vertical plane, as particular cases
Research on Rigid Body Motion Tracing in Space based on NX MCD
Wang, Junjie; Dai, Chunxiang; Shi, Karen; Qin, Rongkang
2018-03-01
In the use of MCD (Mechatronics Concept Designer) which is a module belong to SIEMENS Ltd industrial design software UG (Unigraphics NX), user can define rigid body and kinematic joint to make objects move according to the existing plan in simulation. At this stage, user may have the desire to see the path of some points in the moving object intuitively. In response to this requirement, this paper will compute the pose through the transformation matrix which can be available from the solver engine, and then fit these sampling points through B-spline curve. Meanwhile, combined with the actual constraints of rigid bodies, the traditional equal interval sampling strategy was optimized. The result shown that this method could satisfy the demand and make up for the deficiency in traditional sampling method. User can still edit and model on this 3D curve. Expected result has been achieved.
Aoun, Bachir
2016-05-05
A new Reverse Monte Carlo (RMC) package "fullrmc" for atomic or rigid body and molecular, amorphous, or crystalline materials is presented. fullrmc main purpose is to provide a fully modular, fast and flexible software, thoroughly documented, complex molecules enabled, written in a modern programming language (python, cython, C and C++ when performance is needed) and complying to modern programming practices. fullrmc approach in solving an atomic or molecular structure is different from existing RMC algorithms and software. In a nutshell, traditional RMC methods and software randomly adjust atom positions until the whole system has the greatest consistency with a set of experimental data. In contrast, fullrmc applies smart moves endorsed with reinforcement machine learning to groups of atoms. While fullrmc allows running traditional RMC modeling, the uniqueness of this approach resides in its ability to customize grouping atoms in any convenient way with no additional programming efforts and to apply smart and more physically meaningful moves to the defined groups of atoms. In addition, fullrmc provides a unique way with almost no additional computational cost to recur a group's selection, allowing the system to go out of local minimas by refining a group's position or exploring through and beyond not allowed positions and energy barriers the unrestricted three dimensional space around a group. © 2016 Wiley Periodicals, Inc.
The motion of the rigid body in viscous fluid including collisions. Global solvability result
Czech Academy of Sciences Publication Activity Database
Chemetov, N.; Nečasová, Šárka
2017-01-01
Roč. 34, April (2017), s. 416-445 ISSN 1468-1218 R&D Projects: GA ČR GA16-03230S Institutional support: RVO:67985840 Keywords : rigid body * global weak solution * collisions in finite time Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.659, year: 2016 http://www.sciencedirect.com/science/article/pii/S1468121816301146
Estimation of the ground shaking from the response of rigid bodies
Directory of Open Access Journals (Sweden)
Filomena de Silva
2016-12-01
Full Text Available The paper illustrates and compares simplified approaches to interpret the mechanisms of damage observed on rigid bodies in the cemetery of Amatrice, after the main shock (August 24, 2016, MW=6.0 of the Central Italy earthquake. The final goal of the work is to link the observed movements of the fallen objects to specific characteristics of the ground motion occurred at the specific site.
Rigid-body displacement perpendicular to a {211} twin boundary in Mo
Czech Academy of Sciences Publication Activity Database
Gemperlová, Juliana; Vystavěl, Tomáš; Gemperle, Antonín; Pénisson, J. M.
2001-01-01
Roč. 31, č. 11 (2001), s. 1767-1778 ISSN 0141-8637 R&D Projects: GA AV ČR IAA1010916; GA ČR GA202/99/1665 Institutional research plan: CEZ:AV0Z1010914 Keywords : sigma=3 Mo bicrystal * rigid-body displacement * alfa- fringe method Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.238, year: 2001
DEFF Research Database (Denmark)
Sönmez, Ümit; Tutum, Cem Celal
2008-01-01
In this work, a new compliant bistable mechanism design is introduced. The combined use of pseudo-rigid-body model (PRBM) and the Elastica buckling theory is presented for the first time to analyze the new design. This mechanism consists of the large deflecting straight beams, buckling beams...... and the buckling Elastica solution for an original compliant mechanism kinematic analysis. New compliant mechanism designs are presented to highlight where such combined kinematic analysis is required....
On Classical Dynamics of Affinely-Rigid Bodies Subject to the Kirchhoff-Love Constraints
Directory of Open Access Journals (Sweden)
Vasyl Kovalchuk
2010-04-01
Full Text Available In this article we consider the affinely-rigid body moving in the three-dimensional physical space and subject to the Kirchhoff-Love constraints, i.e., while it deforms homogeneously in the two-dimensional central plane of the body it simultaneously performs one-dimensional oscillations orthogonal to this central plane. For the polar decomposition we obtain the stationary ellipsoids as special solutions of the general, strongly nonlinear equations of motion. It is also shown that these solutions are conceptually different from those obtained earlier for the two-polar (singular value decomposition.
Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid
Ramodanov, Sergey M.; Tenenev, Valentin A.; Treschev, Dmitry V.
2012-11-01
We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are presented in the form of the Kirchhoff equations. The integrals of motion are given in the case of piecewise continuous control. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. Then an optimal control problem for several types of the inputs is solved using genetic algorithms.
National Research Council Canada - National Science Library
Chu, Peter C; Fan, Chenwu; Gefken, Paul R
2008-01-01
Prediction of rigid body falling through water column with a high speed (such as Mk-84 bomb) needs formulas for drag/lift and torque coefficients, which depend on various physical processes such as supercavitation and bubbles...
Directory of Open Access Journals (Sweden)
Svetoslav Ganchev Nikolov
2015-07-01
Full Text Available The study of the dynamic behavior of a rigid body with one fixed point (gyroscope has a long history. A number of famous mathematicians and mechanical engineers have devoted enormous time and effort to clarify the role of dynamic effects on its movement (behavior – stable, periodic, quasi-periodic or chaotic. The main objectives of this review are: 1 to outline the characteristic features of the theory of dynamical systems and 2 to reveal the specific properties of the motion of a rigid body with one fixed point (gyroscope.This article consists of six sections. The first section addresses the main concepts of the theory of dynamical systems. Section two presents the main theoretical results (obtained so far concerning the dynamic behavior of a solid with one fixed point (gyroscope. Section three examines the problem of gyroscopic stabilization. Section four deals with the non-linear (chaotic dynamics of the gyroscope. Section five is a brief analysis of the gyroscope applications in engineering. The final section provides conclusions and generalizations on why the theory of dynamical systems should be used in the study of the movement of gyroscopic systems.
International Nuclear Information System (INIS)
Zhang Xuping; Mills, James K.; Cleghorn, William L.
2009-01-01
Modeling of multibody dynamics with flexible links is a challenging task, which not only involves the effect of rigid body motion on elastic deformations, but also includes the influence of elastic deformations on rigid body motion. This paper presents coupling characteristics of rigid body motions and elastic motions of a 3-PRR parallel manipulator with three flexible intermediate links. The intermediate links are modeled as Euler-Bernoulli beams with pinned-pinned boundary conditions based on the assumed mode method (AMM). Using Lagrange multipliers, the fully coupled equations of motions of the flexible parallel manipulator are developed by incorporating the rigid body motions with elastic motions. The mutual dependence of elastic deformations and rigid body motions are investigated from the analysis of the derived equations of motion. Open-loop simulation without joint motion controls and closed-loop simulation with joint motion controls are performed to illustrate the effect of elastic motion on rigid body motions and the coupling effect amongst flexible links. These analyses and results provide valuable insight to the design and control of the parallel manipulator with flexible intermediate links
The general problem of the motion of coupled rigid bodies about a fixed point
Leimanis, Eugene
1965-01-01
In the theory of motion of several coupled rigid bodies about a fixed point one can distinguish three basic ramifications. 1. The first, the so-called classical direction of investigations, is concerned with particular cases of integrability ot the equations of motion of a single rigid body about a fixed point,1 and with their geo metrical interpretation. This path of thought was predominant until the beginning of the 20th century and its most illustrious represen tatives are L. EULER (1707-1783), J L. LAGRANGE (1736-1813), L. POINSOT (1777-1859), S. V. KOVALEVSKAYA (1850-1891), and others. Chapter I of the present monograph intends to reflect this branch of investigations. For collateral reading on the general questions dealt with in this chapter the reader is referred to the following textbooks and reports: A. DOMOGAROV [1J, F. KLEIN and A. SOMMERFELD [11, 1 , 1 J, A. G. 2 3 GREENHILL [10J, A. GRAY [1J, R. GRAMMEL [4 J, E. J. ROUTH [21' 2 , 1 2 31' 32J, J. B. SCARBOROUGH [1J, and V. V. GOLUBEV [1, 2J.
Dynamic Behavior of Wind Turbine by a Mixed Flexible-Rigid Multi-Body Model
Wang, Jianhong; Qin, Datong; Ding, Yi
A mixed flexible-rigid multi-body model is presented to study the dynamic behavior of a horizontal axis wind turbine. The special attention is given to flexible body: flexible rotor is modeled by a newly developed blade finite element, support bearing elasticities, variations in the number of teeth in contact as well as contact tooth's elasticities are mainly flexible components in the power train. The couple conditions between different subsystems are established by constraint equations. The wind turbine model is generated by coupling models of rotor, power train and generator with constraint equations together. Based on this model, an eigenproblem analysis is carried out to show the mode shape of rotor and power train at a few natural frequencies. The dynamic responses and contact forces among gears under constant wind speed and fixed pitch angle are analyzed.
Biomimetic model systems of rigid hair beds: Part I - Theory
Hood, Kaitlyn; Jammalamadaka, Mani S. S.; Hosoi, Anette
2017-11-01
Crustaceans - such as lobsters, crabs, and stomapods - have hairy appendages that they use to recognize and track odorants in the surrounding fluid. An array of rigid hairs impedes flow at different rates depending on the spacing between hairs and the Reynolds number, Re. At larger Reynolds numbers (Re >1), fluid travels through the hairs rather than around them, a phenomenon called leakiness. Crustaceans flick their appendages at different speeds in order to manipulate the leakiness between the hairs, allowing the hairs to either detect odors in a sample of fluid or collect a new sample. A single hair can be represented as a slender body attached at one end to a wall. Using both slender body theory and numerical methods, we observe that there is a region of flow around the hair that speeds up relative to the unobstructed flow. As the Reynolds number increases, this fast flow region moves closer to the hair. Using this model, we predict that an array of hairs can be engineered to have a desired leakiness profile.
Constrained non-rigid registration for whole body image registration: method and validation
Li, Xia; Yankeelov, Thomas E.; Peterson, Todd E.; Gore, John C.; Dawant, Benoit M.
2007-03-01
3D intra- and inter-subject registration of image volumes is important for tasks that include measurements and quantification of temporal/longitudinal changes, atlas-based segmentation, deriving population averages, or voxel and tensor-based morphometry. A number of methods have been proposed to tackle this problem but few of them have focused on the problem of registering whole body image volumes acquired either from humans or small animals. These image volumes typically contain a large number of articulated structures, which makes registration more difficult than the registration of head images, to which the vast majority of registration algorithms have been applied. To solve this problem, we have previously proposed an approach, which initializes an intensity-based non-rigid registration algorithm with a point based registration technique [1, 2]. In this paper, we introduce new constraints into our non-rigid registration algorithm to prevent the bones from being deformed inaccurately. Results we have obtained show that the new constrained algorithm leads to better registration results than the previous one.
In silico single-molecule manipulation of DNA with rigid body dynamics.
Directory of Open Access Journals (Sweden)
Pascal Carrivain
2014-02-01
Full Text Available We develop a new powerful method to reproduce in silico single-molecule manipulation experiments. We demonstrate that flexible polymers such as DNA can be simulated using rigid body dynamics thanks to an original implementation of Langevin dynamics in an open source library called Open Dynamics Engine. We moreover implement a global thermostat which accelerates the simulation sampling by two orders of magnitude. We reproduce force-extension as well as rotation-extension curves of reference experimental studies. Finally, we extend the model to simulations where the control parameter is no longer the torsional strain but instead the torque, and predict the expected behavior for this case which is particularly challenging theoretically and experimentally.
Conservative rigid body dynamics by convected base vectors with implicit constraints
DEFF Research Database (Denmark)
Krenk, Steen; Nielsen, Martin Bjerre
2014-01-01
of differential equations without additional algebraic constraints on the base vectors. A discretized form of the equations of motion is obtained by starting from a finite time increment of the Hamiltonian, and retracing the steps of the continuous formulation in discrete form in terms of increments and mean...... of the base vectors. Orthogonality and unit length of the base vectors are imposed by constraining the equivalent Green strain components, and the kinetic energy is represented corresponding to rigid body motion. The equations of motion are obtained via Hamilton’s equations including the zero...... values over each integration time increment. In this discrete form the Lagrange multipliers are given in terms of a representative value within the integration time interval, and the equations of motion are recast into a conservative mean-value and finite difference format. The Lagrange multipliers...
Conservative integration of rigid body motion by quaternion parameters with implicit constraints
DEFF Research Database (Denmark)
Nielsen, Martin Bjerre; Krenk, Steen
2012-01-01
An angular momentum and energy‐conserving time integration algorithm for rigid body rotation is formulated in terms of the quaternion parameters and the corresponding four‐component conjugate momentum vector via Hamilton's equations. The introduction of an extended mass matrix leads to a symmetric...... these equations via the set of momentum equations. Initially, the normalization of the quaternion array is introduced via a Lagrange multiplier. However, this Lagrange multiplier can be expressed explicitly in terms of the gradient of the external load potential, and elimination of the Lagrange multiplier from...... the final format leaves only an explicit projection applied to the external load potential gradient. An algorithm is developed by forming a finite increment of the Hamiltonian. This procedure identifies the proper selection of increments and mean values, and leads to an algorithm with conservation...
Khmurovska, Y.; Štemberk, P.; Křístek, V.
2017-09-01
This paper presents a numerical investigation of effectiveness of using engineered cementitious composites with polyvinyl alcohol fibers for concrete cover layer repair. A numerical model of a monolithic concaved L-shaped concrete structural detail which is strengthened with an engineered cementitious composite layer with polyvinyl alcohol fibers is created and loaded with bending moment. The numerical analysis employs nonlinear 3-D Rigid-Body-Spring Model. The proposed material model shows reliable results and can be used in further studies. The engineered cementitious composite shows extremely good performance in tension due to the strain-hardening effect. Since durability of the bond can be decreased significantly by its degradation due to the thermal loading, this effect should be also taken into account in the future work, as well as the experimental investigation, which should be performed for validation of the proposed numerical model.
Free Energy Landscapes of Alanine Oligopeptides in Rigid-Body and Hybrid Water Models.
Nayar, Divya; Chakravarty, Charusita
2015-08-27
Replica exchange molecular dynamics is used to study the effect of different rigid-body (mTIP3P, TIP4P, SPC/E) and hybrid (H1.56, H3.00) water models on the conformational free energy landscape of the alanine oligopeptides (acAnme and acA5nme), in conjunction with the CHARMM22 force field. The free energy landscape is mapped out as a function of the Ramachandran angles. In addition, various secondary structure metrics, solvation shell properties, and the number of peptide-solvent hydrogen bonds are monitored. Alanine dipeptide is found to have similar free energy landscapes in different solvent models, an insensitivity which may be due to the absence of possibilities for forming i-(i + 4) or i-(i + 3) intrapeptide hydrogen bonds. The pentapeptide, acA5nme, where there are three intrapeptide backbone hydrogen bonds, shows a conformational free energy landscape with a much greater degree of sensitivity to the choice of solvent model, though the three rigid-body water models differ only quantitatively. The pentapeptide prefers nonhelical, non-native PPII and β-sheet populations as the solvent is changed from SPC/E to the less tetrahedral liquid (H1.56) to an LJ-like liquid (H3.00). The pentapeptide conformational order metrics indicate a preference for open, solvent-exposed, non-native structures in hybrid solvent models at all temperatures of study. The possible correlations between the properties of solvent models and secondary structure preferences of alanine oligopeptides are discussed, and the competition between intrapeptide, peptide-solvent, and solvent-solvent hydrogen bonding is shown to be crucial in the relative free energies of different conformers.
International Nuclear Information System (INIS)
Guan, P B; Tingatinga, E A; Longalong, R E; Saguid, J
2016-01-01
During the past decades, the complexity of conventional methods to perform seismic performance assessment of buildings led to the development of more effective approaches. The rigid body spring-discrete element method (RBS-DEM) is one of these approaches and has recently been applied to the study of the behavior of reinforced concrete (RC) buildings subjected to strong earthquakes. In this paper, the governing equations of RBS-DEM planar elements subjected to lateral loads and horizontal ground motion are presented and used to replicate the hysteretic behavior of experimental RC columns. The RBS-DEM models of columns are made up of rigid components connected by systems of springs that simulate axial, shear, and bending behavior of an RC section. The parameters of springs were obtained using Response-2000 software and the hysteretic response of the models of select columns from the Pacific Earthquake Engineering Research (PEER) Structural Performance Database were computed numerically. Numerical examples show that one-component models were able to simulate the initial stiffness reasonably, while the displacement capacity of actual columns undergoing large displacements were underestimated. (paper)
Nakashima, Motomu; Satou, Ken; Miura, Yasufumi
The purpose of this study is to develop a swimming human simulation model considering rigid body dynamics and unsteady fluid force for the whole body, which will be utilized to analyze various dynamical problems in human swimming. First, the modeling methods and their formulations for the human body and the fluid force are respectively described. Second, experiments to identify the coefficients of the normal drag and the added mass are conducted by use of an experimental setup, in which a limb model rotates in the water, and its rotating angle and the bending moment at the root are measured. As the result of the identification, the present model for the fluid force was found to have satisfactory performance in order to represent the unsteady fluctuations of the experimental data, although it has 10% error. Third, a simulation for the gliding position is conducted in order to identify the tangential drag coefficient. Finally, a simulation example of standard six beat front crawl swimming is shown. The swimming speed of the simulation became a reasonable value, indicating the validity of the present simulation model, although it is 7.5% lower than the actual swimming.
iCub Whole-body Control through Force Regulation on Rigid Noncoplanar Contacts
Directory of Open Access Journals (Sweden)
Francesco eNori
2015-03-01
Full Text Available This paper details the implementation on the humanoid robot iCub of state-of-the-art algorithms for whole-body control. We regulate the forces between the robot and its surrounding environment to stabilize a desired robot posture. We assume that the forces and torques are exerted on rigid contacts. The validity of this assumption is guaranteed by constraining the contact forces and torques, e.g. the contact forces must belong to the associated friction cones. The implementation of this control strategy requires to estimate the external forces acting on the robot, and the internal joint torques. We then detail algorithms to obtain these estimations when using a robot with an iCub-like sensor set, i.e. distributed six-axis force-torque sensors and whole-body tactile sensors. A general theory for identifying the robot inertial parameters is also presented. From an actuation standpoint, we show how to implement a joint torque control in the case of DC brushless motors. In addition, the coupling mechanism of the iCub torso is investigated. The soundness of the entire control architecture is validated in a real scenario involving the robot iCub balancing and making contacts at both arms.
International Nuclear Information System (INIS)
Cardou, Philippe; Angeles, Jorge
2008-01-01
Two methods are available for the estimation of the angular velocity of a rigid body from point-acceleration measurements: (i) the time-integration of the angular acceleration and (ii) the square-rooting of the centripetal acceleration. The inaccuracy of the first method is due mainly to the accumulation of the error on the angular acceleration throughout the time-integration process, which does not prevent that it be used successfully in crash tests with dummies, since these experiments never last more than one second. On the other hand, the error resulting from the second method is stable through time, but becomes inaccurate whenever the rigid body angular velocity approaches zero, which occurs in many applications. In order to take advantage of the complementarity of these two methods, a fusion of their estimates is proposed. To this end, the accelerometer measurements are modeled as exact signals contaminated with bias errors and Gaussian white noise. The relations between the variables at stake are written in the form of a nonlinear state-space system in which the angular velocity and the angular acceleration are state variables. Consequently, a minimum-variance-error estimate of the state vector is obtained by means of extended Kalman filtering. The performance of the proposed estimation method is assessed by means of simulation. Apparently, the resulting estimation method is more robust than the existing accelerometer-only methods and competitive with gyroscope measurements. Moreover, it allows the identification and the compensation of any bias error in the accelerometer measurements, which is a significant advantage over gyroscopes
Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis
2008-08-01
The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries, Journal of Computational Physics 225 (2007) 1782-1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions the FSI algorithm is unconditionally unstable even when strong coupling FSI is employed. For such cases, however, combining the strong coupling iteration with under-relaxation in conjunction with the Aitken's acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the FSI
Czech Academy of Sciences Publication Activity Database
Ducomet, B.; Nečasová, Šárka
2013-01-01
Roč. 6, č. 5 (2013), s. 1193-1213 ISSN 1937-1632 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : motion of rigid bodies * incompressible fluid * compressible fluid Subject RIV: BA - General Mathematics https://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=8331
Directory of Open Access Journals (Sweden)
Justin Rubena Lumaya
2016-02-01
Full Text Available Foreign body aspiration is an important cause of mortality in children aged less than three years. Foreign body (FB inhalation can pose diagnostic and therapeutic challenges, especially in longstanding cases and complications such as recurrent pneumonia, lung collapse and lung abscess may develop. We report a case of an 11-year old boy with foreign body impacted in his bronchus for six years, which was mistakenly managed as pulmonary tuberculosis. Radiological evidence confirmed the diagnosis and a rigid bronchoscopy was used to remove the metallic foreign body. The standard of care for the management of a FB in a bronchus is a rigid bronchoscopy; however flexible bronchoscopy can be used, especially in adults. A thorough history with radiological evidence are essential and sometimes, followed by a diagnostic bronchoscopy.
A navigator-based rigid body motion correction for magnetic resonance imaging
International Nuclear Information System (INIS)
Ullisch, Marcus Goerge
2012-01-01
A novel three-dimensional navigator k-space trajectory for rigid body motion detection for Magnetic Resonance Imaging (MRI) - the Lissajous navigator - was developed and quantitatively compared to the existing spherical navigator trajectory [1]. The spherical navigator cannot sample the complete spherical surface due to slew rate limitations of the scanner hardware. By utilizing a two dimensional Lissajous figure which is projected onto the spherical surface, the Lissajous navigator overcomes this limitation. The complete sampling of the sphere consequently leads to rotation estimates with higher and more isotropic accuracy. Simulations and phantom measurements were performed for both navigators. Both simulations and measurements show a significantly higher overall accuracy of the Lissajous navigator and a higher isotropy of the rotation estimates. Measured under identical conditions with identical postprocessing, the measured mean absolute error of the rotation estimates for the Lissajous navigator was 38% lower (0.3 ) than for the spherical navigator (0.5 ). The maximum error of the Lissajous navigator was reduced by 48% relative to the spherical navigator. The Lissajous navigator delivers higher accuracy of rotation estimation and a higher degree of isotropy than the spherical navigator with no evident drawbacks; these are two decisive advantages, especially for high-resolution anatomical imaging.
EDF fragment relocation model based on the displacement of rigid bodies
International Nuclear Information System (INIS)
Callu, C.; Baron, D.; Ruck, J.M.
1997-01-01
In order to release the restricting conditions imposed to the reactor operations with regards to PCMI (Pellet-Cladding Mechanical Interaction), the simulation of a fuel rod thermomechanical behavior has to be improved. The computer programming has to cope with the more and more sophisticated mathematical modellings induced by the complexity and the interdependence of the phenomena. Therefore EDF is developing a new code - CYRANO3 - since 1990 putting emphasis on its evolution capacities. Concerning more precisely the PCMI simulation, the pellet fragmentation and the fragments relocation is one of the major aspect one must account for. Thanks to recent analytical experiments, EDF developed a new modelling based on the displacement of rigid bodies and on the calculation of the interaction efforts between the fragments. This paper presents the basis of the model, its introduction within the CYRANO3 code and its calibration on a specific analytical experiment. The modelling is then tested against PWR fuel rods deformations from the EDF data base. The results are presented and discussed. (author)
A navigator-based rigid body motion correction for magnetic resonance imaging
Energy Technology Data Exchange (ETDEWEB)
Ullisch, Marcus Goerge
2012-01-24
A novel three-dimensional navigator k-space trajectory for rigid body motion detection for Magnetic Resonance Imaging (MRI) - the Lissajous navigator - was developed and quantitatively compared to the existing spherical navigator trajectory [1]. The spherical navigator cannot sample the complete spherical surface due to slew rate limitations of the scanner hardware. By utilizing a two dimensional Lissajous figure which is projected onto the spherical surface, the Lissajous navigator overcomes this limitation. The complete sampling of the sphere consequently leads to rotation estimates with higher and more isotropic accuracy. Simulations and phantom measurements were performed for both navigators. Both simulations and measurements show a significantly higher overall accuracy of the Lissajous navigator and a higher isotropy of the rotation estimates. Measured under identical conditions with identical postprocessing, the measured mean absolute error of the rotation estimates for the Lissajous navigator was 38% lower (0.3 ) than for the spherical navigator (0.5 ). The maximum error of the Lissajous navigator was reduced by 48% relative to the spherical navigator. The Lissajous navigator delivers higher accuracy of rotation estimation and a higher degree of isotropy than the spherical navigator with no evident drawbacks; these are two decisive advantages, especially for high-resolution anatomical imaging.
Patel, Jitendra Kumar; Natarajan, Ganesh
2018-05-01
We present an interpolation-free diffuse interface immersed boundary method for multiphase flows with moving bodies. A single fluid formalism using the volume-of-fluid approach is adopted to handle multiple immiscible fluids which are distinguished using the volume fractions, while the rigid bodies are tracked using an analogous volume-of-solid approach that solves for the solid fractions. The solution to the fluid flow equations are carried out using a finite volume-immersed boundary method, with the latter based on a diffuse interface philosophy. In the present work, we assume that the solids are filled with a "virtual" fluid with density and viscosity equal to the largest among all fluids in the domain. The solids are assumed to be rigid and their motion is solved using Newton's second law of motion. The immersed boundary methodology constructs a modified momentum equation that reduces to the Navier-Stokes equations in the fully fluid region and recovers the no-slip boundary condition inside the solids. An implicit incremental fractional-step methodology in conjunction with a novel hybrid staggered/non-staggered approach is employed, wherein a single equation for normal momentum at the cell faces is solved everywhere in the domain, independent of the number of spatial dimensions. The scalars are all solved for at the cell centres, with the transport equations for solid and fluid volume fractions solved using a high-resolution scheme. The pressure is determined everywhere in the domain (including inside the solids) using a variable coefficient Poisson equation. The solution to momentum, pressure, solid and fluid volume fraction equations everywhere in the domain circumvents the issue of pressure and velocity interpolation, which is a source of spurious oscillations in sharp interface immersed boundary methods. A well-balanced algorithm with consistent mass/momentum transport ensures robust simulations of high density ratio flows with strong body forces. The
International Nuclear Information System (INIS)
Unseren, M.A.
1997-01-01
The paper reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restrict the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system
Energy Technology Data Exchange (ETDEWEB)
Unseren, M.A.
1997-04-20
The paper reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restrict the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.
Simulating coupled dynamics of a rigid-flexible multibody system and compressible fluid
Hu, Wei; Tian, Qiang; Hu, HaiYan
2018-04-01
As a subsequent work of previous studies of authors, a new parallel computation approach is proposed to simulate the coupled dynamics of a rigid-flexible multibody system and compressible fluid. In this approach, the smoothed particle hydrodynamics (SPH) method is used to model the compressible fluid, the natural coordinate formulation (NCF) and absolute nodal coordinate formulation (ANCF) are used to model the rigid and flexible bodies, respectively. In order to model the compressible fluid properly and efficiently via SPH method, three measures are taken as follows. The first is to use the Riemann solver to cope with the fluid compressibility, the second is to define virtual particles of SPH to model the dynamic interaction between the fluid and the multibody system, and the third is to impose the boundary conditions of periodical inflow and outflow to reduce the number of SPH particles involved in the computation process. Afterwards, a parallel computation strategy is proposed based on the graphics processing unit (GPU) to detect the neighboring SPH particles and to solve the dynamic equations of SPH particles in order to improve the computation efficiency. Meanwhile, the generalized-alpha algorithm is used to solve the dynamic equations of the multibody system. Finally, four case studies are given to validate the proposed parallel computation approach.
Comparison of rigid and flexible endoscopy for removing esophageal foreign bodies in an emergency.
Tseng, Chia-Chen; Hsiao, Tzu-Yu; Hsu, Wei-Chung
2016-08-01
Despite the effectiveness of endoscopies in removing ingested foreign bodies (FBs) impacted in the esophagus, the merits and limitations of flexible endoscopy (FE) and rigid endoscopy (RE) remain unclear. Therefore, this study compares the advantages and disadvantages of both endoscopic procedures from a clinical perspective. A retrospective review was made of 273 patients suspected of esophageal FBs in emergency consultations of a tertiary medical referral center from March 2010 to March 2014. All patients received routine physical examinations, otolaryngological examinations, and X-rays of the neck and chest. The door-to-endoscopy time, procedure time, postendoscopic hospital stay, successful removal rates, and complications were analyzed as well. In this study, the most common esophageal FBs were fish and animal bones (76%) in adults and coins (74%) in children. The patients with existing esophageal FBs had significantly more frequent symptoms of dysphagia and signs of linear opacity as detected with lateral neck radiography than those without FB. Additionally, the door-to-endoscopy time, procedure time, and postendoscopic hospital stay was significantly shorter in FE patients than in RE patients. However, both RE and FE patients had high rates of successful FB removal (95%) and low complication rates (2%). Both FE and RE remove esophageal FBs successfully, as evidenced by their high success rates, low complication rates, and high detection rates. Although FE under local anesthesia is a less time-consuming procedure for adults, RE under general anesthesia may be preferable for children and can serve as an alternative to FE. Copyright © 2015. Published by Elsevier B.V.
Directory of Open Access Journals (Sweden)
Jeng Hei Chow
2016-07-01
Full Text Available An implicit method of solving the six degree-of-freedom rigid body motion equations based on the second order Adams-Bashforth-Moulten method was utilised as an improvement over the leapfrog scheme by making modifications to the rigid body motion solver libraries directly. The implementation will depend on predictor-corrector steps still residing within the hybrid Pressure Implicit with Splitting of Operators - Semi-Implicit Method for Pressure Linked Equations (PIMPLE outer corrector loops to ensure strong coupling between fluid and motion. Aitken's under-relaxation is also introduced in this study to optimise the convergence rate and stability of the coupled solver. The resulting coupled solver ran on a free floating object tutorial test case when converged matches the original solver. It further allows a varying 70%–80% reduction in simulation times compared using a fixed under-relaxation to achieve the required stability.
Shan, Gongbing; Sust, Martin; Simard, Stephane; Bohn, Christina; Nicol, Klaus
2004-01-01
There are two main problems for biomechanists in motor learning practice. One is theory vs. experience, the other is the determination of dominative information directly helpful in the practice. This project aimed at addressing these problems from a quantitative aspect by using motion capture and biomechanical rigid body modeling. The purposes were to identify differences in the description of movements amongst motion analysists (external view), athletes (internal sight) and coaches (internal...
Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements
International Nuclear Information System (INIS)
Garcia-Vallejo, D.; Mayo, J.; Escalona, J. L.; Dominguez, J.
2008-01-01
Multibody systems generally contain solids with appreciable deformations and which decisively influence the dynamics of the system. These solids have to be modeled by means of special formulations for flexible solids. At the same time, other solids are of such a high stiffness that they may be considered rigid, which simplifies their modeling. For these reasons, for a rigid-flexible multibody system, two types of formulations coexist in the equations of the system. Among the different possibilities provided in the literature on the material, the formulation in natural coordinates and the formulation in absolute nodal coordinates are utilized in this paper to model the rigid and flexible solids, respectively. This paper contains a mixed formulation based on the possibility of sharing coordinates between a rigid solid and a flexible solid. The global mass matrix of the system is shown to be constant and, in addition, many of the constraint equations obtained upon utilizing these formulations are linear and can be eliminated
Biomimetic model systems of rigid hair beds: Part II - Experiment
Jammalamadaka, Mani S. S.; Hood, Kaitlyn; Hosoi, Anette
2017-11-01
Crustaceans - such as lobsters, crabs and stomapods - have hairy appendages that they use to recognize and track odorants in the surrounding fluid. An array of rigid hairs impedes flow at different rates depending on the spacing between hairs and the Reynolds number, Re. At larger Reynolds number (Re>1), fluid travels through the hairs rather than around them, a phenomenon called leakiness. Crustaceans flick their appendages at different speeds in order to manipulate the leakiness between the hairs, allowing the hairs to either detect the odors in a sample of fluid or collect a new sample. Theoretical and numerical studies predict that there is a fast flow region near the hairs that moves closer to the hairs as Re increases. Here, we test this theory experimentally. We 3D printed rigid hairs with an aspect ratio of 30:1 in rectangular arrays with different hair packing fractions. We custom built an experimental setup which establishes poiseuille flow at intermediate Re, Re <=200. We track the flow dynamics through the hair beds using tracer particles and Particle Imaging Velocimetry. We will then compare the modelling predictions with the experimental outcomes.
Composite Sliding Mode Control for a Free-Floating Space Rigid-Flexible Coupling Manipulator System
Congqing, Wang; Pengfei, Wu; Xin, Zhou; Xiwu, Pei
2013-01-01
The flexible space manipulator is a highly nonlinear and coupled dynamic system. This paper proposes a novel composite sliding mode control to deal with the vibration suppression and trajectory tracking of a free-floating space rigid-flexible coupling manipulator with a rigid payload. First, the dynamic equations of this system are established by using Lagrange and assumed mode methods and in the meantime this dynamic modelling allows consideration of the modelling errors, the external distur...
Rigid-flexible coupling dynamics of three-dimensional hub-beams system
International Nuclear Information System (INIS)
Liu Jinyang; Lu Hao
2007-01-01
In the previous research of the coupling dynamics of a hub-beam system, coupling between the rotational motion of hub and the torsion deformation of beam is not taken into account since the system undergoes planar motion. Due to the small longitudinal deformation, coupling between the rotational motion of hub and the longitudinal deformation of beam is also neglected. In this paper, rigid-flexible coupling dynamics is extended to a hub-beams system with three-dimensional large overall motion. Not only coupling between the large overall motion and the bending deformation, but also coupling between the large overall motion and the torsional deformation are taken into account. In case of temperature increase, the longitudinal deformation caused by the thermal expansion is significant, such that coupling between the large overall motion and the longitudinal deformation is also investigated. Combining the characteristics of the hybrid coordinate formulation and the absolute nodal coordinate formulation, the system generalized coordinates include the relative nodal displacement and the slope of each beam element with respect to the body-fixed frame of the hub, and the variables related to the spatial large overall motion of the hub and beams. Based on precise strain-displacement relation, the geometric stiffening effect is taken into account, and the rigid-flexible coupling dynamic equations are derived using velocity variational principle. Finite element method is employed for discretization. Simulation of a hub-beams system is used to show the coupling effect between the large overall motion and the torsional deformation as well as the longitudinal deformation. Furthermore, conservation of energy in case of free motion is shown to verify the formulation
On the axioms of the forces in the mechanics of rigid bodies
Directory of Open Access Journals (Sweden)
Lámer Géza
2017-01-01
Full Text Available Newton summarised knowledge related to forces in three axioms. The first and second ones define the mechanical state and motion of the examined body when there is no force or when force is exerted on the body. The third defines the law of action and reaction. Newton did not define it as separate axiom but assumed that forces are completely independent from each other. The statics applies four axioms. The first applies to the balance of two forces while the second one applies of three forces. The third axiom defines the relationships inside an equilibrium force system. The fourth one is the axiom of action and reaction. The two axiom systems are independent from each other. Further the independent axioms are applied in case of constraint forces: frictionless reaction force orthogonal on the forced surface, friction force acts in the direction of the motion, the deformation can be elastic, plastic and viscous.
International Nuclear Information System (INIS)
Könik, Arda; Johnson, Karen L; Dasari, Paul; Pretorius, P H; Dey, Joyoni; King, Michael A; Connolly, Caitlin M; Segars, Paul W; Lindsay, Clifford
2014-01-01
The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory
Könik, Arda; Connolly, Caitlin M.; Johnson, Karen L.; Dasari, Paul; Segars, Paul W.; Pretorius, P. H.; Lindsay, Clifford; Dey, Joyoni; King, Michael A.
2014-07-01
The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory
Mid-Lift-to-Drag Ratio Rigid Vehicle Control System Design and Simulation for Human Mars Entry
Johnson, Breanna J.; Cerimele, Christopher J.; Stachowiak, Susan J.; Sostaric, Ronald R.; Matz, Daniel A.; Lu, Ping
2018-01-01
The Mid-Lift-to-Drag Ratio Rigid Vehicle (MRV) is a proposed candidate in the NASA Evolvable Mars Campaign's (EMC) Pathfinder Entry, Descent, and Landing (EDL) architecture study. The purpose of the study is to design a mission and vehicle capable of transporting a 20mt payload to the surface of Mars. The MRV is unique in its rigid, asymmetrical lifting-body shape which enables a higher lift-to-drag ratio (L/D) than the typical robotic Mars entry capsule vehicles that carry much less mass. This paper presents the formulation and six-degree-of-freedom (6DOF) performance of the MRV's control system, which uses both aerosurfaces and a propulsive reaction control system (RCS) to affect longitudinal and lateral directional behavior.
Tarumi, Moto; Nakai, Hiromi
2018-05-01
This letter proposes an approximate treatment of the harmonic solvation model (HSM) assuming the solute to be a rigid body (RB-HSM). The HSM method can appropriately estimate the Gibbs free energy for condensed phases even where an ideal gas model used by standard quantum chemical programs fails. The RB-HSM method eliminates calculations for intra-molecular vibrations in order to reduce the computational costs. Numerical assessments indicated that the RB-HSM method can evaluate entropies and internal energies with the same accuracy as the HSM method but with lower calculation costs.
High precision NC lathe feeding system rigid-flexible coupling model reduction technology
Xuan, He; Hua, Qingsong; Cheng, Lianjun; Zhang, Hongxin; Zhao, Qinghai; Mao, Xinkai
2017-08-01
This paper proposes the use of dynamic substructure method of reduction of order to achieve effective reduction of feed system for high precision NC lathe feeding system rigid-flexible coupling model, namely the use of ADAMS to establish the rigid flexible coupling simulation model of high precision NC lathe, and then the vibration simulation of the period by using the FD 3D damper is very effective for feed system of bolt connection reduction of multi degree of freedom model. The vibration simulation calculation is more accurate, more quickly.
Rigid-body rotation of an electron cloud in divergent magnetic fields
International Nuclear Information System (INIS)
Fruchtman, A.; Gueroult, R.; Fisch, N. J.
2013-01-01
For a given voltage across a divergent poloidal magnetic field, two electric potential distributions, each supported by a rigid-rotor electron cloud rotating with a different frequency, are found analytically. The two rotation frequencies correspond to the slow and fast rotation frequencies known in uniform plasma. Due to the centrifugal force, the equipotential surfaces, that correspond to the two electric potential distributions, diverge more than the magnetic surfaces do, the equipotential surfaces in the fast mode diverge largely in particular. The departure of the equipotential surfaces from the magnetic field surfaces may have a significant focusing effect on the ions accelerated by the electric field. The focusing effect could be important for laboratory plasma accelerators as well as for collimation of astrophysical jets
Rheology of multiphase polymer systems using novel "melt rigidity" evaluation approach
Kracalik, Milan
2015-04-01
Multiphase polymer systems like blends, composites and nanocomposites exhibit complex rheological behaviour due to physical and also possibly chemical interactions between individual phases. Up to now, rheology of heterogeneous polymer systems has been usually described by evaluation of viscosity curve (shear thinning phenomenon), storage modulus curve (formation of secondary plateau) or plotting information about damping behaviour (e.g. Van Gurp-Palmen-plot). On the contrary to evaluation of damping behaviour, "melt rigidity" approach has been introduced for description of physical network of rigid particles in polymer matrix as relation of ∫G'/∫G" over specific frequency range. This approach has been experimentally proved for polymer nanocomposites in order to compare shear flow characteristics with elongational flow field. In this contribution, LDPE-clay nanocomposites with different dispersion grades (physical networks) have been prepared and characterized by both conventional as well as novel "melt rigidity" approach.
Rigid hoist articulated grapple system development for enhanced remote maintenance
International Nuclear Information System (INIS)
Witham, C.; White, P.; Garin, J.
1979-01-01
Remote maintenance and repair within nuclear environments have become more demanding of remote manipulation equipment in the last few years. A deficiency exists in the array of tools available for dexterous operations of loads in the 180-kg range. The development of a manipulation system with enhanced operator controls is discussed. This system is a six-degree-of-freedom manipulator with bilateral servo control. It is to be attached to a mobile support boom in order to operate throughout the nuclear cell. The manipulator is intended to work in conjunction with light duty servomanipulators, overhead crane systems, and through-the-wall mechanical master slaves
Flutter Analysis of RX-420 Balistic Rocket Fin Involving Rigid Body Modes of Rocket Structures
Directory of Open Access Journals (Sweden)
Novi Andria
2013-03-01
Full Text Available Flutter is a phenomenon that has brought a catastrophic failure to the flight vehicle structure. In this experiment, flutter was analyzed for its symmetric and antisymmetric configuration to understand the effect of rocket rigid modes to the fin flutter characteristic. This research was also expected to find out the safety level of RX-420 structure design. The analysis was performed using half rocket model. Fin structure used in this research was a fin which has semispan 600 mm, thickness 12 mm, chord root 700 mm, chord tip 400 mm, made by Al 6061-T651, double spar configuration with skin thickness of 2 mm. Structural dynamics and flutter stability were analyzed using finite element software implemented on MSC. Nastran. The analysis shows that the antisymmetric flutter mode is more critical than symmetric flutter mode. At sea level altitude, antisymmetric flutter occurs at 6.4 Mach, and symmetric flutter occurs at 10.15 Mach. Compared to maximum speed of RX-420 which is 4.5 Mach at altitude 11 km or equivalent to 2.1 Mach at sea level, it can be concluded that the RX-420 structure design is safe, and flutter will not occur during flight.
Linking rigid multibody systems via controllable thin fluid films
DEFF Research Database (Denmark)
Estupinan, Edgar Alberto; Santos, Ilmar
2009-01-01
, this paper gives a theoretical contribution to the combined fields of fluid–structure interaction and vibration control. The methodology is applied to a reciprocating linear compressor, where the dynamics of the mechanical components are described with help of multibody dynamics. The crank is linked......This work deals with the mathematical modelling of multibody systems interconnected via thin fluid films. The dynamics of the fluid films can be actively controlled by means of different types of actuators, allowing significant vibration reduction of the system components. In this framework...... to the rotor via a thin fluid film, where the hydrodynamic pressure is described by the Reynolds equation, which is modified to accommodate the controllable lubrication conditions. The fluid film forces are coupled to the set of nonlinear equations that describes the dynamics of the reciprocating linear...
Knowledge-in-action: a study on the integration of forces and energy in a rigid body
Directory of Open Access Journals (Sweden)
Consuelo Escudero
2009-03-01
Full Text Available This paper intends to go on with the study of problem solving in a compatible way with the theories of conceptual fields (TCC of Vergnaud (1990,1994,1998 and mental models of Johnson-Laird (1983,1990. Together with findings of another study (Escudero & Jaime 2007, some achievements and difficulties of freshmore engineering students when solving problems of the motion of rigid body in terms of the knowledge-in-action are analysed. The research methodology under a qualitative paradigm grouped data into categories which are not provided a priori by the theoretical framework. It can be said that the quality of the conceptual representation has been explicit in the quality of the proposed solution. Some meanings introduced by students in their problem solving activities can be characterized as operational invariants.
Equilibria of the three-body problem with rigid dumb-bell satellite
International Nuclear Information System (INIS)
Elipe, A.; Palacios, M.; Pretka-Ziomek, H.
2008-01-01
This paper is concerned with the orbital-rotational motion of an asymmetric dumb-bell (two masses with fixed distance among them) under the attraction of a central body. For this model, we find some equilibria and give sufficient conditions for their stability
Baker, Stephen B; Reid, Russell R; Burkey, Brooke; Bartlett, Scott P
2007-09-01
To shorten head frame wear time associated with external halo distraction (HD), we have adapted a protocol for maxillary distraction with the halo system that integrates plate fixation. All patients had a history of cleft lip and/or palate and maxillary retrusion > or = 8 mm. Five patients treated with this protocol and followed for at least 1 year were included in this study. The protocol included a 3-day latency period, variable maxillary distraction, and removal of the halo device with simultaneous rigid internal fixation. Two patients had a variable period of maxillomandibular fixation (MMF), which maintained the maxillary advancement and idealized intercuspal position while permitting further callus maturation. Cephalographs were obtained preoperatively, immediately following distractor removal, and 1 year after rigid internal fixation. The mean age at time of surgery was 18.7 years. The maxillary deficiency ranged from 8 to 15 mm (mean = 10.6 mm). All five patients demonstrated excellent occlusion. Cephalometric analysis 1-year post rigid internal fixation revealed minimal (maxillary distraction followed by MMF to maintain maxillary advancement may reduce halo device wear to 1 to 2 weeks. MMF optimizes occlusion by forcing the maxillary teeth into maximal intercuspal position. Rigid fixation is not only associated with less long-term relapse compared to nonrigid forms of fixation, but also minimizes the incidence of nonunion. This treatment protocol provides the advancement possible with distraction osteogenesis and the accuracy of orthognathic surgery, thereby minimizing external head frame wear.
Okumura, Hisashi; Itoh, Satoru G; Okamoto, Yuko
2007-02-28
The authors propose explicit symplectic integrators of molecular dynamics (MD) algorithms for rigid-body molecules in the canonical and isobaric-isothermal ensembles. They also present a symplectic algorithm in the constant normal pressure and lateral surface area ensemble and that combined with the Parrinello-Rahman algorithm. Employing the symplectic integrators for MD algorithms, there is a conserved quantity which is close to Hamiltonian. Therefore, they can perform a MD simulation more stably than by conventional nonsymplectic algorithms. They applied this algorithm to a TIP3P pure water system at 300 K and compared the time evolution of the Hamiltonian with those by the nonsymplectic algorithms. They found that the Hamiltonian was conserved well by the symplectic algorithm even for a time step of 4 fs. This time step is longer than typical values of 0.5-2 fs which are used by the conventional nonsymplectic algorithms.
Free surface flow with moving rigid bodies. Part 1. Computational flow model
International Nuclear Information System (INIS)
Gubanov, O.I.; Mironova, L.A.; Kocabiyik, S.
2005-01-01
This paper was motivated by the study of Hirt and Sicilian, where the 'differential form' of the governing equations for the inviscid fluid flow (FAVOR equations) were obtained. We utilize mainly generalized differentiation to extend the Reynolds transport theorem over a control volume containing fluid interface for deriving the 'integral form' of governing equations for the incompressible viscous flow problems. This is done following the work by Farassat and the use of generalized function theory made this derivation straightforward, systematic and rigorous. The resulting equations are discretized by a finite-volume method using a staggered grid, after making use of the coarse-scale approximation. The resulting governing equations are valid for a class of flows including free surface flows with arbitrarily moving bodies and are consistent with Hirt and Sicilian's formulation in the inviscid fluid flow case. (author)
Amireghbali, A.; Coker, D.
2018-01-01
Burridge and Knopoff proposed a mass-spring model to explore interface dynamics along a fault during an earthquake. The Burridge and Knopoff (BK) model is composed of a series of blocks of equal mass connected to each other by springs of same stiffness. The blocks also are attached to a rigid driver via another set of springs that pulls them at a constant velocity against a rigid substrate. They studied dynamics of interface for an especial case with ten blocks and a specific set of fault properties. In our study effects of Coulomb and rate-state dependent friction laws on the dynamics of a single block BK model is investigated. The model dynamics is formulated as a system of coupled nonlinear ordinary differential equations in state-space form which lends itself to numerical integration methods, e.g. Runge-Kutta procedure for solution. The results show that the rate and state dependent friction law has the potential of triggering dynamic patterns that are different from those under Coulomb law.
Linardon, Jake; Mitchell, Sarah
2017-08-01
This study aimed to replicate and extend from Tylka, Calogero, and Daníelsdóttir (2015) findings by examining the relationship between rigid control, flexible control, and intuitive eating on various indices of disordered eating (i.e., binge eating, disinhibition) and body image concerns (i.e., shape and weight over-evaluation, body checking, and weight-related exercise motivations). This study also examined whether the relationship between intuitive eating and outcomes was mediated by dichotomous thinking and body appreciation. Analysing data from a sample of 372 men and women recruited through the community, this study found that, in contrast to rigid dietary control, intuitive eating uniquely and consistently predicted lower levels of disordered eating and body image concerns. This intuitive eating-disordered eating relationship was mediated by low levels of dichotomous thinking and the intuitive eating-body image relationship was mediated by high levels of body appreciation. Flexible control predicted higher levels of body image concerns and lower levels of disordered eating only when rigid control was accounted for. Findings suggest that until the adaptive properties of flexible control are further elucidated, it may be beneficial to promote intuitive eating within public health approaches to eating disorder prevention. In addition to this, particular emphasis should also be made toward promoting body acceptance and eradicating a dichotomous thinking style around food and eating. Copyright © 2017 Elsevier Ltd. All rights reserved.
Analytic analysis of auxetic metamaterials through analogy with rigid link systems
Rayneau-Kirkhope, Daniel; Zhang, Chengzhao; Theran, Louis; Dias, Marcelo A.
2017-01-01
Recent progress in advanced additive manufacturing techniques has stimulated the growth of the field of mechanical metamaterials. One area particular interest in this subject is the creation of auxetic material properties through elastic instability. This paper focuses on a novel methodology in the analysis of auxetic metamaterials through analogy with rigid link lattice systems. Our analytic methodology gives extremely good agreement with finite element simulations for both the onset of elas...
On the use of rigid body modes in the deflated preconditioned conjugate gradient method
Jönsthövel, T.B.; Van Gijzen, M.B.; Vuik, C.; Scarpas, A.
2013-01-01
Large discontinuities in material properties, such as those encountered in composite materials, lead to ill-conditioned systems of linear equations. These discontinuities give rise to small eigenvalues that may negatively affect the convergence of iterative solution methods such as the
On the use of rigid body modes in the deflated preconditioned conjugate gradient method
Jönsthövel, T.B.; Van Gijzen, M.B.; Vuik, C.; Scarpas, A.
2011-01-01
Large discontinuities in material properties, such as encountered in composite materials, lead to ill-conditioned systems of linear equations. These discontinuities give rise to small eigenvalues that may negatively affect the convergence of iterative solution methods such as the Preconditioned
A direct method for trajectory optimization of rigid bodies through contact
Posa, Michael Antonio; Cantu, Cecilia; Tedrake, Russell Louis
2013-01-01
Direct methods for trajectory optimization are widely used for planning locally optimal trajectories of robotic systems. Many critical tasks, such as locomotion and manipulation, often involve impacting the ground or objects in the environment. Most state-of-the-art techniques treat the discontinuous dynamics that result from impacts as discrete modes and restrict the search for a complete path to a specified sequence through these modes. Here we present a novel method for trajectory planning...
A finite element model of rigid body structures actuated by dielectric elastomer actuators
Simone, F.; Linnebach, P.; Rizzello, G.; Seelecke, S.
2018-06-01
This paper presents on finite element (FE) modeling and simulation of dielectric elastomer actuators (DEAs) coupled with articulated structures. DEAs have proven to represent an effective transduction technology for the realization of large deformation, low-power consuming, and fast mechatronic actuators. However, the complex dynamic behavior of the material, characterized by nonlinearities and rate-dependent phenomena, makes it difficult to accurately model and design DEA systems. The problem is further complicated in case the DEA is used to activate articulated structures, which increase both system complexity and implementation effort of numerical simulation models. In this paper, we present a model based tool which allows to effectively implement and simulate complex articulated systems actuated by DEAs. A first prototype of a compact switch actuated by DEA membranes is chosen as reference study to introduce the methodology. The commercially available FE software COMSOL is used for implementing and coupling a physics-based dynamic model of the DEA with the external structure, i.e., the switch. The model is then experimentally calibrated and validated in both quasi-static and dynamic loading conditions. Finally, preliminary results on how to use the simulation tool to optimize the design are presented.
Bellver-Cebreros, Consuelo; Rodriguez-Danta, Marcelo
2009-01-01
An apparently unnoticed analogy between the torque-free motion of a rotating rigid body about a fixed point and the propagation of light in anisotropic media is stated. First, a new plane construction for visualizing this torque-free motion is proposed. This method uses an intrinsic representation alternative to angular momentum and independent of…
International Nuclear Information System (INIS)
Gama, R.M.S. da.
1992-08-01
The energy transfer phenomenon in a rigid and opaque body that exchanges energy, with the environment, by convection and by diffuse thermal radiation is studied. The considered phenomenon is described by a partial differential equation, subjected to (nonlinear) boundary conditions. A minimum principle, suitable for a large class of energy transfer problems is presented. Some particular cases are simulated. (author)
International Nuclear Information System (INIS)
Bachkhaznadji, A.; Benslama, A.; Metatla, A.; Zouzou, S.R.; Barone, V; Bertini, M.; Basdevant, J.L.; Carbonell, J.; Ciesielski, F; Genovese, M.; Gignoux, C.; Richard, J.M.; Silvestre-Brac, B.; Ceuleneer, R.; Semay, C.; Krikeb, A.; Labarsouque, J.; Leandri, J.; Nikolaev, N.N.; Zakharov, B.G.; Pepin, S.; Stancu, Fl.; Pronyaev, A.; Wu, Tai Tsu; Varga, K.
1997-01-01
A new lower bound on 4-body ground-state energies has been derived in terms of two-body binding energies in the unequal mass case. For simple power-law potentials, this bound is compared to variational calculations and is shown to be very close to the exact result, particularly, for harmonic interactions. The stability of multiquark systems is revisited in a new quark model with chiral dynamics. Electromagnetic mass differences in potential models have been studied, pointing out some problems for charmed baryons. A quark-quark potential with a central part due to gluon exchange between extended quarks to instanton effects and a hyperfine term described as super-position of Gaussian functions has been determined. The form factors of π and K are analysed in the framework of the non-relativistic quark model, the stability of dibaryons consisting of 3 diquarks of different flavors has been studied. A study on diffractive scattering in QCD has been carried out. Within the resonating group method, the phase shifts of the hadron-hadron scattering are analyzed with applications to K - N interaction and meson-meson scattering. The Faddeev-Yakubovsky equations in configuration space have been solved with the aim of describing bound and scattering states of N = 4 interacting particles. Results concerning the scattering states of 4 nucleons in the isospin invariance approximation have been obtained for different (T, S) channels. They include: low energy parameters and elastic phase shifts for the N + 3N scattering below the 3N breakup threshold and S-matrix for the first N + 3N → 2N + 2N in elastic open channel (e.g. n+ 3 He → d+d cross section). The method has also been applied to study the clusters of 2,3 and 4 4 He atoms. (authors)
Analytic analysis of auxetic metamaterials through analogy with rigid link systems
Rayneau-Kirkhope, Daniel; Zhang, Chengzhao; Theran, Louis; Dias, Marcelo A.
2018-02-01
In recent years, many structural motifs have been designed with the aim of creating auxetic metamaterials. One area of particular interest in this subject is the creation of auxetic material properties through elastic instability. Such metamaterials switch from conventional behaviour to an auxetic response for loads greater than some threshold value. This paper develops a novel methodology in the analysis of auxetic metamaterials which exhibit elastic instability through analogy with rigid link lattice systems. The results of our analytic approach are confirmed by finite-element simulations for both the onset of elastic instability and post-buckling behaviour including Poisson's ratio. The method gives insight into the relationships between mechanisms within lattices and their mechanical behaviour; as such, it has the potential to allow existing knowledge of rigid link lattices with auxetic paths to be used in the design of future buckling-induced auxetic metamaterials.
Rigid Body Attitude Control Based on a Manifold Representation of Direction Cosine Matrices
International Nuclear Information System (INIS)
Nakath, David; Clemens, Joachim; Rachuy, Carsten
2017-01-01
Autonomous systems typically actively observe certain aspects of their surroundings, which makes them dependent on a suitable controller. However, building an attitude controller for three degrees of freedom is a challenging task, mainly due to singularities in the different parametrizations of the three dimensional rotation group SO (3). Thus, we propose an attitude controller based on a manifold representation of direction cosine matrices: In state space, the attitude is globally and uniquely represented as a direction cosine matrix R ∈ SO (3). However, differences in the state space, i.e., the attitude errors, are exposed to the controller in the vector space ℝ 3 . This is achieved by an operator, which integrates the matrix logarithm mapping from SO (3) to so(3) and the map from so(3) to ℝ 3 . Based on this representation, we derive a proportional and derivative feedback controller, whose output has an upper bound to prevent actuator saturation. Additionally, the feedback is preprocessed by a particle filter to account for measurement and state transition noise. We evaluate our approach in a simulator in three different spacecraft maneuver scenarios: (i) stabilizing, (ii) rest-to-rest, and (iii) nadir-pointing. The controller exhibits stable behavior from initial attitudes near and far from the setpoint. Furthermore, it is able to stabilize a spacecraft and can be used for nadir-pointing maneuvers. (paper)
International Nuclear Information System (INIS)
Unseren, M.A.
1997-09-01
The report reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restricts the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system
Energy Technology Data Exchange (ETDEWEB)
Unseren, M.A.
1997-09-01
The report reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restricts the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.
DEFF Research Database (Denmark)
Niebe, Sarah Maria
. A contact point determination method, based on boolean surface maps, is developed to handle collisions between tetrahedral meshes. The novel nonsmooth nonlinear conjugate gradient (NNCG) method is presented. The NNCG method is comparable in terms of accuracy to the state-of-the-art method, projected Gauss...
Cross-Linked Liquid Crystalline Systems From Rigid Polymer Networks to Elastomers
Broer, Dirk
2011-01-01
With rapidly expanding interest in liquid crystalline polymers and elastomers among the liquid crystal community, researchers are currently exploring the wide range of possible application areas for these unique materials, including optical elements on displays, tunable lasers, strain gauges, micro-structures, and artificial muscles. Written by respected scientists from academia and industry around the world, who are not only active in the field but also well-known in more traditional areas of research, "Cross-Linked Liquid Crystalline Systems: From Rigid Polymer Networks to Elastomers&qu
Czech Academy of Sciences Publication Activity Database
Nečasová, Šárka; Wolf, J.
2016-01-01
Roč. 36, č. 3 (2016), s. 1539-1562 ISSN 1078-0947 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : incompressible fluid * motion of rigid body * strong solutions Subject RIV: BA - General Mathematics Impact factor: 1.099, year: 2016 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=11589
A Linear Active Disturbance Rejection Control for a Ball and Rigid Triangle System
Directory of Open Access Journals (Sweden)
Carlos Aguilar-Ibanez
2016-01-01
Full Text Available This paper proposes an application of linear flatness control along with active disturbance rejection control (ADRC for the local stabilization and trajectory tracking problems in the underactuated ball and rigid triangle system. To this end, an observer-based linear controller of the ADRC type is designed based on the flat tangent linearization of the system around its corresponding unstable equilibrium rest position. It was accomplished through two decoupled linear extended observers and a single linear output feedback controller, with disturbance cancelation features. The controller guarantees locally exponentially asymptotic stability for the stabilization problem and practical local stability in the solution of the tracking error. An advantage of combining the flatness and the ADRC methods is that it possible to perform online estimates and cancels the undesirable effects of the higher-order nonlinearities discarded by the linearization approximation. Simulation indicates that the proposed controller behaves remarkably well, having an acceptable domain of attraction.
Bertolesi, Elisa; Milani, Gabriele
2017-07-01
The present paper is devoted to the discussion of a series of unreinforced and FRP retrofitted panels analyzed adopting the Rigid Body and Spring-Mass (HRBSM) model developed by the authors. To this scope, a total of four out of plane loaded masonry walls tested up to failure are considered. At a structural level, the non-linear analyses are conducted replacing the homogenized orthotropic continuum with a rigid element and non-linear spring assemblage by means of which out of plane mechanisms are allowed. FRP retrofitting is modeled adopting two noded truss elements whose mechanical properties are selected in order to describe possible debonding phenomenon or tensile rupture of the strengthening. The outcome provided numerically are compared to the experimental results showing a satisfactory agreement in terms of global pressure-deflection curves and failure mechanisms.
Directory of Open Access Journals (Sweden)
Jun Wang
2015-01-01
Full Text Available The aim of this paper is to develop a new frequency response function- (FRF- based indirect inverse substructuring method without measuring system-level FRFs in the coupling DOFs for the analysis of the dynamic characteristics of a three-substructure coupled product transport system with rigid and flexible coupling. By enforcing the dynamic equilibrium conditions at the coupling coordinates and the displacement compatibility conditions, a closed-form analytical solution to inverse substructuring analysis of multisubstructure coupled product transport system is derived based on the relationship of easy-to-monitor component-level FRFs and the system-level FRFs at the coupling coordinates. The proposed method is validated by a lumped mass-spring-damper model, and the predicted coupling dynamic stiffness is compared with the direct computation, showing exact agreement. The method developed offers an approach to predict the unknown coupling dynamic stiffness from measured FRFs purely. The suggested method may help to obtain the main controlling factors and contributions from the various structure-borne paths for product transport system.
Alkhouri, Shadi; Waite, Peter D; Davis, Matthew B; Lamani, Ejvis; Kau, Chung How
2017-01-01
Distraction osteogenesis (DO) is a treatment option for patients with maxillary hypoplasia secondary to cleft lip and palate (CLP). The aim of this study is to present a technique for maxillary DO using Le Fort I osteotomy with rigid external distraction (RED) system. The patient presented in this paper was an Asian female with CLP aged 13 years and 6 months. She presented with severe midfacial deficiency with a Class III dental malocclusion with a negative overjet and concave facial profile. Cone-beam computed tomography images were recorded preoperatively and the operation performed involved a high Le Fort I osteotomy. The appliance fabricated was banded to upper first molars used for anchorage of the RED system. Distraction of the maxilla was initiated after 7-day latency period. Postoperative cephalometric analysis showed maxillary advancement anteriorly and superiorly, the total distraction treatment period was 10 days. The maxillary advancement was 10.5 mm and the SNA angle increased from 67.5° to 77.9°. Furthermore, the ANB angle changed from -9.8° to 1.6° and the occlusion changed from Class III to Class I. The profile of the face changed from concave to convex and a much better esthetic result was achieved. The study suggests RED system to be a reliable alternative procedure for the treatment of midfacial hypoplasia with or without cleft. Furthermore, it minimizes the risk of the surgical procedure and shortens the operating time.
Liu, J. J. F.; Fitzpatrick, P. M.
1975-01-01
A mathematical model is developed for studying the effects of gravity gradient torque on the attitude stability of a tumbling triaxial rigid satellite. Poisson equations are used to investigate the rotation of the satellite (which is in elliptical orbit about an attracting point mass) about its center of mass. An averaging method is employed to obtain an intermediate set of differential equations for the nonresonant, secular behavior of the osculating elements which describe the rotational motions of the satellite, and the averaged equations are then integrated to obtain long-term secular solutions for the osculating elements.
Fiber Optic Systems for Light Curing Rigidization of Inflatable Structures, Phase I
National Aeronautics and Space Administration — Light (UV and visible) curing composite matrix resins are being explored as an attractive means for rigidizing inflatable spacecraft for large space-deployed...
Nurjaman, Hari; Faizal, Lutfi; Suaryana, Nyoman; Hariandja, Binsar; Gambiro, Purnomo, Wicaksono, Siswo
2017-11-01
The performance of highways in Indonesia until today is yet to be optimum. Flexible or rigid pavement construction generally do not reach designed service lives, either due to the fact that the construction do not meet specifications or unavoidable excessive load. Precast and prestressed concrete system has been applied since 2007, but unfortunately the application has not been optimum due to the fact that the construction method is not integrally carried out. This paper deals with a construction concept that developed in 2015-2017. The concept applies green construction based on integrated manufacture industry, starting from design, construction, function, maintenance and demolition. The concept is applied on the three highway sub-layers, i.e., sub grade, sub base, and surface, and drainage system. Sub grade improvement may use soil dislocation, chemical improvement or concrete matress. Sub base material uses foam mortar, which is material easy in quality control compared to conventional materials. Pavement material uses precast and prestressed concrete components with controlled quality, quickly function as flexible pavement, and moreover, may anticipate excessive loadings. Cost estimation is carried out integrated by life cycle cost: initial investment, obstruction while construction, and maintenance cost during operation. This innovation has passed tests in technical construction method aspects as well as construction work in 2015-2017, so it is available to support infrastructure construction acceleration which achieves quality demanded to date.
Estimating the magnitude of steric effects in rigid systems by NMR
International Nuclear Information System (INIS)
Yoneda, Julliane Diniz; Seidl, Peter Rudolf; Leal, Katia Zaccur
2008-01-01
The rapid advance of supramolecular chemistry has led to a better understanding of the forces and interactions that are responsible for many different phenomena. Among these, steric effects play an important role in determining the constraints to association between the species involved. Although the role of steric effects has been recognized for a long time, quantitative information has been mainly related to the comparison of these effects on a chemical reaction or conformational equilibrium rather than the properties of the group of atoms that is responsible for their manifestation. This situation has been changing with the increase in power of computational methods and the accumulation of data on model compounds that can be used for the purpose of comparison. Here we present a short review of our recent work on NMR of rigid carbocyclic systems and apply this type of approach to di- and triamantane systems. Our results show how NMR can be used to locate the segment of a molecule that is subjected to steric effects and evaluate the degree to which these effects will distort its geometry. (author)
Estimating the magnitude of steric effects in rigid systems by NMR
Energy Technology Data Exchange (ETDEWEB)
Yoneda, Julliane Diniz [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Programa Pos-Graduacao em Quimica Organica; Seidl, Peter Rudolf [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Leal, Katia Zaccur, E-mail: pseidl@eq.ufrj.br [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Fisico-Quimica. Programa de Pos-Graduacao em Quimica Organica
2008-07-01
The rapid advance of supramolecular chemistry has led to a better understanding of the forces and interactions that are responsible for many different phenomena. Among these, steric effects play an important role in determining the constraints to association between the species involved. Although the role of steric effects has been recognized for a long time, quantitative information has been mainly related to the comparison of these effects on a chemical reaction or conformational equilibrium rather than the properties of the group of atoms that is responsible for their manifestation. This situation has been changing with the increase in power of computational methods and the accumulation of data on model compounds that can be used for the purpose of comparison. Here we present a short review of our recent work on NMR of rigid carbocyclic systems and apply this type of approach to di- and triamantane systems. Our results show how NMR can be used to locate the segment of a molecule that is subjected to steric effects and evaluate the degree to which these effects will distort its geometry. (author)
Pathak, Ashish; Raessi, Mehdi
2016-04-01
We present a three-dimensional (3D) and fully Eulerian approach to capturing the interaction between two fluids and moving rigid structures by using the fictitious domain and volume-of-fluid (VOF) methods. The solid bodies can have arbitrarily complex geometry and can pierce the fluid-fluid interface, forming contact lines. The three-phase interfaces are resolved and reconstructed by using a VOF-based methodology. Then, a consistent scheme is employed for transporting mass and momentum, allowing for simulations of three-phase flows of large density ratios. The Eulerian approach significantly simplifies numerical resolution of the kinematics of rigid bodies of complex geometry and with six degrees of freedom. The fluid-structure interaction (FSI) is computed using the fictitious domain method. The methodology was developed in a message passing interface (MPI) parallel framework accelerated with graphics processing units (GPUs). The computationally intensive solution of the pressure Poisson equation is ported to GPUs, while the remaining calculations are performed on CPUs. The performance and accuracy of the methodology are assessed using an array of test cases, focusing individually on the flow solver and the FSI in surface-piercing configurations. Finally, an application of the proposed methodology in simulations of the ocean wave energy converters is presented.
International Nuclear Information System (INIS)
Lamare, F; Carbayo, M J Ledesma; Cresson, T; Kontaxakis, G; Santos, A; Rest, C Cheze Le; Reader, A J; Visvikis, D
2007-01-01
Respiratory motion in emission tomography leads to reduced image quality. Developed correction methodology has been concentrating on the use of respiratory synchronized acquisitions leading to gated frames. Such frames, however, are of low signal-to-noise ratio as a result of containing reduced statistics. In this work, we describe the implementation of an elastic transformation within a list-mode-based reconstruction for the correction of respiratory motion over the thorax, allowing the use of all data available throughout a respiratory motion average acquisition. The developed algorithm was evaluated using datasets of the NCAT phantom generated at different points throughout the respiratory cycle. List-mode-data-based PET-simulated frames were subsequently produced by combining the NCAT datasets with Monte Carlo simulation. A non-rigid registration algorithm based on B-spline basis functions was employed to derive transformation parameters accounting for the respiratory motion using the NCAT dynamic CT images. The displacement matrices derived were subsequently applied during the image reconstruction of the original emission list mode data. Two different implementations for the incorporation of the elastic transformations within the one-pass list mode EM (OPL-EM) algorithm were developed and evaluated. The corrected images were compared with those produced using an affine transformation of list mode data prior to reconstruction, as well as with uncorrected respiratory motion average images. Results demonstrate that although both correction techniques considered lead to significant improvements in accounting for respiratory motion artefacts in the lung fields, the elastic-transformation-based correction leads to a more uniform improvement across the lungs for different lesion sizes and locations
Grenade, Charlotte; Moniotte, Nicolas; Rompen, Eric; Vanheusden, Alain; Mainjot, Amélie; De Pauw-Gillet, Marie-Claire
2016-01-01
In vitro studies about biomaterials biological properties are essential screening tests. Yet cell cultures encounter difficulties related to cell retention on material surface or to the observation of both faces of permeable materials. The objective of the present study was to develop a reliable in vitro method to study cell behavior on rigid and flexible/permeable biomaterials elaborating two specific insert-based systems (IBS-R and IBS-F respectively). IBS-R was designed as a specific cylin...
Integration of car-body flexibility into train-track coupling system dynamics analysis
Ling, Liang; Zhang, Qing; Xiao, Xinbiao; Wen, Zefeng; Jin, Xuesong
2018-04-01
The resonance vibration of flexible car-bodies greatly affects the dynamics performances of high-speed trains. In this paper, we report a three-dimensional train-track model to capture the flexible vibration features of high-speed train carriages based on the flexible multi-body dynamics approach. The flexible car-body is modelled using both the finite element method (FEM) and the multi-body dynamics (MBD) approach, in which the rigid motions are obtained by using the MBD theory and the structure deformation is calculated by the FEM and the modal superposition method. The proposed model is applied to investigate the influence of the flexible vibration of car-bodies on the dynamics performances of train-track systems. The dynamics performances of a high-speed train running on a slab track, including the car-body vibration behaviour, the ride comfort, and the running safety, calculated by the numerical models with rigid and flexible car-bodies are compared in detail. The results show that the car-body flexibility not only significantly affects the vibration behaviour and ride comfort of rail carriages, but also can has an important influence on the running safety of trains. The rigid car-body model underestimates the vibration level and ride comfort of rail vehicles, and ignoring carriage torsional flexibility in the curving safety evaluation of trains is conservative.
Directory of Open Access Journals (Sweden)
Girondel Vincent
2006-01-01
Full Text Available This paper describes a system for human body analysis (segmentation, tracking, face/hands localisation, posture recognition from a single view that is fast and completely automatic. The system first extracts low-level data and uses part of the data for high-level interpretation. It can detect and track several persons even if they merge or are completely occluded by another person from the camera's point of view. For the high-level interpretation step, static posture recognition is performed using a belief theory-based classifier. The belief theory is considered here as a new approach for performing posture recognition and classification using imprecise and/or conflicting data. Four different static postures are considered: standing, sitting, squatting, and lying. The aim of this paper is to give a global view and an evaluation of the performances of the entire system and to describe in detail each of its processing steps, whereas our previous publications focused on a single part of the system. The efficiency and the limits of the system have been highlighted on a database of more than fifty video sequences where a dozen different individuals appear. This system allows real-time processing and aims at monitoring elderly people in video surveillance applications or at the mixing of real and virtual worlds in ambient intelligence systems.
2008-01-01
various physical processes such as supercavitation and bubbles. A diagnostic- photographic method is developed in this study to determine the drag...nonlinear dynamics, body and multi-phase fluid interaction, supercavitation , and instability theory. The technical application of the hydrodynamics of...uV U ω= = − ×V e e e ei i , (29) where Eq.(9) is used. For a supercavitation area, a correction factor may be
Small solar system bodies as granular systems
Hestroffer, Daniel; Campo Bagatín, Adriano; Losert, Wolfgang; Opsomer, Eric; Sánchez, Paul; Scheeres, Daniel J.; Staron, Lydie; Taberlet, Nicolas; Yano, Hajime; Eggl, Siegfried; Lecomte, Charles-Edouard; Murdoch, Naomi; Radjai, Fahrang; Richardson, Derek C.; Salazar, Marcos; Schwartz, Stephen R.; Tanga, Paolo
2017-06-01
Asteroids and other Small Solar System Bodies (SSSBs) are currently of great scientific and even industrial interest. Asteroids exist as the permanent record of the formation of the Solar System and therefore hold many clues to its understanding as a whole, as well as insights into the formation of planetary bodies. Additionally, SSSBs are being investigated in the context of impact risks for the Earth, space situational awareness and their possible industrial exploitation (asteroid mining). In all these aspects, the knowledge of the geophysical characteristics of SSSB surface and internal structure are of great importance. Given their size, constitution, and the evidence that many SSSBs are not simple monoliths, these bodies should be studied and modelled as self-gravitating granular systems in general, or as granular systems in micro-gravity environments in particular contexts. As such, the study of the geophysical characteristics of SSSBs is a multi-disciplinary effort that lies at the crossroads between Granular Mechanics, Celestial Mechanics, Soil Mechanics, Aerospace Engineering and Computer Sciences.
Whole body imaging system mechanism
International Nuclear Information System (INIS)
Carman, R.W.; Doherty, E.J.
1980-01-01
A radioisotope scanning apparatus for use in nuclear medicine is described in detail. The apparatus enables the quantification and spatial location of the radioactivity in a body section of a patient to be determined with high sensitivity. It consists of an array of highly focussed collimators arranged such that adjacent collimators move in the same circumferential but opposite radial directions. The explicit movements of the gantry are described in detail and may be controlled by a general purpose computer. The use of highly focussed collimators allows both a reasonable solid angle of acceptance and also high target to background images; additionally, dual radionuclide pharmaceutical studies can be performed simultaneously. It is claimed that the high sensitivity of the system permits the early diagnosis of pathological changes and the images obtained show accurately the location and shape of physiological abnormalities. (U.K.)
Longuski, J. M.
1982-01-01
During a spin-up or spin-down maneuver of a spinning spacecraft, it is usual to have not only a constant body-fixed torque about the desired spin axis, but also small undesired constant torques about the transverse axes. This causes the orientation of the angular momentum vector to change in inertial space. Since an analytic solution is available for the angular momentum vector as a function of time, this behavior can be studied for large variations of the dynamic parameters, such as the initial spin rate, the inertial properties and the torques. As an example, the spin-up and spin-down maneuvers of the Galileo spacecraft was studied and as a result, very simple heuristic solutions were discovered which provide very good approximations to the parametric behavior of the angular momentum vector orientation.
International Nuclear Information System (INIS)
Kube, D.; Goodman, P.; Forwood, C.; Rossouw, C.
1997-01-01
A new method for the rapid generation of high resolution bicrystal LACBED images is described, which uses reciprocity to generate the second-crystal transmission function for a specific doubly-transmitted beam. As a result, sets of bright-field or specific dark-field LACBED images can readily be generated for sets inter-crystal displacements, to allow comparison with experimental results. In Part I we describe results obtained for pure translations between bi-crystals pairs, while in Part II we describe the method for bi-crystals incorporating relative rotations as well as translations. It is envisaged that this technique will be useful for the body semi-conductor crystal pair interfaces, and metal-alloy grain boundaries, in particular. (authors). 16 refs., 6 figs
On the dynamics of chain systems. [applications in manipulator and human body models
Huston, R. L.; Passerello, C. E.
1974-01-01
A computer-oriented method for obtaining dynamical equations of motion for chain systems is presented. A chain system is defined as an arbitrarily assembled set of rigid bodies such that adjoining bodies have at least one common point and such that closed loops are not formed. The equations of motion are developed through the use of Lagrange's form of d'Alembert's principle. The method and procedure is illustrated with an elementary study of a tripod space manipulator. The method is designed for application with systems such as human body models, chains and cables, and dynamic finite-segment models.
Energy Technology Data Exchange (ETDEWEB)
Unseren, M.A.
1994-04-01
A rigid body model for the entire system which accounts for the load distribution scheme proposed in Part 1 as well as for the dynamics of the manipulators and the kinematic constraints is derived in the joint space. A technique is presented for expressing the object dynamics in terms of the joint variables of both manipulators which leads to a positive definite and symmetric inertia matrix. The model is then transformed to obtain reduced order equations of motion and a separate set of equations which govern the behavior of the internal contact forces. The control architecture is applied to the model which results in the explicit decoupling of the position and internal contact force-controlled degrees of freedom (DOF).
Few body systems at intermediate energies
International Nuclear Information System (INIS)
Laget, J.M.
1988-01-01
I review the progresses which have been made in our understanding of the high momentum components of the wave functions of the few-body systems, the three-body mechanisms and the short range correlations
Energy Technology Data Exchange (ETDEWEB)
Mutter, F; Benjamin, P
1974-08-01
Because of a number of instances of stress corrosion cracking or crazing occurring in PVC pipes used in Dutch gas distribution systems, VEG-GASINSTITUUT began an intensive investigation of rigid PVC pipes and high-impact pipes in distribution use under various conditions and with varying service lives. The work led to an investigation of laboratory testing techniques in which the stress-cracking phenomenon found in practice could be duplicated under controllable conditions. Pipes of various materials were examined for their resistance to stress cracking, then this resistance was compared with other long- and short-term physical properties of the material.
International Nuclear Information System (INIS)
Gibson, B.F.
1985-01-01
Three fascinating aspects of few-body Λ-hypernuclei are discussed: 3-body forces, charge symmetry breaking, and ΛN-ΣN coupling. The need for improved data on hyperon-nucleon scattering is emphasized. 29 refs., 3 tabs
New classes of tough composite materials-Lessons from natural rigid biological systems
Energy Technology Data Exchange (ETDEWEB)
Mayer, G. [Department of Materials Science and Engineering, Box 352120, University of Washington, Seattle, WA 98195-2120 (United States)]. E-mail: gmayer@u.washington.edu
2006-09-15
The structures and properties of a new class of composite materials, containing a predominantly high volume fraction ceramic or glass phase, combined with minor organic (adhesive) phases, have been studied. These composites have unusual combinations of mechanical properties, such as stiffness, strength, and toughness. They are based on the architecture of a rigid natural material, the nacre structure, such as those found in the shells of the abalone Haliotis rufescens, and those of other mollusk shells. The mechanisms underlying these properties have also been studied. Analogs (utilizing high-performance engineering materials), that mimic many of the mechanisms underlying those superior combinations of properties, have been built. The results of the foregoing investigations are discussed. It was found that the toughness of segmented composite beams which have high volume fractions of ceramic (89 v / o) exceeded those of continuous layered beams, as well as the monolithic ceramic (alumina) on which they are based.
New classes of tough composite materials-Lessons from natural rigid biological systems
International Nuclear Information System (INIS)
Mayer, G.
2006-01-01
The structures and properties of a new class of composite materials, containing a predominantly high volume fraction ceramic or glass phase, combined with minor organic (adhesive) phases, have been studied. These composites have unusual combinations of mechanical properties, such as stiffness, strength, and toughness. They are based on the architecture of a rigid natural material, the nacre structure, such as those found in the shells of the abalone Haliotis rufescens, and those of other mollusk shells. The mechanisms underlying these properties have also been studied. Analogs (utilizing high-performance engineering materials), that mimic many of the mechanisms underlying those superior combinations of properties, have been built. The results of the foregoing investigations are discussed. It was found that the toughness of segmented composite beams which have high volume fractions of ceramic (89 v / o) exceeded those of continuous layered beams, as well as the monolithic ceramic (alumina) on which they are based
International Nuclear Information System (INIS)
Ghose, S.; Schomaker, V.; McMullan, R.K.
1986-01-01
Synthetic enstatite, Mg 2 Si 2 O 6 , is orthorhombic, space group Pbca, with eight formula units per cell and lattice parameters a = 18.235(3), b = 8.818(1), c = 5.179(1) A at 23 0 C. A least-squares structure refinement based on 1790 neutron intensity data converged with an agreement factor R(F 2 ) = 0.032, yielding Mg-O and Si-O bond lengths with standard deviations of 0.0007 and 0.0008 A, respectively. The variations observed in the Si-O bond lengths within the silicate tetrahedra A and B are caused by the differences in primary coordination of the oxygen atoms and the proximity of the magnesium ions to the silicon atoms. The latter effect is most pronounced for the bridging bonds of tetrahedron. A. The smallest O-Si-O angle is the result of edge-sharing by the Mg(2) octahedron and the A tetrahedron. An analysis of rigid-body thermal vibrations of the two crystallographically independent [SiO 4 ] tetrahedra indicates considerable librational motion, leading to a thermal correction of apparent Si-O bond lengths as large as +0.002 A at room temperature. (orig.)
Cortese, Antonio; Savastano, Mauro; Cantone, Antonio; Claudio, Pier Paolo
2013-07-01
A new palatal distractor device for bodily movement of the maxillary bones after complete segmented Le Fort I osteotomy for 1-stage transversal distraction and tridimensional repositioning on 1 patient is presented. The new distractor has an intrinsic tridimensional rigidity also in the fixation system by self-locking miniplates and screws for better control of the 2 maxillary fragments during distraction. Le Fort I distraction and repositioning procedure in association with a bilateral sagittal split osteotomy were performed on 1 patient with complete solution of the cross-bite and class III malocclusion. Results of dental and cephalometric analysis performed before surgery (T1), after surgery and distraction time (T2), and 18 months after surgery and orthodontic appliance removal (T3) are reported. No complications were encountered using the new distractor device. Advantages of this device and technique are presented including improved rigidity of both distraction (jackscrew) and fixation (4 self-locking miniplates and screws) systems resulting in complete control of the position of the 2 maxillary fragments during distraction and surgery. In addition, this new device allows resuming palatal distraction in the event of cross-bite relapse without causing dental-related problems or the risks of screw slackening.
Directory of Open Access Journals (Sweden)
Alexander G. Tyapin
2018-03-01
Full Text Available Development of linear equations of motion for seismic analysis is discussed in the paper. The paper continues the discussion: the author does not agree with colleagues putting damping matrix into the right-hand part of the equation of motion describing dynamic loads. This disagreement refers to the most popular case of “rigid” motion of multiple supports. In this paper the author follows the logic of general “non-rigid” support motion and points out a step in the equation development when the transition to “rigid” support motion (as a particular case of “non-rigid” motion is spoiled by the opponents. In the author’s opinion, the mistake is in the implementation of the Rayleigh damping model for the right-hand part of the equation. This is in the contradiction with physical logic, as damping in the Rayleigh model is not really “internal”: due to the participation of mass matrix it works on rigid displacements, which is impossible for internal damping.
Michael-Tsabari, Nava; Lavee, Yoav
2012-06-01
Despite growing research interest in family businesses, little is known about the characteristics of the families engaging in them. The present paper uses Olson's (Journal of Psychotherapy & the Family, 1988, 4(12), 7-49; Journal of Family Therapy, 2000, 22, 144-167) Circumplex Model of Marital and Family Systems to look at first-generation family firms. We describe existing typologies of family businesses and discuss similarities between the characteristics of first-generation family firms and the rigidly enmeshed family type described in the Circumplex Model. The Steinberg family business (Gibbon & Hadekel (1990) Steinberg: The breakup of a family empire. ON, Canada: MacMillan) serves to illustrate the difficulties of rigidly enmeshed first-generation family firms. Implications for understanding troubled family businesses are discussed together with guidelines for the assessment of a family business in crisis and for intervention: enhancing open communication; allowing for more flexible leadership style, roles, and rules; and maintaining a balance between togetherness and separateness. © 2012 American Association for Marriage and Family Therapy.
Directory of Open Access Journals (Sweden)
Frédéric V Stanger
Full Text Available Type II DNA topoisomerases are essential enzymes that catalyze topological rearrangement of double-stranded DNA using the free energy generated by ATP hydrolysis. Bacterial DNA gyrase is a prototype of this family and is composed of two subunits (GyrA, GyrB that form a GyrA2GyrB2 heterotetramer. The N-terminal 43-kDa fragment of GyrB (GyrB43 from E. coli comprising the ATPase and the transducer domains has been studied extensively. The dimeric fragment is competent for ATP hydrolysis and its structure in complex with the substrate analog AMPPNP is known. Here, we have determined the remaining conformational states of the enzyme along the ATP hydrolysis reaction path by solving crystal structures of GyrB43 in complex with ADP⋅BeF3, ADP⋅Pi, and ADP. Upon hydrolysis, the enzyme undergoes an obligatory 12° domain rearrangement to accommodate the 1.5 Å increase in distance between the γ- and β-phosphate of the nucleotide within the sealed binding site at the domain interface. Conserved residues from the QTK loop of the transducer domain (also part of the domain interface couple the small structural change within the binding site with the rigid body motion. The domain reorientation is reflected in a significant 7 Å increase in the separation of the two transducer domains of the dimer that would embrace one of the DNA segments in full-length gyrase. The observed conformational change is likely to be relevant for the allosteric coordination of ATP hydrolysis with DNA binding, cleavage/re-ligation and/or strand passage.
Rigidity of monodromies for Appell's hypergeometric functions
Directory of Open Access Journals (Sweden)
Yoshishige Haraoka
2015-01-01
Full Text Available For monodromy representations of holonomic systems, the rigidity can be defined. We examine the rigidity of the monodromy representations for Appell's hypergeometric functions, and get the representations explicitly. The results show how the topology of the singular locus and the spectral types of the local monodromies work for the study of the rigidity.
Navigation System Design and State Estimation for a Small Rigid Hull Inflatable Boat (RHIB)
2014-09-01
modulation to allow for variable motor speeds. The rudder controller utilizes a tuned proportional-integral-derivative controller with set...relative to the inertial frame, resolved along the body axes is defined as [ , , ]b Tbi p q r , where p is the angular roll rate about 36 the x...parameter-estimation,” in 2001 IEEE International Conference on Acoustics, Speech , and Signal Processing, Salt Lake City, UT, 2001. [15] S. Julier
Few-body system and particle resonances
International Nuclear Information System (INIS)
Mubarak, Ahmad.
1979-01-01
Techniques of few-body system in nuclear physics are exploited to analyze the spectrum of the T resonance and its family. Their relation to nuclear resonances are established so as to apply few-body dynamical techniques in the dynamical structure of particles carrying the truth quantum number. (author)
DEFF Research Database (Denmark)
Rijkhoff, Jan
2010-01-01
classes. Finally this article wants to claim that the distinction between rigid and flexible noun categories (a) adds a new dimension to current classifications of parts of speech systems, (b) correlates with certain grammatical phenomena (e.g. so-called number discord), and (c) helps to explain the parts......This article argues that in addition to the major flexible lexical categories in Hengeveld’s classification of parts of speech systems (Contentive, Non-Verb, Modifier), there are also flexible word classes within the rigid lexical category Noun (Set Noun, Sort Noun, General Noun). Members...... by the flexible item in the external world. I will then argue that flexible word classes constitute a proper category (i.e. they are not the result of a merger of some rigid word classes) in that members of flexible word categories display the same properties regarding category membership as members of rigid word...
Relativistic Descriptions of Few-Body Systems
International Nuclear Information System (INIS)
Karmanov, V. A.
2011-01-01
A brief review of relativistic effects in few-body systems, of theoretical approaches, recent developments and applications is given. Manifestations of relativistic effects in the binding energies, in the electromagnetic form factors and in three-body observables are demonstrated. The three-body forces of relativistic origin are also discussed. We conclude that relativistic effects in nuclei can be important in spite of small binding energy. At high momenta they clearly manifest themselves and are necessary to describe the deuteron e.m. form factors. At the same time, there is still a discrepancy in three-body observables which might be a result of less clarity in understanding the corresponding relativistic effects, the relativistic NN kernel and the three-body forces. Relativistic few-body physics remains to be a field of very intensive and fruitful researches. (author)
Directory of Open Access Journals (Sweden)
Takayuki Kurashima
2015-09-01
Full Text Available Influential stakeholders have highlighted many constraints inherent in conventional scientific forest management plans for community forestry (CF and presented simpler alternatives. Nevertheless, some developing countries continue to use rigid, complex and high-cost plans and regulations. This article considers two issues: (1 why heavily-regulated or rigid CF systems were originally introduced and why they continue to be used in developing countries despite critiques and counterproposals; and (2 under what circumstances will such CF systems face an impasse, and what can be done to resolve the situation. Using Cambodia as a case study, we examine the development of a rigid CF system, review negative factors influencing the upland forested area, clarify the unfavorable situations arising from these factors and discuss likely problems associated with the CF management system. International organizations played a key role in the introduction and maintenance of rigid, complex and high-cost CF systems in Cambodia. Conflicts and crises arise when the administration prosecutes local farmers for illegal cultivation or deprives communities of CF management rights because of the expansion of commercial crop cultivation and the lack of adequate community management in response to unprecedented changes. A likely practical solution to the probable impasse is the development and funding of a functional network of CF management committees, rather than the adoption of an entirely new, alternative system.
Grenade, Charlotte; Moniotte, Nicolas; Rompen, Eric; Vanheusden, Alain; Mainjot, Amélie; De Pauw-Gillet, Marie-Claire
2016-12-01
In vitro studies about biomaterials biological properties are essential screening tests. Yet cell cultures encounter difficulties related to cell retention on material surface or to the observation of both faces of permeable materials. The objective of the present study was to develop a reliable in vitro method to study cell behavior on rigid and flexible/permeable biomaterials elaborating two specific insert-based systems (IBS-R and IBS-F respectively). IBS-R was designed as a specific cylindrical polytetrafluoroethylene (PTFE) system to evaluate attachment, proliferation and morphology of human gingival fibroblasts (HGFs) on grade V titanium and lithium disilicate glass-ceramic discs characteristics of dental prostheses. The number of cells, their covering on discs and their morphology were determined from MTS assays and microscopic fluorescent images after 24, 48 and 72 h. IBS-F was developed as a two components system to study HGFs behavior on guided bone regeneration polyester membranes. The viability and the membrane barrier effect were evaluated by metabolic MTS assays and by scanning electron microscopy. IBS-R and IBS-F were shown to promote (1) easy and rapid handling; (2) cell retention on biomaterial surface; (3) accurate evaluation of the cellular proliferation, spreading and viability; (4) use of non-toxic material. Moreover IBS-F allowed the study of the cell migration through degradable membranes, with an access to both faces of the biomaterial and to the bottom of culture wells for medium changing.
Low noise wing slat system with rigid cove-filled slat
Shmilovich, Arvin (Inventor); Yadlin, Yoram (Inventor)
2013-01-01
Concepts and technologies described herein provide for a low noise aircraft wing slat system. According to one aspect of the disclosure provided herein, a cove-filled wing slat is used in conjunction with a moveable panel rotatably attached to the wing slat to provide a high lift system. The moveable panel rotates upward against the rear surface of the slat during deployment of the slat, and rotates downward to bridge a gap width between the stowed slat and the lower wing surface, completing the continuous outer mold line shape of the wing, when the cove-filled slat is retracted to the stowed position.
Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates
Energy Technology Data Exchange (ETDEWEB)
Dombrowski, Stefan von [Institute of Robotics and Mechatronics, German Aerospace Center (DLR) (Germany)], E-mail: stefan.von.dombrowski@dlr.de
2002-11-15
To consider large deformation problems in multibody system simulations a finite element approach, called absolute nodal coordinate.formulation,has been proposed. In this formulation absolute nodal coordinates and their material derivatives are applied to represent both deformation and rigid body motion. The choice of nodal variables allows a fully nonlinear representation of rigid body motion and can provide the exact rigid body inertia in the case of large rotations. The methodology is especially suited for but not limited to modeling of beams, cables and shells in multibody dynamics.This paper summarizes the absolute nodal coordinate formulation for a 3D Euler-Bernoulli beam model, in particular the definition of nodal variables, corresponding generalized elastic and inertia forces and equations of motion. The element stiffness matrix is a nonlinear function of the nodal variables even in the case of linearized strain/displacement relations. Nonlinear strain/displacement relations can be calculated from the global displacements using quadrature formulae.Computational examples are given which demonstrate the capabilities of the applied methodology. Consequences of the choice of shape.functions on the representation of internal forces are discussed. Linearized strain/displacement modeling is compared to the nonlinear approach and significant advantages of the latter, when using the absolute nodal coordinate formulation, are outlined.
Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates
International Nuclear Information System (INIS)
Dombrowski, Stefan von
2002-01-01
To consider large deformation problems in multibody system simulations a finite element approach, called absolute nodal coordinate.formulation,has been proposed. In this formulation absolute nodal coordinates and their material derivatives are applied to represent both deformation and rigid body motion. The choice of nodal variables allows a fully nonlinear representation of rigid body motion and can provide the exact rigid body inertia in the case of large rotations. The methodology is especially suited for but not limited to modeling of beams, cables and shells in multibody dynamics.This paper summarizes the absolute nodal coordinate formulation for a 3D Euler-Bernoulli beam model, in particular the definition of nodal variables, corresponding generalized elastic and inertia forces and equations of motion. The element stiffness matrix is a nonlinear function of the nodal variables even in the case of linearized strain/displacement relations. Nonlinear strain/displacement relations can be calculated from the global displacements using quadrature formulae.Computational examples are given which demonstrate the capabilities of the applied methodology. Consequences of the choice of shape.functions on the representation of internal forces are discussed. Linearized strain/displacement modeling is compared to the nonlinear approach and significant advantages of the latter, when using the absolute nodal coordinate formulation, are outlined
Fluid-structure interaction in non-rigid pipeline systems - large scale validation experiments
International Nuclear Information System (INIS)
Heinsbroek, A.G.T.J.; Kruisbrink, A.C.H.
1993-01-01
The fluid-structure interaction computer code FLUSTRIN, developed by DELFT HYDRAULICS, enables the user to determine dynamic fluid pressures, structural stresses and displacements in a liquid-filled pipeline system under transient conditions. As such, the code is a useful tool to process and mechanical engineers in the safe design and operation of pipeline systems in nuclear power plants. To validate FLUSTRIN, experiments have been performed in a large scale 3D test facility. The test facility consists of a flexible pipeline system which is suspended by wires, bearings and anchors. Pressure surges, which excite the system, are generated by a fast acting shut-off valve. Dynamic pressures, structural displacements and strains (in total 70 signals) have been measured under well determined initial and boundary conditions. The experiments have been simulated with FLUSTRIN, which solves the acoustic equations using the method of characteristics (fluid) and the finite element method (structure). The agreement between experiments and simulations is shown to be good: frequencies, amplitudes and wave phenomena are well predicted by the numerical simulations. It is demonstrated that an uncoupled water hammer computation would render unreliable and useless results. (author)
Lichtwarck-Aschoff, A.; Kunnen, E.S.; Geert, P.L.C. van
2009-01-01
The authors used a dynamic systems theoretical approach to examine intraindividual variability in emotional responses during the transitional period of adolescence. Longitudinal diary data were collected regarding conflicts between 17 teenage girls and their mothers over a period of a year. The
Approximate analysis of rigid plate loading on elastic multi-layered systems
CSIR Research Space (South Africa)
Maina, JW
2008-07-01
Full Text Available , this distribution was approximated using uniformly distributed multiple loads and analysis performed using Games. Results have shown good agreement with the theory for the case of a semi-infinite medium. Furthermore, extension of this method to multilayered system...
van Loon, JP; de Bont, LGM; Verkerke, GJ
The stability of a screw-fixed implantable device can be improved by eliminating the freedom of movement between the screws and the device. Two systems have been developed for rigidly connecting 2.0-mm bone screws to an implantable device, and the aim of this study was to test and compare the
International Nuclear Information System (INIS)
Kim, Hyun; Lee, Sung-Jae; Lim, Do-Hyung; Oh, Hyun-Ju; Lee, Kwon-Yong
2011-01-01
Recently, various types of semi-rigid pedicle screw fixation systems have been developed for the surgical treatment of the lumbar spine. They were introduced to address the adverse issues commonly found in traditional rigid spinal fusion--abnormally large motion at the adjacent level and subsequent degeneration. The semi-rigid system uses more compliant materials (nitinol or polymers) and/or changes in rod design (coiled or twisted rods) as compared to the conventional rigid straight rods made of Ti alloys (E = 114 GPa, υ = 0.32). However, biomechanical studies on the semi-rigid pedicle screw systems were usually limited to linear modeling of the implant and anatomic elements, which may not be capable of reflecting realistic post-operative motions of the spine. In this study, we evaluated the effects of nonlinearity in materials used for semi-rigid pedicle screw fixation systems to evaluate the changes in biomechanical behaviors using finite element analysis. Changes in range of motion (ROM) and center of rotation (COR) were assessed at the operated and adjacent levels. Actual load-displacement results of the semi-rigid rod from mechanical test were carried out to reflect the nonlinearity of the implant. In addition, nonlinear material properties of various spinal ligaments studies were used for the finite element modeling. The post-operative models were constructed by modifying the previously validated intact model of the L1-S1 spine. Eight different post-operative models were made to address the effects of nonlinearity-with a traditional stiffness modulus rod (with linear ligaments, case 1; with nonlinear ligaments, case 5), with a rigid rod (with linear ligaments, case 2; with nonlinear ligaments, case 6), with a soft rod (with linear ligaments, case 3; with nonlinear ligaments, case 7), and with a nonlinear rod (with linear ligaments, case 4; with nonlinear ligaments, case 8). To simulate the load on the lumbar spine in a neutral posture, follower load (400 N
Directory of Open Access Journals (Sweden)
Seungjae Lee
2017-03-01
Full Text Available Modular systems have been mostly researched in relatively low-rise structures but, lately, their applications to mid- to high-rise structures began to be reviewed, and research interest in new modularization subjects has increased. The application of modular systems to mid- to high-rise structures requires the structural stability of the frame and connections that consist of units, and the evaluation of the stiffness of structures that are combined in units. However, the combination of general units causes loss of the cross-section of columns or beams, resulting in low seismic performance and hindering installation works in the field. In addition, the evaluation of a frame considering such a cross-sectional loss is not easy. Therefore, it is necessary to develop a joint that is stable and easy to install. In the study, a rigidly connected modular system was proposed as a moment-resisting frame for a unit modular system, and their joints were developed and their performances were compared. The proposed system changed the ceiling beam into a bracket type to fasten bolts. It can be merged with other seismic force-resisting systems. To verify the seismic performance of the proposed system, a cyclic loading test was conducted, and the rigidly connected joint performance and integrated behavior at the joint of modular units were investigated. From the experimental results, the maximum resisting force of the proposed connection exceeded the theoretical parameters, indicating that a rigid joint structural performance could be secured.
Visuals and Visualisation of Human Body Systems
Mathai, Sindhu; Ramadas, Jayashree
2009-01-01
This paper explores the role of diagrams and text in middle school students' understanding and visualisation of human body systems. We develop a common framework based on structure and function to assess students' responses across diagram and verbal modes. Visualisation is defined in terms of understanding transformations on structure and relating…
Many-body orthogonal polynomial systems
International Nuclear Information System (INIS)
Witte, N.S.
1997-03-01
The fundamental methods employed in the moment problem, involving orthogonal polynomial systems, the Lanczos algorithm, continued fraction analysis and Pade approximants has been combined with a cumulant approach and applied to the extensive many-body problem in physics. This has yielded many new exact results for many-body systems in the thermodynamic limit - for the ground state energy, for excited state gaps, for arbitrary ground state avenges - and are of a nonperturbative nature. These results flow from a confluence property of the three-term recurrence coefficients arising and define a general class of many-body orthogonal polynomials. These theorems constitute an analytical solution to the Lanczos algorithm in that they are expressed in terms of the three-term recurrence coefficients α and β. These results can also be applied approximately for non-solvable models in the form of an expansion, in a descending series of the system size. The zeroth order order this expansion is just the manifestation of the central limit theorem in which a Gaussian measure and hermite polynomials arise. The first order represents the first non-trivial order, in which classical distribution functions like the binomial distributions arise and the associated class of orthogonal polynomials are Meixner polynomials. Amongst examples of systems which have infinite order in the expansion are q-orthogonal polynomials where q depends on the system size in a particular way. (author)
Polarization phenomena in two body systems
International Nuclear Information System (INIS)
Thomas, G.H.
1978-01-01
A review is given of strong interactions at very low, low, intermediate, and high energies over the range 6.14 MeV to 150 GeV/c with regard to polarization phenomena in two-body systems. From the one-pion-exchange model to the theory that can possibly relate to all the phenomena, namely, quantum electrodynamics the review pointed to a unified explanation for the interactions under study. 46 references
Relativistic Theory of Few Body Systems
Energy Technology Data Exchange (ETDEWEB)
Franz Gross
2002-11-01
Very significant advances have been made in the relativistic theory of few body systems since I visited Peter Sauer and his group in Hannover in 1983. This talk provides an opportunity to review the progress in this field since then. Different methods for the relativistic calculation of few nucleon systems are briefly described. As an example, seven relativistic calculations of the deuteron elastic structure functions, A, B, and T{sub 20}, are compared. The covariant SPECTATOR {copyright} theory, among the more successful and complete of these methods, is described in more detail.
Seniority in quantum many-body systems
International Nuclear Information System (INIS)
Van Isacker, P.
2010-01-01
The use of the seniority quantum number in many-body systems is reviewed. A brief summary is given of its introduction by Racah in the context of atomic spectroscopy. Several extensions of Racah's original idea are discussed: seniority for identical nucleons in a single-j shell, its extension to the case of many, non-degenerate j shells and to systems with neutrons and protons. To illustrate its usefulness to this day, a recent application of seniority is presented in Bose-Einstein condensates of atoms with spin.
Prethermalization in an isolated many body system
International Nuclear Information System (INIS)
Gring, M.
2012-01-01
Understanding the relaxation dynamics of complex non-equilibrium many-body quantum systems is a fundamental problem, arising in many areas of physics. However, experimental examples of non-equilibrium systems that are both controllable and suitable for detailed study are extremely rare. In this thesis one such example in the form of a coherently split one-dimensional (1d) ultra cold Bose gas in a double-well potential is studied in detail. Typical for the analysis of non-equilibrium systems, the key challenge in this study is the characterization of the complex transient states of the system. In the presented work this task is solved by employing measurements of the time evolution of the full quantum mechanical probability distribution functions (FDFs) of time-of-flight matter-wave interference patterns between the two halves of the split system. The dynamics of the FDFs reveal two distinct regimes of relaxation clearly demonstrating the multi-mode nature of 1d Bose gases. Moreover, after an initial rapid evolution, the FDFs exhibit the approach towards a thermal-like steady state of the system which however does not correspond to the true thermal equilibrium of the system. This surprising behaviour is also predicted by a recent theoretical work which puts the observations in a much broader context and classifies them as an example of prethermalization. Prethermalization is a general concept from relativistic quantum field theory and is currently the subject of intense theoretical research. Accordingly prethermalized states were recently predicted for a series of other many-body quantum systems. The work presented in this thesis represents a direct experimental observation of this phenomenon of prethermalization. (author) [de
CIME School on Quantum Many Body Systems
Rivasseau, Vincent; Solovej, Jan Philip; Spencer, Thomas
2012-01-01
The book is based on the lectures given at the CIME school "Quantum many body systems" held in the summer of 2010. It provides a tutorial introduction to recent advances in the mathematics of interacting systems, written by four leading experts in the field: V. Rivasseau illustrates the applications of constructive Quantum Field Theory to 2D interacting electrons and their relation to quantum gravity; R. Seiringer describes a proof of Bose-Einstein condensation in the Gross-Pitaevski limit and explains the effects of rotating traps and the emergence of lattices of quantized vortices; J.-P. Solovej gives an introduction to the theory of quantum Coulomb systems and to the functional analytic methods used to prove their thermodynamic stability; finally, T. Spencer explains the supersymmetric approach to Anderson localization and its relation to the theory of random matrices. All the lectures are characterized by their mathematical rigor combined with physical insights.
Many Body Structure of Strongly Interacting Systems
Arenhövel, Hartmuth; Drechsel, Dieter; Friedrich, Jörg; Kaiser, Karl-Heinz; Walcher, Thomas; Symposium on 20 Years of Physics at the Mainz Microtron MAMI
2006-01-01
This carefully edited proceedings volume provides an extensive review and analysis of the work carried out over the past 20 years at the Mainz Microtron (MAMI). This research centered around the application of Quantum Chromodynamics in the strictly nonperturbative regime at hadronic scales of about 1 fm. Due to the many degrees of freedom in hadrons at this scale the leitmotiv of this research is "Many body structure of strongly interacting systems". Further, an outlook on the research with the forthcoming upgrade of MAMI is given. This volume is an authoritative source of reference for everyone interested in the field of the electro-weak probing of the structure of hadrons.
Double-strangeness five-body system
Energy Technology Data Exchange (ETDEWEB)
Myint, K S [Mandalay Univ. (Myanmar). Dept. of Physics; Akaishi, Yoshinori
1994-09-01
We perform theoretical analysis on the structure and decay of a double-strangeness five-body system which consists of {sub {Lambda}{Lambda}}{sup 5}H and {sub {identical_to}}{sup 5}H states. In this S=-2 five-body system the thresholds of the t{Lambda}{Lambda} channel and the {alpha}{identical_to}{sup -} channel come closer with only 8.51 MeV difference. We treat both bound and resonant states of the three-body channels t{Lambda}{Lambda} and tp{identical_to}{sup -} by applying a complex rotation method. It is found that there is a bound {sub {Lambda}{Lambda}}{sup 5}H state with 6.3 MeV below the threshold of t+{Lambda}+{Lambda}. In the {identical_to}{sup -} channel a resonant {sub {identical_to}}{sup 5}H state appears at 1.7 MeV below the threshold of {alpha}+{identical_to}{sup -}. Though the existence of this state is ensured by the Coulomb interaction, it is a `halo` nuclear state rather than an atomic state as judged from its size. The conversion width of this state is 0.2 MeV which is extremely narrow. It is also found that {identical_to} mixing into the {sub {Lambda}{Lambda}}{sup 5}H ground state is small with 1.0 %. For the {sub {Lambda}{Lambda}}{sup 5}H state, the weak decay to the {alpha}+{Sigma}{sup -} final state produces a high mono-energetic {Sigma}{sup -} with branching ratio of 5.5 %. Thus the {Sigma}{sup -} with discrete energy would become a clear signature of the forming of the {Lambda}{Lambda} hypernucleus. (author).
Double-strangeness five-body system
Energy Technology Data Exchange (ETDEWEB)
Myint, K S [Mandalay Univ. (Myanmar). Dept. of Physics; Akaishi, Yoshinori
1995-03-01
We perform theoretical analysis on the structure and decay of a double-strangeness five-body system which consists of {sub {Lambda}{Lambda}}{sup 5}H and {sub {Xi}}{sup 5}H states. In this S=-2 five-body system the thresholds of the t{Lambda}{Lambda} channel and the {alpha}{Xi}{sup -} channel come closer with only 8.51 MeV difference. We treat both bound and resonant states of the three-body channels t{Lambda}{Lambda} and tp{Xi}{sup -} by applying a complex rotation method. It is found that there is a bound {sub {Lambda}{Lambda}}{sup 5}H state with 6.3 MeV below the threshold of t+{Lambda}+{Lambda}. In the {Xi}{sup -} channel a resonant {sub {Xi}}{sup 5}H state appears at 1.7 MeV below the threshold of {alpha}+{Xi}{sup -}. Though the existence of this state is ensured by the Coulomb interaction, it is a `halo` nuclear state rather than an atomic state as judged from its size. The conversion width of this state is 0.2 MeV which is extremely narrow. It is also found that {Xi} mixing into the {sub {Lambda}{Lambda}}{sup 5}H ground state is small with 1.0%. For the {sub {Lambda}{Lambda}}{sup 5}H state, the weak decay to the {alpha}+{Sigma}{sup -} final state produces a high mono-energetic {Sigma}{sup -} with branching ratio of 5.5%. Thus the {Sigma}{sup -} with discrete energy would become a clear signature of the forming of the {Lambda}{Lambda} hypernucleus. (author).
Johansson, Adam; Balter, James; Cao, Yue
2018-03-01
Respiratory motion can affect pharmacokinetic perfusion parameters quantified from liver dynamic contrast-enhanced MRI. Image registration can be used to align dynamic images after reconstruction. However, intra-image motion blur remains after alignment and can alter the shape of contrast-agent uptake curves. We introduce a method to correct for inter- and intra-image motion during image reconstruction. Sixteen liver dynamic contrast-enhanced MRI examinations of nine subjects were performed using a golden-angle stack-of-stars sequence. For each examination, an image time series with high temporal resolution but severe streak artifacts was reconstructed. Images were aligned using region-limited rigid image registration within a region of interest covering the liver. The transformations resulting from alignment were used to correct raw data for motion by modulating and rotating acquired lines in k-space. The corrected data were then reconstructed using view sharing. Portal-venous input functions extracted from motion-corrected images had significantly greater peak signal enhancements (mean increase: 16%, t-test, P < 0.001) than those from images aligned using image registration after reconstruction. In addition, portal-venous perfusion maps estimated from motion-corrected images showed fewer artifacts close to the edge of the liver. Motion-corrected image reconstruction restores uptake curves distorted by motion. Motion correction also reduces motion artifacts in estimated perfusion parameter maps. Magn Reson Med 79:1345-1353, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Relativistic two-body forces in many-body systems
International Nuclear Information System (INIS)
Namyslowski, J.M.
1979-01-01
For the fully off-shell extension in the relativistic dynamics, based on a covariant light-front field theory, we define the relative momenta and their proper angular variables such that -1 < cos theta/sub α/ < 1. In terms of these variables and the timelike total momenta we write explicitly the Weinberg interaction, corresponding to the exchange of a spinless particle of mass μ. The total momentum dependence and the cluster decomposition property of the Weinberg interaction are presented in detail, together with its energy dependence and other nonlocal features. In the nonrelativistic limit we recover the Yukawa interaction, while for the finite masses the Weinberg interaction is a product of the Yukawa interaction and a form factor. The Weinberg two-body force goes to zero at large energies and is truly nonlocal, in spite of the fact that the underlying field theory has a local Lagrangian
Quantum charged rigid membrane
Energy Technology Data Exchange (ETDEWEB)
Cordero, Ruben [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N., Unidad Adolfo Lopez Mateos, Edificio 9, 07738 Mexico, D.F. (Mexico); Molgado, Alberto [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Zacatecas Zac. (Mexico); Rojas, Efrain, E-mail: cordero@esfm.ipn.mx, E-mail: amolgado@fisica.uaz.edu.mx, E-mail: efrojas@uv.mx [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)
2011-03-21
The early Dirac proposal to model the electron as a charged membrane is reviewed. A rigidity term, instead of the natural membrane tension, involving linearly the extrinsic curvature of the worldvolume swept out by the membrane is considered in the action modeling the bubble in the presence of an electromagnetic field. We set up this model as a genuine second-order derivative theory by considering a non-trivial boundary term which plays a relevant part in our formulation. The Lagrangian in question is linear in the bubble acceleration and by means of the Ostrogradski-Hamiltonian approach, we observed that the theory comprises the management of both first- and second-class constraints. We thus show that our second-order approach is robust allowing for a proper quantization. We found an effective quantum potential which permits us to compute bounded states for the system. We comment on the possibility of describing brane world universes by invoking this kind of second-order correction terms.
Quantum charged rigid membrane
International Nuclear Information System (INIS)
Cordero, Ruben; Molgado, Alberto; Rojas, Efrain
2011-01-01
The early Dirac proposal to model the electron as a charged membrane is reviewed. A rigidity term, instead of the natural membrane tension, involving linearly the extrinsic curvature of the worldvolume swept out by the membrane is considered in the action modeling the bubble in the presence of an electromagnetic field. We set up this model as a genuine second-order derivative theory by considering a non-trivial boundary term which plays a relevant part in our formulation. The Lagrangian in question is linear in the bubble acceleration and by means of the Ostrogradski-Hamiltonian approach, we observed that the theory comprises the management of both first- and second-class constraints. We thus show that our second-order approach is robust allowing for a proper quantization. We found an effective quantum potential which permits us to compute bounded states for the system. We comment on the possibility of describing brane world universes by invoking this kind of second-order correction terms.
Formica, Matteo; Cavagnaro, Luca; Basso, Marco; Zanirato, Andrea; Felli, Lamberto; Formica, Carlo
2015-11-01
To evaluate the results of a novel rigid-dynamic stabilization technique in lumbar degenerative segment diseases (DSD), expressly pointing out the preservation of postoperative lumbar lordosis (LL). Forty-one patients with one level lumbar DSD and initial disc degeneration at the adjacent level were treated. Circumferential lumbar arthrodesis and posterior hybrid instrumentation were performed to preserve an initial disc degeneration above the segment that has to be fused. Clinical and spino-pelvic parameters were evaluated pre- and postoperatively. At 2-year follow-up, a significant improvement of clinical outcomes was reported. No statistically significant difference was noted between postoperative and 2-year follow-up in LL and in disc/vertebral body height ratio at the upper adjacent fusion level. When properly selected, this technique leads to good results. A proper LL should be achieved after any hybrid stabilization to preserve the segment above the fusion.
Crack identification for rigid pavements using unmanned aerial vehicles
Bahaddin Ersoz, Ahmet; Pekcan, Onur; Teke, Turker
2017-09-01
Pavement condition assessment is an essential piece of modern pavement management systems as rehabilitation strategies are planned based upon its outcomes. For proper evaluation of existing pavements, they must be continuously and effectively monitored using practical means. Conventionally, truck-based pavement monitoring systems have been in-use in assessing the remaining life of in-service pavements. Although such systems produce accurate results, their use can be expensive and data processing can be time consuming, which make them infeasible considering the demand for quick pavement evaluation. To overcome such problems, Unmanned Aerial Vehicles (UAVs) can be used as an alternative as they are relatively cheaper and easier-to-use. In this study, we propose a UAV based pavement crack identification system for monitoring rigid pavements’ existing conditions. The system consists of recently introduced image processing algorithms used together with conventional machine learning techniques, both of which are used to perform detection of cracks on rigid pavements’ surface and their classification. Through image processing, the distinct features of labelled crack bodies are first obtained from the UAV based images and then used for training of a Support Vector Machine (SVM) model. The performance of the developed SVM model was assessed with a field study performed along a rigid pavement exposed to low traffic and serious temperature changes. Available cracks were classified using the UAV based system and obtained results indicate it ensures a good alternative solution for pavement monitoring applications.
Directory of Open Access Journals (Sweden)
Yufei Liu
2015-01-01
Full Text Available This paper investigates the dynamic of a flexible robotic manipulator (FRM which consists of rigid driving base, flexible links, and flexible joints. With considering the motion fluctuations caused by the coupling effect, such as the motor parameters and mechanism inertias, as harmonic disturbances, the system investigated in this paper remains a parametrically excited system. An elastic restraint model of the FRM with elastic joints (FRMEJ is proposed, which considers the elastic properties of the connecting joints between the flexible arm and the driving base, as well as the harmonic disturbances aroused by the electromechanical coupling effect. As a consequence, the FRMEJ accordingly remains a flexible multibody system which conveys the effects of rigid-flexible couple and electromechanical couple. The Lagrangian function and Hamilton’s principle are used to establish the dynamic model of the FRMEJ. Based on the dynamic model proposed, the vibration power flow is introduced to show the vibration energy distribution. Numerical simulations are conducted to investigate the effect of the joint elasticities and the disturbance excitations, and the influences of the structure parameters and motion parameters on the vibration power flow are studied. The results obtained in this paper contribute to the structure design, motion optimization, and vibration control of FRMs.
Weiss, Asia; Whiteley, Walter
2014-01-01
This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures, and to explore the interaction of geometry, algebra, and combinatorics. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme. Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology. The volume will also be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and gradu...
Pukhlikov, Aleksandr
2013-01-01
Birational rigidity is a striking and mysterious phenomenon in higher-dimensional algebraic geometry. It turns out that certain natural families of algebraic varieties (for example, three-dimensional quartics) belong to the same classification type as the projective space but have radically different birational geometric properties. In particular, they admit no non-trivial birational self-maps and cannot be fibred into rational varieties by a rational map. The origins of the theory of birational rigidity are in the work of Max Noether and Fano; however, it was only in 1970 that Iskovskikh and Manin proved birational superrigidity of quartic three-folds. This book gives a systematic exposition of, and a comprehensive introduction to, the theory of birational rigidity, presenting in a uniform way, ideas, techniques, and results that so far could only be found in journal papers. The recent rapid progress in birational geometry and the widening interaction with the neighboring areas generate the growing interest ...
DEFF Research Database (Denmark)
Rijkhoff, Jan
2008-01-01
Studies in Language 32-3 (2008), 727-752. Special issue: Parts of Speech: Descriptive tools, theoretical constructs Jan Rijkhoff - On flexible and rigid nouns This article argues that in addition to the flexible lexical categories in Hengeveld’s classification of parts-of-speech systems (Contentive......, Non-Verb, Modifier), there are also flexible word classes within the rigid lexical category Noun (Set Noun, Sort Noun, General Noun). Members of flexible word classes are characterized by their vague semantics, which in the case of nouns means that values for the semantic features Shape...... and Homogeneity are either left undetermined or they are specified in such a way that they do not quite match the properties of the kind of entity denoted by the flexible item in the external world. I will then argue that flexible word classes constitute a proper category (i.e. they are not the result of a merger...
Management of rigid post-traumatic kyphosis.
Wu, S S; Hwa, S Y; Lin, L C; Pai, W M; Chen, P Q; Au, M K
1996-10-01
Rigid post-traumatic kyphosis after fracture of the thoracolumbar and lumbar spine represents a failure of initial management of the injury. Kyphosis moves the center of gravity anterior. The kyphosis and instability may result in pain, deformity, and increased neurologic deficits. Management for symptomatic post-traumatic kyphosis always has presented a challenge to orthopedic surgeons. To evaluate the surgical results of one stage posterior correction for rigid symptomatic post-traumatic kyphosis of the thoracolumbar and lumbar spine. The management for post-traumatic kyphosis remains controversial. Anterior, posterior, or combined anterior and posterior procedures have been advocated by different authors and show various degrees of success. One vertebra immediately above and below the level of the deformity was instrumented posteriorly by a transpedicular system (internal fixator AO). Posterior decompression was performed by excision of the spinal process and bilateral laminectomy. With the deformed vertebra through the pedicle, the vertebral body carefully is removed around the pedicle level, approximating a wedge shape. The extent to which the deformed vertebral body should be removed is determined by the attempted correction. Correction of the deformity is achieved by manipulation of the operating table and compression of the adjacent Schanz screws above and below the lesion. Thirteen patients with post-traumatic kyphosis with symptoms of fatigue and pain caused by slow progression of kyphotic deformities received posterior decompression, correction, and stabilization as a definitive treatment. The precorrection kyphosis ranged from 30-60 degrees, with a mean of 40 degrees +/- 10.8 degrees. After correction, kyphosis was reduced to an average of 1.5 degrees +/- 3.8 degrees, with a range from -5 degrees to 5 degrees. The average angle of correction was 38.8 degrees +/- 10.4 degrees, with a range from 25 degrees to 60 degrees. Significant difference was found
DEFF Research Database (Denmark)
Lessin, Dan; Risi, Sebastian
2015-01-01
In the past, evolved virtual creatures (EVCs) have been developed with rigid, segmented bodies, and with soft bodies, but never before with a combination of the two. In nature, however, creatures combining a rigid skeleton and non-rigid muscles are some of the most complex and successful examples...... of life on earth. Now, for the first time, creatures with fully evolved rigid-body skeletons and soft-body muscles can be developed in the virtual world, as well. By exploiting and re-purposing the capabilities of existing soft-body simulation systems, we can evolve complex and effective simulated muscles...
Analysis of Switched-Rigid Floating Oscillator
Directory of Open Access Journals (Sweden)
Prabhakar R. Marur
2009-01-01
Full Text Available In explicit finite element simulations, a technique called deformable-to-rigid (D2R switching is used routinely to reduce the computation time. Using the D2R option, the deformable parts in the model can be switched to rigid and reverted back to deformable when needed during the analysis. The time of activation of D2R however influences the overall dynamics of the system being analyzed. In this paper, a theoretical basis for the selection of time of rigid switching based on system energy is established. A floating oscillator problem is investigated for this purpose and closed-form analytical expressions are derived for different phases in rigid switching. The analytical expressions are validated by comparing the theoretical results with numerical computations.
Fuller, Robert G., Ed.; And Others
This is part of a series of 42 Calculus Based Physics (CBP) modules totaling about 1,000 pages. The modules include study guides, practice tests, and mastery tests for a full-year individualized course in calculus-based physics based on the Personalized System of Instruction (PSI). The units are not intended to be used without outside materials;…
Czech Academy of Sciences Publication Activity Database
Deuring, P.; Kračmar, Stanislav; Nečasová, Šárka
2017-01-01
Roč. 37, č. 3 (2017), s. 1389-1409 ISSN 1078-0947 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : asymptotic expansion * exterior domain * fundamental solution * Navier-Stokes system Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.099, year: 2016 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=13507
Czech Academy of Sciences Publication Activity Database
Deuring, P.; Kračmar, Stanislav; Nečasová, Šárka
2017-01-01
Roč. 37, č. 3 (2017), s. 1389-1409 ISSN 1078-0947 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : asymptotic expansion * exterior domain * fundamental solution * Navier-Stokes system Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.099, year: 2016 http://www.aimsciences.org/ journals /displayArticlesnew.jsp?paperID=13507
Cancers by Body Location/System
A list of all cancers, organized by location and/or function in the body. Cancers on the list are linked to information about treatment, supportive care, screening, prevention, clinical trials, and other topics.
Soft soils reinforced by rigid vertical inclusions
Directory of Open Access Journals (Sweden)
Iulia-Victoria NEAGOE
2013-12-01
Full Text Available Reinforcement of soft soils by rigid vertical inclusions is an increasingly used technique over the last few years. The system consists of rigid or semi-rigid vertical inclusions and a granular platform for the loads transfer from the structure to the inclusions. This technique aims to reduce the differential settlements both at ground level as below the structure. Reinforcement by rigid inclusions is mainly used for foundation works for large commercial and industrial platforms, storage tanks, wastewater treatment plants, wind farms, bridges, roads, railway embankments. The subject is one of interest as it proves the recently concerns at international level in research and design; however, most studies deal more with the static behavior and less with the dynamic one.
Rigid supersymmetry with boundaries
Energy Technology Data Exchange (ETDEWEB)
Belyaev, D.V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Van Nieuwenhuizen, P. [State Univ. of New York, Stony Brook, NY (United States). C.N. Yang Inst. for Theoretical Physics
2008-01-15
We construct rigidly supersymmetric bulk-plus-boundary actions, both in x-space and in superspace. For each standard supersymmetric bulk action a minimal supersymmetric bulk-plus-boundary action follows from an extended F- or D-term formula. Additional separately supersymmetric boundary actions can be systematically constructed using co-dimension one multiplets (boundary superfields). We also discuss the orbit of boundary conditions which follow from the Euler-Lagrange variational principle. (orig.)
Földeák, Dóra; Kalapos, Anita; Domsik, Péter; Sinkó, Mária; Szeleczki, Nóra; Bagdi, Enikő; Krenács, László; Forster, Tamás; Borbényi, Zita; Nemes, Attila
2017-02-01
Secondary myocardial involvement by diffuse large B-cell lymphoma is a rare occurrence. Left ventricular (LV) twist is considered an essential part of LV function. In normal circumstances LV twist results from the movement of two orthogonally oriented muscular bands of a helical myocardial structure with consequent clockwise rotation of the base and counterclockwise rotation of the apex. Three-dimensional (3D) speckle-tracking echocardiography (3DSTE) has been found to be feasible for non-invasive 3D quantification of LV wall motion and rotational mechanics. The present report aimed to assess LV twisting motion in a patient with diffuse large B-cell lymphoma with positron emission tomography/computer tomography-proven cardiac involvement by 3DSTE. During 3DSTE, reduction in some segmental radial, longitudinal, circumferential, area and 3D LV strains were found. Apical and basal LV rotations were found to be in the same counterclockwise direction, confirming near absence of LV twist - so-called rigid body rotation. Copyright © 2016 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Ghose, S.; Schomaker, V.; McMullan, R.K.
1986-01-01
Synthetic enstatite, Mg/sub 2/Si/sub 2/O/sub 6/, is orthorhombic, space group Pbca, with eight formula units per cell and lattice parameters a = 18.235(3), b = 8.818(1), c = 5.179(1) A at 23/sup 0/C. A least-squares structure refinement based on 1790 neutron intensity data converged with an agreement factor R(F/sup 2/) = 0.032, yielding Mg-O and Si-O bond lengths with standard deviations of 0.0007 and 0.0008 A, respectively. The variations observed in the Si-O bond lengths within the silicate tetrahedra A and B are caused by the differences in primary coordination of the oxygen atoms and the proximity of the magnesium ions to the silicon atoms. The latter effect is most pronounced for the bridging bonds of tetrahedron. A. The smallest O-Si-O angle is the result of edge-sharing by the Mg(2) octahedron and the A tetrahedron. An analysis of rigid-body thermal vibrations of the two crystallographically independent (SiO/sub 4/) tetrahedra indicates considerable librational motion, leading to a thermal correction of apparent Si-O bond lengths as large as +0.002 A at room temperature.
From few- to many-body quantum systems
Schiulaz, Mauro; Távora, Marco; Santos, Lea F.
2018-01-01
How many particles are necessary to make a many-body quantum system? To answer this question, we take as reference for the many-body limit a quantum system at half-filling and compare its properties with those of a system with $N$ particles, gradually increasing $N$ from 1. We show that the convergence of the static properties of the system with few particles to the many-body limit is fast. For $N \\gtrsim 4$, the density of states is already very close to Gaussian and signatures of many-body ...
International Nuclear Information System (INIS)
Turner, L.
1996-01-01
Adhering to the lore that vorticity is a critical ingredient of fluid turbulence, a triad of coupled helicity (vorticity) states of the incompressible Navier-Stokes fluid are followed. Effects of the remaining states of the fluid on the triad are then modeled as a simple driving term. Numerical solution of the equations yield attractors that seem strange and chaotic. This suggests that the unpredictability of nonlinear fluid dynamics (i.e., turbulence) may be traced back to the most primordial structure of the Navier-Stokes equation; namely, the driven triadic interaction. copyright 1996 The American Physical Society
宮西, 智久; Tomohisa, Miyanishi; 仙台大学; Sendai College
1998-01-01
In sports biomechanics, joint torque analysis play a very important role. For this reason, if we understand the joint torque during sports activity, it will be useful for the diagnosis and/or evaluation of sports technique, the specific method for muscle training and the mechanisms of sports movement. In the past decade, many studies which dealt with the motion analysis for sports activity using a three-dimensional cinematography, have been done. However, most of these studies has been focuse...
Visualizing astrophysical N-body systems
International Nuclear Information System (INIS)
Dubinski, John
2008-01-01
I begin with a brief history of N-body simulation and visualization and then go on to describe various methods for creating images and animations of modern simulations in cosmology and galactic dynamics. These techniques are incorporated into a specialized particle visualization software library called MYRIAD that is designed to render images within large parallel N-body simulations as they run. I present several case studies that explore the application of these methods to animations in star clusters, interacting galaxies and cosmological structure formation.
Rigid body essential X-ray crystallography
DEFF Research Database (Denmark)
Bjerrum, Esben Jannik; Biggin, Philip C
2008-01-01
The ligand-binding domain (LBD) from the ionotropic glutamate receptor subtype 2 (GluR2) has been shown to adopt a range of ligand-dependent conformational states. These states have been described in terms of the rotation required to fit subdomain (lobe) 2 following superposition of subdomain (lo...
High School Students' Understanding of the Human Body System
Assaraf, Orit Ben-Zvi; Dodick, Jeff; Tripto, Jaklin
2013-01-01
In this study, 120 tenth-grade students from 8 schools were examined to determine the extent of their ability to perceive the human body as a system after completing the first stage in their biology curriculum--"The human body, emphasizing homeostasis". The students' systems thinking was analyzed according to the STH thinking model, which roughly…
Improved measurement system for the whole body monitor
International Nuclear Information System (INIS)
Kotler, L.H.
1983-01-01
A static four-detector system has been established as a whole body radioactivity measurement system. A technique is being developed to position the detectors in such a manner as to minimise longitudinal distribution effects within a subject. This technique, which represents the human body as a simple geometric model, requires the determination of efficiency at any point within this model
A Geology Sampling System for Small Bodies
Naids, Adam J.; Hood, Anthony D.; Abell, Paul; Graff, Trevor; Buffington, Jesse
2016-01-01
Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are being discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a small body. Currently, the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.
A Geology Sampling System for Microgravity Bodies
Hood, Anthony; Naids, Adam
2016-01-01
Human exploration of microgravity bodies is being investigated as a precursor to a Mars surface mission. Asteroids, comets, dwarf planets, and the moons of Mars all fall into this microgravity category and some are been discussed as potential mission targets. Obtaining geological samples for return to Earth will be a major objective for any mission to a microgravity body. Currently the knowledge base for geology sampling in microgravity is in its infancy. Humans interacting with non-engineered surfaces in microgravity environment pose unique challenges. In preparation for such missions a team at the NASA Johnson Space Center has been working to gain experience on how to safely obtain numerous sample types in such an environment. This paper describes the type of samples the science community is interested in, highlights notable prototype work, and discusses an integrated geology sampling solution.
Diffusion Monte Carlo calculation of three-body systems
International Nuclear Information System (INIS)
Lu Mengjiao; Lin Qihu; Ren Zhongzhou
2012-01-01
The application of the diffusion Monte Carlo algorithm in three-body systems is studied. We develop a program and use it to calculate the property of various three-body systems. Regular Coulomb systems such as atoms, molecules, and ions are investigated. The calculation is then extended to exotic systems where electrons are replaced by muons. Some nuclei with neutron halos are also calculated as three-body systems consisting of a core and two external nucleons. Our results agree well with experiments and others' work. (authors)
Universality in low energy three-body systems
International Nuclear Information System (INIS)
Amorim, A.E.A.; Tomio, L; Frederico, T.
1997-01-01
The renormalizability of the quantum theory of non-relativistic three-body system with zero range interaction, warranties that all the low-energy three-body properties are well defined and the low-energy two-body and only one three-body physical information are known. Considering this observation, we have shown that the conditions for the occurrence of Efimov states can be easily reached with any model of short range potential where the three-body ground state and the corresponding binding energy of the subsystems are kept fixed. This approach was applied to the recently discovered halo nuclei. (author)
APPLICATION OF RIGID LINKS IN STRUCTURAL DESIGN MODELS
Directory of Open Access Journals (Sweden)
Sergey Yu. Fialko
2017-09-01
Full Text Available A special finite element modelling rigid links is proposed for the linear static and buckling analysis. Unlike the classical approach based on the theorems of rigid body kinematics, the proposed approach preserves the similarity between the adjacency graph for a sparse matrix and the adjacency graph for nodes of the finite element model, which allows applying sparse direct solvers more effectively. Besides, the proposed approach allows significantly reducing the number of nonzero entries in the factored stiffness matrix in comparison with the classical one, which greatly reduces the duration of the solution. For buckling problems of structures containing rigid bodies, this approach gives correct results. Several examples demonstrate its efficiency.
Three-Body Antikaon-Nucleon Systems
Czech Academy of Sciences Publication Activity Database
Shevchenko, Nina V.
2017-01-01
Roč. 58, č. 1 (2017), č. článku UNSP 6. ISSN 0177-7963 R&D Projects: GA ČR(CZ) GA15-04301S Institutional support: RVO:61389005 Keywords : three-body * antikaon-nucleon * K p interactions Subject RIV: BE - Theoretical Physics OBOR OECD: Atom ic, molecular and chemical physics (physics of atom s and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 0.877, year: 2016
System Theory Aspects of Multi-Body Dynamics.
1978-08-18
systems are described from a system theory point of view. Various system theory concepts and research topics which have applicability to this class of...systems are identified and briefly described. The subject of multi-body dynamics is presented in a vector space setting and is related to system theory concepts. (Author)
Daily, Kevin Michael
Underlying the many-body effects of ultracold atomic gases are the few-body dynamics and interparticle interactions. Moreover, the study of few-body systems on their own has accelerated due to confining few atoms in each well of a deep optical lattice or in a single microtrap. This thesis studies the microscopic properties of few-body systems under external spherically symmetric harmonic confinement and how the few-body properties translate to the many-body system. Bosonic and fermionic few-body systems are considered and the dependence of the energetics and other quantities are investigated as functions of the s-wave scattering length, the mass ratio and the temperature. It is found that the condensate fraction of a weakly-interacting trapped Bose gas depletes quadratically with the s-wave scattering length. The next order term in the depletion depends not only, as might be expected naively, on the s-wave scattering length and the effective range but additionally on a two-body parameter that is not needed to reproduce the energy of weakly-interacting trapped Bose gases. This finding has important implications for effective field theory treatments of the system. Weakly-interacting atomic and molecular two-component Fermi gases with equal masses are described using perturbative approaches. The energy shifts are tabulated and interpreted, and a measure of the molecular condensate fraction is developed. We develop a measure of the molecular condensate fraction using the two-body density matrix and we develop a model of the spherical component of the momentum distribution that agrees well with stochastic variational calculations. We establish the existence of intersystem degeneracies for equal mass two-component Fermi gases with zero-range interactions, where the eigen energies of the spin-imbalanced system are degenerate with a subset of the eigen energies of the more spin-balanced system and the same total number of fermions. For unequal mass two-component Fermi
Czech Academy of Sciences Publication Activity Database
Nguyen, H.Q.; Čelikovský, Sergej
2012-01-01
Roč. 1, č. 3 (2012), s. 179-187 ISSN 2223-7038 R&D Projects: GA ČR(CZ) GAP103/12/1794 Institutional support: RVO:67985556 Keywords : Attitude control * adaptive fault estimation * LMI * PDF Subject RIV: BC - Control Systems Theory http://lib.physcon.ru/doc?id=02c925f7e4ab
International Nuclear Information System (INIS)
Amusia, M Ya
2011-01-01
Contrary to common wisdom, not everything is clear and simple in the structure of many-electron atoms. Complexity in atoms is mainly a result of interelectron interaction that leads to rather unusual behaviour. Most transparently this is manifested in photo-ionization processes of many-electron atoms and some multi-atomic objects e.g. endohedrals. Particular attention will be given to the approach describing the interaction of photons with many-electron atoms in the frame of the many-body theory based on the Feynman diagrams technique. As a suitable one-electron approximation the Hartree - Fock (HF) approach will be presented. On its ground we will include the so-called electron correlation effects and discuss the frequently used Random Phase Approximation with Exchange - RPAE. Some results of recent calculations will be presented.
Energy Technology Data Exchange (ETDEWEB)
Amusia, M Ya, E-mail: amusia@vms.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem (Israel); Ioffe Physical-technical Institute, RAS, St. Petersburg (Russian Federation)
2011-09-16
Contrary to common wisdom, not everything is clear and simple in the structure of many-electron atoms. Complexity in atoms is mainly a result of interelectron interaction that leads to rather unusual behaviour. Most transparently this is manifested in photo-ionization processes of many-electron atoms and some multi-atomic objects e.g. endohedrals. Particular attention will be given to the approach describing the interaction of photons with many-electron atoms in the frame of the many-body theory based on the Feynman diagrams technique. As a suitable one-electron approximation the Hartree - Fock (HF) approach will be presented. On its ground we will include the so-called electron correlation effects and discuss the frequently used Random Phase Approximation with Exchange - RPAE. Some results of recent calculations will be presented.
International Nuclear Information System (INIS)
Amusia, M.Ya.
1995-01-01
The author presents this article in the volume, dedicated to the 70th birthday of Academician S. T. Belyaev. He has known him personally since 1961 and admires his profound contributions to the theory of Bose-liquids, to the theory of superconductivity of atomic nuclei and some other important scientific works. Belyaev is well known also as an organizer of science and education. For years he was, and is still the Chairman of the Synchrotron Radiation Commission of the Russian Academy of Science, a body which was established long ago to promote construction of high intensity light sources, and technological as well as scientific research using this light. One of the important directions of this study is investigation of photoabsorbtion by multielectron atoms in order to obtain information about their structure
Whole body scan system based on γ camera
International Nuclear Information System (INIS)
Ma Tianyu; Jin Yongjie
2001-01-01
Most existing domestic γ cameras can not perform whole body scan protocol, which is of important use in clinic. The authors designed a set of whole body scan system, which is made up of a scan bed, an ISA interface card controlling the scan bed and the data acquisition software based on a data acquisition and image processing system for γ cameras. The image was obtained in clinical experiment, and the authors think it meets the need of clinical diagnosis. Application of this system in γ cameras can provide whole body scan function at low cost
Universality in few-body systems with large scattering length
International Nuclear Information System (INIS)
Hammer, H.-W.
2005-01-01
Effective Field Theory (EFT) provides a powerful framework that exploits a separation of scales in physical systems to perform systematically improvable, model-independent calculations. Particularly interesting are few-body systems with short-range interactions and large two-body scattering length. Such systems display remarkable universal features. In systems with more than two particles, a three-body force with limit cycle behavior is required for consistent renormalization already at leading order. We will review this EFT and some of its applications in the physics of cold atoms and nuclear physics. In particular, we will discuss the possibility of an infrared limit cycle in QCD. Recent extensions of the EFT approach to the four-body system and N-boson droplets in two spatial dimensions will also be addressed
Dynamics of electrically charged extended bodies: classical and quantum systems
International Nuclear Information System (INIS)
Aaberge, T.
1987-01-01
The author present generalizations of classical mechanics and quantum mechanics that make it possible to describe N charged extended bodies.In particular, we are able to write down a set of coupled equations for the system of N bodies plus field. The theory is based on a theory for the description of N charged chemical fluid components
Feskov, Serguei V.; Ivanov, Anatoly I.
2018-03-01
An approach to the construction of diabatic free energy surfaces (FESs) for ultrafast electron transfer (ET) in a supramolecule with an arbitrary number of electron localization centers (redox sites) is developed, supposing that the reorganization energies for the charge transfers and shifts between all these centers are known. Dimensionality of the coordinate space required for the description of multistage ET in this supramolecular system is shown to be equal to N - 1, where N is the number of the molecular centers involved in the reaction. The proposed algorithm of FES construction employs metric properties of the coordinate space, namely, relation between the solvent reorganization energy and the distance between the two FES minima. In this space, the ET reaction coordinate zn n' associated with electron transfer between the nth and n'th centers is calculated through the projection to the direction, connecting the FES minima. The energy-gap reaction coordinates zn n' corresponding to different ET processes are not in general orthogonal so that ET between two molecular centers can create nonequilibrium distribution, not only along its own reaction coordinate but along other reaction coordinates too. This results in the influence of the preceding ET steps on the kinetics of the ensuing ET. It is important for the ensuing reaction to be ultrafast to proceed in parallel with relaxation along the ET reaction coordinates. Efficient algorithms for numerical simulation of multistage ET within the stochastic point-transition model are developed. The algorithms are based on the Brownian simulation technique with the recrossing-event detection procedure. The main advantages of the numerical method are (i) its computational complexity is linear with respect to the number of electronic states involved and (ii) calculations can be naturally parallelized up to the level of individual trajectories. The efficiency of the proposed approach is demonstrated for a model
Probing few-body systems with bremsstrahlung
Kalantar-Nayestanaki, N; Kruppa, AT; Lovas, RG
2002-01-01
A series of bremsstrahlung measurements have been performed with the superconducting cyclotron, AGOR, at KVI. These measurements, on the proton-proton and proton-deuteron systems, aim to investigate the nucleon-nucleon interaction as the nucleons go off their mass shell. Cross sections and analyzing
Probing few-body systems with bremsstrahlung
Kalantar-Nayestanaki, N; Krivec, R; Golli, B; Rosina, M; Sirca, S
2003-01-01
A series of bremsstrahlung measurements have been performed with the superconducting cyclotron, AGOR, at KVI. These measurements, on the proton-proton and proton-deuteron systems, aim to investigate the nucleon-nucleon interaction far away from elastic channel. Cross sections and analyzing powers
Probing few-body systems with bremsstrahlung
Kalantar-Nayestanaki, N; Oryu, S; Kamimura, M; Ishikawa, S
2000-01-01
A series of bremsstrahlung measurements have been performed with the superconducting cyclotron, AGOR, at KVI. These measurements, on the proton-proton and proton-deuteron systems, aim to investigate the nucleon-nucleon interaction as the nucleons go off their mass shelf. Cross sections and analyzing
Nonlinear Quantum Metrology of Many-Body Open Systems
Beau, M.; del Campo, A.
2017-07-01
We introduce general bounds for the parameter estimation error in nonlinear quantum metrology of many-body open systems in the Markovian limit. Given a k -body Hamiltonian and p -body Lindblad operators, the estimation error of a Hamiltonian parameter using a Greenberger-Horne-Zeilinger state as a probe is shown to scale as N-[k -(p /2 )], surpassing the shot-noise limit for 2 k >p +1 . Metrology equivalence between initial product states and maximally entangled states is established for p ≥1 . We further show that one can estimate the system-environment coupling parameter with precision N-(p /2 ), while many-body decoherence enhances the precision to N-k in the noise-amplitude estimation of a fluctuating k -body Hamiltonian. For the long-range Ising model, we show that the precision of this parameter beats the shot-noise limit when the range of interactions is below a threshold value.
Analysis of an idealized body-vortex systems
DEFF Research Database (Denmark)
Pedersen, Johan Rønby; Aref, Hassan
2008-01-01
in hand. They can be analyzed using techniques from the theory of dynamical systems with a finite number of degrees of freedom. The simplest such system, a single point vortex and a circular body, is integrable. If we add vortices, or change other features of the system such as the body shape, the motion...... may become chaotic. Various solutions are shown and analyzed with an emphasis on the transition to chaos and its physical meaning. The motion of passively advected fluid particles is also investigated. This class of systems provides a rich family of few-degree-of-freedom systems that capture essential...
Resonances in atomic few-body systems
International Nuclear Information System (INIS)
Mezei, J.Zs.; Kruppa, A.T.
2005-01-01
Complete text of publication follows. The variational method using a correlated Gaussian basis (SVM, see [1]) has proved to be an excellent method in calculating the characteristics of bound-states. Its trial and error procedures are very powerful to select an optimal basis, while the simple form of the trial function simplifies the calculations, because most of the matrix elements have analytic form. Combining the SVM with the complex rotational technique we are able to determine auto-ionizing states of Coulombic systems with three or more charged particles. Performing the complex rotation of the coordinates (r → re iθ the complex scaled Hamiltonian of a Coulombic system - only Coulomb interactions act between the particles - is a simple function of the rotational angle H(θ) Te -2iθ + Ve -iθ , where T,V are the kinetic and the potential energies of the system. In order to find the complex eigen energies of the rotated Hamiltonian, we have to solve the equation det/e -i2θ T i,j + e -iθ V ij - EΔ ij / = 0, where T ij and V i,j are the matrix elements of the original kinetic energy operator and the potential energy operator, while Δ ij are the overlap integrals of the basis elements. The SVM optimizes the non-linear parameters of the basis in a very specific way in order to get the best ground state energy. In the calculation of the excited auto-ionizing states we used the same set of parameters as for the ground state, because there are no simple recipes to optimize the parameters of a basis in a resonance state calculation. We have found that with the same set of non- linear parameters as for the ground state, we are able to describe all resonances of the Ps - (e + + e - + e - ) system calculated by Ho. We get almost the same accuracy as Ho, although Ho uses different bases for each resonant state. For the second resonance state in Table 1, our width is an order-of-magnitude smaller than Ho's, but our result is in a good agreement with recent calculations
Polarization effects in the 3-body system
International Nuclear Information System (INIS)
Ohlsen, G.G.
1978-01-01
An experimental review is given of polarization effects in the three-nucleon system. Inelastic processes are emphasized and some special topics on elastic scattering are also considered. The recent elastic nucleon--deuteron scattering result are discussed including the determination of the deuteron D state, vector n - d vs vector p - d vector analyzing power, the status of fits to polarization observables via Faddeev-type theory, and medium-energy elastic scattering. The treatment of the breakup experiments covers a general discussion of some of the possible kinematically complete breakup measurements and kinematically incomplete breakup experiments. 71 references
Polarization phenomena in few-body systems
International Nuclear Information System (INIS)
Conzett, H.E.
1975-12-01
Recent polarization studies in N--N scattering at and below 50 MeV have provided specific and significant improvements in the phase-shift parameters. High energy investigations with both polarized proton beams and targets have shown unexpectedly large spin effects, and this provides a challenge for theoretical effort to explain these results. Experimental and theoretical work on the three-nucleon problem continues to yield new and interesting results, with the emphasis now shifting to polarization studies in the breakup reaction. On-going work on several-nucleon systems continues to provide polarization data for general analyses, nuclear structure information, or specific resonance effects. Finally, the basic interaction symmetries continue to have unique and important consequences for polarization observables. 17 figures
Nonlocality in many-body quantum systems detected with two-body correlators
Energy Technology Data Exchange (ETDEWEB)
Tura, J., E-mail: jordi.tura@icfo.es [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Augusiak, R.; Sainz, A.B. [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); Lücke, B.; Klempt, C. [Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover (Germany); Lewenstein, M.; Acín, A. [ICFO—Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona) (Spain); ICREA—Institució Catalana de Recerca i Estudis Avançats, Lluis Campanys 3, 08010 Barcelona (Spain)
2015-11-15
Contemporary understanding of correlations in quantum many-body systems and in quantum phase transitions is based to a large extent on the recent intensive studies of entanglement in many-body systems. In contrast, much less is known about the role of quantum nonlocality in these systems, mostly because the available multipartite Bell inequalities involve high-order correlations among many particles, which are hard to access theoretically, and even harder experimentally. Standard, “theorist- and experimentalist-friendly” many-body observables involve correlations among only few (one, two, rarely three...) particles. Typically, there is no multipartite Bell inequality for this scenario based on such low-order correlations. Recently, however, we have succeeded in constructing multipartite Bell inequalities that involve two- and one-body correlations only, and showed how they revealed the nonlocality in many-body systems relevant for nuclear and atomic physics [Tura et al., Science 344 (2014) 1256]. With the present contribution we continue our work on this problem. On the one hand, we present a detailed derivation of the above Bell inequalities, pertaining to permutation symmetry among the involved parties. On the other hand, we present a couple of new results concerning such Bell inequalities. First, we characterize their tightness. We then discuss maximal quantum violations of these inequalities in the general case, and their scaling with the number of parties. Moreover, we provide new classes of two-body Bell inequalities which reveal nonlocality of the Dicke states—ground states of physically relevant and experimentally realizable Hamiltonians. Finally, we shortly discuss various scenarios for nonlocality detection in mesoscopic systems of trapped ions or atoms, and by atoms trapped in the vicinity of designed nanostructures.
Torsional Rigidity of Minimal Submanifolds
DEFF Research Database (Denmark)
Markvorsen, Steen; Palmer, Vicente
2006-01-01
We prove explicit upper bounds for the torsional rigidity of extrinsic domains of minimal submanifolds $P^m$ in ambient Riemannian manifolds $N^n$ with a pole $p$. The upper bounds are given in terms of the torsional rigidities of corresponding Schwarz symmetrizations of the domains in warped...
Reversible Rigidity Control Using Low Melting Temperature Alloys
Shan, Wanliang; Lu, Tong; Majidi, Carmel
2013-03-01
Inspired by nature, materials able to achieve rapid rigidity changes have important applications for human body protection in military and many other areas. This talk presents the fabrication and design of soft-matter technologies that exhibit rapid reversible rigidity control. Fabricated with a masked deposition technique, the soft-matter composite contains liquid-phase and phase-changing metal alloys embedded in a soft and highly stretchable elastomer. The composite material can reversibly change its rigidity by three orders of magnitude and sustain large deformation.
Electromagnetics of body area networks antennas, propagation, and RF systems
Werner, Douglas H
2016-01-01
The book is a comprehensive treatment of the field, covering fundamental theoretical principles and new technological advancements, state-of-the-art device design, and reviewing examples encompassing a wide range of related sub-areas. In particular, the first area focuses on the recent development of novel wearable and implantable antenna concepts and designs including metamaterial-based wearable antennas, microwave circuit integrated wearable filtering antennas, and textile and/or fabric material enabled wearable antennas. The second set of topics covers advanced wireless propagation and the associated statistical models for on-body, in-body, and off-body modes. Other sub-areas such as efficient numerical human body modeling techniques, artificial phantom synthesis and fabrication, as well as low-power RF integrated circuits and related sensor technology are also discussed. These topics have been carefully selected for their transformational impact on the next generation of body-area network systems and beyo...
Tool-Body Assimilation Model Based on Body Babbling and Neurodynamical System
Directory of Open Access Journals (Sweden)
Kuniyuki Takahashi
2015-01-01
Full Text Available We propose the new method of tool use with a tool-body assimilation model based on body babbling and a neurodynamical system for robots to use tools. Almost all existing studies for robots to use tools require predetermined motions and tool features; the motion patterns are limited and the robots cannot use novel tools. Other studies fully search for all available parameters for novel tools, but this leads to massive amounts of calculations. To solve these problems, we took the following approach: we used a humanoid robot model to generate random motions based on human body babbling. These rich motion experiences were used to train recurrent and deep neural networks for modeling a body image. Tool features were self-organized in parametric bias, modulating the body image according to the tool in use. Finally, we designed a neural network for the robot to generate motion only from the target image. Experiments were conducted with multiple tools for manipulating a cylindrical target object. The results show that the tool-body assimilation model is capable of motion generation.
Algebraic Methods for Counting Euclidean Embeddings of Rigid Graphs
I.Z. Emiris; E.P. Tsigaridas; A. Varvitsiotis (Antonios); E.R. Gasner
2009-01-01
textabstract The study of (minimally) rigid graphs is motivated by numerous applications, mostly in robotics and bioinformatics. A major open problem concerns the number of embeddings of such graphs, up to rigid motions, in Euclidean space. We capture embeddability by polynomial systems
Gravitational equilibrium of a multi-body fluid system
International Nuclear Information System (INIS)
Eriguchi, Yoshiharu; Hachisu, Izumi.
1983-01-01
We have computed gravitational equilibrium sequences for systems consisting of N incompressible fluid bodies (N = 3, 4, 5). The component fluids are assumed congruent. The system seems to become a lobe-like shape for N = 3 case and a ring-like shape for N>=4 cases according as the fluid bodies come nearer to each other. For every sequence there is a critical equilibrium whose dimensionless angular momentum has the minimum value of the sequence. As the final outcome is nearly in equilibrium in the computation of a collapsing gas cloud, we can apply the present results to the interpretation of these dynamical calculations. For instance, the gas cloud can never fissure into any N-body equilibrium when its dimensionless angular momentum is below the critical value of the N-body sequence. (author)
Accelerator-feasible N-body nonlinear integrable system
Directory of Open Access Journals (Sweden)
V. Danilov
2014-12-01
Full Text Available Nonlinear N-body integrable Hamiltonian systems, where N is an arbitrary number, have attracted the attention of mathematical physicists for the last several decades, following the discovery of some number of these systems. This paper presents a new integrable system, which can be realized in facilities such as particle accelerators. This feature makes it more attractive than many of the previous such systems with singular or unphysical forces.
A monequillibrium mary-body systems IV: Respouse function theory
International Nuclear Information System (INIS)
Luzzi, R.; Vasconcellos, A.R.; Algarte, A.C.S.
1987-01-01
A response function theory for many-body systems arbitrarily away from equilibrium is presented. It is based on the nonequilibrium statistical operator method fully described in a previous article. A formal theory is presented evaluation of transition probabilties and the average values of dynamical quantities in far-from-equilibrium many-body systems under the action of external perturbations. A nonequilibrium thermodynamic Green's function algorithn appropriate for the calculation of response functions and scattering cross sections in terms of a generalized fluctuation-dissipation theorem for far-from-equilibrium systems is also derived. (author) [pt
Porter-Thomas distribution in unstable many-body systems
International Nuclear Information System (INIS)
Volya, Alexander
2011-01-01
We use the continuum shell model approach to explore the resonance width distribution in unstable many-body systems. The single-particle nature of a decay, the few-body character of the interaction Hamiltonian, and the collectivity that emerges in nonstationary systems due to the coupling to the continuum of reaction states are discussed. Correlations between the structures of the parent and daughter nuclear systems in the common Fock space are found to result in deviations of decay width statistics from the Porter-Thomas distribution.
Influence of body weight, age and management system on ...
African Journals Online (AJOL)
The effect of doe age, body weight and different management systems, as practiced in various Angora goat studs, on reproductive performance of does was investigated. The data used were collected from 2000 to 2004 on 12 Angora goat studs kept under different management systems. The data set analysed for this study ...
Fijany, Amir
1993-01-01
In this paper, parallel O(log n) algorithms for computation of rigid multibody dynamics are developed. These parallel algorithms are derived by parallelization of new O(n) algorithms for the problem. The underlying feature of these O(n) algorithms is a drastically different strategy for decomposition of interbody force which leads to a new factorization of the mass matrix (M). Specifically, it is shown that a factorization of the inverse of the mass matrix in the form of the Schur Complement is derived as M(exp -1) = C - B(exp *)A(exp -1)B, wherein matrices C, A, and B are block tridiagonal matrices. The new O(n) algorithm is then derived as a recursive implementation of this factorization of M(exp -1). For the closed-chain systems, similar factorizations and O(n) algorithms for computation of Operational Space Mass Matrix lambda and its inverse lambda(exp -1) are also derived. It is shown that these O(n) algorithms are strictly parallel, that is, they are less efficient than other algorithms for serial computation of the problem. But, to our knowledge, they are the only known algorithms that can be parallelized and that lead to both time- and processor-optimal parallel algorithms for the problem, i.e., parallel O(log n) algorithms with O(n) processors. The developed parallel algorithms, in addition to their theoretical significance, are also practical from an implementation point of view due to their simple architectural requirements.
Computer-based anthropometrical system for total body irradiation.
Sánchez-Nieto, B; Sánchez-Doblado, F; Terrón, J A; Arráns, R; Errazquin, L
1997-05-01
For total body irradiation (TBI) dose calculation requirements, anatomical information about the whole body is needed. Despite the fact that video image grabbing techniques are used by some treatment planning systems for standard radiotherapy, there are no such systems designed to generate anatomical parameters for TBI planning. The paper describes an anthropometrical computerised system based on video image grabbing which was purpose-built to provide anatomical data for a PC-based TBI planning system. Using software, the system controls the acquisition and digitalisation of the images (external images of the patient in treatment position) and the measurement procedure itself (on the external images or the digital CT information). An ASCII file, readable by the TBI planning system, is generated to store the required parameters of the dose calculation points, i.e. depth, backscatter tissue thickness, thickness of inhomogeneity, off-axis distance (OAD) and source to skin distance (SSD).
Dynamical Studies of N-Body Gravity and Tidal Dissipation in the TRAPPIST-1 Star System
Nayak, Michael; Kuettel, Donald H.; Stebler, Shane T.; Udrea, Bogdan
2018-01-01
To date, we have discovered a total of 2,729 planetary systems that contain more than 3,639 known exoplanets [1]. A majority of these are defined as compact systems, containing multiple exoplanets within 0.25 AU of the central star. It has been shown that tightly packed exoplanets avoid colliding due to long-term resonance-induced orbit stability [2]. However, due to extreme proximity, these planets experience intense gravitational forces from each other that are unprecedented within our own solar system, which makes the existence of exomoons doubtful. We present the results of an initial study evaluating dynamical stability of potential exomoons within such highly compact systems.This work is baselined around TRAPPIST-1, an ultra-cool dwarf star that hosts seven temperate terrestrial planets, three of which are in the habitable zone, orbiting within 0.06 AU [3]. N-body simulations place a grid of test particles varying semi-major axis, eccentricity, and inclination around the three habitable zone planets. We find that most exomoons with semi-major axes less than half the Hill sphere of their respective planet are stable over 10 kyrs, with several stable over 300 kyrs.However, in compact systems, tidal influences from other planets can compete with tidal effects from the primary planet, resulting in possible instabilities and massive amounts of tidal dissipation. We investigate these effects with a large grid search that incorporates exomoon radius, tidal quality factor and a range of planet rigidities. Results of simulations that combine n-body gravity effects with both planetary and satellite tides are presented and contrasted with n-body results. Finally, we examine long-term stability (> 1Myrs) of the stable subset of test particles from the n-body simulation with the addition of tidal dissipation, to determine if exomoons can survive around planets e, f, and g in the TRAPPIST-1 system.[1] Schneider (2017). The Extrasolar Planets Encyclopedia. http
Van-Wierts, S.; Bernatchez, P.
2012-04-01
Coastal erosion is an important issue within the St-Lawrence estuary and gulf, especially in zones of unconsolidated material. Wide beaches are important coastal environments; they act as a buffer against breaking waves by absorbing and dissipating their energy, thus reducing the rate of coastal erosion. They also offer protection to humans and nearby ecosystems, providing habitat for plants, animals and lifeforms such as algae and microfauna. Conventional methods, such as aerial photograph analysis, fail to adequately quantify the morphosedimentary behavior of beaches at the scale of a hydrosedimentary cells. The lack of reliable and quantitative data leads to considerable errors of overestimation and underestimation of sediment budgets. To address these gaps and to minimize acquisition costs posed by airborne LiDAR survey, a mobile terrestrial LiDAR has been set up to acquire topographic data of the coastal zone. The acquisition system includes a LiDAR sensor, a high precision navigation system (GPS-INS) and a video camera. Comparison of LiDAR data with 1050 DGPS control points shows a vertical mean absolute error of 0.1 m in beach areas. The extracted data is used to calculate sediment volumes, widths, slopes, and a sediment budget index. A high accuracy coastal characterization is achieved through the integration of laser data and video. The main objective of this first project using this system is to quantify the impact of rigid coastal protective structures on sediment budget and beach morphology. Results show that the average sediment volume of beaches located before a rock armour barrier (12 m3/m) were three times narrower than for natural beaches (35,5 m3/m). Natural beaches were also found to have twice the width (25.4 m) of the beaches bordering inhabited areas (12.7 m). The development of sediment budget index for beach areas is an excellent proxy to quickly identify deficit areas and therefore the coastal segments most at risk of erosion. The obtained
The relationship between the stomatognathic system and body posture
Directory of Open Access Journals (Sweden)
Antonino Cuccia
2009-01-01
Full Text Available In recent years, many researchers have investigated the various factors that can influence body posture: mood states, anxiety, head and neck positions, oral functions (respiration, swallowing, oculomotor and visual systems, and the inner ear. Recent studies indicate a role for trigeminal afferents on body posture, but this has not yet been demonstrated conclusively. The present study aims to review the papers that have shown a relationship between the stomatognathic system and body posture. These studies suggest that tension in the stomatognathic system can contribute to impaired neural control of posture. Numerous anatomical connections between the stomatognathic system's proprioceptive inputs and nervous structures are implicated in posture (cerebellum, vestibular and oculomotor nuclei, superior colliculus. If the proprioceptive information of the stomatognathic system is inaccurate, then head control and body position may be affected. In addition, the present review discusses the role the myofascial system plays in posture. If confirmed by further research, these considerations can improve our understanding and treatment of muscular-skeletal disorders that are associated with temporomandibular joint disorders, occlusal changes, and tooth loss.
Cracking of open traffic rigid pavement
Directory of Open Access Journals (Sweden)
Niken Chatarina
2017-01-01
Full Text Available The research is done by observing the growth of real structure cracking in Natar, Lampung, Indonesia compared to C. Niken’s et al research and literature study. The rigid pavement was done with open traffic system. There are two main crack types on Natar rigid pavement: cracks cross the road, and cracks spreads on rigid pavement surface. The observation of cracks was analyzed by analyzing material, casting, curing, loading and shrinkage mechanism. The relationship between these analysis and shrinkage mechanism was studied in concrete micro structure. Open traffic make hydration process occur under vibration; therefore, fresh concrete was compressed and tensioned alternately since beginning. High temperature together with compression, cement dissociation, the growth of Ca2+ at very early age leads abnormal swelling. No prevention from outside water movement leads hydration process occur with limited water which caused spreads fine cracks. Limited water improves shrinkage and plastic phase becomes shorter; therefore, rigid pavement can’t accommodate the abnormal swelling and shrinking alternately and creates the spread of cracks. Discontinuing casting the concrete makes both mix under different condition, the first is shrink and the second is swell and creates weak line on the border; so, the cracks appear as cracks across the road.
Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery.
Directory of Open Access Journals (Sweden)
Robert Kalescky
2016-04-01
Full Text Available Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2 in the human PTP1E protein is examined as model system to advance a recently developed rigid residue scan method combining with configurational entropy calculation and principal component analysis. The contributions from individual residues to whole-protein dynamics and allostery were systematically assessed via rigid body simulations of both unbound and ligand-bound states of the protein. The entropic contributions of individual residues to whole-protein dynamics were evaluated based on covariance-based correlation analysis of all simulations. The changes of overall protein entropy when individual residues being held rigid support that the rigidity/flexibility equilibrium in protein structure is governed by the La Châtelier's principle of chemical equilibrium. Key residues of PDZ2 allostery were identified with good agreement with NMR studies of the same protein bound to the same peptide. On the other hand, the change of entropic contribution from each residue upon perturbation revealed intrinsic differences among all the residues. The quasi-harmonic and principal component analyses of simulations without rigid residue perturbation showed a coherent allosteric mode from unbound and bound states, respectively. The projection of simulations with rigid residue perturbation onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions supporting the population-shift theory of protein allostery. Overall, the study presented here provides a robust and systematic approach to estimate the contribution of individual residue internal motion to overall protein dynamics and allostery.
Quasi-Three Body Systems: Properties and Scattering
International Nuclear Information System (INIS)
Amusia, M. Ya.
2017-01-01
We investigate systems of three mutually interacting particles with masses m e , m μ , M that obey the following inequality m e ≪ m μ ≪ M. Then the three-body problem reduces to the two-body scattering or structure of m e in the field of the pseudo-nucleus m μ M. We calculate analytically the properties of considered systems, such as the scattering cross-sections, hyperfine splitting, Auger decay of exited states and Lamb shifts, presenting them as expansions in powers of the parameter β=m e /m μ ≪1. (author)
Body fluid matrix evaluation on a Roche cobas 8000 system.
Owen, William E; Thatcher, Mindy L; Crabtree, Karolyn J; Greer, Ryan W; Strathmann, Frederick G; Straseski, Joely A; Genzen, Jonathan R
2015-09-01
Chemical analysis of body fluids is commonly requested by physicians. Because most commercial FDA-cleared clinical laboratory assays are not validated by diagnostic manufacturers for "non-serum" and "non-plasma" specimens, laboratories may need to complete additional validation studies to comply with regulatory requirements regarding body fluid testing. The objective of this report is to perform recovery studies to evaluate potential body fluid matrix interferences for commonly requested chemistry analytes. Using an IRB-approved protocol, previously collected clinical body fluid specimens (biliary/hepatic, cerebrospinal, dialysate, drain, pancreatic, pericardial, peritoneal, pleural, synovial, and vitreous) were de-identified and frozen (-20°C) until experiments were performed. Recovery studies (spiking with high concentration serum, control, and/or calibrator) were conducted using 10% spiking solution by volume; n=5 specimens per analyte/body fluid investigated. Specimens were tested on a Roche cobas 8000 system (c502, c702, e602, and ISE modules). In all 80 analyte/body fluid combinations investigated (including amylase, total bilirubin, urea nitrogen, carbohydrate antigen 19-9, carcinoembryonic antigen, cholesterol, chloride, creatinine, glucose, potassium, lactate dehydrogenase, lipase, rheumatoid factor, sodium, total protein, triglycerides, and uric acid), the average percent recovery was within predefined acceptable limits (less than ±10% from the calculated ideal recovery). The present study provides evidence against the presence of any systematic matrix interference in the analyte/body fluid combinations investigated on the Roche cobas 8000 system. Such findings support the utility of ongoing body fluid validation initiatives conducted to maintain compliance with regulatory requirements. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Body surface mounted biomedical monitoring system using Bluetooth.
Nambu, Masayuki
2007-01-01
Continuous monitoring in daily life is important for the health condition control of the elderly. However, portable or wearable devices need to carry by user on their own will. On the other hand, implantation sensors are not adoptable, because of generic users dislike to insert the any object in the body for monitoring. Therefore, another monitoring system of the health condition to carry it easily is necessary. In addition, ID system is necessary even if the subject live with few families. Furthermore, every measurement system should be wireless system, because not to obstruct the daily life of the user. In this paper, we propose the monitoring system, which is mounted on the body surface. This system will not obstruct the action or behavior of user in daily life, because this system attached the body surface on the back of the user. In addition, this system has wireless communication system, using Bluetooth, and acquired data transfer to the outside of the house via the Internet.
The Relationship Between the Stomatognathic System and Body Posture
Cuccia, Antonino; Caradonna, Carola
2009-01-01
In recent years, many researchers have investigated the various factors that can influence body posture: mood states, anxiety, head and neck positions, oral functions (respiration, swallowing), oculomotor and visual systems, and the inner ear. Recent studies indicate a role for trigeminal afferents on body posture, but this has not yet been demonstrated conclusively. The present study aims to review the papers that have shown a relationship between the stomatognathic system and body posture. These studies suggest that tension in the stomatognathic system can contribute to impaired neural control of posture. Numerous anatomical connections between the stomatognathic system’s proprioceptive inputs and nervous structures are implicated in posture (cerebellum, vestibular and oculomotor nuclei, superior colliculus). If the proprioceptive information of the stomatognathic system is inaccurate, then head control and body position may be affected. In addition, the present review discusses the role the myofascial system plays in posture. If confirmed by further research, these considerations can improve our understanding and treatment of muscular-skeletal disorders that are associated with temporomandibular joint disorders, occlusal changes, and tooth loss. PMID:19142553
Analytical treatment of Coriolis coupling for three-body systems
Energy Technology Data Exchange (ETDEWEB)
Poirier, Bill
2005-01-31
In a previous article [J. Chem. Phys. 108 (1998) 5216], an efficient method was presented for performing 'exact' quantum calculations for the three-body rovibrational Hamiltonian, within the helicity-conserving approximation. This approach makes use of a certain three-body ''effective potential,'' enabling the same bend angle basis set to be employed for all values of the rotational quantum numbers, J, K and M. In the present work, the method is extended to incorporate Coriolis coupling, for which the relevant matrix elements are derived exactly. These can be used to solve the full three-body rovibrational problem, in the standard Jacobi coordinate vector embedding. Generalization of the method for coupled kinetic energy operators arising from other coordinate systems, embeddings, and/or system sizes, is also discussed.
Radio compatibility studies for medical body area network systems
Chrysallos, E.
2013-01-01
Evolution in healthcare during the last two decades has had tremendous impact on people's lives, extending life expectancy and improving patient care. One of the reasons this happened is the introduction of Medical Body Area Network Systems (MBANSs), a technology enabling the measurement and
Tablet PC Enabled Body Sensor System for Rural Telehealth Applications
Directory of Open Access Journals (Sweden)
Nitha V. Panicker
2016-01-01
Full Text Available Telehealth systems benefit from the rapid growth of mobile communication technology for measuring physiological signals. Development and validation of a tablet PC enabled noninvasive body sensor system for rural telehealth application are discussed in this paper. This system includes real time continuous collection of physiological parameters (blood pressure, pulse rate, and temperature and fall detection of a patient with the help of a body sensor unit and wireless transmission of the acquired information to a tablet PC handled by the medical staff in a Primary Health Center (PHC. Abnormal conditions are automatically identified and alert messages are given to the medical officer in real time. Clinical validation is performed in a real environment and found to be successful. Bland-Altman analysis is carried out to validate the wrist blood pressure sensor used. The system works well for all measurements.
Efficient numerical simulations of many-body localized systems
Energy Technology Data Exchange (ETDEWEB)
Pollmann, Frank [Max-Planck-Institut fuer Physik komplexer Systeme, 01187 Dresden (Germany); Khemani, Vedika; Sondhi, Shivaji [Physics Department, Princeton University, Princeton, NJ 08544 (United States)
2016-07-01
Many-body localization (MBL) occurs in isolated quantum systems when Anderson localization persists in the presence of finite interactions. To understand this phenomenon, the development of new, efficient numerical methods to find highly excited eigenstates is essential. We introduce a variant of the density-matrix renormalization group (DMRG) method that obtains individual highly excited eigenstates of MBL systems to machine precision accuracy at moderate-large disorder. This method explicitly takes advantage of the local spatial structure characterizing MBL eigenstates.
Structures of two-dimensional three-body systems
International Nuclear Information System (INIS)
Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.
1996-01-01
Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)
Topological orders in rigid states
International Nuclear Information System (INIS)
Wen, X.G.
1990-01-01
The authors study a new kind of ordering topological order in rigid states (the states with no local gapless excitations). This paper concentrates on characterization of the different topological orders. As an example the authors discuss in detail chiral spin states of 2+1 dimensional spin systems. Chiral spin states are described by the topological Chern-Simons theories in the continuum limit. The authors show that the topological orders can be characterized by a non-Abelian gauge structure over the moduli space which parametrizes a family of the model Hamiltonians supporting topologically ordered ground states. In 2 + 1 dimensions, the non-Abelian gauge structure determines possible fractional statistics of the quasi-particle excitations over the topologically ordered ground states. The dynamics of the low lying global excitations is shown to be independent of random spatial dependent perturbations. The ground state degeneracy and the non-Abelian gauge structures discussed in this paper are very robust, even against those perturbations that break translation symmetry. The authors also discuss the symmetry properties of the degenerate ground states of chiral spin states. The authors find that some degenerate ground states of chiral spin states on torus carry non-trivial quantum numbers of the 90 degrees rotation
RANZAR Body Systems Framework of diagnostic imaging examination descriptors
International Nuclear Information System (INIS)
Pitman, Alexander D.; Penlington, Lisa; Doromal, Darren; Vukolova, Natalia; Slater, Gregory
2014-01-01
A unified and logical system of descriptors for diagnostic imaging examinations and procedures is a desirable resource for radiology in Australia and New Zealand and is needed to support core activities of RANZCR. Existing descriptor systems available in Australia and New Zealand (including the Medicare DIST and the ACC Schedule) have significant limitations and are inappropriate for broader clinical application. An anatomically based grid was constructed, with anatomical structures arranged in rows and diagnostic imaging modalities arranged in columns (including nuclear medicine and positron emission tomography). The grid was segregated into five body systems. The cells at the intersection of an anatomical structure row and an imaging modality column were populated with short, formulaic descriptors of the applicable diagnostic imaging examinations. Clinically illogical or physically impossible combinations were ‘greyed out’. Where the same examination applied to different anatomical structures, the descriptor was kept identical for the purposes of streamlining. The resulting Body Systems Framework of diagnostic imaging examination descriptors lists all the reasonably common diagnostic imaging examinations currently performed in Australia and New Zealand using a unified grid structure allowing navigation by both referrers and radiologists. The Framework has been placed on the RANZCR website and is available for access free of charge by registered users. The Body Systems Framework of diagnostic imaging examination descriptors is a system of descriptors based on relationships between anatomical structures and imaging modalities. The Framework is now available as a resource and reference point for the radiology profession and to support core College activities.
The quantum mechanics of many-body systems
Thouless, David James; Brueckner, Keith A
1961-01-01
The Quantum Mechanics of Many-Body Systems provides an introduction to that field of theoretical physics known as """"many-body theory."""" It is concerned with problems that are common to nuclear physics, atomic physics, the electron theory of metals, and to the theories of liquid helium three and four, and it describes the methods which have recently been developed to solve such problems. The aim has been to produce a unified account of the field, rather than to describe all the parallel methods that have been developed; as a result, a number of important papers are not mentioned. The main
Body frames and frame singularities for three-atom systems
International Nuclear Information System (INIS)
Littlejohn, R.G.; Mitchell, K.A.; Aquilanti, V.; Cavalli, S.
1998-01-01
The subject of body frames and their singularities for three-particle systems is important not only for large-amplitude rovibrational coupling in molecular spectroscopy, but also for reactive scattering calculations. This paper presents a geometrical analysis of the meaning of body frame conventions and their singularities in three-particle systems. Special attention is devoted to the principal axis frame, a certain version of the Eckart frame, and the topological inevitability of frame singularities. The emphasis is on a geometrical picture, which is intended as a preliminary study for the more difficult case of four-particle systems, where one must work in higher-dimensional spaces. The analysis makes extensive use of kinematic rotations. copyright 1998 The American Physical Society
The partition function of an interacting many body system
International Nuclear Information System (INIS)
Rummel, C.; Ankerhold, J.
2002-01-01
Based on the path integral approach the partition function of a many body system with separable two body interaction is calculated in the sense of a semiclassical approximation. The commonly used Gaussian type of approximation, known as the perturbed static path approximation (PSPA), breaks down near a crossover temperature due to instabilities of the classical mean field solution. It is shown how the PSPA is systematically improved within the crossover region by taking into account large non-Gaussian fluctuation and an approximation applicable down to very low temperatures is carried out. These findings are tested against exact results for the archetypical cases of a particle moving in a one dimensional double well and the exactly solvable Lipkin-Meshkov-Glick model. The extensions should have applications in finite systems at low temperatures as in nuclear physics and mesoscopic systems, e. g. for gap fluctuations in nano-scale superconducting devices previously studied within a PSPA type of approximation. (author)
SABRE: A system for the assessment of body radioactivity
International Nuclear Information System (INIS)
Fry, F.A.; Salmon, L.
1976-12-01
This report describes a PDP-11/10 computer system and associated software for the acquisition and assessment of pulse height spectra from a series of devices used for the measurement of body radioactivity. A real-time program allows simultaneous collection of data from up to four independently controlled detection systems. A single console (a visual display unit) is used for operator interaction and analogue display. The operator can control data accumulation and select a wide range of manipulative, display, transmission and storage features by means of a command language. The existing program can be easily extended since segments peforming individual functions are held on secondary storage and brought into main memory when required. Both assembler languages for the PDP-11 and FORTRAN are used for the implementation. The system provides uniquely powerful features for the acquisition and treatment of radiation spectra from body measurements and employs novel forms of user interaction. (author)
Quantum Markov processes and applications in many-body systems
International Nuclear Information System (INIS)
Temme, P. K.
2010-01-01
This thesis is concerned with the investigation of quantum as well as classical Markov processes and their application in the field of strongly correlated many-body systems. A Markov process is a special kind of stochastic process, which is determined by an evolution that is independent of its history and only depends on the current state of the system. The application of Markov processes has a long history in the field of statistical mechanics and classical many-body theory. Not only are Markov processes used to describe the dynamics of stochastic systems, but they predominantly also serve as a practical method that allows for the computation of fundamental properties of complex many-body systems by means of probabilistic algorithms. The aim of this thesis is to investigate the properties of quantum Markov processes, i.e. Markov processes taking place in a quantum mechanical state space, and to gain a better insight into complex many-body systems by means thereof. Moreover, we formulate a novel quantum algorithm which allows for the computation of the thermal and ground states of quantum many-body systems. After a brief introduction to quantum Markov processes we turn to an investigation of their convergence properties. We find bounds on the convergence rate of the quantum process by generalizing geometric bounds found for classical processes. We generalize a distance measure that serves as the basis for our investigations, the chi-square divergence, to non-commuting probability spaces. This divergence allows for a convenient generalization of the detailed balance condition to quantum processes. We then devise the quantum algorithm that can be seen as the natural generalization of the ubiquitous Metropolis algorithm to simulate quantum many-body Hamiltonians. By this we intend to provide further evidence, that a quantum computer can serve as a fully-fledged quantum simulator, which is not only capable of describing the dynamical evolution of quantum systems, but
Magnetism and magnetostriction in a degenerate rigid band
International Nuclear Information System (INIS)
Kulakowski, K.; Barbara, B.
1990-09-01
We investigate the influence of the spin-orbit coupling on the magnetic and magnetoelastic phenomena in ferromagnetic band systems. The description is within the Stoner model of a degenerate rigid band, for temperature T = O. (author). 14 refs
Rigidity of Glasses and Macromolecules
Thorpe, M. F.
1998-03-01
The simple yet powerful ideas of percolation theory have found their way into many different areas of research. In this talk we show how RIGIDITY PERCOLATION can be studied at a similar level of sophistication, using a powerful new program THE PEBBLE GAME (D. J. Jacobs and M. F. Thorpe, Phys. Rev. E) 53, 3682 (1996). that uses an integer algorithm. This program can analyse the rigidity of two and three dimensional networks containing more than one million bars and joints. We find the total number of floppy modes, and find the critical behavior as the network goes from floppy to rigid as more bars are added. We discuss the relevance of this work to network glasses, and how it relates to experiments that involve the mechanical properties like hardness and elasticity of covalent glassy networks like Ge_xAs_ySe_1-x-y and dicuss recent experiments that suggest that the rigidity transition may be first order (Xingwei Feng, W. J.Bresser and P. Boolchand, Phys. Rev. Lett 78), 4422 (1997).. This approach is also useful in macromolecules and proteins, where detailed information about the rigid domain structure can be obtained.
Start up of the whole body detection system
International Nuclear Information System (INIS)
Cortes P, A.; Angeles C, A.; Cuapio O, A.; Tejera R, A.
1991-12-01
The management of Radiological Safety of the Nuclear Center of Mexico has a whole body detection system Trade mark Canberra, manufactured by Bio-nuclear Measurements Inc. Ipswich Massachusetts. These systems are used to detect contamination of I-131 in thyroid and other nuclides (Cs-137, Cs-134, Co-60, etc.) in thorax. In this work the procedure that was continued for the setting in march of the thyroid detector is presented. A description of this system and an analysis of the uncertainties involved in the measures of activity of I-131 in thyroid of people occupationally exposed is made. (Author)
Many-Body Green Function of Degenerate Systems
International Nuclear Information System (INIS)
Brouder, Christian; Panati, Gianluca; Stoltz, Gabriel
2009-01-01
A rigorous nonperturbative adiabatic approximation of the evolution operator in the many-body physics of degenerate systems is derived. This approximation is used to solve the long-standing problem of the choice of the initial states of H 0 leading to eigenstates of H 0 +V for degenerate systems. These initial states are eigenstates of P 0 VP 0 , where P 0 is the projection onto a degenerate eigenspace of H 0 . This result is used to give the proper definition of the Green function, the statistical Green function and the nonequilibrium Green function of degenerate systems. The convergence of these Green functions is established.
Avulsed Nasoenteric Bridle System Magnet as an Intranasal Foreign Body.
Puricelli, Michael D; Newberry, Christopher Ian; Gov-Ari, Eliav
2016-02-01
Nasoenteric tubes provide short-term nutrition support to patients unable to take an adequate oral diet. Bridling systems may be used to secure tubes to guard against displacement. We present the first case of an avulsed magnet from a bridling system to raise awareness of this potential complication. The primary methods of securing a nasogastric tube are reviewed, and comparative assessment of the 3 main systems is presented. Diagnosis and management of nasal foreign bodies relevant to this case are reviewed and prevention/safety considerations discussed. © 2015 American Society for Parenteral and Enteral Nutrition.
Correlation functions for Hermitian many-body systems: Necessary conditions
International Nuclear Information System (INIS)
Brown, E.B.
1994-01-01
Lee [Phys. Rev. B 47, 8293 (1993)] has shown that the odd-numbered derivatives of the Kubo autocorrelation function vanish at t=0. We show that this condition is based on a more general property of nondiagonal Kubo correlation functions. This general property provides that certain functional forms (e.g., simple exponential decay) are not admissible for any symmetric or antisymmetric Kubo correlation function in a Hermitian many-body system. Lee's result emerges as a special case of this result. Applications to translationally invariant systems and systems with rotational symmetries are also demonstrated
Entanglement between noncomplementary parts of many-body systems
International Nuclear Information System (INIS)
Wichterich, Hannu Christian
2011-01-01
This thesis investigates the structure and behaviour of entanglement, the purely quantum mechanical part of correlations, in many-body systems, employing both numerical and analytical techniques at the interface of condensed matter theory and quantum information theory. Entanglement can be seen as a precious resource which, for example, enables the noiseless and instant transmission of quantum information, provided the communicating parties share a sufficient ''amount'' of it. Furthermore, measures of entanglement of a quantum mechanical state are perceived as useful probes of collective properties of many-body systems. For instance, certain measures are capable of detecting and classifying ground-state phases and, particularly, transition (or critical) points separating such phases. Chapters 2 and 3 focus on entanglement in many-body systems and its use as a potential resource for communication protocols. They address the questions of how a substantial amount of entanglement can be established between distant subsystems, and how efficiently this entanglement could be ''harvested'' by way of measurements. The subsequent chapters 4 and 5 are devoted to universality of entanglement between large collections of particles undergoing a quantum phase transition, where, despite the enormous complexity of these systems, collective properties including entanglement no longer depend crucially on the microscopic details. (orig.)
Solvable Family of Driven-Dissipative Many-Body Systems
Foss-Feig, Michael; Young, Jeremy T.; Albert, Victor V.; Gorshkov, Alexey V.; Maghrebi, Mohammad F.
2017-11-01
Exactly solvable models have played an important role in establishing the sophisticated modern understanding of equilibrium many-body physics. Conversely, the relative scarcity of solutions for nonequilibrium models greatly limits our understanding of systems away from thermal equilibrium. We study a family of nonequilibrium models, some of which can be viewed as dissipative analogues of the transverse-field Ising model, in that an effectively classical Hamiltonian is frustrated by dissipative processes that drive the system toward states that do not commute with the Hamiltonian. Surprisingly, a broad and experimentally relevant subset of these models can be solved efficiently. We leverage these solutions to compute the effects of decoherence on a canonical trapped-ion-based quantum computation architecture, and to prove a no-go theorem on steady-state phase transitions in a many-body model that can be realized naturally with Rydberg atoms or trapped ions.
Theory of many-body localization in periodically driven systems
International Nuclear Information System (INIS)
Abanin, Dmitry A.; De Roeck, Wojciech; Huveneers, François
2016-01-01
We present a theory of periodically driven, many-body localized (MBL) systems. We argue that MBL persists under periodic driving at high enough driving frequency: The Floquet operator (evolution operator over one driving period) can be represented as an exponential of an effective time-independent Hamiltonian, which is a sum of quasi-local terms and is itself fully MBL. We derive this result by constructing a sequence of canonical transformations to remove the time-dependence from the original Hamiltonian. When the driving evolves smoothly in time, the theory can be sharpened by estimating the probability of adiabatic Landau–Zener transitions at many-body level crossings. In all cases, we argue that there is delocalization at sufficiently low frequency. We propose a phase diagram of driven MBL systems.
Rigidly foldable origami gadgets and tessellations
Evans, Thomas A.; Lang, Robert J.; Magleby, Spencer P.; Howell, Larry L.
2015-01-01
Rigidly foldable origami allows for motion where all deflection occurs at the crease lines and facilitates the application of origami in materials other than paper. In this paper, we use a recently discovered method for determining rigid foldability to identify existing flat-foldable rigidly foldable tessellations, which are also categorized. We introduce rigidly foldable origami gadgets which may be used to modify existing tessellations or to create new tessellations. Several modified and new rigidly foldable tessellations are presented. PMID:26473037
Entanglement replication in driven dissipative many-body systems.
Zippilli, S; Paternostro, M; Adesso, G; Illuminati, F
2013-01-25
We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.
On nonequilibrium many-body systems III: nonlinear transport theory
International Nuclear Information System (INIS)
Luzzi, R.; Vasconcellos, A.R.; Algarte, A.C.S.
1986-01-01
A nonlinear transport theory for many-body systems arbitrarily away from equilibrium, based on the nonequilibrium statistical operator (NSO) method, is presented. Nonlinear transport equations for a basis set of dynamical quantities are derived using two equivalent treatments that may be considered far reaching generalizations of the Hilbert-Chapman-Enskog method and Mori's generalized Langevin equations method. The first case is considered in some detail and the general characteristics of the theory are discussed. (Author) [pt
A REVIEW ON LOWER APPENDICULAR MUSCULOSKELETAL SYSTEM OF HUMAN BODY
Directory of Open Access Journals (Sweden)
M. Akhtaruzzaman
2016-04-01
Full Text Available Rehabilitation engineering plays an important role in designing various autonomous robots to provide better therapeutic exercise to disabled patients. Hence it is necessary to study human musculoskeletal system and also needs to be presented in scientific manner in order to describe and analyze the biomechanics of human body motion. This review focuses on lower appendicular musculoskeletal structure of human body to represent joints and links architectures; to identify muscle attachments and functions; and to illustrate muscle groups which are responsible for a particular joint movement. Firstly, human lower skeletal structure, linking systems, joint mechanisms, and their functions are described with a conceptual representation of joint architecture of human skeleton. This section also represents joints and limbs by comparing with mechanical systems. Characteristics of ligaments and their functions to construct skeletal joints are also discussed briefly in this part. Secondly, the study focuses on muscular system of human lower limbs where muscle structure, functions, roles in moving endoskeleton structure, and supporting mechanisms are presented ellaborately. Thirdly, muscle groups are tabulated based on functions that provide mobility to different joints of lower limbs. Finally, for a particular movement action of lower extremity, muscles are also grouped and tabulated to have a better understanding on functions of individual muscle. Basically the study presents an overview of the structure of human lower limbs by characterizing and classifying skeletal and muscular systems.KEYWORDS: Musculoskeletal system; Human lower limbs; Muscle groups; Joint motion; Biomechatronics; Rehabilitation.
RANZCR Body Systems Framework of diagnostic imaging examination descriptors.
Pitman, Alexander G; Penlington, Lisa; Doromal, Darren; Slater, Gregory; Vukolova, Natalia
2014-08-01
A unified and logical system of descriptors for diagnostic imaging examinations and procedures is a desirable resource for radiology in Australia and New Zealand and is needed to support core activities of RANZCR. Existing descriptor systems available in Australia and New Zealand (including the Medicare DIST and the ACC Schedule) have significant limitations and are inappropriate for broader clinical application. An anatomically based grid was constructed, with anatomical structures arranged in rows and diagnostic imaging modalities arranged in columns (including nuclear medicine and positron emission tomography). The grid was segregated into five body systems. The cells at the intersection of an anatomical structure row and an imaging modality column were populated with short, formulaic descriptors of the applicable diagnostic imaging examinations. Clinically illogical or physically impossible combinations were 'greyed out'. Where the same examination applied to different anatomical structures, the descriptor was kept identical for the purposes of streamlining. The resulting Body Systems Framework of diagnostic imaging examination descriptors lists all the reasonably common diagnostic imaging examinations currently performed in Australia and New Zealand using a unified grid structure allowing navigation by both referrers and radiologists. The Framework has been placed on the RANZCR website and is available for access free of charge by registered users. The Body Systems Framework of diagnostic imaging examination descriptors is a system of descriptors based on relationships between anatomical structures and imaging modalities. The Framework is now available as a resource and reference point for the radiology profession and to support core College activities. © 2014 The Royal Australian and New Zealand College of Radiologists.
Stresses in Circular Plates with Rigid Elements
Velikanov, N. L.; Koryagin, S. I.; Sharkov, O. V.
2018-05-01
Calculations of residual stress fields are carried out by numerical and static methods, using the flat cross-section hypothesis. The failure of metal when exposed to residual stresses is, in most cases, brittle. The presence in the engineering structures of rigid elements often leads to the crack initiation and structure failure. This is due to the fact that rigid elements under the influence of external stresses are stress concentrators. In addition, if these elements are fixed by welding, the residual welding stresses can lead to an increase in stress concentration and, ultimately, to failure. The development of design schemes for such structures is a very urgent task for complex technical systems. To determine the stresses in a circular plate with a welded circular rigid insert under the influence of an external load, one can use the solution of the plane stress problem for annular plates in polar coordinates. The polar coordinates of the points are the polar radius and the polar angle, and the stress state is determined by normal radial stresses, tangential and shearing stresses. The use of the above mentioned design schemes, formulas, will allow more accurate determination of residual stresses in annular welded structures. This will help to establish the most likely directions of failure and take measures at the stages of designing, manufacturing and repairing engineering structures to prevent these failures. However, it must be taken into account that the external load, the presence of insulation can lead to a change in the residual stress field.
Rigidity-tuning conductive elastomer
Shan, Wanliang; Diller, Stuart; Tutcuoglu, Abbas; Majidi, Carmel
2015-06-01
We introduce a conductive propylene-based elastomer (cPBE) that rapidly and reversibly changes its mechanical rigidity when powered with electrical current. The elastomer is rigid in its natural state, with an elastic (Young’s) modulus of 175.5 MPa, and softens when electrically activated. By embedding the cPBE in an electrically insulating sheet of polydimethylsiloxane (PDMS), we create a cPBE-PDMS composite that can reversibly change its tensile modulus between 37 and 1.5 MPa. The rigidity change takes ˜6 s and is initiated when a 100 V voltage drop is applied across the two ends of the cPBE film. This magnitude of change in elastic rigidity is similar to that observed in natural skeletal muscle and catch connective tissue. We characterize the tunable load-bearing capability of the cPBE-PDMS composite with a motorized tensile test and deadweight experiment. Lastly, we demonstrate the ability to control the routing of internal forces by embedding several cPBE-PDMS ‘active tendons’ into a soft robotic pneumatic bending actuator. Selectively activating the artificial tendons controls the neutral axis and direction of bending during inflation.
Rigidity-tuning conductive elastomer
International Nuclear Information System (INIS)
Shan, Wanliang; Diller, Stuart; Tutcuoglu, Abbas; Majidi, Carmel
2015-01-01
We introduce a conductive propylene-based elastomer (cPBE) that rapidly and reversibly changes its mechanical rigidity when powered with electrical current. The elastomer is rigid in its natural state, with an elastic (Young’s) modulus of 175.5 MPa, and softens when electrically activated. By embedding the cPBE in an electrically insulating sheet of polydimethylsiloxane (PDMS), we create a cPBE–PDMS composite that can reversibly change its tensile modulus between 37 and 1.5 MPa. The rigidity change takes ∼6 s and is initiated when a 100 V voltage drop is applied across the two ends of the cPBE film. This magnitude of change in elastic rigidity is similar to that observed in natural skeletal muscle and catch connective tissue. We characterize the tunable load-bearing capability of the cPBE–PDMS composite with a motorized tensile test and deadweight experiment. Lastly, we demonstrate the ability to control the routing of internal forces by embedding several cPBE–PDMS ‘active tendons’ into a soft robotic pneumatic bending actuator. Selectively activating the artificial tendons controls the neutral axis and direction of bending during inflation. (paper)
An Advanced N -body Model for Interacting Multiple Stellar Systems
Energy Technology Data Exchange (ETDEWEB)
Brož, Miroslav [Astronomical Institute of the Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, CZ-18000 Praha 8 (Czech Republic)
2017-06-01
We construct an advanced model for interacting multiple stellar systems in which we compute all trajectories with a numerical N -body integrator, namely the Bulirsch–Stoer from the SWIFT package. We can then derive various observables: astrometric positions, radial velocities, minima timings (TTVs), eclipse durations, interferometric visibilities, closure phases, synthetic spectra, spectral energy distribution, and even complete light curves. We use a modified version of the Wilson–Devinney code for the latter, in which the instantaneous true phase and inclination of the eclipsing binary are governed by the N -body integration. If all of these types of observations are at one’s disposal, a joint χ {sup 2} metric and an optimization algorithm (a simplex or simulated annealing) allow one to search for a global minimum and construct very robust models of stellar systems. At the same time, our N -body model is free from artifacts that may arise if mutual gravitational interactions among all components are not self-consistently accounted for. Finally, we present a number of examples showing dynamical effects that can be studied with our code and we discuss how systematic errors may affect the results (and how to prevent this from happening).
Health Monitoring System Based on Intra-Body Communication
Razak, A. H. A.; Ibrahim, I. W.; Ayub, A. H.; Amri, M. F.; Hamzi, M. H.; Halim, A. K.; Ahmad, A.; Junid, S. A. M. Al
2015-11-01
This paper presents a model of a Body Area Network (BAN) health monitoring system based on Intra-Body Communication. Intra-body Communication (IBC) is a communication technique that uses the human body as a medium for electrical signal communication. One of the visions in the health care industry is to provide autonomous and continuous self and the remote health monitoring system. This can be achieved via BAN, LAN and WAN integration. The BAN technology itself consists of short range data communication modules, sensors, controller and actuators. The information can be transmitted to the LAN and WAN via the RF technology such as Bluetooth, ZigBee and ANT. Although the implementations of RF communication have been successful, there are still limitations in term of power consumption, battery lifetime, interferences and signal attenuations. One of the solutions for Medical Body Area Network (MBANs) to overcome these issues is by using an IBC technique because it can operate at lower frequencies and power consumption compared to the existing techniques. The first objective is to design the IBC's transmitter and receiver modules using the off the shelf components. The specifications of the modules such as frequency, data rate, modulation and demodulation coding system were defined. The individual module were designed and tested separately. The modules was integrated as an IBC system and tested for functionality then was implemented on PCB. Next objective is to model and implement the digital parts of the transmitter and receiver modules on the Altera's FPGA board. The digital blocks were interfaced with the FPGA's on board modules and the discrete components. The signals that have been received from the transmitter were converted into a proper waveform and it can be viewed via external devices such as oscilloscope and Labview. The signals such as heartbeats or pulses can also be displayed on LCD. In conclusion, the IBC project presents medical health monitoring model
Classical and quantum simulations of many-body systems
Energy Technology Data Exchange (ETDEWEB)
Murg, Valentin
2008-04-07
This thesis is devoted to recent developments in the fields of classical and quantum simulations of many-body systems. We describe new classical algorithms that overcome problems apparent in conventional renormalization group and Monte Carlo methods. These algorithms make possible the detailed study of finite temperature properties of 2-D classical and 1-D quantum systems, the investigation of ground states of 2-D frustrated or fermionic systems and the analysis of time evolutions of 2-D quantum systems. Furthermore, we propose new 'analog' quantum simulators that are able to realize interesting models such as a Tonks-Girardeau gas or a frustrated spin-1/2 XY model on a trigonal lattice. These quantum simulators make use of optical lattices and trapped ions and are technically feasible. In fact, the Tonks-Girardeau gas has been realized experimentally and we provide a detailed comparison between the experimental data and the theoretical predictions. (orig.)
Classical and quantum simulations of many-body systems
International Nuclear Information System (INIS)
Murg, Valentin
2008-01-01
This thesis is devoted to recent developments in the fields of classical and quantum simulations of many-body systems. We describe new classical algorithms that overcome problems apparent in conventional renormalization group and Monte Carlo methods. These algorithms make possible the detailed study of finite temperature properties of 2-D classical and 1-D quantum systems, the investigation of ground states of 2-D frustrated or fermionic systems and the analysis of time evolutions of 2-D quantum systems. Furthermore, we propose new ''analog'' quantum simulators that are able to realize interesting models such as a Tonks-Girardeau gas or a frustrated spin-1/2 XY model on a trigonal lattice. These quantum simulators make use of optical lattices and trapped ions and are technically feasible. In fact, the Tonks-Girardeau gas has been realized experimentally and we provide a detailed comparison between the experimental data and the theoretical predictions. (orig.)
Almost conserved operators in nearly many-body localized systems
Pancotti, Nicola; Knap, Michael; Huse, David A.; Cirac, J. Ignacio; Bañuls, Mari Carmen
2018-03-01
We construct almost conserved local operators, that possess a minimal commutator with the Hamiltonian of the system, near the many-body localization transition of a one-dimensional disordered spin chain. We collect statistics of these slow operators for different support sizes and disorder strengths, both using exact diagonalization and tensor networks. Our results show that the scaling of the average of the smallest commutators with the support size is sensitive to Griffiths effects in the thermal phase and the onset of many-body localization. Furthermore, we demonstrate that the probability distributions of the commutators can be analyzed using extreme value theory and that their tails reveal the difference between diffusive and subdiffusive dynamics in the thermal phase.
Regulation of Body Temperature by the Nervous System.
Tan, Chan Lek; Knight, Zachary A
2018-04-04
The regulation of body temperature is one of the most critical functions of the nervous system. Here we review our current understanding of thermoregulation in mammals. We outline the molecules and cells that measure body temperature in the periphery, the neural pathways that communicate this information to the brain, and the central circuits that coordinate the homeostatic response. We also discuss some of the key unresolved issues in this field, including the following: the role of temperature sensing in the brain, the molecular identity of the warm sensor, the central representation of the labeled line for cold, and the neural substrates of thermoregulatory behavior. We suggest that approaches for molecularly defined circuit analysis will provide new insight into these topics in the near future. Copyright © 2018 Elsevier Inc. All rights reserved.
Calculation of electromagnetic observables in few-body systems
International Nuclear Information System (INIS)
Gibson, B.F.
1986-10-01
An introduction to the calculation of electromagnetic observables in few-body systems is given by studying two examples in the trinucleon system: (1) the elastic electron scattering charge form factor in configuration space and momentum space and (2) the two-body photodisintegration of 3 H leading to a neutron-deuteron final state in a separable potential formalism. In the discussion of charge form factor calculations, a number of related topics are touched upon: the relation of structure in Psi to the properties of simple NN forces, the Faddeev and Schroedinger solution to the harmonic oscillator problem, the Rosenbluth formula for electron scattering from a spin-1/2 nuclear target (e.g., the proton or 3 H), and the charge density operator. Formulae for 3 He and 3 H charge form factors in a central force approximation are given in configuration and momentum space. The physics of these form factors is discussed in light of results from realistic nucleon-nucleon potential model calculations, including the effects of two-pion-exchange three-body force models. Topics covered are the rms charge densities, and the Coulomb energy of 3 He. In the discussion of the 3 H photodisintegration, the Siegert form of the electric dipole operator (in the long wave length limit) is derived as are the separable potential equations which describe the off-shell transition amplitudes which connect nucleon-plus-corrected-pair states. Expressions for the Born amplitudes required to complete the two-body photodisintegration amplitude calculation are given. Numerical results for a model central force problem are discussed and compared with an approximate calculation. Comparisons with 3 H(γ,n)d and 3 He(γ,p)d data are made, and the significant features of the exact theoretical calculation are outlined. 61 refs., 26 figs
Quantum theory of many-body systems techniques and applications
Zagoskin, Alexandre
2014-01-01
This text presents a self-contained treatment of the physics of many-body systems from the point of view of condensed matter. The approach, quite traditionally, uses the mathematical formalism of quasiparticles and Green’s functions. In particular, it covers all the important diagram techniques for normal and superconducting systems, including the zero-temperature perturbation theory and the Matsubara, Keldysh and Nambu-Gor'kov formalism, as well as an introduction to Feynman path integrals. This new edition contains an introduction to the methods of theory of one-dimensional systems (bosonization and conformal field theory) and their applications to many-body problems. Intended for graduate students in physics and related fields, the aim is not to be exhaustive, but to present enough detail to enable the student to follow the current research literature, or to apply the techniques to new problems. Many of the examples are drawn from mesoscopic physics, which deals with systems small enough that quantum...
Aspects of Strongly Correlated Many-Body Fermi Systems
Porter, William J., III
A, by now, well-known signal-to-noise problem plagues Monte Carlo calculations of quantum-information-theoretic observables in systems of interacting fermions, particularly the Renyi entanglement entropies Sn, even in many cases where the infamous sign problem does not appear. Several methods have been put forward to circumvent this affliction including ensemble-switching techniques using auxiliary partition-function ratios. This dissertation presents an algorithm that modifies the recently proposed free-fermion decomposition in an essential way: we incorporate the entanglement-sensitive correlations directly into the probability measure in a natural way. Implementing this algorithm, we demonstrate that it is compatible with the hybrid Monte Carlo algorithm, the workhorse of the lattice quantum chromodynamics community and an essential tool for studying gauge theories that contain dynamical fermions. By studying a simple one-dimensional Hubbard model, we demonstrate that our method does not exhibit the same debilitating numerical difficulties that naive attempts to study entanglement often encounter. Following that, we illustrate some key probabilistic insights, using intuition derived from the previous method and its successes to construct a simpler, better behaved, and more elegant algorithm. Using this method, in combination with new identities which allow us to avoid seemingly necessary numerical difficulties, the inversion of the restricted one-body density matrices, we compute high order Renyi entropies and perform a thorough comparison to this new algorithm's predecessor using the Hubbard model mentioned before. Finally, we characterize non-perturbatively the Renyi entropies of degree n = 2,3,4, and 5 of three-dimensional, strongly coupled many-fermion systems in the scale-invariant regime of short interaction range and large scattering length, i.e. in the unitary limit using the algorithms detailed herein. We also detail an exact, few-body projective method
International Nuclear Information System (INIS)
Fox, T.; Kotzian, M.; Roesch, N.
1992-01-01
The authors present an INDO/S Molecular-orbital investigation of organic molecules containing a barrelene moiety that provides a rigid link between an aromatic donor and a maleic ester acceptor group. Molecules of this type have recently been synthesized and characterized spectroscopically. The authors discuss the ground state and various excited states both in vacuo and in solution. Solvent effects are incorporated by use of an electrostatic cavity model which is not restricted to a spherical cavity, but allows for a cavity shape that is adapted to the solute molecule. The calculations indicate low-lying charge-transfer (CT) excitations in the region of the first aromatic transitions, even in the gas phase
Directory of Open Access Journals (Sweden)
Thierry Nalpas
2011-01-01
Full Text Available En este trabajo se presenta un estudio de modelamiento análogo sobre la naturaleza, geometría y cinemática de la deformación a lo largo de fallas de rumbo dada la presencia de un bloque rígido en su trayectoria de deformación. Los modelos análogos están apropiadamente escalados considerando las características reológicas de los materiales que se desean contrastar en la deformación. Dos grandes parámetros fueron probados: la configuración del bloque rígido, variando su forma y tamaño, y el monto del desplazamiento. Los resultados experimentales muestran el desarrollo de rotaciones, fallas y pliegues como producto de la presencia de un bloque rígido en la trayectoria de falla. Los diversos casos geométricos probados pueden ser empleados para su comparación con sistemas de fallas de rumbo en los cuales existen diferencias litológicas de comportamiento reológico diferencial, como por ejemplo el caso del 'Núcleo rígido de Limón Verde' al sur de Chuquicamata, ubicado en la trayectoria del sistema de fallas de Domeyko.This work addresses the kinematic effects of a rigid block in strike-slip systems by using analogue models. The experiments (size, behaviour of materials were scaled down in order to represent deformation of the tested rheologic contrast conditions in deformation. Two main parameters were tested: the configuration of the rigid block, changing its form and size, and the amount of displacement. The experiments evidenced the development of rotations, faults and folds along the fault trajectory, as resulting from the presence of the rigid block during the deformation. Testing of diverse geometric situations may be used for comparison to strike-slip fault systems in which different lithologies and rheologic behaviour exist, for example, presence of the 'Limón Verde rigid core' along the Domeyko fault system, just south of Chuquicamata.
Three body mechanisms in hadron collisions. The A = 3 system
International Nuclear Information System (INIS)
Frascaria, R.
1988-01-01
Three-body mechanisms in hadron collisions, and the role of the A = 3 system are reviewed, and the excitation functions of the proton deuteron system in interactions at energies up to 2.9 GeV are discussed. Meson productions at large angles reveal structures due to the mesonic degrees of freedom in the interaction of the proton with the deuteron, exciting n * isobars in intermediate states. Propagation in the nuclei does not seem to change the properties of these isobars. The meson double scattering mechanism provides a way to understand coherent meson production in pd capture. It is difficult to say whether this coherent process corresponds to eigenstates of the A = 3 system. The sharing of the momentum transfer between the three nucleons renders impossible the observation of high momentum components in coherent proton captures. The possible contribution of the electromagnetic probe in hadron physics with a multi GeV electron accelerator is mentioned
N-Body simulations of tidal encounters between stellar systems
International Nuclear Information System (INIS)
Rao, P.D.; Ramamani, N.; Alladin, S.M.
1985-10-01
N-Body simulations have been performed to study the tidal effects of a primary stellar system on a secondary stellar system of density close to the Roche density. Two hyperbolic, one parabolic and one elliptic encounters have been simulated. The changes in energy, angular momentum, mass distribution, and shape of the secondary system have been determined in each case. The inner region containing about 40% of the mass was found to be practically unchanged and the mass exterior to the tidal radius was found to escape. The intermediate region showed tidal distension. The thickness of this region decreased as we went from hyperbolic encounters to the elliptic encounter keeping the distance of closest approach constant. The numerical results for the fractional change in energy have been compared with the predictions of the available analytic formulae and the usefulness and limitations of the formulae have been discussed. (author)
Investigation of a whole-body DOI-PET system
International Nuclear Information System (INIS)
Ohi, Junichi; Tonami, Hiromichi
2007-01-01
In this study, we were conducting basic research on a whole-body depth of gamma-ray interaction (DOI) positron emission tomography system which provides spatial resolution that is both high and uniform, and also minimizes costs. The detectors consist of double-layer 9x10 GSO/GSO phoswich crystal blocks, a light guide and two rectangular PMTs. Individual crystal sizes are 2.45x5.1x15 mm 3 , and each layer of crystal blocks has a different decay time. Many of the circuit boards used in our current conventional PET system (SET-3000G SHIMADZU Japan) have been optimized for DOI acquisition. The detectors are arranged to form a 332.5 mm radius detection ring, and spatial resolution is obtained from the center to the edge of the 250 mm radius field of view. The effect of DOI was confirmed using a comparison with the non-DOI systems
Efficient tomography of a quantum many-body system
Lanyon, B. P.; Maier, C.; Holzäpfel, M.; Baumgratz, T.; Hempel, C.; Jurcevic, P.; Dhand, I.; Buyskikh, A. S.; Daley, A. J.; Cramer, M.; Plenio, M. B.; Blatt, R.; Roos, C. F.
2017-12-01
Quantum state tomography is the standard technique for estimating the quantum state of small systems. But its application to larger systems soon becomes impractical as the required resources scale exponentially with the size. Therefore, considerable effort is dedicated to the development of new characterization tools for quantum many-body states. Here we demonstrate matrix product state tomography, which is theoretically proven to allow for the efficient and accurate estimation of a broad class of quantum states. We use this technique to reconstruct the dynamical state of a trapped-ion quantum simulator comprising up to 14 entangled and individually controlled spins: a size far beyond the practical limits of quantum state tomography. Our results reveal the dynamical growth of entanglement and describe its complexity as correlations spread out during a quench: a necessary condition for future demonstrations of better-than-classical performance. Matrix product state tomography should therefore find widespread use in the study of large quantum many-body systems and the benchmarking and verification of quantum simulators and computers.
Verification of the Rigidity of the Coulomb Field in Motion
Blinov, S. V.; Bulyzhenkov, I. É.
2018-06-01
Laplace, analyzing the stability of the Solar System, was the first to calculate that the velocity of the motion of force fields can significantly exceed the velocity of light waves. In electrodynamics, the Coulomb field should rigidly accompany its source for instantaneous force action in distant regions. Such rigid motion was recently inferred from experiments at the Frascati Beam Test Facility with short beams of relativistic electrons. The comments of the authors on their observations are at odds with the comments of theoreticians on retarded potentials, which motivates a detailed study of the positions of both sides. Predictions of measurements, based on the Lienard-Wiechert potentials, are used to propose an unambiguous scheme for testing the rigidity of the Coulomb field. Realization of the proposed experimental scheme could independently refute or support the assertions of the Italian physicists regarding the rigid motion of Coulomb fields and likewise the nondual field approach to macroscopic reality.
Robot and Human Surface Operations on Solar System Bodies
Weisbin, C. R.; Easter, R.; Rodriguez, G.
2001-01-01
This paper presents a comparison of robot and human surface operations on solar system bodies. The topics include: 1) Long Range Vision of Surface Scenarios; 2) Human and Robots Complement Each Other; 3) Respective Human and Robot Strengths; 4) Need More In-Depth Quantitative Analysis; 5) Projected Study Objectives; 6) Analysis Process Summary; 7) Mission Scenarios Decompose into Primitive Tasks; 7) Features of the Projected Analysis Approach; and 8) The "Getting There Effect" is a Major Consideration. This paper is in viewgraph form.
Functionally rigid bistable [2]rotaxanes
DEFF Research Database (Denmark)
Nygaard, Sune; Leung, Ken C-F; Aprahamian, Ivan
2007-01-01
defines an unambiguous distance of 1.5 nm over which the ring moves between the MPTTF and NP units. The degenerate NP/NP [2]rotaxane was used to investigate the shuttling barrier by dynamic 1H NMR spectroscopy for the movement of the CBPQT4+ ring across the new rigid spacer. It is evident from...... better control over the position of the ring component in the ground state but also for control over the location of the CBPQT4+ ring during solution-state switching experiments, triggered either chemically (1H NMR) or electrochemically (cyclic voltammetry). In this instance, the use of the rigid spacer......Two-station [2]rotaxanes in the shape of a degenerate naphthalene (NP) shuttle and a nondegenerate monopyrrolotetrathiafulvalene (MPTTF)/NP redox-controllable switch have been synthesized and characterized in solution. Their dumbbell-shaped components are composed of polyether chains interrupted...
Associative memory through rigid origami
Murugan, Arvind; Brenner, Michael
2015-03-01
Mechanisms such as Miura Ori have proven useful in diverse contexts since they have only one degree of freedom that is easily controlled. We combine the theory of rigid origami and associative memory in frustrated neural networks to create structures that can ``learn'' multiple generic folding mechanisms and yet can be robustly controlled. We show that such rigid origami structures can ``recall'' a specific learned mechanism when induced by a physical impulse that only need resemble the desired mechanism (i.e. robust recall through association). Such associative memory in matter, seen before in self-assembly, arises due to a balance between local promiscuity (i.e., many local degrees of freedom) and global frustration which minimizes interference between different learned behaviors. Origami with associative memory can lead to a new class of deployable structures and kinetic architectures with multiple context-dependent behaviors.
Rigidity spectrum of Forbush decrease
International Nuclear Information System (INIS)
Sakakibara, S.; Munakata, K.; Nagashima, K.
1985-01-01
Using data from neutron monitors and muon telescopes at surface and underground stations, the average rigidity spectrum of Forbush decreases (Fds) during the period of 1978-1982 were obtained. Thirty eight Ed-events are classified into two groups, Hard Fd and Soft FD according to size of Fd at the Sakashita station. It is found that a spectral form of a fractional-power type (P to the-gamma sub 1 (P+P sub c) to the -gamma sub2) is more suitable than that of a power-exponential type or of a power type with an upper limiting rigidity. The best fitted spectrum of the fractional-power type is expressed by gamma sub1 = 0.37, gamma sub2 = 0.89 and P subc = 10 GV for Hard Fd and gamma sub1 = 0.77, gamma sub2 = 1.02 and P sub c - 14GV for Soft Fd
Signature of Thermal Rigidity Percolation
International Nuclear Information System (INIS)
Huerta, Adrián
2013-01-01
To explore the role that temperature and percolation of rigidity play in determining the macroscopic properties, we propose a model that adds translational degrees of freedom to the spins of the well known Ising hamiltonian. In particular, the Ising model illustrate the longstanding idea that the growth of correlations on approach to a critical point could be describable in terms of the percolation of some sort of p hysical cluster . For certain parameters of this model we observe two well defined peaks of C V , that suggest the existence of two kinds of p hysical percolation , namely connectivity and rigidity percolation. Thermal fluctuations give rise to two different kinds of elementary excitations, i.e. droplets and configuron, as suggested by Angell in the framework of a bond lattice model approach. The later is reflected in the fluctuations of redundant constraints that gives stability to the structure and correlate with the order parameter
Universality in driven-dissipative quantum many-body systems
International Nuclear Information System (INIS)
Sieberer, L.M.
2015-01-01
Recent experimental investigations of condensation phenomena in driven-dissipative quantum many-body systems raise the question of what kind of novel universal behavior can emerge under non-equilibrium conditions. We explore various aspects of universality in this context. Our results are of relevance for a variety of open quantum systems on the interface of quantum optics and condensed matter physics, ranging from exciton-polariton condensates to cold atomic gases. In Part I we characterize the dynamical critical behavior at the Bose-Einstein condensation phase transition in driven open quantum systems in three spatial dimensions. Although thermodynamic equilibrium conditions are emergent at low frequencies, the approach to this thermalized low-frequency regime is described by a critical exponent which is specific to the non-equilibrium transition, and places the latter beyond the standard classification of equilibrium dynamical critical behavior. Our theoretical approach is based on the functional renormalization group within the framework of Keldysh non-equilibrium field theory, which is equivalent to a microscopic description of the open system dynamics in terms of a many-body quantum master equation. Universal behavior in the coherence properties of driven-dissipative condensates in reduced dimensions is investigated in Part II. We show that driven two-dimensional Bose systems cannot exhibit algebraic order as in thermodynamic equilibrium, unless they are sufficiently anisotropic. However, we find evidence that even isotropic systems may have a finite superfluidity fraction. In one-dimensional systems, non-equilibrium conditions are traceable in the behavior of the autocorrelation function. We obtain these results by mapping the long-wavelength condensate dynamics onto the Kardar-Parisi-Zhang equation. In Part III we show that systems in thermodynamic equilibrium have a specific symmetry, which makes them distinct from generic driven open systems. The novel
Torsional rigidity, isospectrality and quantum graphs
International Nuclear Information System (INIS)
Colladay, Don; McDonald, Patrick; Kaganovskiy, Leon
2017-01-01
We study torsional rigidity for graph and quantum graph analogs of well-known pairs of isospectral non-isometric planar domains. We prove that such isospectral pairs are distinguished by torsional rigidity. (paper)
Dynamical evolution of small bodies in the Solar System
Jacobson, Seth A.
2012-05-01
This thesis explores the dynamical evolution of small bodies in the Solar System. It focuses on the asteroid population but parts of the theory can be applied to other systems such as comets or Kuiper Belt objects. Small is a relative term that refers to bodies whose dynamics can be significantly perturbed by non-gravitational forces and tidal torques on timescales less than their lifetimes (for instance the collisional timescale in the Main Belt asteroid population or the sun impact timescale for the near-Earth asteroid population). Non-gravitational torques such as the YORP effect can result in the active endogenous evolution of asteroid systems; something that was not considered more than twenty years ago. This thesis is divided into three independent studies. The first explores the dynamics of a binary systems immediately after formation from rotational fission. The rotational fission hypothesis states that a rotationally torqued asteroid will fission when the centrifugal accelerations across the body exceed gravitational attraction. Asteroids must have very little or no tensile strength for this to occur, and are often referred to as "rubble piles.'' A more complete description of the hypothesis and the ensuing dynamics is provided there. From that study a framework of asteroid evolution is assembled. It is determined that mass ratio is the most important factor for determining the outcome of a rotational fission event. Each observed binary morphology is tied to this evolutionary schema and the relevant timescales are assessed. In the second study, the role of non-gravitational and tidal torques in binary asteroid systems is explored. Understanding the competition between tides and the YORP effect provides insight into the relative abundances of the different binary morphologies and the effect of planetary flybys. The interplay between tides and the BYORP effect creates dramatic evolutionary pathways that lead to interesting end states including stranded
Wearable Eating Habit Sensing System Using Internal Body Sound
Shuzo, Masaki; Komori, Shintaro; Takashima, Tomoko; Lopez, Guillaume; Tatsuta, Seiji; Yanagimoto, Shintaro; Warisawa, Shin'ichi; Delaunay, Jean-Jacques; Yamada, Ichiro
Continuous monitoring of eating habits could be useful in preventing lifestyle diseases such as metabolic syndrome. Conventional methods consist of self-reporting and calculating mastication frequency based on the myoelectric potential of the masseter muscle. Both these methods are significant burdens for the user. We developed a non-invasive, wearable sensing system that can record eating habits over a long period of time in daily life. Our sensing system is composed of two bone conduction microphones placed in the ears that send internal body sound data to a portable IC recorder. Applying frequency spectrum analysis on the collected sound data, we could not only count the number of mastications during eating, but also accurately differentiate between eating, drinking, and speaking activities. This information can be used to evaluate the regularity of meals. Moreover, we were able to analyze sound features to classify the types of foods eaten by food texture.
Spectral statistics of chaotic many-body systems
International Nuclear Information System (INIS)
Dubertrand, Rémy; Müller, Sebastian
2016-01-01
We derive a trace formula that expresses the level density of chaotic many-body systems as a smooth term plus a sum over contributions associated to solutions of the nonlinear Schrödinger (or Gross–Pitaevski) equation. Our formula applies to bosonic systems with discretised positions, such as the Bose–Hubbard model, in the semiclassical limit as well as in the limit where the number of particles is taken to infinity. We use the trace formula to investigate the spectral statistics of these systems, by studying interference between solutions of the nonlinear Schrödinger equation. We show that in the limits taken the statistics of fully chaotic many-particle systems becomes universal and agrees with predictions from the Wigner–Dyson ensembles of random matrix theory. The conditions for Wigner–Dyson statistics involve a gap in the spectrum of the Frobenius–Perron operator, leaving the possibility of different statistics for systems with weaker chaotic properties. (paper)
Jerk derivative feedforward control for motion systems
Boerlage, M.L.G.; Tousain, R.L.; Steinbuch, M.
2004-01-01
This work discusses reference trajectory relevant model based feedforward design. For motion systems which contain at least one rigid body mode and which are subject to reference trajectories with mostly low frequency energy, the proposed feedforward controller improves tracking performance
Development of personnel dose control system and whole body counter system
International Nuclear Information System (INIS)
Ooki, Yasushi; Harato, Kenji
2005-01-01
We delivered Personnel Dose Control System to Higashidohri nuclear plant of Tohoku Electric Power Company, in November 2004. In this system development, we automated the registration of radiation worker with close link between this system and Whole Body Counter System. In addition, this system enables the user to reduce workload for accumulation and notification of personal exposure data, because we adopted the system to extract the data effectively operating the terminal PC which the associate company gets ready in their office. We also delivered Whole body Counter System in December 2004, which was developed to measure internal exposure without feeling of oppression in chair-style device for the first time in Japan. This system enables non-operator system for measurement allowing workers to operate by themselves. (author)
HNBody: A Simulation Package for Hierarchical N-Body Systems
Rauch, Kevin P.
2018-04-01
HNBody (http://www.hnbody.org/) is an extensible software package forintegrating the dynamics of N-body systems. Although general purpose, itincorporates several features and algorithms particularly well-suited tosystems containing a hierarchy (wide dynamic range) of masses. HNBodyversion 1 focused heavily on symplectic integration of nearly-Kepleriansystems. Here I describe the capabilities of the redesigned and expandedpackage version 2, which includes: symplectic integrators up to eighth order(both leap frog and Wisdom-Holman type methods), with symplectic corrector andclose encounter support; variable-order, variable-timestep Bulirsch-Stoer andStörmer integrators; post-Newtonian and multipole physics options; advancedround-off control for improved long-term stability; multi-threading and SIMDvectorization enhancements; seamless availability of extended precisionarithmetic for all calculations; extremely flexible configuration andoutput. Tests of the physical correctness of the algorithms are presentedusing JPL Horizons ephemerides (https://ssd.jpl.nasa.gov/?horizons) andpreviously published results for reference. The features and performanceof HNBody are also compared to several other freely available N-body codes,including MERCURY (Chambers), SWIFT (Levison & Duncan) and WHFAST (Rein &Tamayo).
Response of Autonomic Nervous System to Body Positions:
Xu, Aiguo; Gonnella, G.; Federici, A.; Stramaglia, S.; Simone, F.; Zenzola, A.; Santostasi, R.
Two mathematical methods, the Fourier and wavelet transforms, were used to study the short term cardiovascular control system. Time series, picked from electrocardiogram and arterial blood pressure lasting 6 minutes, were analyzed in supine position (SUP), during the first (HD1) and the second parts (HD2) of 90° head down tilt, and during recovery (REC). The wavelet transform was performed using the Haar function of period T=2j (j=1,2,...,6) to obtain wavelet coefficients. Power spectra components were analyzed within three bands, VLF (0.003-0.04), LF (0.04-0.15) and HF (0.15-0.4) with the frequency unit cycle/interval. Wavelet transform demonstrated a higher discrimination among all analyzed periods than the Fourier transform. For the Fourier analysis, the LF of R-R intervals and VLF of systolic blood pressure show more evident difference for different body positions. For the wavelet analysis, the systolic blood pressures show much more evident differences than the R-R intervals. This study suggests a difference in the response of the vessels and the heart to different body positions. The partial dissociation between VLF and LF results is a physiologically relevant finding of this work.
Response of stem cell system to whole body and partial body irradiation
International Nuclear Information System (INIS)
Gidali, J.
1975-01-01
The pluripotent stem cell system, though being distributed in the body, reacts homogeneously to irradiation. This homogeneity is controlled by short-range (local) and long-range (humoral) regulations acting primarily on pluripotent and committed stem cells. Migration of stem cells from unirradiated to irradiated areas may play a role in the regeneration processes even if local regeneration may also occur. Migration induction as well as proliferation induction in the shielded area do not seem to be specific radiation-induced reactions. Both may be influenced either by some physiological regulators released after irradiation in a higher quantity or by some non-specific triggering agents. Both repeated and continuous irradiation induce the establishment of a new steady state. In the steady state after repeated sublethal irradiations, the CFU count stays at a suboptimal level either as a consequence of an increased differentiation or of some undefined damage in milieu control. In the new steady state during continuous irradiation, the number of mature elements in blood is close to the normal while CFU population is reduced to less than 2 percent of its original level
Calculating ensemble averaged descriptions of protein rigidity without sampling.
Directory of Open Access Journals (Sweden)
Luis C González
Full Text Available Previous works have demonstrated that protein rigidity is related to thermodynamic stability, especially under conditions that favor formation of native structure. Mechanical network rigidity properties of a single conformation are efficiently calculated using the integer body-bar Pebble Game (PG algorithm. However, thermodynamic properties require averaging over many samples from the ensemble of accessible conformations to accurately account for fluctuations in network topology. We have developed a mean field Virtual Pebble Game (VPG that represents the ensemble of networks by a single effective network. That is, all possible number of distance constraints (or bars that can form between a pair of rigid bodies is replaced by the average number. The resulting effective network is viewed as having weighted edges, where the weight of an edge quantifies its capacity to absorb degrees of freedom. The VPG is interpreted as a flow problem on this effective network, which eliminates the need to sample. Across a nonredundant dataset of 272 protein structures, we apply the VPG to proteins for the first time. Our results show numerically and visually that the rigidity characterizations of the VPG accurately reflect the ensemble averaged [Formula: see text] properties. This result positions the VPG as an efficient alternative to understand the mechanical role that chemical interactions play in maintaining protein stability.
Calculating ensemble averaged descriptions of protein rigidity without sampling.
González, Luis C; Wang, Hui; Livesay, Dennis R; Jacobs, Donald J
2012-01-01
Previous works have demonstrated that protein rigidity is related to thermodynamic stability, especially under conditions that favor formation of native structure. Mechanical network rigidity properties of a single conformation are efficiently calculated using the integer body-bar Pebble Game (PG) algorithm. However, thermodynamic properties require averaging over many samples from the ensemble of accessible conformations to accurately account for fluctuations in network topology. We have developed a mean field Virtual Pebble Game (VPG) that represents the ensemble of networks by a single effective network. That is, all possible number of distance constraints (or bars) that can form between a pair of rigid bodies is replaced by the average number. The resulting effective network is viewed as having weighted edges, where the weight of an edge quantifies its capacity to absorb degrees of freedom. The VPG is interpreted as a flow problem on this effective network, which eliminates the need to sample. Across a nonredundant dataset of 272 protein structures, we apply the VPG to proteins for the first time. Our results show numerically and visually that the rigidity characterizations of the VPG accurately reflect the ensemble averaged [Formula: see text] properties. This result positions the VPG as an efficient alternative to understand the mechanical role that chemical interactions play in maintaining protein stability.
78 FR 73696 - Extension of Expiration Date for Mental Disorders Body System Listings; Correction
2013-12-09
... of Expiration Date for Mental Disorders Body System Listings; Correction AGENCY: Social Security... published a final rule document extending the expiration date of the Mental Disorders body system in the...) extending the expiration date of the Mental Disorders body system in the Listing of Impairments (listings...
Geometry, rigidity, and group actions
Farb, Benson; Zimmer, Robert J
2011-01-01
The study of group actions is more than a hundred years old but remains to this day a vibrant and widely studied topic in a variety of mathematic fields. A central development in the last fifty years is the phenomenon of rigidity, whereby one can classify actions of certain groups, such as lattices in semi-simple Lie groups. This provides a way to classify all possible symmetries of important spaces and all spaces admitting given symmetries. Paradigmatic results can be found in the seminal work of George Mostow, Gergory Margulis, and Robert J. Zimmer, among others.The p
Myths, symbols and legends of solar system bodies
Alexander, Rachel
2015-01-01
This book is an amateur astronomer’s guide to the mythology and symbolism associated with the celestial bodies in the Solar System, and even includes some of the legendary tales of people who had or have a connection with these objects. It explores different cultures (for example, the Greco-Roman and the Norse) and different times and how stories were used to explain the worlds they saw above them. You’d be amazed how much of our world today reflects the myths and stories of these cultures! Most amateur astronomers are familiar with the various Solar System objects, but they will be only peripherally aware of what ancient cultures thought of these other worlds. In fact, the mythology of the planets challenges many twenty-first century concepts and beliefs There are other books available on astromythology, but this one focuses mostly on our own Solar System, as opposed to the constellations and deep sky objects. Alexander offers a new angle on timeless subjects and is exciting, informative and dramatic...
Gain in computational efficiency by vectorization in the dynamic simulation of multi-body systems
Amirouche, F. M. L.; Shareef, N. H.
1991-01-01
An improved technique for the identification and extraction of the exact quantities associated with the degrees of freedom at the element as well as the flexible body level is presented. It is implemented in the dynamic equations of motions based on the recursive formulation of Kane et al. (1987) and presented in a matrix form, integrating the concepts of strain energy, the finite-element approach, modal analysis, and reduction of equations. This technique eliminates the CPU intensive matrix multiplication operations in the code's hot spots for the dynamic simulation of the interconnected rigid and flexible bodies. A study of a simple robot with flexible links is presented by comparing the execution times on a scalar machine and a vector-processor with and without vector options. Performance figures demonstrating the substantial gains achieved by the technique are plotted.
Equations of motion for free-flight systems of rotating-translating bodies
International Nuclear Information System (INIS)
Hodapp, A.E. Jr.
1976-09-01
General vector differential equations of motion are developed for a system of rotating-translating, unbalanced, constant mass bodies. Complete flexibility is provided in placement of the reference coordinates within the system of bodies and in placement of body fixed axes within each body. Example cases are presented to demonstrate the ease in reduction of these equations to the equations of motion for systems of interest
Petascale Many Body Methods for Complex Correlated Systems
Pruschke, Thomas
2012-02-01
Correlated systems constitute an important class of materials in modern condensed matter physics. Correlation among electrons are at the heart of all ordering phenomena and many intriguing novel aspects, such as quantum phase transitions or topological insulators, observed in a variety of compounds. Yet, theoretically describing these phenomena is still a formidable task, even if one restricts the models used to the smallest possible set of degrees of freedom. Here, modern computer architectures play an essential role, and the joint effort to devise efficient algorithms and implement them on state-of-the art hardware has become an extremely active field in condensed-matter research. To tackle this task single-handed is quite obviously not possible. The NSF-OISE funded PIRE collaboration ``Graduate Education and Research in Petascale Many Body Methods for Complex Correlated Systems'' is a successful initiative to bring together leading experts around the world to form a virtual international organization for addressing these emerging challenges and educate the next generation of computational condensed matter physicists. The collaboration includes research groups developing novel theoretical tools to reliably and systematically study correlated solids, experts in efficient computational algorithms needed to solve the emerging equations, and those able to use modern heterogeneous computer architectures to make then working tools for the growing community.
A charge-optimized many-body potential for the U-UO2-O2 system
Li, Yangzhong; Liang, Tao; Sinnott, Susan B.; Phillpot, Simon R.
2013-12-01
Building on previous charge-optimized many-body (COMB) potentials for metallic α-U and gaseous O2, we have developed a new potential for UO2, which also allows the simulation of U-UO2-O2 systems. The UO2 lattice parameter, elastic constants and formation energies of stoichiometric and non-stoichiometric intrinsic defects are well reproduced. Moreover, this is the first rigid-ion potential that produces the correct deviation of the Cauchy relation, as well as the first classical interatomic potential that is able to determine the defect energies of non-stoichiometric intrinsic point defects in UO2 with an appropriate reference state. The oxygen molecule interstitial in the α-U structure is shown to decompose, with some U-O bonds approaching the natural bond length of perfect UO2. Finally, we demonstrate the capability of this COMB potential to simulate a complex system by performing a simulation of the α-U + O2 → UO2 phase transformation. We also identify a possible mechanism for uranium oxidation and the orientation of the resulting fluorite UO2 structure relative to the coordinate system of orthorhombic α-U.
International Nuclear Information System (INIS)
Mittlefehldt, D.W.
1978-01-01
Mesosiderites and howardites are regolith samples of differentiated asteroids. Instrumental neutron activation analysis (INAA) data on whole rock howardites and mesosiderite silicates show that the composition of howardites and mesosiderites are similar, and intermediate between those of eucrites and diogenites. The mesosiderites Mincy, Lowicz and Veramin show an enrichment in light REE and have an REE pattern that is qualitatively similar to that in terrestrial basalts thought to have been formed by small degrees of partial melting. Attempts to model the REE abundances in these mesosiderites indicates that they most likely formed by approx. 2 to 4% partial melting of a source containing low abundances of the rare earths. Since numerous properties separate mesosiderite silicates from howardites, it is clear that they are not samples of a well-mixed regolith from a single parent body. If regolith stirring is efficient on small parent bodies, then mesosiderites and howardites originated on separate parent bodies. Rare earth element patterns give evidence for remelting and fractional crystallization of preexisting cumulates and sequential melting episodes. The mesosiderites appear to contain a slightly greater abundance of diogenite-like material and certainly contain a greater abundance of large olivine clasts. These observations suggest that the mesosiderite parent body crust was more complexly fractionated than the howardite parent body crust. The latter appears to have been dominated by quenched basalt flows
Unitary pole approximations and expansions in few-body systems
International Nuclear Information System (INIS)
Casel, A.; Haberzettl, H.; Sandhas, W.
1982-01-01
The unitary pole approximations or expansions of the two-body subsystem operators are well known, and particularly efficient and practical, methods to reduce the three-body problem to an effective two-body theory. In the present investigation we develop generalizations of these approximation techniques to the subsystem amplitudes of problems with higher particle numbers. They are based on the expansion of effective potentials which, in contrast to the genuine two-body interactions, are now energy dependent. Despite this feature our generalizations require only energy independent form factors, thus preserving one of the essential advantages of the genuine two-body approach. The application of these techniques to the four-body case is discussed in detail
Rigid external maxillary distraction and rhinoplasty for pyknodysostosis.
Varol, Altan; Sabuncuoglu, Fidan Alakus; Sencimen, Metin; Akcam, Timur; Olmez, Hüseyin; Basa, Selçuk
2011-05-01
This article reports the treatment of an 33-year-old female patient with pyknodysostosis by rigid external distraction II midface distraction system. The patient with pyknodysostosis described in this report had severe midfacial hypoplasia. Correction of this by use of routine orthognathic surgery would require osteosynthesis and bone grafting. Risk of infection and/or nonunion after such a surgical procedure was considered too great, and therefore the possibility of treatment by distraction osteogenesis of the maxilla was evaluated. The rigid external distraction II midface distraction system was used to relocate the hypoplastic maxilla at anterior-inferior projection. Distraction osteogenesis should be considered as the primary reconstructive method for maxillofacial deformities in patients with sclerosing bone dysplasias, since this is the second reported case treated successfully with rigid external distraction.
Gas-induced friction and diffusion of rigid rotors
Martinetz, Lukas; Hornberger, Klaus; Stickler, Benjamin A.
2018-05-01
We derive the Boltzmann equation for the rotranslational dynamics of an arbitrary convex rigid body in a rarefied gas. It yields as a limiting case the Fokker-Planck equation accounting for friction, diffusion, and nonconservative drift forces and torques. We provide the rotranslational friction and diffusion tensors for specular and diffuse reflection off particles with spherical, cylindrical, and cuboidal shape, and show that the theory describes thermalization, photophoresis, and the inverse Magnus effect in the free molecular regime.
Weird worlds bizarre bodies of the solar system and beyond
Seargent, David A J
2013-01-01
In Weird Worlds, the author discusses planets where temperatures are so high that it rains molten iron, and others so cold that liquid methane floods across plains of ice! Worlds are described where the lightest element acts like a metal and where winds blow at thousands of miles per hour – as well as possible planets whose orbits are essentially parabolic. Weird Worlds is the third book in David Seargent’s “Weird” series. This book assumes a basic level of astronomical understanding and concentrates on the “odd and interesting” aspects of planetary bodies, including asteroids and moons. From our viewpoint here on Earth, this work depicts the most unusual features of these worlds and the ways in which they appear “weird” to us. Within our own Solar System, odd facts such as the apparent reversal of the Sun in the skies of Mercury, CO2-driven fountains of dust on Mars, possible liquid water (and perhaps primitive life!) deep within the dwarf planet Ceres, and a variety of odd facts about ...
Comparative features of volcanoes on Solar system bodies
Vidmachenko, A. P.
2018-05-01
The bark of many cosmic bodies is in motion because of the displacement of tectonic plates on magma. Pouring molten magma through cracks in the cortex is called a volcanic eruption. There are two main types of volcanoes: basaltic, appearing where a new material of tectonic plates is formed, and andesitic, which located in the places of destruction of these plates.The third type of volcanoes is cryovolcanoes, or ice volcanoes. This type of volcano ejects matter in the form of ice volcanic melts or steam from water, ammonia, methane. After the eruption, the cryomagma at a low temperature condenses to a solid phase. Cryovolcanoes can be formed on such objects as Pluto, Ceres, Titan, Enceladus, Europe, Triton, etc. Potential sources of energy for melting ice in the production of cryovolcanoes are tidal friction and/or radioactive decay. Semi-transparent deposits of frozen materials that can create a subsurface greenhouse effect, with the possibility of accumulating the required heat with subsequent explosive eruption, are another way to start the cryovolcano action. This type of eruption is observed on Mars and Triton. The first and second types of eruptions (basaltic and andesitic) are characteristic of terrestrial planets (Mercury, Venus, Mars) and for some satellites of the planets of the Solar system.
Introduction to integrable many-body systems II
International Nuclear Information System (INIS)
Samaj, L.
2010-01-01
This is the second part of a three-volume introductory course about integrable systems of interacting bodies. The models of interest are quantum spin chains with nearest-neighbor interactions between spin operators, in particular Heisenberg spin- 2 models. The Ising model in a transverse field, expressible as a quadratic fermion form by using the Jordan-Wigner transformation, is the subject of Sect. 12. The derivation of the coordinate Bethe ansatz for the XXZ Heisenberg chain and the determination of its absolute ground state in various regions of the anisotropy parameter are presented in Sect. 13. The magnetic properties of the ground state are explained in Sect. 14. Sect. 15 concerns excited states and the zero-temperature thermodynamics of the XXZ model. The thermodynamics of the XXZ Heisenberg chain is derived on the basis of the string hypothesis in Sect. 16; the thermodynamic Bethe ansatz equations are analyzed in high-temperature and low-temperature limits. An alternative derivation of the thermodynamics without using strings, leading to a non-linear integral equation determining the free energy, is the subject of Sect. 17. A nontrivial application of the Quantum Inverse Scattering method to the fully anisotropic XYZ Heisenberg chain is described in Section 18. Section 19 deals with integrable cases of isotropic spin chains with an arbitrary spin. (Author)
Efimov resonances in atomic three-body systems
International Nuclear Information System (INIS)
Mezei, J. Zs.; Papp, Z.
2006-01-01
In a recent work [Phys. Rev. Lett. 94, 143201 (2005)], we reported an accumulation of three-body resonant states attached to n=2 and higher two-body thresholds. A more careful investigation revealed that there are resonances of the same kind above the n=1 threshold as well. This suggests that the resonances attached to the thresholds are Efimov resonances
Mind-Body Medicine and Immune System Outcomes: A Systematic Review
Wahbeh, Helané; Haywood, Ashley; Kaufman, Karen; Zwickey, Heather
2009-01-01
This study is a systematic review of mind-body interventions that used immune outcomes in order to: 1) characterize mind-body medicine studies that assessed immune outcomes, 2) evaluate the quality of mind-body medicine studies measuring immune system effects, and 3) systematically evaluate the evidence for mind-body interventions effect on immune system outcomes using existing formal tools. 111 studies with 4,777 subjects were reviewed. The three largest intervention type categories were Rel...
Non-destructive examination system of vitreous body
Shibata, Takuma; Gong, Jin; Watanabe, Yosuke; Kabir, M. Hasnat; Masato, Makino; Furukawa, Hidemitsu; Nishitsuka, Koichi
2014-04-01
Eyeball plays a quite important role in acquiring the vision. Vitreous body occupies the largest part of the eyeball and consists of biological, elastic, transparent, gel materials. In the present medical examination, the non-destructive examination method of the vitreous body has not been well established. Here, we focus on an application of dynamic light scattering to this topic. We tried to apply our lab-made apparatus, scanning microscopic light scattering (SMILS), which was specially designed for observing the nanometer-scale network structure in gel materials. In order to examine the vitreous body using SMILS method, a commercial apparatus, nano Partica (Horiba Co. Ltd.) was also customized. We analyzed vitreous body using both the SMILS and the customized nano Partica. We successfully examined the vitreous bodies of healthy pigs in non-destructive way.
Introduction to integrable many-body systems III
International Nuclear Information System (INIS)
Bajnok, Z.; Samaj, L.
2011-01-01
This is the third part of a three-volume introductory course about integrable systems of interacting bodies. The emphasis is put onto the method of Thermodynamic Bethe Ansatz. Two kinds of integrable models are studied. Systems of itinerant electrons, forming a part of Condensed Matter Physics, involve the Hubbard lattice model of electrons with short-ranged one-site interactions (Sect. 20) and the s-d exchange Kondo model (Sect. 21), describing the scattering of conduction electrons on a spin-s impurity. Methods and basic concepts used in Quantum Field Theory are explained on the integrable (1 + 1)-dimensional sine-Gordon model. We start with the classical description of the model in Sect. 22, analyze its finite energy field configurations (soliton, anti-soliton and breathers) and show its classical integrability. The model is quantized by using two schemes: the conformal (Sect. 23) and Lagrangian (Sect. 24) quantizations. The scattering matrix of the sine-Gordon theory is derived at the full quantum level in the bootstrap scheme and is compared to its classical limit in Sect. 25. The parameters of the scattering matrix are related to those of the Lagrangian by calculating the ground-state energy in an applied magnetic field in two ways: Conformal perturbation theory and Thermodynamic Bethe Ansatz (Sect. 26). The relation of the sine-Gordon theory to the XXZ Heisenberg model, which provides a complete solution of the sine-Gordon model in a finite volume, is pointed out in Sect. 27. The obtained results are applied in Sect. 28. to the derivation of the exact thermodynamics for the (symmetric) two-component Coulomb gas; this is the first classical two-dimensional fluid with exactly solvable thermodynamics (Authors)
Rigid-plastic seismic design of reinforced concrete structures
DEFF Research Database (Denmark)
Costa, Joao Domingues; Bento, R.; Levtchitch, V.
2007-01-01
structural strength with respect to a pre-defined performance parameter using a rigid-plastic response spectrum, which is characteristic of the ground motion alone. The maximum strength demand at any point is solely dependent on the intensity of the ground motion, which facilitates the task of distributing......In this paper a new seismic design procedure for Reinforced Concrete (R/C) structures is proposed-the Rigid-Plastic Seismic Design (RPSD) method. This is a design procedure based on Non-Linear Time-History Analysis (NLTHA) for systems expected to perform in the non-linear range during a lifetime...... earthquake event. The theoretical background is the Theory of Plasticity (Rigid-Plastic Structures). Firstly, a collapse mechanism is chosen and the corresponding stress field is made safe outside the regions where plastic behaviour takes place. It is shown that this allows the determination of the required...
Gravitational waves from periodic three-body systems.
Dmitrašinović, V; Suvakov, Milovan; Hudomal, Ana
2014-09-05
Three bodies moving in a periodic orbit under the influence of Newtonian gravity ought to emit gravitational waves. We have calculated the gravitational radiation quadrupolar waveforms and the corresponding luminosities for the 13+11 recently discovered three-body periodic orbits in Newtonian gravity. These waves clearly allow one to distinguish between their sources: all 13+11 orbits have different waveforms and their luminosities (evaluated at the same orbit energy and body mass) vary by up to 13 orders of magnitude in the mean, and up to 20 orders of magnitude for the peak values.
Botulinum toxin in myotonia congenita: it does not help against rigidity and pain.
Dressler, Dirk; Adib Saberi, Fereshte
2014-05-01
Botulinum toxin (BT) is a potent local muscle relaxant with analgetic properties. Myotonia congenita (MC) is a genetic disorder producing muscle rigidity and pain. BT injected into the trapezius produced mild paresis, but no effect on rigidity and pain. There were no signs of systemic effects. Lack of BT efficacy on MC rigidity confirms its origin from muscle membrane dysfunction rather than from inappropriate neuromuscular activation. Lack of BT efficacy on pain could be caused by lack of anti-rigidity effect. It could also be due to separate non-muscular pain mechanisms unresponsive to BT.
Quantum phase transition in strongly correlated many-body system
You, Wenlong
The past decade has seen a substantial rejuvenation of interest in the study of quantum phase transitions (QPTs), driven by experimental advance on the cuprate superconductors, the heavy fermion materials, organic conductors, Quantum Hall effect, Fe-As based superconductors and other related compounds. It is clear that strong electronic interactions play a crucial role in the systems of current interest, and simple paradigms for the behavior of such systems near quantum critical points remain unclear. Furthermore, the rapid progress in Feshbach resonance and optical lattice provides a flexible platform to study QPT. Quantum Phase Transition (QPT) describes the non-analytic behaviors of the ground-state properties in a many-body system by varying a physical parameter at absolute zero temperature - such as magnetic field or pressure, driven by quantum fluctuations. Such quantum phase transitions can be first-order phase transition or continuous. The phase transition is usually accompanied by a qualitative change in the nature of the correlations in the ground state, and describing this change shall clearly be one of our major interests. We address this issue from three prospects in a few strong correlated many-body systems in this thesis, i.e., identifying the ordered phases, studying the properties of different phases, characterizing the QPT points. In chapter 1, we give an introduction to QPT, and take one-dimensional XXZ model as an example to illustrate the QPT therein. Through this simple example, we would show that when the tunable parameter is varied, the system evolves into different phases, across two quantum QPT points. The distinct phases exhibit very different behaviors. Also a schematic phase diagram is appended. In chapter 2, we are engaged in research on ordered phases. Originating in the work of Landau and Ginzburg on second-order phase transition, the spontaneous symmetry breaking induces nonzero expectation of field operator, e.g., magnetization M
Viscoelastic materials with anisotropic rigid particles: stress-deformation behavior
Sagis, L.M.C.; Linden, van der E.
2001-01-01
In this paper we have derived constitutive equations for the stress tensor of a viscoelastic material with anisotropic rigid particles. We have assumed that the material has fading memory. The expressions are valid for slow and small deformations from equilibrium, and for systems that are nearly
Power laws for gravity and topography of Solar System bodies
Ermakov, A.; Park, R. S.; Bills, B. G.
2017-12-01
When a spacecraft visits a planetary body, it is useful to be able to predict its gravitational and topographic properties. This knowledge is important for determining the level of perturbations in spacecraft's motion as well as for planning the observation campaign. It has been known for the Earth that the power spectrum of gravity follows a power law, also known as the Kaula rule (Kaula, 1963; Rapp, 1989). A similar rule was derived for topography (Vening-Meinesz, 1951). The goal of this paper is to generalize the power law that can characterize the gravity and topography power spectra for bodies across a wide range of size. We have analyzed shape power spectra of the bodies that have either global shape and gravity field measured. These bodies span across five orders of magnitude in their radii and surface gravities and include terrestrial planets, icy moons and minor bodies. We have found that despite having different internal structure, composition and mechanical properties, the topography power spectrum of these bodies' shapes can be modeled with a similar power law rescaled by the surface gravity. Having empirically found a power law for topography, we can map it to a gravity power law. Special care should be taken for low-degree harmonic coefficients due to potential isostatic compensation. For minor bodies, uniform density can be assumed. The gravity coefficients are a linear function of the shape coefficients for close-to-spherical bodoes. In this case, the power law for gravity will be steeper than the power law of topography due to the factor (2n+1) in the gravity expansion (e.g. Eq. 10 in Wieczorek & Phillips, 1998). Higher powers of topography must be retained for irregularly shaped bodies, which breaks the linearity. Therefore, we propose the following procedure to derive an a priori constraint for gravity. First, a surface gravity needs to be determined assuming typical density for the relevant class of bodies. Second, the scaling coefficient of the
The body force in a three-dimensional Lame system identification and regularization
DEFF Research Database (Denmark)
Trong, Dang Duc; Phan, Thanh Nam; Thuc, Phung Trong
2012-01-01
Let a three-dimensional isotropic elastic body be described by the Lamé system with the body force of the form F(x, t) = (t)f (x), where is known. We consider the problem of determining the unknown spatial term f (x) of the body force when the surface stress history is given...
Bucci, Lorenzo; Lavagna, Michèle; Guzzetti, Davide; Howell, Kathleen C.
2018-06-01
Interest on Large Space Structures (LSS), orbiting in strategic and possibly long-term stable locations, is nowadays increasing in the space community. LSS can serve as strategic outpost to support a variety of manned and unmanned mission, or may carry scientific payloads for astronomical observations. The paper focuses on analysing LSS in the Earth-Moon system, exploring dynamical structures that are available within a multi-body gravitational environment. Coupling between attitude and orbital dynamics is investigated, with particular interest on the gravity gradient torque exerted by the two massive attractors. First, natural periodic orbit-attitude solutions are obtained; a LSS that exploits such solutions would benefit of a naturally periodic body rotation synchronous with the orbital motion, easing the effort of the attitude control system to satisfy pointing requirements. Then, the solar radiation pressure is introduced into the fully coupled dynamical model and its effects investigated, discovering novel periodic attitude solutions. Benefits of periodic behaviours that incorporate solar radiation pressure are discussed, and analysed via the variation of some parameters (e.g reflection/absorption coefficients, position of the centre of pressure). As a final step to refine the current perturbed orbit-attitude model, a structure flexibility is also superimposed to a reference orbit-attitude rigid body motion via a simple, yet effective model. The coupling of structural vibrations and attitude motion is preliminarily explored, and allows identification of possible challenges, that may be faced to position a LSS in a periodic orbit within the Earth-Moon system.
ANALYTIC EVALUATION OF RECTILINEARITY OF LOW RIGIDITY SHAFT DURING HARDENING PROCESS
Directory of Open Access Journals (Sweden)
Antoni Świć
2013-03-01
Full Text Available The essential influence of the unevenness of temperature distribution while heating in the technological process on dimensions stability of low rigidity elements was shown. The new approach was applied to formulate mathematical models, which describe the elastic and inelastic behaviour of piece using transfer functions and block diagrams, allowing to use frequency method for evaluation of the behaviour of dynamic semi-finished element as the rigid body.
Vincent, Jean-Baptiste
This Master's thesis is part of a multidisciplinary optimisation project initiated by the Consortium for Research and Innovation in Aerospace in Quebec (CRIAQ) ; this project is about designing and manufacturing a morphing wing demonstrator. The morphing design adopted in this project is based on airfoil thickness variation applied to the upper skin. This morphing generates a change in the laminar to turbulent boundary layer transition position on top of the wing. The position of this transition area leads to significant changes in the aerodynamic performance of the wing. The study presented here focuses on the design of the conventional aileron actuation system and on the characterization of the high sensitivity differential pressure sensors installed on the upper skin in order to determine the laminar to turbulent transition position. Furthermore, the study focuses on the data acquisition system for the morphing wing structural test validation. The aileron actuation system is based on a linear actuator actuated by a brushless motor. The component choice is presented as well as the command method. A static validation as well as wind tunnel validation is presented. The pressure sensor characterization is performed by installing three of those high sensitivity differential pressure sensors in a bi-dimensional known airfoil. This study goes through the process of determining the sensor position in order to observe the transition area by using a computational fluid dynamics (CFD) statistic approach. The validation of the laminar to turbulent transition position is carried out with a series of wind tunnel tests. A structural test has been executed in order to validate the wing structure. This Master's thesis shows the data acquisition system for the microstrain measurement installed inside the morphing wing. A hardware and software architecture description is developed and presented as well as the practical results.
Danquechin Dorval, Antoine; Meredieu, Céline; Danjon, Frédéric
2016-01-01
Background and Aims Storms can cause huge damage to European forests. Even pole-stage trees with 80-cm rooting depth can topple. Therefore, good anchorage is needed for trees to survive and grow up from an early age. We hypothesized that root architecture is a predominant factor determining anchorage failure caused by strong winds. Methods We sampled 48 seeded or planted Pinus pinaster trees of similar aerial size from four stands damaged by a major storm 3 years before. The trees were gathered into three classes: undamaged, leaning and heavily toppled. After uprooting and 3D digitizing of their full root architectures, we computed the mechanical characteristics of the main components of the root system from our morphological measurements. Key Results Variability in root architecture was quite large. A large main taproot, either short and thick or long and thin, and guyed by a large volume of deep roots, was the major component that prevented stem leaning. Greater shallow root flexural stiffness mainly at the end of the zone of rapid taper on the windward side also prevented leaning. Toppling in less than 90-cm-deep soil was avoided in trees with a stocky taproots or with a very big leeward shallow root. Toppled trees also had a lower relative root biomass – stump excluded – than straight trees. Conclusions It was mainly the flexural stiffness of the central part of the root system that secured anchorage, preventing a weak displacement of the stump. The distal part of the longest taproot and attached deep roots may be the only parts of the root system contributing to anchorage through their maximum tensile load. Several designs provided good anchorage, depending partly on available soil depth. Pole-stage trees are in-between the juvenile phase when they fail by toppling and the mature phase when they fail by uprooting. PMID:27456136
Statistical methods for including two-body forces in large system calculations
International Nuclear Information System (INIS)
Grimes, S.M.
1980-07-01
Large systems of interacting particles are often treated by assuming that the effect on any one particle of the remaining N-1 may be approximated by an average potential. This approach reduces the problem to that of finding the bound-state solutions for a particle in a potential; statistical mechanics is then used to obtain the properties of the many-body system. In some physical systems this approach may not be acceptable, because the two-body force component cannot be treated in this one-body limit. A technique for incorporating two-body forces in such calculations in a more realistic fashion is described. 1 figure
Initial Development of an Electronic Testis Rigidity Tester
Directory of Open Access Journals (Sweden)
Petros Mirilas
2011-01-01
Full Text Available We aimed to develop our previously presented mechanical device, the Testis Rigidity Tester (TRT, into an electronic system (Electronic Testis Rigidity Tester, ETRT by applying tactile imaging, which has been used successfully with other solid organs. A measuring device, located at the front end of the ETRT incorporates a tactile sensor comprising an array of microsensors. By application of a predetermined deformation of 2 mm, increased pressure alters linearly the resistance of each microsensor, producing changes of voltage. These signals were amplified, filtered, and digitized, and then processed by an electronic collector system, which presented them as a color-filled contour plot of the area of the testis coming into contact with the sensor. Testis models of different rigidity served for initial evaluation of ETRT; their evacuated central spaces contained different, increasing glue masses. An independent method of rigidity measurement, using an electric weight scale and a micrometer, showed that the more the glue injected, the greater the force needed for a 2-mm deformation. In a preliminary test, a single sensor connected to a multimeter showed similar force measurement for the same deformation in these phantoms. For each of the testis models compressed in the same manner, the ETRT system offered a map of pressures, represented by a color scale within the contour plot of the contact area with the sensor. ETRT found certain differences in rigidity between models that had escaped detection by a blind observer. ETRT is easy to use and provides a color-coded “insight“ of the testis internal structure. After experimental testing, it could be valuable in intraoperative evaluation of testes, so that the surgeon can decide about orchectomy or orcheopexy.
78 FR 72571 - Extension of Expiration Date for Mental Disorders Body System Listings
2013-12-03
... of Expiration Date for Mental Disorders Body System Listings AGENCY: Social Security Administration. ACTION: Final rule. SUMMARY: We are extending the expiration date of the Mental Disorders body system in... need to evaluate mental disorders at step three of the sequential evaluation processes for initial...
Bound states and scattering in four-body systems
International Nuclear Information System (INIS)
Narodetsky, I.M.
1979-01-01
It is the purpose of this review to provide the clear and elementary introduction in the integral equation method and to demonstrate explicitely its usefulness for the physical applications. The existing results concerning the application of the integral equation technique for the four-nucleon bound states and scattering are reviewed.The treatment is based on the quasiparticle approach that permits the simple interpretation of the equations in terms of quasiparticle scattering. The mathematical basis for the quasiparticle approach is the Hilbert-Schmidt theorem of the Fredholm integral equation theory. This paper contains the detailed discussion of the Hilbert-Schmidt expansion as applied to the 2-particle amplitudes and to the 3 + 1 and 2 + 2 amplitudes which are the kernels of the four-body equations. The review contains essentially the discussion of the four-body quasiparticle equations and results obtained for bound states and scattering
Solar-System Bodies as Teaching Tools in Fundamental Physics
Genus, Amelia; Overduin, James
2018-01-01
We show how asteroids can be used as teaching tools in fundamental physics. Current gravitational theory assumes that all bodies fall with the same acceleration in the same gravitational field. But this assumption, known as the Equivalence Principle, is violated to some degree in nearly all theories that attempt to unify gravitation with the other fundamental forces of nature. In such theories, bodies with different compositions can fall at different rates, producing small non-Keplerian distortions in their orbits. We focus on the unique all-metal asteroid 16 Psyche as a test case. Using Kepler’s laws of planetary motion together with recent observational data on the orbital motions of Psyche and its neighbors, students are able to derive new constraints on current theories in fundamental physics. These constraints take on particular interest since NASA has just announced plans to visit Psyche in 2026.
Ballistic near-field heat transport in dense many-body systems
Latella, Ivan; Biehs, Svend-Age; Messina, Riccardo; Rodriguez, Alejandro W.; Ben-Abdallah, Philippe
2018-01-01
Radiative heat transport mediated by near-field interactions is known to be superdiffusive in dilute, many-body systems. Here we use a generalized Landauer theory of radiative heat transfer in many-body planar systems to demonstrate a nonmonotonic transition from superdiffusive to ballistic transport in dense systems. We show that such a transition is associated to a change of the polarization of dominant modes. Our findings are complemented by a quantitative study of the relaxation dynamics of the system in the different regimes of heat transport. This result could have important consequences on thermal management at nanoscale of many-body systems.
Three-dimensional body scanning system for apparel mass-customization
Xu, Bugao; Huang, Yaxiong; Yu, Weiping; Chen, Tong
2002-07-01
Mass customization is a new manufacturing trend in which mass-market products (e.g., apparel) are quickly modified one at a time based on customers' needs. It is an effective competing strategy for maximizing customers' satisfaction and minimizing inventory costs. An automatic body measurement system is essential for apparel mass customization. This paper introduces the development of a body scanning system, body size extraction methods, and body modeling algorithms. The scanning system utilizes the multiline triangulation technique to rapidly acquire surface data on a body, and provides accurate body measurements, many of which are not available with conventional methods. Cubic B-spline curves are used to connect and smooth body curves. From the scanned data, a body form can be constructed using linear Coons surfaces. The body form can be used as a digital model of the body for 3-D garment design and for virtual try-on of a designed garment. This scanning system and its application software enable apparel manufacturers to provide custom design services to consumers seeking personal-fit garments.
Electromagnetic reactions of few-body systems with the Lorentz integral transform method
International Nuclear Information System (INIS)
Leidemann, W.
2007-01-01
Various electromagnetic few-body break-up reactions into the many-body continuum are calculated microscopically with the Lorentz integral transform (LIT) method. For three- and four-body nuclei the nuclear Hamiltonian includes two- and three-nucleon forces, while semirealistic interactions are used in case of six- and seven-body systems. Comparisons with experimental data are discussed. In addition various interesting aspects of the 4 He photodisintegration are studied: investigation of a tetrahedrical symmetry of 4 He and a test of non-local nuclear force models via the induced two-body currents
Li, Yuanyuan; Wang, Zilu; Wang, Cong; Huang, Wenhu
2018-01-01
Based on Nodal Coordinate Formulation (NCF) and Absolute Nodal Coordinate Formulation (ANCF), this paper establishes rigid-flexible coupling dynamic model of the spacecraft with large deployable solar arrays and multiple clearance joints to analyze and control the satellite attitude under deployment disturbance. Considering torque spring, close cable loop (CCL) configuration and latch mechanisms, a typical spacecraft composed of a rigid main-body described by NCF and two flexible panels described by ANCF is used as a demonstration case. Nonlinear contact force model and modified Coulomb friction model are selected to establish normal contact force and tangential friction model, respectively. Generalized elastic force are derived and all generalized forces are defined in the NCF-ANCF frame. The Newmark-β method is used to solve system equations of motion. The availability and superiority of the proposed model is verified through comparing with numerical co-simulations of Patran and ADAMS software. The numerical results reveal the effects of panel flexibility, joint clearance and their coupling on satellite attitude. The effects of clearance number, clearance size and clearance stiffness on satellite attitude are investigated. Furthermore, a proportional-differential (PD) attitude controller of spacecraft is designed to discuss the effect of attitude control on the dynamic responses of the whole system.
A nonintrusive temperature measuring system for estimating deep body temperature in bed.
Sim, S Y; Lee, W K; Baek, H J; Park, K S
2012-01-01
Deep body temperature is an important indicator that reflects human being's overall physiological states. Existing deep body temperature monitoring systems are too invasive to apply to awake patients for a long time. Therefore, we proposed a nonintrusive deep body temperature measuring system. To estimate deep body temperature nonintrusively, a dual-heat-flux probe and double-sensor probes were embedded in a neck pillow. When a patient uses the neck pillow to rest, the deep body temperature can be assessed using one of the thermometer probes embedded in the neck pillow. We could estimate deep body temperature in 3 different sleep positions. Also, to reduce the initial response time of dual-heat-flux thermometer which measures body temperature in supine position, we employed the curve-fitting method to one subject. And thereby, we could obtain the deep body temperature in a minute. This result shows the possibility that the system can be used as practical temperature monitoring system with appropriate curve-fitting model. In the next study, we would try to establish a general fitting model that can be applied to all of the subjects. In addition, we are planning to extract meaningful health information such as sleep structure analysis from deep body temperature data which are acquired from this system.
GPU-based discrete element rigid body transport
CSIR Research Space (South Africa)
Govender, Nicolin
2013-08-01
Full Text Available . For applications in coastal engineering and also in pavement engineering, the capture of particle shapes as polyhedra rather than clumped spheres is particularly important. The development of a Discrete Element Model applicable to both fields, and to industrial...
Unsteady Transonic Flow Past Airfoils in Rigid Body Motion.
1981-03-01
number of lower surface coordinates. For ISYM = 1, NL = NU even thouqh no lower surface coordinates are given. NX The number of mesh cells in the...direction of the chord used at the start of the calculation. NX = 0 causes termination of the program. Ny The number of mesh cells in the direction normal...3) 4 LL SY’ieLL L.,C., .C7, li.,-l) CALL SYM L L (-.2 ,C., .14, £PILp., 2) CALL PLCT( C.,...,?) .ALL PLUT C , (I), 1CPCAL"IC (1, ),2) C L j NT1 NUE
Efficiency of wave-driven rigid body rotation toroidal confinement
Rax, J. M.; Gueroult, R.; Fisch, N. J.
2017-03-01
The compensation of vertical drifts in toroidal magnetic fields through a wave-driven poloidal rotation is compared with compensation through the wave driven toroidal current generation to support the classical magnetic rotational transform. The advantages and drawbacks associated with the sustainment of a radial electric field are compared with those associated with the sustainment of a poloidal magnetic field both in terms of energy content and power dissipation. The energy content of a radial electric field is found to be smaller than the energy content of a poloidal magnetic field for a similar set of orbits. The wave driven radial electric field generation efficiency is similarly shown, at least in the limit of large aspect ratio, to be larger than the efficiency of wave-driven toroidal current generation.
Quaternion Feedback Control for Rigid-body Spacecraft
DEFF Research Database (Denmark)
Jensen, Hans-Christian Becker; Wisniewski, Rafal
2001-01-01
This paper addresses three-axis attitude control for a Danish spacecraft, Roemer. The algorithm proposed is based on an approximation of the exact feedback linearisation for quaternionic attitude representation. The proposed attitude controller is tested in a simulation study. The environmental...
International Nuclear Information System (INIS)
Ezhil, Muthuveni; Choi, Bum; Starkschall, George; Bucci, M. Kara; Vedam, Sastry; Balter, Peter
2008-01-01
Purpose: To compare three different methods of propagating the gross tumor volume (GTV) through the respiratory phases that constitute a four-dimensional computed tomography image data set. Methods and Materials: Four-dimensional computed tomography data sets of 20 patients who had undergone definitive hypofractionated radiotherapy to the lung were acquired. The GTV regions of interest (ROIs) were manually delineated on each phase of the four-dimensional computed tomography data set. The ROI from the end-expiration phase was propagated to the remaining nine phases of respiration using the following three techniques: (1) rigid-image registration using in-house software, (2) rigid image registration using research software from a commercial radiotherapy planning system vendor, and (3) rigid-image registration followed by deformable adaptation originally intended for organ-at-risk delineation using the same software. The internal GTVs generated from the various propagation methods were compared with the manual internal GTV using the normalized Dice similarity coefficient (DSC) index. Results: The normalized DSC index of 1.01 ± 0.06 (SD) for rigid propagation using the in-house software program was identical to the normalized DSC index of 1.01 ± 0.06 for rigid propagation achieved with the vendor's research software. Adaptive propagation yielded poorer results, with a normalized DSC index of 0.89 ± 0.10 (paired t test, p <0.001). Conclusion: Propagation of the GTV ROIs through the respiratory phases using rigid- body registration is an acceptable method within a 1-mm margin of uncertainty. The adaptive organ-at-risk propagation method was not applicable to propagating GTV ROIs, resulting in an unacceptable reduction of the volume and distortion of the ROIs
Strategic rigidity and foresight for technology adoption among electric utilities
International Nuclear Information System (INIS)
Shah, Arsalan Nisar; Palacios, Miguel; Ruiz, Felipe
2013-01-01
The variation in the adoption of a technology as a major source of competitive advantage has been attributed to the wide-ranging strategic foresight and the integrative capability of a firm. These possible areas of competitive advantage can exist in the periphery of the firm's strategic vision and can get easily blurred as a result of rigidness and can permeate in the decision-making process of the firm. This article explores how electric utility firms with a renewable energy portfolio can become strategically rigid in terms of adoption of newer technologies. The reluctance or delay in the adoption of new technology can be characterized as strategic rigidness, brought upon as a result of a firm's core competence or core capability in the other, more conventional technology arrangement. This paper explores the implications of such rigidness on the performance of a firm and consequently on the energy eco-system. The paper substantiates the results by emphasizing the case of Iberdrola S.A., an incumbent firm as a wind energy developer and its adoption decision behavior. We illustrate that the very routines that create competitive advantage for firms in the electric utility industry are vulnerable as they might also develop as sources of competitive disadvantage, when firms confront environmental change and uncertainty. - Highlights: • Present a firm-level perspective on technology adoption behavior among electric utilities. • Firms with mature technology can become rigid towards newer technologies. • Case study analysis of a major electric utility firm. • Implications of ‘technology rigidness’ on the energy eco-system
Three-body force in the three-nucleon system
International Nuclear Information System (INIS)
Gibson, B.F.
1986-01-01
A brief summary of the symposium is presented. Three-nucleon force models are discussed, including the two-pion exchange potential, NN-ΔN coupled-channels model, and phenomenological parametrization. Relevant experimental data and model calculations are discussed including form factors, binding energies, charge radii, and charge density for 3 H and 3 He. A calculation of the EMC effect for 3 He is also made using Sasakawa's wave function and compared to experimental data obtained at SLAC. The paper ends with discussions of proton-deuteron scattering, investigations at intermediate energies, and QCD efforts to understand the three-body problem
Rigid pricing and rationally inattentive consumer
Czech Academy of Sciences Publication Activity Database
Matějka, Filip
158 B, July (2015), s. 656-678 ISSN 0022-0531 Institutional support: PRVOUK-P23 Keywords : rational inattention * imperfect information * nominal rigidity Subject RIV: AH - Economics Impact factor: 1.097, year: 2015
Rigid pricing and rationally inattentive consumer
Czech Academy of Sciences Publication Activity Database
Matějka, Filip
158 B, July (2015), s. 656-678 ISSN 0022-0531 Institutional support: RVO:67985998 Keywords : rational inattention * imperfect information * nominal rigidity Subject RIV: AH - Economics Impact factor: 1.097, year: 2015
Hilley, Robert
This document, which is the second part of a two-part set of modules on anatomy and physiology for future surgical technicians, contains the teacher and student editions of an introduction to anatomy and physiology that consists of modules on the following body systems: integumentary system; skeletal system; muscular system; nervous system;…
Analytic scattering theory of quantum mechanical three-body systems
International Nuclear Information System (INIS)
Balslev, Erik
1980-01-01
We consider a three-body Schroedinger operator H=H 0 +V in L 2 (Rsup(2n)), where V=Σ Vsub(α) and each Vsub(α) is a dilation-analytic two-body interaction decreasing faster than rsup(-β), where β>1 for negative energies and β>2 for positive energies. Together with H we consider the associated self-adjoint analytic family of operator given in momentum space by H(z)=z 2 H 0 +V(z), /Arg z/ 0 , H). The local inverse wave operators are constructed and asymptotic completeness proved. The full S-matrix S(μ) and for phi not equal to 0 the channel S-matrices are expressed in terms of boundary values of the resolvent. It is proved that the function is an analytic continuation into the lower half-plane of the diagonal element with poles at most at resolvent resonances and, under some reasonable assumptions, precisely at these resonances
Flexible and rigid cystoscopy in women.
Gee, Jason R; Waterman, Bradley J; Jarrard, David F; Hedican, Sean P; Bruskewitz, Reginald C; Nakada, Stephen Y
2009-01-01
Previous studies have evaluated the tolerability of rigid versus flexible cystoscopy in men. Similar studies, however, have not been performed in women. We sought to determine whether office-based flexible cystoscopy was better tolerated than rigid cystoscopy in women. Following full IRB approval, women were prospectively randomized in a single-blind manner. Patients were randomized to flexible or rigid cystoscopy and draped in the lithotomy position to maintain blinding of the study. Questionnaires evaluated discomfort before, during, and after cystoscopy. Thirty-six women were randomized to flexible (18) or rigid (18) cystoscopy. Indications were surveillance (16), hematuria (15), recurrent UTIs (2), voiding dysfunction (1), and other (2). All questionnaires were returned by 31/36 women. Using a 10-point visual analog scale (VAS), median discomfort during the procedure for flexible and rigid cystoscopy were 1.4 and 1.8, respectively, in patients perceiving pain. Median recalled pain 1 week later was similar at 0.8 and 1.15, respectively. None of these differences were statistically significant. Flexible and rigid cystoscopy are well tolerated in women. Discomfort during and after the procedure is minimal in both groups. Urologists should perform either procedure in women based on their preference and skill level.
Determination of Weight Suspension Rigidity in the Transport-Erector Aggregates
Directory of Open Access Journals (Sweden)
V. A. Zverev
2016-01-01
Full Text Available The aim is to determine weight suspension rigidity in aggregates designed to perform technological transport-erector operations at the miscellaneous launch complexes.We consider the weight suspension comprising the following distinctive structural components: the executive weight-lowering mechanism, polyspast mechanism, rope, traverse, and rods. A created structural dynamic model of suspension allowed us to define weight suspension rigidity. Within the framework of design analysis of a dynamic model we determined the rigidity of its structural units, i.e. traverse, rope, and polyspast.Known analytical relationships were used to calculate the rope rigidity. To determine rigidity of polyspast and traverse have been created special models based on the finite element method. For each model deformation in the specific points under the test load have been defined. Data obtained were used to determine trigidity of traverses and polyspast, and also rigidity of suspension in total. The rigidity models of polispast mechanism and traverse have been developed and calculated using the software complex "Zenit-95".As the research results, the paper presents a dynamic model of the weight suspension of the transport-erector aggregate, the finite element models of the polispast mechanism and traverse, an algorithm for determining the weight suspension rigidity and relevant analytical relationships.Independent calculation of weight suspension rigidity enables us to simplify further dynamic calculation of the aggregate-weight system because it allows attaining a simpler model of the aggregate-weight system that uses the weight suspension model as an element of equivalent rigidity. Despite this simplification the model allows us to determine correctly weight movement parameters and overloads in the aggregate-weight system in the process of technical operations.
Walsh, S; Buckley, F; Pierce, K; Byrne, N; Patton, J; Dillon, P
2008-11-01
The objective of this study was to investigate the potential differences among Holstein-Friesian (HF), Montbéliarde (MB), Normande (NM), Norwegian Red (NRF), Montbéliarde x Holstein-Friesian (MBX), and Normande x Holstein-Friesian (NMX) across 2 seasonal grass-based systems of milk production. The effects of breed and feeding system on milk production, body weight, body condition score, fertility performance, hormone parameters, ovarian function, and survival were determined by using mixed model methodology, generalized linear models, and survival analysis. The 5-yr study comprised up to 749 lactations on 309 cows in one research herd. The HF produced the greatest yield of solids-corrected milk, the MB and NM produced the least yields, and NRF, MBX, and NMX were intermediate. The NRF had the lowest body weight throughout lactation, the NM had the highest, and the other breeds were intermediate. Body condition score was greatest for MB and NM, least for HF, and intermediate for NRF, MBX, and NMX. The HF had a lower submission rate and overall pregnancy rate compared with the NRF. The NRF survived the longest in the herd, the HF survived the shortest, and the NM, MB, MBX, and NMX were intermediate. Breed of dairy cow had no effect on selected milk progesterone parameters from 5 d postpartum until 26 d after first artificial insemination. Breed of dairy cow did not influence insulin and insulin-like growth factor-1 around parturition or at the start of the breeding season. Animals offered a high-concentrate diet had greater milk yield, but they did not have improved reproductive performance. Differences observed between the different breeds in this study are a likely consequence of the past selection criteria for the respective breeds.
Investigation of human body potential measured by a non-contact measuring system.
Ichikawa, Norimitsu
2016-12-07
A human body is occasionally electrified in a room. This charged object will be a source of electrostatic accidents, including the malfunction of electronic equipment. Hence, prevention of these accidents is required. Accidents occasionally occur, even though antistatic clothes and shoes are used. One of the causes for these accidents is that there is a lack of the preventive measures. This situation occurs when using, for example, unconductive wax. In this study, human body potential (voltage) is measured using a non-contact measuring system. An investigation of the human body's voltage when using this system is conducted. The result demonstrates that the voltage of a human body wearing antistatic clothes and shoes or light clothes and slippers exceeds a malfunctioning voltage of a microelectronics device when the body walks on floors. Thus, accidents may occur even if a human body wearing the antistatic clothes walks on flooring. These results will be useful in estimating determination whether electrostatic accidents occur or not.
H infinity controller design to a rigid-flexible satellite with two vibration modes
International Nuclear Information System (INIS)
De Souza, A G; De Souza, L C G
2015-01-01
The satellite attitude control system (ACS) design becomes more complex when the satellite structure has components like, flexible solar panels, antennas and mechanical manipulators. These flexible structures can interact with the satellite rigid parts during translational and/or rotational manoeuvre damaging the ACS pointing accuracy. Although, a well-designed controller can suppress such disturbances quickly, the controller error pointing may be limited by the minimum time necessary to suppress such disturbances thus affecting the satellite attitude acquisition. This paper deals with the rigid-flexible satellite ACS design using the H infinity method. The rigid-flexible satellite is represented by a beam connected to a central rigid hub at one end and free at the other one. The equations of motions are obtained considering small flexible deformations and the Euler-Bernoulli hypothesis. The results of the simulations have shown that the H-infinity controller was able to control the rigid motion and suppress the vibrations. (paper)
Matrix rigidity regulates cancer cell growth and cellular phenotype.
Directory of Open Access Journals (Sweden)
Robert W Tilghman
2010-09-01
Full Text Available The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness of the microenvironment and how this response varies among cancer cell lines.In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: "rigidity dependent" (those which show an increase in cell growth as extracellular rigidity is increased, and "rigidity independent" (those which grow equally on both soft and stiff substrates. Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug.These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models.
Matrix Rigidity Regulates Cancer Cell Growth and Cellular Phenotype
Tilghman, Robert W.; Cowan, Catharine R.; Mih, Justin D.; Koryakina, Yulia; Gioeli, Daniel; Slack-Davis, Jill K.; Blackman, Brett R.; Tschumperlin, Daniel J.; Parsons, J. Thomas
2010-01-01
Background The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness) of the microenvironment and how this response varies among cancer cell lines. Methodology/Principal Findings In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: “rigidity dependent” (those which show an increase in cell growth as extracellular rigidity is increased), and “rigidity independent” (those which grow equally on both soft and stiff substrates). Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug. Conclusions/Significance These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models. PMID:20886123
Shibata, Yoshiyuki; Imai, Shingo; Nobutomo, Tatsuya; Miyoshi, Tasuku; Yamamoto, Shin-Ichiroh
2010-01-01
The purpose of this study is to develop a body weight support gait training system for stroke and spinal cord injury. This system consists of a powered orthosis, treadmill and equipment of body weight support. Attachment of the powered orthosis is able to fit subject who has difference of body size. This powered orthosis is driven by pneumatic McKibben actuator. Actuators are arranged as pair of antagonistic bi-articular muscle model and two pairs of antagonistic mono-articular muscle model like human musculoskeletal system. Part of the equipment of body weight support suspend subject by wire harness, and body weight of subject is supported continuously by counter weight. The powered orthosis is attached equipment of body weight support by parallel linkage, and movement of the powered orthosis is limited at sagittal plane. Weight of the powered orthosis is compensated by parallel linkage with gas-spring. In this study, we developed system that has orthosis powered by pneumatic McKibben actuators and equipment of body weight support. We report detail of our developed body weight support gait training system.
Post-1-Newtonian equations of motion for systems of arbitrarily structured bodies
International Nuclear Information System (INIS)
Racine, Etienne; Flanagan, Eanna E.
2005-01-01
We give a surface-integral derivation of post-1-Newtonian translational equations of motion for a system of arbitrarily structured bodies, including the coupling to all the bodies' mass and current multipole moments. The derivation requires only that the post-1-Newtonian vacuum field equations are satisfied in weak field regions between the bodies; the bodies' internal gravity can be arbitrarily strong. In particular, black holes are not excluded. The derivation extends previous results due to Damour, Soffel, and Xu (DSX) for weakly self-gravitating bodies in which the post-1-Newtonian field equations are satisfied everywhere. The derivation consists of a number of steps: (i) The definition of each body's current and mass multipole moments and center-of-mass world line in terms of the behavior of the metric in a weak field region surrounding the body. (ii) The definition for each body of a set of gravitoelectric and gravitomagnetic tidal moments that act on that body, again in terms of the behavior of the metric in a weak field region surrounding the body. For the special case of weakly self-gravitating bodies, our definitions of these multipole and tidal moments agree with definitions given previously by DSX. (iii) The derivation of a formula, for any given body, of the second time derivative of its mass dipole moment in terms of its other multipole and tidal moments and their time derivatives. This formula was obtained previously by DSX for weakly self-gravitating bodies. (iv) A derivation of the relation between the tidal moments acting on each body and the multipole moments and center-of-mass world lines of all the other bodies. A formalism to compute this relation was developed by DSX; we simplify their formalism and compute the relation explicitly. (v) The deduction from the previous steps of the explicit translational equations of motion, whose form has not been previously derived
The mathematical description of resonances in many-body systems
International Nuclear Information System (INIS)
Orth, A.
1985-01-01
We introduce a characterization for quantum-mechanical resonance and use it in order to detect for certain distinct physical states an especially slow decay behaviour. We apply these results to a model of the quantum-mechanical many-body problem and obtain so a mathematical description of the Auger effect (self-ionization of atoms). The class of the interaction potentials admitted for our theory is compared with other theories on resonances extremely large. We establish differentiability conditions and conditions on the fading behaviour in the infinite. Especially the Coulomb potential and the Yukawa potential belong to our class but also non-spherical-symmetric and non-analytic potentials with a Coulomb-like singularity in the origin, two- to threefold differentiable which tend to zero at the infinite. In the introduction we discuss extensively also by means of some examples the problematics of the quantum-mechanical resonance. (orig.) [de
Systems Modeling for Crew Core Body Temperature Prediction Postlanding
Cross, Cynthia; Ochoa, Dustin
2010-01-01
The Orion Crew Exploration Vehicle, NASA s latest crewed spacecraft project, presents many challenges to its designers including ensuring crew survivability during nominal and off nominal landing conditions. With a nominal water landing planned off the coast of San Clemente, California, off nominal water landings could range from the far North Atlantic Ocean to the middle of the equatorial Pacific Ocean. For all of these conditions, the vehicle must provide sufficient life support resources to ensure that the crew member s core body temperatures are maintained at a safe level prior to crew rescue. This paper will examine the natural environments, environments created inside the cabin and constraints associated with post landing operations that affect the temperature of the crew member. Models of the capsule and the crew members are examined and analysis results are compared to the requirement for safe human exposure. Further, recommendations for updated modeling techniques and operational limits are included.
Body posture recognition and turning recording system for the care of bed bound patients.
Hsiao, Rong-Shue; Mi, Zhenqiang; Yang, Bo-Ru; Kau, Lih-Jen; Bitew, Mekuanint Agegnehu; Li, Tzu-Yu
2015-01-01
This paper proposes body posture recognition and turning recording system for assisting the care of bed bound patients in nursing homes. The system continuously detects the patient's body posture and records the length of time for each body posture. If the patient remains in the same body posture long enough to develop pressure ulcers, the system notifies caregivers to change the patient's body posture. The objective of recording is to provide the log of body turning for querying of patients' family members. In order to accurately detect patient's body posture, we developed a novel pressure sensing pad which contains force sensing resistor sensors. Based on the proposed pressure sensing pad, we developed a bed posture recognition module which includes a bed posture recognition algorithm. The algorithm is based on fuzzy theory. The body posture recognition algorithm can detect the patient's bed posture whether it is right lateral decubitus, left lateral decubitus, or supine. The detected information of patient's body posture can be then transmitted to the server of healthcare center by the communication module to perform the functions of recording and notification. Experimental results showed that the average posture recognition accuracy for our proposed module is 92%.
Characterizing and quantifying frustration in quantum many-body systems.
Giampaolo, S M; Gualdi, G; Monras, A; Illuminati, F
2011-12-23
We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure) ground states of a given Hamiltonian saturate the inequality, then the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system to be inequality saturating and confirm them with extensive numerical tests. These conditions provide a generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems. The models satisfying these conditions can be reasonably identified as geometrically unfrustrated and subject to frustration of purely quantum origin. Our results therefore establish a unified framework for studying the intertwining of geometric and quantum contributions to frustration.
Binding in some few-body systems containing antimatter
International Nuclear Information System (INIS)
Armour, E.A.G.
2009-01-01
It is well known that the system made up of a fixed proton and antiproton and an electron (or a positron) has no bound states if the internuclear distance R 0 . In this paper, I consider the more complicated system in which the electron and the positron are both present and investigate the possibility of obtaining a lower bound on the value of R for which the system has no bound states. I also investigate the implications of the existence of bound states of the simpler, one light particle system regarding bound states of the more complicated system. This article is based on the presentation by E. A. G. Armour at the Fifth Workshop on Critical Stability, Erice, Sicily. (author)
Trajectory Correction and Locomotion Analysis of a Hexapod Walking Robot with Semi-Round Rigid Feet
Zhu, Yaguang; Jin, Bo; Wu, Yongsheng; Guo, Tong; Zhao, Xiangmo
2016-01-01
Aimed at solving the misplaced body trajectory problem caused by the rolling of semi-round rigid feet when a robot is walking, a legged kinematic trajectory correction methodology based on the Least Squares Support Vector Machine (LS-SVM) is proposed. The concept of ideal foothold is put forward for the three-dimensional kinematic model modification of a robot leg, and the deviation value between the ideal foothold and real foothold is analyzed. The forward/inverse kinematic solutions between the ideal foothold and joint angular vectors are formulated and the problem of direct/inverse kinematic nonlinear mapping is solved by using the LS-SVM. Compared with the previous approximation method, this correction methodology has better accuracy and faster calculation speed with regards to inverse kinematics solutions. Experiments on a leg platform and a hexapod walking robot are conducted with multi-sensors for the analysis of foot tip trajectory, base joint vibration, contact force impact, direction deviation, and power consumption, respectively. The comparative analysis shows that the trajectory correction methodology can effectively correct the joint trajectory, thus eliminating the contact force influence of semi-round rigid feet, significantly improving the locomotion of the walking robot and reducing the total power consumption of the system. PMID:27589766
System for visualizing a body by detecting the radiation of a tracer contained therein
International Nuclear Information System (INIS)
Vacher, Jacques.
1980-01-01
This invention concerns a device for visualizing a body by detecting the radiation from a tracer composed of positron emitters contained in this body. This system has a particular application in tomography and hence for the visualization of a group of organs in a given cross-section. It includes: - detection cells positioned on both sides of the body to detect the gamma particles delivered by each positron emitter, in two opposite directions, - devices for localizing cells opposed in pairs, on both sides of the body, each opposed pair of cells being located on a straight line passing through a positron emitter, - systems for coding the localization of these pairs of opposed cells, - systems for memorizing these coded localization signals, - facilities for processing these stored signals, - visual displays controlled by the data processing units, to show the image of the body as from the various coded and memorized signals [fr
Conjugate whole-body scanning system for quantitative measurement of organ distribution in vivo
International Nuclear Information System (INIS)
Tsui, B.M.W.; Chen, C.T.; Yasillo, N.J.; Ortega, C.J.; Charleston, D.B.; Lathrop, K.A.
1979-01-01
The determination of accurate, quantitative, biokinetic distribution of an internally dispersed radionuclide in humans is important in making realistic radiation absorbed dose estimates, studying biochemical transformations in health and disease, and developing clinical procedures indicative of abnormal functions. In order to collect these data, a whole-body imaging system is required which provides both adequate spatial resolution and some means of absolute quantitation. Based on these considerations, a new whole-body scanning system has been designed and constructed that employs the conjugate counting technique. The conjugate whole-body scanning system provides an efficient and accurate means of collecting absolute quantitative organ distribution data of radioactivity in vivo
Spontaneous droplet trampolining on rigid superhydrophobic surfaces
Schutzius, Thomas M.; Jung, Stefan; Maitra, Tanmoy; Graeber, Gustav; Köhme, Moritz; Poulikakos, Dimos
2015-11-01
Spontaneous removal of condensed matter from surfaces is exploited in nature and in a broad range of technologies to achieve self-cleaning, anti-icing and condensation control. But despite much progress, our understanding of the phenomena leading to such behaviour remains incomplete, which makes it challenging to rationally design surfaces that benefit from its manifestation. Here we show that water droplets resting on superhydrophobic textured surfaces in a low-pressure environment can self-remove through sudden spontaneous levitation and subsequent trampoline-like bouncing behaviour, in which sequential collisions with the surface accelerate the droplets. These collisions have restitution coefficients (ratios of relative speeds after and before collision) greater than unity despite complete rigidity of the surface, and thus seemingly violate the second law of thermodynamics. However, these restitution coefficients result from an overpressure beneath the droplet produced by fast droplet vaporization while substrate adhesion and surface texture restrict vapour flow. We also show that the high vaporization rates experienced by the droplets and the associated cooling can result in freezing from a supercooled state that triggers a sudden increase in vaporization, which in turn boosts the levitation process. This effect can spontaneously remove surface icing by lifting away icy drops the moment they freeze. Although these observations are relevant only to systems in a low-pressure environment, they show how surface texturing can produce droplet-surface interactions that prohibit liquid and freezing water-droplet retention on surfaces.
Virtual states, halos and resonances in three-body atomic and nuclear systems
International Nuclear Information System (INIS)
Frederico, T.; Yamashita, M.T.; Tomio, L.
2009-01-01
By considering nuclear and ultracold trapped atomic systems, we review the trajectory of Efimov excited states in the complex plane by changing the two-body scattering lengths and one three-body scale. This article is based on the presentation by T. Frederico at the Fifth Workshop on Critical Stability, Erice, Sicily. (author)
Three-body Coulomb systems using generalized angular-momentum S states
Whitten, R. C.; Sims, J. S.
1974-01-01
An expansion of the three-body Coulomb potential in generalized angular-momentum eigenfunctions developed earlier by one of the authors is used to compute energy eigenvalues and eigenfunctions of bound S states of three-body Coulomb systems. The results for He, H(-), e(-)e(+)e(-), and pmu(-)p are compared with the results of other computational approaches.
Exploring small bodies in the outer solar system with stellar occultations
Elliot, Jim L.; Dunham, Edward W.; Olkin, C. B.
1995-01-01
Stellar occultation observations probe the atmospheric structure and extinction of outer solar system bodies with a spatial resolution of a few kilometers, and an airborne platform allows the observation of occultations by small bodies that are not visible from fixed telescopes. Results from occultations by Triton, Pluto, and Chiron observed with KAO are discussed, and future directions for this program are presented.
Directory of Open Access Journals (Sweden)
Karan Madan
2014-01-01
Full Text Available Background and Aim: Rigid bronchoscopy is often an indispensable procedure in the therapeutic management of a wide variety of tracheobronchial disorders. However, it is performed at only a few centers in adult patients in India. Herein, we report our initial 1-year experience with this procedure. Materials and Methods: A prospective observational study on the indications, outcomes, and safety of various rigid bronchoscopy procedures performed between November 2009 and October 2010. Improvement in dyspnea, cough, and the overall quality of life was recorded on a visual analog scale from 0 to 100 mm. A systematic review of PubMed was performed to identify studies reporting the use of rigid bronchoscopy from India. Results: Thirty-eight rigid bronchoscopies (50 procedures were performed in 19 patients during the study period. The commonest indication was benign tracheal stenosis followed by central airway tumor, and the procedures performed were rigid bronchoplasty, tumor debulking, and stent placement. The median procedure duration was 45 (range, 30-65 min. There was significant improvement in quality of life associated with therapeutic rigid bronchoscopy. Minor procedural complications were encountered in 18 bronchoscopies, and there was no procedural mortality. The systematic review identified 15 studies, all on the role of rigid bronchoscopy in foreign body removal. Conclusions: Rigid bronchoscopy is a safe and effective modality for treatment of a variety of tracheobronchial disorders. There is a dire need of rigid bronchoscopy training at teaching hospitals in India.
Post-1-Newtonian equations of motion for systems of arbitrarily structured bodies
Racine, Étienne; Flanagan, Éanna É.
2005-02-01
We give a surface-integral derivation of post-1-Newtonian translational equations of motion for a system of arbitrarily structured bodies, including the coupling to all the bodies' mass and current multipole moments. The derivation requires only that the post-1-Newtonian vacuum field equations are satisfied in weak field regions between the bodies; the bodies' internal gravity can be arbitrarily strong. In particular, black holes are not excluded. The derivation extends previous results due to Damour, Soffel, and Xu (DSX) for weakly self-gravitating bodies in which the post-1-Newtonian field equations are satisfied everywhere. The derivation consists of a number of steps: (i) The definition of each body’s current and mass multipole moments and center-of-mass world line in terms of the behavior of the metric in a weak field region surrounding the body. (ii) The definition for each body of a set of gravitoelectric and gravitomagnetic tidal moments that act on that body, again in terms of the behavior of the metric in a weak field region surrounding the body. For the special case of weakly self-gravitating bodies, our definitions of these multipole and tidal moments agree with definitions given previously by DSX. (iii) The derivation of a formula, for any given body, of the second time derivative of its mass dipole moment in terms of its other multipole and tidal moments and their time derivatives. This formula was obtained previously by DSX for weakly self-gravitating bodies. (iv) A derivation of the relation between the tidal moments acting on each body and the multipole moments and center-of-mass world lines of all the other bodies. A formalism to compute this relation was developed by DSX; we simplify their formalism and compute the relation explicitly. (v) The deduction from the previous steps of the explicit translational equations of motion, whose form has not been previously derived.
Polyester Polyols from Waste PET Bottles for Polyurethane Rigid Foams
Evtimova, Rozeta; Lozeva, Yordanka; Schmidt, Karl-Heinz; Wotzka, Michael; Wagner, Peter; Behrendt, Gerhard
2003-01-01
This paper describes a modified process to produce polyester polyols from PET wastes derived from the “bottle fraction residue” of the German Dual System (DSD) [11] employing a waste oligoester condensate of the polyesterification process with the addition of some glycols of longer chain and occasional modification with further dicarboxylic acids to produce polyester polyols of a broad range of properties which are further reacted to form polyurethane or polyisocyanurate rigid foams for insul...
Okamoto, Eiji; Kato, Yoshikuni; Seino, Kazuyuki; Mitamura, Yoshinori
2012-03-01
We have been developing a new transcutaneous communication system (TCS) that uses the human body as an electrical conductive medium. We studied an interface circuit of the TCS in order to optimize the leading data current into the human body effectively. Two types of LC circuits were examined for the interface circuit, one was an LC series-parallel circuit, and the other was a parallel-connected LC circuit. The LC series-parallel circuit connected to the body could be tuned to a resonant frequency, and the frequency was determined by the values of an external inductor and an external capacitor. Permittivity of the body did not influence the electrical resonance. Connection of the LC series-parallel circuit to the body degraded the quality factor Q because of the conductivity of the body. However, the LC parallel-connected circuit when connected to the body did not indicate electrical resonance. The LC series-parallel circuit restricts a direct current and a low-frequency current to flow into the body; thus, it can prevent a patient from getting a shock. According to the above results, an LC series-parallel circuit is an optimum interface circuit between the TCS and the body for leading data current into the body effectively and safely.
Market structure, price rigidity, and performance in the Indonesian food and beverages industry
Setiawan, M.
2012-01-01
Keywords: industrial concentration, price rigidity, technical efficiency, price-cost margin, Structure-Conduct-Performance (SCP), new empirical industrial organization (NEIO), Indonesian food and beverages industry, Data Envelopment Analysis (DEA), system of equations
National Research Council Canada - National Science Library
Hammons, Michael
1998-01-01
.... The objective of this research was to obtain data on the response of the ng'id pavement slab-joint-foundation system by conducting laboratory-scale experiments on jointed rigid pavement models...
Identifying Floppy and Rigid Regions in Proteins
Jacobs, D. J.; Thorpe, M. F.; Kuhn, L. A.
1998-03-01
In proteins it is possible to separate hard covalent forces involving bond lengths and bond angles from other weak forces. We model the microstructure of the protein as a generic bar-joint truss framework, where the hard covalent forces and strong hydrogen bonds are regarded as rigid bar constraints. We study the mechanical stability of proteins using FIRST (Floppy Inclusions and Rigid Substructure Topography) based on a recently developed combinatorial constraint counting algorithm (the 3D Pebble Game), which is a generalization of the 2D pebble game (D. J. Jacobs and M. F. Thorpe, ``Generic Rigidity: The Pebble Game'', Phys. Rev. Lett.) 75, 4051-4054 (1995) for the special class of bond-bending networks (D. J. Jacobs, "Generic Rigidity in Three Dimensional Bond-bending Networks", Preprint Aug (1997)). This approach is useful in identifying rigid motifs and flexible linkages in proteins, and thereby determines the essential degrees of freedom. We will show some preliminary results from the FIRST analysis on the myohemerythrin and lyozyme proteins.
Description of disintegration in a three-body system
Takibaev, N Z
2000-01-01
In the frame of approach based on the effective potential of interaction between constituents, description of inelastic transition, in particularly, the processes of system disintegration. Relationship is shown between the approach results and those of the theory of final state interaction where coefficients of reaction gaining factor are determined. (author)
Influence of body weight, age and management system on ...
African Journals Online (AJOL)
GRETHA SNYMAN
South African Journal of Animal Science 2010, 40 (1). © South African ... African Angora goat does ... 2004 on 12 Angora goat studs kept under different management systems. ... There is a tendency among Angora goat stud breeders to retain stud does in the breeding flock up to the age ...... SAS Institute Inc., Raleigh, North.
Collective motion in quantum many-body systems
Energy Technology Data Exchange (ETDEWEB)
Haemmerling, Jens
2011-06-07
We study the emergence of collective dynamics in the integrable Hamiltonian system of two finite ensembles of coupled harmonic oscillators. After identification of a collective degree of freedom, the Hamiltonian is mapped onto a model of Caldeira-Leggett type, where the collective coordinate is coupled to an internal bath of phonons. In contrast to the usual Caldeira-Leggett model, the bath in the present case is part of the system. We derive an equation of motion for the collective coordinate which takes the form of a damped harmonic oscillator. We show that the distribution of quantum transition strengths induced by the collective mode is determined by its classical dynamics. This allows us to derive the spreading for the collective coordinate from first principles. After that we study the interplay between collective and incoherent single-particle motion in a model of two chains of particles whose interaction comprises a non-integrable part. In the perturbative regime, but for a general form of the interaction, we calculate the Fourier transform of the time correlation for the collective coordinate. We obtain the remarkable result that it always has a unique semi-classical interpretation. We show this by a proper renormalization procedure which also allows us to map the non-integrable system to the integrable model of Caldeira-Leggett-type considered previously in which the bath is part of the system.
Fu, Yao; Song, Jeong-Hoon
2014-08-01
Hardy stress definition has been restricted to pair potentials and embedded-atom method potentials due to the basic assumptions in the derivation of a symmetric microscopic stress tensor. Force decomposition required in the Hardy stress expression becomes obscure for multi-body potentials. In this work, we demonstrate the invariance of the Hardy stress expression for a polymer system modeled with multi-body interatomic potentials including up to four atoms interaction, by applying central force decomposition of the atomic force. The balance of momentum has been demonstrated to be valid theoretically and tested under various numerical simulation conditions. The validity of momentum conservation justifies the extension of Hardy stress expression to multi-body potential systems. Computed Hardy stress has been observed to converge to the virial stress of the system with increasing spatial averaging volume. This work provides a feasible and reliable linkage between the atomistic and continuum scales for multi-body potential systems.
Loizzo, Joseph J
2016-06-01
Meditation research has begun to clarify the brain effects and mechanisms of contemplative practices while generating a range of typologies and explanatory models to guide further study. This comparative review explores a neglected area relevant to current research: the validity of a traditional central nervous system (CNS) model that coevolved with the practices most studied today and that provides the first comprehensive neural-based typology and mechanistic framework of contemplative practices. The subtle body model, popularly known as the chakra system from Indian yoga, was and is used as a map of CNS function in traditional Indian and Tibetan medicine, neuropsychiatry, and neuropsychology. The study presented here, based on the Nalanda tradition, shows that the subtle body model can be cross-referenced with modern CNS maps and challenges modern brain maps with its embodied network model of CNS function. It also challenges meditation research by: (1) presenting a more rigorous, neural-based typology of contemplative practices; (2) offering a more refined and complete network model of the mechanisms of contemplative practices; and (3) serving as an embodied, interoceptive neurofeedback aid that is more user friendly and complete than current teaching aids for clinical and practical applications of contemplative practice. © 2016 New York Academy of Sciences.
Identification of Motive Forces on the Whole Body System during Walking
Directory of Open Access Journals (Sweden)
Raghdan J. AlKhoury
2010-01-01
Full Text Available Motive forces by muscles are applied to different parts of the human body in a periodic fashion when walking at a uniform rate. In this study, the whole human body is modeled as a multidegree of freedom (MDOF system with seven degrees of freedom. In view of the changing contact conditions with the ground due to alternating feet movements, the system under study is considered piecewise time invariant for each half-period when one foot is in contact with the ground. Forces transmitted from the body to the ground while walking at a normal pace are experimentally measured and numerically simulated. Fourth-order Runge-Kutta method is employed to numerically simulate the forces acting on different masses of the body. An optimization problem is formulated with the squared difference between the measured and simulated forces transmitted to the ground as the objective function, and the motive forces on the body masses as the design variables to solve.
Relativistic many-body bound systems. Monograph report
International Nuclear Information System (INIS)
Danos, M.; Gillet, V.
1975-04-01
The principles and the mathematical details of a fully relativistic nuclear theory are given. Since the concept of nuclear forces is a strictly non-relativistic construct, it must be abandoned, and the forces must be replaced explicitly by their physical origin, i.e., by the interaction between nucleons and mesons. Thus, in this monograph the description of a nucleus has been formulated as a problem of relativistic quantum field theory which is solved by nuclear physics methods; to wit: the physics is described by specifying a Lagrangian which is a functional of the constituent fields (= of the parton fields); the solutions for the physical systems then are obtained in a time-independent treatment as expansions in the parton fields: both particles and nuclei are composite systems, made up of parton configurations, which define a representation of the Hamiltonian (associated with the specified Lagrangian)
Partial dynamical symmetries in quantal many-body systems
International Nuclear Information System (INIS)
Van Isacker, P.
2001-01-01
Partial dynamical symmetries are associated with Hamiltonians that are partially solvable. The determination of the properties of a quantal system of N interacting particles moving in an external potential requires the solution of the eigenvalue equation associated with a second-quantised Hamiltonian. In many situations of interest the Hamiltonian commutes with transformations that constitute a symmetry algebra G sym . This characteristic opens a way to find all analytically solvable Hamiltonians. The author gives a brief review of some recent developments
New results on order and spacing of levels for two- and three-body systems
International Nuclear Information System (INIS)
Grosse, H.; Martin, A.; Richard, J.M.; Taxil, P.
1987-01-01
The authors propose sufficient conditions on the potential binding a two-body system to compare; the energy of a state with angular momentum iota+1 to the average of the energies of the neighbouring states with angular momentum iota, the spacings of the successive iota = O excitations. Applications to quarkonium physics are given. The authors also find a condition giving the sign of the parameter Δ controlling the pattern of levels obtained by perturbing the lowest positive parity excitation of a three-body system bound by harmonic oscillator two body forces
Genuine quantum correlations in quantum many-body systems: a review of recent progress.
De Chiara, Gabriele; Sanpera, Anna
2018-04-19
Quantum information theory has considerably helped in the understanding of quantum many-body systems. The role of quantum correlations and in particular, bipartite entanglement, has become crucial to characterise, classify and simulate quantum many body systems. Furthermore, the scaling of entanglement has inspired modifications to numerical techniques for the simulation of many-body systems leading to the, now established, area of tensor networks. However, the notions and methods brought by quantum information do not end with bipartite entanglement. There are other forms of correlations embedded in the ground, excited and thermal states of quantum many-body systems that also need to be explored and might be utilised as potential resources for quantum technologies. The aim of this work is to review the most recent developments regarding correlations in quantum many-body systems focussing on multipartite entanglement, quantum nonlocality, quantum discord, mutual information but also other non classical measures of correlations based on quantum coherence. Moreover, we also discuss applications of quantum metrology in quantum many-body systems. © 2018 IOP Publishing Ltd.
Durable bistable auxetics made of rigid solids
Shang, Xiao; Liu, Lu; Rafsanjani, Ahmad; Pasini, Damiano
2018-02-01
Bistable Auxetic Metamaterials (BAMs) are a class of monolithic perforated periodic structures with negative Poisson's ratio. Under tension, a BAM can expand and reach a second state of equilibrium through a globally large shape transformation that is ensured by the flexibility of its elastomeric base material. However, if made from a rigid polymer, or metal, BAM ceases to function due to the inevitable rupture of its ligaments. The goal of this work is to extend the unique functionality of the original kirigami architecture of BAM to a rigid solid base material. We use experiments and numerical simulations to assess performance, bistability and durability of rigid BAMs at 10,000 cycles. Geometric maps are presented to elucidate the role of the main descriptors of BAM architecture. The proposed design enables the realization of BAM from a large palette of materials, including elastic-perfectly plastic materials and potentially brittle materials.
Handedness in shearing auxetics creates rigid and compliant structures
Lipton, Jeffrey Ian; MacCurdy, Robert; Manchester, Zachary; Chin, Lillian; Cellucci, Daniel; Rus, Daniela
2018-05-01
In nature, repeated base units produce handed structures that selectively bond to make rigid or compliant materials. Auxetic tilings are scale-independent frameworks made from repeated unit cells that expand under tension. We discovered how to produce handedness in auxetic unit cells that shear as they expand by changing the symmetries and alignments of auxetic tilings. Using the symmetry and alignment rules that we developed, we made handed shearing auxetics that tile planes, cylinders, and spheres. By compositing the handed shearing auxetics in a manner inspired by keratin and collagen, we produce both compliant structures that expand while twisting and deployable structures that can rigidly lock. This work opens up new possibilities in designing chemical frameworks, medical devices like stents, robotic systems, and deployable engineering structures.
Physics in one dimension: theoretical concepts for quantum many-body systems.
Schönhammer, K
2013-01-09
Various sophisticated approximation methods exist for the description of quantum many-body systems. It was realized early on that the theoretical description can simplify considerably in one-dimensional systems and various exact solutions exist. The focus in this introductory paper is on fermionic systems and the emergence of the Luttinger liquid concept.
New trends in few-body systems a 30th anniversary collection
2017-01-01
Few-Body Systems refer to a multidisciplinary subject of research in different sectors of physics in which the number of degrees of freedom governing the dynamics is sufficiently low to allow a description with controlled approximations. Examples can be found in atomic, nuclear and subnuclear physics as well as in some aspects of condensed matter. This issue, celebrating the 30th Anniversary of the Journal, contains two review articles, one in exotic hadrons and one in antikaon-nucleon systems, as well as a selection of original articles on experimental and theoretical physics in which modern problems in few-body systems are discussed. Specific arguments, presented by world expert leaders, are very extensive and include the three and four-nucleon system, short-range correlations, universal behavior in few-boson systems, perspectives on the origin of hadron masses, scattering problems and studies using electromagnetic probes. This issue gives an overview of actual problems in Few-Body Systems.
Scientific evidence-based effects of hydrotherapy on various systems of the body.
Mooventhan, A; Nivethitha, L
2014-05-01
The use of water for various treatments (hydrotherapy) is probably as old as mankind. Hydrotherapy is one of the basic methods of treatment widely used in the system of natural medicine, which is also called as water therapy, aquatic therapy, pool therapy, and balneotherapy. Use of water in various forms and in various temperatures can produce different effects on different system of the body. Many studies/reviews reported the effects of hydrotherapy only on very few systems and there is lack of studies/reviews in reporting the evidence-based effects of hydrotherapy on various systems. We performed PubMed and PubMed central search to review relevant articles in English literature based on "effects of hydrotherapy/balneotherapy" on various systems of the body. Based on the available literature this review suggests that the hydrotherapy has a scientific evidence-based effect on various systems of the body.
Effect of rigid inclusions on sintering
International Nuclear Information System (INIS)
Rahaman, M.N.; De Jonghe, L.C.
1988-01-01
The predictions of recent theoretical studies on the effect of inert, rigid inclusions on the sintering of ceramic powder matrices are examined and compared with experimental data. The densification of glass matrix composites with inclusion volume fractions of ≤0.15 can be adequately explained by Scherer's theory for viscous sintering with rigid inclusions. Inclusions cause a vast reduction in the densification rates of polycrystalline matrix composites even at low inclusion volume fractions. Models put forward to explain the sintering of polycrystalline matrix composites are discussed
Type number and rigidity of fibred surfaces
International Nuclear Information System (INIS)
Markov, P E
2001-01-01
Infinitesimal l-th order bendings, 1≤l≤∞, of higher-dimensional surfaces are considered in higher-dimensional flat spaces (for l=∞ an infinitesimal bending is assumed to be an analytic bending). In terms of the Allendoerfer type number, criteria are established for the (r,l)-rigidity (in the terminology of Sabitov) of such surfaces. In particular, an (r,l)-infinitesimal analogue is proved of the classical theorem of Allendoerfer on the unbendability of surfaces with type number ≥3 and the class of (r,l)-rigid fibred surfaces is distinguished
Rigid origami vertices: conditions and forcing sets
Directory of Open Access Journals (Sweden)
Zachary Abel
2016-04-01
Full Text Available We develop an intrinsic necessary and sufficient condition for single-vertex origami crease patterns to be able to fold rigidly. We classify such patterns in the case where the creases are pre-assigned to be mountains and valleys as well as in the unassigned case. We also illustrate the utility of this result by applying it to the new concept of minimal forcing sets for rigid origami models, which are the smallest collection of creases that, when folded, will force all the other creases to fold in a prescribed way.
Evaluating a method for automated rigid registration
DEFF Research Database (Denmark)
Darkner, Sune; Vester-Christensen, Martin; Larsen, Rasmus
2007-01-01
to point distance. T-test for common mean are used to determine the performance of the two methods (supported by a Wilcoxon signed rank test). The performance influence of sampling density, sampling quantity, and norms is analyzed using a similar method.......We evaluate a novel method for fully automated rigid registration of 2D manifolds in 3D space based on distance maps, the Gibbs sampler and Iterated Conditional Modes (ICM). The method is tested against the ICP considered as the gold standard for automated rigid registration. Furthermore...
Silber, Gerhard
2013-01-01
How can we optimize a bedridden patient’s mattress? How can we make a passenger seat on a long distance flight or ride more comfortable? What qualities should a runner’s shoes have? To objectively address such questions using engineering and scientific methods, adequate virtual human body models for use in computer simulation of loading scenarios are required. The authors have developed a novel method incorporating subject studies, magnetic resonance imaging, 3D-CAD-reconstruction, continuum mechanics, material theory and the finite element method. The focus is laid upon the mechanical in vivo-characterization of human soft tissue, which is indispensable for simulating its mechanical interaction with, for example, medical bedding or automotive and airplane seating systems. Using the examples of arbitrary body support systems, the presented approach provides visual insight into simulated internal mechanical body tissue stress and strain, with the goal of biomechanical optimization of body support systems. ...
The self-consistent field model for Fermi systems with account of three-body interactions
Directory of Open Access Journals (Sweden)
Yu.M. Poluektov
2015-12-01
Full Text Available On the basis of a microscopic model of self-consistent field, the thermodynamics of the many-particle Fermi system at finite temperatures with account of three-body interactions is built and the quasiparticle equations of motion are obtained. It is shown that the delta-like three-body interaction gives no contribution into the self-consistent field, and the description of three-body forces requires their nonlocality to be taken into account. The spatially uniform system is considered in detail, and on the basis of the developed microscopic approach general formulas are derived for the fermion's effective mass and the system's equation of state with account of contribution from three-body forces. The effective mass and pressure are numerically calculated for the potential of "semi-transparent sphere" type at zero temperature. Expansions of the effective mass and pressure in powers of density are obtained. It is shown that, with account of only pair forces, the interaction of repulsive character reduces the quasiparticle effective mass relative to the mass of a free particle, and the attractive interaction raises the effective mass. The question of thermodynamic stability of the Fermi system is considered and the three-body repulsive interaction is shown to extend the region of stability of the system with the interparticle pair attraction. The quasiparticle energy spectrum is calculated with account of three-body forces.
Investigation of a Switchable Textile Communication System on the Human Body
Directory of Open Access Journals (Sweden)
Qiang Bai
2014-08-01
Full Text Available In this paper, a switchable textile communication system working at 2.45 GHz ISM band is presented and studied for different locations within a realistic on-body environment. A 3D laser scanner is used to generate a numerical phantom of the measured subject to improve the accuracy of the simulations which are carried out for different body postures. For the off-body communications, the system is acting as an aperture coupled microstrip patch antenna with a boresight gain of 1.48 dBi. On-body communication is achieved by using a textile stripline, which gives approximately 5 dB transmission loss over 600 mm distance. The system is switched between on and off-body modes by PIN diodes. Common issues, such as shape distortion and body detuning effects which the textile antenna may experience in realistic use are fully discussed. Robust antenna performance is noted in the on-body tests, and an additional 3 dB transmission coefficient deduction was noticed in the most severe shape distortion case.
Wu, Dehua
2016-01-01
The spatial position and distribution of human body meridian are expressed limitedly in the decision support system (DSS) of acupuncture and moxibustion at present, which leads to the failure to give the effective quantitative analysis on the spatial range and the difficulty for the decision-maker to provide a realistic spatial decision environment. Focusing on the limit spatial expression in DSS of acupuncture and moxibustion, it was proposed that on the basis of the geographic information system, in association of DSS technology, the design idea was developed on the human body meridian spatial DSS. With the 4-layer service-oriented architecture adopted, the data center integrated development platform was taken as the system development environment. The hierarchical organization was done for the spatial data of human body meridian via the directory tree. The structured query language (SQL) server was used to achieve the unified management of spatial data and attribute data. The technologies of architecture, configuration and plug-in development model were integrated to achieve the data inquiry, buffer analysis and program evaluation of the human body meridian spatial DSS. The research results show that the human body meridian spatial DSS could reflect realistically the spatial characteristics of the spatial position and distribution of human body meridian and met the constantly changeable demand of users. It has the powerful spatial analysis function and assists with the scientific decision in clinical treatment and teaching of acupuncture and moxibustion. It is the new attempt to the informatization research of human body meridian.
Applications of quantum measurement in single and many body systems
International Nuclear Information System (INIS)
Steixner, V.
2010-01-01
This thesis contains a study about the influence of the back action of a signal emitted by a trapped ion onto itself. The continuous measurement signal is used to alter the motional state of the ion, corresponding to classical friction, in order to cool the ion. The quantum mechanical evolution of the ion with the help of stochastic Schroedinger- and master equations is explored, as well as experimental results. A second method of feedback to obtain the momentum necessary for cooling by means of electromagnetically induced transparency is discussed next. This method allows for a theoretical cooling down to the motional ground state. In a second part of the thesis, the measurement of particle currents in optical lattices is discussed. The usual method of measuring spatial correlations in a cold gas, the time-of-flight method, disadvantageously destroys the measured sample. Here a measurement scheme for atoms with an internal Lambda level structure, coupled with lasers as a Raman transition, is used instead. The measured photons are transformed with the help of homodyne detection into a continuous photon current proportional to the particle current. This thesis contains numerical and analytical calculations for this measurement process and the back action on the measured system. As an application example, the measurement of superfluid currents in a ring optical lattice is described, as well as the entanglement of two of these macroscopic quantum objects. (author) [de
The Star-grazing Bodies in the HD 172555 System
Grady, C. A.; Brown, Alexander; Welsh, Barry; Roberge, Aki; Kamp, Inga; Rivière Marichalar, P.
2018-06-01
Kiefer et al. reported the detection of infalling Ca II absorption in HD 172555, a member of the β Pictoris Moving Group (βPMG). We obtained HST Space Telescope Imaging Spectrograph and Cosmic Origins Spectrograph spectroscopy of this star at 2 epochs separated by a week, and we report the discovery of infalling gas in resonant transitions of Si III and IV, C II and IV, and neutral atomic oxygen. Variable absorption is seen in the C II transitions and is optically thick, with covering factors which range between 58% and 68%, similar to features seen in β Pictoris. The O I spectral profile resembles that of C II, showing a strong low-velocity absorption to +50 km s‑1 in the single spectral segment obtained during orbital night, as well as what may be higher-velocity absorption. Studies of the mid-IR spectrum of this system have suggested the presence of silica. The O I absorption differs from that seen in Si III, suggesting that the neutral atomic oxygen does not originate in SiO dissociation products but in a more volatile parent molecule such as CO.
A rigidity transition and glassy dynamics in a model for confluent 3D tissues
Merkel, Matthias; Manning, M. Lisa
The origin of rigidity in disordered materials is an outstanding open problem in statistical physics. Recently, a new type of rigidity transition was discovered in a family of models for 2D biological tissues, but the mechanisms responsible for rigidity remain unclear. This is not just a statistical physics problem, but also relevant for embryonic development, cancer growth, and wound healing. To gain insight into this rigidity transition and make new predictions about biological bulk tissues, we have developed a fully 3D self-propelled Voronoi (SPV) model. The model takes into account shape, elasticity, and self-propelled motion of the individual cells. We find that in the absence of self-propulsion, this model exhibits a rigidity transition that is controlled by a dimensionless model parameter describing the preferred cell shape, with an accompanying structural order parameter. In the presence of self-propulsion, the rigidity transition appears as a glass-like transition featuring caging and aging effects. Given the similarities between this transition and jamming in particulate solids, it is natural to ask if the two transitions are related. By comparing statistics of Voronoi geometries, we show the transitions are surprisingly close but demonstrably distinct. Furthermore, an index theorem used to identify topologically protected mechanical modes in jammed systems can be extended to these vertex-type models. In our model, residual stresses govern the transition and enter the index theorem in a different way compared to jammed particles, suggesting the origin of rigidity may be different between the two.
Exploring the human body space: A geographical information system based anatomical atlas
Directory of Open Access Journals (Sweden)
Antonio Barbeito
2016-06-01
Full Text Available Anatomical atlases allow mapping the anatomical structures of the human body. Early versions of these systems consisted of analogical representations with informative text and labeled images of the human body. With computer systems, digital versions emerged and the third and fourth dimensions were introduced. Consequently, these systems increased their efficiency, allowing more realistic visualizations with improved interactivity and functionality. The 4D atlases allow modeling changes over time on the structures represented. The anatomical atlases based on geographic information system (GIS environments allow the creation of platforms with a high degree of interactivity and new tools to explore and analyze the human body. In this study we expand the functions of a human body representation system by creating new vector data, topology, functions, and an improved user interface. The new prototype emulates a 3D GIS with a topological model of the human body, replicates the information provided by anatomical atlases, and provides a higher level of functionality and interactivity. At this stage, the developed system is intended to be used as an educational tool and integrates into the same interface the typical representations of surface and sectional atlases.
Combinatorial and Algorithmic Rigidity: Beyond Two Dimensions
2012-12-01
44]. Theorems of Maxwell- Laman type were ob- tained in [9, 15, 43]. 2 3. Counting and Enumeration. As anticipated in the project, we relied on methods...decompositions. Graphs and Combinatorics, 25:219–238, 2009. [43] I. Streinu and L. Theran. Slider-pinning rigidity: a Maxwell- Laman -type theorem. Discrete and
Birationally rigid varieties. I. Fano varieties
International Nuclear Information System (INIS)
Pukhlikov, A V
2007-01-01
The theory of birational rigidity of rationally connected varieties generalises the classical rationality problem. This paper gives a survey of the current state of this theory and traces its history from Noether's theorem and the Lueroth problem to the latest results on the birational superrigidity of higher-dimensional Fano varieties. The main components of the method of maximal singularities are considered.
Rigid polyurethane and kenaf core composite foams
Rigid polyurethane foams are valuable in many construction applications. Kenaf is a bast fiber plant where the surface stem skin provides bast fibers whose strength-to-weight ratio competes with glass fiber. The higher volume product of the kenaf core is an under-investigated area in composite appli...
Rigidity Sensing Explained by Active Matter Theory
Marcq, Philippe; Yoshinaga, Natsuhiko; Prost, Jacques
2011-01-01
The magnitude of traction forces exerted by living animal cells on their environment is a monotonically increasing and approximately sigmoidal function of the stiffness of the external medium. We rationalize this observation using active matter theory, and propose that adaptation to substrate rigidity results from an interplay between passive elasticity and active contractility.
About deformation and rigidity in relativity
International Nuclear Information System (INIS)
Coll, Bartolome
2007-01-01
The notion of deformation involves that of rigidity. In relativity, starting from Born's early definition of rigidity, some other ones have been proposed, offering more or less interesting aspects but also accompanied of undesired or even pathological properties. In order to clarify the origin of these difficulties presented by the notion of rigidity in relativity, we analyze with some detail significant aspects of the unambiguous classical, Newtonian, notion. In particular, the relative character of its kinetic definition is pointed out, allowing to predict and to understand the limitations imposed by Herglotz-Noether theorem. Also, its equivalent dynamic definition is obtained and, in contrast, its absolute character is shown. But in spite of this absolute character, the dynamic definition is shown to be not extensible to relativity. The metric deformation of Minkowski space by the presence of a gravitational field is interpreted as a universal deformation, and it is shown that, under natural conditions, only a simple deformation law is possible, relating locally, but in an one-to-one way, gravitational fields and gauge classes of two-forms. We argue that fields of unit vectors associated to the internal gauge class of two-forms of every space-time (and, in particular, of Minkowski space-time) are the relativistic analogues of the classical accelerated observers, i.e. of the classical rigid motions. Some other consequences of the universal law of gravitational deformation are commented
Rigid pricing and rationally inattentive consumer
Czech Academy of Sciences Publication Activity Database
Matějka, Filip
2010-01-01
Roč. 20, č. 2 (2010), s. 1-40 ISSN 1211-3298 R&D Projects: GA MŠk LC542 Institutional research plan: CEZ:AV0Z70850503 Keywords : rational inattention * nominal rigidity Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp409.pdf
Mind-Body Medicine and Immune System Outcomes: A Systematic Review.
Wahbeh, Helané; Haywood, Ashley; Kaufman, Karen; Zwickey, Heather
2009-01-01
This study is a systematic review of mind-body interventions that used immune outcomes in order to: 1) characterize mind-body medicine studies that assessed immune outcomes, 2) evaluate the quality of mind-body medicine studies measuring immune system effects, and 3) systematically evaluate the evidence for mind-body interventions effect on immune system outcomes using existing formal tools. 111 studies with 4,777 subjects were reviewed. The three largest intervention type categories were Relaxation Training (n=25), Cognitive Based Stress Management (n=22), and Hypnosis (n=21). Half the studies were conducted with healthy subjects (n=51). HIV (n=18), cancer (n=13) and allergies (n=7) were the most prominent conditions examined in the studies comprising of non-healthy subjects. Natural killer cell and CD4 T lymphocyte measures were the most commonly studied outcomes. Most outcome and modality categories had limited or inconclusive evidence. Relaxation training had the strongest scientific evidence of a mind-body medicine affecting immune outcomes. Immunoglobulin A had the strongest scientific evidence for positive effects from mind-body medicine. Issues for mind-body medicine studies with immune outcomes are discussed and recommendations are made to help improve future clinical trials.
Studies of the nuclear three-body system with three dimensional Faddeev calculations
Liu, Hang
A three-body system consists of either a bound state of three particles with definite binding energy or a beam of single particles scattered from a target, where two of the particles are bound. Of the particles are nucleons, the interactions between them are strong and short ranged. A theoretical framework for studying the dynamics of a nuclear three-body system is the Faddeev scheme. In this work the equation for three-body scattering and the bound state are formulated in momentum space, and directly solved in terms of vector variables. For three identical bosons the Faddeev equation for scattering is a three- dimensional inhomogeneous integral equation in five variables, and is solved by Padé summation. The equation for the bound state is a homogeneous one in three variables, and is solved by a Lanczos' type method. The corresponding algorithms are presented, and their numerical feasibility is demonstrated. Elastic as well as inelastic scattering processes in the intermediate energy regime up to 1 GeV incident energy are studied for the first within a Faddeev scheme. The two-body force employed is of Malfliet-Tjon type. Specific emphasis is placed on studying the convergence of the multiple scattering series given by the Faddeev equations. For the bound state, a three-body force of Fujita- Miyazawa type is incorporated in addition to the two-body force. The effects of this three-body force on the bound state properties are investigated.
A gamma-ray therapeutic system applied to treatment of body
International Nuclear Information System (INIS)
Huang Yu; Duan Zhengcheng; Zhu Guoli; Gong Shihua; Li Xiaoping
2004-01-01
In order to treat malignant tumors in human body, a stereotactic gamma-ray whole-body therapeutic system has been developed. This system is a typical large mechatronics treatment machine. In this paper, its main working principles and characteristics are introduced. This system comprises a special gallows frame with an open vertical structure, a changeable collimator device by which the size of convergence center can be chosen, and a 3D treatment couch. A computer brings the couch to target position automatically. Therefore precise and dynamic rotary converging therapy for tumors located anywhere in the body has been realized. The system's performance has been proved in practice, which includes good curative effect, reliable automation, and safe and secure operation. (authors)
Stability of the three-body Coulomb systems with J=1 in the oscillator representation
International Nuclear Information System (INIS)
Dinejkhan, M.D.; Efimov, G.V.
1995-01-01
The oscillator representation is applied to calculate the energy spectrum of three-body Coulomb systems with J total angular momentum. For the three-body Coulomb systems with J=1 and arbitrary masses the region of stability is determined. For the systems (A + A - e - ), (pe - C + ), (pB - e - ) and (D + e - e + ), the values for the critical masses of A-, B-, C- and D-particles are obtained: m A =2.22m e , m B =1.49m e , m C =2.11m e and m D =4.15m e . 18 refs., 1 fig., 3 tabs
Quantum Many-Body System in Presence of Time-Dependent Potential and Electric Field
Energy Technology Data Exchange (ETDEWEB)
Sobhani, Hadi; Hassanabadi, Hassan [Shahrood University of Technology, Shahrood (Iran, Islamic Republic of)
2017-07-15
In this article, a quantum many-body system is considered. Then two time-dependent interactions have been added to the system. Changing of them is assumed in general form. After that, by using algebraic method, time evolution of this many-body system has been investigated. In order to study the time evolution, Lewis-Riesenfeld dynamical invariant and time evolution operator method have been used. Appropriate dynamical invariants are constructed and their Eigenvalues are derived as well as appropriate time evolution operators are constructed. These calculations have been done in general form so there are no limiting assumptions on changing of time-dependent functions.
Rigid Spine Syndrome among Children in Oman
Directory of Open Access Journals (Sweden)
Roshan Koul
2015-08-01
Full Text Available Objectives: Rigidity of the spine is common in adults but is rarely observed in children. The aim of this study was to report on rigid spine syndrome (RSS among children in Oman. Methods: Data on children diagnosed with RSS were collected consecutively at presentation between 1996 and 2014 at the Sultan Qaboos University Hospital (SQUH in Muscat, Oman. A diagnosis of RSS was based on the patient’s history, clinical examination, biochemical investigations, electrophysiological findings, neuro-imaging and muscle biopsy. Atrophy of the paraspinal muscles, particularly the erector spinae, was the diagnostic feature; this was noted using magnetic resonance imaging of the spine. Children with disease onset in the paraspinal muscles were labelled as having primary RSS or rigid spinal muscular dystrophy. Secondary RSS was classified as RSS due to the late involvement of other muscle diseases. Results: Over the 18-year period, 12 children were included in the study, with a maleto- female ratio of 9:3. A total of 10 children were found to have primary RSS or rigid spinal muscular dystrophy syndrome while two had secondary RSS. Onset of the disease ranged from birth to 18 months of age. A family history was noted, with two siblings from one family and three siblings from another (n = 5. On examination, children with primary RSS had typical features of severe spine rigidity at onset, with the rest of the neurological examination being normal. Conclusion: RSS is a rare disease with only 12 reported cases found at SQUH during the study period. Cases of primary RSS should be differentiated from the secondary type.
Comments upon a bound state model for a two body system
International Nuclear Information System (INIS)
Micu, L.
2005-01-01
We show that in classical mechanics, classical and relativistic quantum mechanics it is possible to replace the equation of the relative motion for a two-body bound system at rest by individual dynamical equations with correlated solutions. We compare the representations of a bound system in terms of the relative and individual coordinates and mention some of the observable differences. (author)
Moayyeri, Alireza; Hart, Deborah J.; Snieder, Harold; Hammond, Christopher J.; Spector, Timothy D.; Steves, Claire J.
Little is known about the extent to which aging trajectories of different body systems share common sources of variance. We here present a large twin study investigating the trajectories of change in five systems: cardiovascular, respiratory, skeletal, morphometric, and metabolic. Longitudinal
A wireless body measurement system to study fatigue in multiple sclerosis
Yu, F.; Bilberg, A.; Stenager, E.; Rabotti, C.; Zhang, B.; Mischi, M.
2012-01-01
Fatigue is reported as the most common symptom by patients with multiple sclerosis (MS). The physiological and functional parameters related to fatigue in MS patients are currently not well established. A new wearable wireless body measurement system, named Fatigue Monitoring System (FAMOS), was
How do precision medicine and system biology response to human body's complex adaptability?
Yuan, Bing
2016-12-01
In the field of life sciences, although system biology and "precision medicine" introduce some complex scientifific methods and techniques, it is still based on the "analysis-reconstruction" of reductionist theory as a whole. Adaptability of complex system increase system behaviour uncertainty as well as the difficulties of precise identifification and control. It also put systems biology research into trouble. To grasp the behaviour and characteristics of organism fundamentally, systems biology has to abandon the "analysis-reconstruction" concept. In accordance with the guidelines of complexity science, systems biology should build organism model from holistic level, just like the Chinese medicine did in dealing with human body and disease. When we study the living body from the holistic level, we will fifind the adaptability of complex system is not the obstacle that increases the diffificulty of problem solving. It is the "exceptional", "right-hand man" that helping us to deal with the complexity of life more effectively.
Constraint elimination in dynamical systems
Singh, R. P.; Likins, P. W.
1989-01-01
Large space structures (LSSs) and other dynamical systems of current interest are often extremely complex assemblies of rigid and flexible bodies subjected to kinematical constraints. A formulation is presented for the governing equations of constrained multibody systems via the application of singular value decomposition (SVD). The resulting equations of motion are shown to be of minimum dimension.
Marco Guerrazzi; Nicola Meccheri
2009-01-01
This paper offers a critical discussion of the concept of labour market rigidity relevant to explaining unemployment. Starting from Keynes’s own view, we discuss how the concept of labour market flexibility has changed over time, involving nominal or real wage flexibility, contract flexibility or labour market institution flexibility. We also provide a critical assessment of the factors that lead the search framework highlighting labour market rigidities (frictions) to challenge the more wide...
Whole-body imaging of the musculoskeletal system: the value of MR imaging
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Gerwin P.; Reiser, Maximilian F.; Baur-Melnyk, Andrea [University Hospitals Munich/Grosshadern, LMU, Institute of Clinical Radiology, Munich (Germany)
2007-12-15
In clinical practice various modalities are used for whole-body imaging of the musculoskeletal system, including radiography, bone scintigraphy, computed tomography, magnetic resonance imaging (MRI), and positron emission tomography-computed tomography (PET-CT). Multislice CT is far more sensitive than radiographs in the assessment of trabecular and cortical bone destruction and allows for evaluation of fracture risk. The introduction of combined PET-CT scanners has markedly increased diagnostic accuracy for the detection of skeletal metastases compared with PET alone. The unique soft-tissue contrast of MRI enables for precise assessment of bone marrow infiltration and adjacent soft tissue structures so that alterations within the bone marrow may be detected before osseous destruction becomes apparent in CT or metabolic changes occur on bone scintigraphy or PET scan. Improvements in hard- and software, including parallel image acquisition acceleration, have made high resolution whole-body MRI clinically feasible. Whole-body MRI has successfully been applied for bone marrow screening of metastasis and systemic primary bone malignancies, like multiple myeloma. Furthermore, it has recently been proposed for the assessment of systemic bone diseases predisposing for malignancy (e.g., multiple cartilaginous exostoses) and muscle disease (e.g., muscle dystrophy). The following article gives an overview on state-of-the-art whole-body imaging of the musculoskeletal system and highlights present and potential future applications, especially in the field of whole-body MRI. (orig.)
Directory of Open Access Journals (Sweden)
Abour H. Cherif
2012-01-01
Full Text Available The human body is a remarkable biological machine maintained by interdependent body systems and organized biochemical reactions. Evolution has worked on humans for hundreds of thousands of years, yet the current pace of technological and social change have radically affected our life style and have exposed possible human frailties. This raises the question of whether or not nature’s work could be improved upon. We provide two-sided perspectives as a rationale for the need for the redesign of the human body. Then, we describe pedagogical strategy through which students study morphological and anatomical structures and the physiological functions of the human body systems and their respective organs and parts. The students select their own favorite system or organ to redesign in order to optimize the efficiency of the anatomical structural, physiological function, and/or the aesthetic and functional morphology; a redesign that might lead to, for example, lowering risk of diabetes, heart attack, and/or stroke. Through group work and interaction (student groups compete for a prestigious “in-house” patent award, students actively engage in the learning process in order to understand the role of design in the efficiency and functionality and vulnerability to disease of the human body system.
Probing quantum and thermal noise in an interacting many-body system
DEFF Research Database (Denmark)
Hofferberth, S.; Lesanovsky, Igor; Schumm, Thorsten
2008-01-01
of the shot-to-shot variations of interference-fringe contrast for pairs of independently created one-dimensional Bose condensates. Analysing different system sizes, we observe the crossover from thermal to quantum noise, reflected in a characteristic change in the distribution functions from poissonian......The probabilistic character of the measurement process is one of the most puzzling and fascinating aspects of quantum mechanics. In many-body systems quantum-mechanical noise reveals non-local correlations of the underlying many-body states. Here, we provide a complete experimental analysis....... Furthermore, our experiments constitute the first analysis of the full distribution of quantum noise in an interacting many-body system....
Non-rigid registration of tomographic images with Fourier transforms
International Nuclear Information System (INIS)
Osorio, Ar; Isoardi, Ra; Mato, G
2007-01-01
Spatial image registration of deformable body parts such as thorax and abdomen has important medical applications, but at the same time, it represents an important computational challenge. In this work we propose an automatic algorithm to perform non-rigid registration of tomographic images using a non-rigid model based on Fourier transforms. As a measure of similarity, we use the correlation coefficient, finding that the optimal order of the transformation is n = 3 (36 parameters). We apply this method to a digital phantom and to 7 pairs of patient images corresponding to clinical CT scans. The preliminary results indicate a fairly good agreement according to medical experts, with an average registration error of 2 mm for the case of clinical images. For 2D images (dimensions 512x512), the average running time for the algorithm is 15 seconds using a standard personal computer. Summarizing, we find that intra-modality registration of the abdomen can be achieved with acceptable accuracy for slight deformations and can be extended to 3D with a reasonable execution time
Finite-difference analysis of shells impacting rigid barriers
International Nuclear Information System (INIS)
Pirotin, S.D.; Witmer, E.A.
1977-01-01
Nuclear power plants must be protected from the adverse effects of missile impacts. A significant category of missile impact involves deformable structures (pressure vessel components, whipping pipes) striking relatively rigid targets (concrete walls, bumpers) which act as protective devices. The response and interaction of these structures is needed to assess the adequacy of these barriers for protecting vital safety related equipment. The present investigation represents an initial attempt to develop an efficient numerical procedure for predicting the deformations and impact force time-histories of shells which impact upon a rigid target. The general large-deflection equations of motion of the shell are expressed in finite-difference form in space and integrated in time through application of the central-difference temporal operator. The effect of material nonlinearities is treated by a mechanical sublayer material model which handles the strain-hardening, Bauschinger, and strain-rate effects. The general adequacy of this shell treatment has been validated by comparing predictions with the results of various experiments in which structures have been subjected to well-defined transient forcing functions (typically high-explosive impulse loading). The 'new' ingredient addressed in the present study involves an accounting for impact interaction and response of both the target structure and the attacking body. (Auth.)
Photogrammetry System and Method for Determining Relative Motion Between Two Bodies
Miller, Samuel A. (Inventor); Severance, Kurt (Inventor)
2014-01-01
A photogrammetry system and method provide for determining the relative position between two objects. The system utilizes one or more imaging devices, such as high speed cameras, that are mounted on a first body, and three or more photogrammetry targets of a known location on a second body. The system and method can be utilized with cameras having fish-eye, hyperbolic, omnidirectional, or other lenses. The system and method do not require overlapping fields-of-view if two or more cameras are utilized. The system and method derive relative orientation by equally weighting information from an arbitrary number of heterogeneous cameras, all with non-overlapping fields-of-view. Furthermore, the system can make the measurements with arbitrary wide-angle lenses on the cameras.
Flexible endoscopic procedure in children with foreign bodies in their upper gastrointestinal system
Directory of Open Access Journals (Sweden)
Kaan Demirören
2014-03-01
Full Text Available Objective: Foreign body ingestion is an important public health problem. We pointed to this subject and aimed to determine the effectiveness of flexible endoscopic procedure in this study. Methods: We evaluated retrospectively fifty children having foreign body in their upper gastrointestinal system, who underwent flexible endoscopic procedure. Results: Of the patients, mean age was 5.5 ± 4 years old (range: 0.5-16 years, 64% was female. Ingested foreign bodies were coin (58%, pin (10%, battery (6%, nail (6%, necklace (6%, safety pin (4% and sewing pin, wire hairclip, ring, button and chicken skin. In endoscopic procedure, foreign bodies were seen in upper esophagus (32%, middle esophagus (26%, lower esophagus (8%, stomach (18%, bulbus (4% and second part of duodenum (8%, but were not seen in 4% of the cases. While 94% of foreign bodies were endoscopically removed, 6% of them were pushed to stomach with gastroscope from esophagus and left for spontaneous passage. Any important complication was developed. Conclusion: Flexible endoscopic procedure is an effective and safe method for removal of gastrointestinal system foreign bodies in children.
Improved Reception of In-Body Signals by Means of a Wearable Multi-Antenna System
Directory of Open Access Journals (Sweden)
Thijs Castel
2013-01-01
Full Text Available High data-rate wireless communication for in-body human implants is mainly performed in the 402–405 MHz Medical Implant Communication System band and the 2.45 GHz Industrial, Scientific and Medical band. The latter band offers larger bandwidth, enabling high-resolution live video transmission. Although in-body signal attenuation is larger, at least 29 dB more power may be transmitted in this band and the antenna efficiency for compact antennas at 2.45 GHz is also up to 10 times higher. Moreover, at the receive side, one can exploit the large surface provided by a garment by deploying multiple compact highly efficient wearable antennas, capturing the signals transmitted by the implant directly at the body surface, yielding stronger signals and reducing interference. In this paper, we implement a reliable 3.5 Mbps wearable textile multi-antenna system suitable for integration into a jacket worn by a patient, and evaluate its potential to improve the In-to-Out Body wireless link reliability by means of spatial receive diversity in a standardized measurement setup. We derive the optimal distribution and the minimum number of on-body antennas required to ensure signal levels that are large enough for real-time wireless endoscopy-capsule applications, at varying positions and orientations of the implant in the human body.
MIT-Skywalker: considerations on the Design of a Body Weight Support System.
Gonçalves, Rogério Sales; Krebs, Hermano Igo
2017-09-06
To provide body weight support during walking and balance training, one can employ two distinct embodiments: support through a harness hanging from an overhead system or support through a saddle/seat type. This paper presents a comparison of these two approaches. Ultimately, this comparison determined our selection of the body weight support system employed in the MIT-Skywalker, a robotic device developed for the rehabilitation/habilitation of gait and balance after a neurological injury. Here we will summarize our results with eight healthy subjects walking on the treadmill without any support, with 30% unloading supported by a harness hanging from an overhead system, and with a saddle/seat-like support system. We compared the center of mass as well as vertical and mediolateral trunk displacements across different walking speeds and support. The bicycle/saddle system had the highest values for the mediolateral inclination, while the overhead harness body weight support showed the lowest values at all speeds. The differences were statistically significant. We selected the bicycle/saddle system for the MIT-Skywalker. It allows faster don-and-doff, better centers the patient to the split treadmill, and allows all forms of training. The overhead harness body weight support might be adequate for rhythmic walking training but limits any potential for balance training.
Multiscale multiphysics and multidomain models—Flexibility and rigidity
International Nuclear Information System (INIS)
Xia, Kelin; Opron, Kristopher; Wei, Guo-Wei
2013-01-01
The emerging complexity of large macromolecules has led to challenges in their full scale theoretical description and computer simulation. Multiscale multiphysics and multidomain models have been introduced to reduce the number of degrees of freedom while maintaining modeling accuracy and achieving computational efficiency. A total energy functional is constructed to put energies for polar and nonpolar solvation, chemical potential, fluid flow, molecular mechanics, and elastic dynamics on an equal footing. The variational principle is utilized to derive coupled governing equations for the above mentioned multiphysical descriptions. Among these governing equations is the Poisson-Boltzmann equation which describes continuum electrostatics with atomic charges. The present work introduces the theory of continuum elasticity with atomic rigidity (CEWAR). The essence of CEWAR is to formulate the shear modulus as a continuous function of atomic rigidity. As a result, the dynamics complexity of a macromolecular system is separated from its static complexity so that the more time-consuming dynamics is handled with continuum elasticity theory, while the less time-consuming static analysis is pursued with atomic approaches. We propose a simple method, flexibility-rigidity index (FRI), to analyze macromolecular flexibility and rigidity in atomic detail. The construction of FRI relies on the fundamental assumption that protein functions, such as flexibility, rigidity, and energy, are entirely determined by the structure of the protein and its environment, although the structure is in turn determined by all the interactions. As such, the FRI measures the topological connectivity of protein atoms or residues and characterizes the geometric compactness of the protein structure. As a consequence, the FRI does not resort to the interaction Hamiltonian and bypasses matrix diagonalization, which underpins most other flexibility analysis methods. FRI's computational complexity is of O
Scientific evidence-based effects of hydrotherapy on various systems of the body
A Mooventhan; L Nivethitha
2014-01-01
The use of water for various treatments (hydrotherapy) is probably as old as mankind. Hydrotherapy is one of the basic methods of treatment widely used in the system of natural medicine, which is also called as water therapy, aquatic therapy, pool therapy, and balneotherapy. Use of water in various forms and in various temperatures can produce different effects on different system of the body. Many studies/reviews reported the effects of hydrotherapy only on very few systems and there is lack...
On the inherent self-excited macroscopic randomness of chaotic three-body system
Liao, Shijun; Li, Xiaoming
2014-01-01
What is the origin of macroscopic randomness (uncertainty)? This is one of the most fundamental open questions for human being. In this paper, 10000 samples of reliable (convergent), multiple-scale (from 1.0E-60 to 100) numerical simulations of a chaotic three-body system indicate that, without any external disturbance, the microscopic inherent uncertainty (in the level of 1.0E-60) due to physical fluctuation of initial positions of the three-body system enlarges exponentially into macroscopi...
On the motion of classical three-body system with consideration of quantum fluctuations
Energy Technology Data Exchange (ETDEWEB)
Gevorkyan, A. S., E-mail: g-ashot@sci.am [NAS of RA, Institute for Informatics and Automation Problems (Armenia)
2017-03-15
We obtained the systemof stochastic differential equations which describes the classicalmotion of the three-body system under influence of quantum fluctuations. Using SDEs, for the joint probability distribution of the total momentum of bodies system were obtained the partial differential equation of the second order. It is shown, that the equation for the probability distribution is solved jointly by classical equations, which in turn are responsible for the topological peculiarities of tubes of quantum currents, transitions between asymptotic channels and, respectively for arising of quantum chaos.
Nonlinear field theories and non-Gaussian fluctuations for near-critical many-body systems
International Nuclear Information System (INIS)
Tuszynski, J.A.; Dixon, J.M.; Grundland, A.M.
1994-01-01
This review article outlines a number of efforts made over the past several decades to understand the physics of near critical many-body systems. Beginning with the phenomenological theories of Landau and Ginzburg the paper discusses the two main routes adopted in the past. The first approach is based on statistical calculations while the second investigates the underlying nonlinear field equations. In the last part of the paper we outline a generalisation of these methods which combines classical and quantum properties of the many-body systems studied. (orig.)
Financial Constraints and Nominal Price Rigidities
DEFF Research Database (Denmark)
Menno, Dominik Francesco; Balleer, Almut; Hristov, Nikolay
This paper investigates how financial market imperfections and the frequency of price adjustment interact. Based on new firm-level evidence for Germany, we document that financially constrained firms adjust prices more often than their unconstrained counterparts, both upwards and downwards. We show...... that these empirical patterns are consistent with a partial equilibrium menu-cost model with a working capital constraint. We then use the model to show how the presence of financial frictions changes profits and the price distribution of firms compared to a model without financial frictions. Our results suggest...... that tighter financial constraints are associated with higher nominal rigidities, higher prices and lower output. Moreover, in response to aggregate shocks, aggregate price rigidity moves substantially, the response of inflation is dampened, while output reacts more in the presence of financial frictions...
Rigidity of the magic pentagram game
Kalev, Amir; Miller, Carl A.
2018-01-01
A game is rigid if a near-optimal score guarantees, under the sole assumption of the validity of quantum mechanics, that the players are using an approximately unique quantum strategy. Rigidity has a vital role in quantum cryptography as it permits a strictly classical user to trust behavior in the quantum realm. This property can be traced back as far as 1998 (Mayers and Yao) and has been proved for multiple classes of games. In this paper we prove ridigity for the magic pentagram game, a simple binary constraint satisfaction game involving two players, five clauses and ten variables. We show that all near-optimal strategies for the pentagram game are approximately equivalent to a unique strategy involving real Pauli measurements on three maximally-entangled qubit pairs.
Rigidity of the magic pentagram game.
Kalev, Amir; Miller, Carl A
2018-01-01
A game is rigid if a near-optimal score guarantees, under the sole assumption of the validity of quantum mechanics, that the players are using an approximately unique quantum strategy. Rigidity has a vital role in quantum cryptography as it permits a strictly classical user to trust behavior in the quantum realm. This property can be traced back as far as 1998 (Mayers and Yao) and has been proved for multiple classes of games. In this paper we prove ridigity for the magic pentagram game, a simple binary constraint satisfaction game involving two players, five clauses and ten variables. We show that all near-optimal strategies for the pentagram game are approximately equivalent to a unique strategy involving real Pauli measurements on three maximally-entangled qubit pairs.
Rigid cohomology over Laurent series fields
Lazda, Christopher
2016-01-01
In this monograph, the authors develop a new theory of p-adic cohomology for varieties over Laurent series fields in positive characteristic, based on Berthelot's theory of rigid cohomology. Many major fundamental properties of these cohomology groups are proven, such as finite dimensionality and cohomological descent, as well as interpretations in terms of Monsky-Washnitzer cohomology and Le Stum's overconvergent site. Applications of this new theory to arithmetic questions, such as l-independence and the weight monodromy conjecture, are also discussed. The construction of these cohomology groups, analogous to the Galois representations associated to varieties over local fields in mixed characteristic, fills a major gap in the study of arithmetic cohomology theories over function fields. By extending the scope of existing methods, the results presented here also serve as a first step towards a more general theory of p-adic cohomology over non-perfect ground fields. Rigid Cohomology over Laurent Series Fields...
The role of electrostatic charging of small and intermediate sized bodies in the solar system
International Nuclear Information System (INIS)
Mendis, D.A.
1981-01-01
The role of electrostatic charging of small and intermediate sized bodies in the solar system is reviewed. These bodies include planetary, interplanetary and cometary dust as well as cometary nuclei (at large heliocentric distances), asteroids and the larger bodies in the Saturnian ring system. While this charging has both physical and dynamical consequences for the small dust grains, it has only physical consequences for the larger bodies. The main physical consequences for the small grains are electrostatic erosion (''chipping'') and disruption, whereas for the larger bodies they include electrostatic levitation and blow-off of fine loose dust from their surfaces. A large variety of solar system phenomena, recently observed by the Pioneer and Voyager deep space probes as well as the HEOS-2 earth satellite, are explained in terms of these processes. Certain peculiar features observed in the dust tails of comets as well as the spatial orientation of the zodiacal dust cloud may also be explained along these lines. The possible electrostatic erosion of the dust mantles of new comets as well as the electrostatic 'polishing' of the smaller asteroids are also discussed. (Auth.)
Full Text Available ... provides real-time imaging, making it a good tool for guiding removal procedures. In some cases, it is potentially more harmful to remove the ... provides real-time imaging, making it a good tool for guiding foreign body removal ... rare cases, the general anesthesia used during rigid esophagoscopy can ...
Relaxation in a two-body Fermi-Pasta-Ulam system in the canonical ensemble
Sen, Surajit; Barrett, Tyler
The study of the dynamics of the Fermi-Pasta-Ulam (FPU) chain remains a challenging problem. Inspired by the recent work of Onorato et al. on thermalization in the FPU system, we report a study of relaxation processes in a two-body FPU system in the canonical ensemble. The studies have been carried out using the Recurrence Relations Method introduced by Zwanzig, Mori, Lee and others. We have obtained exact analytical expressions for the first thirteen levels of the continued fraction representation of the Laplace transformed velocity autocorrelation function of the system. Using simple and reasonable extrapolation schemes and known limits we are able to estimate the relaxation behavior of the oscillators in the two-body FPU system and recover the expected behavior in the harmonic limit. Generalizations of the calculations to larger systems will be discussed.
The motion and control of a complex three-body space tethered system
Shi, Gefei; Zhu, Zhanxia; Chen, Shiyu; Yuan, Jianping; Tang, Biwei
2017-11-01
This paper is mainly devoted to investigating the dynamics and stability control of a three body-tethered satellite system which contains a main satellite and two subsatellites connected by two straight, massless and inextensible tethers. Firstly, a detailed mathematical model is established in the central gravitational field. Then, the dynamic characteristics of the established system are investigated and analyzed. Based on the dynamic analysis, a novel sliding mode prediction model (SMPM) control strategy is proposed to suppress the motion of the built tethered system. The numerical results show that the proposed underactuated control law is highly effective in suppressing the attitude/libration motion of the underactuated three-body tethered system. Furthermore, cases of different target angles are also examined and analyzed. The simulation results reveal that even if the final equilibrium states differ from different selections of the target angles, the whole system can still be maintained in acceptable areas.
Modeling the Flexural Rigidity of Rod Photoreceptors
Haeri, Mohammad; Knox, Barry E.; Ahmadi, Aphrodite
2013-01-01
In vertebrate eyes, the rod photoreceptor has a modified cilium with an extended cylindrical structure specialized for phototransduction called the outer segment (OS). The OS has numerous stacked membrane disks and can bend or break when subjected to mechanical forces. The OS exhibits axial structural variation, with extended bands composed of a few hundred membrane disks whose thickness is diurnally modulated. Using high-resolution confocal microscopy, we have observed OS flexing and disruption in live transgenic Xenopus rods. Based on the experimental observations, we introduce a coarse-grained model of OS mechanical rigidity using elasticity theory, representing the axial OS banding explicitly via a spring-bead model. We calculate a bending stiffness of ∼105 nN⋅μm2, which is seven orders-of-magnitude larger than that of typical cilia and flagella. This bending stiffness has a quadratic relation to OS radius, so that thinner OS have lower fragility. Furthermore, we find that increasing the spatial frequency of axial OS banding decreases OS rigidity, reducing its fragility. Moreover, the model predicts a tendency for OS to break in bands with higher spring number density, analogous to the experimental observation that transgenic rods tended to break preferentially in bands of high fluorescence. We discuss how pathological alterations of disk membrane properties by mutant proteins may lead to increased OS rigidity and thus increased breakage, ultimately contributing to retinal degeneration. PMID:23442852
Blast wave interaction with a rigid surface
International Nuclear Information System (INIS)
Josey, T.; Whitehouse, D.R.; Ripley, R.C.; Dionne, J.P.
2004-01-01
A simple model used to investigate blast wave interactions with a rigid surface is presented. The model uses a constant volume energy source analogue to predict pressure histories at gauges located directly above the charge. A series of two-dimensional axi-symmetric CFD calculations were performed, varying the height of the charge relative to the ground. Pressure histories, along with isopycnic plots are presented to evaluate the effects of placing a charge in close proximity to a rigid surface. When a charge is placed near a solid surface the pressure histories experienced at gauges above the charge indicate the presence of two distinct pressure peaks. The first peak is caused by the primary shock and the second peak is a result of the wave reflections from the rigid surface. As the distance from the charge to the wall is increased the magnitude of the second pressure peak is reduced, provided that the distance between the charge and the gauge is maintained constant. The simple model presented is able to capture significant, predictable flow features. (author)