Rigid body motion in stereo 3D simulation
International Nuclear Information System (INIS)
Zabunov, Svetoslav
2010-01-01
This paper addresses the difficulties experienced by first-grade students studying rigid body motion at Sofia University. Most quantities describing the rigid body are in relations that the students find hard to visualize and understand. They also lose the notion of cause-result relations between vector quantities, such as the relation between torque and angular momentum. Consequently, the understanding of physical laws and conservation principles in free rigid body motion is hampered. This paper presents the capabilities of a 3D simulation, which aims to clarify these questions to the students, who are taught mechanics in the general physics course. The rigid body motion simulations may be observed at http://ialms.net/sim/, and are intended to complement traditional learning practices, not replace them, as the author shares the opinion that no simulation may fully resemble reality.
Euler-Poincare Reduction of Externall Forced Rigid Body Motion
DEFF Research Database (Denmark)
Wisniewski, Rafal; Kulczycki, P.
2004-01-01
If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system affected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincaré reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modelling, estimation and control of mechanical systems......-known Euler-Poincaré reduction to a rigid body motion with forcing....
Euler-Poincare Reduction of a Rigid Body Motion
DEFF Research Database (Denmark)
Wisniewski, Rafal; Kulczycki, P.
2005-01-01
|If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system afected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincare reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modeling, estimation and control of mechanical systems......-known Euler-Poincare reduction to a rigid body motion with forcing....
Euler-Poincaré Reduction of a Rigid Body Motion
DEFF Research Database (Denmark)
Wisniewski, Rafal; Kulczycki, P.
2004-01-01
If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system affected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincaré reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modelling, estimation and control of mechanical systems......-known Euler-Poincaré reduction to a rigid body motion with forcing....
Knowledge-In-Action: An Example with Rigid Body Motion
Da Costa, Sayonara Salvador Cabral; Moreira, Marco Antonio
2005-01-01
This paper reports the analysis of the resolution of a paper-and-pencil problem, by eight undergraduate students majoring in engineering (six) and physics (two) at the Pontifcia Universidade Catlica do Rio Grande do Sul, in Porto Alegre, Brazil. The problem concerns kinetics of a rigid body, and the analysis was done in the light of Johnson-Lairds…
Motion control of rigid bodies in SE(3)
Roza, Ashton
This thesis investigates the control of motion for a general class of vehicles that rotate and translate in three-space, and are propelled by a thrust vector which has fixed direction in body frame. The thesis addresses the problems of path following and position control. For path following, a feedback linearization controller is presented that makes the vehicle follow an arbitrary closed curve while simultaneously allowing the designer to specify the velocity profile of the vehicle on the path and its heading. For position control, a two-stage approach is presented that decouples position control from attitude control, allowing for a modular design and yielding almost global asymptotic stability of any desired hovering equilibrium. The effectiveness of the proposed method is verified both in simulation and experimentally by means of a hardware-in-the-loop setup emulating a co-axial helicopter.
Lorentz Contraction, Bell's Spaceships and Rigid Body Motion in Special Relativity
Franklin, Jerrold
2010-01-01
The meaning of Lorentz contraction in special relativity and its connection with Bell's spaceships parable is discussed. The motion of Bell's spaceships is then compared with the accelerated motion of a rigid body. We have tried to write this in a simple form that could be used to correct students' misconceptions due to conflicting earlier…
Lorentz contraction, Bell's spaceships and rigid body motion in special relativity
International Nuclear Information System (INIS)
Franklin, Jerrold
2010-01-01
The meaning of Lorentz contraction in special relativity and its connection with Bell's spaceships parable is discussed. The motion of Bell's spaceships is then compared with the accelerated motion of a rigid body. We have tried to write this in a simple form that could be used to correct students' misconceptions due to conflicting earlier treatments.
Evolution of motions of a rigid body about its center of mass
Chernousko, Felix L; Leshchenko, Dmytro D
2017-01-01
The book presents a unified and well-developed approach to the dynamics of angular motions of rigid bodies subjected to perturbation torques of different physical nature. It contains both the basic foundations of the rigid body dynamics and of the asymptotic method of averaging. The rigorous approach based on the averaging procedure is applicable to bodies with arbitrary ellopsoids of inertia. Action of various perturbation torques, both external (gravitational, aerodynamical, solar pressure) and internal (due to viscous fluid in tanks, elastic and visco-elastic properties of a body) is considered in detail. The book can be used by researchers, engineers and students working in attitude dynamics of spacecraft.
International Nuclear Information System (INIS)
Könik, Arda; Johnson, Karen L; Dasari, Paul; Pretorius, P H; Dey, Joyoni; King, Michael A; Connolly, Caitlin M; Segars, Paul W; Lindsay, Clifford
2014-01-01
The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory
Könik, Arda; Connolly, Caitlin M.; Johnson, Karen L.; Dasari, Paul; Segars, Paul W.; Pretorius, P. H.; Lindsay, Clifford; Dey, Joyoni; King, Michael A.
2014-07-01
The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory
Reconstructing rotations and rigid body motions from exact point correspondences through reflections
Fontijne, D.; Dorst, L.; Dorst, L.; Lasenby, J.
2011-01-01
We describe a new algorithm to reconstruct a rigid body motion from point correspondences. The algorithm works by constructing a series of reflections which align the points with their correspondences one by one. This is naturally and efficiently implemented in the conformal model of geometric
Rigid Body Motion Calculated From Spatial Co-ordinates of Markers ...
African Journals Online (AJOL)
In this paper, we present a unified method for calculating spatial coordinates of markers for a rigid body motion such as in bones. Kinematical analysis of bone movement in cadaveric specimens or living objects had been developed. Here, we show how spatial co-ordinates of markers in or on bone can be calculated from ...
High-order conservative discretizations for some cases of the rigid body motion
International Nuclear Information System (INIS)
Kozlov, Roman
2008-01-01
Modified vector fields can be used to construct high-order structure-preserving numerical integrators for ordinary differential equations. In the present Letter we consider high-order integrators based on the implicit midpoint rule, which conserve quadratic first integrals. It is shown that these integrators are particularly suitable for the rigid body motion with an additional quadratic first integral. In this case high-order integrators preserve all four first integrals of motion. The approach is illustrated on the Lagrange top (a rotationally symmetric rigid body with a fixed point on the symmetry axis). The equations of motion are considered in the space fixed frame because in this frame Lagrange top admits a neat description. The Lagrange top motion includes the spherical pendulum and the planar pendulum, which swings in a vertical plane, as particular cases
Motion of a Rigid Body Supported at One Point by a Rotating Arm
Directory of Open Access Journals (Sweden)
Jeffrey D. Stoen
1993-01-01
Full Text Available This article details a scheme for evaluating the stability of motions of a system consisting of a rigid body connected at one point to a rotating arm. The nonlinear equations of motion for the system are formulated, and a method for finding exact solutions representing motions that resemble a state of rest is presented. The equations are then linearized and roots of the eigensystem are classified and used to construct stability diagrams that facilitate the assessment of effects of varying the body's mass properties and system geometry, changing the position of the attachment joint, and adding energy dissipation in the joint.
International Nuclear Information System (INIS)
Zhang Xuping; Mills, James K.; Cleghorn, William L.
2009-01-01
Modeling of multibody dynamics with flexible links is a challenging task, which not only involves the effect of rigid body motion on elastic deformations, but also includes the influence of elastic deformations on rigid body motion. This paper presents coupling characteristics of rigid body motions and elastic motions of a 3-PRR parallel manipulator with three flexible intermediate links. The intermediate links are modeled as Euler-Bernoulli beams with pinned-pinned boundary conditions based on the assumed mode method (AMM). Using Lagrange multipliers, the fully coupled equations of motions of the flexible parallel manipulator are developed by incorporating the rigid body motions with elastic motions. The mutual dependence of elastic deformations and rigid body motions are investigated from the analysis of the derived equations of motion. Open-loop simulation without joint motion controls and closed-loop simulation with joint motion controls are performed to illustrate the effect of elastic motion on rigid body motions and the coupling effect amongst flexible links. These analyses and results provide valuable insight to the design and control of the parallel manipulator with flexible intermediate links
Euler-Poincaré Reduction of Externally Forced Rigid Body Motion
DEFF Research Database (Denmark)
Wisniewski, Rafal; Kulczycki, P.
2004-01-01
If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system affected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincaré reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modelling, estimation and control of mechanical systems......-known Euler-Poincaré reduction to a rigid body motion with forcing....
Overveld, van C.W.A.M.
1991-01-01
A method is presented for approximating the motions of linked 3-dimensional rigid body systems that may be applied in the context of interactive motion specification for computer animation. The method is based on decoupling the ballistic (free) component of the motion of the points that constitute
The general problem of the motion of coupled rigid bodies about a fixed point
Leimanis, Eugene
1965-01-01
In the theory of motion of several coupled rigid bodies about a fixed point one can distinguish three basic ramifications. 1. The first, the so-called classical direction of investigations, is concerned with particular cases of integrability ot the equations of motion of a single rigid body about a fixed point,1 and with their geo metrical interpretation. This path of thought was predominant until the beginning of the 20th century and its most illustrious represen tatives are L. EULER (1707-1783), J L. LAGRANGE (1736-1813), L. POINSOT (1777-1859), S. V. KOVALEVSKAYA (1850-1891), and others. Chapter I of the present monograph intends to reflect this branch of investigations. For collateral reading on the general questions dealt with in this chapter the reader is referred to the following textbooks and reports: A. DOMOGAROV [1J, F. KLEIN and A. SOMMERFELD [11, 1 , 1 J, A. G. 2 3 GREENHILL [10J, A. GRAY [1J, R. GRAMMEL [4 J, E. J. ROUTH [21' 2 , 1 2 31' 32J, J. B. SCARBOROUGH [1J, and V. V. GOLUBEV [1, 2J.
Higher order coupling between rigid-body and elastic motion in flexible mechanisms
International Nuclear Information System (INIS)
Esat, I.I.; Ianakiev, A.
1995-01-01
The paper presents an investigation of the influence of the higher order coupling terms between the rigid-body and elastic motion into flexible mechanism dynamics. The configuration of the mechanical system is obtained by using the so called hybrid coordinates. The kinematic description of the mechanism was obtained using the D-H 4 x 4 transformation matrices. The elastic deformation of each point of the mechanism is described by the finite element modeling (FEM) type interpolation scheme. The dynamic model of the flexible mechanism consists due to the hybrid coordinates of two groups of differential equations. The first group describes the manipulator transport motion and the second group describes the vibration. In this paper the authors evaluated the contribution of the coupling terms between the two groups of differential equations and selected only those with high contribution
Dynamics on strata of trigonal Jacobians and some integrable problems of rigid body motion
International Nuclear Information System (INIS)
Braden, H W; Enolski, V Z; Fedorov, Yu N
2013-01-01
We present an algebraic geometrical and analytical description of the Goryachev case of rigid body motion. It belongs to a family of systems sharing the same properties: although completely integrable, they are not algebraically integrable, their solution is not meromorphic in the complex time and involves dynamics on the strata of the Jacobian varieties of trigonal curves. Although the strata of hyperelliptic Jacobians have already appeared in the literature in the context of some dynamical systems, the Goryachev case is the first example of an integrable system whose solution involves a more general curve. Several new features (and formulae) are encountered in the solution given in terms of sigma-functions of such a curve. (paper)
Czech Academy of Sciences Publication Activity Database
Ducomet, B.; Nečasová, Šárka
2013-01-01
Roč. 6, č. 5 (2013), s. 1193-1213 ISSN 1937-1632 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : motion of rigid bodies * incompressible fluid * compressible fluid Subject RIV: BA - General Mathematics https://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=8331
A navigator-based rigid body motion correction for magnetic resonance imaging
International Nuclear Information System (INIS)
Ullisch, Marcus Goerge
2012-01-01
A novel three-dimensional navigator k-space trajectory for rigid body motion detection for Magnetic Resonance Imaging (MRI) - the Lissajous navigator - was developed and quantitatively compared to the existing spherical navigator trajectory [1]. The spherical navigator cannot sample the complete spherical surface due to slew rate limitations of the scanner hardware. By utilizing a two dimensional Lissajous figure which is projected onto the spherical surface, the Lissajous navigator overcomes this limitation. The complete sampling of the sphere consequently leads to rotation estimates with higher and more isotropic accuracy. Simulations and phantom measurements were performed for both navigators. Both simulations and measurements show a significantly higher overall accuracy of the Lissajous navigator and a higher isotropy of the rotation estimates. Measured under identical conditions with identical postprocessing, the measured mean absolute error of the rotation estimates for the Lissajous navigator was 38% lower (0.3 ) than for the spherical navigator (0.5 ). The maximum error of the Lissajous navigator was reduced by 48% relative to the spherical navigator. The Lissajous navigator delivers higher accuracy of rotation estimation and a higher degree of isotropy than the spherical navigator with no evident drawbacks; these are two decisive advantages, especially for high-resolution anatomical imaging.
A navigator-based rigid body motion correction for magnetic resonance imaging
Energy Technology Data Exchange (ETDEWEB)
Ullisch, Marcus Goerge
2012-01-24
A novel three-dimensional navigator k-space trajectory for rigid body motion detection for Magnetic Resonance Imaging (MRI) - the Lissajous navigator - was developed and quantitatively compared to the existing spherical navigator trajectory [1]. The spherical navigator cannot sample the complete spherical surface due to slew rate limitations of the scanner hardware. By utilizing a two dimensional Lissajous figure which is projected onto the spherical surface, the Lissajous navigator overcomes this limitation. The complete sampling of the sphere consequently leads to rotation estimates with higher and more isotropic accuracy. Simulations and phantom measurements were performed for both navigators. Both simulations and measurements show a significantly higher overall accuracy of the Lissajous navigator and a higher isotropy of the rotation estimates. Measured under identical conditions with identical postprocessing, the measured mean absolute error of the rotation estimates for the Lissajous navigator was 38% lower (0.3 ) than for the spherical navigator (0.5 ). The maximum error of the Lissajous navigator was reduced by 48% relative to the spherical navigator. The Lissajous navigator delivers higher accuracy of rotation estimation and a higher degree of isotropy than the spherical navigator with no evident drawbacks; these are two decisive advantages, especially for high-resolution anatomical imaging.
Modeling meniscus rise in capillary tubes using fluid in rigid-body motion approach
Hamdan, Mohammad O.; Abu-Nabah, Bassam A.
2018-04-01
In this study, a new term representing net flux rate of linear momentum is introduced to Lucas-Washburn equation. Following a fluid in rigid-body motion in modeling the meniscus rise in vertical capillary tubes transforms the nonlinear Lucas-Washburn equation to a linear mass-spring-damper system. The linear nature of mass-spring-damper system with constant coefficients offers a nondimensional analytical solution where meniscus dynamics are dictated by two parameters, namely the system damping ratio and its natural frequency. This connects the numerous fluid-surface interaction physical and geometrical properties to rather two nondimensional parameters, which capture the underlying physics of meniscus dynamics in three distinct cases, namely overdamped, critically damped, and underdamped systems. Based on experimental data available in the literature and the understanding meniscus dynamics, the proposed model brings a new approach of understanding the system initial conditions. Accordingly, a closed form relation is produced for the imbibition velocity, which equals half of the Bosanquet velocity divided by the damping ratio. The proposed general analytical model is ideal for overdamped and critically damped systems. While for underdamped systems, the solution shows fair agreement with experimental measurements once the effective viscosity is determined. Moreover, the presented model shows meniscus oscillations around equilibrium height occur if the damping ratio is less than one.
Directory of Open Access Journals (Sweden)
Jeng Hei Chow
2016-07-01
Full Text Available An implicit method of solving the six degree-of-freedom rigid body motion equations based on the second order Adams-Bashforth-Moulten method was utilised as an improvement over the leapfrog scheme by making modifications to the rigid body motion solver libraries directly. The implementation will depend on predictor-corrector steps still residing within the hybrid Pressure Implicit with Splitting of Operators - Semi-Implicit Method for Pressure Linked Equations (PIMPLE outer corrector loops to ensure strong coupling between fluid and motion. Aitken's under-relaxation is also introduced in this study to optimise the convergence rate and stability of the coupled solver. The resulting coupled solver ran on a free floating object tutorial test case when converged matches the original solver. It further allows a varying 70%–80% reduction in simulation times compared using a fixed under-relaxation to achieve the required stability.
On the linear problem arising from motion of a fluid around a moving rigid body
Czech Academy of Sciences Publication Activity Database
Nečasová, Šárka; Wolf, J.
2015-01-01
Roč. 140, č. 2 (2015), s. 241-259 ISSN 0862-7959 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : incompressible fluid * rotating rigid body * strong solution Subject RIV: BA - General Mathematics http://hdl.handle.net/10338.dmlcz/144329
Research on Rigid Body Motion Tracing in Space based on NX MCD
Wang, Junjie; Dai, Chunxiang; Shi, Karen; Qin, Rongkang
2018-03-01
In the use of MCD (Mechatronics Concept Designer) which is a module belong to SIEMENS Ltd industrial design software UG (Unigraphics NX), user can define rigid body and kinematic joint to make objects move according to the existing plan in simulation. At this stage, user may have the desire to see the path of some points in the moving object intuitively. In response to this requirement, this paper will compute the pose through the transformation matrix which can be available from the solver engine, and then fit these sampling points through B-spline curve. Meanwhile, combined with the actual constraints of rigid bodies, the traditional equal interval sampling strategy was optimized. The result shown that this method could satisfy the demand and make up for the deficiency in traditional sampling method. User can still edit and model on this 3D curve. Expected result has been achieved.
The motion of the rigid body in viscous fluid including collisions. Global solvability result
Czech Academy of Sciences Publication Activity Database
Chemetov, N.; Nečasová, Šárka
2017-01-01
Roč. 34, April (2017), s. 416-445 ISSN 1468-1218 R&D Projects: GA ČR GA16-03230S Institutional support: RVO:67985840 Keywords : rigid body * global weak solution * collisions in finite time Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.659, year: 2016 http://www.sciencedirect.com/science/article/pii/S1468121816301146
Conservative integration of rigid body motion by quaternion parameters with implicit constraints
DEFF Research Database (Denmark)
Nielsen, Martin Bjerre; Krenk, Steen
2012-01-01
An angular momentum and energy‐conserving time integration algorithm for rigid body rotation is formulated in terms of the quaternion parameters and the corresponding four‐component conjugate momentum vector via Hamilton's equations. The introduction of an extended mass matrix leads to a symmetric...... these equations via the set of momentum equations. Initially, the normalization of the quaternion array is introduced via a Lagrange multiplier. However, this Lagrange multiplier can be expressed explicitly in terms of the gradient of the external load potential, and elimination of the Lagrange multiplier from...... the final format leaves only an explicit projection applied to the external load potential gradient. An algorithm is developed by forming a finite increment of the Hamiltonian. This procedure identifies the proper selection of increments and mean values, and leads to an algorithm with conservation...
Bellver-Cebreros, Consuelo; Rodriguez-Danta, Marcelo
2009-01-01
An apparently unnoticed analogy between the torque-free motion of a rotating rigid body about a fixed point and the propagation of light in anisotropic media is stated. First, a new plane construction for visualizing this torque-free motion is proposed. This method uses an intrinsic representation alternative to angular momentum and independent of…
Non rigid respiratory motion correction in whole body PET/MR imaging
International Nuclear Information System (INIS)
Fayad, Hadi; Schmidt, Holger; Wuerslin, Christian; Visvikis, Dimitris
2014-01-01
Respiratory motion in PET/MR imaging leads to reduced quantitative and qualitative image accuracy. Correction methodologies include the use of respiratory synchronized gated frames which lead to low signal to noise ratio (SNR) given that each frame contains only part of the count available throughout an average PET acquisition. In this work, 4D MRI extracted elastic transformations were applied to list-mode data either inside the image reconstruction or to the reconstructed respiratory synchronized images to obtain respiration corrected PET images.
Czech Academy of Sciences Publication Activity Database
Nečasová, Šárka; Wolf, J.
2016-01-01
Roč. 36, č. 3 (2016), s. 1539-1562 ISSN 1078-0947 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : incompressible fluid * motion of rigid body * strong solutions Subject RIV: BA - General Mathematics Impact factor: 1.099, year: 2016 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=11589
Liu, J. J. F.; Fitzpatrick, P. M.
1975-01-01
A mathematical model is developed for studying the effects of gravity gradient torque on the attitude stability of a tumbling triaxial rigid satellite. Poisson equations are used to investigate the rotation of the satellite (which is in elliptical orbit about an attracting point mass) about its center of mass. An averaging method is employed to obtain an intermediate set of differential equations for the nonresonant, secular behavior of the osculating elements which describe the rotational motions of the satellite, and the averaged equations are then integrated to obtain long-term secular solutions for the osculating elements.
International Nuclear Information System (INIS)
Lamare, F; Carbayo, M J Ledesma; Cresson, T; Kontaxakis, G; Santos, A; Rest, C Cheze Le; Reader, A J; Visvikis, D
2007-01-01
Respiratory motion in emission tomography leads to reduced image quality. Developed correction methodology has been concentrating on the use of respiratory synchronized acquisitions leading to gated frames. Such frames, however, are of low signal-to-noise ratio as a result of containing reduced statistics. In this work, we describe the implementation of an elastic transformation within a list-mode-based reconstruction for the correction of respiratory motion over the thorax, allowing the use of all data available throughout a respiratory motion average acquisition. The developed algorithm was evaluated using datasets of the NCAT phantom generated at different points throughout the respiratory cycle. List-mode-data-based PET-simulated frames were subsequently produced by combining the NCAT datasets with Monte Carlo simulation. A non-rigid registration algorithm based on B-spline basis functions was employed to derive transformation parameters accounting for the respiratory motion using the NCAT dynamic CT images. The displacement matrices derived were subsequently applied during the image reconstruction of the original emission list mode data. Two different implementations for the incorporation of the elastic transformations within the one-pass list mode EM (OPL-EM) algorithm were developed and evaluated. The corrected images were compared with those produced using an affine transformation of list mode data prior to reconstruction, as well as with uncorrected respiratory motion average images. Results demonstrate that although both correction techniques considered lead to significant improvements in accounting for respiratory motion artefacts in the lung fields, the elastic-transformation-based correction leads to a more uniform improvement across the lungs for different lesion sizes and locations
Quantum mechanics of a generalised rigid body
International Nuclear Information System (INIS)
Gripaios, Ben; Sutherland, Dave
2016-01-01
We consider the quantum version of Arnold’s generalisation of a rigid body in classical mechanics. Thus, we quantise the motion on an arbitrary Lie group manifold of a particle whose classical trajectories correspond to the geodesics of any one-sided-invariant metric. We show how the derivation of the spectrum of energy eigenstates can be simplified by making use of automorphisms of the Lie algebra and (for groups of type I) by methods of harmonic analysis. We show how the method can be extended to cosets, generalising the linear rigid rotor. As examples, we consider all connected and simply connected Lie groups up to dimension 3. This includes the universal cover of the archetypical rigid body, along with a number of new exactly solvable models. We also discuss a possible application to the topical problem of quantising a perfect fluid. (paper)
Elasticity of Relativistic Rigid Bodies?
Smarandache, Florentin
2013-10-01
In the classical Twin Paradox, according to the Special Theory of Relativity, when the traveling twin blasts off from the Earth to a relative velocity v =√{/3 } 2 c with respect to the Earth, his measuring stick and other physical objects in the direction of relative motion shrink to half their lengths. How is that possible in the real physical world to have let's say a rigid rocket shrinking to half and then later elongated back to normal as an elastic material when it stops? What is the explanation for the traveler's measuring stick and other physical objects, in effect, return to the same length to their original length in the Stay-At-Home, but there is no record of their having shrunk? If it's a rigid (not elastic) object, how can it shrink and then elongate back to normal? It might get broken in such situation.
Rigid body dynamics of mechanisms
Hahn, Hubert
2003-01-01
The second volume of Rigid Body Dynamics of Mechanisms covers applications via a systematic method for deriving model equations of planar and spatial mechanisms. The necessary theoretical foundations have been laid in the first volume that introduces the theoretical mechanical aspects of mechatronic systems. Here the focus is on the application of the modeling methodology to various examples of rigid-body mechanisms, simple planar ones as well as more challenging spatial problems. A rich variety of joint models, active constraints, plus active and passive force elements is treated. The book is intended for self-study by working engineers and students concerned with the control of mechanical systems, i.e. robotics, mechatronics, vehicles, and machine tools. The examples included are a likely source from which to choose models for university lectures.
Rigid multibody system dynamics with uncertain rigid bodies
Energy Technology Data Exchange (ETDEWEB)
Batou, A., E-mail: anas.batou@univ-paris-est.fr; Soize, C., E-mail: christian.soize@univ-paris-est.fr [Universite Paris-Est, Laboratoire Modelisation et Simulation Multi Echelle, MSME UMR 8208 CNRS (France)
2012-03-15
This paper is devoted to the construction of a probabilistic model of uncertain rigid bodies for multibody system dynamics. We first construct a stochastic model of an uncertain rigid body by replacing the mass, the center of mass, and the tensor of inertia by random variables. The prior probability distributions of the stochastic model are constructed using the maximum entropy principle under the constraints defined by the available information. The generators of independent realizations corresponding to the prior probability distribution of these random quantities are further developed. Then several uncertain rigid bodies can be linked to each other in order to calculate the random response of a multibody dynamical system. An application is proposed to illustrate the theoretical development.
A concise introduction to mechanics of rigid bodies multidisciplinary engineering
Huang, L
2017-01-01
This updated second edition broadens the explanation of rotational kinematics and dynamics — the most important aspect of rigid body motion in three-dimensional space and a topic of much greater complexity than linear motion. It expands treatment of vector and matrix, and includes quaternion operations to describe and analyze rigid body motion which are found in robot control, trajectory planning, 3D vision system calibration, and hand-eye coordination of robots in assembly work, etc. It features updated treatments of concepts in all chapters and case studies. The textbook retains its comprehensiveness in coverage and compactness in size, which make it easily accessible to the readers from multidisciplinary areas who want to grasp the key concepts of rigid body mechanics which are usually scattered in multiple volumes of traditional textbooks. Theoretical concepts are explained through examples taken from across engineering disciplines and links to applications and more advanced courses (e.g. industrial rob...
Directory of Open Access Journals (Sweden)
Frédéric V Stanger
Full Text Available Type II DNA topoisomerases are essential enzymes that catalyze topological rearrangement of double-stranded DNA using the free energy generated by ATP hydrolysis. Bacterial DNA gyrase is a prototype of this family and is composed of two subunits (GyrA, GyrB that form a GyrA2GyrB2 heterotetramer. The N-terminal 43-kDa fragment of GyrB (GyrB43 from E. coli comprising the ATPase and the transducer domains has been studied extensively. The dimeric fragment is competent for ATP hydrolysis and its structure in complex with the substrate analog AMPPNP is known. Here, we have determined the remaining conformational states of the enzyme along the ATP hydrolysis reaction path by solving crystal structures of GyrB43 in complex with ADP⋅BeF3, ADP⋅Pi, and ADP. Upon hydrolysis, the enzyme undergoes an obligatory 12° domain rearrangement to accommodate the 1.5 Å increase in distance between the γ- and β-phosphate of the nucleotide within the sealed binding site at the domain interface. Conserved residues from the QTK loop of the transducer domain (also part of the domain interface couple the small structural change within the binding site with the rigid body motion. The domain reorientation is reflected in a significant 7 Å increase in the separation of the two transducer domains of the dimer that would embrace one of the DNA segments in full-length gyrase. The observed conformational change is likely to be relevant for the allosteric coordination of ATP hydrolysis with DNA binding, cleavage/re-ligation and/or strand passage.
Johansson, Adam; Balter, James; Cao, Yue
2018-03-01
Respiratory motion can affect pharmacokinetic perfusion parameters quantified from liver dynamic contrast-enhanced MRI. Image registration can be used to align dynamic images after reconstruction. However, intra-image motion blur remains after alignment and can alter the shape of contrast-agent uptake curves. We introduce a method to correct for inter- and intra-image motion during image reconstruction. Sixteen liver dynamic contrast-enhanced MRI examinations of nine subjects were performed using a golden-angle stack-of-stars sequence. For each examination, an image time series with high temporal resolution but severe streak artifacts was reconstructed. Images were aligned using region-limited rigid image registration within a region of interest covering the liver. The transformations resulting from alignment were used to correct raw data for motion by modulating and rotating acquired lines in k-space. The corrected data were then reconstructed using view sharing. Portal-venous input functions extracted from motion-corrected images had significantly greater peak signal enhancements (mean increase: 16%, t-test, P < 0.001) than those from images aligned using image registration after reconstruction. In addition, portal-venous perfusion maps estimated from motion-corrected images showed fewer artifacts close to the edge of the liver. Motion-corrected image reconstruction restores uptake curves distorted by motion. Motion correction also reduces motion artifacts in estimated perfusion parameter maps. Magn Reson Med 79:1345-1353, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Geometric integrators for stochastic rigid body dynamics
Tretyakov, Mikhail
2016-01-05
Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.
Geometric integrators for stochastic rigid body dynamics
Tretyakov, Mikhail
2016-01-01
Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.
The two-body problem of a pseudo-rigid body and a rigid sphere
DEFF Research Database (Denmark)
Kristiansen, Kristian Uldall; Vereshchagin, M.; Gózdziewski, K.
2012-01-01
n this paper we consider the two-body problem of a spherical pseudo-rigid body and a rigid sphere. Due to the rotational and "re-labelling" symmetries, the system is shown to possess conservation of angular momentum and circulation. We follow a reduction procedure similar to that undertaken...... in the study of the two-body problem of a rigid body and a sphere so that the computed reduced non-canonical Hamiltonian takes a similar form. We then consider relative equilibria and show that the notions of locally central and planar equilibria coincide. Finally, we show that Riemann's theorem on pseudo......-rigid bodies has an extension to this system for planar relative equilibria....
Verification of the Rigidity of the Coulomb Field in Motion
Blinov, S. V.; Bulyzhenkov, I. É.
2018-06-01
Laplace, analyzing the stability of the Solar System, was the first to calculate that the velocity of the motion of force fields can significantly exceed the velocity of light waves. In electrodynamics, the Coulomb field should rigidly accompany its source for instantaneous force action in distant regions. Such rigid motion was recently inferred from experiments at the Frascati Beam Test Facility with short beams of relativistic electrons. The comments of the authors on their observations are at odds with the comments of theoreticians on retarded potentials, which motivates a detailed study of the positions of both sides. Predictions of measurements, based on the Lienard-Wiechert potentials, are used to propose an unambiguous scheme for testing the rigidity of the Coulomb field. Realization of the proposed experimental scheme could independently refute or support the assertions of the Italian physicists regarding the rigid motion of Coulomb fields and likewise the nondual field approach to macroscopic reality.
A method for measuring the inertia properties of rigid bodies
Gobbi, M.; Mastinu, G.; Previati, G.
2011-01-01
A method for the measurement of the inertia properties of rigid bodies is presented. Given a rigid body and its mass, the method allows to measure (identify) the centre of gravity location and the inertia tensor during a single test. The proposed technique is based on the analysis of the free motion of a multi-cable pendulum to which the body under consideration is connected. The motion of the pendulum and the forces acting on the system are recorded and the inertia properties are identified by means of a proper mathematical procedure based on a least square estimation. After the body is positioned on the test rig, the full identification procedure takes less than 10 min. The natural frequencies of the pendulum and the accelerations involved are quite low, making this method suitable for many practical applications. In this paper, the proposed method is described and two test rigs are presented: the first is developed for bodies up to 3500 kg and the second for bodies up to 400 kg. A validation of the measurement method is performed with satisfactory results. The test rig holds a third part quality certificate according to an ISO 9001 standard and could be scaled up to measure the inertia properties of huge bodies, such as trucks, airplanes or even ships.
Dynamics of Rigid Bodies and Flexible Beam Structures
DEFF Research Database (Denmark)
Nielsen, Martin Bjerre
of rigid bodies and flexible beam structures with emphasis on the rotational motion. The first part deals with motion in a rotating frame of reference. A novel approach where the equations of motion are formulated in a hybrid state-space in terms of local displacements and global velocities is presented...... quaternion parameters or nine convected base vector components. In both cases, the equations of motion are obtained via Hamilton’s equations by including the kinematic constraints associated with the redundant rotation description by means of Lagrange multipliers. A special feature of the formulation...... of the global components of the position vectors and associated convected base vectors for the element nodes. The kinematics is expressed in a homogeneous quadratic form and the constitutive stiffness is derived from complementary energy of a set of equilibrium modes, each representing a state of constant...
Iterative CT reconstruction with correction for known rigid motion
Energy Technology Data Exchange (ETDEWEB)
Nuyts, Johan [Katholieke Univ. Leuven (Belgium). Dept. of Nuclear Medicine; Kim, Jung-Ha; Fulton, Roger [Sydney Univ., NSW (Australia). School of Physics; Westmead Hospital, Sydney (Australia). Medical Physics
2011-07-01
In PET/CT brain imaging, correction for motion may be needed, in particular for children and psychiatric patients. Motion is more likely to occur in the lengthy PET measurement, but also during the short CT acquisition patient motion is possible. Rigid motion of the head can be measured independently from the PET/CT system with optical devices. In this paper, we propose a method and some preliminary simulation results for iterative CT reconstruction with correction for known rigid motion. We implemented an iterative algorithm for fully 3D reconstruction from helical CT scans. The motion of the head is incorporated in the system matrix as a view-dependent motion of the CT-system. The first simulation results indicate that some motion patterns may produce loss of essential data. This loss precludes exact reconstruction and results in artifacts in the reconstruction, even when motion is taken into account. However, by reducing the pitch during acquisition, the same motion pattern no longer caused artifacts in the motion corrected image. (orig.)
Matrix methods applied to engineering rigid body mechanics
Crouch, T.
The purpose of this book is to present the solution of a range of rigorous body mechanics problems using a matrix formulation of vector algebra. Essential theory concerning kinematics and dynamics is formulated in terms of matrix algebra. The solution of kinematics and dynamics problems is discussed, taking into account the velocity and acceleration of a point moving in a circular path, the velocity and acceleration determination for a linkage, the angular velocity and angular acceleration of a roller in a taper-roller thrust race, Euler's theroem on the motion of rigid bodies, an automotive differential, a rotating epicyclic, the motion of a high speed rotor mounted in gimbals, and the vibration of a spinning projectile. Attention is given to the activity of a force, the work done by a conservative force, the work and potential in a conservative system, the equilibrium of a mechanism, bearing forces due to rotor misalignment, and the frequency of vibrations of a constrained rod.
The theory of pseudo-rigid bodies
Cohen, Harley
1988-01-01
This monograph concerns the development, analysis, and application of the theory of pseudo-rigid bodies. It collects together our work on that subject over the last five years. While some results have appeared else where, much of the work is new. Our objective in writing this mono graph has been to present a new theory of the deformation of bodies, one that has not only a firm theoretical basis, but also the simplicity to serve as an effective tool in practical problems. Consequently, the main body of the treatise is a multifaceted development of the theory, from foundations to explicit solutions to linearizations to methods of approximation. The fact that this variety of aspects, each examined in considerable detail, can be collected together in a single, unified treat ment gives this theory an elegance that we feel sets it apart from many others. While our goal has always been to give a complete treatment of the theory as it now stands, the work here is not meant to be definitive. Theories are not ent...
International Nuclear Information System (INIS)
Tsoumpas, C.; Mackewn, J.E.; Halsted, P.; King, A.P.; Buerger, C.; Totman, J.J.; Schaeffter, T.; Marsden, P.K.
2010-01-01
Positron emission tomography (PET) provides an accurate measurement of radiotracer concentration in vivo, but performance can be limited by subject motion which degrades spatial resolution and quantitative accuracy. This effect may become a limiting factor for PET studies in the body as PET scanner technology improves. In this work, we propose a new approach to address this problem by employing motion information from images measured simultaneously using a magnetic resonance (MR) scanner. The approach is demonstrated using an MR-compatible PET scanner and PET-MR acquisition with a purpose-designed phantom capable of non-rigid deformations. Measured, simultaneously acquired MR data were used to correct for motion in PET, and results were compared with those obtained using motion information from PET images alone. Motion artefacts were significantly reduced and the PET image quality and quantification was significantly improved by the use of MR motion fields, whilst the use of PET-only motion information was less successful. Combined PET-MR acquisitions potentially allow PET motion compensation in whole-body acquisitions without prolonging PET acquisition time or increasing radiation dose. This, to the best of our knowledge, is the first study to demonstrate that simultaneously acquired MR data can be used to estimate and correct for the effects of non-rigid motion in PET. (author)
A rigid motion correction method for helical computed tomography (CT)
International Nuclear Information System (INIS)
Kim, J-H; Kyme, A; Fulton, R; Nuyts, J; Kuncic, Z
2015-01-01
We propose a method to compensate for six degree-of-freedom rigid motion in helical CT of the head. The method is demonstrated in simulations and in helical scans performed on a 16-slice CT scanner. Scans of a Hoffman brain phantom were acquired while an optical motion tracking system recorded the motion of the bed and the phantom. Motion correction was performed by restoring projection consistency using data from the motion tracking system, and reconstructing with an iterative fully 3D algorithm. Motion correction accuracy was evaluated by comparing reconstructed images with a stationary reference scan. We also investigated the effects on accuracy of tracker sampling rate, measurement jitter, interpolation of tracker measurements, and the synchronization of motion data and CT projections. After optimization of these aspects, motion corrected images corresponded remarkably closely to images of the stationary phantom with correlation and similarity coefficients both above 0.9. We performed a simulation study using volunteer head motion and found similarly that our method is capable of compensating effectively for realistic human head movements. To the best of our knowledge, this is the first practical demonstration of generalized rigid motion correction in helical CT. Its clinical value, which we have yet to explore, may be significant. For example it could reduce the necessity for repeat scans and resource-intensive anesthetic and sedation procedures in patient groups prone to motion, such as young children. It is not only applicable to dedicated CT imaging, but also to hybrid PET/CT and SPECT/CT, where it could also ensure an accurate CT image for lesion localization and attenuation correction of the functional image data. (paper)
Dual Quaternion Variational Integrator for Rigid Body Dynamic Simulation
Xu, Jiafeng; Halse, Karl Henning
2016-01-01
In rigid body dynamic simulations, often the algorithm is required to deal with general situations where both reference point and inertia matrix are arbitrarily de- fined. We introduce a novel Lie group variational integrator using dual quaternion for simulating rigid body dynamics in all six degrees of freedom. Dual quaternion is used to represent rigid body kinematics and one-step Lie group method is used to derive dynamic equations. The combination of these two becomes the first Lie group ...
Almost Poisson integration of rigid body systems
International Nuclear Information System (INIS)
Austin, M.A.; Krishnaprasad, P.S.; Li-Sheng Wang
1993-01-01
In this paper we discuss the numerical integration of Lie-Poisson systems using the mid-point rule. Since such systems result from the reduction of hamiltonian systems with symmetry by lie group actions, we also present examples of reconstruction rules for the full dynamics. A primary motivation is to preserve in the integration process, various conserved quantities of the original dynamics. A main result of this paper is an O(h 3 ) error estimate for the Lie-Poisson structure, where h is the integration step-size. We note that Lie-Poisson systems appear naturally in many areas of physical science and engineering, including theoretical mechanics of fluids and plasmas, satellite dynamics, and polarization dynamics. In the present paper we consider a series of progressively complicated examples related to rigid body systems. We also consider a dissipative example associated to a Lie-Poisson system. The behavior of the mid-point rule and an associated reconstruction rule is numerically explored. 24 refs., 9 figs
Student understanding of the application of Newton's second law to rotating rigid bodies
Close, Hunter G.; Gomez, Luanna S.; Heron, Paula R. L.
2013-06-01
We report on an investigation of student understanding of rigid body dynamics in which we asked students in introductory calculus-based physics to compare the translational motions of identical rigid bodies subject to forces that differed only in the point of contact at which they were applied. There was a widespread tendency to claim that forces that cause rotational motion have a diminished effect on translational motion. A series of related problems was developed to examine whether similar errors would be made in other contexts, and interviews were conducted to probe student thinking in greater depth. In this paper, we describe the results of our investigation and also describe a series of different interventions that culminated in the development of a tutorial that improves student ability to apply Newton's second law to rotating rigid bodies.
Rigid Body Sampling and Individual Time Stepping for Rigid-Fluid Coupling of Fluid Simulation
Directory of Open Access Journals (Sweden)
Xiaokun Wang
2017-01-01
Full Text Available In this paper, we propose an efficient and simple rigid-fluid coupling scheme with scientific programming algorithms for particle-based fluid simulation and three-dimensional visualization. Our approach samples the surface of rigid bodies with boundary particles that interact with fluids. It contains two procedures, that is, surface sampling and sampling relaxation, which insures uniform distribution of particles with less iterations. Furthermore, we present a rigid-fluid coupling scheme integrating individual time stepping to rigid-fluid coupling, which gains an obvious speedup compared to previous method. The experimental results demonstrate the effectiveness of our approach.
Energy Technology Data Exchange (ETDEWEB)
Ismail, Norilmi Amilia, E-mail: aenorilmi@usm.my [School of Aerospace Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia)
2016-02-01
The motorized momentum exchange tether (MMET) is capable of generating useful velocity increments through spin–orbit coupling. This study presents a comparative study of the velocity increments between the rigid body and flexible models of MMET. The equations of motions of both models in the time domain are transformed into a function of true anomaly. The equations of motion are integrated, and the responses in terms of the velocity increment of the rigid body and flexible models are compared and analysed. Results show that the initial conditions, eccentricity, and flexibility of the tether have significant effects on the velocity increments of the tether.
Stabilization of Rigid Body Dynamics by Internal and External Torques
National Research Council Canada - National Science Library
Bloch, A. M; Krishnaprasad, P. S; Marsden, J. E; Sanchez de Alvarez, G
1990-01-01
...] with quadratic feedback torques for internal rotors. We show that with such torques, the equations for the rigid body with momentum wheels are Hamiltonian with respect to a Lie-Poisson bracket structure. Further...
Anti-synchronization of the rigid body exhibiting chaotic dynamics ...
African Journals Online (AJOL)
Based on a method derived from nonlinear control theory, we present a ... In this framework, the active control technique is modified and employed to design control ... state space of the two rigid bodies was verified by numerical simulations.
Dynamical analysis of an orbiting three-rigid-body system
Energy Technology Data Exchange (ETDEWEB)
Pagnozzi, Daniele, E-mail: daniele.pagnozzi@strath.ac.uk, E-mail: james.biggs@strath.ac.uk; Biggs, James D., E-mail: daniele.pagnozzi@strath.ac.uk, E-mail: james.biggs@strath.ac.uk [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, Scotland (United Kingdom)
2014-12-10
The development of multi-joint-spacecraft mission concepts calls for a deeper understanding of their nonlinear dynamics to inform and enhance system design. This paper presents a study of a three-finite-shape rigid-body system under the action of an ideal central gravitational field. The aim of this paper is to gain an insight into the natural dynamics of this system. The Hamiltonian dynamics is derived and used to identify relative attitude equilibria of the system with respect to the orbital reference frame. Then a numerical investigation of the behaviour far from the equilibria is provided using tools from modern dynamical systems theory such as energy methods, phase portraits and Poincarè maps. Results reveal a complex structure of the dynamics as well as the existence of connections between some of the equilibria. Stable equilibrium configurations appear to be surrounded by very narrow regions of regular and quasi-regular motions. Trajectories evolve on chaotic motions in the rest of the domain.
Motion of rectangular prismatic bodies
International Nuclear Information System (INIS)
Poreh, M.; Wray, R.N.
1979-01-01
Rectangular prismatic bodies can assume either a translatory or an auto-rotating mode of motion during free motion in the atmosphere. The translatory mode is stable only when the dimensionless moment of inertia of the bodies is large, however, large perturbations will always start auto-rotation. The characteristics of the auto-rotational mode are shown to depend primarily on the aspect ratio of the bodies which determines the dimensionless rotational speed and the lift coefficient. Both the average drag and lift-coefficients of auto-rotating bodies are estimated, but it is shown that secondary effects make it impossible to determine their exact trajectories in atmospheric flows
Estimating the orientation of a rigid body moving in space using inertial sensors
Energy Technology Data Exchange (ETDEWEB)
He, Peng, E-mail: peng.he.1@ulaval.ca; Cardou, Philippe, E-mail: pcardou@gmc.ulaval.ca [Université Laval, Robotics Laboratory, Department of Mechanical Engineering (Canada); Desbiens, André, E-mail: andre.desbiens@gel.ulaval.ca [Université Laval, Department of Electrical and Computer Engineering (Canada); Gagnon, Eric, E-mail: Eric.Gagnon@drdc-rddc.gc.ca [RDDC Valcartier (Canada)
2015-09-15
This paper presents a novel method of estimating the orientation of a rigid body moving in space from inertial sensors, by discerning the gravitational and inertial components of the accelerations. In this method, both a rigid-body kinematics model and a stochastic model of the human-hand motion are formulated and combined in a nonlinear state-space system. The state equation represents the rigid body kinematics and stochastic model, and the output equation represents the inertial sensor measurements. It is necessary to mention that, since the output equation is a nonlinear function of the state, the extended Kalman filter (EKF) is applied. The absolute value of the error from the proposed method is shown to be less than 5 deg in simulation and in experiments. It is apparently stable, unlike the time-integration of gyroscope measurements, which is subjected to drift, and remains accurate under large accelerations, unlike the tilt-sensor method.
Estimating the orientation of a rigid body moving in space using inertial sensors
International Nuclear Information System (INIS)
He, Peng; Cardou, Philippe; Desbiens, André; Gagnon, Eric
2015-01-01
This paper presents a novel method of estimating the orientation of a rigid body moving in space from inertial sensors, by discerning the gravitational and inertial components of the accelerations. In this method, both a rigid-body kinematics model and a stochastic model of the human-hand motion are formulated and combined in a nonlinear state-space system. The state equation represents the rigid body kinematics and stochastic model, and the output equation represents the inertial sensor measurements. It is necessary to mention that, since the output equation is a nonlinear function of the state, the extended Kalman filter (EKF) is applied. The absolute value of the error from the proposed method is shown to be less than 5 deg in simulation and in experiments. It is apparently stable, unlike the time-integration of gyroscope measurements, which is subjected to drift, and remains accurate under large accelerations, unlike the tilt-sensor method
Modeling and experimentation with asymmetric rigid bodies: a variation on disks and inclines
International Nuclear Information System (INIS)
Raviola, Lisandro A; Zárate, Oscar; Rodríguez, Eduardo E
2014-01-01
We study the ascending motion of a disk rolling on an incline when its centre of mass lies outside the disk axis. The problem is suitable as laboratory project for a first course in mechanics at the undergraduate level and goes beyond typical textbook problems about bi-dimensional rigid body motions. We develop a theoretical model for the disk motion based on mechanical energy conservation and compare its predictions with experimental data obtained by digital video recording. Using readily available resources, a very satisfactory agreement is obtained between the model and the experimental observations. These results complement previous ones that have been reported in the literature for similar systems. (paper)
New integrable problems in a rigid body dynamics with cubic integral in velocities
Elmandouh, A. A.
2018-03-01
We introduce a new family of the 2D integrable mechanical system possessing an additional integral of the third degree in velocities. This system contains 20 arbitrary parameters. We also clarify that the majority of the previous systems with a cubic integral can be reconstructed from it as a special version for certain values of those parameters. The applications of this system are extended to include the problem of motion of a particle and rigid body about its fixed point. We announce new integrable problems describing the motion of a particle in the plane, pseudosphere, and surfaces of variable curvature. We also present a new integrable problem in a rigid body dynamics and this problem generalizes some of the previous results for Sokolov-Tsiganov, Yehia, Stretensky, and Goriachev.
Estimation of the ground shaking from the response of rigid bodies
Directory of Open Access Journals (Sweden)
Filomena de Silva
2016-12-01
Full Text Available The paper illustrates and compares simplified approaches to interpret the mechanisms of damage observed on rigid bodies in the cemetery of Amatrice, after the main shock (August 24, 2016, MW=6.0 of the Central Italy earthquake. The final goal of the work is to link the observed movements of the fallen objects to specific characteristics of the ground motion occurred at the specific site.
Wasza, Jakob; Bauer, Sebastian; Hornegger, Joachim
2012-01-01
Over the last years, range imaging (RI) techniques have been proposed for patient positioning and respiration analysis in motion compensation. Yet, current RI based approaches for patient positioning employ rigid-body transformations, thus neglecting free-form deformations induced by respiratory motion. Furthermore, RI based respiration analysis relies on non-rigid registration techniques with run-times of several seconds. In this paper we propose a real-time framework based on RI to perform respiratory motion compensated positioning and non-rigid surface deformation estimation in a joint manner. The core of our method are pre-procedurally obtained 4-D shape priors that drive the intra-procedural alignment of the patient to the reference state, simultaneously yielding a rigid-body table transformation and a free-form deformation accounting for respiratory motion. We show that our method outperforms conventional alignment strategies by a factor of 3.0 and 2.3 in the rotation and translation accuracy, respectively. Using a GPU based implementation, we achieve run-times of 40 ms.
Directory of Open Access Journals (Sweden)
S Hadji
2008-09-01
Full Text Available This study deals with the simulation of transport and interaction betweenbodies considered as a rectangular shape particles, in urban flow. We usedan hydrodynamic two-dimensional finite elements model coupled to theparticles model based on Maxey-Riley equations, and taking into accountof contact between bodies. The finite element discretization is based onthe velocity field richer than pressure field, and the particles displacementsare computed by using a rigid body motion method. A collision strategy isalso developed to handle cases in which bodies touch.
Nonlinear dynamics mathematical models for rigid bodies with a liquid
Lukovsky, Ivan A
2015-01-01
This book is devoted to analytically approximate methods in the nonlinear dynamics of a rigid body with cavities partly filled by liquid. It combines several methods and compares the results with experimental data. It is useful for experienced and early-stage readers interested in analytical approaches to fluid-structure interaction problems, the fundamental mathematical background and modeling the dynamics of such complex mechanical systems.
Steady fall of a rigid body in viscous fluid
Czech Academy of Sciences Publication Activity Database
Nečasová, Šárka
2005-01-01
Roč. 63, Sp. Is. (2005), s. 2113-2119 ISSN 0362-546X. [Invited Talks from the Fourth World Congress of Nonlinear Analysts (WCNA 2004). Orlando , 30.7.2004-7.8.2004] R&D Projects: GA ČR(CZ) GA201/02/0684 Institutional research plan: CEZ:AV0Z1019905 Keywords : steady fall * rigid body * viscous fluid Subject RIV: BA - General Mathematics Impact factor: 0.519, year: 2005
Rigid Body Energy Minimization on Manifolds for Molecular Docking.
Mirzaei, Hanieh; Beglov, Dmitri; Paschalidis, Ioannis Ch; Vajda, Sandor; Vakili, Pirooz; Kozakov, Dima
2012-11-13
Virtually all docking methods include some local continuous minimization of an energy/scoring function in order to remove steric clashes and obtain more reliable energy values. In this paper, we describe an efficient rigid-body optimization algorithm that, compared to the most widely used algorithms, converges approximately an order of magnitude faster to conformations with equal or slightly lower energy. The space of rigid body transformations is a nonlinear manifold, namely, a space which locally resembles a Euclidean space. We use a canonical parametrization of the manifold, called the exponential parametrization, to map the Euclidean tangent space of the manifold onto the manifold itself. Thus, we locally transform the rigid body optimization to an optimization over a Euclidean space where basic optimization algorithms are applicable. Compared to commonly used methods, this formulation substantially reduces the dimension of the search space. As a result, it requires far fewer costly function and gradient evaluations and leads to a more efficient algorithm. We have selected the LBFGS quasi-Newton method for local optimization since it uses only gradient information to obtain second order information about the energy function and avoids the far more costly direct Hessian evaluations. Two applications, one in protein-protein docking, and the other in protein-small molecular interactions, as part of macromolecular docking protocols are presented. The code is available to the community under open source license, and with minimal effort can be incorporated into any molecular modeling package.
Numerical algorithm for rigid body position estimation using the quaternion approach
Zigic, Miodrag; Grahovac, Nenad
2017-11-01
This paper deals with rigid body attitude estimation on the basis of the data obtained from an inertial measurement unit mounted on the body. The aim of this work is to present the numerical algorithm, which can be easily applied to the wide class of problems concerning rigid body positioning, arising in aerospace and marine engineering, or in increasingly popular robotic systems and unmanned aerial vehicles. Following the considerations of kinematics of rigid bodies, the relations between accelerations of different points of the body are given. A rotation matrix is formed using the quaternion approach to avoid singularities. We present numerical procedures for determination of the absolute accelerations of the center of mass and of an arbitrary point of the body expressed in the inertial reference frame, as well as its attitude. An application of the algorithm to the example of a heavy symmetrical gyroscope is presented, where input data for the numerical procedure are obtained from the solution of differential equations of motion, instead of using sensor measurements.
Conservative rigid body dynamics by convected base vectors with implicit constraints
DEFF Research Database (Denmark)
Krenk, Steen; Nielsen, Martin Bjerre
2014-01-01
of differential equations without additional algebraic constraints on the base vectors. A discretized form of the equations of motion is obtained by starting from a finite time increment of the Hamiltonian, and retracing the steps of the continuous formulation in discrete form in terms of increments and mean...... of the base vectors. Orthogonality and unit length of the base vectors are imposed by constraining the equivalent Green strain components, and the kinetic energy is represented corresponding to rigid body motion. The equations of motion are obtained via Hamilton’s equations including the zero...... values over each integration time increment. In this discrete form the Lagrange multipliers are given in terms of a representative value within the integration time interval, and the equations of motion are recast into a conservative mean-value and finite difference format. The Lagrange multipliers...
Bang-Bang Practical Stabilization of Rigid Bodies
Serpelloni, Edoardo
In this thesis, we study the problem of designing a practical stabilizer for a rigid body equipped with a set of actuators generating only constant thrust. Our motivation stems from the fact that modern space missions are required to accurately control the position and orientation of spacecraft actuated by constant-thrust jet-thrusters. To comply with the performance limitations of modern thrusters, we design a feedback controller that does not induce high-frequency switching of the actuators. The proposed controller is hybrid and it asymptotically stabilizes an arbitrarily small compact neighborhood of the target position and orientation of the rigid body. The controller is characterized by a hierarchical structure comprising of two control layers. At the low level of the hierarchy, an attitude controller stabilizes the target orientation of the rigid body. At the high level, after the attitude controller has steered the rigid body sufficiently close to its desired orientation, a position controller stabilizes the desired position. The size of the neighborhood being stabilized by the controller can be adjusted via a proper selection of the controller parameters. This allows us to stabilize the rigid body to virtually any degree of accuracy. It is shown that the controller, even in the presence of measurement noise, does not induce high-frequency switching of the actuators. The key component in the design of the controller is a hybrid stabilizer for the origin of double-integrators affected by bounded external perturbations. Specifically, both the position and the attitude stabilizers consist of multiple copies of such a double-integrator controller. The proposed controller is applied to two realistic spacecraft control problems. First, we apply the position controller to the problem of stabilizing the relative position between two spacecraft flying in formation in the vicinity of the L2 libration point of the Sun-Earth system as a part of a large space telescope
On Classical Dynamics of Affinely-Rigid Bodies Subject to the Kirchhoff-Love Constraints
Directory of Open Access Journals (Sweden)
Vasyl Kovalchuk
2010-04-01
Full Text Available In this article we consider the affinely-rigid body moving in the three-dimensional physical space and subject to the Kirchhoff-Love constraints, i.e., while it deforms homogeneously in the two-dimensional central plane of the body it simultaneously performs one-dimensional oscillations orthogonal to this central plane. For the polar decomposition we obtain the stationary ellipsoids as special solutions of the general, strongly nonlinear equations of motion. It is also shown that these solutions are conceptually different from those obtained earlier for the two-polar (singular value decomposition.
Modeling of a light elastic beam by a system of rigid bodies
Directory of Open Access Journals (Sweden)
Šalinić Slaviša
2004-01-01
Full Text Available This paper has shown that a light elastic beam, in the case of small elastic deformations, can be modeled by a kinematic chain without branching composed of rigid bodies which are connected by passive revolute or prismatic joints with corresponding springs in them. Elastic properties of the beam are modeled by the springs introduced. The potential energy of the elastic beam is expressed as a function of components of the vector of elastic displacement and the vector of elastic rotation calculated for the elastic centre of the beam, which results in the diagonal stiffness matrix of the beam. As the potential energy of the introduced system of bodies with springs is expressed in the function of relative joint displacements, the diagonal stiffness matrix is obtained. In addition, these two stiffness matrices are equal. The modeling process has been demonstrated on the example of an elastic beam rotating about a fixed vertical axis, with a rigid body whose mass is considerably larger than the beam mass fixed to its free end. Differential equations of motion have been formed for this mechanical system. The modeling technique described here aims at expanding of usage of well developed methods of dynamics of systems of rigid bodies to the analysis of systems with elastic bodies. .
General rigid motion correction for computed tomography imaging based on locally linear embedding
Chen, Mianyi; He, Peng; Feng, Peng; Liu, Baodong; Yang, Qingsong; Wei, Biao; Wang, Ge
2018-02-01
The patient motion can damage the quality of computed tomography images, which are typically acquired in cone-beam geometry. The rigid patient motion is characterized by six geometric parameters and are more challenging to correct than in fan-beam geometry. We extend our previous rigid patient motion correction method based on the principle of locally linear embedding (LLE) from fan-beam to cone-beam geometry and accelerate the computational procedure with the graphics processing unit (GPU)-based all scale tomographic reconstruction Antwerp toolbox. The major merit of our method is that we need neither fiducial markers nor motion-tracking devices. The numerical and experimental studies show that the LLE-based patient motion correction is capable of calibrating the six parameters of the patient motion simultaneously, reducing patient motion artifacts significantly.
Shan, Gongbing; Sust, Martin; Simard, Stephane; Bohn, Christina; Nicol, Klaus
2004-01-01
There are two main problems for biomechanists in motor learning practice. One is theory vs. experience, the other is the determination of dominative information directly helpful in the practice. This project aimed at addressing these problems from a quantitative aspect by using motion capture and biomechanical rigid body modeling. The purposes were to identify differences in the description of movements amongst motion analysists (external view), athletes (internal sight) and coaches (internal...
Collisions of Constrained Rigid Body Systems with Friction
Directory of Open Access Journals (Sweden)
Haijun Shen
1998-01-01
Full Text Available A new approach is developed for the general collision problem of two rigid body systems with constraints (e.g., articulated systems, such as massy linkages in which the relative tangential velocity at the point of contact and the associated friction force can change direction during the collision. This is beyond the framework of conventional methods, which can give significant and very obvious errors for this problem, and both extends and consolidates recent work. A new parameterization and theory characterize if, when and how the relative tangential velocity changes direction during contact. Elastic and dissipative phenomena and different values for static and kinetic friction coefficients are included. The method is based on the explicitly physical analysis of events at the point of contact. Using this method, Example 1 resolves (and corrects a paradox (in the literature of the collision of a double pendulum with the ground. The method fundamentally subsumes other recent models and the collision of rigid bodies; it yields the same results as conventional methods when they would apply (Example 2. The new method reformulates and extends recent approaches in a completely physical context.
Rigid body formulation in a finite element context with contact interaction
Refachinho de Campos, Paulo R.; Gay Neto, Alfredo
2018-03-01
The present work proposes a formulation to employ rigid bodies together with flexible bodies in the context of a nonlinear finite element solver, with contact interactions. Inertial contributions due to distribution of mass of a rigid body are fully developed, considering a general pole position associated with a single node, representing a rigid body element. Additionally, a mechanical constraint is proposed to connect a rigid region composed by several nodes, which is useful for linking rigid/flexible bodies in a finite element environment. Rodrigues rotation parameters are used to describe finite rotations, by an updated Lagrangian description. In addition, the contact formulation entitled master-surface to master-surface is employed in conjunction with the rigid body element and flexible bodies, aiming to consider their interaction in a rigid-flexible multibody environment. New surface parameterizations are presented to establish contact pairs, permitting pointwise interaction in a frictional scenario. Numerical examples are provided to show robustness and applicability of the methods.
Dynamics of parallel robots from rigid bodies to flexible elements
Briot, Sébastien
2015-01-01
This book starts with a short recapitulation on basic concepts, common to any types of robots (serial, tree structure, parallel, etc.), that are also necessary for computation of the dynamic models of parallel robots. Then, as dynamics requires the use of geometry and kinematics, the general equations of geometric and kinematic models of parallel robots are given. After, it is explained that parallel robot dynamic models can be obtained by decomposing the real robot into two virtual systems: a tree-structure robot (equivalent to the robot legs for which all joints would be actuated) plus a free body corresponding to the platform. Thus, the dynamics of rigid tree-structure robots is analyzed and algorithms to obtain their dynamic models in the most compact form are given. The dynamic model of the real rigid parallel robot is obtained by closing the loops through the use of the Lagrange multipliers. The problem of the dynamic model degeneracy near singularities is treated and optimal trajectory planning for cro...
Unifying Rigid and Soft Bodies Representation: The Sulfur Physics Engine
Directory of Open Access Journals (Sweden)
Dario Maggiorini
2014-01-01
Full Text Available Video games are (also real-time interactive graphic simulations: hence, providing a convincing physics simulation for each specific game environment is of paramount importance in the process of achieving a satisfying player experience. While the existing game engines appropriately address many aspects of physics simulation, some others are still in need of improvements. In particular, several specific physics properties of bodies not usually involved in the main game mechanics (e.g., properties useful to represent systems composed by soft bodies, are often poorly rendered by general-purpose engines. This issue may limit game designers when imagining innovative and compelling video games and game mechanics. For this reason, we dug into the problem of appropriately representing soft bodies. Subsequently, we have extended the approach developed for soft bodies to rigid ones, proposing and developing a unified approach in a game engine: Sulfur. To test the engine, we have also designed and developed “Escape from Quaoar,” a prototypal video game whose main game mechanic exploits an elastic rope, and a level editor for the game.
Leonhard Euler and the mechanics of rigid bodies
Marquina, J. E.; Marquina, M. L.; Marquina, V.; Hernández-Gómez, J. J.
2017-01-01
In this work we present the original ideas and the construction of the rigid bodies theory realised by Leonhard Euler between 1738 and 1775. The number of treatises written by Euler on this subject is enormous, including the most notorious Scientia Navalis (1749), Decouverte d’un noveau principe de mecanique (1752), Du mouvement de rotation des corps solides autour d’un axe variable (1765), Theoria motus corporum solidorum seu rigidorum (1765) and Nova methodus motu corporum rigidorum determinandi (1776), in which he developed the ideas of the instantaneous rotation axis, the so-called Euler equations and angles, the components of what is now known as the inertia tensor, the principal axes of inertia, and, finally, the generalisation of the translation and rotation movement equations for any system. Euler, the man who ‘put most of mechanics into its modern form’ (Truesdell 1968 Essays in the History of Mechanics (Berlin: Springer) p 106).
Damageable contact between an elastic body and a rigid foundation
Campo, M.; Fernández, J. R.; Silva, A.
2009-02-01
In this work, the contact problem between an elastic body and a rigid obstacle is studied, including the development of material damage which results from internal compression or tension. The variational problem is formulated as a first-kind variational inequality for the displacements coupled with a parabolic partial differential equation for the damage field. The existence of a unique local weak solution is stated. Then, a fully discrete scheme is introduced using the finite element method to approximate the spatial variable and an Euler scheme to discretize the time derivatives. Error estimates are derived on the approximate solutions, from which the linear convergence of the algorithm is deduced under suitable regularity conditions. Finally, three two-dimensional numerical simulations are performed to demonstrate the accuracy and the behaviour of the scheme.
Sensing Movement: Microsensors for Body Motion Measurement
Directory of Open Access Journals (Sweden)
Hansong Zeng
2011-01-01
Full Text Available Recognition of body posture and motion is an important physiological function that can keep the body in balance. Man-made motion sensors have also been widely applied for a broad array of biomedical applications including diagnosis of balance disorders and evaluation of energy expenditure. This paper reviews the state-of-the-art sensing components utilized for body motion measurement. The anatomy and working principles of a natural body motion sensor, the human vestibular system, are first described. Various man-made inertial sensors are then elaborated based on their distinctive sensing mechanisms. In particular, both the conventional solid-state motion sensors and the emerging non solid-state motion sensors are depicted. With their lower cost and increased intelligence, man-made motion sensors are expected to play an increasingly important role in biomedical systems for basic research as well as clinical diagnostics.
International Nuclear Information System (INIS)
El-Gohary, Awad
2005-01-01
This paper considers the problem of optimal controlling of a programmed motion of a rigid spacecraft. Given a cost of the spacecraft as a quadratic function of state and control variables we seek for optimal control laws as functions of the state variables and the angle of programmed rotation that minimize this cost and asymptotically stabilize the required programmed motion. The stabilizing properties of the proposed controllers are proved using the optimal Liapunov techniques. Numerical simulation study is presented
On potential energies and constraints in the dynamics of rigid bodies and particles
Directory of Open Access Journals (Sweden)
O'reilly Oliver M.
2002-01-01
Full Text Available A new treatment of kinematical constraints and potential energies arising in the dynamics of systems of rigid bodies and particles is presented which is suited to Newtonian and Lagrangian formulations. Its novel feature is the imposing of invariance requirements on the constraint functions and potential energy functions. These requirements are extensively used in continuum mechanics and, in the present context, one finds certain generalizations of Newton's third law of motion and an elucidation of the nature of constraint forces and moments. One motivation for such a treatment can be found by considering approaches where invariance requirements are ignored. In contrast to the treatment presented in this paper, it is shown that this may lead to a difficulty in formulating the equations governing the motion of the system.
Control of fluid-containing rotating rigid bodies
Gurchenkov, Anatoly A
2013-01-01
This book is devoted to the study of the dynamics of rotating bodies with cavities containing liquid. Two basic classes of motions are analyzed: rotation and libration. Cases of complete and partial filling of cavities with ideal liquid and complete filling with viscous liquid are treated. The volume presents a method for obtaining relations between angular velocities perpendicular to main rotation and external force momentums, which are treated as control. The developed models and methods of solving dynamical problems as well as numerical methods for solving problems of optimal control can be
A batch Algorithm for Implicit Non-Rigid Shape and Motion Recovery
DEFF Research Database (Denmark)
Bartoli, Adrien; Olsen, Søren Ingvor
2005-01-01
The recovery of 3D shape and camera motion for non-rigid scenes from single-camera video footage is a very important problem in computer vision. The low-rank shape model consists in regarding the deformations as linear combinations of basis shapes. Most algorithms for reconstructing the parameters...... of this model along with camera motion are based on three main steps. Given point tracks and the rank, or equivalently the number of basis shapes, they factorize a measurement matrix containing all point tracks, from which the camera motion and basis shapes are extracted and refined in a bundle adjustment...
Perception of biological motion from size-invariant body representations
Directory of Open Access Journals (Sweden)
Markus eLappe
2015-03-01
Full Text Available The visual recognition of action is one of the socially most important and computationally demanding capacities of the human visual system. It combines visual shape recognition with complex non-rigid motion perception. Action presented as a point-light animation is a striking visual experience for anyone who sees it for the first time. Information about the shape and posture of the human body is sparse in point-light animations, but it is essential for action recognition. In the posturo-temporal filter model of biological motion perception posture information is picked up by visual neurons tuned to the form of the human body before body motion is calculated. We tested whether point-light stimuli are processed through posture recognition of the human body form by using a typical feature of form recognition, namely size invariance. We constructed a point-light stimulus that can only be perceived through a size-invariant mechanism. This stimulus changes rapidly in size from one image to the next. It thus disrupts continuity of early visuo-spatial properties but maintains continuity of the body posture representation. Despite this massive manipulation at the visuo-spatial level, size-changing point-light figures are spontaneously recognized by naive observers, and support discrimination of human body motion.
Simulating Dynamics of the System of Articulated Rigid Bodies with Joint Friction
Directory of Open Access Journals (Sweden)
M. V. Michaylyuk
2016-01-01
Full Text Available The subject of the work is to simulate dynamics of the system of articulated rigid bodies in the virtual environment complexes. The work aim is to develop algorithms and methods to simulate the multi-body system dynamics with joint friction to ensure all calculations in real time in line with visual realistic behavior of objects in a scene.The paper describes the multibody system based on a maximal set of coordinates, and to simulate the joint friction is used a Coulomb's law of dry friction. Joints are described using the holonomic constraints and their derivatives that specify the constraints on velocities of joined bodies. Based on The Coulomb’s law a correlation for the friction impulse values has been derived as an inequality. If the friction impulse performs a constraint that is a lack of relative motion of two joint-joined bodies, there is a static friction in the joint. Otherwise, there is a dynamic friction in the joint. Using a semi-implicit Euler method allows us to describe dynamics of articulated rigid bodies with joint friction as a system of linear algebraic equations and inequalities for the unknown velocities and impulse values.To solve the obtained system of equations and inequalities is used an iterative method of sequential impulses, which sequentially processes constraints for each joint with impulse calculation and its application to the joined bodies rather than considers the entire system. To improve the method convergence, at each iteration the calculated impulses are accumulated for their further using as an initial approximation at the next step of simulation.The proposed algorithms and methods have been implemented in the training complex dynamics subsystem, developed in SRISA RAS. Evaluation of these methods and algorithms has demonstrated their full adequacy to requirements for virtual environment systems and training complexes.
Dynamic Multi-Rigid-Body Systems with Concurrent Distributed Contacts: Theory and Examples
International Nuclear Information System (INIS)
TRINKLE, JEFFREY C.; TZITZOURIS, J.A.; PANG, J.S.
2001-01-01
Consider a system of rigid bodies with multiple concurrent contacts. The multi-rigid-body contact problem is to predict the accelerations of the bodies and the normal friction loads acting at the contacts. This paper presents theoretical results for the multi-rigid-body contact problem under the assumptions that one or more contacts occur over locally planar, finite regions and that friction forces are consistent with the maximum work inequality. Existence and uniqueness results are presented for this problem under mild assumptions on the system inputs. In addition, the performance of two different time-stepping methods for integrating the dynamics are compared on two simple multi-body systems
Circular relativistic motion of two identical bodies
International Nuclear Information System (INIS)
Shavokhina, N.S.
1983-01-01
Circular relativistic motion of two bodies as a solution of the earlier obtained equations with a deflecting argument where the self-deflection of the argument is an unknown function of time is considered. In case of circular motion the argument deflection is independent from time and it is the root of the transcendental equation obtained in the paper
Centralized Networks to Generate Human Body Motions.
Vakulenko, Sergei; Radulescu, Ovidiu; Morozov, Ivan; Weber, Andres
2017-12-14
We consider continuous-time recurrent neural networks as dynamical models for the simulation of human body motions. These networks consist of a few centers and many satellites connected to them. The centers evolve in time as periodical oscillators with different frequencies. The center states define the satellite neurons' states by a radial basis function (RBF) network. To simulate different motions, we adjust the parameters of the RBF networks. Our network includes a switching module that allows for turning from one motion to another. Simulations show that this model allows us to simulate complicated motions consisting of many different dynamical primitives. We also use the model for learning human body motion from markers' trajectories. We find that center frequencies can be learned from a small number of markers and can be transferred to other markers, such that our technique seems to be capable of correcting for missing information resulting from sparse control marker settings.
Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid
Ramodanov, Sergey M.; Tenenev, Valentin A.; Treschev, Dmitry V.
2012-11-01
We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are presented in the form of the Kirchhoff equations. The integrals of motion are given in the case of piecewise continuous control. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. Then an optimal control problem for several types of the inputs is solved using genetic algorithms.
Unsteady Transonic Flow Past Airfoils in Rigid Body Motion.
1981-03-01
number of lower surface coordinates. For ISYM = 1, NL = NU even thouqh no lower surface coordinates are given. NX The number of mesh cells in the...direction of the chord used at the start of the calculation. NX = 0 causes termination of the program. Ny The number of mesh cells in the direction normal...3) 4 LL SY’ieLL L.,C., .C7, li.,-l) CALL SYM L L (-.2 ,C., .14, £PILp., 2) CALL PLCT( C.,...,?) .ALL PLUT C , (I), 1CPCAL"IC (1, ),2) C L j NT1 NUE
National Research Council Canada - National Science Library
Greer, James
2002-01-01
This dissertation presents a systematic design methodology for directed product evolution that uses both rigid body and compliant mechanisms to facilitate component combination in the domain of mechanical products...
Almost-global tracking for a rigid body with internal rotors
Nayak, Aradhana; Banavar, Ravi N.
2017-01-01
Almost-global orientation trajectory tracking for a rigid body with external actuation has been well studied in the literature, and in the geometric setting as well. The tracking control law relies on the fact that a rigid body is a simple mechanical system (SMS) on the $3-$dimensional group of special orthogonal matrices. However, the problem of designing feedback control laws for tracking using internal actuation mechanisms, like rotors or control moment gyros, has received lesser attention...
open-quotes Metaclose quotes-rigid motions and frames of reference
International Nuclear Information System (INIS)
Bel, L.; Llosa, J.
1995-01-01
We define the open-quotes metaclose quotes-rigid motions as particular classes of time-like congruences which are solutions of intrinsically defined partial differential equations that generalize Born's conditions. We consider in particular two hierarchies of such congruences. The first one is a geometrically motivated direct generalization of the symmetry concept inherent in Born congruences. The second one is an indirect generalization based on the conditions which guarantee the existence of a particular class of adapted coordinates of space, named quo-harmonic coordinates, whose definition is akin to the definition of harmonic coordinates but which differs from it in an essential point
International Nuclear Information System (INIS)
Moon, Won Joo; Min, Oak Key; Kim, Yong Woo
1998-01-01
To improve the convergence and the accuracy of a finite element, the finite element has to describe not only displacement and stress distributions in a static analysis but also rigid body displacements. In this paper, we consider the in-plane-deformable curved beam element to understand the descriptive capability of rigid body displacements of a finite element. We derive the rigid body displacement fields of a single finite element under various essential boundary conditions when the nodal displacements are caused by the rigid body displacement. We also examine the rigid body displacement fields of a quadratic curved beam element by employing the reduced minimization theory
Hamiltonian Dynamics of Spider-Type Multirotor Rigid Bodies Systems
International Nuclear Information System (INIS)
Doroshin, Anton V.
2010-01-01
This paper sets out to develop a spider-type multiple-rotor system which can be used for attitude control of spacecraft. The multirotor system contains a large number of rotor-equipped rays, so it was called a 'Spider-type System', also it can be called 'Rotary Hedgehog'. These systems allow using spinups and captures of conjugate rotors to perform compound attitude motion of spacecraft. The paper describes a new method of spacecraft attitude reorientation and new mathematical model of motion in Hamilton form. Hamiltonian dynamics of the system is investigated with the help of Andoyer-Deprit canonical variables. These variables allow obtaining exact solution for hetero- and homoclinic orbits in phase space of the system motion, which are very important for qualitative analysis.
Body fixed frame, rigid gauge rotations and large N random fields in QCD
International Nuclear Information System (INIS)
Levit, S.
1995-01-01
The ''body fixed frame'' with respect to local gauge transformations is introduced. Rigid gauge ''rotations'' in QCD and their Schroedinger equation are studied for static and dynamic quarks. Possible choices of the rigid gauge field configuration corresponding to a non-vanishing static colormagnetic field in the ''body fixed'' frame are discussed. A gauge invariant variational equation is derived in this frame. For large number N of colors the rigid gauge field configuration is regarded as random with maximally random probability distribution under constraints on macroscopic-like quantities. For the uniform magnetic field the joint probability distribution of the field components is determined by maximizing the appropriate entropy under the area law constraint for the Wilson loop. In the quark sector the gauge invariance requires the rigid gauge field configuration to appear not only as a background but also as inducing an instantaneous quark-quark interaction. Both are random in the large N limit. (orig.)
Stretch sensors for human body motion
O'Brien, Ben; Gisby, Todd; Anderson, Iain A.
2014-03-01
Sensing motion of the human body is a difficult task. From an engineers' perspective people are soft highly mobile objects that move in and out of complex environments. As well as the technical challenge of sensing, concepts such as comfort, social intrusion, usability, and aesthetics are paramount in determining whether someone will adopt a sensing solution or not. At the same time the demands for human body motion sensing are growing fast. Athletes want feedback on posture and technique, consumers need new ways to interact with augmented reality devices, and healthcare providers wish to track recovery of a patient. Dielectric elastomer stretch sensors are ideal for bridging this gap. They are soft, flexible, and precise. They are low power, lightweight, and can be easily mounted on the body or embedded into clothing. From a commercialisation point of view stretch sensing is easier than actuation or generation - such sensors can be low voltage and integrated with conventional microelectronics. This paper takes a birds-eye view of the use of these sensors to measure human body motion. A holistic description of sensor operation and guidelines for sensor design will be presented to help technologists and developers in the space.
Distinct neural mechanisms for body form and body motion discriminations
Vangeneugden, Joris; Peelen, Marius V; Tadin, Duje; Battelli, Lorella
2014-01-01
Actions can be understood based on form cues (e.g., static body posture) as well as motion cues (e.g., gait patterns). A fundamental debate centers on the question of whether the functional and neural mechanisms processing these two types of cues are dissociable. Here, using fMRI, psychophysics, and
Simulation Methods in the Contact with Impact of Rigid Bodies
Directory of Open Access Journals (Sweden)
Cristina Basarabă-Opritescu
2007-10-01
Full Text Available The analysis of impacts of elastic bodies is topical and it has many applications, practical and theoretical, too. The elastic character of collision is put in evidence, especially by the velocities of some parts of a particular body, named “ring”. In the presented paper, the situation of elastic collisions is put in evidence by the simulation with the help of the program ANSYS and it refers to the particular case of the ring, with the mechanical characteristics, given in the paper
Computing the Free Energy along a Reaction Coordinate Using Rigid Body Dynamics.
Tao, Peng; Sodt, Alexander J; Shao, Yihan; König, Gerhard; Brooks, Bernard R
2014-10-14
The calculations of potential of mean force along complex chemical reactions or rare events pathways are of great interest because of their importance for many areas in chemistry, molecular biology, and material science. The major difficulty for free energy calculations comes from the great computational cost for adequate sampling of the system in high-energy regions, especially close to the reaction transition state. Here, we present a method, called FEG-RBD, in which the free energy gradients were obtained from rigid body dynamics simulations. Then the free energy gradients were integrated along a reference reaction pathway to calculate free energy profiles. In a given system, the reaction coordinates defining a subset of atoms (e.g., a solute, or the quantum mechanics (QM) region of a quantum mechanics/molecular mechanics simulation) are selected to form a rigid body during the simulation. The first-order derivatives (gradients) of the free energy with respect to the reaction coordinates are obtained through the integration of constraint forces within the rigid body. Each structure along the reference reaction path is separately subjected to such a rigid body simulation. The individual free energy gradients are integrated along the reference pathway to obtain the free energy profile. Test cases provided demonstrate both the strengths and weaknesses of the FEG-RBD method. The most significant benefit of this method comes from the fast convergence rate of the free energy gradient using rigid-body constraints instead of restraints. A correction to the free energy due to approximate relaxation of the rigid-body constraint is estimated and discussed. A comparison with umbrella sampling using a simple test case revealed the improved sampling efficiency of FEG-RBD by a factor of 4 on average. The enhanced efficiency makes this method effective for calculating the free energy of complex chemical reactions when the reaction coordinate can be unambiguously defined by a
International Nuclear Information System (INIS)
Ahn, Byungseong; Kim, Suh In; Kim, Yoon Young
2016-01-01
When a system consisting of rigid and flexible bodies is optimized to improve its dynamic characteristics, its eigenfrequencies are typically maximized. While topology optimization formulations dealing with simultaneous design of a system of rigid and flexible bodies are available, studies on eigenvalue maximization of the system are rare. In particular, no work has solved for the case when the target frequency becomes one of the repeated eigenfrequencies. The problem involving repeated eigenfrequencies is solved in this study, and a topology optimization formulation and sensitivity analysis are presented. Further, several numerical case studies are considered to demonstrate the validity of the proposed formulation
Etier, Brian E.; Norte, Grant E.; Gleason, Megan M.; Richter, Dustin L.; Pugh, Kelli F.; Thomson, Keith B.; Slater, Lindsay V.; Hart, Joe M.; Brockmeier, Stephen F.; Diduch, David R.
2017-01-01
Background: The National Athletic Trainers’ Association (NATA) advocates for cervical spine immobilization on a rigid board or vacuum splint and for removal of athletic equipment before transfer to an emergency medical facility. Purpose: To (1) compare triplanar cervical spine motion using motion capture between a traditional rigid spine board and a full-body vacuum splint in equipped and unequipped athletes, (2) assess cervical spine motion during the removal of a football helmet and shoulde...
Patel, Jitendra Kumar; Natarajan, Ganesh
2018-05-01
We present an interpolation-free diffuse interface immersed boundary method for multiphase flows with moving bodies. A single fluid formalism using the volume-of-fluid approach is adopted to handle multiple immiscible fluids which are distinguished using the volume fractions, while the rigid bodies are tracked using an analogous volume-of-solid approach that solves for the solid fractions. The solution to the fluid flow equations are carried out using a finite volume-immersed boundary method, with the latter based on a diffuse interface philosophy. In the present work, we assume that the solids are filled with a "virtual" fluid with density and viscosity equal to the largest among all fluids in the domain. The solids are assumed to be rigid and their motion is solved using Newton's second law of motion. The immersed boundary methodology constructs a modified momentum equation that reduces to the Navier-Stokes equations in the fully fluid region and recovers the no-slip boundary condition inside the solids. An implicit incremental fractional-step methodology in conjunction with a novel hybrid staggered/non-staggered approach is employed, wherein a single equation for normal momentum at the cell faces is solved everywhere in the domain, independent of the number of spatial dimensions. The scalars are all solved for at the cell centres, with the transport equations for solid and fluid volume fractions solved using a high-resolution scheme. The pressure is determined everywhere in the domain (including inside the solids) using a variable coefficient Poisson equation. The solution to momentum, pressure, solid and fluid volume fraction equations everywhere in the domain circumvents the issue of pressure and velocity interpolation, which is a source of spurious oscillations in sharp interface immersed boundary methods. A well-balanced algorithm with consistent mass/momentum transport ensures robust simulations of high density ratio flows with strong body forces. The
MOSHFIT: algorithms for occlusion-tolerant mean shape and rigid motion from 3D movement data.
Mitchelson, Joel R
2013-09-03
This work addresses the use of 3D point data to measure rigid motions, in the presence of occlusion and without reference to a prior model of relative point locations. This is a problem where cluster-based measurement techniques are used (e.g. for measuring limb movements) and no static calibration trial is available. The same problem arises when performing the task known as roving capture, in which a mobile 3D movement analysis system is moved through a volume with static markers in unknown locations and the ego-motion of the system is required in order to understand biomechanical activity in the environment. To provide a solution for both of these applications, the new concept of a visibility graph is introduced, and is combined with a generalised procrustes method adapted from ones used by the biological shape statistics and computer graphics communities. Recent results on shape space manifolds are applied to show sufficient conditions for convergence to unique solution. Algorithm source code is available and referenced here. Processing speed and rate of convergence are demonstrated using simulated data. Positional and angular accuracy are shown to be equivalent to approaches which require full calibration, to within a small fraction of input resolution. Typical processing times for sub-micron convergence are found to be fractions of a second, so the method is suitable for workflows where there may be time pressure such as in sports science and clinical analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Inertia effects on the rigid displacement approximation of tokamak plasma vertical motion
International Nuclear Information System (INIS)
Carrera, R.; Khayrutdinov, R.R.; Azizov, E.A.; Montalvo, E.; Dong, J.Q.
1991-01-01
Elongated plasmas in tokamaks are unstable to axisymmetric vertical displacements. The vacuum vessel and passive conductors can stabilize the plasma motion in the short time scale. For stabilization of the plasma movement in the long time scale an active feedback control system is required. A widely used method of plasma stability analysis uses the Rigid Displacement Model (RDM) of plasma behavior. In the RDM it is assumed that the plasma displacement is small and usually plasma inertia effects are neglected. In addition, it is considered that no changes in plasma shape, plasma current, and plasma current profile take place throughout the plasma motion. It has been demonstrated that the massless-filament approximation (instantaneous force-balance) accurately reproduces the unstable root of the passive stabilization problem. Then, on the basis that the instantaneous force-balance approximation is correct in the passive stabilization analysis, the massless approximation is utilized also in the study of the plasma vertical stabilization by active feedback. The authors show here that the RDM (without mass effects included) does not provide correct stability results for a tokamak configuration (plasma column, passive conductors, and feedback control coils). Therefore, it is concluded that inertia effects have to be retained in the RDM system of equations. It is shown analytically and numerically that stability diagrams with and without plasma-mass corrections differ significantly. When inertia effects are included, the stability region is more restricted than obtained in the massless approximation
DEFF Research Database (Denmark)
Nielsen, Martin Bjerre; Krenk, Steen
2012-01-01
A conservative time integration algorithm for rigid body rotations is presented in a purely algebraic form in terms of the four quaternions components and the four conjugate momentum variables via Hamilton’s equations. The introduction of an extended mass matrix leads to a symmetric set of eight...
Rigid Body Time Integration by Convected Base Vectors with Implicit Constraints
DEFF Research Database (Denmark)
Krenk, Steen; Nielsen, Martin Bjerre
2013-01-01
of the kinetic energy used in the present formulation is deliberately chosen to correspond to a rigid body rotation, and the orthonormality constraints are introduced via the equivalent Green strain components of the base vectors. The particular form of the extended inertia tensor used here implies a set...
A rigid-body least-squares program with angular and translation scan facilities
Kutschabsky, L
1981-01-01
The described computer program, written in CERN Fortran, is designed to enlarge the convergence radius of the rigid-body least-squares method by allowing a stepwise change of the angular and/or translational parameters within a chosen range. (6 refs).
Diffusion-accomodated rigid-body translations along grain boundaries in nanostructured materials
International Nuclear Information System (INIS)
Bachurin, D.V.; Nazarov, A.A.; Shenderova, O.A.; Brenner, D.W.
2003-01-01
A model for the structural relaxation of grain boundaries (GBs) in nanostructured materials (NSMs) by diffusion-accommodated rigid body translations along GBs is proposed. The model is based on the results of recent computer simulations that have demonstrated that the GBs in NSMs retain a high-energy structure with random translational states due to severe geometrical constraints applied from neighboring grains (J. Appl. Phys. 78 (1995) 847; Scripta Metall. Mater. 33 (1995) 1245). The shear stresses within a GB caused by non-optimized rigid-body translations (RBTs) can be accommodated by diffusive flow of atoms along a GB. This mechanism is particularly important for low-angle and vicinal GBs, the energy of which noticeably depends on the rigid body translations. At moderate and high temperatures the model yields relaxation times that are very short and therefore GBs in NSMs can attain an equilibrium structure with optimized rigid body translations. In contrast, at room temperature the model predicts that in some metals non-equilibrium structures can be preserved for a long time, which may result in the observation of grain boundary structures different from those in coarse grained polycrystals
Flutter Instability of a Fluid-Conveying Fluid-Immersed Pipe Affixed to a Rigid Body
2011-01-01
rigid body, denoted by y in Fig. 4, is small. This is in addition to the Euler– Bernoulli beam assumption that the slope of the tail is small everywhere...here. These include the efficiency with which the prime mover can generate fluid momentum , pipe losses, and external drag acting on both the hull and the
On the relative rotational motion between rigid fibers and fluid in turbulent channel flow
Energy Technology Data Exchange (ETDEWEB)
Marchioli, C. [Department of Electrical, Management and Mechanical Engineering, University of Udine, 33100 Udine (Italy); Zhao, L., E-mail: lihao.zhao@ntnu.no [Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Andersson, H. I. [Department of Electrical, Management and Mechanical Engineering, University of Udine, 33100 Udine (Italy); Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway)
2016-01-15
In this study, the rotation of small rigid fibers relative to the surrounding fluid in wall-bounded turbulence is examined by means of direct numerical simulations coupled with Lagrangian tracking. Statistics of the relative (fiber-to-fluid) angular velocity, referred to as slip spin in the present study, are evaluated by modelling fibers as prolate spheroidal particles with Stokes number, St, ranging from 1 to 100 and aspect ratio, λ, ranging from 3 to 50. Results are compared one-to-one with those obtained for spherical particles (λ = 1) to highlight effects due to fiber length. The statistical moments of the slip spin show that differences in the rotation rate of fibers and fluid are influenced by inertia, but depend strongly also on fiber length: Departures from the spherical shape, even when small, are associated with an increase of rotational inertia and prevent fibers from passively following the surrounding fluid. An increase of fiber length, in addition, decouples the rotational dynamics of a fiber from its translational dynamics suggesting that the two motions can be modelled independently only for long enough fibers (e.g., for aspect ratios of order ten or higher in the present simulations)
The Motion Of A Deformable Body In - Bounded Fluid
International Nuclear Information System (INIS)
Galpert, A.R.; Miloh, T.
1998-01-01
The Hamiltonian formalism for the motion of a deformable body in an inviscid irrotational fluid is generalized for the case of the motion in a bounded fluid. We found that the presence of the boundaries in a liquid leads to the chaotization of the body's motion. The ('memory' effect connected with a free surface boundary condition is also accounted for
Directory of Open Access Journals (Sweden)
Svetoslav Ganchev Nikolov
2015-07-01
Full Text Available The study of the dynamic behavior of a rigid body with one fixed point (gyroscope has a long history. A number of famous mathematicians and mechanical engineers have devoted enormous time and effort to clarify the role of dynamic effects on its movement (behavior – stable, periodic, quasi-periodic or chaotic. The main objectives of this review are: 1 to outline the characteristic features of the theory of dynamical systems and 2 to reveal the specific properties of the motion of a rigid body with one fixed point (gyroscope.This article consists of six sections. The first section addresses the main concepts of the theory of dynamical systems. Section two presents the main theoretical results (obtained so far concerning the dynamic behavior of a solid with one fixed point (gyroscope. Section three examines the problem of gyroscopic stabilization. Section four deals with the non-linear (chaotic dynamics of the gyroscope. Section five is a brief analysis of the gyroscope applications in engineering. The final section provides conclusions and generalizations on why the theory of dynamical systems should be used in the study of the movement of gyroscopic systems.
Thaler, Lore; Todd, James T; Spering, Miriam; Gegenfurtner, Karl R
2007-04-20
Four experiments in which observers judged the apparent "rubberiness" of a line segment undergoing different types of rigid motion are reported. The results reveal that observers perceive illusory bending when the motion involves certain combinations of translational and rotational components and that the illusion is maximized when these components are presented at a frequency of approximately 3 Hz with a relative phase angle of approximately 120 degrees . Smooth pursuit eye movements can amplify or attenuate the illusion, which is consistent with other results reported in the literature that show effects of eye movements on perceived image motion. The illusion is unaffected by background motion that is in counterphase with the motion of the line segment but is significantly attenuated by background motion that is in-phase. This is consistent with the idea that human observers integrate motion signals within a local frame of reference, and it provides strong evidence that visual persistency cannot be the sole cause of the illusion as was suggested by J. R. Pomerantz (1983). An analysis of the motion patterns suggests that the illusory bending motion may be due to an inability of observers to accurately track the motions of features whose image displacements undergo rapid simultaneous changes in both space and time. A measure of these changes is presented, which is highly correlated with observers' numerical ratings of rubberiness.
On the monoaxial stabilization of a rigid body under vanishing restoring torque
Aleksandrov, A. Yu.; Aleksandrova, E. B.; Tikhonov, A. A.
2018-05-01
The problem of monoaxial stabilization of a rigid body is studied. It is assumed that a linear time-invariant dissipative torque and a time-varying restoring torque vanishing as time increases act on the body. Both the case of linear restoring torque and that of essentially nonlinear one are considered. With the aid of the decomposition method, conditions are obtained under which we can guarantee the asymptotic stability of an equilibrium position of the body despite the vanishing of the restoring torque. A numerical simulation is provided to demonstrate the effectiveness of our theoretical results.
Efficient time-symmetric simulation of torqued rigid bodies using Jacobi elliptic functions
International Nuclear Information System (INIS)
Celledoni, E; Saefstroem, N
2006-01-01
If the three moments of inertia are distinct, the solution to the Euler equations for the free rigid body is given in terms of Jacobi elliptic functions. Using the arithmetic-geometric mean algorithm (Abramowitz and Stegun 1992 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover)), these functions can be calculated efficiently and accurately. Compared to standard numerical ODE and Lie-Poisson solvers, the overall approach yields a faster and more accurate numerical solution to the Euler equations. This approach is designed for mass asymmetric rigid bodies. In the case of symmetric bodies, the exact solution is available in terms of trigonometric functions, see Dullweber et al (1997 J. Chem. Phys. 107 5840-51), Reich (1996 Fields Inst. Commun. 10 181-91) and Benettin et al (2001 SIAM J. Sci. Comp. 23 1189-203) for details. In this paper, we consider the case of asymmetric rigid bodies subject to external forces. We consider a strategy similar to the symplectic splitting method proposed in Reich (1996 Fields Inst. Commun. 10 181-91) and Dullweber et al (1997 J. Chem. Phys. 107 5840-51). The method proposed here is time-symmetric. We decompose the vector field of our problem into a free rigid body (FRB) problem and another completely integrable vector field. The FRB problem consists of the Euler equations and a differential equation for the 3 x 3 orientation matrix. The Euler equations are integrated exactly while the matrix equation is approximated using a truncated Magnus series. In our experiments, we observe that the overall numerical solution benefits greatly from the very accurate solution of the Euler equations. We apply the method to the heavy top and the simulation of artificial satellite attitude dynamics
Knowledge-in-action: a study on the integration of forces and energy in a rigid body
Directory of Open Access Journals (Sweden)
Consuelo Escudero
2009-03-01
Full Text Available This paper intends to go on with the study of problem solving in a compatible way with the theories of conceptual fields (TCC of Vergnaud (1990,1994,1998 and mental models of Johnson-Laird (1983,1990. Together with findings of another study (Escudero & Jaime 2007, some achievements and difficulties of freshmore engineering students when solving problems of the motion of rigid body in terms of the knowledge-in-action are analysed. The research methodology under a qualitative paradigm grouped data into categories which are not provided a priori by the theoretical framework. It can be said that the quality of the conceptual representation has been explicit in the quality of the proposed solution. Some meanings introduced by students in their problem solving activities can be characterized as operational invariants.
Contact point generation for convex polytopes in interactive rigid body dynamics
DEFF Research Database (Denmark)
Silcowitz-Hansen, Morten; Abel, Sarah Maria Niebe; Erleben, Kenny
When computing contact forces in rigid body dynamics systems, most state-of-the-art solutions use iterative methods such as the projected Gauss–Seidel (PGS) method. Methods such as the PGS method are preferred for their robustness. However, the time-critical nature of interactive applications...... combined with the linear convergence rates of such methods, will often result in visual artifacts in the final simulation. With this paper, we address an issue which is of major impact on the animation quality, when using methods such as the PGS method. The issue is robust generation of contact points...... for convex polytopes. A novel contact point generation method is presented, which is based on growth distances and Gauss maps. We demonstrate improvements when using our method in the context of interactive rigid body simulation...
Topological classification of the Goryachev integrable case in rigid body dynamics
International Nuclear Information System (INIS)
Nikolaenko, S S
2016-01-01
A topological analysis of the Goryachev integrable case in rigid body dynamics is made on the basis of the Fomenko-Zieschang theory. The invariants (marked molecules) which are obtained give a complete description, from the standpoint of Liouville classification, of the systems of Goryachev type on various level sets of the energy. It turns out that on appropriate energy levels the Goryachev case is Liouville equivalent to many classical integrable systems and, in particular, the Joukowski, Clebsch, Sokolov and Kovalevskaya-Yehia cases in rigid body dynamics, as well as to some integrable billiards in plane domains bounded by confocal quadrics -- in other words, the foliations given by the closures of generic solutions of these systems have the same structure. Bibliography: 15 titles
Rigid-body displacement perpendicular to a {211} twin boundary in Mo
Czech Academy of Sciences Publication Activity Database
Gemperlová, Juliana; Vystavěl, Tomáš; Gemperle, Antonín; Pénisson, J. M.
2001-01-01
Roč. 31, č. 11 (2001), s. 1767-1778 ISSN 0141-8637 R&D Projects: GA AV ČR IAA1010916; GA ČR GA202/99/1665 Institutional research plan: CEZ:AV0Z1010914 Keywords : sigma=3 Mo bicrystal * rigid-body displacement * alfa- fringe method Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.238, year: 2001
DEFF Research Database (Denmark)
Sönmez, Ümit; Tutum, Cem Celal
2008-01-01
In this work, a new compliant bistable mechanism design is introduced. The combined use of pseudo-rigid-body model (PRBM) and the Elastica buckling theory is presented for the first time to analyze the new design. This mechanism consists of the large deflecting straight beams, buckling beams...... and the buckling Elastica solution for an original compliant mechanism kinematic analysis. New compliant mechanism designs are presented to highlight where such combined kinematic analysis is required....
Whole-body intravoxel incoherent motion imaging
Energy Technology Data Exchange (ETDEWEB)
Filli, Lukas; Wurnig, Moritz C.; Eberhardt, Christian; Guggenberger, Roman; Boss, Andreas [University Hospital Zurich, Department of Radiology, Zurich (Switzerland); Luechinger, Roger [University and ETH Zurich, Institute of Biomedical Technology, Zurich (Switzerland)
2015-07-15
To investigate the technical feasibility of whole-body intravoxel incoherent motion (IVIM) imaging. Whole-body MR images of eight healthy volunteers were acquired at 3T using a spin-echo echo-planar imaging sequence with eight b-values. Coronal parametrical whole-body maps of diffusion (D), pseudodiffusion (D*), and the perfusion fraction (F{sub p}) were calculated. Image quality was rated qualitatively by two independent radiologists, and inter-reader reliability was tested with intra-class correlation coefficients (ICCs). Region of interest (ROI) analysis was performed in the brain, liver, kidney, and erector spinae muscle. Depiction of anatomic structures was rated as good on D maps and good to fair on D* and F{sub p} maps. Exemplary mean D (10{sup -3} mm{sup 2}/s), D* (10{sup -3} mm{sup 2}/s) and F{sub p} (%) values (± standard deviation) of the renal cortex were as follows: 1.7 ± 0.2; 15.6 ± 6.5; 20.9 ± 4.4. Inter-observer agreement was ''substantial'' to ''almost perfect'' (ICC = 0.80 - 0.92). The coefficient of variation of D* was significantly lower with the proposed algorithm compared to the conventional algorithm (p < 0.001), indicating higher stability. The proposed IVIM protocol allows computation of parametrical maps with good to fair image quality. Potential future clinical applications may include characterization of widespread disease such as metastatic tumours or inflammatory myopathies. (orig.)
Pitching motion control of a butterfly-like 3D flapping wing-body model
Suzuki, Kosuke; Minami, Keisuke; Inamuro, Takaji
2014-11-01
Free flights and a pitching motion control of a butterfly-like flapping wing-body model are numerically investigated by using an immersed boundary-lattice Boltzmann method. The model flaps downward for generating the lift force and backward for generating the thrust force. Although the model can go upward against the gravity by the generated lift force, the model generates the nose-up torque, consequently gets off-balance. In this study, we discuss a way to control the pitching motion by flexing the body of the wing-body model like an actual butterfly. The body of the model is composed of two straight rigid rod connected by a rotary actuator. It is found that the pitching angle is suppressed in the range of +/-5° by using the proportional-plus-integral-plus-derivative (PID) control for the input torque of the rotary actuator.
International Nuclear Information System (INIS)
Guan, P B; Tingatinga, E A; Longalong, R E; Saguid, J
2016-01-01
During the past decades, the complexity of conventional methods to perform seismic performance assessment of buildings led to the development of more effective approaches. The rigid body spring-discrete element method (RBS-DEM) is one of these approaches and has recently been applied to the study of the behavior of reinforced concrete (RC) buildings subjected to strong earthquakes. In this paper, the governing equations of RBS-DEM planar elements subjected to lateral loads and horizontal ground motion are presented and used to replicate the hysteretic behavior of experimental RC columns. The RBS-DEM models of columns are made up of rigid components connected by systems of springs that simulate axial, shear, and bending behavior of an RC section. The parameters of springs were obtained using Response-2000 software and the hysteretic response of the models of select columns from the Pacific Earthquake Engineering Research (PEER) Structural Performance Database were computed numerically. Numerical examples show that one-component models were able to simulate the initial stiffness reasonably, while the displacement capacity of actual columns undergoing large displacements were underestimated. (paper)
Wobbling motion: A γ-rigid or γ-soft mode?
International Nuclear Information System (INIS)
Casten, R.F.; McCutchan, E.A.; Beausang, C.W.; Zamfir, N.V.; Zhang Jingye
2003-01-01
For even-even nuclei, it is shown that the predicted B(E2) values from the odd spin states of the quasi-γ band in a γ-soft nucleus to the yrast band are quite similar to those predicted for the one-phonon wobbling mode of a rigidly triaxial nucleus. This suggests that the observation of wobbling points to axial asymmetry, but not necessarily to rigid triaxiality. However, another observable that does distinguish γ-soft from γ-rigid structure is identified
Njoroge, M. W.; Malservisi, R.; Hugentobler, U.; Mokhtari, M.; Voytenko, D.
2014-12-01
Plate rigidity is one of the main paradigms of plate tectonics and a fundamental assumption in the definition of a global reference frame as ITRF. Although still far for optimal, the increased GPS instrumentation of the African region can allow us to understand how rigid one of the major plate can be. The presence of diffused band of seismicity, the Cameroon volcanic line, Pan African Kalahari orogenic belt and East Africa Rift suggest the possibility of relative motion among the different regions within the Nubia. The study focuses on the rigidity of Nubia plate. We divide the plate into three regions: Western (West Africa craton plus Nigeria), Central (approximately the region of the Congo craton) and Southern (Kalahari craton plus South Africa) and we utilize Euler Vector formulation to study internal rigidity and eventual relative motion. Developing five different reference frames with different combinations of the 3 regions, we try to understand the presence of the relative motion between the 3 cratons thus the stability of the Nubia plate as a whole. All available GPS stations from the regions are used separately or combined in creation of the reference frames. We utilize continuous stations with at least 2.5 years of data between 1994 and 2014. Given the small relative velocity, it is important to eliminate eventual biases in the analysis and to have a good estimation in the uncertainties of the observed velocities. For this reason we perform our analysis using both Bernese and Gipsy-oasis codes to generate time series for each station. Velocities and relative uncertainties are analyzed using the Allan variance of rate technique, taking in account for colored noise. An analysis of the color of the noise as function of latitude and climatic region is also performed to each time series. Preliminary results indicate a slight counter clockwise motion of West Africa craton with respect to South Africa Kalahari, and South Africa Kalahari-Congo Cratons. In addition
National Research Council Canada - National Science Library
Chu, Peter C; Fan, Chenwu; Gefken, Paul R
2008-01-01
Prediction of rigid body falling through water column with a high speed (such as Mk-84 bomb) needs formulas for drag/lift and torque coefficients, which depend on various physical processes such as supercavitation and bubbles...
Etier, Brian E; Norte, Grant E; Gleason, Megan M; Richter, Dustin L; Pugh, Kelli F; Thomson, Keith B; Slater, Lindsay V; Hart, Joe M; Brockmeier, Stephen F; Diduch, David R
2017-12-01
The National Athletic Trainers' Association (NATA) advocates for cervical spine immobilization on a rigid board or vacuum splint and for removal of athletic equipment before transfer to an emergency medical facility. To (1) compare triplanar cervical spine motion using motion capture between a traditional rigid spine board and a full-body vacuum splint in equipped and unequipped athletes, (2) assess cervical spine motion during the removal of a football helmet and shoulder pads, and (3) evaluate the effect of body mass on cervical spine motion. Controlled laboratory study. Twenty healthy male participants volunteered for this study to examine the influence of immobilization type and presence of equipment on triplanar angular cervical spine motion. Three-dimensional cervical spine kinematics was measured using an electromagnetic motion analysis system. Independent variables included testing condition (static lift and hold, 30° tilt, transfer, equipment removal), immobilization type (rigid, vacuum-mattress), and equipment (on, off). Peak sagittal-, frontal-, and transverse-plane angular motions were the primary outcome measures of interest. Subjective ratings of comfort and security did not differ between immobilization types ( P > .05). Motion between the rigid board and vacuum splint did not differ by more than 2° under any testing condition, either with or without equipment. In removing equipment, the mean peak motion ranged from 12.5° to 14.0° for the rigid spine board and from 11.4° to 15.4° for the vacuum-mattress splint, and more transverse-plane motion occurred when using the vacuum-mattress splint compared with the rigid spine board (mean difference, 0.14 deg/s [95% CI, 0.05-0.23 deg/s]; P = .002). In patients weighing more than 250 lb, the rigid board provided less motion in the frontal plane ( P = .027) and sagittal plane ( P = .030) during the tilt condition and transfer condition, respectively. The current study confirms similar motion in the
Equilibria of the three-body problem with rigid dumb-bell satellite
International Nuclear Information System (INIS)
Elipe, A.; Palacios, M.; Pretka-Ziomek, H.
2008-01-01
This paper is concerned with the orbital-rotational motion of an asymmetric dumb-bell (two masses with fixed distance among them) under the attraction of a central body. For this model, we find some equilibria and give sufficient conditions for their stability
Dynamic Behavior of Wind Turbine by a Mixed Flexible-Rigid Multi-Body Model
Wang, Jianhong; Qin, Datong; Ding, Yi
A mixed flexible-rigid multi-body model is presented to study the dynamic behavior of a horizontal axis wind turbine. The special attention is given to flexible body: flexible rotor is modeled by a newly developed blade finite element, support bearing elasticities, variations in the number of teeth in contact as well as contact tooth's elasticities are mainly flexible components in the power train. The couple conditions between different subsystems are established by constraint equations. The wind turbine model is generated by coupling models of rotor, power train and generator with constraint equations together. Based on this model, an eigenproblem analysis is carried out to show the mode shape of rotor and power train at a few natural frequencies. The dynamic responses and contact forces among gears under constant wind speed and fixed pitch angle are analyzed.
International Nuclear Information System (INIS)
Unseren, M.A.
1997-01-01
The paper reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restrict the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system
Energy Technology Data Exchange (ETDEWEB)
Unseren, M.A.
1997-04-20
The paper reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restrict the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.
On the axioms of the forces in the mechanics of rigid bodies
Directory of Open Access Journals (Sweden)
Lámer Géza
2017-01-01
Full Text Available Newton summarised knowledge related to forces in three axioms. The first and second ones define the mechanical state and motion of the examined body when there is no force or when force is exerted on the body. The third defines the law of action and reaction. Newton did not define it as separate axiom but assumed that forces are completely independent from each other. The statics applies four axioms. The first applies to the balance of two forces while the second one applies of three forces. The third axiom defines the relationships inside an equilibrium force system. The fourth one is the axiom of action and reaction. The two axiom systems are independent from each other. Further the independent axioms are applied in case of constraint forces: frictionless reaction force orthogonal on the forced surface, friction force acts in the direction of the motion, the deformation can be elastic, plastic and viscous.
Constrained non-rigid registration for whole body image registration: method and validation
Li, Xia; Yankeelov, Thomas E.; Peterson, Todd E.; Gore, John C.; Dawant, Benoit M.
2007-03-01
3D intra- and inter-subject registration of image volumes is important for tasks that include measurements and quantification of temporal/longitudinal changes, atlas-based segmentation, deriving population averages, or voxel and tensor-based morphometry. A number of methods have been proposed to tackle this problem but few of them have focused on the problem of registering whole body image volumes acquired either from humans or small animals. These image volumes typically contain a large number of articulated structures, which makes registration more difficult than the registration of head images, to which the vast majority of registration algorithms have been applied. To solve this problem, we have previously proposed an approach, which initializes an intensity-based non-rigid registration algorithm with a point based registration technique [1, 2]. In this paper, we introduce new constraints into our non-rigid registration algorithm to prevent the bones from being deformed inaccurately. Results we have obtained show that the new constrained algorithm leads to better registration results than the previous one.
In silico single-molecule manipulation of DNA with rigid body dynamics.
Directory of Open Access Journals (Sweden)
Pascal Carrivain
2014-02-01
Full Text Available We develop a new powerful method to reproduce in silico single-molecule manipulation experiments. We demonstrate that flexible polymers such as DNA can be simulated using rigid body dynamics thanks to an original implementation of Langevin dynamics in an open source library called Open Dynamics Engine. We moreover implement a global thermostat which accelerates the simulation sampling by two orders of magnitude. We reproduce force-extension as well as rotation-extension curves of reference experimental studies. Finally, we extend the model to simulations where the control parameter is no longer the torsional strain but instead the torque, and predict the expected behavior for this case which is particularly challenging theoretically and experimentally.
Khmurovska, Y.; Štemberk, P.; Křístek, V.
2017-09-01
This paper presents a numerical investigation of effectiveness of using engineered cementitious composites with polyvinyl alcohol fibers for concrete cover layer repair. A numerical model of a monolithic concaved L-shaped concrete structural detail which is strengthened with an engineered cementitious composite layer with polyvinyl alcohol fibers is created and loaded with bending moment. The numerical analysis employs nonlinear 3-D Rigid-Body-Spring Model. The proposed material model shows reliable results and can be used in further studies. The engineered cementitious composite shows extremely good performance in tension due to the strain-hardening effect. Since durability of the bond can be decreased significantly by its degradation due to the thermal loading, this effect should be also taken into account in the future work, as well as the experimental investigation, which should be performed for validation of the proposed numerical model.
Motion of a Rigid Rod Rocking Back and Forth Cubic-Quintic Duffing Oscillators
DEFF Research Database (Denmark)
Ganji, S. S.; Barari, Amin; Karimpour, S.
2012-01-01
In this work, we implemented the first-order approximation of the Iteration Perturbation Method (IPM) for approximating the behavior of a rigid rod rocking back and forth on a circular surface without slipping as well as Cubic-Quintic Duffing Oscillators. Comparing the results with the exact...... solution, has led us to significant consequences. The results reveal that the IPM is very effective, simple and convenient to systems of nonlinear equations. It is predicted that IPM can be utilized as a widely applicable approach in engineering....
Biodynamics of deformable human body motion
Strauss, A. M.; Huston, R. L.
1976-01-01
The objective is to construct a framework wherein the various models of human biomaterials fit in order to describe the biodynamic response of the human body. The behavior of the human body in various situations, from low frequency, low amplitude vibrations to impact loadings in automobile and aircraft crashes, is very complicated with respect to all aspects of the problem: materials, geometry and dynamics. The materials problem is the primary concern, but the materials problem is intimately connected with geometry and dynamics.
Free Energy Landscapes of Alanine Oligopeptides in Rigid-Body and Hybrid Water Models.
Nayar, Divya; Chakravarty, Charusita
2015-08-27
Replica exchange molecular dynamics is used to study the effect of different rigid-body (mTIP3P, TIP4P, SPC/E) and hybrid (H1.56, H3.00) water models on the conformational free energy landscape of the alanine oligopeptides (acAnme and acA5nme), in conjunction with the CHARMM22 force field. The free energy landscape is mapped out as a function of the Ramachandran angles. In addition, various secondary structure metrics, solvation shell properties, and the number of peptide-solvent hydrogen bonds are monitored. Alanine dipeptide is found to have similar free energy landscapes in different solvent models, an insensitivity which may be due to the absence of possibilities for forming i-(i + 4) or i-(i + 3) intrapeptide hydrogen bonds. The pentapeptide, acA5nme, where there are three intrapeptide backbone hydrogen bonds, shows a conformational free energy landscape with a much greater degree of sensitivity to the choice of solvent model, though the three rigid-body water models differ only quantitatively. The pentapeptide prefers nonhelical, non-native PPII and β-sheet populations as the solvent is changed from SPC/E to the less tetrahedral liquid (H1.56) to an LJ-like liquid (H3.00). The pentapeptide conformational order metrics indicate a preference for open, solvent-exposed, non-native structures in hybrid solvent models at all temperatures of study. The possible correlations between the properties of solvent models and secondary structure preferences of alanine oligopeptides are discussed, and the competition between intrapeptide, peptide-solvent, and solvent-solvent hydrogen bonding is shown to be crucial in the relative free energies of different conformers.
Directory of Open Access Journals (Sweden)
Pål Johan From
2012-04-01
Full Text Available This paper presents the explicit dynamic equations of a mechanical system. The equations are presented so that they can easily be implemented in a simulation software or controller environment and are also well suited for system and controller analysis. The dynamics of a general mechanical system consisting of one or more rigid bodies can be derived from the Lagrangian. We can then use several well known properties of Lie groups to guarantee that these equations are well defined. This will, however, often lead to rather abstract formulation of the dynamic equations that cannot be implemented in a simulation software directly. In this paper we close this gap and show what the explicit dynamic equations look like. These equations can then be implemented directly in a simulation software and no background knowledge on Lie theory and differential geometry on the practitioner's side is required. This is the first of two papers on this topic. In this paper we derive the dynamics for single rigid bodies, while in the second part we study multibody systems. In addition to making the equations more accessible to practitioners, a motivation behind the papers is to correct a few errors commonly found in literature. For the first time, we show the detailed derivations and how to arrive at the correct set of equations. We also show through some simple examples that these correspond with the classical formulations found from Lagrange's equations. The dynamics is derived from the Boltzmann--Hamel equations of motion in terms of local position and velocity variables and the mapping to the corresponding quasi-velocities. Finally we present a new theorem which states that the Boltzmann--Hamel formulation of the dynamics is valid for all transformations with a Lie group topology. This has previously only been indicated through examples, but here we also present the formal proof. The main motivation of these papers is to allow practitioners not familiar with
Nakashima, Motomu; Satou, Ken; Miura, Yasufumi
The purpose of this study is to develop a swimming human simulation model considering rigid body dynamics and unsteady fluid force for the whole body, which will be utilized to analyze various dynamical problems in human swimming. First, the modeling methods and their formulations for the human body and the fluid force are respectively described. Second, experiments to identify the coefficients of the normal drag and the added mass are conducted by use of an experimental setup, in which a limb model rotates in the water, and its rotating angle and the bending moment at the root are measured. As the result of the identification, the present model for the fluid force was found to have satisfactory performance in order to represent the unsteady fluctuations of the experimental data, although it has 10% error. Third, a simulation for the gliding position is conducted in order to identify the tangential drag coefficient. Finally, a simulation example of standard six beat front crawl swimming is shown. The swimming speed of the simulation became a reasonable value, indicating the validity of the present simulation model, although it is 7.5% lower than the actual swimming.
Wei, David Wei; Deegan, Anthony J.; Wang, Ruikang K.
2017-06-01
When using optical coherence tomography angiography (OCTA), the development of artifacts due to involuntary movements can severely compromise the visualization and subsequent quantitation of tissue microvasculatures. To correct such an occurrence, we propose a motion compensation method to eliminate artifacts from human skin OCTA by means of step-by-step rigid affine registration, rigid subpixel registration, and nonrigid B-spline registration. To accommodate this remedial process, OCTA is conducted using two matching all-depth volume scans. Affine transformation is first performed on the large vessels of the deep reticular dermis, and then the resulting affine parameters are applied to all-depth vasculatures with a further subpixel registration to refine the alignment between superficial smaller vessels. Finally, the coregistration of both volumes is carried out to result in the final artifact-free composite image via an algorithm based upon cubic B-spline free-form deformation. We demonstrate that the proposed method can provide a considerable improvement to the final en face OCTA images with substantial artifact removal. In addition, the correlation coefficients and peak signal-to-noise ratios of the corrected images are evaluated and compared with those of the original images, further validating the effectiveness of the proposed method. We expect that the proposed method can be useful in improving qualitative and quantitative assessment of the OCTA images of scanned tissue beds.
iCub Whole-body Control through Force Regulation on Rigid Noncoplanar Contacts
Directory of Open Access Journals (Sweden)
Francesco eNori
2015-03-01
Full Text Available This paper details the implementation on the humanoid robot iCub of state-of-the-art algorithms for whole-body control. We regulate the forces between the robot and its surrounding environment to stabilize a desired robot posture. We assume that the forces and torques are exerted on rigid contacts. The validity of this assumption is guaranteed by constraining the contact forces and torques, e.g. the contact forces must belong to the associated friction cones. The implementation of this control strategy requires to estimate the external forces acting on the robot, and the internal joint torques. We then detail algorithms to obtain these estimations when using a robot with an iCub-like sensor set, i.e. distributed six-axis force-torque sensors and whole-body tactile sensors. A general theory for identifying the robot inertial parameters is also presented. From an actuation standpoint, we show how to implement a joint torque control in the case of DC brushless motors. In addition, the coupling mechanism of the iCub torso is investigated. The soundness of the entire control architecture is validated in a real scenario involving the robot iCub balancing and making contacts at both arms.
Integrals of motion in the many-body localized phase
Directory of Open Access Journals (Sweden)
V. Ros
2015-02-01
Full Text Available We construct a complete set of quasi-local integrals of motion for the many-body localized phase of interacting fermions in a disordered potential. The integrals of motion can be chosen to have binary spectrum {0,1}, thus constituting exact quasiparticle occupation number operators for the Fermi insulator. We map the problem onto a non-Hermitian hopping problem on a lattice in operator space. We show how the integrals of motion can be built, under certain approximations, as a convergent series in the interaction strength. An estimate of its radius of convergence is given, which also provides an estimate for the many-body localization–delocalization transition. Finally, we discuss how the properties of the operator expansion for the integrals of motion imply the presence or absence of a finite temperature transition.
IMMIGRANT WOMEN: BODY AND SUBJECTIVITY IN MOTION
Directory of Open Access Journals (Sweden)
Rosa Lázaro-Castellanos
2012-01-01
Full Text Available The visibility of women in contemporary migration has broken with the course and social representation of the organization and implementation of international migration projects are predominantly male (Pedone, 2008. The growing presence of women has inspired a large number of studies have focused on immigrant women and their relationship to the labor market, changes in social structure and family and gender systems in both societies of origin and the destination. However, the literature takes as a center for immigrant women and their relationship to emotions and body are relatively recent, the most important contributions are found in disciplines such as anthropology or psychology. The transnational perspective little has reflected on the physical and mental health, emotions and subjectivities of women, resulting from their migration experience. From a socio-anthropological point of view of immigrants and bring their own notions of subjectivity related to gender, race or social class, do not always coincide with those in the host country. We suspect that the same applies to perception, practices and experiences on the body and emotions of women.
Motion-oriented 3D analysis of body measurements
Loercher, C.; Morlock, S.; Schenk, A.
2017-10-01
The aim of this project is to develop an ergonomically based and motion-oriented size system. New concepts are required in order to be able to deal competently with complex requirements of function-oriented workwear and personal protective equipment (PPE). Body dimensions change through movement, which are basis for motion optimized clothing development. This affects fit and ergonomic comfort. The situation has to be fundamentally researched in order to derive well-founded anthropometric body data, taking into account kinematic requirements of humans and to define functional dimensions for clothing industry. Research focus shall be on ergonomic design of workwear and PPE. There are huge differences in body forms, proportions and muscle manifestations between genders. An improved basic knowledge can be provided as a result, supporting development as well as sales of motion-oriented clothing with perfect fit for garment manufacturers.
Motion of small bodies in classical field theory
International Nuclear Information System (INIS)
Gralla, Samuel E.
2010-01-01
I show how prior work with R. Wald on geodesic motion in general relativity can be generalized to classical field theories of a metric and other tensor fields on four-dimensional spacetime that (1) are second-order and (2) follow from a diffeomorphism-covariant Lagrangian. The approach is to consider a one-parameter-family of solutions to the field equations satisfying certain assumptions designed to reflect the existence of a body whose size, mass, and various charges are simultaneously scaled to zero. (That such solutions exist places a further restriction on the class of theories to which our results apply.) Assumptions are made only on the spacetime region outside of the body, so that the results apply independent of the body's composition (and, e.g., black holes are allowed). The worldline 'left behind' by the shrinking, disappearing body is interpreted as its lowest-order motion. An equation for this worldline follows from the 'Bianchi identity' for the theory, without use of any properties of the field equations beyond their being second-order. The form of the force law for a theory therefore depends only on the ranks of its various tensor fields; the detailed properties of the field equations are relevant only for determining the charges for a particular body (which are the ''monopoles'' of its exterior fields in a suitable limiting sense). I explicitly derive the force law (and mass-evolution law) in the case of scalar and vector fields, and give the recipe in the higher-rank case. Note that the vector force law is quite complicated, simplifying to the Lorentz force law only in the presence of the Maxwell gauge symmetry. Example applications of the results are the motion of 'chameleon' bodies beyond the Newtonian limit, and the motion of bodies in (classical) non-Abelian gauge theory. I also make some comments on the role that scaling plays in the appearance of universality in the motion of bodies.
Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis
2008-08-01
The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries, Journal of Computational Physics 225 (2007) 1782-1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions the FSI algorithm is unconditionally unstable even when strong coupling FSI is employed. For such cases, however, combining the strong coupling iteration with under-relaxation in conjunction with the Aitken's acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the FSI
Directory of Open Access Journals (Sweden)
Justin Rubena Lumaya
2016-02-01
Full Text Available Foreign body aspiration is an important cause of mortality in children aged less than three years. Foreign body (FB inhalation can pose diagnostic and therapeutic challenges, especially in longstanding cases and complications such as recurrent pneumonia, lung collapse and lung abscess may develop. We report a case of an 11-year old boy with foreign body impacted in his bronchus for six years, which was mistakenly managed as pulmonary tuberculosis. Radiological evidence confirmed the diagnosis and a rigid bronchoscopy was used to remove the metallic foreign body. The standard of care for the management of a FB in a bronchus is a rigid bronchoscopy; however flexible bronchoscopy can be used, especially in adults. A thorough history with radiological evidence are essential and sometimes, followed by a diagnostic bronchoscopy.
Aoun, Bachir
2016-05-05
A new Reverse Monte Carlo (RMC) package "fullrmc" for atomic or rigid body and molecular, amorphous, or crystalline materials is presented. fullrmc main purpose is to provide a fully modular, fast and flexible software, thoroughly documented, complex molecules enabled, written in a modern programming language (python, cython, C and C++ when performance is needed) and complying to modern programming practices. fullrmc approach in solving an atomic or molecular structure is different from existing RMC algorithms and software. In a nutshell, traditional RMC methods and software randomly adjust atom positions until the whole system has the greatest consistency with a set of experimental data. In contrast, fullrmc applies smart moves endorsed with reinforcement machine learning to groups of atoms. While fullrmc allows running traditional RMC modeling, the uniqueness of this approach resides in its ability to customize grouping atoms in any convenient way with no additional programming efforts and to apply smart and more physically meaningful moves to the defined groups of atoms. In addition, fullrmc provides a unique way with almost no additional computational cost to recur a group's selection, allowing the system to go out of local minimas by refining a group's position or exploring through and beyond not allowed positions and energy barriers the unrestricted three dimensional space around a group. © 2016 Wiley Periodicals, Inc.
EDF fragment relocation model based on the displacement of rigid bodies
International Nuclear Information System (INIS)
Callu, C.; Baron, D.; Ruck, J.M.
1997-01-01
In order to release the restricting conditions imposed to the reactor operations with regards to PCMI (Pellet-Cladding Mechanical Interaction), the simulation of a fuel rod thermomechanical behavior has to be improved. The computer programming has to cope with the more and more sophisticated mathematical modellings induced by the complexity and the interdependence of the phenomena. Therefore EDF is developing a new code - CYRANO3 - since 1990 putting emphasis on its evolution capacities. Concerning more precisely the PCMI simulation, the pellet fragmentation and the fragments relocation is one of the major aspect one must account for. Thanks to recent analytical experiments, EDF developed a new modelling based on the displacement of rigid bodies and on the calculation of the interaction efforts between the fragments. This paper presents the basis of the model, its introduction within the CYRANO3 code and its calibration on a specific analytical experiment. The modelling is then tested against PWR fuel rods deformations from the EDF data base. The results are presented and discussed. (author)
Generalized Predictive Control of Dynamic Systems with Rigid-Body Modes
Kvaternik, Raymond G.
2013-01-01
Numerical simulations to assess the effectiveness of Generalized Predictive Control (GPC) for active control of dynamic systems having rigid-body modes are presented. GPC is a linear, time-invariant, multi-input/multi-output predictive control method that uses an ARX model to characterize the system and to design the controller. Although the method can accommodate both embedded (implicit) and explicit feedforward paths for incorporation of disturbance effects, only the case of embedded feedforward in which the disturbances are assumed to be unknown is considered here. Results from numerical simulations using mathematical models of both a free-free three-degree-of-freedom mass-spring-dashpot system and the XV-15 tiltrotor research aircraft are presented. In regulation mode operation, which calls for zero system response in the presence of disturbances, the simulations showed reductions of nearly 100%. In tracking mode operations, where the system is commanded to follow a specified path, the GPC controllers produced the desired responses, even in the presence of disturbances.
International Nuclear Information System (INIS)
Quintana, J.C.; Caceres, F.; Vargas, P.
2002-01-01
Aim: Detect patient motion during SPECT imaging. Material and Method: SPECT study is carried out on a patient's body organ, such as the heart, and frame of image data are thereby acquired. The image data in these frames are subjected to a series of mappings and computations, from which frame containing a significant quantity of organ motion can be identified. Quantification of motion occurs by shifting some of the mapped data within a predetermined range, and selecting that data shift which minimizes the magnitude of a motion sensitive mathematical function. The sensitive mathematical function is constructed from all set of image frames using the pixel data within a region covering the body organ. Using cine display of planar image data, the operator defines the working region by marking two points, which define two horizontal lines covering the area of the body organ. This is the only operator intervention. The mathematical function integrates pixel data from all set of image frames and therefore does not use derivatives which may cause distortion in noisy data. Moreover, as a global function, this method is superior than that using frame-to-frame cross-correlation function to identify motion between adjacent frames. Using standard image processing software, the method was implemented computationally. Ten SPECT studies with movement (Sestamibi cardiac studies and 99m-ECD brain SPECT studies) were selected plus two others with no movement. The acquisition SPECT protocol for the cardiac study was as follow: Step and shoot mode, non-circular orbit, 64 stops 20s each, 64x64x16 matrix and LEHR colimator. For the brain SPECT, 128 stops over 360 0 were used. Artificial vertical displacements (±1-2 pixels) over several frames were introduced in those studies with no movement to simulate patient motion. Results: The method was successfully tested in all cases and was capable to recognize SPECT studies with no body motion as well as those with body motion (both from the
Neck proprioception shapes body orientation and perception of motion
Directory of Open Access Journals (Sweden)
Vito Enrico Pettorossi
2014-11-01
Full Text Available This review article deals with some effects of neck muscle proprioception on human balance, gait trajectory, subjective straight-ahead, and self-motion perception. These effects are easily observed during neck muscle vibration, a strong stimulus for the spindle primary afferent fibers.We first remind the early findings on human balance, gait trajectory, subjective straight-ahead, induced by limb and neck muscle vibration. Then, more recent findings on self-motion perception of vestibular origin are described. The use of a vestibular asymmetric yaw-rotation stimulus for emphasizing the proprioceptive modulation of motion perception from the neck is mentioned. In addition, an attempt has been made to conjointly discuss the effects of unilateral neck proprioception on motion perception, subjective straight-ahead and walking trajectory.Neck vibration also induces persistent aftereffects on the subjective straight-ahead and on self-motion perception of vestibular origin. These perceptive effects depend on intensity, duration, side of the conditioning vibratory stimulation, and on muscle status. These effects can be maintained for hours when prolonged high-frequency vibration is superimposed on muscle contraction. Overall, this brief outline emphasizes the contribution of neck muscle inflow to the construction and fine-tuning of perception of body orientation and motion. Furthermore, it indicates that tonic neck proprioceptive input may induce persistent influences on the subject's mental representation of space. These plastic changes might adapt motion sensitiveness to lasting or permanent head positional or motor changes.
Neck proprioception shapes body orientation and perception of motion.
Pettorossi, Vito Enrico; Schieppati, Marco
2014-01-01
This review article deals with some effects of neck muscle proprioception on human balance, gait trajectory, subjective straight-ahead (SSA), and self-motion perception. These effects are easily observed during neck muscle vibration, a strong stimulus for the spindle primary afferent fibers. We first remind the early findings on human balance, gait trajectory, SSA, induced by limb, and neck muscle vibration. Then, more recent findings on self-motion perception of vestibular origin are described. The use of a vestibular asymmetric yaw-rotation stimulus for emphasizing the proprioceptive modulation of motion perception from the neck is mentioned. In addition, an attempt has been made to conjointly discuss the effects of unilateral neck proprioception on motion perception, SSA, and walking trajectory. Neck vibration also induces persistent aftereffects on the SSA and on self-motion perception of vestibular origin. These perceptive effects depend on intensity, duration, side of the conditioning vibratory stimulation, and on muscle status. These effects can be maintained for hours when prolonged high-frequency vibration is superimposed on muscle contraction. Overall, this brief outline emphasizes the contribution of neck muscle inflow to the construction and fine-tuning of perception of body orientation and motion. Furthermore, it indicates that tonic neck-proprioceptive input may induce persistent influences on the subject's mental representation of space. These plastic changes might adapt motion sensitiveness to lasting or permanent head positional or motor changes.
Comparison of rigid and flexible endoscopy for removing esophageal foreign bodies in an emergency.
Tseng, Chia-Chen; Hsiao, Tzu-Yu; Hsu, Wei-Chung
2016-08-01
Despite the effectiveness of endoscopies in removing ingested foreign bodies (FBs) impacted in the esophagus, the merits and limitations of flexible endoscopy (FE) and rigid endoscopy (RE) remain unclear. Therefore, this study compares the advantages and disadvantages of both endoscopic procedures from a clinical perspective. A retrospective review was made of 273 patients suspected of esophageal FBs in emergency consultations of a tertiary medical referral center from March 2010 to March 2014. All patients received routine physical examinations, otolaryngological examinations, and X-rays of the neck and chest. The door-to-endoscopy time, procedure time, postendoscopic hospital stay, successful removal rates, and complications were analyzed as well. In this study, the most common esophageal FBs were fish and animal bones (76%) in adults and coins (74%) in children. The patients with existing esophageal FBs had significantly more frequent symptoms of dysphagia and signs of linear opacity as detected with lateral neck radiography than those without FB. Additionally, the door-to-endoscopy time, procedure time, and postendoscopic hospital stay was significantly shorter in FE patients than in RE patients. However, both RE and FE patients had high rates of successful FB removal (95%) and low complication rates (2%). Both FE and RE remove esophageal FBs successfully, as evidenced by their high success rates, low complication rates, and high detection rates. Although FE under local anesthesia is a less time-consuming procedure for adults, RE under general anesthesia may be preferable for children and can serve as an alternative to FE. Copyright © 2015. Published by Elsevier B.V.
Leuridan, Steven; Goossens, Quentin; Roosen, Jorg; Pastrav, Leonard; Denis, Kathleen; Mulier, Michiel; Desmet, Wim; Vander Sloten, Jos
2017-02-01
Accurate pre-clinical evaluation of the initial stability of new cementless hip stems using in vitro micromotion measurements is an important step in the design process to assess the new stem's potential. Several measuring systems, linear variable displacement transducer-based and other, require assuming bone or implant to be rigid to obtain micromotion values or to calculate derived quantities such as relative implant tilting. An alternative linear variable displacement transducer-based measuring system not requiring a rigid body assumption was developed in this study. The system combined advantages of local unidirectional and frame-and-bracket micromotion measuring concepts. The influence and possible errors that would be made by adopting a rigid body assumption were quantified. Furthermore, as the system allowed emulating local unidirectional and frame-and-bracket systems, the influence of adopting rigid body assumptions were also analyzed for both concepts. Synthetic and embalmed bone models were tested in combination with primary and revision implants. Single-legged stance phase loading was applied to the implant - bone constructs. Adopting a rigid body assumption resulted in an overestimation of mediolateral micromotion of up to 49.7μm at more distal measuring locations. Maximal average relative rotational motion was overestimated by 0.12° around the anteroposterior axis. Frontal and sagittal tilting calculations based on a unidirectional measuring concept underestimated the true tilting by an order of magnitude. Non-rigid behavior is a factor that should not be dismissed in micromotion stability evaluations of primary and revision femoral implants. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Temporal Analysis of Body Sway during Reciprocator Motion Movie Viewing].
Sugiura, Akihiro; Tanaka, Kunihiko; Wakatabe, Shun; Matsumoto, Chika; Miyao, Masaru
2016-01-01
We aimed to investigate the effect of stereoscopic viewing and the degree of awareness of motion sickness on posture by measuring body sway during motion movie viewing. Nineteen students (12 men and 7 women; age range, 21-24 years) participated in this study. The movie, which showed several balls randomly positioned, was projected on a white wall 2 m in front of the subjects through a two-dimensional (2-D)/three-dimensional (3-D) convertible projector. To measure body sway during movie viewing, the subjects stood statically erect on a Wii balance board, with the toe opening at 18 degrees. The study protocol was as follows: The subjects watched (1) a nonmoving movie for 1 minute as the pretest and then (2) a round-trip sinusoidally moving-in-depth-direction movie for 3 minutes. (3) The initial static movie was shown again for 1 minute. Steps (2) and (3) were treated as one trial, after which two trials (2-D and 3-D movies) were performed in a random sequence. In this study, we found that posture changed according to the motion in the movie and that the longer the viewing time, the higher the synchronization accuracy. These tendencies depended on the level of awareness of motion sickness or the 3-D movie viewed. The mechanism of postural change in movie viewing was not vection but self-defense to resolve sensory conflict between visual information (spatial swing) and equilibrium sense (motionlessness).
2D-3D rigid registration to compensate for prostate motion during 3D TRUS-guided biopsy.
De Silva, Tharindu; Fenster, Aaron; Cool, Derek W; Gardi, Lori; Romagnoli, Cesare; Samarabandu, Jagath; Ward, Aaron D
2013-02-01
Three-dimensional (3D) transrectal ultrasound (TRUS)-guided systems have been developed to improve targeting accuracy during prostate biopsy. However, prostate motion during the procedure is a potential source of error that can cause target misalignments. The authors present an image-based registration technique to compensate for prostate motion by registering the live two-dimensional (2D) TRUS images acquired during the biopsy procedure to a preacquired 3D TRUS image. The registration must be performed both accurately and quickly in order to be useful during the clinical procedure. The authors implemented an intensity-based 2D-3D rigid registration algorithm optimizing the normalized cross-correlation (NCC) metric using Powell's method. The 2D TRUS images acquired during the procedure prior to biopsy gun firing were registered to the baseline 3D TRUS image acquired at the beginning of the procedure. The accuracy was measured by calculating the target registration error (TRE) using manually identified fiducials within the prostate; these fiducials were used for validation only and were not provided as inputs to the registration algorithm. They also evaluated the accuracy when the registrations were performed continuously throughout the biopsy by acquiring and registering live 2D TRUS images every second. This measured the improvement in accuracy resulting from performing the registration, continuously compensating for motion during the procedure. To further validate the method using a more challenging data set, registrations were performed using 3D TRUS images acquired by intentionally exerting different levels of ultrasound probe pressures in order to measure the performance of our algorithm when the prostate tissue was intentionally deformed. In this data set, biopsy scenarios were simulated by extracting 2D frames from the 3D TRUS images and registering them to the baseline 3D image. A graphics processing unit (GPU)-based implementation was used to improve the
Methodological aspects of EEG and Body dynamics measurements during motion.
Directory of Open Access Journals (Sweden)
Pedro eReis
2014-03-01
Full Text Available EEG involves recording, analysis, and interpretation of voltages recorded on the human scalp originating from brain grey matter. EEG is one of the favorite methods to study and understand processes that underlie behavior. This is so, because EEG is relatively cheap, easy to wear, light weight and has high temporal resolution. In terms of behavior, this encompasses actions, such as movements, that are performed in response to the environment. However, there are methodological difficulties when recording EEG during movement such as movement artifacts. Thus, most studies about the human brain have examined activations during static conditions. This article attempts to compile and describe relevant methodological solutions that emerged in order to measure body and brain dynamics during motion. These descriptions cover suggestions of how to avoid and reduce motion artifacts, hardware, software and techniques for synchronously recording EEG, EMG, kinematics, kinetics and eye movements during motion. Additionally, we present various recording systems, EEG electrodes, caps and methods for determination of real/custom electrode positions. In the end we will conclude that it is possible to record and analyze synchronized brain and body dynamics related to movement or exercise tasks.
Tarumi, Moto; Nakai, Hiromi
2018-05-01
This letter proposes an approximate treatment of the harmonic solvation model (HSM) assuming the solute to be a rigid body (RB-HSM). The HSM method can appropriately estimate the Gibbs free energy for condensed phases even where an ideal gas model used by standard quantum chemical programs fails. The RB-HSM method eliminates calculations for intra-molecular vibrations in order to reduce the computational costs. Numerical assessments indicated that the RB-HSM method can evaluate entropies and internal energies with the same accuracy as the HSM method but with lower calculation costs.
Human-motion energy harvester for autonomous body area sensors
Geisler, M.; Boisseau, S.; Perez, M.; Gasnier, P.; Willemin, J.; Ait-Ali, I.; Perraud, S.
2017-03-01
This paper reports on a method to optimize an electromagnetic energy harvester converting the low-frequency body motion and aimed at powering wireless body area sensors. This method is based on recorded accelerations, and mechanical and transduction models that enable an efficient joint optimization of the structural parameters. An optimized prototype of 14.8 mmØ × 52 mm, weighting 20 g, has generated up to 4.95 mW in a resistive load when worn at the arm during a run, and 6.57 mW when hand-shaken. Among the inertial electromagnetic energy harvesters reported so far, this one exhibits one of the highest power densities (up to 730 μW cm-3). The energy harvester was finally used to power a bluetooth low energy wireless sensor node with accelerations measurements at 25 Hz.
What women like: influence of motion and form on esthetic body perception
Directory of Open Access Journals (Sweden)
Valentina eCazzato
2012-07-01
Full Text Available Several studies have shown the distinct contribution of motion and form to the esthetic evaluation of female bodies. Here, we investigated how variations of implied motion and body size interact in the esthetic evaluation of female and male bodies in a sample of young healthy women. Participants provided attractiveness, beauty, and liking ratings for the shape and posture of virtual renderings of human bodies with variable body size and implied motion. The esthetic judgments for both shape and posture of human models were influenced by body size and implied motion, with a preference for thinner and more dynamic stimuli. Implied motion, however, attenuated the impact of extreme body size on the esthetic evaluation of body postures, and body size variations did not affect the preference for more dynamic stimuli. Results show that body form and action cues interact in esthetic perception, but the final esthetic appreciation of human bodies is predicted by a mixture of perceptual and affective evaluative components.
Comparison of Point and Line Features and Their Combination for Rigid Body Motion Estimation
DEFF Research Database (Denmark)
Pilz, Florian; Pugeault, Nicolas; Krüger, Norbert
2009-01-01
evaluate and compare the results using line and point features as 3D-2D constraints and we discuss the qualitative advantages and disadvantages of both feature types for RBM estimation. We also demonstrate an improvement in robustness through the combination of these features on large data sets...
Rolling motion in moving droplets
Indian Academy of Sciences (India)
motions. The two limits of a thin sheet-like drop in sliding motion on a surface, and a spherical drop in roll, have been extensively .... rigid body rotation. The solid body rotation makes sense in the context of small Reynolds. (Re) number flows ...
Skornitzke, S; Fritz, F; Klauss, M; Pahn, G; Hansen, J; Hirsch, J; Grenacher, L; Kauczor, H-U; Stiller, W
2015-02-01
To compare six different scenarios for correcting for breathing motion in abdominal dual-energy CT (DECT) perfusion measurements. Rigid [RRComm(80 kVp)] and non-rigid [NRComm(80 kVp)] registration of commercially available CT perfusion software, custom non-rigid registration [NRCustom(80 kVp], demons algorithm) and a control group [CG(80 kVp)] without motion correction were evaluated using 80 kVp images. Additionally, NRCustom was applied to dual-energy (DE)-blended [NRCustom(DE)] and virtual non-contrast [NRCustom(VNC)] images, yielding six evaluated scenarios. After motion correction, perfusion maps were calculated using a combined maximum slope/Patlak model. For qualitative evaluation, three blinded radiologists independently rated motion correction quality and resulting perfusion maps on a four-point scale (4 = best, 1 = worst). For quantitative evaluation, relative changes in metric values, R(2) and residuals of perfusion model fits were calculated. For motion-corrected images, mean ratings differed significantly [NRCustom(80 kVp) and NRCustom(DE), 3.3; NRComm(80 kVp), 3.1; NRCustom(VNC), 2.9; RRComm(80 kVp), 2.7; CG(80 kVp), 2.7; all p VNC), 22.8%; RRComm(80 kVp), 0.6%; CG(80 kVp), 0%]. Regarding perfusion maps, NRCustom(80 kVp) and NRCustom(DE) were rated highest [NRCustom(80 kVp), 3.1; NRCustom(DE), 3.0; NRComm(80 kVp), 2.8; NRCustom(VNC), 2.6; CG(80 kVp), 2.5; RRComm(80 kVp), 2.4] and had significantly higher R(2) and lower residuals. Correlation between qualitative and quantitative evaluation was low to moderate. Non-rigid motion correction improves spatial alignment of the target region and fit of CT perfusion models. Using DE-blended and DE-VNC images for deformable registration offers no significant improvement. Non-rigid algorithms improve the quality of abdominal CT perfusion measurements but do not benefit from DECT post processing.
Rigid-body rotation of an electron cloud in divergent magnetic fields
International Nuclear Information System (INIS)
Fruchtman, A.; Gueroult, R.; Fisch, N. J.
2013-01-01
For a given voltage across a divergent poloidal magnetic field, two electric potential distributions, each supported by a rigid-rotor electron cloud rotating with a different frequency, are found analytically. The two rotation frequencies correspond to the slow and fast rotation frequencies known in uniform plasma. Due to the centrifugal force, the equipotential surfaces, that correspond to the two electric potential distributions, diverge more than the magnetic surfaces do, the equipotential surfaces in the fast mode diverge largely in particular. The departure of the equipotential surfaces from the magnetic field surfaces may have a significant focusing effect on the ions accelerated by the electric field. The focusing effect could be important for laboratory plasma accelerators as well as for collimation of astrophysical jets
International Nuclear Information System (INIS)
Unseren, M.A.
1997-09-01
The report reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restricts the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system
Energy Technology Data Exchange (ETDEWEB)
Unseren, M.A.
1997-09-01
The report reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restricts the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.
Emotion Recognition in Face and Body Motion in Bulimia Nervosa.
Dapelo, Marcela Marin; Surguladze, Simon; Morris, Robin; Tchanturia, Kate
2017-11-01
Social cognition has been studied extensively in anorexia nervosa (AN), but there are few studies in bulimia nervosa (BN). This study investigated the ability of people with BN to recognise emotions in ambiguous facial expressions and in body movement. Participants were 26 women with BN, who were compared with 35 with AN, and 42 healthy controls. Participants completed an emotion recognition task by using faces portraying blended emotions, along with a body emotion recognition task by using videos of point-light walkers. The results indicated that BN participants exhibited difficulties recognising disgust in less-ambiguous facial expressions, and a tendency to interpret non-angry faces as anger, compared with healthy controls. These difficulties were similar to those found in AN. There were no significant differences amongst the groups in body motion emotion recognition. The findings suggest that difficulties with disgust and anger recognition in facial expressions may be shared transdiagnostically in people with eating disorders. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association.
Flutter Analysis of RX-420 Balistic Rocket Fin Involving Rigid Body Modes of Rocket Structures
Directory of Open Access Journals (Sweden)
Novi Andria
2013-03-01
Full Text Available Flutter is a phenomenon that has brought a catastrophic failure to the flight vehicle structure. In this experiment, flutter was analyzed for its symmetric and antisymmetric configuration to understand the effect of rocket rigid modes to the fin flutter characteristic. This research was also expected to find out the safety level of RX-420 structure design. The analysis was performed using half rocket model. Fin structure used in this research was a fin which has semispan 600 mm, thickness 12 mm, chord root 700 mm, chord tip 400 mm, made by Al 6061-T651, double spar configuration with skin thickness of 2 mm. Structural dynamics and flutter stability were analyzed using finite element software implemented on MSC. Nastran. The analysis shows that the antisymmetric flutter mode is more critical than symmetric flutter mode. At sea level altitude, antisymmetric flutter occurs at 6.4 Mach, and symmetric flutter occurs at 10.15 Mach. Compared to maximum speed of RX-420 which is 4.5 Mach at altitude 11 km or equivalent to 2.1 Mach at sea level, it can be concluded that the RX-420 structure design is safe, and flutter will not occur during flight.
1976-10-01
should be easily converted into software for use on high-speed digital computers. Since no readily available references were found containing relationships...L31 Library 1 ONR Boston 4 NSWC, White Oak 1 J.E. Goeller 1 ONR Chicago 1 V.C.D. Dawson 1 H.K. Steves 1 ONR Pasadena 1 Libary 1 NRL/CODE 2627 Lib 1
International Nuclear Information System (INIS)
Lascombe, J.; Cavagnat, D.; Lassegues, J.C.; Rafilipomanana, C.
1983-01-01
The dynamical behaviour of non-rigid molecules in the gas state is now well known but very little information is available on these molecules in condensed state. The authors present a method of study based on the analysis of the infrared and Raman spectra of selectively deuterated molecules. It is applied to the nitromethane and cyclopentene molecules which provide respectively characteristic examples of methyl internal rotation and ring-puckering motion. In each case, an isolated -C0 or -CD oscillator is modulated by the internal motion and several γ(CH) or γ(CD) bands are observed as a result of the dependence of the vibrational frequency of the oscillator on its conformational situation. Moreover, in the case of crystalline nitromethane a detailed study of the temperature dependence of the band profiles allows the main mechanism of relaxation of the -CH oscillator to be deduced. (orig.)
Spoerk, Jakob; Gendrin, Christelle; Weber, Christoph; Figl, Michael; Pawiro, Supriyanto Ardjo; Furtado, Hugo; Fabri, Daniella; Bloch, Christoph; Bergmann, Helmar; Gröller, Eduard; Birkfellner, Wolfgang
2012-02-01
A common problem in image-guided radiation therapy (IGRT) of lung cancer as well as other malignant diseases is the compensation of periodic and aperiodic motion during dose delivery. Modern systems for image-guided radiation oncology allow for the acquisition of cone-beam computed tomography data in the treatment room as well as the acquisition of planar radiographs during the treatment. A mid-term research goal is the compensation of tumor target volume motion by 2D/3D Registration. In 2D/3D registration, spatial information on organ location is derived by an iterative comparison of perspective volume renderings, so-called digitally rendered radiographs (DRR) from computed tomography volume data, and planar reference x-rays. Currently, this rendering process is very time consuming, and real-time registration, which should at least provide data on organ position in less than a second, has not come into existence. We present two GPU-based rendering algorithms which generate a DRR of 512×512 pixels size from a CT dataset of 53 MB size at a pace of almost 100 Hz. This rendering rate is feasible by applying a number of algorithmic simplifications which range from alternative volume-driven rendering approaches - namely so-called wobbled splatting - to sub-sampling of the DRR-image by means of specialized raycasting techniques. Furthermore, general purpose graphics processing unit (GPGPU) programming paradigms were consequently utilized. Rendering quality and performance as well as the influence on the quality and performance of the overall registration process were measured and analyzed in detail. The results show that both methods are competitive and pave the way for fast motion compensation by rigid and possibly even non-rigid 2D/3D registration and, beyond that, adaptive filtering of motion models in IGRT. Copyright Â© 2011. Published by Elsevier GmbH.
Energy Technology Data Exchange (ETDEWEB)
Spoerk, Jakob; Gendrin, Christelle; Weber, Christoph [Medical University of Vienna (Austria). Center of Medical Physics and Biomedical Engineering] [and others
2012-07-01
A common problem in image-guided radiation therapy (IGRT) of lung cancer as well as other malignant diseases is the compensation of periodic and aperiodic motion during dose delivery. Modern systems for image-guided radiation oncology allow for the acquisition of cone-beam computed tomography data in the treatment room as well as the acquisition of planar radiographs during the treatment. A mid-term research goal is the compensation of tumor target volume motion by 2D/3D Registration. In 2D/3D registration, spatial information on organ location is derived by an iterative comparison of perspective volume renderings, so-called digitally rendered radiographs (DRR) from computed tomography volume data, and planar reference X-rays. Currently, this rendering process is very time consuming, and real-time registration, which should at least provide data on organ position in less than a second, has not come into existence. We present two GPU-based rendering algorithms which generate a DRR of 512 x 512 pixels size from a CT dataset of 53 MB size at a pace of almost 100 Hz. This rendering rate is feasible by applying a number of algorithmic simplifications which range from alternative volume-driven rendering approaches - namely so-called wobbled splatting - to sub-sampling of the DRR-image by means of specialized raycasting techniques. Furthermore, general purpose graphics processing unit (GPGPU) programming paradigms were consequently utilized. Rendering quality and performance as well as the influence on the quality and performance of the overall registration process were measured and analyzed in detail. The results show that both methods are competitive and pave the way for fast motion compensation by rigid and possibly even non-rigid 2D/3D registration and, beyond that, adaptive filtering of motion models in IGRT. (orig.)
Analysis of the Gyroscopic Stabilization of a System of Rigid Bodies
DEFF Research Database (Denmark)
Kliem, Wolfhard; Kliem, Wolfhard
1996-01-01
We study the gyroscopic of a three-body system. A new method offinding stability regions, based on mechanism and criteria for gyroscopicstabilization, is presented. Of particular interest in this connection isthe theory of interaction of eigenvalues. This leads to a complete 3-dimensionalanalysis......, which shows the regions of stability, divergence, and flutter ofa simple model of a rotating spaceship....
International Nuclear Information System (INIS)
Cardou, Philippe; Angeles, Jorge
2008-01-01
Two methods are available for the estimation of the angular velocity of a rigid body from point-acceleration measurements: (i) the time-integration of the angular acceleration and (ii) the square-rooting of the centripetal acceleration. The inaccuracy of the first method is due mainly to the accumulation of the error on the angular acceleration throughout the time-integration process, which does not prevent that it be used successfully in crash tests with dummies, since these experiments never last more than one second. On the other hand, the error resulting from the second method is stable through time, but becomes inaccurate whenever the rigid body angular velocity approaches zero, which occurs in many applications. In order to take advantage of the complementarity of these two methods, a fusion of their estimates is proposed. To this end, the accelerometer measurements are modeled as exact signals contaminated with bias errors and Gaussian white noise. The relations between the variables at stake are written in the form of a nonlinear state-space system in which the angular velocity and the angular acceleration are state variables. Consequently, a minimum-variance-error estimate of the state vector is obtained by means of extended Kalman filtering. The performance of the proposed estimation method is assessed by means of simulation. Apparently, the resulting estimation method is more robust than the existing accelerometer-only methods and competitive with gyroscope measurements. Moreover, it allows the identification and the compensation of any bias error in the accelerometer measurements, which is a significant advantage over gyroscopes
International Nuclear Information System (INIS)
Ghose, S.; Schomaker, V.; McMullan, R.K.
1986-01-01
Synthetic enstatite, Mg 2 Si 2 O 6 , is orthorhombic, space group Pbca, with eight formula units per cell and lattice parameters a = 18.235(3), b = 8.818(1), c = 5.179(1) A at 23 0 C. A least-squares structure refinement based on 1790 neutron intensity data converged with an agreement factor R(F 2 ) = 0.032, yielding Mg-O and Si-O bond lengths with standard deviations of 0.0007 and 0.0008 A, respectively. The variations observed in the Si-O bond lengths within the silicate tetrahedra A and B are caused by the differences in primary coordination of the oxygen atoms and the proximity of the magnesium ions to the silicon atoms. The latter effect is most pronounced for the bridging bonds of tetrahedron. A. The smallest O-Si-O angle is the result of edge-sharing by the Mg(2) octahedron and the A tetrahedron. An analysis of rigid-body thermal vibrations of the two crystallographically independent [SiO 4 ] tetrahedra indicates considerable librational motion, leading to a thermal correction of apparent Si-O bond lengths as large as +0.002 A at room temperature. (orig.)
Kikuchi, Shota; Howell, Kathleen C.; Tsuda, Yuichi; Kawaguchi, Jun'ichiro
2017-11-01
The motion of a spacecraft in proximity to a small body is significantly perturbed due to its irregular gravity field and solar radiation pressure. In such a strongly perturbed environment, the coupling effect of the orbital and attitude motions exerts a large influence that cannot be neglected. However, natural orbit-attitude coupled dynamics around small bodies that are stationary in both orbital and attitude motions have yet to be observed. The present study therefore investigates natural coupled motion that involves both a Sun-synchronous orbit and Sun-tracking attitude motion. This orbit-attitude coupled motion enables a spacecraft to maintain its orbital geometry and attitude state with respect to the Sun without requiring active control. Therefore, the proposed method can reduce the use of an orbit and attitude control system. This paper first presents analytical conditions to achieve Sun-synchronous orbits and Sun-tracking attitude motion. These analytical solutions are then numerically propagated based on non-linear coupled orbit-attitude equations of motion. Consequently, the possibility of implementing Sun-synchronous orbits with Sun-tracking attitude motion is demonstrated.
Analysis of the gyroscopic stabilization of a system of rigid bodies
DEFF Research Database (Denmark)
Kliem, Wolfhard; Seyranian, Alexander P.
1997-01-01
We study the gyroscopic stability of a three-body system. A new method of finding stability regions, based on mechanism and criteria for gyroscopic stabilization, is presented. Of particular interest in this connection is the theory of interaction of eigenvalues. This leads to a complete 3......-dimensional analysis, which shows the regions of stability, divergence, and flutter of a simple model of a rotating spaceship....
International Nuclear Information System (INIS)
McMahon, Ryan; Berbeco, Ross; Nishioka, Seiko; Ishikawa, Masayori; Papiez, Lech
2008-01-01
An MLC control algorithm for delivering intensity modulated radiation therapy (IMRT) to targets that are undergoing two-dimensional (2D) rigid motion in the beam's eye view (BEV) is presented. The goal of this method is to deliver 3D-derived fluence maps over a moving patient anatomy. Target motion measured prior to delivery is first used to design a set of planned dynamic-MLC (DMLC) sliding-window leaf trajectories. During actual delivery, the algorithm relies on real-time feedback to compensate for target motion that does not agree with the motion measured during planning. The methodology is based on an existing one-dimensional (1D) algorithm that uses on-the-fly intensity calculations to appropriately adjust the DMLC leaf trajectories in real-time during exposure delivery [McMahon et al., Med. Phys. 34, 3211-3223 (2007)]. To extend the 1D algorithm's application to 2D target motion, a real-time leaf-pair shifting mechanism has been developed. Target motion that is orthogonal to leaf travel is tracked by appropriately shifting the positions of all MLC leaves. The performance of the tracking algorithm was tested for a single beam of a fractionated IMRT treatment, using a clinically derived intensity profile and a 2D target trajectory based on measured patient data. Comparisons were made between 2D tracking, 1D tracking, and no tracking. The impact of the tracking lag time and the frequency of real-time imaging were investigated. A study of the dependence of the algorithm's performance on the level of agreement between the motion measured during planning and delivery was also included. Results demonstrated that tracking both components of the 2D motion (i.e., parallel and orthogonal to leaf travel) results in delivered fluence profiles that are superior to those that track the component of motion that is parallel to leaf travel alone. Tracking lag time effects may lead to relatively large intensity delivery errors compared to the other sources of error investigated
Jerk derivative feedforward control for motion systems
Boerlage, M.L.G.; Tousain, R.L.; Steinbuch, M.
2004-01-01
This work discusses reference trajectory relevant model based feedforward design. For motion systems which contain at least one rigid body mode and which are subject to reference trajectories with mostly low frequency energy, the proposed feedforward controller improves tracking performance
Equations of motion for free-flight systems of rotating-translating bodies
International Nuclear Information System (INIS)
Hodapp, A.E. Jr.
1976-09-01
General vector differential equations of motion are developed for a system of rotating-translating, unbalanced, constant mass bodies. Complete flexibility is provided in placement of the reference coordinates within the system of bodies and in placement of body fixed axes within each body. Example cases are presented to demonstrate the ease in reduction of these equations to the equations of motion for systems of interest
Free surface flow with moving rigid bodies. Part 1. Computational flow model
International Nuclear Information System (INIS)
Gubanov, O.I.; Mironova, L.A.; Kocabiyik, S.
2005-01-01
This paper was motivated by the study of Hirt and Sicilian, where the 'differential form' of the governing equations for the inviscid fluid flow (FAVOR equations) were obtained. We utilize mainly generalized differentiation to extend the Reynolds transport theorem over a control volume containing fluid interface for deriving the 'integral form' of governing equations for the incompressible viscous flow problems. This is done following the work by Farassat and the use of generalized function theory made this derivation straightforward, systematic and rigorous. The resulting equations are discretized by a finite-volume method using a staggered grid, after making use of the coarse-scale approximation. The resulting governing equations are valid for a class of flows including free surface flows with arbitrarily moving bodies and are consistent with Hirt and Sicilian's formulation in the inviscid fluid flow case. (author)
Rotational Motion Control of a Spacecraft
DEFF Research Database (Denmark)
Wisniewski, Rafal; Kulczycki, P.
2001-01-01
The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control...
Rotational motion control of a spacecraft
DEFF Research Database (Denmark)
Wisniewski, Rafal; Kulczycki, P.
2003-01-01
The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control. Udgivelsesdato: APR...
Linardon, Jake; Mitchell, Sarah
2017-08-01
This study aimed to replicate and extend from Tylka, Calogero, and Daníelsdóttir (2015) findings by examining the relationship between rigid control, flexible control, and intuitive eating on various indices of disordered eating (i.e., binge eating, disinhibition) and body image concerns (i.e., shape and weight over-evaluation, body checking, and weight-related exercise motivations). This study also examined whether the relationship between intuitive eating and outcomes was mediated by dichotomous thinking and body appreciation. Analysing data from a sample of 372 men and women recruited through the community, this study found that, in contrast to rigid dietary control, intuitive eating uniquely and consistently predicted lower levels of disordered eating and body image concerns. This intuitive eating-disordered eating relationship was mediated by low levels of dichotomous thinking and the intuitive eating-body image relationship was mediated by high levels of body appreciation. Flexible control predicted higher levels of body image concerns and lower levels of disordered eating only when rigid control was accounted for. Findings suggest that until the adaptive properties of flexible control are further elucidated, it may be beneficial to promote intuitive eating within public health approaches to eating disorder prevention. In addition to this, particular emphasis should also be made toward promoting body acceptance and eradicating a dichotomous thinking style around food and eating. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chabab, M.; El Batoul, A.; Lahbas, A.; Oulne, M.
2018-05-01
Based on the minimal length concept, inspired by Heisenberg algebra, a closed analytical formula is derived for the energy spectrum of the prolate γ-rigid Bohr-Mottelson Hamiltonian of nuclei, within a quantum perturbation method (QPM), by considering a scaled Davidson potential in β shape variable. In the resulting solution, called X(3)-D-ML, the ground state and the first β-band are all studied as a function of the free parameters. The fact of introducing the minimal length concept with a QPM makes the model very flexible and a powerful approach to describe nuclear collective excitations of a variety of vibrational-like nuclei. The introduction of scaling parameters in the Davidson potential enables us to get a physical minimum of this latter in comparison with previous works. The analysis of the corrected wave function, as well as the probability density distribution, shows that the minimal length parameter has a physical upper bound limit.
International Nuclear Information System (INIS)
Gama, R.M.S. da.
1992-08-01
The energy transfer phenomenon in a rigid and opaque body that exchanges energy, with the environment, by convection and by diffuse thermal radiation is studied. The considered phenomenon is described by a partial differential equation, subjected to (nonlinear) boundary conditions. A minimum principle, suitable for a large class of energy transfer problems is presented. Some particular cases are simulated. (author)
Role of Alpha-band Oscillations in Spatial Updating across Whole Body Motion
Directory of Open Access Journals (Sweden)
Tjerk Peter Gutteling
2016-05-01
Full Text Available When moving around in the world, we have to keep track of important locations in our surroundings. In this process, called spatial updating, we must estimate our body motion and correct representations of memorized spatial locations in accordance with this motion. While the behavioral characteristics of spatial updating across whole body motion have been studied in detail, its neural implementation lacks detailed study. Here we use electro-encephalography (EEG to distinguish various spectral components of this process. Subjects gazed at a central body-fixed point in otherwise complete darkness, while a target was briefly flashed, either left or right from this point. Subjects had to remember the location of this target as either moving along with the body or remaining fixed in the world while being translated sideways on a passive motion platform. After the motion, subjects had to indicate the remembered target location in the instructed reference frame using a mouse response. While the body motion, as detected by the vestibular system, should not affect the representation of body-fixed targets, it should interact with the representation of a world-centered target to update its location relative to the body. We show that the initial presentation of the visual target induced a reduction of alpha band power in contralateral parieto-occipital areas, which evolved to a sustained increase during the subsequent memory period. Motion of the body led to a reduction of alpha band power in central parietal areas extending to lateral parieto-temporal areas, irrespective of whether the targets had to be memorized relative to world or body. When updating a world-fixed target, its internal representation shifts hemispheres, only when subjects’ behavioral responses suggested an update across the body midline. Our results suggest that parietal cortex is involved in both self-motion estimation and the selective application of this motion information to
Transformation of Elastic Wave Energy to the Energy of Motion of Bodies
Vesnitskiĭ, A. I.; Lisenkova, E. E.
2002-01-01
The motion of a body along an elastic guide under the effect of an incident wave is considered. An equation describing the longitudinal motion of a body along an arbitrary guide is derived from the laws governing the energy and momentum variations for the case when the incident wave generates a single reflected wave. The equations that describe the motion of a body along a string and along a beam corresponding to the Bernoulli-Euler model are considered as examples. The process of the body acceleration along a beam of the aforementioned type is investigated. For the subcritical velocities, the law governing the motion of the body and the ratio of the kinetic energy variation to the energy supplied to the body are determined.
Abraham, Anke
2008-06-01
According to the special view of natural sciences, ageing processes are connected with measurable changes in the body. At the same time we know little about how bodily change is experienced and the subjective acceptance of the body during aging. Therefore a perspective with respect to the body has to be systematically embraced in gerontology. Knowledge perspectives and the view of the body are exemplified in theory and by analysing a case. The knowledge of experience and sense of body and motion in a person's life allows the creation of stimulating offers of growth development and health in age.
A heterogeneous system based on GPU and multi-core CPU for real-time fluid and rigid body simulation
da Silva Junior, José Ricardo; Gonzalez Clua, Esteban W.; Montenegro, Anselmo; Lage, Marcos; Dreux, Marcelo de Andrade; Joselli, Mark; Pagliosa, Paulo A.; Kuryla, Christine Lucille
2012-03-01
Computational fluid dynamics in simulation has become an important field not only for physics and engineering areas but also for simulation, computer graphics, virtual reality and even video game development. Many efficient models have been developed over the years, but when many contact interactions must be processed, most models present difficulties or cannot achieve real-time results when executed. The advent of parallel computing has enabled the development of many strategies for accelerating the simulations. Our work proposes a new system which uses some successful algorithms already proposed, as well as a data structure organisation based on a heterogeneous architecture using CPUs and GPUs, in order to process the simulation of the interaction of fluids and rigid bodies. This successfully results in a two-way interaction between them and their surrounding objects. As far as we know, this is the first work that presents a computational collaborative environment which makes use of two different paradigms of hardware architecture for this specific kind of problem. Since our method achieves real-time results, it is suitable for virtual reality, simulation and video game fluid simulation problems.
Relativistic many-body theory of atomic transitions: the relativistic equation-of-motion approach
International Nuclear Information System (INIS)
Huang, K.N.
1981-01-01
An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated using techniques of quantum field theory. To reduce the equation of motion to a tractable form which is appropriate for numerical calculations, a graphical method is employed to resolve the complication arising from the antisymmetrization and angular momentum coupling. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation
DEFF Research Database (Denmark)
Niebe, Sarah Maria
. A contact point determination method, based on boolean surface maps, is developed to handle collisions between tetrahedral meshes. The novel nonsmooth nonlinear conjugate gradient (NNCG) method is presented. The NNCG method is comparable in terms of accuracy to the state-of-the-art method, projected Gauss...
A reduced-dimensionality approach to uncovering dyadic modes of body motion in conversations.
Gaziv, Guy; Noy, Lior; Liron, Yuvalal; Alon, Uri
2017-01-01
Face-to-face conversations are central to human communication and a fascinating example of joint action. Beyond verbal content, one of the primary ways in which information is conveyed in conversations is body language. Body motion in natural conversations has been difficult to study precisely due to the large number of coordinates at play. There is need for fresh approaches to analyze and understand the data, in order to ask whether dyads show basic building blocks of coupled motion. Here we present a method for analyzing body motion during joint action using depth-sensing cameras, and use it to analyze a sample of scientific conversations. Our method consists of three steps: defining modes of body motion of individual participants, defining dyadic modes made of combinations of these individual modes, and lastly defining motion motifs as dyadic modes that occur significantly more often than expected given the single-person motion statistics. As a proof-of-concept, we analyze the motion of 12 dyads of scientists measured using two Microsoft Kinect cameras. In our sample, we find that out of many possible modes, only two were motion motifs: synchronized parallel torso motion in which the participants swayed from side to side in sync, and still segments where neither person moved. We find evidence of dyad individuality in the use of motion modes. For a randomly selected subset of 5 dyads, this individuality was maintained for at least 6 months. The present approach to simplify complex motion data and to define motion motifs may be used to understand other joint tasks and interactions. The analysis tools developed here and the motion dataset are publicly available.
International Nuclear Information System (INIS)
Kopeikin, Sergei; Vlasov, Igor
2004-01-01
the matching procedure. We use these equations to analyze transnational motion of shperically symmetric and rigidly rotating bodies having finite size. Spherical symmetry is defined in the local frame of each body through a set of conditions imposed on the shape of the body and the distribution of its internal density, pressure and velocity field. We prove that our formalism brings about the parametrized post-Newtonian EIH equations of motion of the bodies if the finite-size effects are neglected. Analysis of the finite-size effects reveal that they are proportional to the parameter β coupled with the second and higher-order rotational moments of inertia of the bodies. The finite-size effects in the translational equations of motion can be appreciably large at the latest stage of coalescence of binary neutron stars and can be important in calculations of gravitational waveform templates for the gravitational-wave interferometers.The PPN rotational equations of motion for each extended body possessing an arbitrary multipolar structure of its gravitational field, have been derived in body's local coordinates. Spin of the body is defined phenomenologically in accordance with the post-Newtonian law of conservation of angular momentum of an isolated system. Torque consists of a general relativistic part and the PPN contribution due to the presence of the scalar field. The PPN scalar-field-dependent part is proportional to the difference between active and conformal dipole moments of the body which disappears in general relativity. Finite-size effects in rotational equations of motion can be a matter of interest for calculating gravitational wave radiation from coalescing binaries
Data Fusion Research of Triaxial Human Body Motion Gesture based on Decision Tree
Directory of Open Access Journals (Sweden)
Feihong Zhou
2014-05-01
Full Text Available The development status of human body motion gesture data fusion domestic and overseas has been analyzed. A triaxial accelerometer is adopted to develop a wearable human body motion gesture monitoring system aimed at old people healthcare. On the basis of a brief introduction of decision tree algorithm, the WEKA workbench is adopted to generate a human body motion gesture decision tree. At last, the classification quality of the decision tree has been validated through experiments. The experimental results show that the decision tree algorithm could reach an average predicting accuracy of 97.5 % with lower time cost.
The contribution of the body and motion to whole person recognition.
Simhi, Noa; Yovel, Galit
2016-05-01
While the importance of faces in person recognition has been the subject of many studies, there are relatively few studies examining recognition of the whole person in motion even though this most closely resembles daily experience. Most studies examining the whole body in motion use point light displays, which have many advantages but are impoverished and unnatural compared to real life. To determine which factors are used when recognizing the whole person in motion we conducted two experiments using naturalistic videos. In Experiment 1 we used a matching task in which the first stimulus in each pair could either be a video or multiple still images from a video of the full body. The second stimulus, on which person recognition was performed, could be an image of either the full body or face alone. We found that the body contributed to person recognition beyond the face, but only after exposure to motion. Since person recognition was performed on still images, the contribution of motion to person recognition was mediated by form-from-motion processes. To assess whether dynamic identity signatures may also contribute to person recognition, in Experiment 2 we presented people in motion and examined person recognition from videos compared to still images. Results show that dynamic identity signatures did not contribute to person recognition beyond form-from-motion processes. We conclude that the face, body and form-from-motion processes all appear to play a role in unfamiliar person recognition, suggesting the importance of considering the whole body and motion when examining person perception. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lin, Ray-Quing; Kuang, Weijia
2011-01-01
In this paper, we describe the details of our numerical model for simulating ship solidbody motion in a given environment. In this model, the fully nonlinear dynamical equations governing the time-varying solid-body ship motion under the forces arising from ship wave interactions are solved with given initial conditions. The net force and moment (torque) on the ship body are directly calculated via integration of the hydrodynamic pressure over the wetted surface and the buoyancy effect from the underwater volume of the actual ship hull with a hybrid finite-difference/finite-element method. Neither empirical nor free parametrization is introduced in this model, i.e. no a priori experimental data are needed for modelling. This model is benchmarked with many experiments of various ship hulls for heave, roll and pitch motion. In addition to the benchmark cases, numerical experiments are also carried out for strongly nonlinear ship motion with a fixed heading. These new cases demonstrate clearly the importance of nonlinearities in ship motion modelling.
How to use body tilt for the simulation of linear self motion
Groen, E.L.; Bles, W.
2004-01-01
We examined to what extent body tilt may augment the perception of visually simulated linear self acceleration. Fourteen subjects judged visual motion profiles of fore-aft motion at four different frequencies between 0.04-0.33 Hz, and at three different acceleration amplitudes (0.44, 0.88 and 1.76
Motion Of Bodies And Its Stability In The General Relativity Theory
International Nuclear Information System (INIS)
Ryabushko, Anton P.; Zhur, Tatyana A.; Nemanova, Inna T.
2010-01-01
This paper reviews the works by the Belarusian school investigators on relativistic motion and its stability for a system of bodies, each of which may have its own rotation, charge, and magnetic field of the dipole type. The corresponding Lagrangian and conservation laws are derived, several secular effects are predicted. For motion of bodies in the medium the secular effect of the periastron reverse shift is predicted as compared to the Mercury perihelion shift. The cause for the Pioneer anomaly is explained.
Speedy motions of a body immersed in an infinitely extended medium
Buttà, P.; Ferrari, G.; Marchioro, C.
2009-01-01
We study the motion of a classical point body of mass M, moving under the action of a constant force of intensity E and immersed in a Vlasov fluid of free particles, interacting with the body via a bounded short range potential Psi. We prove that if its initial velocity is large enough then the body escapes to infinity increasing its speed without any bound "runaway effect". Moreover, the body asymptotically reaches a uniformly accelerated motion with acceleration E/M. We then discuss at a he...
A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid
International Nuclear Information System (INIS)
Nikolaenko, S S
2014-01-01
The paper is concerned with the topological analysis of the Chaplygin integrable case in the dynamics of a rigid body in a fluid. A full list of the topological types of Chaplygin systems in their dependence on the energy level is compiled on the basis of the Fomenko-Zieschang theory. An effective description of the topology of the Liouville foliation in terms of natural coordinate variables is also presented, which opens a direct way to calculating topological invariants. It turns out that on all nonsingular energy levels Chaplygin systems are Liouville equivalent to the well-known Euler case in the dynamics of a rigid body with fixed point. Bibliography: 23 titles
Stability of Phase Relationships While Coordinating Arm Reaches with Whole Body Motion.
Directory of Open Access Journals (Sweden)
Romy S Bakker
Full Text Available The human movement repertoire is characterized by the smooth coordination of several body parts, including arm movements and whole body motion. The neural control of this coordination is quite complex because the various body parts have their own kinematic and dynamic properties. Behavioral inferences about the neural solution to the coordination problem could be obtained by examining the emerging phase relationship and its stability. Here, we studied the phase relationships that characterize the coordination of arm-reaching movements with passively-induced whole-body motion. Participants were laterally translated using a vestibular chair that oscillated at a fixed frequency of 0.83 Hz. They were instructed to reach between two targets that were aligned either parallel or orthogonal to the whole body motion. During the first cycles of body motion, a metronome entrained either an in-phase or an anti-phase relationship between hand and body motion, which was released at later cycles to test phase stability. Results suggest that inertial forces play an important role when coordinating reaches with cyclic whole-body motion. For parallel reaches, we found a stable in-phase and an unstable anti-phase relationship. When the latter was imposed, it readily transitioned or drifted back toward an in-phase relationship at cycles without metronomic entrainment. For orthogonal reaches, we did not find a clear difference in stability between in-phase and anti-phase relationships. Computer simulations further show that cost models that minimize energy expenditure (i.e. net torques or endpoint variance of the reach cannot fully explain the observed coordination patterns. We discuss how predictive control and impedance control processes could be considered important mechanisms underlying the rhythmic coordination of arm reaches and body motion.
A triboelectric motion sensor in wearable body sensor network for human activity recognition.
Hui Huang; Xian Li; Ye Sun
2016-08-01
The goal of this study is to design a novel triboelectric motion sensor in wearable body sensor network for human activity recognition. Physical activity recognition is widely used in well-being management, medical diagnosis and rehabilitation. Other than traditional accelerometers, we design a novel wearable sensor system based on triboelectrification. The triboelectric motion sensor can be easily attached to human body and collect motion signals caused by physical activities. The experiments are conducted to collect five common activity data: sitting and standing, walking, climbing upstairs, downstairs, and running. The k-Nearest Neighbor (kNN) clustering algorithm is adopted to recognize these activities and validate the feasibility of this new approach. The results show that our system can perform physical activity recognition with a successful rate over 80% for walking, sitting and standing. The triboelectric structure can also be used as an energy harvester for motion harvesting due to its high output voltage in random low-frequency motion.
Rigidly foldable origami gadgets and tessellations
Evans, Thomas A.; Lang, Robert J.; Magleby, Spencer P.; Howell, Larry L.
2015-01-01
Rigidly foldable origami allows for motion where all deflection occurs at the crease lines and facilitates the application of origami in materials other than paper. In this paper, we use a recently discovered method for determining rigid foldability to identify existing flat-foldable rigidly foldable tessellations, which are also categorized. We introduce rigidly foldable origami gadgets which may be used to modify existing tessellations or to create new tessellations. Several modified and new rigidly foldable tessellations are presented. PMID:26473037
Eye movement instructions modulate motion illusion and body sway with Op Art.
Kapoula, Zoï; Lang, Alexandre; Vernet, Marine; Locher, Paul
2015-01-01
Op Art generates illusory visual motion. It has been proposed that eye movements participate in such illusion. This study examined the effect of eye movement instructions (fixation vs. free exploration) on the sensation of motion as well as the body sway of subjects viewing Op Art paintings. Twenty-eight healthy adults in orthostatic stance were successively exposed to three visual stimuli consisting of one figure representing a cross (baseline condition) and two Op Art paintings providing sense of motion in depth-Bridget Riley's Movements in Squares and Akiyoshi Kitaoka's Rollers. Before their exposure to the Op Art images, participants were instructed either to fixate at the center of the image (fixation condition) or to explore the artwork (free viewing condition). Posture was measured for 30 s per condition using a body fixed sensor (accelerometer). The major finding of this study is that the two Op Art paintings induced a larger antero-posterior body sway both in terms of speed and displacement and an increased motion illusion in the free viewing condition as compared to the fixation condition. For body sway, this effect was significant for the Riley painting, while for motion illusion this effect was significant for Kitaoka's image. These results are attributed to macro-saccades presumably occurring under free viewing instructions, and most likely to the small vergence drifts during fixations following the saccades; such movements in interaction with visual properties of each image would increase either the illusory motion sensation or the antero-posterior body sway.
Measuring Accurate Body Parameters of Dressed Humans with Large-Scale Motion Using a Kinect Sensor
Directory of Open Access Journals (Sweden)
Sidan Du
2013-08-01
Full Text Available Non-contact human body measurement plays an important role in surveillance, physical healthcare, on-line business and virtual fitting. Current methods for measuring the human body without physical contact usually cannot handle humans wearing clothes, which limits their applicability in public environments. In this paper, we propose an effective solution that can measure accurate parameters of the human body with large-scale motion from a Kinect sensor, assuming that the people are wearing clothes. Because motion can drive clothes attached to the human body loosely or tightly, we adopt a space-time analysis to mine the information across the posture variations. Using this information, we recover the human body, regardless of the effect of clothes, and measure the human body parameters accurately. Experimental results show that our system can perform more accurate parameter estimation on the human body than state-of-the-art methods.
Collective motion in quantum many-body systems
Energy Technology Data Exchange (ETDEWEB)
Haemmerling, Jens
2011-06-07
We study the emergence of collective dynamics in the integrable Hamiltonian system of two finite ensembles of coupled harmonic oscillators. After identification of a collective degree of freedom, the Hamiltonian is mapped onto a model of Caldeira-Leggett type, where the collective coordinate is coupled to an internal bath of phonons. In contrast to the usual Caldeira-Leggett model, the bath in the present case is part of the system. We derive an equation of motion for the collective coordinate which takes the form of a damped harmonic oscillator. We show that the distribution of quantum transition strengths induced by the collective mode is determined by its classical dynamics. This allows us to derive the spreading for the collective coordinate from first principles. After that we study the interplay between collective and incoherent single-particle motion in a model of two chains of particles whose interaction comprises a non-integrable part. In the perturbative regime, but for a general form of the interaction, we calculate the Fourier transform of the time correlation for the collective coordinate. We obtain the remarkable result that it always has a unique semi-classical interpretation. We show this by a proper renormalization procedure which also allows us to map the non-integrable system to the integrable model of Caldeira-Leggett-type considered previously in which the bath is part of the system.
Laws of motion and precession for black holes and other bodies
International Nuclear Information System (INIS)
Thorne, K.S.; Hartle, J.B.
1985-01-01
Laws of motion and precession are derived for a Kerr black hole or any other body which is far from all other sources of gravity (''isolated body'') and has multipole moments that change slowly with time. Previous work by D'Eath and others has shown that to high accuracy the body moves along a geodesic of the surrounding spacetime geometry, and Fermi-Walker transports its angular-momentum vector. This paper derives the largest corrections to the geodesic law of motion and Fermi-Walker law of transport. These corrections are due to coupling of the body's angular momentum and quadrupole moment to the Riemann curvature of the surrounding spacetime. The resulting laws of motion and precession are identical to those that have been derived previously, by many researchers, for test bodies with negligible self-gravity. However, the derivation given here is valid for any isolated body, regardless of the strength of its self-gravity. These laws of motion and precession can be converted into equations of motion and precession by combining them with an approximate solution to the Einstein field equations for the surrounding spacetime. As an example, the conversion is carried out for two gravitationally bound systems of bodies with sizes much less than their separations. The resulting equations of motion and precession are derived accurately through post/sup 1.5/-Newtonian order. For the special case of two Kerr black holes orbiting each other, these equations of motion and precession (which include couplings of the holes' spins and quadrupole moments to spacetime curvature) reduce to equations previously derived by D'Eath. The precession due to coupling of a black hole's quadrupole moment to surrounding curvature may be large enough, if the hole lives at the center of a very dense star cluster, for observational detection by its effects on extragalactic radio jets
Body and motion in early modern philosophy of nature
DEFF Research Database (Denmark)
Frølund, Sune
2009-01-01
Descartes rejects the concept of force or power any role in explaining movement. His argument is, that such concepts are derived from the experience of our deliberate movements of our own body. Such experiences does not yield epistemic access to nature, according to Descartes. Descartes......' alternative is a geometrisation of movement, which makes the difference between movement and rest due to (only) external relations of the relevant body. In one of his preparational studies to his Principia Mathamatica Newton levels a severe critique of Descartes' kinematics and epistemology. Newton argues...
MO-B-201-00: Motion Management in Current Stereotactic Body Radiation Therapy (SBRT) Practice
Energy Technology Data Exchange (ETDEWEB)
NONE
2016-06-15
The motion management in stereotactic body radiation therapy (SBRT) is a key to success for a SBRT program, and still an on-going challenging task. A major factor is that moving structures behave differently than standing structures when examined by imaging modalities, and thus require special considerations and employments. Understanding the motion effects to these different imaging processes is a prerequisite for a decent motion management program. The commonly used motion control techniques to physically restrict tumor motion, if adopted correctly, effectively increase the conformity and accuracy of hypofractionated treatment. The effective application of such requires one to understand the mechanics of the application and the related physiology especially related to respiration. The image-guided radiation beam control, or tumor tracking, further realized the endeavor for precision-targeting. During tumor tracking, the respiratory motion is often constantly monitored by non-ionizing beam sources using the body surface as its surrogate. This then has to synchronize with the actual internal tumor motion. The latter is often accomplished by stereo X-ray imaging or similar techniques. With these advanced technologies, one may drastically reduce the treated volume and increase the clinicians’ confidence for a high fractional ablative radiation dose. However, the challenges in implementing the motion management may not be trivial and is dependent on each clinic case. This session of presentations is intended to provide an overview of the current techniques used in managing the tumor motion in SBRT, specifically for routine lung SBRT, proton based treatments, and newly-developed MR guided RT. Learning Objectives: Through this presentation, the audience will understand basic roles of commonly used imaging modalities for lung cancer studies; familiarize the major advantages and limitations of each discussed motion control methods; familiarize the major advantages and
Hidalgo, Benjamin; Hall, Toby; Berwart, Mathilde; Biernaux, Elinor; Detrembleur, Christine
2017-12-29
Ankle rigidity is a common musculoskeletal disorder affecting the talocrural joint, which can impair weight-bearing ankle dorsiflexion (WBADF) and daily-life in people with or without history of ankle injuries. Our objective was to compare the immediate effects of efficacy of Mulligan Mobilization with Movement (MWM) and Osteopathic Mobilization (OM) for improving ankle dorsiflexion range of motion (ROM) and musculoarticular stiffness (MAS) in people with chronic ankle dorsiflexion rigidity. A randomized clinical trial with two arms. Patients were recruited by word of mouth and via social network as well as posters, and analyzed in the neuro musculoskeletal laboratory of the "Université Catholique de Louvain-la-Neuve", Brussels, Belgium. 67 men (aged 18-40 years) presenting with potential chronic non-specific and unilateral ankle mobility deficit during WBDF were assessed for eligibility and finally 40 men were included and randomly allocated to single session of either MWM or OM. Two modalities of manual therapy indicated for hypothetic immediate effects in chronic ankle dorsiflexion stiffness, i.e. MWM and OM, were applied during a single session on included patients. Comprised blinding measures of MAS with a specific electromechanical device (namely: Lehmann's device) producing passive oscillatory ankle joint dorsiflexion and with clinical measures of WBADF-ROM as well. A two-way ANOVA revealed a non-significant interaction between both techniques and time for all outcome measures. For measures of MAS: elastic-stiffness (p= 0.37), viscous-stiffness (p= 0.83), total-stiffness (p= 0.58). For WBADF-ROM: toe-wall distance (p= 0.58) and angular ROM (p= 0.68). Small effect sizes between groups were determined with Cohen's d ranging from 0.05 to 0.29. One-way ANOVA demonstrated non-significant difference and small to moderate effects sizes (d= 0.003-0.58) on all outcome measures before and after interventions within both groups. A second two-way ANOVA analyzed the
Bertolesi, Elisa; Milani, Gabriele
2017-07-01
The present paper is devoted to the discussion of a series of unreinforced and FRP retrofitted panels analyzed adopting the Rigid Body and Spring-Mass (HRBSM) model developed by the authors. To this scope, a total of four out of plane loaded masonry walls tested up to failure are considered. At a structural level, the non-linear analyses are conducted replacing the homogenized orthotropic continuum with a rigid element and non-linear spring assemblage by means of which out of plane mechanisms are allowed. FRP retrofitting is modeled adopting two noded truss elements whose mechanical properties are selected in order to describe possible debonding phenomenon or tensile rupture of the strengthening. The outcome provided numerically are compared to the experimental results showing a satisfactory agreement in terms of global pressure-deflection curves and failure mechanisms.
Wagatsuma, Kei; Osawa, Tatsufumi; Yokokawa, Naoki; Miwa, Kenta; Oda, Keiichi; Kudo, Yoshiro; Unno, Yasushi; Ito, Kimiteru; Ishii, Kenji
2016-01-01
The present study aimed to determine the qualitative and quantitative accuracy of the Q.Freeze algorithm in PET/CT images of liver tumors. A body phantom and hot spheres representing liver tumors contained 5.3 and 21.2 kBq/mL of a solution containing 18 F radioactivity, respectively. The phantoms were moved in the superior-inferior direction at a motion displacement of 20 mm. Conventional respiratory-gated (RG) and Q.Freeze images were sorted into 6, 10, and 13 phase-groups. The SUV ave was calculated from the background of the body phantom, and the SUV max was determined from the hot spheres of the liver tumors. Three patients with four liver tumors were also clinically assessed by whole-body and RG PET. The RG and Q.Freeze images derived from the clinical study were also sorted into 6, 10 and 13 phase-groups. Liver signal-to-noise ratio (SNR) and SUV max were determined from the RG and Q.Freeze clinical images. The SUV ave of Q.Freeze images was the same as those derived from the body phantom using RG. The liver SNR improved with Q.Freeze, and the SUVs max was not overestimated when Q.Freeze was applied in both the phantom and clinical studies. Q.Freeze did not degrade the liver SNR and SUV max even though the phase number was larger. Q.Freeze delivered qualitative and quantitative motion correction than conventional RG imaging even in 10-phase groups.
Relativistic many-body theory of atomic transitions. The relativistic equation-of-motion approach
International Nuclear Information System (INIS)
Huang, K.
1982-01-01
An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated with the use of techniques of quantum-field theory. To reduce the equations of motion to a tractable form which is appropriate for numerical calculations, a graphical method to resolve the complication arising from the antisymmetrization and angular-momentum coupling is employed. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation
International Nuclear Information System (INIS)
Ma Lijun; Sahgal, Arjun; Hossain, Sabbir; Chuang, Cynthia; Descovich, Martina; Huang, Kim; Gottschalk, Alex; Larson, David A.
2009-01-01
Purpose: To characterize nonrandom intrafraction target motions for spine stereotactic body radiotherapy and to develop a method of correction via image guidance. The dependence of target motions, as well as the effectiveness of the correction strategy for lesions of different locations within the spine, was analyzed. Methods and Materials: Intrafraction target motions for 64 targets in 64 patients treated with a total of 233 fractions were analyzed. Based on the target location, the cases were divided into three groups, i.e., cervical (n = 20 patients), thoracic (n = 20 patients), or lumbar-sacrum (n = 24 patients) lesions. For each case, time-lag autocorrelation analysis was performed for each degree of freedom of motion that included both translations (x, y, and z shifts) and rotations (roll, yaw, and pitch). A general correction strategy based on periodic interventions was derived to determine the time interval required between two adjacent interventions, to overcome the patient-specific target motions. Results: Nonrandom target motions were detected for 100% of cases regardless of target locations. Cervical spine targets were found to possess the highest incidence of nonrandom target motion compared with thoracic and lumbar-sacral lesions (p < 0.001). The average time needed to maintain the target motion to within 1 mm of translation or 1 deg. of rotational deviation was 5.5 min, 5.9 min, and 7.1 min for cervical, thoracic, and lumbar-sacrum locations, respectively (at 95% confidence level). Conclusions: A high incidence of nonrandom intrafraction target motions was found for spine stereotactic body radiotherapy treatments. Periodic interventions at approximately every 5 minutes or less were needed to overcome such motions.
Graybiel, A.; Lackner, J. R.
1980-01-01
This study investigated the relationship between the development of symptoms of motion sickness and changes in blood pressure, heart rate, and body temperature. Twelve subjects were each evaluated four times using the vestibular-visual interaction test (Graybiel and Lackner, 1980). The results were analyzed both within and across individual subjects. Neither a systematic group nor consistent individual relationship was found between the physiological parameters and the appearance of symptoms of motion sickness. These findings suggest that biofeedback control of the physiological variables studied is not likely to prevent the expression of motion sickness symptomatology.
Real-time stylistic prediction for whole-body human motions.
Matsubara, Takamitsu; Hyon, Sang-Ho; Morimoto, Jun
2012-01-01
The ability to predict human motion is crucial in several contexts such as human tracking by computer vision and the synthesis of human-like computer graphics. Previous work has focused on off-line processes with well-segmented data; however, many applications such as robotics require real-time control with efficient computation. In this paper, we propose a novel approach called real-time stylistic prediction for whole-body human motions to satisfy these requirements. This approach uses a novel generative model to represent a whole-body human motion including rhythmic motion (e.g., walking) and discrete motion (e.g., jumping). The generative model is composed of a low-dimensional state (phase) dynamics and a two-factor observation model, allowing it to capture the diversity of motion styles in humans. A real-time adaptation algorithm was derived to estimate both state variables and style parameter of the model from non-stationary unlabeled sequential observations. Moreover, with a simple modification, the algorithm allows real-time adaptation even from incomplete (partial) observations. Based on the estimated state and style, a future motion sequence can be accurately predicted. In our implementation, it takes less than 15 ms for both adaptation and prediction at each observation. Our real-time stylistic prediction was evaluated for human walking, running, and jumping behaviors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Földeák, Dóra; Kalapos, Anita; Domsik, Péter; Sinkó, Mária; Szeleczki, Nóra; Bagdi, Enikő; Krenács, László; Forster, Tamás; Borbényi, Zita; Nemes, Attila
2017-02-01
Secondary myocardial involvement by diffuse large B-cell lymphoma is a rare occurrence. Left ventricular (LV) twist is considered an essential part of LV function. In normal circumstances LV twist results from the movement of two orthogonally oriented muscular bands of a helical myocardial structure with consequent clockwise rotation of the base and counterclockwise rotation of the apex. Three-dimensional (3D) speckle-tracking echocardiography (3DSTE) has been found to be feasible for non-invasive 3D quantification of LV wall motion and rotational mechanics. The present report aimed to assess LV twisting motion in a patient with diffuse large B-cell lymphoma with positron emission tomography/computer tomography-proven cardiac involvement by 3DSTE. During 3DSTE, reduction in some segmental radial, longitudinal, circumferential, area and 3D LV strains were found. Apical and basal LV rotations were found to be in the same counterclockwise direction, confirming near absence of LV twist - so-called rigid body rotation. Copyright © 2016 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.
Post-1-Newtonian equations of motion for systems of arbitrarily structured bodies
International Nuclear Information System (INIS)
Racine, Etienne; Flanagan, Eanna E.
2005-01-01
We give a surface-integral derivation of post-1-Newtonian translational equations of motion for a system of arbitrarily structured bodies, including the coupling to all the bodies' mass and current multipole moments. The derivation requires only that the post-1-Newtonian vacuum field equations are satisfied in weak field regions between the bodies; the bodies' internal gravity can be arbitrarily strong. In particular, black holes are not excluded. The derivation extends previous results due to Damour, Soffel, and Xu (DSX) for weakly self-gravitating bodies in which the post-1-Newtonian field equations are satisfied everywhere. The derivation consists of a number of steps: (i) The definition of each body's current and mass multipole moments and center-of-mass world line in terms of the behavior of the metric in a weak field region surrounding the body. (ii) The definition for each body of a set of gravitoelectric and gravitomagnetic tidal moments that act on that body, again in terms of the behavior of the metric in a weak field region surrounding the body. For the special case of weakly self-gravitating bodies, our definitions of these multipole and tidal moments agree with definitions given previously by DSX. (iii) The derivation of a formula, for any given body, of the second time derivative of its mass dipole moment in terms of its other multipole and tidal moments and their time derivatives. This formula was obtained previously by DSX for weakly self-gravitating bodies. (iv) A derivation of the relation between the tidal moments acting on each body and the multipole moments and center-of-mass world lines of all the other bodies. A formalism to compute this relation was developed by DSX; we simplify their formalism and compute the relation explicitly. (v) The deduction from the previous steps of the explicit translational equations of motion, whose form has not been previously derived
Post-1-Newtonian equations of motion for systems of arbitrarily structured bodies
Racine, Étienne; Flanagan, Éanna É.
2005-02-01
We give a surface-integral derivation of post-1-Newtonian translational equations of motion for a system of arbitrarily structured bodies, including the coupling to all the bodies' mass and current multipole moments. The derivation requires only that the post-1-Newtonian vacuum field equations are satisfied in weak field regions between the bodies; the bodies' internal gravity can be arbitrarily strong. In particular, black holes are not excluded. The derivation extends previous results due to Damour, Soffel, and Xu (DSX) for weakly self-gravitating bodies in which the post-1-Newtonian field equations are satisfied everywhere. The derivation consists of a number of steps: (i) The definition of each body’s current and mass multipole moments and center-of-mass world line in terms of the behavior of the metric in a weak field region surrounding the body. (ii) The definition for each body of a set of gravitoelectric and gravitomagnetic tidal moments that act on that body, again in terms of the behavior of the metric in a weak field region surrounding the body. For the special case of weakly self-gravitating bodies, our definitions of these multipole and tidal moments agree with definitions given previously by DSX. (iii) The derivation of a formula, for any given body, of the second time derivative of its mass dipole moment in terms of its other multipole and tidal moments and their time derivatives. This formula was obtained previously by DSX for weakly self-gravitating bodies. (iv) A derivation of the relation between the tidal moments acting on each body and the multipole moments and center-of-mass world lines of all the other bodies. A formalism to compute this relation was developed by DSX; we simplify their formalism and compute the relation explicitly. (v) The deduction from the previous steps of the explicit translational equations of motion, whose form has not been previously derived.
Amireghbali, A.; Coker, D.
2018-01-01
Burridge and Knopoff proposed a mass-spring model to explore interface dynamics along a fault during an earthquake. The Burridge and Knopoff (BK) model is composed of a series of blocks of equal mass connected to each other by springs of same stiffness. The blocks also are attached to a rigid driver via another set of springs that pulls them at a constant velocity against a rigid substrate. They studied dynamics of interface for an especial case with ten blocks and a specific set of fault properties. In our study effects of Coulomb and rate-state dependent friction laws on the dynamics of a single block BK model is investigated. The model dynamics is formulated as a system of coupled nonlinear ordinary differential equations in state-space form which lends itself to numerical integration methods, e.g. Runge-Kutta procedure for solution. The results show that the rate and state dependent friction law has the potential of triggering dynamic patterns that are different from those under Coulomb law.
Leveraging Two Kinect Sensors for Accurate Full-Body Motion Capture
Directory of Open Access Journals (Sweden)
Zhiquan Gao
2015-09-01
Full Text Available Accurate motion capture plays an important role in sports analysis, the medical field and virtual reality. Current methods for motion capture often suffer from occlusions, which limits the accuracy of their pose estimation. In this paper, we propose a complete system to measure the pose parameters of the human body accurately. Different from previous monocular depth camera systems, we leverage two Kinect sensors to acquire more information about human movements, which ensures that we can still get an accurate estimation even when significant occlusion occurs. Because human motion is temporally constant, we adopt a learning analysis to mine the temporal information across the posture variations. Using this information, we estimate human pose parameters accurately, regardless of rapid movement. Our experimental results show that our system can perform an accurate pose estimation of the human body with the constraint of information from the temporal domain.
Moving along the Mental Number Line: Interactions between Whole-Body Motion and Numerical Cognition
Hartmann, Matthias; Grabherr, Luzia; Mast, Fred W.
2012-01-01
Active head turns to the left and right have recently been shown to influence numerical cognition by shifting attention along the mental number line. In the present study, we found that passive whole-body motion influences numerical cognition. In a random-number generation task (Experiment 1), leftward and downward displacement of participants…
On the atmosphere of a moving body
DEFF Research Database (Denmark)
Pedersen, Johan Rønby; Aref, Hassan
2010-01-01
We explore whether a rigid body moving freely with no circulation around it in a two-dimensional ideal fluid can carry a fluid "atmosphere" with it in its motion. Somewhat surprisingly, the answer appears to be "yes." When the body is elongated and the motion is dominated by rotation, we demonstr...
On the atmosphere of a moving body
DEFF Research Database (Denmark)
Pedersen, Johan Rønby; Aref, Hassan
2010-01-01
We have explored whether a rigid body moving freely with no circulation around it in a two-dimensional ideal fluid can carry a fluid ``atmosphere'' with it in its motion. Somewhat surprisingly, the answer appears to be ``yes''. When the body is elongated and the motion is dominated by rotation, w...
Pathak, Ashish; Raessi, Mehdi
2016-04-01
We present a three-dimensional (3D) and fully Eulerian approach to capturing the interaction between two fluids and moving rigid structures by using the fictitious domain and volume-of-fluid (VOF) methods. The solid bodies can have arbitrarily complex geometry and can pierce the fluid-fluid interface, forming contact lines. The three-phase interfaces are resolved and reconstructed by using a VOF-based methodology. Then, a consistent scheme is employed for transporting mass and momentum, allowing for simulations of three-phase flows of large density ratios. The Eulerian approach significantly simplifies numerical resolution of the kinematics of rigid bodies of complex geometry and with six degrees of freedom. The fluid-structure interaction (FSI) is computed using the fictitious domain method. The methodology was developed in a message passing interface (MPI) parallel framework accelerated with graphics processing units (GPUs). The computationally intensive solution of the pressure Poisson equation is ported to GPUs, while the remaining calculations are performed on CPUs. The performance and accuracy of the methodology are assessed using an array of test cases, focusing individually on the flow solver and the FSI in surface-piercing configurations. Finally, an application of the proposed methodology in simulations of the ocean wave energy converters is presented.
International Nuclear Information System (INIS)
Wu, Q. Jackie; Thongphiew, Danthai; Wang Zhiheng; Chankong, Vira; Yin Fangfang
2008-01-01
Stereotactic body radiation therapy (SBRT), which delivers a much higher fractional dose than conventional treatment in only a few fractions, is an effective treatment for liver metastases. For patients who are treated under free-breathing conditions, however, respiration-induced tumor motion in the liver is a concern. Limited clinical information is available related to the impact of tumor motion and treatment technique on the dosimetric consequences. This study evaluated the dosimetric deviations between planned and delivered SBRT dose in the presence of tumor motion for three delivery techniques: three-dimensional conformal static beams (3DCRT), dynamic conformal arc (DARC), and intensity-modulated radiation therapy (IMRT). Five cases treated with SBRT for liver metastases were included in the study, with tumor motions ranging from 0.5 to 1.75 cm. For each case, three different treatment plans were developed using 3DCRT, DARC, and IMRT. The gantry/multileaf collimator (MLC) motion in the DARC plans and the MLC motion in the IMRT plans were synchronized to the patient's respiratory motion. Retrospectively sorted four-dimensional computed tomography image sets were used to determine patient-organ motion and to calculate the dose delivered during each respiratory phase. Deformable registration, using thin-plate-spline models, was performed to encode the tumor motion and deformation and to register the dose-per-phase to the reference phase images. The different dose distributions resulting from the different delivery techniques and motion ranges were compared to assess the effect of organ motion on dose delivery. Voxel dose variations occurred mostly in the high gradient regions, typically between the target volume and normal tissues, with a maximum variation up to 20%. The greatest CTV variation of all the plans was seen in the IMRT technique with the largest motion range (D99: -8.9%, D95: -8.3%, and D90: -6.3%). The greatest variation for all 3DCRT plans was less
SU-F-J-128: Dosimetric Impact of Esophagus Motion in Spine Stereotactic Body Radiotherapy
Energy Technology Data Exchange (ETDEWEB)
Yang, J; Wang, X; Zhao, Z; Yang, J; Zhang, Y; Court, L; Li, J; Brown, P; Ghia, A [MD Anderson Cancer Center, Houston, TX (United States)
2016-06-15
Purpose: Acute esophageal toxicity is a common side effect in spine stereotactic body radiotherapy (SBRT). The respiratory motion may alter esophageal position from the planning scan resulting in excessive esophageal dose. Here we assessed the dosimetric impact resulting from the esophageal motion using 4DCT. Methods: Nine patients treated to their thoracic spines in one fraction of 24 Gy were identified for this study. The original plan on a free breathing CT was copied to each phase image of a 4DCT scan, recalculated, scaled, and accumulated to the free breathing CT using deformable image registration. A segment of esophagus was contoured in the vicinity of treatment target. Esophagus dose volume histogram (DVH) was generated for both the original planned dose and the accumulated 4D dose for comparison. In parallel, we performed a chained deformable registration of 4DCT phase images to estimate the motion magnitude of the esophagus in a breathing cycle. We examined the correlation between the motion magnitude and the dosimetric deviation. Results: The esophageal motion mostly exhibited in the superior-inferior direction. The cross-sectional motion was small. Esophagus motion at T1 vertebra level (0.7 mm) is much smaller than that at T11 vertebra level (6.5 mm). The difference of Dmax between the original and 4D dose distributions ranged from 9.1 cGy (esophagus motion: 5.6 mm) to 231.1 cGy (esophagus motion: 3.1 mm). The difference of D(5cc) ranged from 5 cGy (esophagus motion: 3.1 mm) to 85 cGy (esophagus motion: 3.3 mm). There was no correlation between the dosimetric deviation and the motion magnitude. The V(11.9Gy)<5cc constraint was met for each patient when examining the DVH calculated from the 4D dose. Conclusion: Respiratory motion did not result in substantial dose increase to esophagus in spine SBRT. 4DCT simulation may not be necessary with regards to esophageal dose assessment.
Designing a compact MRI motion phantom
Directory of Open Access Journals (Sweden)
Schmiedel Max
2016-09-01
Full Text Available Even today, dealing with motion artifacts in magnetic resonance imaging (MRI is a challenging task. Image corruption due to spontaneous body motion complicates diagnosis. In this work, an MRI phantom for rigid motion is presented. It is used to generate motion-corrupted data, which can serve for evaluation of blind motion compensation algorithms. In contrast to commercially available MRI motion phantoms, the presented setup works on small animal MRI systems. Furthermore, retrospective gating is performed on the data, which can be used as a reference for novel motion compensation approaches. The motion of the signal source can be reconstructed using motor trigger signals and be utilized as the ground truth for motion estimation. The proposed setup results in motion corrected images. Moreover, the importance of preprocessing the MRI raw data, e.g. phase-drift correction, is demonstrated. The gained knowledge can be used to design an MRI phantom for elastic motion.
The motion of a rigid body and a viscous fluid in a bounded domain in presence of collisions
Czech Academy of Sciences Publication Activity Database
Chemetov, N.; Nečasová, Šárka
2018-01-01
Roč. 2, č. 1 (2018), č. článku 00014. R&D Projects: GA ČR GA16-03230S Institutional support: RVO:67985840 Keywords : Navier-Stokes equations * Navier boundary condition * solidification Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics http://medcraveonline.com/FMRIJ/FMRIJ-02-00014.pdf
International Nuclear Information System (INIS)
Quazzani, T.H.A.; Dekkaki, S.; Kharbach, J.; Quazzani-Ja, M.
2000-01-01
In this paper, the topology of Hamiltonian flows is described on the real phase space for the Goryatchev-Tchaplygin top. By making use of Fomenko's theory of surgery on Liouville tori, it is given a complete description of the generic bifurcations of the common level sets of the first integrals. It is also given a numerical investigation of these bifurcations. Explicit periodic solutions for singular common level sets of the first integrals were determined
Whole-Body Motion Planning for Humanoid Robots by Specifying Via-Points
Directory of Open Access Journals (Sweden)
ChangHyun Sung
2013-07-01
Full Text Available We design a framework about the planning of whole body motion for humanoid robots. Motion planning with various constraints is essential to success the task. In this research, we propose a motion planning method corresponding to various conditions for achieving the task. We specify some via-points to deal with the conditions for target achievement depending on various constraints. Together with certain constraints including task accomplishment, the via-point representation plays a crucial role in the optimization process of our method. Furthermore, the via-points as the optimization parameters are related to some physical conditions. We applied this method to generate the kicking motion of a humanoid robot HOAP-3. We have confirmed that the robot was able to complete the task of kicking a ball over an obstacle into a goal in addition to changing conditions of the location of a ball. These results show that the proposed motion planning method using via-point representation can increase articulation of the motion.
3D Measurement of Forearm and Upper Arm during Throwing Motion using Body Mounted Sensor
Koda, Hideharu; Sagawa, Koichi; Kuroshima, Kouta; Tsukamoto, Toshiaki; Urita, Kazutaka; Ishibashi, Yasuyuki
The aim of this study is to propose the measurement method of three-dimensional (3D) movement of forearm and upper arm during pitching motion of baseball using inertial sensors without serious consideration of sensor installation. Although high accuracy measurement of sports motion is achieved by using optical motion capture system at present, it has some disadvantages such as the calibration of cameras and limitation of measurement place. Whereas the proposed method for 3D measurement of pitching motion using body mounted sensors provides trajectory and orientation of upper arm by the integration of acceleration and angular velocity measured on upper limb. The trajectory of forearm is derived so that the elbow joint axis of forearm corresponds to that of upper arm. Spatial relation between upper limb and sensor system is obtained by performing predetermined movements of upper limb and utilizing angular velocity and gravitational acceleration. The integration error is modified so that the estimated final position, velocity and posture of upper limb agree with the actual ones. The experimental results of the measurement of pitching motion show that trajectories of shoulder, elbow and wrist estimated by the proposed method are highly correlated to those from the motion capture system within the estimation error of about 10 [%].
宮西, 智久; Tomohisa, Miyanishi; 仙台大学; Sendai College
1998-01-01
In sports biomechanics, joint torque analysis play a very important role. For this reason, if we understand the joint torque during sports activity, it will be useful for the diagnosis and/or evaluation of sports technique, the specific method for muscle training and the mechanisms of sports movement. In the past decade, many studies which dealt with the motion analysis for sports activity using a three-dimensional cinematography, have been done. However, most of these studies has been focuse...
Various anti-motion sickness drugs and core body temperature changes.
Cheung, Bob; Nakashima, Ann M; Hofer, Kevin D
2011-04-01
Blood flow changes and inactivity associated with motion sickness appear to exacerbate the rate of core temperature decrease during subsequent body cooling. We investigated the effects of various classes of anti-motion sickness drugs on core temperature changes. There were 12 healthy male and female subjects (20-35 yr old) who were given selected classes of anti-motion sickness drugs prior to vestibular Coriolis cross coupling induced by graded yaw rotation and periodic pitch-forward head movements in the sagittal plane. All subjects were then immersed in water at 18 degrees C for a maximum of 90 min or until their core temperature reached 35 degrees C. Double-blind randomized trials were administered, including a placebo, a non-immersion control with no drug, and six anti-motion sickness drugs: meclizine, dimenhydrinate, chlorpheniramine, promethazine + dexamphetamine, promethazine + caffeine, and scopolamine + dexamphetamine. A 7-d washout period was observed between trials. Core temperature and the severity of sickness were monitored throughout each trial. A repeated measures design was performed on the severity of sickness and core temperature changes prior to motion provocation, immediately after the motion sickness end point, and throughout the period of cold-water immersion. The most effective anti-motion sickness drugs, promethazine + dexamphetamine (with a sickness score/duration of 0.65 +/- 0.17) and scopolamine + dexamphetamine (with a sickness score/duration of 0.79 +/- 0.17), significantly attenuated the decrease in core temperature. The effect of this attenuation was lower in less effective drugs. Our results suggest that the two most effective anti-motion sickness drugs are also the most effective in attenuating the rate of core temperature decrease.
Construction of exact constants of motion and effective models for many-body localized systems
Goihl, M.; Gluza, M.; Krumnow, C.; Eisert, J.
2018-04-01
One of the defining features of many-body localization is the presence of many quasilocal conserved quantities. These constants of motion constitute a cornerstone to an intuitive understanding of much of the phenomenology of many-body localized systems arising from effective Hamiltonians. They may be seen as local magnetization operators smeared out by a quasilocal unitary. However, accurately identifying such constants of motion remains a challenging problem. Current numerical constructions often capture the conserved operators only approximately, thus restricting a conclusive understanding of many-body localization. In this work, we use methods from the theory of quantum many-body systems out of equilibrium to establish an alternative approach for finding a complete set of exact constants of motion which are in addition guaranteed to represent Pauli-z operators. By this we are able to construct and investigate the proposed effective Hamiltonian using exact diagonalization. Hence, our work provides an important tool expected to further boost inquiries into the breakdown of transport due to quenched disorder.
Aspects of the motion of extended bodies in the post-Newtonian approximation to general relativity
Racine, Etienne
We give a surface integral derivation of post-1-Newtonian translational equations of motion for a system of arbitrarily structured bodies, including the coupling to all the bodies' mass and current multipole moments. The explicit form of these translational equations of motion has not been previously derived. The derivation requires only that the post-1-Newtonian vacuum field equations are satisfied in weak-field regions between the bodies; the bodies' internal gravity can be arbitrarily strong. In particular black holes are not excluded. The derivation extends previous results due to Damour, Soffel and Xu (DSX) for weakly self-gravitating bodies in which the post-1- Newtonian field equations are satisfied everywhere. We also give a surface integral derivation of the leading-order evolution equations for the spin and energy of a relativistic body interacting with other bodies in the post-Newtonian expansion. As part of the computational method, new explicit expansions of general solutions of post-2-Newtonian vacuum field equations are derived. These expansions can serve as foundation for future work in a number of directions, including for example conserved quantities at post- 2-Newtonian order, definitions of angular momentum and studies of gauge invariance of tidal heating. As an astrophysical application of the translational equations of motion, we study gravitomagnetic resonant tidal excitations of r -modes in neutron star binary coalescence. We show that the effect of the resonance on the phase of the binary can be parametrized by a single number. We compute this number explicitly and discuss the detectability of this effect from its imprint on the gravitational wave signal emitted by the binary.
The problem of the motion of bodies a historical view of the development of classical mechanics
Capecchi, Danilo
2014-01-01
This book focuses on the way in which the problem of the motion of bodies has been viewed and approached over the course of human history. It is not another traditional history of mechanics but rather aims to enable the reader to fully understand the deeper ideas that inspired men, first in attempting to understand the mechanisms of motion and then in formulating theories with predictive as well as explanatory value. Given this objective, certain parts of the history of mechanics are neglected, such as fluid mechanics, statics, and astronomy after Newton. On the other hand, due attention is paid, for example, to the history of thermodynamics, which has its own particular point of view on motion. Inspired in part by historical epistemology, the book examines the various views and theories of a given historical period (synchronic analysis) and then makes comparisons between different periods (diachronic analysis). In each period, one or two of the most meaningful contributions are selected for particular attent...
Influence of tides in viscoelastic bodies of planet and satellite on the satellite's orbital motion
Emelyanov, N. V.
2018-06-01
The problem of influence of tidal friction in both planetary and satellite bodies upon satellite's orbital motion is considered. Using the differential equations in satellite's rectangular planetocentric coordinates, the differential equations describing the changes in semimajor axis and eccentricity are derived. The equations in rectangular coordinates were taken from earlier works on the problem. The calcultations carried out for a number of test examples prove that the averaged solutions of equations in coordinates and precise solutions of averaged equations in the Keplerian elements are identical. For the problem of tides raised on planet's body, it was found that, if satellite's mean motion n is equal to 11/18 Ω, where Ω is the planet's angular rotation rate, the orbital eccentricity does not change. This conclusion is in agreement with the results of other authors. It was also found that there is essential discrepancy between the equations in the elements obtained in this paper and analogous equations published by earlier researchers.
The motion and control of a complex three-body space tethered system
Shi, Gefei; Zhu, Zhanxia; Chen, Shiyu; Yuan, Jianping; Tang, Biwei
2017-11-01
This paper is mainly devoted to investigating the dynamics and stability control of a three body-tethered satellite system which contains a main satellite and two subsatellites connected by two straight, massless and inextensible tethers. Firstly, a detailed mathematical model is established in the central gravitational field. Then, the dynamic characteristics of the established system are investigated and analyzed. Based on the dynamic analysis, a novel sliding mode prediction model (SMPM) control strategy is proposed to suppress the motion of the built tethered system. The numerical results show that the proposed underactuated control law is highly effective in suppressing the attitude/libration motion of the underactuated three-body tethered system. Furthermore, cases of different target angles are also examined and analyzed. The simulation results reveal that even if the final equilibrium states differ from different selections of the target angles, the whole system can still be maintained in acceptable areas.
Many-body-localization: strong disorder perturbative approach for the local integrals of motion
Monthus, Cécile
2018-05-01
For random quantum spin models, the strong disorder perturbative expansion of the local integrals of motion around the real-spin operators is revisited. The emphasis is on the links with other properties of the many-body-localized phase, in particular the memory in the dynamics of the local magnetizations and the statistics of matrix elements of local operators in the eigenstate basis. Finally, this approach is applied to analyze the many-body-localization transition in a toy model studied previously from the point of view of the entanglement entropy.
Okumura, Hisashi; Itoh, Satoru G; Okamoto, Yuko
2007-02-28
The authors propose explicit symplectic integrators of molecular dynamics (MD) algorithms for rigid-body molecules in the canonical and isobaric-isothermal ensembles. They also present a symplectic algorithm in the constant normal pressure and lateral surface area ensemble and that combined with the Parrinello-Rahman algorithm. Employing the symplectic integrators for MD algorithms, there is a conserved quantity which is close to Hamiltonian. Therefore, they can perform a MD simulation more stably than by conventional nonsymplectic algorithms. They applied this algorithm to a TIP3P pure water system at 300 K and compared the time evolution of the Hamiltonian with those by the nonsymplectic algorithms. They found that the Hamiltonian was conserved well by the symplectic algorithm even for a time step of 4 fs. This time step is longer than typical values of 0.5-2 fs which are used by the conventional nonsymplectic algorithms.
Steady state obliquity of a rigid body in the spin-orbit resonant problem: application to Mercury
Lhotka, Christoph
2017-12-01
We investigate the stable Cassini state 1 in the p : q spin-orbit resonant problem. Our study includes the effect of the gravitational potential up to degree and order 4 and p : q spin-orbit resonances with p,q≤ 8 and p≥ q. We derive new formulae that link the gravitational field coefficients with its secular orbital elements and its rotational parameters. The formulae can be used to predict the orientation of the spin axis and necessary angular momentum at exact resonance. We also develop a simple pendulum model to approximate the dynamics close to resonance and make use of it to predict the libration periods and widths of the oscillatory regime of motions in phase space. Our analytical results are based on averaging theory that we also confirm by means of numerical simulations of the exact dynamical equations. Our results are applied to a possible rotational history of Mercury.
Directory of Open Access Journals (Sweden)
Michael L. Cardenas, MD
2018-04-01
Full Text Available Purpose: We present a rapid computational method for quantifying interfraction motion of the esophagus in patients undergoing stereotactic body radiation therapy on a magnetic resonance (MR guided radiation therapy system. Methods and materials: Patients who underwent stereotactic body radiation therapy had simulation computed tomography (CT and on-treatment MR scans performed. The esophagus was contoured on each scan. CT contours were transferred to MR volumes via rigid registration. Digital Imaging and Communications in Medicine files containing contour points were exported to MATLAB. In-plane CT and MR contour points were spline interpolated, yielding boundaries with centroid positions, CCT and CMR. MR contour points lying outside of the CT contour were extracted. For each such point, BMR(j, a segment from CCT intersecting BMR(j, was produced; its intersection with the CT contour, BCT(i, was calculated. The length of the segment Sij, between BCT(i and BMR(j, was found. The orientation θ was calculated from Sij vector components:θ = arctan[(Sijy / (Sijx]A set of segments {Sij} was produced for each slice and binned by quadrant with 0° < θ ≤ 90°, 90° < θ ≤ 180°, 180° < θ ≤ 270°, and 270° < θ ≤ 360° for the left anterior, right anterior, right posterior, and left posterior quadrants, respectively. Slices were binned into upper, middle, and lower esophageal (LE segments. Results: Seven patients, each having 3 MR scans, were evaluated, yielding 1629 axial slices and 84,716 measurements. The LE segment exhibited the greatest magnitude of motion. The mean LE measurements in the left anterior, left posterior, right anterior, and right posterior were 5.2 ± 0.07 mm, 6.0 ± 0.09 mm, 4.8 ± 0.08 mm, and 5.1 ± 0.08 mm, respectively. There was considerable interpatient variability. Conclusions: The LE segment exhibited the greatest magnitude of mobility compared with the
Energy Technology Data Exchange (ETDEWEB)
Ghose, S.; Schomaker, V.; McMullan, R.K.
1986-01-01
Synthetic enstatite, Mg/sub 2/Si/sub 2/O/sub 6/, is orthorhombic, space group Pbca, with eight formula units per cell and lattice parameters a = 18.235(3), b = 8.818(1), c = 5.179(1) A at 23/sup 0/C. A least-squares structure refinement based on 1790 neutron intensity data converged with an agreement factor R(F/sup 2/) = 0.032, yielding Mg-O and Si-O bond lengths with standard deviations of 0.0007 and 0.0008 A, respectively. The variations observed in the Si-O bond lengths within the silicate tetrahedra A and B are caused by the differences in primary coordination of the oxygen atoms and the proximity of the magnesium ions to the silicon atoms. The latter effect is most pronounced for the bridging bonds of tetrahedron. A. The smallest O-Si-O angle is the result of edge-sharing by the Mg(2) octahedron and the A tetrahedron. An analysis of rigid-body thermal vibrations of the two crystallographically independent (SiO/sub 4/) tetrahedra indicates considerable librational motion, leading to a thermal correction of apparent Si-O bond lengths as large as +0.002 A at room temperature.
The importance of being equivalent: Newton's two models of one-body motion
Pourciau, Bruce
2004-05-01
As an undergraduate at Cambridge, Newton entered into his "Waste Book" an assumption that we have named the Equivalence Assumption (The Younger): "If a body move progressively in some crooked line [about a center of motion] ..., [then this] crooked line may bee conceived to consist of an infinite number of streight lines. Or else in any point of the croked line the motion may bee conceived to be on in the tangent". In this assumption, Newton somewhat imprecisely describes two mathematical models, a "polygonal limit model" and a "tangent deflected model", for "one-body motion", that is, for the motion of a "body in orbit about a fixed center", and then claims that these two models are equivalent. In the first part of this paper, we study the Principia to determine how the elder Newton would more carefully describe the polygonal limit and tangent deflected models. From these more careful descriptions, we then create Equivalence Assumption (The Elder), a precise interpretation of Equivalence Assumption (The Younger) as it might have been restated by Newton, after say 1687. We then review certain portions of the Waste Book and the Principia to make the case that, although Newton never restates nor even alludes to the Equivalence Assumption after his youthful Waste Book entry, still the polygonal limit and tangent deflected models, as well as an unspoken belief in their equivalence, infuse Newton's work on orbital motion. In particular, we show that the persuasiveness of the argument for the Area Property in Proposition 1 of the Principia depends crucially on the validity of Equivalence Assumption (The Elder). After this case is made, we present the mathematical analysis required to establish the validity of the Equivalence Assumption (The Elder). Finally, to illustrate the fundamental nature of the resulting theorem, the Equivalence Theorem as we call it, we present three significant applications: we use the Equivalence Theorem first to clarify and resolve questions
2008-01-01
various physical processes such as supercavitation and bubbles. A diagnostic- photographic method is developed in this study to determine the drag...nonlinear dynamics, body and multi-phase fluid interaction, supercavitation , and instability theory. The technical application of the hydrodynamics of...uV U ω= = − ×V e e e ei i , (29) where Eq.(9) is used. For a supercavitation area, a correction factor may be
Dosimetric effect of intrafraction tumor motion in phase gated lung stereotactic body radiotherapy
International Nuclear Information System (INIS)
Zhao Bo; Yang Yong; Li Tianfang; Li Xiang; Heron, Dwight E.; Huq, M. Saiful
2012-01-01
Purpose: A major concern for lung intensity modulated radiation therapy delivery is the deviation of actually delivered dose distribution from the planned one due to simultaneous movements of multileaf collimator (MLC) leaves and tumor. For gated lung stereotactic body radiotherapy treatment (SBRT), the situation becomes even more complicated because of SBRT's characteristics such as fewer fractions, smaller target volume, higher dose rate, and extended fractional treatment time. The purpose of this work is to investigate the dosimetric effect of intrafraction tumor motion during gated lung SBRT delivery by reconstructing the delivered dose distribution with real-time tumor motion considered. Methods: The tumor motion data were retrieved from six lung patients. Each of them received three fractions of stereotactic radiotherapy treatments with Cyberknife Synchrony (Accuray, Sunnyvale, CA). Phase gating through an external surrogate was simulated with a gating window of 5 mm. The resulting residual tumor motion curves during gating (beam-on) were retrieved. Planning target volume (PTV) was defined as physician-contoured clinical target volume (CTV) surrounded by an isotropic 5 mm margin. Each patient was prescribed with 60 Gy/3 fractions. The authors developed an algorithm to reconstruct the delivered dose with tumor motion. The DMLC segments, mainly leaf position and segment weighting factor, were recalculated according to the probability density function of tumor motion curve. The new DMLC sequence file was imported back to treatment planning system to reconstruct the dose distribution. Results: Half of the patients in the study group experienced PTV D95% deviation up to 26% for fractional dose and 14% for total dose. CTV mean dose dropped by 1% with tumor motion. Although CTV is almost covered by prescribed dose with 5 mm margin, qualitative comparison on the dose distributions reveals that CTV is on the verge of underdose. The discrepancy happens due to tumor
Directory of Open Access Journals (Sweden)
Chunjie Chen
2017-01-01
Full Text Available The wearable full-body exoskeleton robot developed in this study is one application of mobile cyberphysical system (CPS, which is a complex mobile system integrating mechanics, electronics, computer science, and artificial intelligence. Steel wire was used as the flexible transmission medium and a group of special wire-locking structures was designed. Additionally, we designed passive joints for partial joints of the exoskeleton. Finally, we proposed a novel gait phase recognition method for full-body exoskeletons using only joint angular sensors, plantar pressure sensors, and inclination sensors. The method consists of four procedures. Firstly, we classified the three types of main motion patterns: normal walking on the ground, stair-climbing and stair-descending, and sit-to-stand movement. Secondly, we segregated the experimental data into one gait cycle. Thirdly, we divided one gait cycle into eight gait phases. Finally, we built a gait phase recognition model based on k-Nearest Neighbor perception and trained it with the phase-labeled gait data. The experimental result shows that the model has a 98.52% average correct rate of classification of the main motion patterns on the testing set and a 95.32% average correct rate of phase recognition on the testing set. So the exoskeleton robot can achieve human motion intention in real time and coordinate its movement with the wearer.
Energy Technology Data Exchange (ETDEWEB)
Pereira, Luiz Antonio Alcantara [Federal University of Itajuba (UNIFEI), MG (Brazil). Inst. of Mechanical Engineering], E-mail: luizantp@unifei.edu.br; Hirata, Miguel Hiroo [State University of Rio de Janeiro (FAT/UERJ), Resende, RJ (Brazil). Fac. de Tecnologia], E-mail: hirata@fat.uerj.br
2010-07-01
Understanding vortex induced vibrations is of great importance in the design of a variety of offshore engineering structures, nuclear plant components and cylindrical elements in tube-bank heat exchangers, for example. If a body is placed in a flow, it experiences alternating lift and drag forces caused by the asymmetric formation of vortices, which can cause a structure to vibrate. One of the most interesting features of this flow is the phenomenon of lock-in which is observed when the vortex shedding frequency is close to the body oscillation frequency. This paper presents the results of numerical experiments on vortex shedding from a circular cylinder vibrating in-line or transversely with an incident uniform flow at Reynolds number of 1.0 x 10{sup 5}. The frequencies of the lift and drag coefficients are compared with the body motion frequency when the frequency ratio is about unity. (author)
Longuski, J. M.
1982-01-01
During a spin-up or spin-down maneuver of a spinning spacecraft, it is usual to have not only a constant body-fixed torque about the desired spin axis, but also small undesired constant torques about the transverse axes. This causes the orientation of the angular momentum vector to change in inertial space. Since an analytic solution is available for the angular momentum vector as a function of time, this behavior can be studied for large variations of the dynamic parameters, such as the initial spin rate, the inertial properties and the torques. As an example, the spin-up and spin-down maneuvers of the Galileo spacecraft was studied and as a result, very simple heuristic solutions were discovered which provide very good approximations to the parametric behavior of the angular momentum vector orientation.
International Nuclear Information System (INIS)
Kube, D.; Goodman, P.; Forwood, C.; Rossouw, C.
1997-01-01
A new method for the rapid generation of high resolution bicrystal LACBED images is described, which uses reciprocity to generate the second-crystal transmission function for a specific doubly-transmitted beam. As a result, sets of bright-field or specific dark-field LACBED images can readily be generated for sets inter-crystal displacements, to allow comparison with experimental results. In Part I we describe results obtained for pure translations between bi-crystals pairs, while in Part II we describe the method for bi-crystals incorporating relative rotations as well as translations. It is envisaged that this technique will be useful for the body semi-conductor crystal pair interfaces, and metal-alloy grain boundaries, in particular. (authors). 16 refs., 6 figs
Motion energy analysis reveals altered body movement in youth at risk for psychosis.
Dean, Derek J; Samson, Alayna T; Newberry, Raeana; Mittal, Vijay A
2017-06-03
Growing evidence suggests that movement abnormalities occur prior to the onset of psychosis. Innovations in technology and software provide the opportunity for a fine-tuned and sensitive measurement of observable behavior that may be particularly useful to detecting the subtle movement aberrations present during the prodromal period. In the present study, 54 youth at ultrahigh risk (UHR) for psychosis and 62 healthy controls participated in structured clinical interviews to assess for an UHR syndrome. The initial 15min of the baseline clinical interview was assessed using Motion Energy Analysis (MEA) providing frame-by-frame measures of total movement, amplitude, speed, and variability of both head and body movement separately. Result showed region-specific group differences such that there were no differences in head movement but significant differences in body movement. Specifically, the UHR group showed greater total body movement and speed of body movements, and lower variation in body movement compared to healthy controls. However, there were no significant associations with positive, negative or disorganized symptom domains. This study represents an innovative perspective on gross motor function in the UHR group. Importantly, the automated approach used in this study provides a sensitive and objective measure of body movement abnormalities, potentially guiding novel assessment and prevention of symptom development in those at risk for psychosis. Copyright © 2017. Published by Elsevier B.V.
Directory of Open Access Journals (Sweden)
Zheng Chang
2015-01-01
Full Text Available Based on the traditional machine vision recognition technology and traditional artificial neural networks about body movement trajectory, this paper finds out the shortcomings of the traditional recognition technology. By combining the invariant moments of the three-dimensional motion history image (computed as the eigenvector of body movements and the extreme learning machine (constructed as the classification artificial neural network of body movements, the paper applies the method to the machine vision of the body movement trajectory. In detail, the paper gives a detailed introduction about the algorithm and realization scheme of the body movement trajectory recognition based on the three-dimensional motion history image and the extreme learning machine. Finally, by comparing with the results of the recognition experiments, it attempts to verify that the method of body movement trajectory recognition technology based on the three-dimensional motion history image and extreme learning machine has a more accurate recognition rate and better robustness.
International Nuclear Information System (INIS)
Mateescu, D.
1985-01-01
A method of solution is developed in the present paper for studying the unsteady supersonic flow past a cruciform canard - conical body system, represented in the figure, which executes an oscillatory pitching motion of rotation. The generality of the analysis permits particular solutions such as the case of symmetrical cruciform canards (for l 1 =l 2 =l) used mainly in missile applications, and tail-body configurations (for l 2 =0 pr l 2 →∞ used in aeronautical applications, as well as more general solutions. Attached supersonic flow past the system, associated with small amplitude oscillations of reasonably low frequency with respect to a mean equilibrium position are assumed in this paper. As a result, the steady flow past the canard-body system at an attitude defined by the mean equilibrium position can be separated from the actual flow; general methods of solution for this steady flow have been established. The aim of the present analysis is to develop a method of solution for the unsteady motion resulting from the actual flow after the above separation, which incorporates the effects of the system oscillations. (author)
sEMG during Whole-Body Vibration Contains Motion Artifacts and Reflex Activity
Directory of Open Access Journals (Sweden)
Karin Lienhard
2015-01-01
Full Text Available The purpose of this study was to determine whether the excessive spikes observed in the surface electromyography (sEMG spectrum recorded during whole-body vibration (WBV exercises contain motion artifacts and/or reflex activity. The occurrence of motion artifacts was tested by electrical recordings of the patella. The involvement of reflex activity was investigated by analyzing the magnitude of the isolated spikes during changes in voluntary background muscle activity. Eighteen physically active volunteers performed static squats while the sEMG was measured of five lower limb muscles during vertical WBV using no load and an additional load of 33 kg. In order to record motion artifacts during WBV, a pair of electrodes was positioned on the patella with several layers of tape between skin and electrodes. Spectral analysis of the patella signal revealed recordings of motion artifacts as high peaks at the vibration frequency (fundamental and marginal peaks at the multiple harmonics were observed. For the sEMG recordings, the root mean square of the spikes increased with increasing additional loads (p < 0.05, and was significantly correlated to the sEMG signal without the spikes of the respective muscle (r range: 0.54 - 0.92, p < 0.05. This finding indicates that reflex activity might be contained in the isolated spikes, as identical behavior has been found for stretch reflex responses evoked during direct vibration. In conclusion, the spikes visible in the sEMG spectrum during WBV exercises contain motion artifacts and possibly reflex activity.
Equations of motion for train derailment dynamics
2007-09-11
This paper describes a planar or two-dimensional model to : examine the gross motions of rail cars in a generalized train : derailment. Three coupled, second-order differential equations : are derived from Newton's Laws to calculate rigid-body car : ...
Spinor approach to gravitational motion and precession
International Nuclear Information System (INIS)
Hestenes, D.
1986-01-01
The translational and rotational equations of motion for a small rigid body in a gravitational field are combined in a single spinor equation. Besides its computational advantages, this unifies the description of gravitational interaction in classical and quantum theory. Explicit expressions for gravitational precession rates are derived. (author)
The Development of Wireless Body Area Network for Motion Sensing Application
Puspitaningayu, P.; Widodo, A.; Yundra, E.; Ramadhany, F.; Arianto, L.; Habibie, D.
2018-04-01
The information era has driven the society into the digitally-controlled lifestyle. Wireless body area networks (WBAN) as the specific scope of wireless sensor networks (WSN) is consistently growing into bigger applications. Currently, people are able to monitor their medical parameters by simply using small electronics devices attached to their body and connected to the authorities. On top of that, this time, smart phones are typically equipped with sensors such as accelerometer, gyroscope, barometric pressure, heart rate monitor, etc. It means that the sensing yet the signal processing can be performed by a single device. Moreover, Android opens lot wider opportunities for new applications as the most popular open-sourced smart phone platform. This paper is intended to show the development of motion sensing application which focused on analysing data from accelerometer and gyroscope. Beside reads the sensors, this application also has the ability to convert the sensors’ numerical value into graphs.
Biases in the perception of self-motion during whole-body acceleration and deceleration
Directory of Open Access Journals (Sweden)
Luc eTremblay
2013-12-01
Full Text Available Several studies have investigated whether vestibular signals can be processed to determine the magnitude of passive body motions. Many of them required subjects to report their perceived displacements offline, i.e. after being submitted to passive displacements. Here, we used a protocol that allowed us to complement these results by asking subjects to report their introspective estimation of their displacement continuously, i.e. during the ongoing body rotation. To this end, participants rotated the handle of a manipulandum around a vertical axis to indicate their perceived change of angular position in space at the same time as they were passively rotated in the dark. The rotation acceleration (Acc and deceleration (Dec lasted either 1.5 s (peak of 60 deg/s2, referred to as being "High" or 3 s (peak of 33 deg/s2, referred to as being "Low". The participants were rotated either counter-clockwise or clockwise, and all combinations of acceleration and deceleration were tested (i.e., AccLow-DecLow; AccLow-DecHigh; AccHigh-DecLow; AccHigh-DecHigh. The participants' perception of body rotation was assessed by computing the gain, i.e. ratio between the amplitude of the perceived rotations (as measured by the rotating manipulandum’s handle and the amplitude of the actual chair rotations. The gain was measured at the end of the rotations, and was also computed separately for the acceleration and deceleration phases. Three salient findings resulted from this experiment: i the gain was much greater during body acceleration than during body deceleration, ii the gain was greater during High compared to Low accelerations and iii the gain measured during the deceleration was influenced by the preceding acceleration (i.e., Low or High. These different effects of the angular stimuli on the perception of body motion can be interpreted in relation to the consequences of body acceleration and deceleration on the vestibular system and on higher-order cognitive
Energy Technology Data Exchange (ETDEWEB)
Li, Winnie; Sahgal, Arjun [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Foote, Matthew [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Millar, Barbara-Ann; Jaffray, David A. [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Letourneau, Daniel, E-mail: Daniel.letourneau@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada)
2012-10-01
Purpose: Spine stereotactic body radiotherapy (SBRT) involves tight planning margins and steep dose gradients to the surrounding organs at risk (OAR). This study aimed to assess intrafraction motion using cone beam computed tomography (CBCT) for spine SBRT patients treated using three immobilization devices. Methods and Materials: Setup accuracy using CBCT was retrospectively analyzed for 102 treated spinal metastases in 84 patients. Thoracic and lumbar spine patients were immobilized with either an evacuated cushion (EC, n = 24) or a semirigid vacuum body fixation (BF, n = 60). For cases treated at cervical/upper thoracic (thoracic [T]1-T3) vertebrae, a thermoplastic S-frame (SF) mask (n = 18) was used. Patient setup was corrected by using bony anatomy image registration and couch translations only (no rotation corrections) with shifts confirmed on verification CBCTs. Repeat imaging was performed mid- and post-treatment. Patient translational and rotational positioning data were recorded to calculate means, standard deviations (SD), and corresponding margins {+-} 2 SD for residual setup errors and intrafraction motion. Results: A total of 355 localizations, 333 verifications, and 248 mid- and 280 post-treatment CBCTs were analyzed. Residual translations and rotations after couch corrections (verification scans) were similar for all immobilization systems, with SDs of 0.6 to 0.9 mm in any direction and 0.9 Degree-Sign to 1.6 Degree-Sign , respectively. Margins to encompass residual setup errors after couch corrections were within 2 mm. Including intrafraction motion, as measured on post-treatment CBCTs, SDs for total setup error in the left-right, cranial-caudal, and anterior-posterior directions were 1.3, 1.2, and 1.0 mm for EC; 0.9, 0.7, and 0.9 mm for BF; and 1.3, 0.9, and 1.1 mm for SF, respectively. The calculated margins required to encompass total setup error increased to 3 mm for EC and SF and remained within 2 mm for BF. Conclusion: Following image
International Nuclear Information System (INIS)
Li, Winnie; Sahgal, Arjun; Foote, Matthew; Millar, Barbara-Ann; Jaffray, David A.; Letourneau, Daniel
2012-01-01
Purpose: Spine stereotactic body radiotherapy (SBRT) involves tight planning margins and steep dose gradients to the surrounding organs at risk (OAR). This study aimed to assess intrafraction motion using cone beam computed tomography (CBCT) for spine SBRT patients treated using three immobilization devices. Methods and Materials: Setup accuracy using CBCT was retrospectively analyzed for 102 treated spinal metastases in 84 patients. Thoracic and lumbar spine patients were immobilized with either an evacuated cushion (EC, n = 24) or a semirigid vacuum body fixation (BF, n = 60). For cases treated at cervical/upper thoracic (thoracic [T]1–T3) vertebrae, a thermoplastic S-frame (SF) mask (n = 18) was used. Patient setup was corrected by using bony anatomy image registration and couch translations only (no rotation corrections) with shifts confirmed on verification CBCTs. Repeat imaging was performed mid- and post-treatment. Patient translational and rotational positioning data were recorded to calculate means, standard deviations (SD), and corresponding margins ± 2 SD for residual setup errors and intrafraction motion. Results: A total of 355 localizations, 333 verifications, and 248 mid- and 280 post-treatment CBCTs were analyzed. Residual translations and rotations after couch corrections (verification scans) were similar for all immobilization systems, with SDs of 0.6 to 0.9 mm in any direction and 0.9° to 1.6°, respectively. Margins to encompass residual setup errors after couch corrections were within 2 mm. Including intrafraction motion, as measured on post-treatment CBCTs, SDs for total setup error in the left-right, cranial-caudal, and anterior-posterior directions were 1.3, 1.2, and 1.0 mm for EC; 0.9, 0.7, and 0.9 mm for BF; and 1.3, 0.9, and 1.1 mm for SF, respectively. The calculated margins required to encompass total setup error increased to 3 mm for EC and SF and remained within 2 mm for BF. Conclusion: Following image guidance, residual setup
Statistical analysis of target motion in gated lung stereotactic body radiation therapy
International Nuclear Information System (INIS)
Zhao Bo; Yang Yong; Li Tianfang; Li Xiang; Heron, Dwight E; Huq, M Saiful
2011-01-01
An external surrogate-based respiratory gating technique is a useful method to reduce target margins for the treatment of a moving lung tumor. The success of this technique relies on a good correlation between the motion of the external markers and the internal tumor as well as the repeatability of the respiratory motion. In gated lung stereotactic body radiation therapy (SBRT), the treatment time for each fraction could exceed 30 min due to large fractional dose. Tumor motion may experience pattern changes such as baseline shift during such extended treatment time. The purpose of this study is to analyze tumor motion traces in actual treatment situations and to evaluate the effect of the target baseline shift in gated lung SBRT treatment. Real-time motion data for both the external markers and tumors from 51 lung SBRT treatments with Cyberknife Synchrony technology were analyzed in this study. The treatment time is typically greater than 30 min. The baseline shift was calculated with a rolling average window equivalent to ∼20 s and subtracted from that at the beginning. The magnitude of the baseline shift and its relationship with treatment time were investigated. Phase gating simulation was retrospectively performed on 12 carefully selected treatments with respiratory amplitude larger than 5 mm and regular phases. A customized gating window was defined for each individual treatment. It was found that the baseline shifts are specific to each patient and each fraction. Statistical analysis revealed that more than 69% treatments exhibited increased baseline shifts with the lapse of treatment time. The magnitude of the baseline shift could reach 5.3 mm during a 30 min treatment. Gating simulation showed that tumor excursion was caused mainly by the uncertainties in phase gating simulation and baseline shift, the latter being the primary factor. With a 5 mm gating window, 2 out of 12 treatments in the study group showed significant tumor excursion. Baseline shifts
An Online Full-Body Motion Recognition Method Using Sparse and Deficient Signal Sequences
Directory of Open Access Journals (Sweden)
Chengyu Guo
2014-01-01
Full Text Available This paper presents a method to recognize continuous full-body human motion online by using sparse, low-cost sensors. The only input signals needed are linear accelerations without any rotation information, which are provided by four Wiimote sensors attached to the four human limbs. Based on the fused hidden Markov model (FHMM and autoregressive process, a predictive fusion model (PFM is put forward, which considers the different influences of the upper and lower limbs, establishes HMM for each part, and fuses them using a probabilistic fusion model. Then an autoregressive process is introduced in HMM to predict the gesture, which enables the model to deal with incomplete signal data. In order to reduce the number of alternatives in the online recognition process, a graph model is built that rejects parts of motion types based on the graph structure and previous recognition results. Finally, an online signal segmentation method based on semantics information and PFM is presented to finish the efficient recognition task. The results indicate that the method is robust with a high recognition rate of sparse and deficient signals and can be used in various interactive applications.
Lin, Chern-Sheng; Chen, Chia-Tse; Shei, Hung-Jung; Lay, Yun-Long; Chiu, Chuang-Chien
2012-09-01
This study develops a body motion interactive system with computer vision technology. This application combines interactive games, art performing, and exercise training system. Multiple image processing and computer vision technologies are used in this study. The system can calculate the characteristics of an object color, and then perform color segmentation. When there is a wrong action judgment, the system will avoid the error with a weight voting mechanism, which can set the condition score and weight value for the action judgment, and choose the best action judgment from the weight voting mechanism. Finally, this study estimated the reliability of the system in order to make improvements. The results showed that, this method has good effect on accuracy and stability during operations of the human-machine interface of the sports training system.
Hopping system control with an approximated dynamics model and upper-body motion
Energy Technology Data Exchange (ETDEWEB)
Lee, Hyang Jun; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)
2015-11-15
A hopping system is highly non-linear due to the nature of its dynamics, which has alternating phases in a cycle, flight and stance phases and related transitions. Every control method that stabilizes the hopping system satisfies the Poincaré stability condition. At the Poincaré section, a hopping system cycle is considered as discrete sectional data set. By controlling the sectional data in a discrete control form, we can generate a stable hopping cycle. We utilize phase-mapping matrices to build a Poincaré return map by approximating the dynamics of the hopping system with SLIP model. We can generate various Poincaré stable gait patterns with the approximated discrete control form which uses upper-body motions as inputs.
Application of inertial sensors and flux-gate magnetometer to real-time human body motion capture
Frey, William.
1996-01-01
Human body tracking for synthetic environment interface has become a significant human- computer interface challenge. There are several different types of motion capture systems currently available. Inherent problems, most resulting from the use of artificially-generated source signals, plague these systems. A proposed motion capture system is being developed at the Naval Postgraduate School which utilizes a combination of inertial sensors to overcome these difficulties. However, the current ...
Whole-body patterns of the range of joint motion in young adults: masculine type and feminine type.
Moromizato, Keiichi; Kimura, Ryosuke; Fukase, Hitoshi; Yamaguchi, Kyoko; Ishida, Hajime
2016-10-01
Understanding the whole-body patterns of joint flexibility and their related biological and physical factors contributes not only to clinical assessments but also to the fields of human factors and ergonomics. In this study, ranges of motion (ROMs) at limb and trunk joints of young adults were analysed to understand covariation patterns of different joint motions and to identify factors associated with the variation in ROM. Seventy-eight healthy volunteers (42 males and 36 females) living on Okinawa Island, Japan, were recruited. Passive ROM was measured at multiple joints through the whole body (31 measurements) including the left and right side limbs and trunk. Comparisons between males and females, dominant and non-dominant sides, and antagonistic motions indicated that body structures influence ROMs. In principal component analysis (PCA) on the ROM data, the first principal component (PC1) represented the sex difference and a similar covariation pattern appeared in the analysis within each sex. Multiple regression analysis showed that this component was associated with sex, age, body fat %, iliospinale height, and leg extension strength. The present study identified that there is a spectrum of "masculine" and "feminine" types in the whole-body patterns of joint flexibility. This study also suggested that body proportion and composition, muscle mass and strength, and possibly skeletal structures partly explain such patterns. These results would be important to understand individual variation in susceptibility to joint injuries and diseases and in one's suitable and effective postures and motions.
Tumbling motion of 1I/`Oumuamua and its implications for the body's distant past
Drahus, Michał; Guzik, Piotr; Waniak, Wacław; Handzlik, Barbara; Kurowski, Sebastian; Xu, Siyi
2018-05-01
Models of the Solar System's evolution show that almost all the primitive material leftover from the formation of the planets was ejected to the interstellar space as a result of dynamical instabilities1. Accordingly, minor bodies should also be ejected from other planetary systems and should be abundant in the interstellar space2, giving hope for their direct detection and detailed characterization as they penetrate through the Solar System3,4. These expectations materialized on 19 October 2017 ut with the Panoramic Survey Telescope and Rapid Response System's discovery of 1I/`Oumuamua5. Here, we report homogeneous photometric observations of this body from Gemini North, which densely cover a total of 8.06 h over two nights. A combined ultra-deep image of 1I/`Oumuamua shows no signs of cometary activity, confirming the results from other, less sensitive searches6-9. Our data also show an enormous range of rotational brightness variations of 2.6 ± 0.2 mag, larger than ever observed in the population of small Solar System objects, suggesting a very elongated shape of the body. Most significantly, the light curve does not repeat exactly from one rotation cycle to another and its double-peaked periodicity of 7.56 ± 0.01 h from our data is inconsistent with earlier determinations6,7,10-12. These are clear signs of a tumbling motion, a remarkable characteristic of 1I/`Oumuamua's rotation that is consistent with a collision in the distant past. Bearing marks of a violent history, this first-known interstellar visitor tells us that collisional evolution of minor body populations in other planetary systems might be common.
Aldaba, Cassandra N; White, Paul J; Byagowi, Ahmad; Moussavi, Zahra
2017-07-01
Virtual reality (VR) navigation is usually constrained by plausible simulator sickness (SS) and intuitive user interaction. The paper reports on the use of four different degrees of body motion induced navigational VR controllers, a TiltChair, omni-directional treadmill, a manual wheelchair joystick (VRNChair), and a joystick in relation to a participant's SS occurrence and a controller's intuitive utilization. Twenty young adult participants utilized all controllers to navigate through the same VR task environment in separate sessions. Throughout the sessions, SS occurrence was measured from a severity score by a standard SS questionnaire and from body sway by a center of pressure path length with eyes opened and closed. SS occurrence did not significantly differ among the controllers. However, time spent in VR significantly contributed to SS occurrence; hence, a few breaks to minimize SS should be interjected throughout a VR task. For all task trials, we recorded the participant's travel trajectories to investigate each controller's intuitive utilization from a computed traversed distance. Shorter traversed distances indicated that participants intuitively utilized the TiltChair with a slower speed; while longer traversed distances indicated participants struggled to utilize the omni-directional treadmill with a unnaturalistic stimulation of gait. Therefore, VR navigation should use technologies best suited for the intended age group that minimizes SS, and produces intuitive interactions for the participants.
Your body mechanics in motion : proactive training for stepping, handling, lifting
Energy Technology Data Exchange (ETDEWEB)
Hanchara, L.; Strong, J. [Kinetic Safety Consulting Inc., Grande Prairie, AB (Canada)
2007-07-01
Over a third of all injuries in the oil and gas industry are caused by strains. Nearly 50 per cent of back injuries in the industry are reported by workers on the job for less than 6 months. This presentation provided details of Mechanics in Motion, a program designed to promote proactive and safe conditions for workers in the petroleum industry. The program presented methods of improving posture when lifting, stepping, reaching, and carrying. The program was created in 2005 in order to serve as a preventative tool in the oilfield. Outlines of body fulcrums and levers were presented, as well as the types of joints that are most prone to workplace injuries. Field and office ergonomics were reviewed, and various correct lifting techniques were presented. Worksite warm-up programs were provided, as well as a set of stretches designed specifically for the back. It was concluded that understanding oilfield ergonomics and the mechanical principles of the body may help to prevent injuries in the workplace. tabs., figs.
Jeon, Hyungkook; Hong, Seong Kyung; Kim, Min Seo; Cho, Seong J; Lim, Geunbae
2017-12-06
Here, we report an omni-purpose stretchable strain sensor (OPSS sensor) based on a nanocracking structure for monitoring whole-body motions including both joint-level and skin-level motions. By controlling and optimizing the nanocracking structure, inspired by the spider sensory system, the OPSS sensor is endowed with both high sensitivity (gauge factor ≈ 30) and a wide working range (strain up to 150%) under great linearity (R 2 = 0.9814) and fast response time (sensor has advantages of being extremely simple, patternable, integrated circuit-compatible, and reliable in terms of reproducibility. Using the OPSS sensor, we detected various human body motions including both moving of joints and subtle deforming of skin such as pulsation. As specific medical applications of the sensor, we also successfully developed a glove-type hand motion detector and a real-time Morse code communication system for patients with general paralysis. Therefore, considering the outstanding sensing performances, great advantages of the fabrication process, and successful results from a variety of practical applications, we believe that the OPSS sensor is a highly suitable strain sensor for whole-body motion monitoring and has potential for a wide range of applications, such as medical robotics and wearable healthcare devices.
Lustig, Avichai; Ketter-Katz, Hadas; Katzir, Gadi
2013-01-01
Lateralization is mostly analyzed for single traits, but seldom for two or more traits while performing a given task (e.g. object manipulation). We examined lateralization in eye use and in body motion that co-occur during avoidance behaviour of the common chameleon, Chamaeleo chameleon. A chameleon facing a moving threat smoothly repositions its body on the side of its perch distal to the threat, to minimize its visual exposure. We previously demonstrated that during the response (i) eye use and body motion were, each, lateralized at the tested group level (N = 26), (ii) in body motion, we observed two similar-sized sub-groups, one exhibiting a greater reduction in body exposure to threat approaching from the left and one--to threat approaching from the right (left- and right-biased subgroups), (iii) the left-biased sub-group exhibited weak lateralization of body exposure under binocular threat viewing and none under monocular viewing while the right-biased sub-group exhibited strong lateralization under both monocular and binocular threat viewing. In avoidance, how is eye use related to body motion at the entire group and at the sub-group levels? We demonstrate that (i) in the left-biased sub-group, eye use is not lateralized, (ii) in the right-biased sub-group, eye use is lateralized under binocular, but not monocular viewing of the threat, (iii) the dominance of the right-biased sub-group determines the lateralization of the entire group tested. We conclude that in chameleons, patterns of lateralization of visual function and body motion are inter-related at a subtle level. Presently, the patterns cannot be compared with humans' or related to the unique visual system of chameleons, with highly independent eye movements, complete optic nerve decussation and relatively few inter-hemispheric commissures. We present a model to explain the possible inter-hemispheric differences in dominance in chameleons' visual control of body motion during avoidance.
Directory of Open Access Journals (Sweden)
Avichai Lustig
Full Text Available Lateralization is mostly analyzed for single traits, but seldom for two or more traits while performing a given task (e.g. object manipulation. We examined lateralization in eye use and in body motion that co-occur during avoidance behaviour of the common chameleon, Chamaeleo chameleon. A chameleon facing a moving threat smoothly repositions its body on the side of its perch distal to the threat, to minimize its visual exposure. We previously demonstrated that during the response (i eye use and body motion were, each, lateralized at the tested group level (N = 26, (ii in body motion, we observed two similar-sized sub-groups, one exhibiting a greater reduction in body exposure to threat approaching from the left and one--to threat approaching from the right (left- and right-biased subgroups, (iii the left-biased sub-group exhibited weak lateralization of body exposure under binocular threat viewing and none under monocular viewing while the right-biased sub-group exhibited strong lateralization under both monocular and binocular threat viewing. In avoidance, how is eye use related to body motion at the entire group and at the sub-group levels? We demonstrate that (i in the left-biased sub-group, eye use is not lateralized, (ii in the right-biased sub-group, eye use is lateralized under binocular, but not monocular viewing of the threat, (iii the dominance of the right-biased sub-group determines the lateralization of the entire group tested. We conclude that in chameleons, patterns of lateralization of visual function and body motion are inter-related at a subtle level. Presently, the patterns cannot be compared with humans' or related to the unique visual system of chameleons, with highly independent eye movements, complete optic nerve decussation and relatively few inter-hemispheric commissures. We present a model to explain the possible inter-hemispheric differences in dominance in chameleons' visual control of body motion during avoidance.
International Nuclear Information System (INIS)
Chao, M; Yuan, Y; Lo, Y; Wei, J
2016-01-01
Purpose: To develop a novel strategy to extract the lung tumor motion from cone beam CT (CBCT) projections by an active contour model with interpolated respiration learned from diaphragm motion. Methods: Tumor tracking on CBCT projections was accomplished with the templates derived from planning CT (pCT). There are three major steps in the proposed algorithm: 1) The pCT was modified to form two CT sets: a tumor removed pCT and a tumor only pCT, the respective digitally reconstructed radiographs DRRtr and DRRto following the same geometry of the CBCT projections were generated correspondingly. 2) The DRRtr was rigidly registered with the CBCT projections on the frame-by-frame basis. Difference images between CBCT projections and the registered DRRtr were generated where the tumor visibility was appreciably enhanced. 3) An active contour method was applied to track the tumor motion on the tumor enhanced projections with DRRto as templates to initialize the tumor tracking while the respiratory motion was compensated for by interpolating the diaphragm motion estimated by our novel constrained linear regression approach. CBCT and pCT from five patients undergoing stereotactic body radiotherapy were included in addition to scans from a Quasar phantom programmed with known motion. Manual tumor tracking was performed on CBCT projections and was compared to the automatic tracking to evaluate the algorithm accuracy. Results: The phantom study showed that the error between the automatic tracking and the ground truth was within 0.2mm. For the patients the discrepancy between the calculation and the manual tracking was between 1.4 and 2.2 mm depending on the location and shape of the lung tumor. Similar patterns were observed in the frequency domain. Conclusion: The new algorithm demonstrated the feasibility to track the lung tumor from noisy CBCT projections, providing a potential solution to better motion management for lung radiation therapy.
Energy Technology Data Exchange (ETDEWEB)
Chao, M; Yuan, Y; Lo, Y [The Mount Sinai Medical Center, New York, NY (United States); Wei, J [City College of New York, New York, NY (United States)
2016-06-15
Purpose: To develop a novel strategy to extract the lung tumor motion from cone beam CT (CBCT) projections by an active contour model with interpolated respiration learned from diaphragm motion. Methods: Tumor tracking on CBCT projections was accomplished with the templates derived from planning CT (pCT). There are three major steps in the proposed algorithm: 1) The pCT was modified to form two CT sets: a tumor removed pCT and a tumor only pCT, the respective digitally reconstructed radiographs DRRtr and DRRto following the same geometry of the CBCT projections were generated correspondingly. 2) The DRRtr was rigidly registered with the CBCT projections on the frame-by-frame basis. Difference images between CBCT projections and the registered DRRtr were generated where the tumor visibility was appreciably enhanced. 3) An active contour method was applied to track the tumor motion on the tumor enhanced projections with DRRto as templates to initialize the tumor tracking while the respiratory motion was compensated for by interpolating the diaphragm motion estimated by our novel constrained linear regression approach. CBCT and pCT from five patients undergoing stereotactic body radiotherapy were included in addition to scans from a Quasar phantom programmed with known motion. Manual tumor tracking was performed on CBCT projections and was compared to the automatic tracking to evaluate the algorithm accuracy. Results: The phantom study showed that the error between the automatic tracking and the ground truth was within 0.2mm. For the patients the discrepancy between the calculation and the manual tracking was between 1.4 and 2.2 mm depending on the location and shape of the lung tumor. Similar patterns were observed in the frequency domain. Conclusion: The new algorithm demonstrated the feasibility to track the lung tumor from noisy CBCT projections, providing a potential solution to better motion management for lung radiation therapy.
Mauldin, Rebecca H.
2010-01-01
In order to study and control the attitude of a spacecraft, it is necessary to understand the natural motion of a body in orbit. Assuming a spacecraft to be a rigid body, dynamics describes the complete motion of the vehicle by the translational and rotational motion of the body. The Simulink Attitude Analysis Model applies the equations of rigid body motion to the study of a spacecraft?s attitude in orbit. Using a TCP/IP connection, Matlab reads the values of the Remote Manipulator System (RMS) hand controllers and passes them to Simulink as specified torque and impulse profiles. Simulink then uses the governing kinematic and dynamic equations of a rigid body in low earth orbit (LE0) to plot the attitude response of a spacecraft for five seconds given known applied torques and impulses, and constant principal moments of inertia.
Noble, Tracy
This study is an exploration of the role of physical activity in making sense of the physical world. Recent work on embodied cognition has helped to break down the barrier between the body and cognition, providing the inspiration for this work. In this study, I asked ten elementary-school students to explain to me how a toy parachute works. The methods used were adapted from those used to study the role of the body in cognition in science education, child development, and psychology. This study focused on the processes of learning rather than on measuring learning outcomes. Multiple levels of analysis were pursued in a mixed-method research design. The first level was individual analyses of two students' utterances and body motions. These analyses provided initial hypotheses about the interaction of speech and body motion in students' developing understandings. The second level was group analyses of all ten students' data, in search of patterns and relationships between body motion and speech production across all the student-participants. Finally, a third level of analysis was used to explore all cases in which students produced analogies while they discussed how the parachute works. The multiple levels of analysis used in this study allowed for raising and answering some questions, and allowed for the characterization of both individual differences and group commonalities. The findings of this study show that there are several significant patterns of interaction between body motion and speech that demonstrate a role for the body in cognition. The use of sensory feedback from physical interactions with objects to create new explanations, and the use of interactions with objects to create blended spaces to support the construction of analogies are two of these patterns. Future work is needed to determine the generalizability of these patterns to other individuals and other learning contexts. However, the existence of these patterns lends concrete support to the
Highly Stretchable and Transparent Microfluidic Strain Sensors for Monitoring Human Body Motions.
Yoon, Sun Geun; Koo, Hyung-Jun; Chang, Suk Tai
2015-12-16
We report a new class of simple microfluidic strain sensors with high stretchability, transparency, sensitivity, and long-term stability with no considerable hysteresis and a fast response to various deformations by combining the merits of microfluidic techniques and ionic liquids. The high optical transparency of the strain sensors was achieved by introducing refractive-index matched ionic liquids into microfluidic networks or channels embedded in an elastomeric matrix. The microfluidic strain sensors offer the outstanding sensor performance under a variety of deformations induced by stretching, bending, pressing, and twisting of the microfluidic strain sensors. The principle of our microfluidic strain sensor is explained by a theoretical model based on the elastic channel deformation. In order to demonstrate its capability of practical usage, the simple-structured microfluidic strain sensors were performed onto a finger, wrist, and arm. The highly stretchable and transparent microfluidic strain sensors were successfully applied as potential platforms for distinctively monitoring a wide range of human body motions in real time. Our novel microfluidic strain sensors show great promise for making future stretchable electronic devices.
Energy Technology Data Exchange (ETDEWEB)
Hyde, Derek [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario (Canada); British Columbia Cancer Agency, The Sindi Hawkins Cancer Centre for the Southern Interior, Kelowna (Canada); Lochray, Fiona; Korol, Renee; Davidson, Melanie; Wong, C. Shun [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario (Canada); Ma, Lijun [Department of Radiation Oncology, University of California San Francisco, San Francisco, CA (United States); Sahgal, Arjun, E-mail: Arjun.sahgal@rmp.uhn.on.ca [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario (Canada); Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto (Canada)
2012-03-01
Purpose: To evaluate the residual setup error and intrafraction motion following kilovoltage cone-beam CT (CBCT) image guidance, for immobilized spine stereotactic body radiotherapy (SBRT) patients, with positioning corrected for in all six degrees of freedom. Methods and Materials: Analysis is based on 42 consecutive patients (48 thoracic and/or lumbar metastases) treated with a total of 106 fractions and 307 image registrations. Following initial setup, a CBCT was acquired for patient alignment and a pretreatment CBCT taken to verify shifts and determine the residual setup error, followed by a midtreatment and posttreatment CBCT image. For 13 single-fraction SBRT patients, two midtreatment CBCT images were obtained. Initially, a 1.5-mm and 1 Degree-Sign tolerance was used to reposition the patient following couch shifts which was subsequently reduced to 1 mm and 1 Degree-Sign degree after the first 10 patients. Results: Small positioning errors after the initial CBCT setup were observed, with 90% occurring within 1 mm and 97% within 1 Degree-Sign . In analyzing the impact of the time interval for verification imaging (10 {+-} 3 min) and subsequent image acquisitions (17 {+-} 4 min), the residual setup error was not significantly different (p > 0.05). A significant difference (p = 0.04) in the average three-dimensional intrafraction positional deviations favoring a more strict tolerance in translation (1 mm vs. 1.5 mm) was observed. The absolute intrafraction motion averaged over all patients and all directions along x, y, and z axis ({+-} SD) were 0.7 {+-} 0.5 mm and 0.5 {+-} 0.4 mm for the 1.5 mm and 1 mm tolerance, respectively. Based on a 1-mm and 1 Degree-Sign correction threshold, the target was localized to within 1.2 mm and 0.9 Degree-Sign with 95% confidence. Conclusion: Near-rigid body immobilization, intrafraction CBCT imaging approximately every 15-20 min, and strict repositioning thresholds in six degrees of freedom yields minimal intrafraction motion
Spatial feedforward for over-actuated flexible motion systems
Ronde, M.J.C.; Schneiders, M.G.E.; Molengraft, van de M.J.G.; de Haas, D.; Steinbuch, M.; Scheidl, R.; Jakoby, B.
2012-01-01
In high-performance motion systems, e.g. waferstages or pick-and-place machines, there is an increasing demand for higher throughput and accuracy. The current design paradigm aims at rigid-body behaviour and leads in an evolutionary way to increasingly heavier systems that require more and more
Cai, Jing; Wang, Ziheng; Yin, Fang-Fang
2011-01-01
The objective of this study is to investigate accuracy of motion tracking of cine magnetic resonance imaging (MRI) for image-guided stereotactic body radiotherapy. A phantom platform was developed in this work to fulfill the goal. The motion phantom consisted of a platform, a solid thread, a motor and a control system that can simulate motion in various modes. To validate its reproducibility, the phantom platform was setup three times and imaged with fluoroscopy using an electronic portal imaging device (EPID) for the same motion profile. After the validation test, the phantom platform was evaluated using cine MRI at 2.5 frames/second on a 1.5T GE scanner using five different artificial profiles and five patient profiles. The above profiles were again measured with EPID fluoroscopy and used as references. Discrepancies between measured profiles from cine MRI and EPID were quantified using root-mean-square (RMS) and standard deviation (SD). Pearson’s product moment correlational analysis was used to test correlation. The standard deviation for the reproducibility test was 0.28 mm. The discrepancies (RMS) between all profiles measured by cine MRI and EPID fluoroscopy ranged from 0.30 to 0.49 mm for artificial profiles and ranged from 0.75 to 0.91 mm for five patient profiles. The cine MRI sequence could precisely track phantom motion and the proposed motion phantom was feasible to evaluate cine MRI accuracy. PMID:29296304
Implementation of true continuous bed motion in 2-D and 3-D whole-body PET scanning
Dahlbom, M.; Reed, J.; Young, J.
2001-08-01
True continuous axial bed motion has been implemented on a high-resolution positron emission tomography (PET) scanner for use in both two-dimensional (2-D) and three-dimensional (3-D) acquisition modes. This has been accomplished by modifications in the bed motion controller firmware and by acquiring data in list mode. The new bed controller firmware was shown to provide an accurate and constant bed speed down to 0.25 mm/s with a moderate patient weight load. The constant bed motion eliminates previously reported dead-time due to bed positioning when using small discrete bed steps. The continuous bed motion was tested on uniform phantoms, in 2-D and 3-D. As a result of the continuous axial motion, a uniform axial sensitivity is achieved. This was also reflected in the reconstructed images, which showed an improvement in axial image uniformity (1.4% for continuous sampling, 5.0% for discrete) as well as an improvement in %SD uniformity in comparison to conventional step-and-shoot acquisitions. The use of the continuous axial motion also provide slight improvements in 2-D emission and transmission scanning, resulting in an overall improved image quality in whole-body PET.
Centelles, L; Assaiante, C; Etchegoyhen, K; Bouvard, M; Schmitz, C
2012-06-01
Autism spectrum disorders (ASD) are characterized by difficulties in social interaction and verbal and non verbal reciprocal communication. Face and gaze direction, which participate in non verbal communication, are described as atypical in ASD. Also body movements carry multiple social cues. Under certain circumstances, for instance when seeing two persons from far, they constitute the only support that allows the grasping of a social content. Here, we investigated the contribution of whole-body motion processing in social understanding. The aim of the study was to evaluate whether children with ASD make use of information carried by body motion to categorize dynamic visual scenes that portrayed social interactions. In 1973, Johansson devised a technique for studying the perception of biological motion that minimizes static form information from the stimulus, but retains motion information. In these point-light displays, the movement figure, such as a body, is represented by a small number of illuminated dots positioned to highlight the motion of the body parts. We used Johansson's model to explore the ability of children with ASD to understand social interactions based on human movement analysis. Three-second silent point-light displays were created by videotaping two actors. The two actors were either interacting together or moving side by side without interacting. A large range of social interaction displays were used to cover social scenes depicting social norms (conventional gestures and courteous attitudes), emotional situations (carrying positive or negative valences) and scenes from games (sports, dance, etc.). Children were asked to carefully watch the stimuli and to classify them according to the question "Are the two persons communicating or not?". Four sessions of 3 minutes were performed by each child. Children with ASD were compared with typically developing control children matched with either non verbal mental age or chronological age. Response and
Wave excited motion of a body floating on water confined between two semi-infinite ice sheets
Ren, K.; Wu, G. X.; Thomas, G. A.
2016-12-01
The wave excited motion of a body floating on water confined between two semi-infinite ice sheets is investigated. The ice sheet is treated as an elastic thin plate and water is treated as an ideal and incompressible fluid. The linearized velocity potential theory is adopted in the frequency domain and problems are solved by the method of matched eigenfunctions expansion. The fluid domain is divided into sub-regions and in each sub-region the velocity potential is expanded into a series of eigenfunctions satisfying the governing equation and the boundary conditions on horizontal planes including the free surface and ice sheets. Matching is conducted at the interfaces of two neighbouring regions to ensure the continuity of the pressure and velocity, and the unknown coefficients in the expressions are obtained as a result. The behaviour of the added mass and damping coefficients of the floating body with the effect of the ice sheets and the excitation force are analysed. They are found to vary oscillatorily with the wave number, which is different from that for a floating body in the open sea. The motion of the body confined between ice sheets is investigated, in particular its resonant behaviour with extremely large motion found to be possible under certain conditions. Standing waves within the polynya are also observed.
Lung tumor motion change during stereotactic body radiotherapy (SBRT): an evaluation using MRI
Olivier, Kenneth R.; Li, Jonathan G.; Liu, Chihray; Newlin, Heather E.; Schmalfuss, Ilona; Kyogoku, Shinsuke; Dempsey, James F.
2014-01-01
The purpose of this study is to investigate changes in lung tumor internal target volume during stereotactic body radiotherapy treatment (SBRT) using magnetic resonance imaging (MRI). Ten lung cancer patients (13 tumors) undergoing SBRT (48 Gy over four consecutive days) were evaluated. Each patient underwent three lung MRI evaluations: before SBRT (MRI‐1), after fraction 3 of SBRT (MRI‐3), and three months after completion of SBRT (MRI‐3m). Each MRI consisted of T1‐weighted images in axial plane through the entire lung. A cone‐beam CT (CBCT) was taken before each fraction. On MRI and CBCT taken before fractions 1 and 3, gross tumor volume (GTV) was contoured and differences between the two volumes were compared. Median tumor size on CBCT before fractions 1 (CBCT‐1) and 3 (CBCT‐3) was 8.68 and 11.10 cm3, respectively. In 12 tumors, the GTV was larger on CBCT‐3 compared to CBCT‐1 (median enlargement, 1.56 cm3). Median tumor size on MRI‐1, MRI‐3, and MRI‐3m was 7.91, 11.60, and 3.33 cm3, respectively. In all patients, the GTV was larger on MRI‐3 compared to MRI‐1 (median enlargement, 1.54 cm3). In all patients, GTV was smaller on MRI‐3m compared to MRI‐1 (median shrinkage, 5.44 cm3). On CBCT and MRI, all patients showed enlargement of the GTV during the treatment week of SBRT, except for one patient who showed minimal shrinkage (0.86 cm3). Changes in tumor volume are unpredictable; therefore, motion and breathing must be taken into account during treatment planning, and image‐guided methods should be used, when treating with large fraction sizes. PACS number: 87.53.Ly PMID:24892328
Control of a virtual ambulation influences body movement and motion sickness
Directory of Open Access Journals (Sweden)
Hagstrom Jens
2011-12-01
Full Text Available Drivers typically are less susceptible to motion sickness than passengers. The influence of vehicle control has theoretical implications for the etiology of motion sickness, and has practical implications for the design of virtual environments. In the present study, participants either controlled or did not control a nonvehicular virtual avatar (i.e., an ambulatory character in a console video game. We examined the incidence of motion sickness and patterns of movement of the head and torso as participants either played or watched the game. Motion sickness incidence was lower when controlling the virutal avatar than when watching an avatar that was controlled by someone else. Patterns of head and torso movement differed between particpants who did and did not control the avatar. Indepenently, patterns of movement differed between participants who reported motion sickness and those who did not. The results suggest that motion sickness is influenced by control of stimulus motion, whether that motion arises from a vehicle or from any other source. We consider implications for the design of humancomputer interfaces.
Shmyrov, A.; Shmyrov, V.; Shymanchuk, D.
2017-10-01
This article considers the motion of a celestial body within the restricted three-body problem of the Sun-Earth system. The equations of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point L1 are investigated. The translational orbital motion of a celestial body is described using Hill's equations of circular restricted three-body problem of the Sun-Earth system. Rotational orbital motion is described using Euler's dynamic equations and quaternion kinematic equation. We investigate the problem of stability of celestial body rotational orbital motion in relative equilibrium positions and stabilization of celestial body rotational orbital motion with proposed control laws in the neighborhood of collinear libration point L1. To study stabilization problem, Lyapunov function is constructed in the form of the sum of the kinetic energy and special "kinematic function" of the Rodriguez-Hamiltonian parameters. Numerical modeling of the controlled rotational motion of a celestial body at libration point L1 is carried out. The numerical characteristics of the control parameters and rotational motion are given.
Energy Technology Data Exchange (ETDEWEB)
Park, Hyun Joon; Bae, Sun Myeong; Baek, Geum Mun; Kang, Tae Young; Seo, Dong Rin [Dept. of Radiation Oncology, ASAN Medical Center, Seoul (Korea, Republic of)
2016-06-15
The purpose of this study is to evaluate the variability of tumor motion and respiration pattern in lung cancer patients undergoing Stereotactic Body RadioTherapy(SBRT) by using On-Board imager (OBI) system and Real-time Position Management (RPM) System. This study population consisted of 60 lung cancer patient treated with stereotactic body radiotherapy (48 Gy / 4 fractions). Of these, 30 were treated with gating (group 1) and 30 without gating(group2): typically the patients whose tumors showed three-dimensional respiratory motion > 10 mm were selected for gating. 4-dimensional Computed Tomography (4DCT). Cone Beam CT (CBCT) and Fluoroscopy images were used to measure the tumor motion. RPM system was used to evaluate the variability of respiration pattern on SBRT for group1. The mean difference of tumor motion among 4DCT, CBCT and Fluoroscopy images in the cranio-caudal direction was 2.3 mm in group 1, 2. The maximum difference was 12.5 mm in the group 1 and 8.5 mm in group 2. The number of treatment fractions that patient's respiration pattern was within Upper-Lower threshold on SBRT in group 2 was 31 fractions. A patient who exhibited the most unstable pattern exceeded 108 times in a fraction. Although many patients in group 1 and 2 kept the reproducibility of tumor motion within 5 mm during their treatment, some patients exhibited variability of tumor motion in the CBCT and Fluoroscopy images. It was possible to improve the accuracy of dose delivery in SBRT without gating for lung cancer patient by using RPM system.
Model-Based Description of Human Body Motions for Ergonomics Evaluation
Imai, Sayaka
This paper presents modeling of Working Process and Working Simulation factory works. I focus on an example work (motion), its actual work(motion) and reference between them. An example work and its actual work can be analyzed and described as a sequence of atomic action. In order to describe workers' motion, some concepts of Atomic Unit, Model Events and Mediator are introduced. By using these concepts, we can analyze a workers' action and evaluate their works. Also, we consider it as a possible way for unifying all the data used in various applications (CAD/CAM, etc) during the design process and evaluating all subsystems in a virtual Factory.
Süli, Tamás; Halas, Máté; Benyeda, Zsófia; Boda, Réka; Belák, Sándor; Martínez-Avilés, Marta; Fernández-Carrión, Eduardo; Sánchez-Vizcaíno, José Manuel
2017-10-01
Highly contagious and emerging diseases cause significant losses in the pig producing industry worldwide. Rapid and exact acquisition of real-time data, like body temperature and animal movement from the production facilities would enable early disease detection and facilitate adequate response. In this study, carried out within the European Union research project RAPIDIA FIELD, we tested an online monitoring system on pigs experimentally infected with the East European subtype 3 Porcine Reproductive & Respiratory Syndrome Virus (PRRSV) strain Lena. We linked data from different body temperature measurement methods and the real-time movement of the pigs. The results showed a negative correlation between body temperature and movement of the animals. The correlation was similar with both body temperature obtaining methods, rectal and thermal sensing microchip, suggesting some advantages of body temperature measurement with transponders compared with invasive and laborious rectal measuring. We also found a significant difference between motion values before and after the challenge with a virulent PRRSV strain. The decrease in motion values was noticeable before any clinical sign was recorded. Based on our results the online monitoring system could represent a practical tool in registering early warning signs of health status alterations, both in experimental and commercial production settings. Copyright © 2017 Elsevier Ltd. All rights reserved.
Soh, Ahmad Afiq Sabqi Awang; Jafri, Mohd Zubir Mat; Azraai, Nur Zaidi
2015-04-01
The Interest in this studies of human kinematics goes back very far in human history drove by curiosity or need for the understanding the complexity of human body motion. To find new and accurate information about the human movement as the advance computing technology became available for human movement that can perform. Martial arts (silat) were chose and multiple type of movement was studied. This project has done by using cutting-edge technology which is 3D motion capture to characterize and to measure the motion done by the performers of martial arts (silat). The camera will detect the markers (infrared reflection by the marker) around the performer body (total of 24 markers) and will show as dot in the computer software. The markers detected were analyzing using kinematic kinetic approach and time as reference. A graph of velocity, acceleration and position at time,t (seconds) of each marker was plot. Then from the information obtain, more parameters were determined such as work done, momentum, center of mass of a body using mathematical approach. This data can be used for development of the effectiveness movement in martial arts which is contributed to the people in arts. More future works can be implemented from this project such as analysis of a martial arts competition.
Effects of decades of physical driving on body movement and motion sickness during virtual driving.
Directory of Open Access Journals (Sweden)
Thomas A Stoffregen
Full Text Available We investigated relations between experience driving physical automobiles and motion sickness during the driving of virtual automobiles. Middle-aged individuals drove a virtual automobile in a driving video game. Drivers were individuals who had possessed a driver's license for approximately 30 years, and who drove regularly, while non-drivers were individuals who had never held a driver's license, or who had not driven for more than 15 years. During virtual driving, we monitored movement of the head and torso. During virtual driving, drivers became motion sick more rapidly than non-drivers, but the incidence and severity of motion sickness did not differ as a function of driving experience. Patterns of movement during virtual driving differed as a function of driving experience. Separately, movement differed between participants who later became motion sick and those who did not. Most importantly, physical driving experience influenced patterns of postural activity that preceded motion sickness during virtual driving. The results are consistent with the postural instability theory of motion sickness, and help to illuminate relations between the control of physical and virtual vehicles.
Estimating non-circular motions in barred galaxies using numerical N-body simulations
Randriamampandry, T. H.; Combes, F.; Carignan, C.; Deg, N.
2015-12-01
The observed velocities of the gas in barred galaxies are a combination of the azimuthally averaged circular velocity and non-circular motions, primarily caused by gas streaming along the bar. These non-circular flows must be accounted for before the observed velocities can be used in mass modelling. In this work, we examine the performance of the tilted-ring method and the DISKFIT algorithm for transforming velocity maps of barred spiral galaxies into rotation curves (RCs) using simulated data. We find that the tilted-ring method, which does not account for streaming motions, under-/overestimates the circular motions when the bar is parallel/perpendicular to the projected major axis. DISKFIT, which does include streaming motions, is limited to orientations where the bar is not aligned with either the major or minor axis of the image. Therefore, we propose a method of correcting RCs based on numerical simulations of galaxies. We correct the RC derived from the tilted-ring method based on a numerical simulation of a galaxy with similar properties and projections as the observed galaxy. Using observations of NGC 3319, which has a bar aligned with the major axis, as a test case, we show that the inferred mass models from the uncorrected and corrected RCs are significantly different. These results show the importance of correcting for the non-circular motions and demonstrate that new methods of accounting for these motions are necessary as current methods fail for specific bar alignments.
Flexible body dynamics in a local frame with explicitly predicted motion
DEFF Research Database (Denmark)
Kawamoto, A.; Krenk, Steen; Suzuki, A.
2010-01-01
This paper deals with formulation of dynamics of a moving flexible body in a local frame of reference. In a conventional approach the local frame is normally fixed to the corresponding body and always represents the positions and angles of the body: the positions and angles are represented by Car...
Rigid-flexible coupling dynamics of three-dimensional hub-beams system
International Nuclear Information System (INIS)
Liu Jinyang; Lu Hao
2007-01-01
In the previous research of the coupling dynamics of a hub-beam system, coupling between the rotational motion of hub and the torsion deformation of beam is not taken into account since the system undergoes planar motion. Due to the small longitudinal deformation, coupling between the rotational motion of hub and the longitudinal deformation of beam is also neglected. In this paper, rigid-flexible coupling dynamics is extended to a hub-beams system with three-dimensional large overall motion. Not only coupling between the large overall motion and the bending deformation, but also coupling between the large overall motion and the torsional deformation are taken into account. In case of temperature increase, the longitudinal deformation caused by the thermal expansion is significant, such that coupling between the large overall motion and the longitudinal deformation is also investigated. Combining the characteristics of the hybrid coordinate formulation and the absolute nodal coordinate formulation, the system generalized coordinates include the relative nodal displacement and the slope of each beam element with respect to the body-fixed frame of the hub, and the variables related to the spatial large overall motion of the hub and beams. Based on precise strain-displacement relation, the geometric stiffening effect is taken into account, and the rigid-flexible coupling dynamic equations are derived using velocity variational principle. Finite element method is employed for discretization. Simulation of a hub-beams system is used to show the coupling effect between the large overall motion and the torsional deformation as well as the longitudinal deformation. Furthermore, conservation of energy in case of free motion is shown to verify the formulation
vonGierke, Henning E.; Parker, Donald E.
1993-01-01
Human graviceptors, located in the trunk by Mittelstaedt probably transduce acceleration by abdominal viscera motion. As demonstrated previously in biodynamic vibration and impact tolerance research the thoraco-abdominal viscera exhibit a resonance at 4 to 6 Hz. Behavioral observations and mechanical models of otolith graviceptor response indicate a phase shift increasing with frequency between 0.01 and O.5 Hz. Consequently the potential exists for intermodality sensory conflict between vestibular and visceral graviceptor signals at least at the mechanical receptor level. The frequency range of this potential conflict corresponds with the primary frequency range for motion sickness incidence in transportation, in subjects rotated about Earth-horizontal axes (barbecue spit stimulation) and in periodic parabolic flight microgravity research and also for erroneous perception of vertical oscillations in helicopters. We discuss the implications of this hypothesis for previous self motion perception research and suggestions for various future studies.
Directory of Open Access Journals (Sweden)
Sean eCollins
2011-12-01
Full Text Available AbstractLarge fraction radiation therapy offers a shorter course of treatment and radiobiological advantages for prostate cancer treatment. The CyberKnife is an attractive technology for delivering large fraction doses based on the ability to deliver highly conformal radiation therapy to moving targets. In addition to intra-fractional translational motion (left-right, superior-inferior and anterior-posterior, prostate rotation (pitch, roll and yaw can increase geographical miss risk. We describe our experience with six-dimensional (6D intrafraction prostate motion correction using CyberKnife stereotactic body radiation therapy (SBRT. Eighty-eight patients were treated by SBRT alone or with supplemental external radiation therapy. Trans-perineal placement of four gold fiducials within the prostate accommodated X-ray guided prostate localization and beam adjustment. Fiducial separation and non-overlapping positioning permitted the orthogonal imaging required for 6D tracking. Fiducial placement accuracy was assessed using the CyberKnife fiducial extraction algorithm. Acute toxicities were assessed using Common Toxicity Criteria (CTC v3. There were no Grade 3, or higher, complications and acute morbidity was minimal. Ninety-eight percent of patients completed treatment employing 6D prostate motion tracking with intrafractional beam correction. Suboptimal fiducial placement limited treatment to 3D tracking in 2 patients. Our experience may guide others in performing 6D correction of prostate motion with CyberKnife SBRT.
Sinha, N; Zaher, N; Shaikh, A G; Lasker, A G; Zee, D S; Tarnutzer, A A
2008-01-01
We investigated the perception of self-rotation using constant-velocity chair rotations. Subjects signalled self motion during three independent tasks (1) by pushing a button when rotation was first sensed, when velocity reached a peak, when velocity began to decrease, and when velocity reached zero, (2) by rotating a disc to match the perceived motion of the body, or (3) by changing the static position of the dial such that a bigger change in its position correlated with a larger perceived velocity. All three tasks gave a consistent quantitative measure of perceived angular velocity. We found a delay in the time at which peak velocity of self-rotation was perceived (2-5 s) relative to the beginning or to the end of chair rotation. In addition the decay of the perception of self-rotation was preceded by a sensed constant-velocity interval or plateau (9-14 s). This delay in the rise of self-motion perception, and the plateau for the maximum perceived velocity, contrasts with the rapid rise and the immediate decay of the angular vestibuloocular reflex (aVOR). This difference suggests that the sensory signal from the semicircular canals undergoes additional neural processing, beyond the contribution of the velocity-storage mechanism of the aVOR, to compute the percept of self-motion.
Directory of Open Access Journals (Sweden)
Rolfe Inge Godøy
2013-12-01
Full Text Available It seems that the majority of research on music-related body motion has so far been focused on Western music, so this paper by Lara Pearson on music-related body motion in Indian vocal music is a most welcome contribution to this field. But research on music-related body motion does present us with a number of challenges, ranging from issues of method to fundamental issues of perception and multi-modal integration in music. In such research, thinking of perceptually salient features in different modalities (sound, motion, touch, etc. as shapes seems to go well with our cognitive apparatus, and also be quite practical in representing the features in question. The research reported in this paper gives us an insight into how tracing shapes by hand motion is an integral part of teaching Indian vocal music, and the approach of this paper also holds promise for fruitful future research.
Algebraic Methods for Counting Euclidean Embeddings of Rigid Graphs
I.Z. Emiris; E.P. Tsigaridas; A. Varvitsiotis (Antonios); E.R. Gasner
2009-01-01
textabstract The study of (minimally) rigid graphs is motivated by numerous applications, mostly in robotics and bioinformatics. A major open problem concerns the number of embeddings of such graphs, up to rigid motions, in Euclidean space. We capture embeddability by polynomial systems
The Hill's three-body problem: a new deduction of motion equations
International Nuclear Information System (INIS)
Fuente Marcos, C. de la.
1995-01-01
Although the Hill's problem has been considered traditionally as a particular case of the restricted problem, it is not but rather a different problem with the same degree of generality. In this paper it is presented a new derivation of the motion equations obtained originally by Hill in 1878 as well as a brief discussion about its possible applications. (Author) 13 refs
Effect of body orientation on proprioception during active and passive motions
Niessen, M.H.M.; Veeger, H.E.J.; Janssen, T.W.J.
2009-01-01
Objective: To investigate whether passive and active reproduction of joint position, as well as detection of passive motion (as measures of a subject's proprioception) of the shoulder differ while sitting compared with lying supine. Design: Shoulder proprioception of 28 healthy subjects (age, 22.2 ±
Repurposing the Microsoft Kinect for Windows v2 for external head motion tracking for brain PET
International Nuclear Information System (INIS)
Noonan, P J; Gunn, R N; Howard, J; Hallett, W A
2015-01-01
Medical imaging systems such as those used in positron emission tomography (PET) are capable of spatial resolutions that enable the imaging of small, functionally important brain structures. However, the quality of data from PET brain studies is often limited by subject motion during acquisition. This is particularly challenging for patients with neurological disorders or with dynamic research studies that can last 90 min or more. Restraining head movement during the scan does not eliminate motion entirely and can be unpleasant for the subject. Head motion can be detected and measured using a variety of techniques that either use the PET data itself or an external tracking system. Advances in computer vision arising from the video gaming industry could offer significant benefits when re-purposed for medical applications. A method for measuring rigid body type head motion using the Microsoft Kinect v2 is described with results presenting ⩽0.5 mm spatial accuracy. Motion data is measured in real-time at 30 Hz using the KinectFusion algorithm. Non-rigid motion is detected using the residual alignment energy data of the KinectFusion algorithm allowing for unreliable motion to be discarded. Motion data is aligned to PET listmode data using injected pulse sequences into the PET/CT gantry allowing for correction of rigid body motion. Pilot data from a clinical dynamic PET/CT examination is shown. (paper)
Repurposing the Microsoft Kinect for Windows v2 for external head motion tracking for brain PET
Noonan, P. J.; Howard, J.; Hallett, W. A.; Gunn, R. N.
2015-11-01
Medical imaging systems such as those used in positron emission tomography (PET) are capable of spatial resolutions that enable the imaging of small, functionally important brain structures. However, the quality of data from PET brain studies is often limited by subject motion during acquisition. This is particularly challenging for patients with neurological disorders or with dynamic research studies that can last 90 min or more. Restraining head movement during the scan does not eliminate motion entirely and can be unpleasant for the subject. Head motion can be detected and measured using a variety of techniques that either use the PET data itself or an external tracking system. Advances in computer vision arising from the video gaming industry could offer significant benefits when re-purposed for medical applications. A method for measuring rigid body type head motion using the Microsoft Kinect v2 is described with results presenting ⩽0.5 mm spatial accuracy. Motion data is measured in real-time at 30 Hz using the KinectFusion algorithm. Non-rigid motion is detected using the residual alignment energy data of the KinectFusion algorithm allowing for unreliable motion to be discarded. Motion data is aligned to PET listmode data using injected pulse sequences into the PET/CT gantry allowing for correction of rigid body motion. Pilot data from a clinical dynamic PET/CT examination is shown.
International Nuclear Information System (INIS)
Goyal, Mamta; Bansal, J.L.
1993-01-01
The growth of the boundary layer in an accelerated flow of an electricity conducting fluid past a symmetrical placed body in the presence of uniform transverse magnetic field fixed relative to the body has been studied. The boundary layer equation has been solved by using a method previously developed by Pozzi, based on expressing the unknown velocity in term of an error function and on using differential and integral relations obtained from the balance equation. As examples, the impulsive flow past a circular cylinder and uniformly accelerated flow over a flat plate are considered. It is found that the effect of the magnetic field is to decelerate the fluid motion which results in an earlier boundary layer separation in the impulsive flow past a circular cylinder. The results show a good agreement with the numerical data available in the literature. (author). 30 refs., 4 figs., 2 tabs
Stokes versus Basset: comparison of forces governing motion of small bodies with high acceleration
Krafcik, A.; Babinec, P.; Frollo, I.
2018-05-01
In this paper, the importance of the forces governing the motion of a millimetre-sized sphere in a viscous fluid has been examined. As has been shown previously, for spheres moving with a high initial acceleration, the Basset history force should be used, as well as the commonly used Stokes force. This paper introduces the concept of history forces, which are almost unknown to students despite their interesting mathematical structure and physical meaning, and shows the implementation of simple and efficient numerical methods as a MATLAB code to simulate the motion of a falling sphere. An important application of this code could be, for example, the simulation of microfluidic systems, where the external forces are very large and the relevant timescale is in the order of milliseconds to seconds, and therefore the Basset history force cannot be neglected.
Energy Technology Data Exchange (ETDEWEB)
Stera, Susanne; Imhoff, Detlef; Roedel, Claus [University Hospital Frankfurt, Department of Radiation Oncology, Frankfurt am Main (Germany); Balermpas, Panagiotis; Keller, Christian [University Hospital Frankfurt, Department of Radiation Oncology, Frankfurt am Main (Germany); Saphir Radiosurgery Center, Frankfurt (Germany); Chan, Mark K.H. [University Medical Center Schleswig-Holstein, Department of Radiation Oncology, Kiel (Germany); Huttenlocher, Stefan [Saphir Radiosurgery Center, Guestrow (Germany); Wurster, Stefan [Saphir Radiosurgery Center, Guestrow (Germany); University Medicine Greifswald, Department of Radiation Oncology, Greifswald (Germany); Rades, Dirk [University Medical Center Schleswig-Holstein, Department of Radiation Oncology, Luebeck (Germany); Dunst, Juergen [University Medical Center Schleswig-Holstein, Department of Radiation Oncology, Kiel (Germany); University Hospital Copenhagen, Department of Radiation Oncology, Copenhagen (Denmark); Hildebrandt, Guido [University Medicine Rostock, Department of Radiation Oncology, Rostock (Germany); Blanck, Oliver [Saphir Radiosurgery Center, Frankfurt (Germany); University Medical Center Schleswig-Holstein, Department of Radiation Oncology, Kiel (Germany); Saphir Radiosurgery Center, Guestrow (Germany)
2018-02-15
We retrospectively evaluated the patterns of failure for robotic guided real-time breathing-motion-compensated (BMC) stereotactic body radiation therapy (SBRT) in the treatment of tumors in moving organs. Between 2011 and 2016, a total of 198 patients with 280 lung, liver, and abdominal tumors were treated with BMC-SBRT. The median gross tumor volume (GTV) was 12.3 cc (0.1-372.0 cc). Medians of mean GTV BED{sub α/β=10} {sub Gy} (BED = biological effective dose) was 148.5 Gy{sub 10} (31.5-233.3 Gy{sub 10}) and prescribed planning target volume (PTV) BED{sub α/β=10} {sub Gy} was 89.7 Gy{sub 10} (28.8-151.2 Gy{sub 10}), respectively. We analyzed overall survival (OS) and local control (LC) based on various factors, including BEDs with α/ β ratios of 15 Gy (lung metastases), 21 Gy (primary lung tumors), and 27 Gy (liver metastases). Median follow-up was 10.4 months (2.0-59.0 months). The 2-year actuarial LC was 100 and 86.4% for primary early and advanced stage lung tumors, respectively, 100% for lung metastases, 82.2% for liver metastases, and 90% for extrapulmonary extrahepatic metastases. The 2-year OS rate was 47.9% for all patients. In uni- and multivariate analysis, comparatively lower PTV prescription dose (equivalence of 3 x 12-13 Gy) and higher average GTV dose (equivalence of 3 x 18 Gy) to current practice were significantly associated with LC. For OS, Karnofsky performance score (100%), gender (female), and SBRT without simultaneous chemotherapy were significant prognostic factors. Grade 3 side effects were rare (0.5%). Robotic guided BMC-SBRT can be considered a safe and effective treatment for solid tumors in moving organs. To reach sufficient local control rates, high average GTV doses are necessary. Further prospective studies are warranted to evaluate these points. (orig.) [German] Wir fuehrten eine retrospektive Untersuchung der Rezidivmuster bei der Behandlung von Tumoren in bewegten Organen mittels robotergefuehrter in Echtzeit
Ehsani, Hossein; Rostami, Mostafa; Gudarzi, Mohammad
2016-02-01
Computation of muscle force patterns that produce specified movements of muscle-actuated dynamic models is an important and challenging problem. This problem is an undetermined one, and then a proper optimization is required to calculate muscle forces. The purpose of this paper is to develop a general model for calculating all muscle activation and force patterns in an arbitrary human body movement. For this aim, the equations of a multibody system forward dynamics, which is considered for skeletal system of the human body model, is derived using Lagrange-Euler formulation. Next, muscle contraction dynamics is added to this model and forward dynamics of an arbitrary musculoskeletal system is obtained. For optimization purpose, the obtained model is used in computed muscle control algorithm, and a closed-loop system for tracking desired motions is derived. Finally, a popular sport exercise, biceps curl, is simulated by using this algorithm and the validity of the obtained results is evaluated via EMG signals.
DEFF Research Database (Denmark)
Conradsen, Isa; Beniczky, Sándor; Wolf, Peter
2009-01-01
Many epilepsy patients cannot call for help during a seizure, because they are unconscious or because of the affection of their motor system or speech function. This can lead to injuries, medical complications and at worst death. An alarm system setting off at seizure onset could help to avoid...... hazards. Today no reliable alarm systems are available. A Multi-modal Intelligent Seizure Acquisition (MISA) system based on full body motion data seems as a good approach towards detection of epileptic seizures. The system is the first to provide a full body description for epilepsy applications. Three...... test subjects were used for this pilot project. Each subject simulated 15 seizures and in addition performed some predefined normal activities, during a 4-hour monitoring with electromyography (EMG), accelerometer, magnetometer and gyroscope (AMG), electrocardiography (ECG), electroencephalography (EEG...
International Nuclear Information System (INIS)
Yorke, Ellen; Xiong, Ying; Han, Qian; Zhang, Pengpeng; Mageras, Gikas; Lovelock, Michael; Pham, Hai; Xiong, Jian-Ping; Goodman, Karyn A.
2016-01-01
Purpose: To assess intrafraction respiratory motion using a commercial kilovoltage imaging system for abdominal tumor patients with implanted fiducials and breathing constrained by pneumatic compression during stereotactic body radiation therapy (SBRT). Methods and Materials: A pneumatic compression belt limited respiratory motion in 19 patients with radiopaque fiducials in or near their tumor during SBRT for abdominal tumors. Kilovoltage images were acquired at 5- to 6-second intervals during treatment using a commercial system. Intrafractional fiducial displacements were measured using in-house software. The dosimetric effect of the observed displacements was calculated for 3 sessions for each patient. Results: Intrafraction displacement patterns varied between patients and between individual treatment sessions. Averaged over 19 patients, 73 sessions, 7.6% of craniocaudal displacements exceeded 0.5 cm, and 1.2% exceeded 0.75 cm. The calculated single-session dose to 95% of gross tumor volume differed from planned by an average of −1.2% (range, −11.1% to 4.8%) but only for 4 patients was the total 3-session calculated dose to 95% of gross tumor volume more than 3% different from planned. Conclusions: Our pneumatic compression limited intrafractional abdominal target motion, maintained target position established at setup, and was moderately effective in preserving coverage. Commercially available intrafractional imaging is useful for surveillance but can be made more effective and reliable.
Energy Technology Data Exchange (ETDEWEB)
Yorke, Ellen, E-mail: yorke@mskcc.org [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Xiong, Ying [Department of Radiation Oncology, China-Japan Friendship Hospital, Beijing (China); Han, Qian [Department of Radiotherapy, Henan Provincial People' s Hospital, Zhengzhou (China); Zhang, Pengpeng; Mageras, Gikas; Lovelock, Michael; Pham, Hai; Xiong, Jian-Ping [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Goodman, Karyn A. [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States)
2016-07-01
Purpose: To assess intrafraction respiratory motion using a commercial kilovoltage imaging system for abdominal tumor patients with implanted fiducials and breathing constrained by pneumatic compression during stereotactic body radiation therapy (SBRT). Methods and Materials: A pneumatic compression belt limited respiratory motion in 19 patients with radiopaque fiducials in or near their tumor during SBRT for abdominal tumors. Kilovoltage images were acquired at 5- to 6-second intervals during treatment using a commercial system. Intrafractional fiducial displacements were measured using in-house software. The dosimetric effect of the observed displacements was calculated for 3 sessions for each patient. Results: Intrafraction displacement patterns varied between patients and between individual treatment sessions. Averaged over 19 patients, 73 sessions, 7.6% of craniocaudal displacements exceeded 0.5 cm, and 1.2% exceeded 0.75 cm. The calculated single-session dose to 95% of gross tumor volume differed from planned by an average of −1.2% (range, −11.1% to 4.8%) but only for 4 patients was the total 3-session calculated dose to 95% of gross tumor volume more than 3% different from planned. Conclusions: Our pneumatic compression limited intrafractional abdominal target motion, maintained target position established at setup, and was moderately effective in preserving coverage. Commercially available intrafractional imaging is useful for surveillance but can be made more effective and reliable.
Frost, David; Andersen, Jordan; Lam, Thomas; Finlay, Tim; Darby, Kevin; McGill, Stuart
2013-01-01
The goal of this study was to establish relationships between fitness (torso endurance, grip strength and pull-ups), hip range of motion (ROM) (extension, flexion, internal and external rotation) and movement quality in an occupational group with physical work demands. Fifty-three men from the emergency task force of a major city police force were investigated. The movement screen comprised standing and seated posture, gait, segmental spine motion and 14 tasks designed to challenge whole-body coordination. Relationships were established between each whole-body movement task, the measures of strength, endurance and ROM. In general, fitness and ROM were not strongly related to the movement quality of any task. This has implications for worker training, in that strategies developed to improve ROM or strength about a joint may not enhance movement quality. Worker-centered injury prevention can be described as fitting workers to tasks by improving fitness and modifying movement patterns; however, the current results show weak correlations between strength, endurance and ROM, and the way individuals move. Therefore, the development of occupation-specific injury prevention strategies may require both fitness and movement-oriented objectives.
Energy Technology Data Exchange (ETDEWEB)
Monterroso, M; Dogan, N; Yang, Y [University Miami, Miami, FL (United States)
2014-06-01
Purpose: To evaluate the effects of respiratory motion on the delivered dose distribution of CyberKnife motion tracking-based stereotactic body radiotherapy (SBRT) of abdominal targets. Methods: Four patients (two pancreas and two liver, and all with 4DCT scans) were retrospectively evaluated. A plan (3D plan) using CyberKnife Synchrony was optimized on the end-exhale phase in the CyberKnife's MultiPlan treatment planning system (TPS), with 40Gy prescribed in 5 fractions. A 4D plan was then created following the 4D planning utility in the MultiPlan TPS, by recalculating dose from the 3D plan beams on all 4DCT phases, with the same prescribed isodose line. The other seven phases of the 4DCT were then deformably registered to the end-exhale phase for 4D dose summation. Doses to the target and organs at risk (OAR) were compared between 3D and 4D plans for each patient. The mean and maximum doses to duodenum, liver, spinal cord and kidneys, and doses to 5cc of duodenum, 700cc of liver, 0.25cc of spinal cord and 200cc of kidneys were used. Results: Target coverage in the 4D plans was about 1% higher for two patients and about 9% lower in the other two. OAR dose differences between 3D and 4D varied among structures, with doses as much as 8.26Gy lower or as much as 5.41Gy higher observed in the 4D plans. Conclusion: The delivered dose can be significantly different from the planned dose for both the target and OAR close to the target, which is caused by the relative geometry change while the beams chase the moving target. Studies will be performed on more patients in the future. The differences of motion tracking versus passive motion management with the use of internal target volumes will also be investigated.
Interplay between one-body and collisional damping of collective motion in nuclei
International Nuclear Information System (INIS)
Kolomietz, V.M.; Plujko, V.A.; Shlomo, S.
1996-01-01
Damping of giant collective vibrations in nuclei is studied within the framework of the Landau-Vlasov kinetic equation. A phenomenological method of independent sources of dissipation is proposed for taking into account the contributions of one-body dissipation, the relaxation due to the two-body collisions and the particle emission. An expression for the intrinsic width of slow damped collective vibrations is obtained. In the general case, this expression cannot be represented as a sum of the widths associated with the different independent sources of the damping. This is a peculiarity of the collisional Landau-Vlasov equation where the Fermi-surface distortion effect influences both the self-consistent mean field and the memory effect at the relaxation processes. The interplay between the one-body, the two-body, and the particle emission channels which contribute to the formation of the total intrinsic width of the isoscalar 2 + and 3 - and isovector 1 - giant multipole resonances in cold and hot nuclei is discussed. We have shown that the criterion for the transition temperature T tr between the zero-sound and first-sound regimes in hot nuclei is different from the case of infinite nuclear matter due to the contribution from the one-body relaxation and the particle emission. In the case of the isovector GDR the corresponding transition can be reached at temperature T tr =4 endash 5 MeV. copyright 1996 The American Physical Society
PROMO – Real-time Prospective Motion Correction in MRI using Image-based Tracking
White, Nathan; Roddey, Cooper; Shankaranarayanan, Ajit; Han, Eric; Rettmann, Dan; Santos, Juan; Kuperman, Josh; Dale, Anders
2010-01-01
Artifacts caused by patient motion during scanning remain a serious problem in most MRI applications. The prospective motion correction technique attempts to address this problem at its source by keeping the measurement coordinate system fixed with respect to the patient throughout the entire scan process. In this study, a new image-based approach for prospective motion correction is described, which utilizes three orthogonal 2D spiral navigator acquisitions (SP-Navs) along with a flexible image-based tracking method based on the Extended Kalman Filter (EKF) algorithm for online motion measurement. The SP-Nav/EKF framework offers the advantages of image-domain tracking within patient-specific regions-of-interest and reduced sensitivity to off-resonance-induced corruption of rigid-body motion estimates. The performance of the method was tested using offline computer simulations and online in vivo head motion experiments. In vivo validation results covering a broad range of staged head motions indicate a steady-state error of the SP-Nav/EKF motion estimates of less than 10 % of the motion magnitude, even for large compound motions that included rotations over 15 degrees. A preliminary in vivo application in 3D inversion recovery spoiled gradient echo (IR-SPGR) and 3D fast spin echo (FSE) sequences demonstrates the effectiveness of the SP-Nav/EKF framework for correcting 3D rigid-body head motion artifacts prospectively in high-resolution 3D MRI scans. PMID:20027635
Human body motion tracking based on quantum-inspired immune cloning algorithm
Han, Hong; Yue, Lichuan; Jiao, Licheng; Wu, Xing
2009-10-01
In a static monocular camera system, to gain a perfect 3D human body posture is a great challenge for Computer Vision technology now. This paper presented human postures recognition from video sequences using the Quantum-Inspired Immune Cloning Algorithm (QICA). The algorithm included three parts. Firstly, prior knowledge of human beings was used, the key joint points of human could be detected automatically from the human contours and skeletons which could be thinning from the contours; And due to the complexity of human movement, a forecasting mechanism of occlusion joint points was addressed to get optimum 2D key joint points of human body; And then pose estimation recovered by optimizing between the 2D projection of 3D human key joint points and 2D detection key joint points using QICA, which recovered the movement of human body perfectly, because this algorithm could acquire not only the global optimal solution, but the local optimal solution.
Non-invasive Player Experience Estimation from Body Motion and Game Context
DEFF Research Database (Denmark)
Burelli, Paolo; Triantafyllidis, George; Patras, Ioannis
2014-01-01
In this paper, we investigate on the relationship between player experience and body movements in a non-physical 3D computer game. During an experiment, the participants played a series of short game sessions and rated their experience while their body movements were tracked using a depth camera....... The data collected was analysed and a neural network was trained to find the mapping between player body movements, player in- game behaviour and player experience. The results reveal that some aspects of player experience, such as anxiety or challenge, can be detected with high accuracy (up to 81......%). Moreover, taking into account the playing context, the accuracy can be raised up to 86%. Following such a multi-modal approach, it is possible to estimate the player experience in a non-invasive fashion during the game and, based on this information, the game content could be adapted accordingly....
On the motion of classical three-body system with consideration of quantum fluctuations
Energy Technology Data Exchange (ETDEWEB)
Gevorkyan, A. S., E-mail: g-ashot@sci.am [NAS of RA, Institute for Informatics and Automation Problems (Armenia)
2017-03-15
We obtained the systemof stochastic differential equations which describes the classicalmotion of the three-body system under influence of quantum fluctuations. Using SDEs, for the joint probability distribution of the total momentum of bodies system were obtained the partial differential equation of the second order. It is shown, that the equation for the probability distribution is solved jointly by classical equations, which in turn are responsible for the topological peculiarities of tubes of quantum currents, transitions between asymptotic channels and, respectively for arising of quantum chaos.
Standard Methodology for Assessment of Range of Motion While Wearing Body Armor
2013-09-30
76 STANDING STATURE (with Footwear ...Thanks also to Natick Soldier Research, Development and Engineering Center and the Soldier Integrated Protection Team and those project officers who...being fit into their best body armor size for that configuration): • Standing Stature (with footwear ) • Seated Stature At the goniometer station
Universal algorithms and programs for calculating the motion parameters in the two-body problem
Bakhshiyan, B. T.; Sukhanov, A. A.
1979-01-01
The algorithms and FORTRAN programs for computing positions and velocities, orbital elements and first and second partial derivatives in the two-body problem are presented. The algorithms are applicable for any value of eccentricity and are convenient for computing various navigation parameters.
Pancharoen, K.; Zhu, D.; Beeby, S. P.
2016-11-01
This paper presents a magnetically levitated electromagnetic vibration energy harvester based on magnet arrays. It has a nonlinear response that extends the operating bandwidth and enhances the power output of the harvesting device. The harvester is designed to be embedded in a hip prosthesis and harvest energy from low frequency movements (< 5 Hz) associated with human motion. The design optimization is performed using Comsol simulation considering the constraints on size of the harvester and low operating frequency. The output voltage across the optimal load 3.5kΩ generated from hip movement is 0.137 Volts during walking and 0.38 Volts during running. The power output harvested from hip movement during walking and running is 5.35 μW and 41.36 μW respectively..
Pichierri, Gabriele; Morbidelli, Alessandro; Lai, Dong
2017-09-01
Context. It is well known that asteroids and comets fall into the Sun. Metal pollution of white dwarfs and transient spectroscopic signatures of young stars like β-Pic provide growing evidence that extra solar planetesimals can attain extreme orbital eccentricities and fall into their parent stars. Aims: We aim to develop a general, implementable, semi-analytical theory of secular eccentricity excitation of small bodies (planetesimals) in mean motion resonances with an eccentric planet valid for arbitrary values of the eccentricities and including the short-range force due to General Relativity. Methods: Our semi-analytic model for the restricted planar three-body problem does not make use of series expansion and therefore is valid for any eccentricity value and semi-major axis ratio. The model is based on the application of the adiabatic principle, which is valid when the precession period of the longitude of pericentre of the planetesimal is much longer than the libration period in the mean motion resonance. In resonances of order larger than 1 this is true except for vanishingly small eccentricities. We provide prospective users with a Mathematica notebook with implementation of the model allowing direct use. Results: We confirm that the 4:1 mean motion resonance with a moderately eccentric (e' ≲ 0.1) planet is the most powerful one to lift the eccentricity of planetesimals from nearly circular orbits to star-grazing ones. However, if the planet is too eccentric, we find that this resonance is unable to pump the planetesimal's eccentricity to a very high value. The inclusion of the General Relativity effect imposes a condition on the mass of the planet to drive the planetesimals into star-grazing orbits. For a planetesimal at 1 AU around a solar mass star (or white dwarf), we find a threshold planetary mass of about 17 Earth masses. We finally derive an analytical formula for this critical mass. Conclusions: Planetesimals can easily fall into the central star
Photogrammetry System and Method for Determining Relative Motion Between Two Bodies
Miller, Samuel A. (Inventor); Severance, Kurt (Inventor)
2014-01-01
A photogrammetry system and method provide for determining the relative position between two objects. The system utilizes one or more imaging devices, such as high speed cameras, that are mounted on a first body, and three or more photogrammetry targets of a known location on a second body. The system and method can be utilized with cameras having fish-eye, hyperbolic, omnidirectional, or other lenses. The system and method do not require overlapping fields-of-view if two or more cameras are utilized. The system and method derive relative orientation by equally weighting information from an arbitrary number of heterogeneous cameras, all with non-overlapping fields-of-view. Furthermore, the system can make the measurements with arbitrary wide-angle lenses on the cameras.
Bodies in motion: spaces, emotions and representations that (de)construct realities
Caravaca-Morera, Jaime Alonso; Padilha, Maria Itayra
2017-01-01
Abstract OBJECTIVE To analyze the social representations of the body among Brazilian and Costa Rican transsexual people through their life stories. METHOD Qualitative and descriptive multicenter research. The study population consisted of 70 participants. Two organizations cooperated to collect the information, one in Florianópolis, SC-Brazil and one in San José, the capital of Costa Rica. Content Analysis was used to analyze the data. RESULTS Based on the results, a single social represen...
Quantification of mouse in vivo whole-body vibration amplitude from motion-blur using x-ray imaging
International Nuclear Information System (INIS)
Hu, Zhengyi; Yuan, Xunhua; Pollmann, Steven I; Nikolov, Hristo N; Holdsworth, David W; Welch, Ian
2015-01-01
Musculoskeletal effects of whole-body vibration on animals and humans have become an intensely studied topic recently, due to the potential of applying this method as a non-pharmacological therapy for strengthening bones. It is relatively easy to quantify the transmission of whole-body mechanical vibration through the human skeletal system using accelerometers. However, this is not the case for small-animal pre-clinical studies because currently available accelerometers have a large mass, relative to the mass of the animals, which causes the accelerometers themselves to affect the way vibration is transmitted. Additionally, live animals do not typically remain motionless for long periods, unless they are anesthetized, and they are required to maintain a static standing posture during these studies. These challenges provide the motivation for the development of a method to quantify vibrational transmission in small animals. We present a novel imaging technique to quantify whole-body vibration transmission in small animals using 280 μm diameter tungsten carbide beads implanted into the hind limbs of mice. Employing time-exposure digital x-ray imaging, vibrational amplitude is quantified based on the blurring of the implanted beads caused by the vibrational motion. Our in vivo results have shown this technique is capable of measuring vibration amplitudes as small as 0.1 mm, with precision as small as ±10 μm, allowing us to distinguish differences in the transmitted vibration at different locations on the hindlimbs of mice. (paper)
Quantification of mouse in vivo whole-body vibration amplitude from motion-blur using x-ray imaging
Hu, Zhengyi; Welch, Ian; Yuan, Xunhua; Pollmann, Steven I.; Nikolov, Hristo N.; Holdsworth, David W.
2015-08-01
Musculoskeletal effects of whole-body vibration on animals and humans have become an intensely studied topic recently, due to the potential of applying this method as a non-pharmacological therapy for strengthening bones. It is relatively easy to quantify the transmission of whole-body mechanical vibration through the human skeletal system using accelerometers. However, this is not the case for small-animal pre-clinical studies because currently available accelerometers have a large mass, relative to the mass of the animals, which causes the accelerometers themselves to affect the way vibration is transmitted. Additionally, live animals do not typically remain motionless for long periods, unless they are anesthetized, and they are required to maintain a static standing posture during these studies. These challenges provide the motivation for the development of a method to quantify vibrational transmission in small animals. We present a novel imaging technique to quantify whole-body vibration transmission in small animals using 280 μm diameter tungsten carbide beads implanted into the hind limbs of mice. Employing time-exposure digital x-ray imaging, vibrational amplitude is quantified based on the blurring of the implanted beads caused by the vibrational motion. Our in vivo results have shown this technique is capable of measuring vibration amplitudes as small as 0.1 mm, with precision as small as ±10 μm, allowing us to distinguish differences in the transmitted vibration at different locations on the hindlimbs of mice.
Weiss, Asia; Whiteley, Walter
2014-01-01
This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures, and to explore the interaction of geometry, algebra, and combinatorics. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme. Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology. The volume will also be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and gradu...
Pukhlikov, Aleksandr
2013-01-01
Birational rigidity is a striking and mysterious phenomenon in higher-dimensional algebraic geometry. It turns out that certain natural families of algebraic varieties (for example, three-dimensional quartics) belong to the same classification type as the projective space but have radically different birational geometric properties. In particular, they admit no non-trivial birational self-maps and cannot be fibred into rational varieties by a rational map. The origins of the theory of birational rigidity are in the work of Max Noether and Fano; however, it was only in 1970 that Iskovskikh and Manin proved birational superrigidity of quartic three-folds. This book gives a systematic exposition of, and a comprehensive introduction to, the theory of birational rigidity, presenting in a uniform way, ideas, techniques, and results that so far could only be found in journal papers. The recent rapid progress in birational geometry and the widening interaction with the neighboring areas generate the growing interest ...
Analysis of Golf Swing Motion and Applied Loads on the Human Body Using Soft-Golf TM Club
International Nuclear Information System (INIS)
Kwak, Ki Young; So, Ha Ju; Kim, Sung Hyeon; Kim, Dong Wook; Kim, Nam Gyun
2011-01-01
The purpose of this study was to analyze the kinetic effect of Soft-golf TM instrument on the human body structure. To analyze the kinetic effect of Soft-golf TM instrument, Golf swing using Soft-golf TM instrument and regular golf instrument was captured. And then Upper limbs and lumbar joint torques was calculated via computer simulation. Five man participated this study. Subjects performed golf swing using a regular golf and Soft-golf TM instrument. Golf swing motion was captured using three position sensor, active infrared LED maker and force plate. Golf swing model was generated and simulated using ADAMS/LifeMOD program. As a results, joint torque during Soft-golf swing were lower than regular golf swing. Thus soft-golf swing have joint load lower than regular golf swing and contribute to reduce joint injury
Suzuki, Satoshi
2017-09-01
This study investigated the spatial distribution of brain activity on body schema (BS) modification induced by natural body motion using two versions of a hand-tracing task. In Task 1, participants traced Japanese Hiragana characters using the right forefinger, requiring no BS expansion. In Task 2, participants performed the tracing task with a long stick, requiring BS expansion. Spatial distribution was analyzed using general linear model (GLM)-based statistical parametric mapping of near-infrared spectroscopy data contaminated with motion artifacts caused by the hand-tracing task. Three methods were utilized in series to counter the artifacts, and optimal conditions and modifications were investigated: a model-free method (Step 1), a convolution matrix method (Step 2), and a boxcar-function-based Gaussian convolution method (Step 3). The results revealed four methodological findings: (1) Deoxyhemoglobin was suitable for the GLM because both Akaike information criterion and the variance against the averaged hemodynamic response function were smaller than for other signals, (2) a high-pass filter with a cutoff frequency of .014 Hz was effective, (3) the hemodynamic response function computed from a Gaussian kernel function and its first- and second-derivative terms should be included in the GLM model, and (4) correction of non-autocorrelation and use of effective degrees of freedom were critical. Investigating z-maps computed according to these guidelines revealed that contiguous areas of BA7-BA40-BA21 in the right hemisphere became significantly activated ([Formula: see text], [Formula: see text], and [Formula: see text], respectively) during BS modification while performing the hand-tracing task.
International Nuclear Information System (INIS)
Lu, Bo; Park, Justin C.; Fan, Qiyong; Kahler, Darren; Liu, Chihray; Chen, Yunmei
2015-01-01
Purpose: Accurately localizing lung tumor localization is essential for high-precision radiation therapy techniques such as stereotactic body radiation therapy (SBRT). Since direct monitoring of tumor motion is not always achievable due to the limitation of imaging modalities for treatment guidance, placement of fiducial markers on the patient’s body surface to act as a surrogate for tumor position prediction is a practical alternative for tracking lung tumor motion during SBRT treatments. In this work, the authors propose an innovative and robust model to solve the multimarker position optimization problem. The model is able to overcome the major drawbacks of the sparse optimization approach (SOA) model. Methods: The principle-component-analysis (PCA) method was employed as the framework to build the authors’ statistical prediction model. The method can be divided into two stages. The first stage is to build the surrogate tumor matrix and calculate its eigenvalues and associated eigenvectors. The second stage is to determine the “best represented” columns of the eigenvector matrix obtained from stage one and subsequently acquire the optimal marker positions as well as numbers. Using 4-dimensional CT (4DCT) and breath hold CT imaging data, the PCA method was compared to the SOA method with respect to calculation time, average prediction accuracy, prediction stability, noise resistance, marker position consistency, and marker distribution. Results: The PCA and SOA methods which were both tested were on all 11 patients for a total of 130 cases including 4DCT and breath-hold CT scenarios. The maximum calculation time for the PCA method was less than 1 s with 64 752 surface points, whereas the average calculation time for the SOA method was over 12 min with 400 surface points. Overall, the tumor center position prediction errors were comparable between the two methods, and all were less than 1.5 mm. However, for the extreme scenarios (breath hold), the
Finite-difference analysis of shells impacting rigid barriers
International Nuclear Information System (INIS)
Pirotin, S.D.; Witmer, E.A.
1977-01-01
Nuclear power plants must be protected from the adverse effects of missile impacts. A significant category of missile impact involves deformable structures (pressure vessel components, whipping pipes) striking relatively rigid targets (concrete walls, bumpers) which act as protective devices. The response and interaction of these structures is needed to assess the adequacy of these barriers for protecting vital safety related equipment. The present investigation represents an initial attempt to develop an efficient numerical procedure for predicting the deformations and impact force time-histories of shells which impact upon a rigid target. The general large-deflection equations of motion of the shell are expressed in finite-difference form in space and integrated in time through application of the central-difference temporal operator. The effect of material nonlinearities is treated by a mechanical sublayer material model which handles the strain-hardening, Bauschinger, and strain-rate effects. The general adequacy of this shell treatment has been validated by comparing predictions with the results of various experiments in which structures have been subjected to well-defined transient forcing functions (typically high-explosive impulse loading). The 'new' ingredient addressed in the present study involves an accounting for impact interaction and response of both the target structure and the attacking body. (Auth.)
Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery.
Directory of Open Access Journals (Sweden)
Robert Kalescky
2016-04-01
Full Text Available Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2 in the human PTP1E protein is examined as model system to advance a recently developed rigid residue scan method combining with configurational entropy calculation and principal component analysis. The contributions from individual residues to whole-protein dynamics and allostery were systematically assessed via rigid body simulations of both unbound and ligand-bound states of the protein. The entropic contributions of individual residues to whole-protein dynamics were evaluated based on covariance-based correlation analysis of all simulations. The changes of overall protein entropy when individual residues being held rigid support that the rigidity/flexibility equilibrium in protein structure is governed by the La Châtelier's principle of chemical equilibrium. Key residues of PDZ2 allostery were identified with good agreement with NMR studies of the same protein bound to the same peptide. On the other hand, the change of entropic contribution from each residue upon perturbation revealed intrinsic differences among all the residues. The quasi-harmonic and principal component analyses of simulations without rigid residue perturbation showed a coherent allosteric mode from unbound and bound states, respectively. The projection of simulations with rigid residue perturbation onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions supporting the population-shift theory of protein allostery. Overall, the study presented here provides a robust and systematic approach to estimate the contribution of individual residue internal motion to overall protein dynamics and allostery.
Linearized motion estimation for articulated planes.
Datta, Ankur; Sheikh, Yaser; Kanade, Takeo
2011-04-01
In this paper, we describe the explicit application of articulation constraints for estimating the motion of a system of articulated planes. We relate articulations to the relative homography between planes and show that these articulations translate into linearized equality constraints on a linear least-squares system, which can be solved efficiently using a Karush-Kuhn-Tucker system. The articulation constraints can be applied for both gradient-based and feature-based motion estimation algorithms and to illustrate this, we describe a gradient-based motion estimation algorithm for an affine camera and a feature-based motion estimation algorithm for a projective camera that explicitly enforces articulation constraints. We show that explicit application of articulation constraints leads to numerically stable estimates of motion. The simultaneous computation of motion estimates for all of the articulated planes in a scene allows us to handle scene areas where there is limited texture information and areas that leave the field of view. Our results demonstrate the wide applicability of the algorithm in a variety of challenging real-world cases such as human body tracking, motion estimation of rigid, piecewise planar scenes, and motion estimation of triangulated meshes.
Energy Technology Data Exchange (ETDEWEB)
Dhou, S; Williams, C [Brigham and Women’s Hospital / Harvard Medical School, Boston, MA (United States); Ionascu, D [William Beaumont Hospital, Royal Oak, MI (United States); Lewis, J [University of California at Los Angeles, Los Angeles, CA (United States)
2016-06-15
Purpose: To study the variability of patient-specific motion models derived from 4-dimensional CT (4DCT) images using different deformable image registration (DIR) algorithms for lung cancer stereotactic body radiotherapy (SBRT) patients. Methods: Motion models are derived by 1) applying DIR between each 4DCT image and a reference image, resulting in a set of displacement vector fields (DVFs), and 2) performing principal component analysis (PCA) on the DVFs, resulting in a motion model (a set of eigenvectors capturing the variations in the DVFs). Three DIR algorithms were used: 1) Demons, 2) Horn-Schunck, and 3) iterative optical flow. The motion models derived were compared using patient 4DCT scans. Results: Motion models were derived and the variations were evaluated according to three criteria: 1) the average root mean square (RMS) difference which measures the absolute difference between the components of the eigenvectors, 2) the dot product between the eigenvectors which measures the angular difference between the eigenvectors in space, and 3) the Euclidean Model Norm (EMN), which is calculated by summing the dot products of an eigenvector with the first three eigenvectors from the reference motion model in quadrature. EMN measures how well an eigenvector can be reconstructed using another motion model derived using a different DIR algorithm. Results showed that comparing to a reference motion model (derived using the Demons algorithm), the eigenvectors of the motion model derived using the iterative optical flow algorithm has smaller RMS, larger dot product, and larger EMN values than those of the motion model derived using Horn-Schunck algorithm. Conclusion: The study showed that motion models vary depending on which DIR algorithms were used to derive them. The choice of a DIR algorithm may affect the accuracy of the resulting model, and it is important to assess the suitability of the algorithm chosen for a particular application. This project was supported
International Nuclear Information System (INIS)
Dhou, S; Williams, C; Ionascu, D; Lewis, J
2016-01-01
Purpose: To study the variability of patient-specific motion models derived from 4-dimensional CT (4DCT) images using different deformable image registration (DIR) algorithms for lung cancer stereotactic body radiotherapy (SBRT) patients. Methods: Motion models are derived by 1) applying DIR between each 4DCT image and a reference image, resulting in a set of displacement vector fields (DVFs), and 2) performing principal component analysis (PCA) on the DVFs, resulting in a motion model (a set of eigenvectors capturing the variations in the DVFs). Three DIR algorithms were used: 1) Demons, 2) Horn-Schunck, and 3) iterative optical flow. The motion models derived were compared using patient 4DCT scans. Results: Motion models were derived and the variations were evaluated according to three criteria: 1) the average root mean square (RMS) difference which measures the absolute difference between the components of the eigenvectors, 2) the dot product between the eigenvectors which measures the angular difference between the eigenvectors in space, and 3) the Euclidean Model Norm (EMN), which is calculated by summing the dot products of an eigenvector with the first three eigenvectors from the reference motion model in quadrature. EMN measures how well an eigenvector can be reconstructed using another motion model derived using a different DIR algorithm. Results showed that comparing to a reference motion model (derived using the Demons algorithm), the eigenvectors of the motion model derived using the iterative optical flow algorithm has smaller RMS, larger dot product, and larger EMN values than those of the motion model derived using Horn-Schunck algorithm. Conclusion: The study showed that motion models vary depending on which DIR algorithms were used to derive them. The choice of a DIR algorithm may affect the accuracy of the resulting model, and it is important to assess the suitability of the algorithm chosen for a particular application. This project was supported
Directory of Open Access Journals (Sweden)
Alasdair G. Thin
2013-01-01
Full Text Available Dance Dance Revolution is a pioneering exergame which has attracted considerable interest for its potential to promote regular exercise and its associated health benefits. The advent of a range of different consumer body motion tracking video game console peripherals raises the question whether their different technological affordances (i.e., variations in the type and number of body limbs that they can track influence the user experience while playing dance-based exergames both in terms of the level of physical exertion and the nature of the play experience. To investigate these issues a group of subjects performed a total of six comparable dance routines selected from commercial dance-based exergames (two routines from each game on three different consoles. The subjects’ level of physical exertion was assessed by measuring oxygen consumption and heart rate. They also reported their perceived level of exertion, difficulty, and enjoyment ratings after completing each dance routine. No differences were found in the physiological measures of exertion between the peripherals/consoles. However, there were significant variations in the difficulty and enjoyment ratings between peripherals. The design implications of these results are discussed including the tension between helping to guide and coordinate player movement versus offering greater movement flexibility.
International Nuclear Information System (INIS)
Chen, Feng; Han, Yuecai
2013-01-01
The existence of time-periodic stochastic motions of an incompressible fluid is obtained. Here the fluid is subject to a time-periodic body force and an additional time-periodic stochastic force that is produced by a rigid body moves periodically stochastically with the same period in the fluid
Energy Technology Data Exchange (ETDEWEB)
Chen, Feng, E-mail: chenfengmath@163.com, E-mail: hanyc@jlu.edu.cn; Han, Yuecai, E-mail: chenfengmath@163.com, E-mail: hanyc@jlu.edu.cn [School of Mathematics, Jilin University, Changchun 130012 (China)
2013-12-15
The existence of time-periodic stochastic motions of an incompressible fluid is obtained. Here the fluid is subject to a time-periodic body force and an additional time-periodic stochastic force that is produced by a rigid body moves periodically stochastically with the same period in the fluid.
Seismic interferometry of railroad induced ground motions: body and surface wave imaging
Quiros, Diego A.; Brown, Larry D.; Kim, Doyeon
2016-04-01
Seismic interferometry applied to 120 hr of railroad traffic recorded by an array of vertical component seismographs along a railway within the Rio Grande rift has recovered surface and body waves characteristic of the geology beneath the railway. Linear and hyperbolic arrivals are retrieved that agree with surface (Rayleigh), direct and reflected P waves observed by nearby conventional seismic surveys. Train-generated Rayleigh waves span a range of frequencies significantly higher than those recovered from typical ambient noise interferometry studies. Direct P-wave arrivals have apparent velocities appropriate for the shallow geology of the survey area. Significant reflected P-wave energy is also present at relatively large offsets. A common midpoint stack produces a reflection image consistent with nearby conventional reflection data. We suggest that for sources at the free surface (e.g. trains) increasing the aperture of the array to record wide angle reflections, in addition to longer recording intervals, might allow the recovery of deeper geological structure from railroad traffic. Frequency-wavenumber analyses of these recordings indicate that the train source is symmetrical (i.e. approaching and receding) and that deeper refracted energy is present although not evident in the time-offset domain. These results confirm that train-generated vibrations represent a practical source of high-resolution subsurface information, with particular relevance to geotechnical and environmental applications.
Controlled Wake of a Moving Axisymmetric Bluff Body
Lee, E.; Vukasinovic, B.; Glezer, A.
2017-11-01
The aerodynamic loads exerted on a wire-mounted axisymmetric bluff body in prescribed rigid motion are controlled by fluidic manipulation of its near wake. The body is supported by a six-degree of freedom eight-wire traverse and its motion is controlled using a dedicated servo actuator and inline load cell for each wire. The instantaneous aerodynamic forces and moments on the moving body are manipulated by controlled interactions of an azimuthal array of integrated synthetic jet actuators with the cross flow to induce localized flow attachment over the body's aft end and thereby alter the symmetry of the wake. The coupled interactions between the wake structure and the effected aerodynamic loads during prescribed time-periodic and transitory (gust like) motions are investigated with emphasis on enhancing or diminishing the loads for maneuver control, and decoupling the body's motion from its far wake.
Holewijn, R M; Kingma, I; de Kleuver, M; Schimmel, J J P; Keijsers, N L W
2017-09-01
Previous studies show a limited alteration of gait at normal walking speed after spinal fusion surgery for adolescent idiopathic scoliosis (AIS), despite the presumed essential role of spinal mobility during gait. This study analyses how spinal fusion affects gait at more challenging walking speeds. More specifically, we investigated whether thoracic-pelvic rotations are reduced to a larger extent at higher gait speeds and whether compensatory mechanisms above and below the stiffened spine are present. 18 AIS patients underwent gait analysis at increasing walking speeds (0.45 to 2.22m/s) before and after spinal fusion. The range of motion (ROM) of the upper (thorax, thoracic-pelvic and pelvis) and lower body (hip, knee and ankle) was determined in all three planes. Spatiotemporal parameters of interest were stride length and cadence. Spinal fusion diminished transverse plane thoracic-pelvic ROM and this difference was more explicit at higher walking speeds. Transversal pelvis ROM was also decreased but this effect was not affected by speed. Lower body ROM, step length and cadence remained unaffected. Despite the reduction of upper body ROM after spine surgery during high speed gait, no altered spatiotemporal parameters or increased compensatory ROM above or below the fusion (i.e. in the shoulder girdle or lower extremities) was identified. Thus, it remains unclear how patients can cope so well with such major surgery. Future studies should focus on analyzing the kinematics of individual spinal levels above and below the fusion during gait to investigate possible compensatory mechanisms within the spine. Copyright © 2017 Elsevier B.V. All rights reserved.
SU-E-J-89: Motion Effects On Organ Dose in Respiratory Gated Stereotactic Body Radiation Therapy
Energy Technology Data Exchange (ETDEWEB)
Wang, T; Zhu, L [Georgia Institute of Technology, Atlanta, GA (Georgia); Khan, M; Landry, J; Rajpara, R; Hawk, N [Emory University, Atlanta, GA (United States)
2014-06-01
Purpose: Existing reports on gated radiation therapy focus mainly on optimizing dose delivery to the target structure. This work investigates the motion effects on radiation dose delivered to organs at risk (OAR) in respiratory gated stereotactic body radiation therapy (SBRT). A new algorithmic tool of dose analysis is developed to evaluate the optimality of gating phase for dose sparing on OARs while ensuring adequate target coverage. Methods: Eight patients with pancreatic cancer were treated on a phase I prospective study employing 4DCT-based SBRT. For each patient, 4DCT scans are acquired and sorted into 10 respiratory phases (inhale-exhale- inhale). Treatment planning is performed on the average CT image. The average CT is spatially registered to other phases. The resultant displacement field is then applied on the plan dose map to estimate the actual dose map for each phase. Dose values of each voxel are fitted to a sinusoidal function. Fitting parameters of dose variation, mean delivered dose and optimal gating phase for each voxel over respiration cycle are mapped on the dose volume. Results: The sinusoidal function accurately models the dose change during respiratory motion (mean fitting error 4.6%). In the eight patients, mean dose variation is 3.3 Gy on OARs with maximum of 13.7 Gy. Two patients have about 100cm{sup 3} volumes covered by more than 5 Gy deviation. The mean delivered dose maps are similar to plan dose with slight deformation. The optimal gating phase highly varies across the patient, with phase 5 or 6 on about 60% of the volume, and phase 0 on most of the rest. Conclusion: A new algorithmic tool is developed to conveniently quantify dose deviation on OARs from plan dose during the respiratory cycle. The proposed software facilitates the treatment planning process by providing the optimal respiratory gating phase for dose sparing on each OAR.
2017-01-01
top rotor superimposes an effective correlation time, τe, onto a symmetric top rotor to account for internal motion. 2. THEORY The purpose...specifically describe how simple 13C relaxation theory is used to describe quantitatively simple molecular 3 motions. More-detailed accounts ...of nuclear magnetic relaxation can be found in a number of basic textbooks (i.e., Farrar and Becker, 1971; Fukushima and Roeder, 1981; Harris, 1986
Gilbert, J L; Bloomfeld, R S; Lautenschlager, E P; Wixson, R L
1992-04-01
A computer-based mathematical technique was developed to measure and completely describe the migration and micromotion of a femoral hip prosthesis relative to the femur. This technique utilized the mechanics of rigid-body motion analysis and apparatus of seven linear displacement transducers to measure and describe the complete three-dimensional motion of the prosthesis during cyclic loading. Computer acquisition of the data and custom analysis software allowed one to calculate the magnitude and direction of the motion of any point of interest on the prostheses from information about the motion of two points on the device. The data were also used to replay the tests using a computer animation technique, which allowed a magnified view of the three-dimensional motion of the prosthesis. This paper describes the mathematical development of the rigid-body motion analysis, the experimental method and apparatus for data collection, the technique used to animate the motion, the sources of error and the effect of the assumptions (rigid bodies) on the results. Selected results of individual test runs of uncemented and cemented prostheses are presented to demonstrate the efficacy of the method. The combined effect of the vibration and electrical noise resulted in a resolution of the system of about 3-5 microns motion for each transducer. Deformation effects appear to contribute about 3-15 microns to the measurement error. This measurement and analysis technique is a very sensitive and powerful means of assessing the effects of different design parameters on the migration and micromotion of total joint prostheses and can be applied to any other case (knee, dental implant) where three-dimensional relative motion between two bodies is important.
Energy Technology Data Exchange (ETDEWEB)
Goldstein, Jeffrey D. [Department of Radiation Oncology, Chaim Sheba Medical Center, Tel Hashomer, Tel Aviv (Israel); Lawrence, Yaacov R. [Department of Radiation Oncology, Chaim Sheba Medical Center, Tel Hashomer, Tel Aviv (Israel); Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Appel, Sarit; Landau, Efrat; Ben-David, Merav A.; Rabin, Tatiana; Benayun, Maoz; Dubinski, Sergey; Weizman, Noam; Alezra, Dror; Gnessin, Hila; Goldstein, Adam M.; Baidun, Khader [Department of Radiation Oncology, Chaim Sheba Medical Center, Tel Hashomer, Tel Aviv (Israel); Segel, Michael J.; Peled, Nir [Department of Pulmonary Medicine, Chaim Sheba Medical Center, Tel Hashomer, Tel Aviv (Israel); Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Symon, Zvi, E-mail: symonz@sheba.health.gov.il [Department of Radiation Oncology, Chaim Sheba Medical Center, Tel Hashomer, Tel Aviv (Israel); Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel)
2015-10-01
Objective: To determine the effect of continuous positive airway pressure (CPAP) on tumor motion, lung volume, and dose to critical organs in patients receiving stereotactic body radiation therapy (SBRT) for lung tumors. Methods and Materials: After institutional review board approval in December 2013, patients with primary or secondary lung tumors referred for SBRT underwent 4-dimensional computed tomographic simulation twice: with free breathing and with CPAP. Tumor excursion was calculated by subtracting the vector of the greatest dimension of the gross tumor volume (GTV) from the internal target volume (ITV). Volumetric and dosimetric determinations were compared with the Wilcoxon signed-rank test. CPAP was used during treatment if judged beneficial. Results: CPAP was tolerated well in 10 of the 11 patients enrolled. Ten patients with 18 lesions were evaluated. The use of CPAP decreased tumor excursion by 0.5 ± 0.8 cm, 0.4 ± 0.7 cm, and 0.6 ± 0.8 cm in the superior–inferior, right–left, and anterior–posterior planes, respectively (P≤.02). Relative to free breathing, the mean ITV reduction was 27% (95% confidence interval [CI] 16%-39%, P<.001). CPAP significantly augmented lung volume, with a mean absolute increase of 915 ± 432 cm{sup 3} and a relative increase of 32% (95% CI 21%-42%, P=.003), contributing to a 22% relative reduction (95% CI 13%-32%, P=.001) in mean lung dose. The use of CPAP was also associated with a relative reduction in mean heart dose by 29% (95% CI 23%-36%, P=.001). Conclusion: In this pilot study, CPAP significantly reduced lung tumor motion compared with free breathing. The smaller ITV, the planning target volume (PTV), and the increase in total lung volume associated with CPAP contributed to a reduction in lung and heart dose. CPAP was well tolerated, reproducible, and simple to implement in the treatment room and should be evaluated further as a novel strategy for motion management in radiation therapy.
International Nuclear Information System (INIS)
Goldstein, Jeffrey D.; Lawrence, Yaacov R.; Appel, Sarit; Landau, Efrat; Ben-David, Merav A.; Rabin, Tatiana; Benayun, Maoz; Dubinski, Sergey; Weizman, Noam; Alezra, Dror; Gnessin, Hila; Goldstein, Adam M.; Baidun, Khader; Segel, Michael J.; Peled, Nir; Symon, Zvi
2015-01-01
Objective: To determine the effect of continuous positive airway pressure (CPAP) on tumor motion, lung volume, and dose to critical organs in patients receiving stereotactic body radiation therapy (SBRT) for lung tumors. Methods and Materials: After institutional review board approval in December 2013, patients with primary or secondary lung tumors referred for SBRT underwent 4-dimensional computed tomographic simulation twice: with free breathing and with CPAP. Tumor excursion was calculated by subtracting the vector of the greatest dimension of the gross tumor volume (GTV) from the internal target volume (ITV). Volumetric and dosimetric determinations were compared with the Wilcoxon signed-rank test. CPAP was used during treatment if judged beneficial. Results: CPAP was tolerated well in 10 of the 11 patients enrolled. Ten patients with 18 lesions were evaluated. The use of CPAP decreased tumor excursion by 0.5 ± 0.8 cm, 0.4 ± 0.7 cm, and 0.6 ± 0.8 cm in the superior–inferior, right–left, and anterior–posterior planes, respectively (P≤.02). Relative to free breathing, the mean ITV reduction was 27% (95% confidence interval [CI] 16%-39%, P<.001). CPAP significantly augmented lung volume, with a mean absolute increase of 915 ± 432 cm 3 and a relative increase of 32% (95% CI 21%-42%, P=.003), contributing to a 22% relative reduction (95% CI 13%-32%, P=.001) in mean lung dose. The use of CPAP was also associated with a relative reduction in mean heart dose by 29% (95% CI 23%-36%, P=.001). Conclusion: In this pilot study, CPAP significantly reduced lung tumor motion compared with free breathing. The smaller ITV, the planning target volume (PTV), and the increase in total lung volume associated with CPAP contributed to a reduction in lung and heart dose. CPAP was well tolerated, reproducible, and simple to implement in the treatment room and should be evaluated further as a novel strategy for motion management in radiation therapy
Rigid supersymmetry with boundaries
Energy Technology Data Exchange (ETDEWEB)
Belyaev, D.V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Van Nieuwenhuizen, P. [State Univ. of New York, Stony Brook, NY (United States). C.N. Yang Inst. for Theoretical Physics
2008-01-15
We construct rigidly supersymmetric bulk-plus-boundary actions, both in x-space and in superspace. For each standard supersymmetric bulk action a minimal supersymmetric bulk-plus-boundary action follows from an extended F- or D-term formula. Additional separately supersymmetric boundary actions can be systematically constructed using co-dimension one multiplets (boundary superfields). We also discuss the orbit of boundary conditions which follow from the Euler-Lagrange variational principle. (orig.)
About deformation and rigidity in relativity
International Nuclear Information System (INIS)
Coll, Bartolome
2007-01-01
The notion of deformation involves that of rigidity. In relativity, starting from Born's early definition of rigidity, some other ones have been proposed, offering more or less interesting aspects but also accompanied of undesired or even pathological properties. In order to clarify the origin of these difficulties presented by the notion of rigidity in relativity, we analyze with some detail significant aspects of the unambiguous classical, Newtonian, notion. In particular, the relative character of its kinetic definition is pointed out, allowing to predict and to understand the limitations imposed by Herglotz-Noether theorem. Also, its equivalent dynamic definition is obtained and, in contrast, its absolute character is shown. But in spite of this absolute character, the dynamic definition is shown to be not extensible to relativity. The metric deformation of Minkowski space by the presence of a gravitational field is interpreted as a universal deformation, and it is shown that, under natural conditions, only a simple deformation law is possible, relating locally, but in an one-to-one way, gravitational fields and gauge classes of two-forms. We argue that fields of unit vectors associated to the internal gauge class of two-forms of every space-time (and, in particular, of Minkowski space-time) are the relativistic analogues of the classical accelerated observers, i.e. of the classical rigid motions. Some other consequences of the universal law of gravitational deformation are commented
Rigid body essential X-ray crystallography
DEFF Research Database (Denmark)
Bjerrum, Esben Jannik; Biggin, Philip C
2008-01-01
The ligand-binding domain (LBD) from the ionotropic glutamate receptor subtype 2 (GluR2) has been shown to adopt a range of ligand-dependent conformational states. These states have been described in terms of the rotation required to fit subdomain (lobe) 2 following superposition of subdomain (lo...
Wang, Zongrong; Wang, Shan; Zeng, Jifang; Ren, Xiaochen; Chee, Adrian J Y; Yiu, Billy Y S; Chung, Wai Choi; Yang, Yong; Yu, Alfred C H; Roberts, Robert C; Tsang, Anderson C O; Chow, Kwok Wing; Chan, Paddy K L
2016-07-01
A pressure sensor based on irregular microhump patterns has been proposed and developed. The devices show high sensitivity and broad operating pressure regime while comparing with regular micropattern devices. Finite element analysis (FEA) is utilized to confirm the sensing mechanism and predict the performance of the pressure sensor based on the microhump structures. Silicon carbide sandpaper is employed as the mold to develop polydimethylsiloxane (PDMS) microhump patterns with various sizes. The active layer of the piezoresistive pressure sensor is developed by spin coating PSS on top of the patterned PDMS. The devices show an averaged sensitivity as high as 851 kPa(-1) , broad operating pressure range (20 kPa), low operating power (100 nW), and fast response speed (6.7 kHz). Owing to their flexible properties, the devices are applied to human body motion sensing and radial artery pulse. These flexible high sensitivity devices show great potential in the next generation of smart sensors for robotics, real-time health monitoring, and biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energy Technology Data Exchange (ETDEWEB)
Price, A; Chang, S; Matney, J; Wang, A; Lian, J [University of North Carolina, Chapel Hill, NC (United States); Chao, E [Accuray Incorporated, Madison, WI (United States)
2016-06-15
Purpose: Tomotherapy has unique challenges in handling intrafractional motion compared to conventional LINAC. In this study, we analyzed the impact of intrafractional motion on cumulative dosimetry using actual patient motion data and investigated real time jaw/MLC compensation approaches to minimize the motion-induced dose discrepancy in Tomotherapy SBRT treatment. Methods: Intrafractional motion data recorded in two CyberKnife lung treatment cases through fiducial tracking and two LINAC prostate cases through Calypso tracking were used in this study. For each treatment site, one representative case has an average motion (6mm) and one has a large motion (10mm for lung and 15mm for prostate). The cases were re-planned on Tomotherapy for SBRT. Each case was planned with 3 different jaw settings: 1cm static, 2.5cm dynamic, and 5cm dynamic. 4D dose accumulation software was developed to compute dose with the recorded motions and theoretically compensate motions by modifying original jaw and MLC to track the trajectory of the tumor. Results: PTV coverage in Tomotherapy SBRT for patients with intrafractional motion depends on motion type, amplitude and plan settings. For the prostate patient with large motion, PTV coverage changed from 97.2% (motion-free) to 47.1% (target motion-included), 96.6% to 58.5% and 96.3% to 97.8% for the 1cm static jaw, 2.5cm dynamic jaw and 5cm dynamic jaw setting, respectively. For the lung patient with large motion, PTV coverage discrepancies showed a similar trend of change. When the jaw and MLC compensation program was engaged, the motion compromised PTV coverage was recovered back to >95% for all cases and plans. All organs at risk (OAR) were spared with < 5% increase from original motion-free plans. Conclusion: Tomotherapy SBRT is less motion-impacted when 5cm dynamic jaw is used. Once the motion pattern is known, the jaw and MLC compensation program can largely minimize the compromised target coverage and OAR sparing.
International Nuclear Information System (INIS)
Price, A; Chang, S; Matney, J; Wang, A; Lian, J; Chao, E
2016-01-01
Purpose: Tomotherapy has unique challenges in handling intrafractional motion compared to conventional LINAC. In this study, we analyzed the impact of intrafractional motion on cumulative dosimetry using actual patient motion data and investigated real time jaw/MLC compensation approaches to minimize the motion-induced dose discrepancy in Tomotherapy SBRT treatment. Methods: Intrafractional motion data recorded in two CyberKnife lung treatment cases through fiducial tracking and two LINAC prostate cases through Calypso tracking were used in this study. For each treatment site, one representative case has an average motion (6mm) and one has a large motion (10mm for lung and 15mm for prostate). The cases were re-planned on Tomotherapy for SBRT. Each case was planned with 3 different jaw settings: 1cm static, 2.5cm dynamic, and 5cm dynamic. 4D dose accumulation software was developed to compute dose with the recorded motions and theoretically compensate motions by modifying original jaw and MLC to track the trajectory of the tumor. Results: PTV coverage in Tomotherapy SBRT for patients with intrafractional motion depends on motion type, amplitude and plan settings. For the prostate patient with large motion, PTV coverage changed from 97.2% (motion-free) to 47.1% (target motion-included), 96.6% to 58.5% and 96.3% to 97.8% for the 1cm static jaw, 2.5cm dynamic jaw and 5cm dynamic jaw setting, respectively. For the lung patient with large motion, PTV coverage discrepancies showed a similar trend of change. When the jaw and MLC compensation program was engaged, the motion compromised PTV coverage was recovered back to >95% for all cases and plans. All organs at risk (OAR) were spared with < 5% increase from original motion-free plans. Conclusion: Tomotherapy SBRT is less motion-impacted when 5cm dynamic jaw is used. Once the motion pattern is known, the jaw and MLC compensation program can largely minimize the compromised target coverage and OAR sparing.
Energy Technology Data Exchange (ETDEWEB)
Komine, Takashi, E-mail: komine@mx.ibaraki.ac.jp; Aono, Tomosuke [Faculty of Engineering, Ibaraki University 4-12-1, Nakanarusawa, Hitachi, Ibaraki, 316-8511 (Japan)
2016-05-15
We demonstrate current-induced domain wall motion in bilayer nanowire with synthetic antiferromagnetic (SAF) coupling by modeling two body problems for motion equations of domain wall. The influence of interlayer exchange coupling and magnetostatic interactions on current-induced domain wall motion in SAF nanowires was also investigated. By assuming the rigid wall model for translational motion, the interlayer exchange coupling and the magnetostatic interaction between walls and domains in SAF nanowires enhances domain wall speed without any spin-orbit-torque. The enhancement of domain wall speed was discussed by energy distribution as a function of wall angle configuration in bilayer nanowires.
Energy Technology Data Exchange (ETDEWEB)
Tseng, Chia-Lin [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Sussman, Marshall S. [Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario (Canada); Atenafu, Eshetu G. [Department of Biostatistics, University Health Network, University of Toronto, Toronto, Ontario (Canada); Letourneau, Daniel [Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Ma, Lijun [Department of Radiation Oncology, University of California San Francisco, San Francisco, California (United States); Soliman, Hany; Thibault, Isabelle [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Cho, B. C. John; Simeonov, Anna [Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Yu, Eugene [Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Ontario (Canada); Fehlings, Michael G. [Department of Neurosurgery and Spine Program, Toronto Western Hospital, University of Toronto, Toronto, Ontario (Canada); Sahgal, Arjun, E-mail: arjun.sahgal@sunnybrook.ca [Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada)
2015-04-01
Purpose: To assess motion of the spinal cord and cauda equina, which are critical neural tissues (CNT), which is important when evaluating the planning organ-at-risk margin required for stereotactic body radiation therapy. Methods and Materials: We analyzed CNT motion in 65 patients with spinal metastases (11 cervical, 39 thoracic, and 24 lumbar spinal segments) in the supine position using dynamic axial and sagittal magnetic resonance imaging (dMRI, 3T Verio, Siemens) over a 137-second interval. Motion was segregated according to physiologic cardiorespiratory oscillatory motion (characterized by the average root mean square deviation) and random bulk shifts associated with gross patient motion (characterized by the range). Displacement was evaluated in the anteroposterior (AP), lateral (LR), and superior-inferior (SI) directions by use of a correlation coefficient template matching algorithm, with quantification of random motion measure error over 3 separate trials. Statistical significance was defined according to P<.05. Results: In the AP, LR, and SI directions, significant oscillatory motion was observed in 39.2%, 35.1%, and 10.8% of spinal segments, respectively, and significant bulk motions in all cases. The median oscillatory CNT motions in the AP, LR, and SI directions were 0.16 mm, 0.17 mm, and 0.44 mm, respectively, and the maximal statistically significant oscillatory motions were 0.39 mm, 0.41 mm, and 0.77 mm, respectively. The median bulk displacements in the AP, LR, and SI directions were 0.51 mm, 0.59 mm, and 0.66 mm, and the maximal statistically significant displacements were 2.21 mm, 2.87 mm, and 3.90 mm, respectively. In the AP, LR, and SI directions, bulk displacements were greater than 1.5 mm in 5.4%, 9.0%, and 14.9% of spinal segments, respectively. No significant differences in axial motion were observed according to cord level or cauda equina. Conclusions: Oscillatory CNT motion was observed to be relatively minor. Our results
A conserved quantity in thin body dynamics
Hanna, J. A.; Pendar, H.
2016-02-01
Thin, solid bodies with metric symmetries admit a restricted form of reparameterization invariance. Their dynamical equilibria include motions with both rigid and flowing aspects. On such configurations, a quantity is conserved along the intrinsic coordinate corresponding to the symmetry. As an example of its utility, this conserved quantity is combined with linear and angular momentum currents to construct solutions for the equilibria of a rotating, flowing string, for which it is akin to Bernoulli's constant.
APPLICATION OF RIGID LINKS IN STRUCTURAL DESIGN MODELS
Directory of Open Access Journals (Sweden)
Sergey Yu. Fialko
2017-09-01
Full Text Available A special finite element modelling rigid links is proposed for the linear static and buckling analysis. Unlike the classical approach based on the theorems of rigid body kinematics, the proposed approach preserves the similarity between the adjacency graph for a sparse matrix and the adjacency graph for nodes of the finite element model, which allows applying sparse direct solvers more effectively. Besides, the proposed approach allows significantly reducing the number of nonzero entries in the factored stiffness matrix in comparison with the classical one, which greatly reduces the duration of the solution. For buckling problems of structures containing rigid bodies, this approach gives correct results. Several examples demonstrate its efficiency.
International Nuclear Information System (INIS)
Parkhurst, James M.; Price, Gareth J.; Sharrock, Phil J.; Jackson, Andrew S.N.; Stratford, Julie; Moore, Christopher J.
2013-01-01
Purpose: We present the results of a clinical feasibility study, performed in 10 healthy volunteers undergoing a simulated treatment over 3 sessions, to investigate the use of a wide-field visual feedback technique intended to help patients control their pose while reducing motion during radiation therapy treatment. Methods and Materials: An optical surface sensor is used to capture wide-area measurements of a subject's body surface with visualizations of these data displayed back to them in real time. In this study we hypothesize that this active feedback mechanism will enable patients to control their motion and help them maintain their setup pose and position. A capability hierarchy of 3 different level-of-detail abstractions of the measured surface data is systematically compared. Results: Use of the device enabled volunteers to increase their conformance to a reference surface, as measured by decreased variability across their body surfaces. The use of visual feedback also enabled volunteers to reduce their respiratory motion amplitude to 1.7 ± 0.6 mm compared with 2.7 ± 1.4 mm without visual feedback. Conclusions: The use of live feedback of their optically measured body surfaces enabled a set of volunteers to better manage their pose and motion when compared with free breathing. The method is suitable to be taken forward to patient studies
Ooi, Melvyn B; Muraskin, Jordan; Zou, Xiaowei; Thomas, William J; Krueger, Sascha; Aksoy, Murat; Bammer, Roland; Brown, Truman R
2013-03-01
Despite rigid-body realignment to compensate for head motion during an echo-planar imaging time-series scan, nonrigid image deformations remain due to changes in the effective shim within the brain as the head moves through the B(0) field. The current work presents a combined prospective/retrospective solution to reduce both rigid and nonrigid components of this motion-related image misalignment. Prospective rigid-body correction, where the scan-plane orientation is dynamically updated to track with the subject's head, is performed using an active marker setup. Retrospective distortion correction is then applied to unwarp the remaining nonrigid image deformations caused by motion-induced field changes. Distortion correction relative to a reference time-frame does not require any additional field mapping scans or models, but rather uses the phase information from the echo-planar imaging time-series itself. This combined method is applied to compensate echo-planar imaging scans of volunteers performing in-plane and through-plane head motions, resulting in increased image stability beyond what either prospective or retrospective rigid-body correction alone can achieve. The combined method is also assessed in a blood oxygen level dependent functional MRI task, resulting in improved Z-score statistics. Copyright © 2012 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Thanhtoan Tran
2014-08-01
Full Text Available The objective of this study is to illustrate the unsteady aerodynamic effects of a floating offshore wind turbine experiencing the prescribed pitching motion of a supporting floating platform as a sine function. The three-dimensional, unsteady Reynolds Averaged Navier-Stokes equations with the shear-stress transport (SST k-ω turbulence model were applied. Moreover, an overset grid approach was used to model the rigid body motion of a wind turbine blade. The current simulation results are compared to various approaches from previous studies. The unsteady aerodynamic loads of the blade were demonstrated to change drastically with respect to the frequency and amplitude of platform motion.
D'Angelo, E
1984-04-01
The relationships between relative tidal activity (moving average EMG) of the diaphragm (AdiT) and of the external intercostal or parasternal muscles (AicT) and between the rate of rise of these activities (Adi and Aic) were assessed during rebreathing in rabbits with various body temperatures (BT: 34-41 degrees C) before and after vagotomy (VGT), at rest and during passive limb motion (PLM), and in vagotomized rabbits with or without thoracic dorsal rhizotomy (TDR) under light (LBA) or deep barbiturate anesthesia (DBA). Both relationships had the form AicT = a AdiTb and Aic = a' Adib'. In intact normothermic animals under LBA mean values for b and b' were 1.47 and 1.37, a and a' being unity by definition. No changes in b or b' occurred even with TDR: this suggests that the relation between the central command to phrenic and to inspiratory intercostal alpha-motoneurones was the same under all conditions. Neither BT nor PLM modified a', but a changed owing to BT and PLM dependence of the relation between central inspiratory drive and off-switch threshold. Both VGT, independently of BT, and DBA decreased a and a' before but not after TDR, when a and a' reached the lowest values (0.12 and 0.22). Hence VGT and DBA, but not BT and PLM, change the relation between the central command to inspiratory intercostal alpha- and gamma-motoneurones, the multiplicative effect of alpha-gamma linkage on AicT and Aic being prevented by TDR.
Dahele, Max; Verbakel, Wilko; Cuijpers, Johan; Slotman, Ben; Senan, Suresh
2012-07-01
Intra-fraction patient motion is incompletely understood and the optimum amount of support or immobilization during stereotactic body radiotherapy (SBRT) is unclear. Rigid immobilization is often advocated, but motion still occurs. In contrast, we deliver the vast majority of SBRT using simple supporting devices, simultaneously emphasizing comfort, frequent position checks and progressive reduction in treatment times. We report spine stability during lung SBRT. Patients lie on a thin mattress with arms supported above their head and below-knee support. Stereoscopic spine X-rays before and after fraction delivery identified motion in three translational and three rotational directions. Images from 109 fractions in 30 patients resulted in 327 translational and 327 rotational pre- and post-fraction comparisons. Mean RapidArc® delivery time for variable fraction dose was 4.2 min (SD=1.4). 92% and 97% of translational and rotational differences were ≤1 mm and ≤1° in any direction and 98% of translational differences were ≤1.5mm. Mean vertical, longitudinal and lateral motion was 0mm (SD=0.4), 0mm (0.6) and 0mm (0.6). 84% and 94% of the 109 fractions were delivered with ≤1 and ≤1.5mm translation in all three directions and 93% with ≤1° of rotation. Two patients accounted for 10/17 fractions with >1mm translational motion. Based on pre and post-fraction X-ray imaging during fast lung SBRT, simple support devices can result in spine stability that is comparable to that reported with rigid external immobilization. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Fakis, Demetrios; Kalvouridis, Tilemahos
2017-09-01
The regular polygon problem of (N+1) bodies deals with the dynamics of a small body, natural or artificial, in the force field of N big bodies, the ν=N-1 of which have equal masses and form an imaginary regular ν -gon, while the Nth body with a different mass is located at the center of mass of the system. In this work, instead of considering Newtonian potentials and forces, we assume that the big bodies create quasi-homogeneous potentials, in the sense that we insert to the inverse square Newtonian law of gravitation an inverse cube corrective term, aiming to approximate various phenomena due to their shape or to the radiation emitting from the primaries. Based on this new consideration, we apply a general methodology in order to investigate by means of the zero-velocity surfaces, the regions where 3D motions of the small body are allowed, their evolutions and parametric variations, their topological bifurcations, as well as the existing trapping domains of the particle. Here we note that this process is definitely a fundamental step of great importance in the study of many dynamical systems characterized by a Jacobian-type integral of motion in the long way of searching for solutions of any kind.
Reduction of vortex induced forces and motion through surface roughness control
Bernitsas, Michael M; Raghavan, Kamaldev
2014-04-01
Roughness is added to the surface of a bluff body in a relative motion with respect to a fluid. The amount, size, and distribution of roughness on the body surface is controlled passively or actively to modify the flow around the body and subsequently the Vortex Induced Forces and Motion (VIFM). The added roughness, when designed and implemented appropriately, affects in a predetermined way the boundary layer, the separation of the boundary layer, the level of turbulence, the wake, the drag and lift forces, and consequently the Vortex Induced Motion (VIM), and the fluid-structure interaction. The goal of surface roughness control is to decrease/suppress Vortex Induced Forces and Motion. Suppression is required when fluid-structure interaction becomes destructive as in VIM of flexible cylinders or rigid cylinders on elastic support, such as underwater pipelines, marine risers, tubes in heat exchangers, nuclear fuel rods, cooling towers, SPAR offshore platforms.
Necessary conditions for tumbling in the rotational motion
Carrera, Danny H. Z.; Weber, Hans I.
2012-11-01
The goal of this work is the investigation of the necessary conditions for the possible existence of tumbling in rotational motion of rigid bodies. In a stable spinning satellite, tumbling may occur by sufficient strong action of external impulses, when the conical movement characteristic of the stable attitude is de-characterized. For this purpose a methodology is chosen to simplify the study of rotational motions with great amplitude, for example free bodies in space, allowing an extension of the analysis to non-conservative systems. In the case of a satellite in space, the projection of the angular velocity along the principal axes of inertia must be known, defining completely the initial conditions of motion for stability investigations. In this paper, the coordinate systems are established according to the initial condition in order to allow a simple analytical work on the equations of motion. Also it will be proposed the definition of a parameter, calling it tumbling coefficient, to measure the intensity of the tumbling and the amplitude of the motion when crossing limits of stability in the concept of Lyapunov. Tumbling in the motion of bodies in space is not possible when this coefficient is positive. Magnus Triangle representation will be used to represent the geometry of the body, establishing regions of stability/instability for possible initial conditions of motion. In the study of nonconservative systems for an oblate body, one sufficient condition will be enough to assure damped motion, and this condition is checked for a motion damped by viscous torques. This paper seeks to highlight the physical understanding of the phenomena and the influence of various parameters that are important in the process.
Panichi, Roberto; Botti, Fabio Massimo; Ferraresi, Aldo; Faralli, Mario; Kyriakareli, Artemis; Schieppati, Marco; Pettorossi, Vito Enrico
2011-04-01
Self-motion perception and vestibulo-ocular reflex (VOR) were studied during whole body yaw rotation in the dark at different static head positions. Rotations consisted of four cycles of symmetric sinusoidal and asymmetric oscillations. Self-motion perception was evaluated by measuring the ability of subjects to manually track a static remembered target. VOR was recorded separately and the slow phase eye position (SPEP) was computed. Three different head static yaw deviations (active and passive) relative to the trunk (0°, 45° to right and 45° to left) were examined. Active head deviations had a significant effect during asymmetric oscillation: the movement perception was enhanced when the head was kept turned toward the side of body rotation and decreased in the opposite direction. Conversely, passive head deviations had no effect on movement perception. Further, vibration (100 Hz) of the neck muscles splenius capitis and sternocleidomastoideus remarkably influenced perceived rotation during asymmetric oscillation. On the other hand, SPEP of VOR was modulated by active head deviation, but was not influenced by neck muscle vibration. Through its effects on motion perception and reflex gain, head position improved gaze stability and enhanced self-motion perception in the direction of the head deviation. Copyright © 2010 Elsevier B.V. All rights reserved.
Rigid-plastic seismic design of reinforced concrete structures
DEFF Research Database (Denmark)
Costa, Joao Domingues; Bento, R.; Levtchitch, V.
2007-01-01
structural strength with respect to a pre-defined performance parameter using a rigid-plastic response spectrum, which is characteristic of the ground motion alone. The maximum strength demand at any point is solely dependent on the intensity of the ground motion, which facilitates the task of distributing......In this paper a new seismic design procedure for Reinforced Concrete (R/C) structures is proposed-the Rigid-Plastic Seismic Design (RPSD) method. This is a design procedure based on Non-Linear Time-History Analysis (NLTHA) for systems expected to perform in the non-linear range during a lifetime...... earthquake event. The theoretical background is the Theory of Plasticity (Rigid-Plastic Structures). Firstly, a collapse mechanism is chosen and the corresponding stress field is made safe outside the regions where plastic behaviour takes place. It is shown that this allows the determination of the required...
Energy Technology Data Exchange (ETDEWEB)
Hassan Rezaeian, N; Chi, Y; Zhou, Y; Tian, Z; Jiang, S; Hannan, R; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States)
2016-06-15
Purpose: We are conducting a clinical trial on stereotactic body radiation therapy (SBRT) for high-risk prostate cancer. Doses to three targets, prostate, intra-prostatic lesion, and pelvic lymph node (PLN) region, are escalated to three different levels via simultaneous integrated boost technique. Inter-/intra-fractional organ motions deteriorate planned dose distribution. This study aims at developing a dose reconstruction system to comprehensively understand the impacts of organ motion in our clinical trial. Methods: A 4D dose reconstruction system has been developed for this study. Using a GPU-based Monte-Carlo dose engine and delivery log file, the system is able to reconstruct dose on static or dynamic anatomy. For prostate and intra-prostatic targets, intra-fractional motion is the main concern. Motion trajectory acquired from Calypso in previously treated SBRT patients were used to perform 4D dose reconstructions. For pelvic target, inter-fractional motion is one concern. Eight patients, each with four cone beam CTs, were used to derive fractional motion. The delivered dose was reconstructed on the deformed anatomy. Dosimetric parameters for delivered dose distributions of the three targets were extracted and compared with planned levels. Results: For prostate intra-fractional motion, the mean 3D motion amplitude during beam delivery ranged from 1.5mm to 5.0mm and the average among all patients was 2.61mm. Inter-fractional motion for the PLN target was more significant. The average amplitude among patients was 4mm with the largest amplitude up to 9.6mm. The D95% deviation from planned level for prostate PTVs and GTVs are on average less than<0.1% and this deviation for intra-prostatic lesion PTVs and GTVs were more prominent. The dose at PLN was significantly affected with D{sub 95}% reduced by up to 44%. Conclusion: Intra-/inter-fractional organ motion is a concern for high-risk prostate SBRT, particularly for the PLN target. Our dose reconstruction
Energy Technology Data Exchange (ETDEWEB)
Choi, Byeong Geol; Choi, Chang Heon; Yun, Il Gyu; Yang, Jin Seong; Lee, Dong Myeong; Park, Ju Mi [Dept. of Radiation Oncology, VHS Medical Center, Seoul (Korea, Republic of)
2014-06-15
This study aims to evaluate 3D dosimetric impact for MIP image and each phase image in stereotactic body radiotherapy (SBRT) for lung cancer using volumetric modulated arc therapy (VMAT). For each of 5 patients with non-small-cell pulmonary tumors, a respiration-correlated four dimensional computed tomography (4DCT) study was performed . We obtain ten 3D CT images corresponding to phases of a breathing cycle. Treatment plans were generated using MIP CT image and each phases 3D CT. We performed the dose verification of the TPS with use of the Ion chamber and COMPASS. The dose distribution that were 3D reconstructed using MIP CT image compared with dose distribution on the corresponding phase of the 4D CT data. Gamma evaluation was performed to evaluate the accuracy of dose delivery for MIP CT data and 4D CT data of 5 patients. The average percentage of points passing the gamma criteria of 2 mm/2% about 99%. The average Homogeneity Index difference between MIP and each 3D data of patient dose was 0.03∼0.04. The average difference between PTV maximum dose was 3.30 cGy, The average different Spinal Coad dose was 3.30 cGy, The average of difference with V{sub 20}, V{sub 10}, V{sub 5} of Lung was -0.04%∼2.32%. The average Homogeneity Index difference between MIP and each phase 3D data of all patient was -0.03∼0.03. The average PTV maximum dose difference was minimum for 10% phase and maximum for 70% phase. The average Spain cord maximum dose difference was minimum for 0% phase and maximum for 50% phase. The average difference of V{sub 20}, V{sub 10}, V{sub 5} of Lung show bo certain trend. There is no tendency of dose difference between MIP with 3D CT data of each phase. But there are appreciable difference for specific phase. It is need to study about patient group which has similar tumor location and breathing motion. Then we compare with dose distribution for each phase 3D image data or MIP image data. we will determine appropriate image data for treatment plan.
Motion detection and correction for dynamic 15O-water myocardial perfusion PET studies
International Nuclear Information System (INIS)
Naum, Alexandru; Laaksonen, Marko S.; Oikonen, Vesa; Teraes, Mika; Jaervisalo, Mikko J.; Knuuti, Juhani; Tuunanen, Helena; Nuutila, Pirjo; Kemppainen, Jukka
2005-01-01
Patient motion during dynamic PET studies is a well-documented source of errors. The purpose of this study was to investigate the incidence of frame-to-frame motion in dynamic 15 O-water myocardial perfusion PET studies, to test the efficacy of motion correction methods and to study whether implementation of motion correction would have an impact on the perfusion results. We developed a motion detection procedure using external radioactive skin markers and frame-to-frame alignment. To evaluate motion, marker coordinates inside the field of view were determined in each frame for each study. The highest number of frames with identical spatial coordinates during the study were defined as ''non-moved''. Movement was considered present if even one marker changed position, by one pixel/frame compared with reference, in one axis, and such frames were defined as ''moved''. We tested manual, in-house-developed motion correction software and an automatic motion correction using a rigid body point model implemented in MIPAV (Medical Image Processing, Analysis and Visualisation) software. After motion correction, remaining motion was re-analysed. Myocardial blood flow (MBF) values were calculated for both non-corrected and motion-corrected datasets. At rest, patient motion was found in 18% of the frames, but during pharmacological stress the fraction increased to 45% and during physical exercise it rose to 80%. Both motion correction algorithms significantly decreased (p<0.006) the number of moved frames and the amplitude of motion (p<0.04). Motion correction significantly increased MBF results during bicycle exercise (p<0.02). At rest or during adenosine infusion, the motion correction had no significant effects on MBF values. Significant motion is a common phenomenon in dynamic cardiac studies during adenosine infusion but especially during exercise. Applying motion correction for the data acquired during exercise clearly changed the MBF results, indicating that motion
Torsional Rigidity of Minimal Submanifolds
DEFF Research Database (Denmark)
Markvorsen, Steen; Palmer, Vicente
2006-01-01
We prove explicit upper bounds for the torsional rigidity of extrinsic domains of minimal submanifolds $P^m$ in ambient Riemannian manifolds $N^n$ with a pole $p$. The upper bounds are given in terms of the torsional rigidities of corresponding Schwarz symmetrizations of the domains in warped...
Self-similarity in the equation of motion of a ship
Directory of Open Access Journals (Sweden)
Gyeong Joong Lee
2014-06-01
Full Text Available If we want to analyze the motion of a body in fluid, we should use rigid-body dynamics and fluid dynamics together. Even if the rigid-body and fluid dynamics are each self-consistent, there arises the problem of self-similar structure in the equation of motion when the two dynamics are coupled with each other. When the added mass is greater than the mass of a body, the calculated motion is divergent because of its self-similar structure. This study showed that the above problem is an inherent problem. This problem of self-similar structure may arise in the equation of motion in which the fluid dynamic forces are treated as external forces on the right hand side of the equation. A reconfiguration technique for the equation of motion using pseudo-added-mass was proposed to resolve the self-similar structure problem; specifically for the case when the fluid force is expressed by integration of the fluid pressure.
International Nuclear Information System (INIS)
Schatka, Imke; Weiberg, Desiree; Reichelt, Stephanie; Owsianski-Hille, Nicole; Derlin, Thorsten; Berding, Georg; Bengel, Frank M.
2016-01-01
Continuous bed motion has recently been introduced for whole-body PET/CT, and represents a paradigm shift towards individualized and flexible acquisition without the limitations of bed position-based planning. Increased patient comfort due to lack of abrupt table position changes may be another albeit still unproven advantage. For robust clinical implementation, image quality and quantitative accuracy should at least be equal to the prior standard of bed position-based step-and-shoot imaging. The study included 68 consecutive patients referred for whole-body PET/CT for various malignancies. The patients underwent traditional step-and-shoot and novel continuous bed motion acquisition in the same session in a randomized crossover design. The patients and two independent observers were blinded to the sequence of scan techniques. Patient comfort/satisfaction was examined using a standardized questionnaire. SUVs were compared for reference tissue (liver, muscle) and tumour lesions. PET image quality and misalignment with CT images were evaluated on a scale of 1 - 4. Patients preferred continuous bed motion over step-and-shoot (P = 0.0001). It was considered to be more relaxing (38 % vs. 8 %), quieter (34 % vs. 8 %), and more fluid (64 % vs. 8 %). Image quality, SUV and CT misalignment did not differ between the techniques. Continuous bed motion resulted in better end-plane image quality (P < 0.0001). Regardless of the technique, second examinations had significantly higher tumour lesion SUVmax values (P = 0.0002), and a higher CT misalignment score (P = 0.0017). Oncological PET/CT with continuous bed motion enhances patient comfort and is associated with image quality at least comparable to that with traditional bed position-based step-and-shoot acquisition. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Schatka, Imke [Hannover Medical School, Department of Nuclear Medicine, Hannover (Germany); Charite, Department of Nuclear Medicine, Berlin (Germany); Weiberg, Desiree; Reichelt, Stephanie; Owsianski-Hille, Nicole; Derlin, Thorsten; Berding, Georg; Bengel, Frank M. [Hannover Medical School, Department of Nuclear Medicine, Hannover (Germany)
2016-04-15
Continuous bed motion has recently been introduced for whole-body PET/CT, and represents a paradigm shift towards individualized and flexible acquisition without the limitations of bed position-based planning. Increased patient comfort due to lack of abrupt table position changes may be another albeit still unproven advantage. For robust clinical implementation, image quality and quantitative accuracy should at least be equal to the prior standard of bed position-based step-and-shoot imaging. The study included 68 consecutive patients referred for whole-body PET/CT for various malignancies. The patients underwent traditional step-and-shoot and novel continuous bed motion acquisition in the same session in a randomized crossover design. The patients and two independent observers were blinded to the sequence of scan techniques. Patient comfort/satisfaction was examined using a standardized questionnaire. SUVs were compared for reference tissue (liver, muscle) and tumour lesions. PET image quality and misalignment with CT images were evaluated on a scale of 1 - 4. Patients preferred continuous bed motion over step-and-shoot (P = 0.0001). It was considered to be more relaxing (38 % vs. 8 %), quieter (34 % vs. 8 %), and more fluid (64 % vs. 8 %). Image quality, SUV and CT misalignment did not differ between the techniques. Continuous bed motion resulted in better end-plane image quality (P < 0.0001). Regardless of the technique, second examinations had significantly higher tumour lesion SUVmax values (P = 0.0002), and a higher CT misalignment score (P = 0.0017). Oncological PET/CT with continuous bed motion enhances patient comfort and is associated with image quality at least comparable to that with traditional bed position-based step-and-shoot acquisition. (orig.)
Directory of Open Access Journals (Sweden)
A. N. Gorbenko
2015-01-01
Full Text Available Modern rotary machines use auto-balancing devices of passive type to provide automatic balancing of rotors and reduce vibration. Most available researches on the rotor auto-balancing dynamics and stability are based on the assumption that the compensating bodies of the autobalancer, as well as the rotor imbalance, are infinitesimal values. The literature review has shown that the problems concerning the automatic balancing of rotor with its three-dimensional motion are solved approximately and require an in-depth analysis taking into consideration the final mass of the compensating bodies.The paper analyses the effect of an auto-balancer mass on the mass-inertial properties of the three-dimensional rotor motion. It gives the autonomous equations of the system motion. The work shows that attaching the point masses of compensating auto-balancer bodies and imbalance to the rotor causes an increase, however non-identical, in all components of the total inertia tensor of the mechanical system. This leads to a qualitative change in mass-inertial characteristics of the system.The composite rotor becomes an inertia anisotropic body in which the inertia moments about the two transverse own axes are not equal to each other. The rotor anisotropy results in complicated dynamic behavior of the gyroscopic rotor. In this case, the additional critical rotor speeds and the zones of instability of motion may occur.It is shown that in the case of using multi-body auto-balancer the inertial parameters of the rotor system grow into the interval values, i.e. their values are not uniquely determined and may be equal to a variety values from a certain range. Thus, the degree of inertial anisotropy and other auto-balancing parameters are the interval values as well in this case.The system of dimensionless equations of rotary machine motion, which contains the minimum required number of dimensionless parameters, has been obtained. The specific ranges of the dimensionless
Reversible Rigidity Control Using Low Melting Temperature Alloys
Shan, Wanliang; Lu, Tong; Majidi, Carmel
2013-03-01
Inspired by nature, materials able to achieve rapid rigidity changes have important applications for human body protection in military and many other areas. This talk presents the fabrication and design of soft-matter technologies that exhibit rapid reversible rigidity control. Fabricated with a masked deposition technique, the soft-matter composite contains liquid-phase and phase-changing metal alloys embedded in a soft and highly stretchable elastomer. The composite material can reversibly change its rigidity by three orders of magnitude and sustain large deformation.
Quantum charged rigid membrane
Energy Technology Data Exchange (ETDEWEB)
Cordero, Ruben [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N., Unidad Adolfo Lopez Mateos, Edificio 9, 07738 Mexico, D.F. (Mexico); Molgado, Alberto [Unidad Academica de Fisica, Universidad Autonoma de Zacatecas, Zacatecas Zac. (Mexico); Rojas, Efrain, E-mail: cordero@esfm.ipn.mx, E-mail: amolgado@fisica.uaz.edu.mx, E-mail: efrojas@uv.mx [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)
2011-03-21
The early Dirac proposal to model the electron as a charged membrane is reviewed. A rigidity term, instead of the natural membrane tension, involving linearly the extrinsic curvature of the worldvolume swept out by the membrane is considered in the action modeling the bubble in the presence of an electromagnetic field. We set up this model as a genuine second-order derivative theory by considering a non-trivial boundary term which plays a relevant part in our formulation. The Lagrangian in question is linear in the bubble acceleration and by means of the Ostrogradski-Hamiltonian approach, we observed that the theory comprises the management of both first- and second-class constraints. We thus show that our second-order approach is robust allowing for a proper quantization. We found an effective quantum potential which permits us to compute bounded states for the system. We comment on the possibility of describing brane world universes by invoking this kind of second-order correction terms.
Quantum charged rigid membrane
International Nuclear Information System (INIS)
Cordero, Ruben; Molgado, Alberto; Rojas, Efrain
2011-01-01
The early Dirac proposal to model the electron as a charged membrane is reviewed. A rigidity term, instead of the natural membrane tension, involving linearly the extrinsic curvature of the worldvolume swept out by the membrane is considered in the action modeling the bubble in the presence of an electromagnetic field. We set up this model as a genuine second-order derivative theory by considering a non-trivial boundary term which plays a relevant part in our formulation. The Lagrangian in question is linear in the bubble acceleration and by means of the Ostrogradski-Hamiltonian approach, we observed that the theory comprises the management of both first- and second-class constraints. We thus show that our second-order approach is robust allowing for a proper quantization. We found an effective quantum potential which permits us to compute bounded states for the system. We comment on the possibility of describing brane world universes by invoking this kind of second-order correction terms.
NUMERICAL SIMULATIONS FOR THE CASE OF RIGID ROTATING KINEMATIC COUPLING WITH BIG CLEARANCE
Directory of Open Access Journals (Sweden)
Jan-Cristian GRIGORE
2010-10-01
Full Text Available In this paper an algorithm based on [1] [2] are numerical simulations, achieving generalized coordinates of motion, positions, speeds of a rigid rotating kinematic coupling with big clearance in joint, case without friction
Stemkens, Bjorn; Glitzner, Markus; Kontaxis, Charis; de Senneville, Baudouin Denis; Prins, Fieke M.; Crijns, Sjoerd P. M.; Kerkmeijer, Linda G. W.; Lagendijk, Jan J. W.; van den Berg, Cornelis A. T.; Tijssen, Rob H. N.
2017-09-01
Stereotactic body radiation therapy (SBRT) has shown great promise in increasing local control rates for renal-cell carcinoma (RCC). Characterized by steep dose gradients and high fraction doses, these hypo-fractionated treatments are, however, prone to dosimetric errors as a result of variations in intra-fraction respiratory-induced motion, such as drifts and amplitude alterations. This may lead to significant variations in the deposited dose. This study aims to develop a method for calculating the accumulated dose for MRI-guided SBRT of RCC in the presence of intra-fraction respiratory variations and determine the effect of such variations on the deposited dose. For this, RCC SBRT treatments were simulated while the underlying anatomy was moving, based on motion information from three motion models with increasing complexity: (1) STATIC, in which static anatomy was assumed, (2) AVG-RESP, in which 4D-MRI phase-volumes were time-weighted, and (3) PCA, a method that generates 3D volumes with sufficient spatio-temporal resolution to capture respiration and intra-fraction variations. Five RCC patients and two volunteers were included and treatments delivery was simulated, using motion derived from subject-specific MR imaging. Motion was most accurately estimated using the PCA method with root-mean-squared errors of 2.7, 2.4, 1.0 mm for STATIC, AVG-RESP and PCA, respectively. The heterogeneous patient group demonstrated relatively large dosimetric differences between the STATIC and AVG-RESP, and the PCA reconstructed dose maps, with hotspots up to 40% of the D99 and an underdosed GTV in three out of the five patients. This shows the potential importance of including intra-fraction motion variations in dose calculations.
Motion estimation using point cluster method and Kalman filter.
Senesh, M; Wolf, A
2009-05-01
The most frequently used method in a three dimensional human gait analysis involves placing markers on the skin of the analyzed segment. This introduces a significant artifact, which strongly influences the bone position and orientation and joint kinematic estimates. In this study, we tested and evaluated the effect of adding a Kalman filter procedure to the previously reported point cluster technique (PCT) in the estimation of a rigid body motion. We demonstrated the procedures by motion analysis of a compound planar pendulum from indirect opto-electronic measurements of markers attached to an elastic appendage that is restrained to slide along the rigid body long axis. The elastic frequency is close to the pendulum frequency, as in the biomechanical problem, where the soft tissue frequency content is similar to the actual movement of the bones. Comparison of the real pendulum angle to that obtained by several estimation procedures--PCT, Kalman filter followed by PCT, and low pass filter followed by PCT--enables evaluation of the accuracy of the procedures. When comparing the maximal amplitude, no effect was noted by adding the Kalman filter; however, a closer look at the signal revealed that the estimated angle based only on the PCT method was very noisy with fluctuation, while the estimated angle based on the Kalman filter followed by the PCT was a smooth signal. It was also noted that the instantaneous frequencies obtained from the estimated angle based on the PCT method is more dispersed than those obtained from the estimated angle based on Kalman filter followed by the PCT method. Addition of a Kalman filter to the PCT method in the estimation procedure of rigid body motion results in a smoother signal that better represents the real motion, with less signal distortion than when using a digital low pass filter. Furthermore, it can be concluded that adding a Kalman filter to the PCT procedure substantially reduces the dispersion of the maximal and minimal
Ananthakrishnan, Palaniswamy
2012-11-01
The problem is of practical relevance in determining the motion response of multi-hull and air-cushion vehicles in high seas and in littoral waters. The linear inviscid problem without surface pressure has been well studied in the past. In the present work, the nonlinear wave-body interaction problem is solved using finite-difference methods based on boundary-fitted coordinates. The inviscid nonlinear problem is tackled using the mixed Eulerian-Lagrangian formulation and the solution of the incompressible Navier-Stokes equations governing the viscous problem using a fractional-step method. The pressure variation in the air cushion is modeled using the isentropic gas equation pVγ = Constant. Results show that viscosity and free-surface nonlinearity significantly affect the hydrodynamic force and the wave motion at the resonant Helmholtz frequency (at which the primary wave motion is the vertical oscillation of the mean surface in between the bodies). Air compressibility suppresses the Helmholtz oscillation and enhances the wave radiation. Work supported by the ONR under the grant N00014-98-1-0151.
On the dynamics of chain systems. [applications in manipulator and human body models
Huston, R. L.; Passerello, C. E.
1974-01-01
A computer-oriented method for obtaining dynamical equations of motion for chain systems is presented. A chain system is defined as an arbitrarily assembled set of rigid bodies such that adjoining bodies have at least one common point and such that closed loops are not formed. The equations of motion are developed through the use of Lagrange's form of d'Alembert's principle. The method and procedure is illustrated with an elementary study of a tripod space manipulator. The method is designed for application with systems such as human body models, chains and cables, and dynamic finite-segment models.
Yoshida, Hidehisa; Nagai, Masao
This paper analyzes the fundamental dynamic characteristics of a tilting railway vehicle using a variable link mechanism for compensating both the lateral acceleration experienced by passengers and the wheel load imbalance between the inner and outer rails. The geometric relations between the center of rotation, the center of gravity, and the positions of all four links of the tilting system are analyzed. Then, equations of the pendulum motions of the railway vehicle body with a four-link mechanism are derived. A theoretically discussion is given on the geometrical shapes employed in the link mechanism that can simultaneously provide zero lateral acceleration and zero wheel load fluctuation. Then, the perfect tilting condition, which is the control target of the feedforward tilting control, is derived from the linear equation of tilting motion.
Directory of Open Access Journals (Sweden)
Hsi-Hsien Lin
2013-04-01
Conclusion: Active range of motion exercise after an intra-articular injection of corticosteroid and lidocaine improved pain and functional outcome at 8 weeks in normal-weight (BMI < 25 kg/m2 patients with primary adhesive capsulitis. Manipulation under anesthesia may be considered a priority in overweight patients.
Equations of motion in phase space
International Nuclear Information System (INIS)
Broucke, R.
1979-01-01
The article gives a general review of methods of constructing equations of motion of a classical dynamical system. The emphasis is however on the linear Lagrangian in phase space and the corresponding form of Pfaff's equations of motion. A detailed examination of the problem of changes of variables in phase space is first given. It is shown that the Linear Lagrangian theory falls very naturally out of the classical quadratic Lagrangian theory; we do this with the use of the well-known Lagrange multiplier method. Another important result is obtained very naturally as a by-product of this analysis. If the most general set of 2n variables (coordinates in phase space) is used, the coefficients of the equations of motion are the Poisson Brackets of these variables. This is therefore the natural way of introducing not only Poisson Brackets in Dynamics formulations but also the associated Lie Algebras and their important properties and consequences. We give then several examples to illustrate the first-order equations of motion and their simplicity in relation to general changes of variables. The first few examples are elementary (the harmonic Oscillator) while the last one concerns the motion of a rigid body about a fixed point. In the next three sections we treat the first-order equations of motion as derived from a Linear differential form, sometimes called Birkhoff's equations. We insist on the generality of the equations and especially on the unity of the space-time concept: the time t and the coordinates are here completely identical variables, without any privilege to t. We give a brief review of Cartan's 2-form and the corresponding equations of motion. As an illustration the standard equations of aircraft flight in a vertical plane are derived from Cartan's exterior differential 2-form. Finally we mention in the last section the differential forms that were proposed by Gallissot for the derivation of equations of motion
DEFF Research Database (Denmark)
Rijkhoff, Jan
2010-01-01
classes. Finally this article wants to claim that the distinction between rigid and flexible noun categories (a) adds a new dimension to current classifications of parts of speech systems, (b) correlates with certain grammatical phenomena (e.g. so-called number discord), and (c) helps to explain the parts......This article argues that in addition to the major flexible lexical categories in Hengeveld’s classification of parts of speech systems (Contentive, Non-Verb, Modifier), there are also flexible word classes within the rigid lexical category Noun (Set Noun, Sort Noun, General Noun). Members...... by the flexible item in the external world. I will then argue that flexible word classes constitute a proper category (i.e. they are not the result of a merger of some rigid word classes) in that members of flexible word categories display the same properties regarding category membership as members of rigid word...
Stauff, M.
2014-01-01
Research to date has primarily investigated the formation and the ideological construction of the body in sport. In contrast, the pivotal question here is how media technologies address the body in modern sports in order to make performance comparable and verifiable, i.e. accountable. In the first
H infinity controller design to a rigid-flexible satellite with two vibration modes
International Nuclear Information System (INIS)
De Souza, A G; De Souza, L C G
2015-01-01
The satellite attitude control system (ACS) design becomes more complex when the satellite structure has components like, flexible solar panels, antennas and mechanical manipulators. These flexible structures can interact with the satellite rigid parts during translational and/or rotational manoeuvre damaging the ACS pointing accuracy. Although, a well-designed controller can suppress such disturbances quickly, the controller error pointing may be limited by the minimum time necessary to suppress such disturbances thus affecting the satellite attitude acquisition. This paper deals with the rigid-flexible satellite ACS design using the H infinity method. The rigid-flexible satellite is represented by a beam connected to a central rigid hub at one end and free at the other one. The equations of motions are obtained considering small flexible deformations and the Euler-Bernoulli hypothesis. The results of the simulations have shown that the H-infinity controller was able to control the rigid motion and suppress the vibrations. (paper)
Brownian Motion of Asymmetric Boomerang Colloidal Particles
Chakrabarty, Ayan; Konya, Andrew; Wang, Feng; Selinger, Jonathan; Sun, Kai; Wei, Qi-Huo
2014-03-01
We used video microscopy and single particle tracking to study the diffusion and local behaviors of asymmetric boomerang particles in a quasi-two dimensional geometry. The motion is biased towards the center of hydrodynamic stress (CoH) and the mean square displacements of the particles are linear at short and long times with different diffusion coefficients and in the crossover regime it is sub-diffusive. Our model based on Langevin theory shows that these behaviors arise from the non-coincidence of the CoH with the center of the body. Since asymmetric boomerangs represent a class of rigid bodies of more generals shape, therefore our findings are generic and true for any non-skewed particle in two dimensions. Both experimental and theoretical results will be discussed.
Optimized imaging using non-rigid registration
International Nuclear Information System (INIS)
Berkels, Benjamin; Binev, Peter; Blom, Douglas A.; Dahmen, Wolfgang; Sharpley, Robert C.; Vogt, Thomas
2014-01-01
The extraordinary improvements of modern imaging devices offer access to data with unprecedented information content. However, widely used image processing methodologies fall far short of exploiting the full breadth of information offered by numerous types of scanning probe, optical, and electron microscopies. In many applications, it is necessary to keep measurement intensities below a desired threshold. We propose a methodology for extracting an increased level of information by processing a series of data sets suffering, in particular, from high degree of spatial uncertainty caused by complex multiscale motion during the acquisition process. An important role is played by a non-rigid pixel-wise registration method that can cope with low signal-to-noise ratios. This is accompanied by formulating objective quality measures which replace human intervention and visual inspection in the processing chain. Scanning transmission electron microscopy of siliceous zeolite material exhibits the above-mentioned obstructions and therefore serves as orientation and a test of our procedures. - Highlights: • Developed a new process for extracting more information from a series of STEM images. • An objective non-rigid registration process copes with distortions. • Images of zeolite Y show retrieval of all information available from the data set. • Quantitative measures of registration quality were implemented. • Applicable to any serially acquired data, e.g. STM, AFM, STXM, etc
Directory of Open Access Journals (Sweden)
Yue Hu
2018-02-01
Full Text Available Bipedal locomotion remains one of the major open challenges of humanoid robotics. The common approaches are based on simple reduced model dynamics to generate walking trajectories, often neglecting the whole-body dynamics of the robots. As motions in nature are often considered as optimal with respect to certain criteria, in this work, we present an optimal control-based approach that allows us to generate optimized walking motions using a precise whole-body dynamic model of the robot, in contrast with the common approaches. The optimal control problem is formulated to minimize a set of desired objective functions with respect to physical constraints of the robot and contact constraints of the walking phases; the problem is then solved with a direct multiple shooting method. We apply the formulation with combinations of different objective criteria to the model of a reduced version of the iCub humanoid robot of 15 internal DOF. The obtained trajectories are executed on the real robot, and we carry out a discussion on the differences between the outcomes of this approach with the classic approaches.
Energy Technology Data Exchange (ETDEWEB)
Haemmerling, Jens; Gutkin, Boris; Guhr, Thomas, E-mail: jens.haemmerling@uni-due.d [Universitaet Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg (Germany)
2010-07-02
We study the emergence of collective dynamics in the integrable Hamiltonian system of two finite ensembles of coupled harmonic oscillators. After identification of a collective degree of freedom, the Hamiltonian is mapped onto a model of Caldeira-Leggett type, where the collective coordinate is coupled to an internal bath of phonons. In contrast to the usual Caldeira-Leggett model, the bath in the present case is part of the system. We derive an equation of motion for the collective coordinate which takes the form of a damped harmonic oscillator. We show that the distribution of quantum transition strengths induced by the collective mode is determined by its classical dynamics.
International Nuclear Information System (INIS)
Haemmerling, Jens; Gutkin, Boris; Guhr, Thomas
2010-01-01
We study the emergence of collective dynamics in the integrable Hamiltonian system of two finite ensembles of coupled harmonic oscillators. After identification of a collective degree of freedom, the Hamiltonian is mapped onto a model of Caldeira-Leggett type, where the collective coordinate is coupled to an internal bath of phonons. In contrast to the usual Caldeira-Leggett model, the bath in the present case is part of the system. We derive an equation of motion for the collective coordinate which takes the form of a damped harmonic oscillator. We show that the distribution of quantum transition strengths induced by the collective mode is determined by its classical dynamics.
Rigidity of Glasses and Macromolecules
Thorpe, M. F.
1998-03-01
The simple yet powerful ideas of percolation theory have found their way into many different areas of research. In this talk we show how RIGIDITY PERCOLATION can be studied at a similar level of sophistication, using a powerful new program THE PEBBLE GAME (D. J. Jacobs and M. F. Thorpe, Phys. Rev. E) 53, 3682 (1996). that uses an integer algorithm. This program can analyse the rigidity of two and three dimensional networks containing more than one million bars and joints. We find the total number of floppy modes, and find the critical behavior as the network goes from floppy to rigid as more bars are added. We discuss the relevance of this work to network glasses, and how it relates to experiments that involve the mechanical properties like hardness and elasticity of covalent glassy networks like Ge_xAs_ySe_1-x-y and dicuss recent experiments that suggest that the rigidity transition may be first order (Xingwei Feng, W. J.Bresser and P. Boolchand, Phys. Rev. Lett 78), 4422 (1997).. This approach is also useful in macromolecules and proteins, where detailed information about the rigid domain structure can be obtained.
Stick-slip behaviour of a viscoelastic flat sliding along a rigid indenter
Budi Setiyana, Budi; Ismail, Rifky; Jamari, J.; Schipper, Dirk Jan
2016-01-01
The sliding contact of soft material surface due to a rigid indenter is different from metal and some other polymers. A stick-slip motion is more frequently obtained than a smooth motion. By modeling the soft material as low damping viscoelastic material, this study proposes an analytical model to
Hydrodynamics of a flexible plate between pitching rigid plates
Kim, Junyoung; Kim, Daegyoum
2017-11-01
The dynamics of a flexible plate have been studied as a model problem in swimming and flying of animals and fluid-structure interaction of plants and flags. Motivated by fish schooling and an array of sea grasses, we investigate the dynamics of a flexible plate closely placed between two pitching rigid plates. In most studies on passive deformation of the flexible plate, the plate is immersed in a uniform flow or a wavy flow. However, in this study, the flexible plate experiences periodic deformation by the oscillatory flow generated by the prescribed pitching motion of the rigid plates. In our model, the pitching axes of the rigid plates and the clamping position of the flexible plate are aligned on the same line. The flexible plate shows various responses depending on length and pitching frequency of rigid plates, thickness of a flexible plate, and free-stream velocity. To find the effect of each variable on the response of the flexible plate, amplitude of a trailing edge and modal contribution of a flapping motion are compared, and flow structure around the flexible plate is examined.
Numerical Prediction of Wave Patterns Due to Motion of 3D Bodies by Kelvin-Havelock Sources
Directory of Open Access Journals (Sweden)
Ghassemi Hassan
2016-12-01
Full Text Available This paper discusses the numerical evaluation of the hydrodynamic characteristics of submerged and surface piercing moving bodies. Generally, two main classes of potential methods are used for hydrodynamic characteristic analysis of steady moving bodies which are Rankine and Kelvin-Havelock singularity distribution. In this paper, the Kelvin- Havelock sources are used for simulating the moving bodies and then free surface wave patterns are obtained. Numerical evaluation of potential distribution of a Kelvin-Havelock source is completely presented and discussed. Numerical results are calculated and presented for a 2D cylinder, single source, two parallel moving source, sphere, ellipsoid and standard Wigley hull in different situation that show acceptable agreement with results of other literatures or experiments.
NOLB: Nonlinear Rigid Block Normal Mode Analysis Method
Hoffmann , Alexandre; Grudinin , Sergei
2017-01-01
International audience; We present a new conceptually simple and computationally efficient method for nonlinear normal mode analysis called NOLB. It relies on the rotations-translations of blocks (RTB) theoretical basis developed by Y.-H. Sanejouand and colleagues. We demonstrate how to physically interpret the eigenvalues computed in the RTB basis in terms of angular and linear velocities applied to the rigid blocks and how to construct a nonlinear extrapolation of motion out of these veloci...
Rigidity-tuning conductive elastomer
Shan, Wanliang; Diller, Stuart; Tutcuoglu, Abbas; Majidi, Carmel
2015-06-01
We introduce a conductive propylene-based elastomer (cPBE) that rapidly and reversibly changes its mechanical rigidity when powered with electrical current. The elastomer is rigid in its natural state, with an elastic (Young’s) modulus of 175.5 MPa, and softens when electrically activated. By embedding the cPBE in an electrically insulating sheet of polydimethylsiloxane (PDMS), we create a cPBE-PDMS composite that can reversibly change its tensile modulus between 37 and 1.5 MPa. The rigidity change takes ˜6 s and is initiated when a 100 V voltage drop is applied across the two ends of the cPBE film. This magnitude of change in elastic rigidity is similar to that observed in natural skeletal muscle and catch connective tissue. We characterize the tunable load-bearing capability of the cPBE-PDMS composite with a motorized tensile test and deadweight experiment. Lastly, we demonstrate the ability to control the routing of internal forces by embedding several cPBE-PDMS ‘active tendons’ into a soft robotic pneumatic bending actuator. Selectively activating the artificial tendons controls the neutral axis and direction of bending during inflation.
Rigidity-tuning conductive elastomer
International Nuclear Information System (INIS)
Shan, Wanliang; Diller, Stuart; Tutcuoglu, Abbas; Majidi, Carmel
2015-01-01
We introduce a conductive propylene-based elastomer (cPBE) that rapidly and reversibly changes its mechanical rigidity when powered with electrical current. The elastomer is rigid in its natural state, with an elastic (Young’s) modulus of 175.5 MPa, and softens when electrically activated. By embedding the cPBE in an electrically insulating sheet of polydimethylsiloxane (PDMS), we create a cPBE–PDMS composite that can reversibly change its tensile modulus between 37 and 1.5 MPa. The rigidity change takes ∼6 s and is initiated when a 100 V voltage drop is applied across the two ends of the cPBE film. This magnitude of change in elastic rigidity is similar to that observed in natural skeletal muscle and catch connective tissue. We characterize the tunable load-bearing capability of the cPBE–PDMS composite with a motorized tensile test and deadweight experiment. Lastly, we demonstrate the ability to control the routing of internal forces by embedding several cPBE–PDMS ‘active tendons’ into a soft robotic pneumatic bending actuator. Selectively activating the artificial tendons controls the neutral axis and direction of bending during inflation. (paper)
Homogenization for rigid suspensions with random velocity-dependent interfacial forces
Gorb, Yuliya
2014-12-01
We study suspensions of solid particles in a viscous incompressible fluid in the presence of random velocity-dependent interfacial forces. The flow at a small Reynolds number is modeled by the Stokes equations, coupled with the motion of rigid particles arranged in a periodic array. The objective is to perform homogenization for the given suspension and obtain an equivalent description of a homogeneous (effective) medium, the macroscopic effect of the interfacial forces and the effective viscosity are determined using the analysis on a periodicity cell. In particular, the solutions uωε to a family of problems corresponding to the size of microstructure ε and describing suspensions of rigid particles with random surface forces imposed on the interface, converge H1-weakly as ε→0 a.s. to a solution of a Stokes homogenized problem, with velocity dependent body forces. A corrector to a homogenized solution that yields a strong H1-convergence is also determined. The main technical construction is built upon the Γ-convergence theory. © 2014 Elsevier Inc.
Multibody Dynamic Stress Simulation of Rigid-Flexible Shovel Crawler Shoes
Directory of Open Access Journals (Sweden)
Samuel Frimpong
2016-06-01
Full Text Available Electric shovels are used in surface mining operations to achieve economic production capacities. The capital investments and operating costs associated with the shovels deployed in the Athabasca oil sands formation are high due to the abrasive conditions. The shovel crawler shoes interact with sharp and abrasive sand particles, and, thus, are subjected to high transient dynamic stresses. These high stresses cause wear and tear leading to crack initiation, propagation and premature fatigue failure. The objective of this paper is to develop a model to characterize the crawler stresses and deformation for the P&H 4100C BOSS during propel and loading using rigid-flexible multi-body dynamic theory. A 3-D virtual prototype model of the rigid-flexible crawler track assembly and its interactions with oil sand formation is simulated to capture the model dynamics within multibody dynamics software MSC ADAMS. The modal and stress shapes and modal loads due to machine weight for each flexible crawler shoes are generated from finite element analysis (FEA. The modal coordinates from the simulation are combined with mode and stress shapes using modal superposition method to calculate real-time stresses and deformation of flexible crawler shoes. The results show a maximum von Mises stress value of 170 MPa occurring in the driving crawler shoe during the propel motion. This study provides a foundation for the subsequent fatigue life analysis of crawler shoes for extending crawler service life.
Li, Yuanyuan; Wang, Zilu; Wang, Cong; Huang, Wenhu
2018-01-01
Based on Nodal Coordinate Formulation (NCF) and Absolute Nodal Coordinate Formulation (ANCF), this paper establishes rigid-flexible coupling dynamic model of the spacecraft with large deployable solar arrays and multiple clearance joints to analyze and control the satellite attitude under deployment disturbance. Considering torque spring, close cable loop (CCL) configuration and latch mechanisms, a typical spacecraft composed of a rigid main-body described by NCF and two flexible panels described by ANCF is used as a demonstration case. Nonlinear contact force model and modified Coulomb friction model are selected to establish normal contact force and tangential friction model, respectively. Generalized elastic force are derived and all generalized forces are defined in the NCF-ANCF frame. The Newmark-β method is used to solve system equations of motion. The availability and superiority of the proposed model is verified through comparing with numerical co-simulations of Patran and ADAMS software. The numerical results reveal the effects of panel flexibility, joint clearance and their coupling on satellite attitude. The effects of clearance number, clearance size and clearance stiffness on satellite attitude are investigated. Furthermore, a proportional-differential (PD) attitude controller of spacecraft is designed to discuss the effect of attitude control on the dynamic responses of the whole system.
International Nuclear Information System (INIS)
Bengua, Gerard; Ishikawa, Masayori; Sutherland, Kenneth; Horita, Kenji; Yamazaki, Rie; Fujita, Katsuhisa; Onimaru, Rikiya; Katoh, Noriwo; Inoue, Tetsuya; Onodera, Shunsuke; Shirato, Hiroki
2010-01-01
Purpose: To evaluate the effectiveness of the stereotactic body frame (SBF), with or without a diaphragm press or a breathing cycle monitoring device (Abches), in controlling the range of lung tumor motion, by tracking the real-time position of fiducial markers. Methods and Materials: The trajectories of gold markers in the lung were tracked with the real-time tumor-tracking radiotherapy system. The SBF was used for patient immobilization and the diaphragm press and Abches were used to actively control breathing and for self-controlled respiration, respectively. Tracking was performed in five setups, with and without immobilization and respiration control. The results were evaluated using the effective range, which was defined as the range that includes 95% of all the recorded marker positions in each setup. Results: The SBF, with or without a diaphragm press or Abches, did not yield effective ranges of marker motion which were significantly different from setups that did not use these materials. The differences in the effective marker ranges in the upper lobes for all the patient setups were less than 1mm. Larger effective ranges were obtained for the markers in the middle or lower lobes. Conclusion: The effectiveness of controlling respiratory-induced organ motion by using the SBF+diaphragm press or SBF + Abches patient setups were highly dependent on the individual patient reaction to the use of these materials and the location of the markers. They may be considered for lung tumors in the lower lobes, but are not necessary for tumors in the upper lobes.
Energy Technology Data Exchange (ETDEWEB)
Rossi, Maddalena M.G.; Peulen, Heike M.U.; Belderbos, Josè S.A.; Sonke, Jan-Jakob, E-mail: j.sonke@nki.nl
2016-06-01
Purpose: Stereotactic body radiation therapy (SBRT) for early-stage inoperable non-small cell lung cancer (NSCLC) patients delivers high doses that require high-precision treatment. Typically, image guidance is used to minimize day-to-day target displacement, but intrafraction position variability is often not corrected. Currently, volumetric modulated arc therapy (VMAT) is replacing intensity modulated radiation therapy (IMRT) in many departments because of its shorter delivery time. This study aimed to evaluate whether intrafraction variation in VMAT patients is reduced in comparison with patients treated with IMRT. Methods and Materials: NSCLC patients (197 IMRT and 112 VMAT) treated with a frameless SBRT technique to a prescribed dose of 3 × 18 Gy were evaluated. Image guidance for both techniques was identical: pretreatment cone beam computed tomography (CBCT) (CBCT{sub precorr}) for setup correction followed immediately before treatment by postcorrection CBCT (CBCT{sub postcorr}) for verification. Then, after either a noncoplanar IMRT technique or a VMAT technique, a posttreatment (CBCT{sub postRT}) scan was acquired. The CBCT{sub postRT} and CBCT{sub postcorr} scans were then used to evaluate intrafraction motion. Treatment delivery times, systematic (Σ) and random (σ) intrafraction variations, and associated planning target volume (PTV) margins were calculated. Results: The median treatment delivery time was significantly reduced by 20 minutes (range, 32-12 minutes) using VMAT compared with noncoplanar IMRT. Intrafraction tumor motion was significantly larger for IMRT in all directions up to 0.5 mm systematic (Σ) and 0.7 mm random (σ). The required PTV margins for IMRT and VMAT differed by less than 0.3 mm. Conclusion: VMAT-based SBRT for NSCLC was associated with significantly shorter delivery times and correspondingly smaller intrafraction motion compared with noncoplanar IMRT. However, the impact on the required PTV margin was small.
Stochastic response of rigid foundations
International Nuclear Information System (INIS)
Pais, A.L.; Kausel, E.
1986-01-01
While the study of Kinematic Interaction effects calls, in general, for advanced analytical and numerical techniques, an excellent approximation was proposed recently by Iguchi. This approximation was used by the authors to analyze embedded foundations subjected to spatially random SH-wave fields, i.e., motions that exhibit some degree of incoherence. The wave fields considered ranged from perfectly coherent motions (resulting from seismic waves arriving from a single direction) to chaotic motions resulting from waves arriving simultaneously from all directions. Additional parameters considered were the shape of the foundation (cylindrical, rectangular) and the degree of embedment. It was found that kinematic interaction usually reduces the severity of the motions transmitted to the structure, and that incoherent motions do not exhibit the frequency selectivity (i.e., narrow valleys in the foundation response spectra) that coherent motions do
International Nuclear Information System (INIS)
Webb, S; Binnie, D M
2006-01-01
Intensity-modulated radiation therapy (IMRT) can be delivered by the 'sliding-leaves' dynamic multileaf collimator (DMLC) technique. Intrafraction organ motion can be accommodated by arranging an identical tracking motion for 'breathing leaves'. However, this is only possible for very specific circumstances such as regular, mathematically parameterizable, rigid-body, density-conserving, one-dimensional translations. In this paper, we investigate what happens when planes of tissue in the line of sight of the MLC have differential motion with respect to the moving leaves. In this situation, there is no solution to the problem and a perfect tracking motion cannot be arranged. However, an iterative minimization-of-errors 'solution' (or strategy) can be found and the technique is presented for this. From this, under certain mathematically simple differential motions it is possible to obtain some elegant algebraic solutions which are presented. In general, however, a lengthy computational minimization is required and results of examples of these are presented
Aoyagi, Daisuke; Ichinose, Wade E; Harkema, Susan J; Reinkensmeyer, David J; Bobrow, James E
2007-09-01
Locomotor training using body weight support on a treadmill and manual assistance is a promising rehabilitation technique following neurological injuries, such as spinal cord injury (SCI) and stroke. Previous robots that automate this technique impose constraints on naturalistic walking due to their kinematic structure, and are typically operated in a stiff mode, limiting the ability of the patient or human trainer to influence the stepping pattern. We developed a pneumatic gait training robot that allows for a full range of natural motion of the legs and pelvis during treadmill walking, and provides compliant assistance. However, we observed an unexpected consequence of the device's compliance: unimpaired and SCI individuals invariably began walking out-of-phase with the device. Thus, the robot perturbed rather than assisted stepping. To address this problem, we developed a novel algorithm that synchronizes the device in real-time to the actual motion of the individual by sensing the state error and adjusting the replay timing to reduce this error. This paper describes data from experiments with individuals with SCI that demonstrate the effectiveness of the synchronization algorithm, and the potential of the device for relieving the trainers of strenuous work while maintaining naturalistic stepping.
International Nuclear Information System (INIS)
Chew, W.M.
1989-01-01
The signal-to-noise ratio (SNR) of the MR imaging examination is a critical component of the quality of the image. Standard methods to increase SNR include signal averaging with multiple excitations, at the expense of imaging time (which on T2-weighted images could be quite significant), or increasing pixel volume by manipulation of field of view, matrix size, and/or section thickness, all at the expense of resolution. Another available method to increase SNR is to reduce the bandwidth of the receiver, which increases SNR by the square root of the amount of the reduction. The penalty imposed on high-field-strength MR examinations of the body is an unacceptable increase in chemical shift artifact. However, presaturating the fat resonance eliminates the chemical shift artifact. Thus, a combination of imaging techniques, fat suppression, and decreased bandwidth imaging can produce images free of chemical shift artifact with increased SNR and no penalty in resolution or imaging time. Early studies also show a reduction in motion artifact when fat saturation is used. This paper reports MR imaging performed with a 1.5-T Signa imager. With this technique, T2-weighted images (2,500/20/80 [repetition time msec/echo time msec/inversion time msec]) illustrating the increase in SNR and T1-weighted images (600/20) demonstrating a decrease in motion artifact are shown
The effect of time on EMG classification of hand motions in able-bodied and transradial amputees
DEFF Research Database (Denmark)
Waris, Asim; Niazi, Imran Khan; Jamil, Mohsin
2018-01-01
While several studies have demonstrated the short-term performance of pattern recognition systems, long-term investigations are very limited. In this study, we investigated changes in classification performance over time. Ten able-bodied individuals and six amputees took part in this study. EMG s...... difference between training and testing day increases. Furthermore, for iEMG, performance in amputees was directly proportional to the size of the residual limb.......While several studies have demonstrated the short-term performance of pattern recognition systems, long-term investigations are very limited. In this study, we investigated changes in classification performance over time. Ten able-bodied individuals and six amputees took part in this study. EMG...... was computed for all possible combinations between the days. For all subjects, surface sEMG (7.2 ± 7.6%), iEMG (11.9 ± 9.1%) and cEMG (4.6 ± 4.8%) were significantly different (P
Event-based motion correction for PET transmission measurements with a rotating point source
International Nuclear Information System (INIS)
Zhou, Victor W; Kyme, Andre Z; Meikle, Steven R; Fulton, Roger
2011-01-01
Accurate attenuation correction is important for quantitative positron emission tomography (PET) studies. When performing transmission measurements using an external rotating radioactive source, object motion during the transmission scan can distort the attenuation correction factors computed as the ratio of the blank to transmission counts, and cause errors and artefacts in reconstructed PET images. In this paper we report a compensation method for rigid body motion during PET transmission measurements, in which list mode transmission data are motion corrected event-by-event, based on known motion, to ensure that all events which traverse the same path through the object are recorded on a common line of response (LOR). As a result, the motion-corrected transmission LOR may record a combination of events originally detected on different LORs. To ensure that the corresponding blank LOR records events from the same combination of contributing LORs, the list mode blank data are spatially transformed event-by-event based on the same motion information. The number of counts recorded on the resulting blank LOR is then equivalent to the number of counts that would have been recorded on the corresponding motion-corrected transmission LOR in the absence of any attenuating object. The proposed method has been verified in phantom studies with both stepwise movements and continuous motion. We found that attenuation maps derived from motion-corrected transmission and blank data agree well with those of the stationary phantom and are significantly better than uncorrected attenuation data.
Magnaudet, Jacques; Tchoufag, Joel; Fabre, David
2015-11-01
Gravity/buoyancy-driven bodies moving in a slightly viscous fluid frequently follow fluttering or helical paths. Current models of such systems are largely empirical and fail to predict several of the key features of their evolution, especially close to the onset of path instability. Using a weakly nonlinear expansion of the full set of governing equations, we derive a new generic reduced-order model of this class of phenomena based on a pair of amplitude equations with exact coefficients that drive the evolution of the first pair of unstable modes. We show that the predictions of this model for the style (eg. fluttering or spiraling) and characteristics (eg. frequency and maximum inclination angle) of path oscillations compare well with various recent data for both solid disks and air bubbles.
Tchoufag, Joël; Fabre, David; Magnaudet, Jacques
2015-09-01
Gravity- or buoyancy-driven bodies moving in a slightly viscous fluid frequently follow fluttering or helical paths. Current models of such systems are largely empirical and fail to predict several of the key features of their evolution, especially close to the onset of path instability. Here, using a weakly nonlinear expansion of the full set of governing equations, we present a new generic reduced-order model based on a pair of amplitude equations with exact coefficients that drive the evolution of the first pair of unstable modes. We show that the predictions of this model for the style (e.g., fluttering or spiraling) and characteristics (e.g., frequency and maximum inclination angle) of path oscillations compare well with various recent data for both solid disks and air bubbles.
DEFF Research Database (Denmark)
Rijkhoff, Jan
2008-01-01
Studies in Language 32-3 (2008), 727-752. Special issue: Parts of Speech: Descriptive tools, theoretical constructs Jan Rijkhoff - On flexible and rigid nouns This article argues that in addition to the flexible lexical categories in Hengeveld’s classification of parts-of-speech systems (Contentive......, Non-Verb, Modifier), there are also flexible word classes within the rigid lexical category Noun (Set Noun, Sort Noun, General Noun). Members of flexible word classes are characterized by their vague semantics, which in the case of nouns means that values for the semantic features Shape...... and Homogeneity are either left undetermined or they are specified in such a way that they do not quite match the properties of the kind of entity denoted by the flexible item in the external world. I will then argue that flexible word classes constitute a proper category (i.e. they are not the result of a merger...
Functionally rigid bistable [2]rotaxanes
DEFF Research Database (Denmark)
Nygaard, Sune; Leung, Ken C-F; Aprahamian, Ivan
2007-01-01
defines an unambiguous distance of 1.5 nm over which the ring moves between the MPTTF and NP units. The degenerate NP/NP [2]rotaxane was used to investigate the shuttling barrier by dynamic 1H NMR spectroscopy for the movement of the CBPQT4+ ring across the new rigid spacer. It is evident from...... better control over the position of the ring component in the ground state but also for control over the location of the CBPQT4+ ring during solution-state switching experiments, triggered either chemically (1H NMR) or electrochemically (cyclic voltammetry). In this instance, the use of the rigid spacer......Two-station [2]rotaxanes in the shape of a degenerate naphthalene (NP) shuttle and a nondegenerate monopyrrolotetrathiafulvalene (MPTTF)/NP redox-controllable switch have been synthesized and characterized in solution. Their dumbbell-shaped components are composed of polyether chains interrupted...
Associative memory through rigid origami
Murugan, Arvind; Brenner, Michael
2015-03-01
Mechanisms such as Miura Ori have proven useful in diverse contexts since they have only one degree of freedom that is easily controlled. We combine the theory of rigid origami and associative memory in frustrated neural networks to create structures that can ``learn'' multiple generic folding mechanisms and yet can be robustly controlled. We show that such rigid origami structures can ``recall'' a specific learned mechanism when induced by a physical impulse that only need resemble the desired mechanism (i.e. robust recall through association). Such associative memory in matter, seen before in self-assembly, arises due to a balance between local promiscuity (i.e., many local degrees of freedom) and global frustration which minimizes interference between different learned behaviors. Origami with associative memory can lead to a new class of deployable structures and kinetic architectures with multiple context-dependent behaviors.
Rigidity spectrum of Forbush decrease
International Nuclear Information System (INIS)
Sakakibara, S.; Munakata, K.; Nagashima, K.
1985-01-01
Using data from neutron monitors and muon telescopes at surface and underground stations, the average rigidity spectrum of Forbush decreases (Fds) during the period of 1978-1982 were obtained. Thirty eight Ed-events are classified into two groups, Hard Fd and Soft FD according to size of Fd at the Sakashita station. It is found that a spectral form of a fractional-power type (P to the-gamma sub 1 (P+P sub c) to the -gamma sub2) is more suitable than that of a power-exponential type or of a power type with an upper limiting rigidity. The best fitted spectrum of the fractional-power type is expressed by gamma sub1 = 0.37, gamma sub2 = 0.89 and P subc = 10 GV for Hard Fd and gamma sub1 = 0.77, gamma sub2 = 1.02 and P sub c - 14GV for Soft Fd
Signature of Thermal Rigidity Percolation
International Nuclear Information System (INIS)
Huerta, Adrián
2013-01-01
To explore the role that temperature and percolation of rigidity play in determining the macroscopic properties, we propose a model that adds translational degrees of freedom to the spins of the well known Ising hamiltonian. In particular, the Ising model illustrate the longstanding idea that the growth of correlations on approach to a critical point could be describable in terms of the percolation of some sort of p hysical cluster . For certain parameters of this model we observe two well defined peaks of C V , that suggest the existence of two kinds of p hysical percolation , namely connectivity and rigidity percolation. Thermal fluctuations give rise to two different kinds of elementary excitations, i.e. droplets and configuron, as suggested by Angell in the framework of a bond lattice model approach. The later is reflected in the fluctuations of redundant constraints that gives stability to the structure and correlate with the order parameter
Gholibeigian, Hassan; Gholibeigian, Kazem
Iranian Philosopher, Sadr-ol-Moteallehin (1571-1640) said in his famous book, Asfar: ''the Universe moves in its entity... and time is its fourth dimension, and time is magnitude of the motion (momentum) of the matter in its entity''. In other words, time for each atom is momentum of its involved fundamental particles, [APS March Meeting 2015, abstract #V1.023]. When an atom (body) moves in speed of near light speed, speed of its involved fundamental particles become slow, and consequently the magnitude of its momentum (time) will decrease. On the other hands, when the spin and orbital angular momentum of an atom changed, it means that its properties, mass, strength of its electromagnetic field and its interaction with momentum changed. As a result, each atom (body) which moves in light speed, lower or faster than that, will get a new identity and vice versa. The special relativity can be the special form of this theory. In this way, black holes will be lighter than their involved masses at rest (a paradox with general relativity). Dark matter/energy may be created at first in B.B (Convection Bang) [AGU Fall Meeting 2015, abstract ID: 58425], in more than light speed, so, if we speed protons to more than light speed (in LHC), we may see dark mater/energy in new space-time. AmirKabir University of Technology.
Conradsen, Isa; Beniczky, Sandor; Wolf, Peter; Terney, Daniella; Sams, Thomas; Sorensen, Helge B D
2009-01-01
Many epilepsy patients cannot call for help during a seizure, because they are unconscious or because of the affection of their motor system or speech function. This can lead to injuries, medical complications and at worst death. An alarm system setting off at seizure onset could help to avoid hazards. Today no reliable alarm systems are available. A Multi-modal Intelligent Seizure Acquisition (MISA) system based on full body motion data seems as a good approach towards detection of epileptic seizures. The system is the first to provide a full body description for epilepsy applications. Three test subjects were used for this pilot project. Each subject simulated 15 seizures and in addition performed some predefined normal activities, during a 4-hour monitoring with electromyography (EMG), accelerometer, magnetometer and gyroscope (AMG), electrocardiography (ECG), electroencephalography (EEG) and audio and video recording. The results showed that a non-subject specific MISA system developed on data from the modalities: accelerometer (ACM), gyroscope and EMG is able to detect 98% of the simulated seizures and at the same time mistakes only 4 of the normal movements for seizures. If the system is individualized (subject specific) it is able to detect all simulated seizures with a maximum of 1 false positive. Based on the results from the simulated seizures and normal movements the MISA system seems to be a promising approach to seizure detection.
Romanovich, A. A.; Romanovich, M. A.; Apukhtina, I. V.
2018-03-01
The article considers topical issues of energy saving in cement production with the use of a technological grinding complex, which includes a press roller grinder and a ball mill. Rational conditions of grinding are proposed for pre-shredded material through the installation of blade energy exchange devices (BEED) in the mill drum. The loading level in the first chamber varies periodically depending on the drum rotation angle, equipped with BEED. In the zone of BEED’s active action, there is a “scooping” of a part of grinding bodies together with crushed material, raising them to a height and giving them a longitudinally transverse movement, which is different from movement created in the mill without BEED. At the same time, additional work that consumes engine power is being done. A technique is proposed for calculating the additional engine power consumption of a mill, equipped with a BEED. This power is spent on creating a longitudinal-transverse motion of grinding bodies and its first and second chambers in areas of active influence of the BEED. Comparative analysis of results obtained experimentally and calculations of proposed equations show a high convergence of results. These analytical dependencies may be interest to Russian and foreign organizations that carry out their activities in the field of design and manufacture of cement equipment, as well as to cement producers.
Torsional rigidity, isospectrality and quantum graphs
International Nuclear Information System (INIS)
Colladay, Don; McDonald, Patrick; Kaganovskiy, Leon
2017-01-01
We study torsional rigidity for graph and quantum graph analogs of well-known pairs of isospectral non-isometric planar domains. We prove that such isospectral pairs are distinguished by torsional rigidity. (paper)
Lev-Ari, Tidhar; Lustig, Avichai; Ketter-Katz, Hadas; Baydach, Yossi; Katzir, Gadi
2016-08-01
A chameleon (Chamaeleo chamaeleon) on a perch responds to a nearby threat by moving to the side of the perch opposite the threat, while bilaterally compressing its abdomen, thus minimizing its exposure to the threat. If the threat moves, the chameleon pivots around the perch to maintain its hidden position. How precise is the body rotation and what are the patterns of eye movement during avoidance? Just-hatched chameleons, placed on a vertical perch, on the side roughly opposite to a visual threat, adjusted their position to precisely opposite the threat. If the threat were moved on a horizontal arc at angular velocities of up to 85°/s, the chameleons co-rotated smoothly so that (1) the angle of the sagittal plane of the head relative to the threat and (2) the direction of monocular gaze, were positively and significantly correlated with threat angular position. Eye movements were role-dependent: the eye toward which the threat moved maintained a stable gaze on it, while the contralateral eye scanned the surroundings. This is the first description, to our knowledge, of such a response in a non-flying terrestrial vertebrate, and it is discussed in terms of possible underlying control systems.
Hong, Shih-Wun; Leu, Tsai-Hsueh; Wang, Ting-Ming; Li, Jia-Da; Ho, Wei-Pin; Lu, Tung-Wu
2015-10-01
Uphill walking places more challenges on the locomotor system than level walking does when the two limbs work together to ensure the stability and continuous progression of the body over the base of support. With age-related degeneration older people may have more difficulty in maintaining balance during uphill walking, and may thus experience an increased risk of falling. The current study aimed to investigate using gait analysis techniques to determine the effects of age and slope angles on the control of the COM relative to the COP in terms of their inclination angles (IA) and the rate of change of IA (RCIA) during uphill walking. The elderly were found to show IAs similar to those of the young, but with reduced self-selected walking speed and RCIAs (PIA in the sagittal plane (PIA and RCIA during walking provide a sensitive measure to differentiate individuals with different balance control abilities. The current results and findings may serve as baseline data for future clinical and ergonomic applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Management of rigid post-traumatic kyphosis.
Wu, S S; Hwa, S Y; Lin, L C; Pai, W M; Chen, P Q; Au, M K
1996-10-01
Rigid post-traumatic kyphosis after fracture of the thoracolumbar and lumbar spine represents a failure of initial management of the injury. Kyphosis moves the center of gravity anterior. The kyphosis and instability may result in pain, deformity, and increased neurologic deficits. Management for symptomatic post-traumatic kyphosis always has presented a challenge to orthopedic surgeons. To evaluate the surgical results of one stage posterior correction for rigid symptomatic post-traumatic kyphosis of the thoracolumbar and lumbar spine. The management for post-traumatic kyphosis remains controversial. Anterior, posterior, or combined anterior and posterior procedures have been advocated by different authors and show various degrees of success. One vertebra immediately above and below the level of the deformity was instrumented posteriorly by a transpedicular system (internal fixator AO). Posterior decompression was performed by excision of the spinal process and bilateral laminectomy. With the deformed vertebra through the pedicle, the vertebral body carefully is removed around the pedicle level, approximating a wedge shape. The extent to which the deformed vertebral body should be removed is determined by the attempted correction. Correction of the deformity is achieved by manipulation of the operating table and compression of the adjacent Schanz screws above and below the lesion. Thirteen patients with post-traumatic kyphosis with symptoms of fatigue and pain caused by slow progression of kyphotic deformities received posterior decompression, correction, and stabilization as a definitive treatment. The precorrection kyphosis ranged from 30-60 degrees, with a mean of 40 degrees +/- 10.8 degrees. After correction, kyphosis was reduced to an average of 1.5 degrees +/- 3.8 degrees, with a range from -5 degrees to 5 degrees. The average angle of correction was 38.8 degrees +/- 10.4 degrees, with a range from 25 degrees to 60 degrees. Significant difference was found
Rigidity of monodromies for Appell's hypergeometric functions
Directory of Open Access Journals (Sweden)
Yoshishige Haraoka
2015-01-01
Full Text Available For monodromy representations of holonomic systems, the rigidity can be defined. We examine the rigidity of the monodromy representations for Appell's hypergeometric functions, and get the representations explicitly. The results show how the topology of the singular locus and the spectral types of the local monodromies work for the study of the rigidity.
Nonlinear finite element analysis of liquid sloshing in complex vehicle motion scenarios
Nicolsen, Brynne; Wang, Liang; Shabana, Ahmed
2017-09-01
The objective of this investigation is to develop a new total Lagrangian continuum-based liquid sloshing model that can be systematically integrated with multibody system (MBS) algorithms in order to allow for studying complex motion scenarios. The new approach allows for accurately capturing the effect of the sloshing forces during curve negotiation, rapid lane change, and accelerating and braking scenarios. In these motion scenarios, the liquid experiences large displacements and significant changes in shape that can be captured effectively using the finite element (FE) absolute nodal coordinate formulation (ANCF). ANCF elements are used in this investigation to describe complex mesh geometries, to capture the change in inertia due to the change in the fluid shape, and to accurately calculate the centrifugal forces, which for flexible bodies do not take the simple form used in rigid body dynamics. A penalty formulation is used to define the contact between the rigid tank walls and the fluid. A fully nonlinear MBS truck model that includes a suspension system and Pacejka's brush tire model is developed. Specified motion trajectories are used to examine the vehicle dynamics in three different scenarios - deceleration during straight-line motion, rapid lane change, and curve negotiation. It is demonstrated that the liquid sloshing changes the contact forces between the tires and the ground - increasing the forces on certain wheels and decreasing the forces on other wheels. In cases of extreme sloshing, this dynamic behavior can negatively impact the vehicle stability by increasing the possibility of wheel lift and vehicle rollover.
The plane motion control of the quadrocopter
Directory of Open Access Journals (Sweden)
A. N. Kanatnikov
2015-01-01
Full Text Available Among a large number of modern flying vehicles, the quadrocopter relates to unmanned aerial vehicles (UAV which are relatively cheap and easy to design. Quadrocopters are able to fly in bad weather, hang in the air for quite a long time, observe the objects and perform many other tasks. They have been applied in rescue operations, in agriculture, in the military and many other fields.For quadrocopters, the problems of path planning and control are relevant. These problems have many variants in which limited resources of modern UAV, possible obstacles, for instance, for flying in a cross-country terrain or in a city environment and weather conditions (particularly, wind conditions are taken into account. Many research studies are concerned with these problems and reflected in series of publications (note the interesting survey [1] and references therein. Various methods were used for the control synthesis for these vehicles: linear approximations [2], sliding mode control [3], the covering method [4] and so on.In the paper, a quadrocopter is considered as a rigid body. The kinematic and dynamic equations of the motion are analyzed. Two cases of motion are emphasized: a motion in a vertical plane and in a horizontal plane. The control is based on transferring of the affine system to the canonical form [5] and the nonlinear stabilization method [6].
Integration of car-body flexibility into train-track coupling system dynamics analysis
Ling, Liang; Zhang, Qing; Xiao, Xinbiao; Wen, Zefeng; Jin, Xuesong
2018-04-01
The resonance vibration of flexible car-bodies greatly affects the dynamics performances of high-speed trains. In this paper, we report a three-dimensional train-track model to capture the flexible vibration features of high-speed train carriages based on the flexible multi-body dynamics approach. The flexible car-body is modelled using both the finite element method (FEM) and the multi-body dynamics (MBD) approach, in which the rigid motions are obtained by using the MBD theory and the structure deformation is calculated by the FEM and the modal superposition method. The proposed model is applied to investigate the influence of the flexible vibration of car-bodies on the dynamics performances of train-track systems. The dynamics performances of a high-speed train running on a slab track, including the car-body vibration behaviour, the ride comfort, and the running safety, calculated by the numerical models with rigid and flexible car-bodies are compared in detail. The results show that the car-body flexibility not only significantly affects the vibration behaviour and ride comfort of rail carriages, but also can has an important influence on the running safety of trains. The rigid car-body model underestimates the vibration level and ride comfort of rail vehicles, and ignoring carriage torsional flexibility in the curving safety evaluation of trains is conservative.
Energy Technology Data Exchange (ETDEWEB)
Canetta, G.; Maino, G.; Magnani, M.; Visparelli, D. [ENEA, Centro Ricerche Ezio Clementel, Bologna (Italy). Dipt. Innovazione
1999-07-01
The interacting boson model (IBM) is a realistic model of nuclear structure, since it allows to cut off in a suitable way the complete space of the shell model states. In such a way, it offers a great simplicity of the numerical computation of the eigenvalue problem for a many-body non-relativistic quantum system, like a nucleus. In particular, the analytical solutions obtained in the case of dynamical symmetries correspond, in the classical limit, to completely integrable systems showing a regular dynamic behaviour. In this report, a detailed analysis is performed of the IBM version 2 (IBM-2), which explicitly introduces the isospin degree of freedom. The different forms of the IBM-2 Hamiltonian usually considered in the literature, are discussed, and the explicit relations existing between them are deduced. Moreover, the semiclassical limit of the most general IBM-2 Hamiltonian is studied in the details. Finally, the expectation of chaotic dynamic behaviour near to regular dynamics, in the IBM, and, in particular, the fact that the latter ones persist more than expected a priori, is shown. Maybe, this behaviour is to adduce to the existence of partial dynamic symmetries. [Italian] Il modello a bosoni interagenti (IBM) rappresenta un modello realistico della struttura nucleare, premettendo di troncare opportunamente lo spazio completo degli stati di modello a shell, e percio' offre una notevole semplicita' computazionale nella risoluzione numerica del problema degli autovalori per un sistema quantico non relativistico a molti corpi, quale e' un nucleo. In particolare, le soluzioni analitiche ottenute nel caso di simmetrie dinamiche corrispondono, nel limite classico, a sistemi completamente integrabili che mostrano un comportamento dinamico regolare. In questo rapporto viene condotta un'analisi dettagliata del modello IBM nella versione (IBM-2), il quale introduce esplicitamente il grado di liberta' di isospin. In particolare, sono
Chien, Hui-Lien; Lu, Tung-Wu; Liu, Ming-Wei
2013-07-01
High-heeled shoes are associated with instability and falling, leading to injuries such as fracture and ankle sprain. Knowledge of the motion of the body's center of mass (COM) with respect to the center of pressure (COP) during high-heeled gait may offer insights into the balance control strategies and provide a basis for approaches that minimize the risk of falling and associated adverse effects. The study aimed to investigate the influence of the base and height of the heels on the COM motion in terms of COM-COP inclination angles (IA) and the rate of change of IA (RCIA). Fifteen females who regularly wear high heels walked barefoot and with narrow-heeled shoes with three heel heights (3.9cm, 6.3cm and 7.3cm) while kinematic and ground reaction force data were measured and used to calculate the COM and COP, as well as the temporal-distance parameters. The reduced base of the heels was found to be the primary factor for the reduced normalized walking speed and the reduced frontal IA throughout the gait cycle. This was achieved mainly through the control of the RCIA during double-leg stance (DLS). The heel heights affected mainly the peak RCIA during DLS, which were not big enough to affect the IA. These results suggest young adults adopt a conservative strategy for balance control during narrow-heeled gait. The results will serve as baseline data for future evaluation of patients and/or older adults during narrow-heeled gait with the aim of reducing the risk of falling. Copyright © 2012 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Kang, S; Kim, D; Kim, T; Kim, K; Cho, M; Shin, D; Suh, T [The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of); Kim, S [Virginia Commonwealth University, Richmond, VA (United States); Park, S [Uijeongbu St.Mary’s Hospital, GyeongGi-Do (Korea, Republic of)
2015-06-15
Purpose: Respiratory motion in thoracic and abdominal region could lead to significant underdosing of target and increased dose to healthy tissues. The aim of this study is to evaluate the dosimetric effect of respiratory motion in conventional 3D dose by comparing 4D deformable dose in liver stereotactic body radiotherapy (SBRT). Methods: Five patients who had previously treated liver SBRT were included in this study. Four-dimensional computed tomography (4DCT) images with 10 phases for all patients were acquired on multi-slice CT scanner (Siemens, Somatom definition). Conventional 3D planning was performed using the average intensity projection (AIP) images. 4D dose accumulation was calculated by summation of dose distribution for all phase images of 4DCT using deformable image registration (DIR) . The target volume and normal organs dose were evaluated with the 4D dose and compared with those from 3D dose. And also, Index of achievement (IOA) which assesses the consistency between planned dose and prescription dose was used to compare target dose distribution between 3D and 4D dose. Results: Although the 3D dose calculation considered the moving target coverage, significant differences of various dosimetric parameters between 4D and 3D dose were observed in normal organs and PTV. The conventional 3D dose overestimated dose to PTV, however, there was no significant difference for GTV. The average difference of IOA which become ‘1’ in an ideal case was 3.2% in PTV. The average difference of liver and duodenum was 5% and 16% respectively. Conclusion: 4D dose accumulation which can provide dosimetric effect of respiratory motion has a possibility to predict the more accurate delivered dose to target and normal organs and improve treatment accuracy. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the
Calculating ensemble averaged descriptions of protein rigidity without sampling.
Directory of Open Access Journals (Sweden)
Luis C González
Full Text Available Previous works have demonstrated that protein rigidity is related to thermodynamic stability, especially under conditions that favor formation of native structure. Mechanical network rigidity properties of a single conformation are efficiently calculated using the integer body-bar Pebble Game (PG algorithm. However, thermodynamic properties require averaging over many samples from the ensemble of accessible conformations to accurately account for fluctuations in network topology. We have developed a mean field Virtual Pebble Game (VPG that represents the ensemble of networks by a single effective network. That is, all possible number of distance constraints (or bars that can form between a pair of rigid bodies is replaced by the average number. The resulting effective network is viewed as having weighted edges, where the weight of an edge quantifies its capacity to absorb degrees of freedom. The VPG is interpreted as a flow problem on this effective network, which eliminates the need to sample. Across a nonredundant dataset of 272 protein structures, we apply the VPG to proteins for the first time. Our results show numerically and visually that the rigidity characterizations of the VPG accurately reflect the ensemble averaged [Formula: see text] properties. This result positions the VPG as an efficient alternative to understand the mechanical role that chemical interactions play in maintaining protein stability.
Calculating ensemble averaged descriptions of protein rigidity without sampling.
González, Luis C; Wang, Hui; Livesay, Dennis R; Jacobs, Donald J
2012-01-01
Previous works have demonstrated that protein rigidity is related to thermodynamic stability, especially under conditions that favor formation of native structure. Mechanical network rigidity properties of a single conformation are efficiently calculated using the integer body-bar Pebble Game (PG) algorithm. However, thermodynamic properties require averaging over many samples from the ensemble of accessible conformations to accurately account for fluctuations in network topology. We have developed a mean field Virtual Pebble Game (VPG) that represents the ensemble of networks by a single effective network. That is, all possible number of distance constraints (or bars) that can form between a pair of rigid bodies is replaced by the average number. The resulting effective network is viewed as having weighted edges, where the weight of an edge quantifies its capacity to absorb degrees of freedom. The VPG is interpreted as a flow problem on this effective network, which eliminates the need to sample. Across a nonredundant dataset of 272 protein structures, we apply the VPG to proteins for the first time. Our results show numerically and visually that the rigidity characterizations of the VPG accurately reflect the ensemble averaged [Formula: see text] properties. This result positions the VPG as an efficient alternative to understand the mechanical role that chemical interactions play in maintaining protein stability.
Geometry, rigidity, and group actions
Farb, Benson; Zimmer, Robert J
2011-01-01
The study of group actions is more than a hundred years old but remains to this day a vibrant and widely studied topic in a variety of mathematic fields. A central development in the last fifty years is the phenomenon of rigidity, whereby one can classify actions of certain groups, such as lattices in semi-simple Lie groups. This provides a way to classify all possible symmetries of important spaces and all spaces admitting given symmetries. Paradigmatic results can be found in the seminal work of George Mostow, Gergory Margulis, and Robert J. Zimmer, among others.The p
Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates
Energy Technology Data Exchange (ETDEWEB)
Dombrowski, Stefan von [Institute of Robotics and Mechatronics, German Aerospace Center (DLR) (Germany)], E-mail: stefan.von.dombrowski@dlr.de
2002-11-15
To consider large deformation problems in multibody system simulations a finite element approach, called absolute nodal coordinate.formulation,has been proposed. In this formulation absolute nodal coordinates and their material derivatives are applied to represent both deformation and rigid body motion. The choice of nodal variables allows a fully nonlinear representation of rigid body motion and can provide the exact rigid body inertia in the case of large rotations. The methodology is especially suited for but not limited to modeling of beams, cables and shells in multibody dynamics.This paper summarizes the absolute nodal coordinate formulation for a 3D Euler-Bernoulli beam model, in particular the definition of nodal variables, corresponding generalized elastic and inertia forces and equations of motion. The element stiffness matrix is a nonlinear function of the nodal variables even in the case of linearized strain/displacement relations. Nonlinear strain/displacement relations can be calculated from the global displacements using quadrature formulae.Computational examples are given which demonstrate the capabilities of the applied methodology. Consequences of the choice of shape.functions on the representation of internal forces are discussed. Linearized strain/displacement modeling is compared to the nonlinear approach and significant advantages of the latter, when using the absolute nodal coordinate formulation, are outlined.
Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates
International Nuclear Information System (INIS)
Dombrowski, Stefan von
2002-01-01
To consider large deformation problems in multibody system simulations a finite element approach, called absolute nodal coordinate.formulation,has been proposed. In this formulation absolute nodal coordinates and their material derivatives are applied to represent both deformation and rigid body motion. The choice of nodal variables allows a fully nonlinear representation of rigid body motion and can provide the exact rigid body inertia in the case of large rotations. The methodology is especially suited for but not limited to modeling of beams, cables and shells in multibody dynamics.This paper summarizes the absolute nodal coordinate formulation for a 3D Euler-Bernoulli beam model, in particular the definition of nodal variables, corresponding generalized elastic and inertia forces and equations of motion. The element stiffness matrix is a nonlinear function of the nodal variables even in the case of linearized strain/displacement relations. Nonlinear strain/displacement relations can be calculated from the global displacements using quadrature formulae.Computational examples are given which demonstrate the capabilities of the applied methodology. Consequences of the choice of shape.functions on the representation of internal forces are discussed. Linearized strain/displacement modeling is compared to the nonlinear approach and significant advantages of the latter, when using the absolute nodal coordinate formulation, are outlined
Miwa, Kenta; Umeda, Takuro; Murata, Taisuke; Wagatsuma, Kei; Miyaji, Noriaki; Terauchi, Takashi; Koizumi, Mitsuru; Sasaki, Masayuki
2016-02-01
Overcorrection of scatter caused by patient motion during whole-body PET/computed tomography (CT) imaging can induce the appearance of photopenic artifacts in the PET images. The present study aimed to quantify the accuracy of scatter limitation correction (SLC) for eliminating photopenic artifacts. This study analyzed photopenic artifacts in (18)F-fluorodeoxyglucose ((18)F-FDG) PET/CT images acquired from 12 patients and from a National Electrical Manufacturers Association phantom with two peripheral plastic bottles that simulated the human body and arms, respectively. The phantom comprised a sphere (diameter, 10 or 37 mm) containing fluorine-18 solutions with target-to-background ratios of 2, 4, and 8. The plastic bottles were moved 10 cm posteriorly between CT and PET acquisitions. All PET data were reconstructed using model-based scatter correction (SC), no scatter correction (NSC), and SLC, and the presence or absence of artifacts on the PET images was visually evaluated. The SC and SLC images were also semiquantitatively evaluated using standardized uptake values (SUVs). Photopenic artifacts were not recognizable in any NSC and SLC image from all 12 patients in the clinical study. The SUVmax of mismatched SLC PET/CT images were almost equal to those of matched SC and SLC PET/CT images. Applying NSC and SLC substantially eliminated the photopenic artifacts on SC PET images in the phantom study. SLC improved the activity concentration of the sphere for all target-to-background ratios. The highest %errors of the 10 and 37-mm spheres were 93.3 and 58.3%, respectively, for mismatched SC, and 73.2 and 22.0%, respectively, for mismatched SLC. Photopenic artifacts caused by SC error induced by CT and PET image misalignment were corrected using SLC, indicating that this method is useful and practical for clinical qualitative and quantitative PET/CT assessment.
On the libration collinear points in the restricted three – body problem
Directory of Open Access Journals (Sweden)
Alzahrani F.
2017-03-01
Full Text Available In the restricted problem of three bodies when the primaries are triaxial rigid bodies, the necessary and sufficient conditions to find the locations of the three libration collinear points are stated. In addition, the Linear stability of these points is studied for the case of the Euler angles of rotational motion being θi = 0, ψi + φi = π/2, i = 1, 2 accordingly. We underline that the model studied in this paper has special importance in space dynamics when the third body moves in gravitational fields of planetary systems and particularly in a Jupiter model or a problem including an irregular asteroid.
Inertial motion capture system for biomechanical analysis in pressure suits
Di Capua, Massimiliano
A non-invasive system has been developed at the University of Maryland Space System Laboratory with the goal of providing a new capability for quantifying the motion of the human inside a space suit. Based on an array of six microprocessors and eighteen microelectromechanical (MEMS) inertial measurement units (IMUs), the Body Pose Measurement System (BPMS) allows the monitoring of the kinematics of the suit occupant in an unobtrusive, self-contained, lightweight and compact fashion, without requiring any external equipment such as those necessary with modern optical motion capture systems. BPMS measures and stores the accelerations, angular rates and magnetic fields acting upon each IMU, which are mounted on the head, torso, and each segment of each limb. In order to convert the raw data into a more useful form, such as a set of body segment angles quantifying pose and motion, a series of geometrical models and a non-linear complimentary filter were implemented. The first portion of this works focuses on assessing system performance, which was measured by comparing the BPMS filtered data against rigid body angles measured through an external VICON optical motion capture system. This type of system is the industry standard, and is used here for independent measurement of body pose angles. By comparing the two sets of data, performance metrics such as BPMS system operational conditions, accuracy, and drift were evaluated and correlated against VICON data. After the system and models were verified and their capabilities and limitations assessed, a series of pressure suit evaluations were conducted. Three different pressure suits were used to identify the relationship between usable range of motion and internal suit pressure. In addition to addressing range of motion, a series of exploration tasks were also performed, recorded, and analysed in order to identify different motion patterns and trajectories as suit pressure is increased and overall suit mobility is reduced
Gas-induced friction and diffusion of rigid rotors
Martinetz, Lukas; Hornberger, Klaus; Stickler, Benjamin A.
2018-05-01
We derive the Boltzmann equation for the rotranslational dynamics of an arbitrary convex rigid body in a rarefied gas. It yields as a limiting case the Fokker-Planck equation accounting for friction, diffusion, and nonconservative drift forces and torques. We provide the rotranslational friction and diffusion tensors for specular and diffuse reflection off particles with spherical, cylindrical, and cuboidal shape, and show that the theory describes thermalization, photophoresis, and the inverse Magnus effect in the free molecular regime.
Trenti, Michele
2010-09-01
Intermediate Mass Black Holes {IMBHs} are objects of considerable astrophysical significance. They have been invoked as possible remnants of Population III stars, precursors of supermassive black holes, sources of ultra-luminous X-ray emission, and emitters of gravitational waves. The centers of globular clusters, where they may have formed through runaway collapse of massive stars, may be our best chance of detecting them. HST studies of velocity dispersions have provided tentative evidence, but the measurements are difficult and the results have been disputed. It is thus important to explore and develop additional indicators of the presence of an IMBH in these systems. In a Cycle 16 theory project we focused on the fingerprints of an IMBH derived from HST photometry. We showed that an IMBH leads to a detectable quenching of mass segregation. Analysis of HST-ACS data for NGC 2298 validated the method, and ruled out an IMBH of more than 300 solar masses. We propose here to extend the search for IMBH signatures from photometry to kinematics. The velocity dispersion of stars in collisionally relaxed stellar systems such as globular clusters scales with main sequence mass as sigma m^alpha. A value alpha = -0.5 corresponds to equipartition. Mass-dependent kinematics can now be measured from HST proper motion studies {e.g., alpha = -0.21 for Omega Cen}. Preliminary analysis shows that the value of alpha can be used as indicator of the presence of an IMBH. In fact, the quenching of mass segregation is a result of the degree of equipartition that the system attains. However, detailed numerical simulations are required to quantify this. Therefore we propose {a} to carry out a new, larger set of realistic N-body simulations of star clusters with IMBHs, primordial binaries and stellar evolution to predict in detail the expected kinematic signatures and {b} to compare these predictions to datasets that are {becoming} available. Considerable HST resources have been invested in
PVR: Patch-to-Volume Reconstruction for Large Area Motion Correction of Fetal MRI.
Alansary, Amir; Rajchl, Martin; McDonagh, Steven G; Murgasova, Maria; Damodaram, Mellisa; Lloyd, David F A; Davidson, Alice; Rutherford, Mary; Hajnal, Joseph V; Rueckert, Daniel; Kainz, Bernhard
2017-10-01
In this paper, we present a novel method for the correction of motion artifacts that are present in fetal magnetic resonance imaging (MRI) scans of the whole uterus. Contrary to current slice-to-volume registration (SVR) methods, requiring an inflexible anatomical enclosure of a single investigated organ, the proposed patch-to-volume reconstruction (PVR) approach is able to reconstruct a large field of view of non-rigidly deforming structures. It relaxes rigid motion assumptions by introducing a specific amount of redundant information that is exploited with parallelized patchwise optimization, super-resolution, and automatic outlier rejection. We further describe and provide an efficient parallel implementation of PVR allowing its execution within reasonable time on commercially available graphics processing units, enabling its use in the clinical practice. We evaluate PVR's computational overhead compared with standard methods and observe improved reconstruction accuracy in the presence of affine motion artifacts compared with conventional SVR in synthetic experiments. Furthermore, we have evaluated our method qualitatively and quantitatively on real fetal MRI data subject to maternal breathing and sudden fetal movements. We evaluate peak-signal-to-noise ratio, structural similarity index, and cross correlation with respect to the originally acquired data and provide a method for visual inspection of reconstruction uncertainty. We further evaluate the distance error for selected anatomical landmarks in the fetal head, as well as calculating the mean and maximum displacements resulting from automatic non-rigid registration to a motion-free ground truth image. These experiments demonstrate a successful application of PVR motion compensation to the whole fetal body, uterus, and placenta.
A rigidity transition and glassy dynamics in a model for confluent 3D tissues
Merkel, Matthias; Manning, M. Lisa
The origin of rigidity in disordered materials is an outstanding open problem in statistical physics. Recently, a new type of rigidity transition was discovered in a family of models for 2D biological tissues, but the mechanisms responsible for rigidity remain unclear. This is not just a statistical physics problem, but also relevant for embryonic development, cancer growth, and wound healing. To gain insight into this rigidity transition and make new predictions about biological bulk tissues, we have developed a fully 3D self-propelled Voronoi (SPV) model. The model takes into account shape, elasticity, and self-propelled motion of the individual cells. We find that in the absence of self-propulsion, this model exhibits a rigidity transition that is controlled by a dimensionless model parameter describing the preferred cell shape, with an accompanying structural order parameter. In the presence of self-propulsion, the rigidity transition appears as a glass-like transition featuring caging and aging effects. Given the similarities between this transition and jamming in particulate solids, it is natural to ask if the two transitions are related. By comparing statistics of Voronoi geometries, we show the transitions are surprisingly close but demonstrably distinct. Furthermore, an index theorem used to identify topologically protected mechanical modes in jammed systems can be extended to these vertex-type models. In our model, residual stresses govern the transition and enter the index theorem in a different way compared to jammed particles, suggesting the origin of rigidity may be different between the two.
Air loads on a rigid plate oscillating normal to a fixed surface
Beltman, W.M.; van der Hoogt, Peter; Spiering, R.M.E.J.; Tijdeman, H.
1997-01-01
This paper deals with the theoretical and experimental investigation on a rigid, rectangular plate oscillating in the proximity of a fixed surface. The plate is suspended by springs. The airloads generated by the oscillating motion of the plate are determined. Due to the fact that the plate is
Transmission of wave energy in curved ducts. [acoustic propagation within rigid walls
Rostafinski, W.
1974-01-01
Investigation of the ability of circular bends to transmit acoustic energy flux. A formulation of wave-energy flow is developed for motion in curved ducts. A parametric study over a range of frequencies shows the ability of circular bends to transmit energy in the case of perfectly rigid walls.
Bonnefoy-Mazure, Alice; Martz, Pierre; Armand, Stéphane; Sagawa, Yoshimasa; Suva, Domizio; Turcot, Katia; Miozzari, Hermes H; Lübbeke, Anne
2017-08-01
The purpose of this prospective study was to investigate the influence of body mass index (BMI) on gait parameters preoperatively and 1 year after total knee arthroplasty (TKA). Seventy-nine patients were evaluated before and 1 year after TKA using clinical gait analysis. The gait velocity, the knee range of motion (ROM) during gait, their gains (difference between baseline and 1 year after TKA), the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), quality of life, and patient satisfaction were assessed. Nonobese (BMI gait speed and ROM gains. Adjustment was performed for gender, age, and WOMAC pain improvement. At baseline, gait velocity and knee ROM were significantly lower in obese compared with those in the nonobese patients (0.99 ± 0.27 m/s vs 1.11 ± 0.18 m/s; effect size, 0.53; P = .021; and ROM, 41.33° ± 9.6° vs 46.05° ± 8.39°; effect size, 0.52; P = .022). Univariate and multivariate linear regressions did not show any significant relation between gait speed gain or knee ROM gain and BMI. At baseline, obese patients were more symptomatic than nonobese (WOMAC pain: 36.1 ± 14.0 vs 50.4 ± 16.9; effect size, 0.9; P < .001), and their improvement was significantly higher (WOMAC pain gain, 44.5 vs 32.3; effect size, 0.59; P = .011). These findings show that all patients improved biomechanically and clinically, regardless of their BMI. Copyright © 2017 Elsevier Inc. All rights reserved.
Motion correction in thoracic positron emission tomography
Gigengack, Fabian; Dawood, Mohammad; Schäfers, Klaus P
2015-01-01
Respiratory and cardiac motion leads to image degradation in Positron Emission Tomography (PET), which impairs quantification. In this book, the authors present approaches to motion estimation and motion correction in thoracic PET. The approaches for motion estimation are based on dual gating and mass-preserving image registration (VAMPIRE) and mass-preserving optical flow (MPOF). With mass-preservation, image intensity modulations caused by highly non-rigid cardiac motion are accounted for. Within the image registration framework different data terms, different variants of regularization and parametric and non-parametric motion models are examined. Within the optical flow framework, different data terms and further non-quadratic penalization are also discussed. The approaches for motion correction particularly focus on pipelines in dual gated PET. A quantitative evaluation of the proposed approaches is performed on software phantom data with accompanied ground-truth motion information. Further, clinical appl...
International Nuclear Information System (INIS)
Badkul, R; Pokhrel, D; Jiang, H; Lominska, C; Wang, F; Ramanjappa, T
2016-01-01
Purpose: Intra-fractional tumor motion due to respiration may potentially compromise dose delivery for SBRT of lung tumors. Even sufficient margins are used to ensure there is no geometric miss of target volume, there is potential dose blurring effect may present due to motion and could impact the tumor coverage if motions are larger. In this study we investigated dose blurring effect of open fields as well as Lung SBRT patients planned using 2 non-coplanar dynamic conformal arcs(NCDCA) and few conformal beams(CB) calculated with Monte Carlo (MC) based algorithm utilizing phantom with 2D-diode array(MapCheck) and ion-chamber. Methods: SBRT lung patients were planned on Brainlab-iPlan system using 4D-CT scan and ITV were contoured on MIP image set and verified on all breathing phase image sets to account for breathing motion and then 5mm margin was applied to generate PTV. Plans were created using two NCDCA and 4-5 CB 6MV photon calculated using XVMC MC-algorithm. 3 SBRT patients plans were transferred to phantom with MapCheck and 0.125cc ion-chamber inserted in the middle of phantom to calculate dose. Also open field 3×3, 5×5 and 10×10 were calculated on this phantom. Phantom was placed on motion platform with varying motion from 5, 10, 20 and 30 mm with duty cycle of 4 second. Measurements were carried out for open fields as well 3 patients plans at static and various degree of motions. MapCheck planar dose and ion-chamber reading were collected and compared with static measurements and computed values to evaluate the dosimetric effect on tumor coverage due to motion. Results: To eliminate complexity of patients plan 3 simple open fields were also measured to see the dose blurring effect with the introduction of motion. All motion measured ionchamber values were normalized to corresponding static value. For open fields 5×5 and 10×10 normalized central axis ion-chamber values were 1.00 for all motions but for 3×3 they were 1 up to 10mm motion and 0.97 and 0
Heave motion prediction of a large barge in random seas by using artificial neural network
Lee, Hsiu Eik; Liew, Mohd Shahir; Zawawi, Noor Amila Wan Abdullah; Toloue, Iraj
2017-11-01
This paper describes the development of a multi-layer feed forward artificial neural network (ANN) to predict rigid heave body motions of a large catenary moored barge subjected to multi-directional irregular waves. The barge is idealized as a rigid plate of finite draft with planar dimensions 160m (length) and 100m (width) which is held on station using a six point chain catenary mooring in 50m water depth. Hydroelastic effects are neglected from the physical model as the chief intent of this study is focused on large plate rigid body hydrodynamics modelling using ANN. Even with this assumption, the computational requirements for time domain coupled hydrodynamic simulations of a moored floating body is considerably costly, particularly if a large number of simulations are required such as in the case of response based design (RBD) methods. As an alternative to time consuming numerical hydrodynamics, a regression-type ANN model has been developed for efficient prediction of the barge's heave responses to random waves from various directions. It was determined that a network comprising of 3 input features, 2 hidden layers with 5 neurons each and 1 output was sufficient to produce acceptable predictions within 0.02 mean squared error. By benchmarking results from the ANN with those generated by a fully coupled dynamic model in OrcaFlex, it is demonstrated that the ANN is capable of predicting the barge's heave responses with acceptable accuracy.
Ahmad, Sahar; Khan, Muhammad Faisal
2015-12-01
In this paper, we present a new non-rigid image registration method that imposes a topology preservation constraint on the deformation. We propose to incorporate the time varying elasticity model into the deformable image matching procedure and constrain the Jacobian determinant of the transformation over the entire image domain. The motion of elastic bodies is governed by a hyperbolic partial differential equation, generally termed as elastodynamics wave equation, which we propose to use as a deformation model. We carried out clinical image registration experiments on 3D magnetic resonance brain scans from IBSR database. The results of the proposed registration approach in terms of Kappa index and relative overlap computed over the subcortical structures were compared against the existing topology preserving non-rigid image registration methods and non topology preserving variant of our proposed registration scheme. The Jacobian determinant maps obtained with our proposed registration method were qualitatively and quantitatively analyzed. The results demonstrated that the proposed scheme provides good registration accuracy with smooth transformations, thereby guaranteeing the preservation of topology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dielectric polymer: scavenging energy from human motion
Jean-Mistral, Claire; Basrour, Skandar; Chaillout, Jean-Jacques
2008-03-01
More and more sensors are embedded in human body for medical applications, for sport. The short lifetime of the batteries, available on the market, reveals a real problem of autonomy of these systems. A promising alternative is to scavenge the ambient energy such as the mechanical one. Up to now, few scavenging structures have operating frequencies compatible with ambient one. And, most of the developed structures are rigid and use vibration as mechanical source. For these reasons, we developed a scavenger that operates in a large frequency spectrum from quasi-static to dynamic range. This generator is fully flexible, light and does not hamper the human motion. Thus, we report in this paper an analytical model for dielectric generator with news electrical and mechanical characterization, and the development of an innovating application: scavenging energy from human motion. The generator is located on the knee and design to scavenge 0.1mJ per scavenging cycle at a frequency of 1Hz, enough to supply a low consumption system and with a poling voltage as low as possible to facilitate the power management. Our first prototype is a membrane with an area of 5*3cm and 31Âµm in thickness which scavenge 0.1mJ under 170V at constant charge Q.
Algebraic motion of vertically displacing plasmas
Pfefferlé, D.; Bhattacharjee, A.
2018-02-01
The vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to come in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear "sinking" behaviour shown to be algebraic and decelerating. The acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.
Topological orders in rigid states
International Nuclear Information System (INIS)
Wen, X.G.
1990-01-01
The authors study a new kind of ordering topological order in rigid states (the states with no local gapless excitations). This paper concentrates on characterization of the different topological orders. As an example the authors discuss in detail chiral spin states of 2+1 dimensional spin systems. Chiral spin states are described by the topological Chern-Simons theories in the continuum limit. The authors show that the topological orders can be characterized by a non-Abelian gauge structure over the moduli space which parametrizes a family of the model Hamiltonians supporting topologically ordered ground states. In 2 + 1 dimensions, the non-Abelian gauge structure determines possible fractional statistics of the quasi-particle excitations over the topologically ordered ground states. The dynamics of the low lying global excitations is shown to be independent of random spatial dependent perturbations. The ground state degeneracy and the non-Abelian gauge structures discussed in this paper are very robust, even against those perturbations that break translation symmetry. The authors also discuss the symmetry properties of the degenerate ground states of chiral spin states. The authors find that some degenerate ground states of chiral spin states on torus carry non-trivial quantum numbers of the 90 degrees rotation
ANALYTIC EVALUATION OF RECTILINEARITY OF LOW RIGIDITY SHAFT DURING HARDENING PROCESS
Directory of Open Access Journals (Sweden)
Antoni Świć
2013-03-01
Full Text Available The essential influence of the unevenness of temperature distribution while heating in the technological process on dimensions stability of low rigidity elements was shown. The new approach was applied to formulate mathematical models, which describe the elastic and inelastic behaviour of piece using transfer functions and block diagrams, allowing to use frequency method for evaluation of the behaviour of dynamic semi-finished element as the rigid body.
Dynamic Human Body Modeling Using a Single RGB Camera.
Zhu, Haiyu; Yu, Yao; Zhou, Yu; Du, Sidan
2016-03-18
In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones.
Image sequence analysis workstation for multipoint motion analysis
Mostafavi, Hassan
1990-08-01
This paper describes an application-specific engineering workstation designed and developed to analyze motion of objects from video sequences. The system combines the software and hardware environment of a modem graphic-oriented workstation with the digital image acquisition, processing and display techniques. In addition to automation and Increase In throughput of data reduction tasks, the objective of the system Is to provide less invasive methods of measurement by offering the ability to track objects that are more complex than reflective markers. Grey level Image processing and spatial/temporal adaptation of the processing parameters is used for location and tracking of more complex features of objects under uncontrolled lighting and background conditions. The applications of such an automated and noninvasive measurement tool include analysis of the trajectory and attitude of rigid bodies such as human limbs, robots, aircraft in flight, etc. The system's key features are: 1) Acquisition and storage of Image sequences by digitizing and storing real-time video; 2) computer-controlled movie loop playback, freeze frame display, and digital Image enhancement; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored Image sequence; 4) model-based estimation and tracking of the six degrees of freedom of a rigid body: 5) field-of-view and spatial calibration: 6) Image sequence and measurement data base management; and 7) offline analysis software for trajectory plotting and statistical analysis.
Dipteran insect flight dynamics. Part 1 Longitudinal motion about hover.
Faruque, Imraan; Sean Humbert, J
2010-05-21
This paper presents a reduced-order model of longitudinal hovering flight dynamics for dipteran insects. The quasi-steady wing aerodynamics model is extended by including perturbation states from equilibrium and paired with rigid body equations of motion to create a nonlinear simulation of a Drosophila-like insect. Frequency-based system identification tools are used to identify the transfer functions from biologically inspired control inputs to rigid body states. Stability derivatives and a state space linear system describing the dynamics are also identified. The vehicle control requirements are quantified with respect to traditional human pilot handling qualities specification. The heave dynamics are found to be decoupled from the pitch/fore/aft dynamics. The haltere-on system revealed a stabilized system with a slow (heave) and fast subsidence mode, and a stable oscillatory mode. The haltere-off (bare airframe) system revealed a slow (heave) and fast subsidence mode and an unstable oscillatory mode, a modal structure in agreement with CFD studies. The analysis indicates that passive aerodynamic mechanisms contribute to stability, which may help explain how insects are able to achieve stable locomotion on a very small computational budget. Copyright (c) 2010. Published by Elsevier Ltd.
RapidRMSD: Rapid determination of RMSDs corresponding to motions of flexible molecules.
Neveu, Emilie; Popov, Petr; Hoffmann, Alexandre; Migliosi, Angelo; Besseron, Xavier; Danoy, Grégoire; Bouvry, Pascal; Grudinin, Sergei
2018-03-15
The root mean square deviation (RMSD) is one of the most used similarity criteria in structural biology and bioinformatics. Standard computation of the RMSD has a linear complexity with respect to the number of atoms in a molecule, making RMSD calculations time-consuming for the large-scale modeling applications, such as assessment of molecular docking predictions or clustering of spatially proximate molecular conformations. Previously we introduced the RigidRMSD algorithm to compute the RMSD corresponding to the rigid-body motion of a molecule. In this study we go beyond the limits of the rigid-body approximation by taking into account conformational flexibility of the molecule. We model the flexibility with a reduced set of collective motions computed with e.g. normal modes or principal component analysis. The initialization of our algorithm is linear in the number of atoms and all the subsequent evaluations of RMSD values between flexible molecular conformations depend only on the number of collective motions that are selected to model the flexibility. Therefore, our algorithm is much faster compared to the standard RMSD computation for large-scale modeling applications. We demonstrate the efficiency of our method on several clustering examples, including clustering of flexible docking results and molecular dynamics (MD) trajectories. We also demonstrate how to use the presented formalism to generate pseudo-random constant-RMSD structural molecular ensembles and how to use these in cross-docking. We provide the algorithm written in C ++ as the open-source RapidRMSD library governed by the BSD-compatible license, which is available at http://team.inria.fr/nano-d/software/RapidRMSD/. The constant-RMSD structural ensemble application and clustering of MD trajectories is available at http://team.inria.fr/nano-d/software/nolb-normal-modes/. sergei.grudinin@inria.fr. Supplementary data are available at Bioinformatics.
Küstner, Thomas; Würslin, Christian; Schwartz, Martin; Martirosian, Petros; Gatidis, Sergios; Brendle, Cornelia; Seith, Ferdinand; Schick, Fritz; Schwenzer, Nina F; Yang, Bin; Schmidt, Holger
2017-08-01
To enable fast and flexible high-resolution four-dimensional (4D) MRI of periodic thoracic/abdominal motion for motion visualization or motion-corrected imaging. We proposed a Cartesian three-dimensional k-space sampling scheme that acquires a random combination of k-space lines in the ky/kz plane. A partial Fourier-like constraint compacts the sampling space to one half of k-space. The central k-space line is periodically acquired to allow an extraction of a self-navigated respiration signal used to populate a k-space of multiple breathing positions. The randomness of the acquisition (induced by periodic breathing pattern) yields a subsampled k-space that is reconstructed using compressed sensing. Local image evaluations (coefficient of variation and slope steepness through organs) reveal information about motion resolvability. Image quality is inspected by a blinded reading. Sequence and reconstruction method are made publicly available. The method is able to capture and reconstruct 4D images with high image quality and motion resolution within a short scan time of less than 2 min. These findings are supported by restricted-isometry-property analysis, local image evaluation, and blinded reading. The proposed method provides a clinical feasible setup to capture periodic respiratory motion with a fast acquisition protocol and can be extended by further surrogate signals to capture additional periodic motions. Retrospective parametrization allows for flexible tuning toward the targeted applications. Magn Reson Med 78:632-644, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
International Nuclear Information System (INIS)
Getino, J.; Miguel, D.; Escapa, A.
2010-01-01
This paper is the first part of an investigation where we will present an analytical general theory of the rotation of the non-rigid Earth at the second order, which considers the effects of the interaction of the rotation of the Earth with itself, also named as the spin-spin coupling. Here, and as a necessary step in the development of that theory, we derive complete, explicit, analytical formulae of the rigid Earth rotation that account for the second-order rotation-rotation interaction. These expressions are not provided in this form by any current rigid Earth model. Working within the Hamiltonian framework established by Kinoshita, we study the second-order effects arising from the interaction of the main term in the Earth geopotential expansion with itself, and with the complementary term arising when referring the rotational motion to the moving ecliptic. To this aim, we apply a canonical perturbation method to solve analytically the canonical equations at the second order, determining the expressions that provide the nutation-precession, the polar motion, and the length of day. In the case of the motion of the equatorial plane, nutation-precession, we compare our general approach with the particular study for this motion developed by Souchay et al., showing the existence of new terms whose numerical values are within the truncation level of 0.1 μas adopted by those authors. These terms emerge as a consequence of not assuming in this work the same restrictive simplifications taken by Souchay et al. The importance of these additional contributions is that, as the analytical formulae show, they depend on the Earth model considered, in such a way that the fluid core resonance could amplify them significatively when extending this theory to the non-rigid Earth models.
GPU-based discrete element rigid body transport
CSIR Research Space (South Africa)
Govender, Nicolin
2013-08-01
Full Text Available . For applications in coastal engineering and also in pavement engineering, the capture of particle shapes as polyhedra rather than clumped spheres is particularly important. The development of a Discrete Element Model applicable to both fields, and to industrial...
Reorientation of Asymmetric Rigid Body Using Two Controls
Directory of Open Access Journals (Sweden)
Donghoon Kim
2013-01-01
Full Text Available Most spacecrafts are designed to be maneuvered to achieve pointing goals. This is accomplished usually by designing a three-axis control system, which can achieve arbitrary maneuvers, where the goal is to repoint the spacecraft and match a desired angular velocity at the end of the maneuver. New control laws are required, however, if one of the three-axis control actuators fails. This paper explores suboptimal maneuver strategies when only two control torque inputs are available. To handle this underactuated system control problem, the three-axis maneuver strategy is transformed to two successive independent submaneuver strategies. The first maneuver is conducted on one of the available torque axes. Next, the second maneuver is conducted on the torque available plane using two available control torques. However, the resulting control law is more complicated than the general three-axis control law. This is because an optimal switch time needs to be found for determining the end time for the single-axis maneuver or the start time for the second maneuver. Numerical simulation results are presented that compare optimal maneuver strategies for both nominal and failed actuator cases.
Efficiency of wave-driven rigid body rotation toroidal confinement
Rax, J. M.; Gueroult, R.; Fisch, N. J.
2017-03-01
The compensation of vertical drifts in toroidal magnetic fields through a wave-driven poloidal rotation is compared with compensation through the wave driven toroidal current generation to support the classical magnetic rotational transform. The advantages and drawbacks associated with the sustainment of a radial electric field are compared with those associated with the sustainment of a poloidal magnetic field both in terms of energy content and power dissipation. The energy content of a radial electric field is found to be smaller than the energy content of a poloidal magnetic field for a similar set of orbits. The wave driven radial electric field generation efficiency is similarly shown, at least in the limit of large aspect ratio, to be larger than the efficiency of wave-driven toroidal current generation.
Quaternion Feedback Control for Rigid-body Spacecraft
DEFF Research Database (Denmark)
Jensen, Hans-Christian Becker; Wisniewski, Rafal
2001-01-01
This paper addresses three-axis attitude control for a Danish spacecraft, Roemer. The algorithm proposed is based on an approximation of the exact feedback linearisation for quaternionic attitude representation. The proposed attitude controller is tested in a simulation study. The environmental...
Analysis of Switched-Rigid Floating Oscillator
Directory of Open Access Journals (Sweden)
Prabhakar R. Marur
2009-01-01
Full Text Available In explicit finite element simulations, a technique called deformable-to-rigid (D2R switching is used routinely to reduce the computation time. Using the D2R option, the deformable parts in the model can be switched to rigid and reverted back to deformable when needed during the analysis. The time of activation of D2R however influences the overall dynamics of the system being analyzed. In this paper, a theoretical basis for the selection of time of rigid switching based on system energy is established. A floating oscillator problem is investigated for this purpose and closed-form analytical expressions are derived for different phases in rigid switching. The analytical expressions are validated by comparing the theoretical results with numerical computations.
Rigid pricing and rationally inattentive consumer
Czech Academy of Sciences Publication Activity Database
Matějka, Filip
158 B, July (2015), s. 656-678 ISSN 0022-0531 Institutional support: PRVOUK-P23 Keywords : rational inattention * imperfect information * nominal rigidity Subject RIV: AH - Economics Impact factor: 1.097, year: 2015
Rigid pricing and rationally inattentive consumer
Czech Academy of Sciences Publication Activity Database
Matějka, Filip
158 B, July (2015), s. 656-678 ISSN 0022-0531 Institutional support: RVO:67985998 Keywords : rational inattention * imperfect information * nominal rigidity Subject RIV: AH - Economics Impact factor: 1.097, year: 2015
Soft soils reinforced by rigid vertical inclusions
Directory of Open Access Journals (Sweden)
Iulia-Victoria NEAGOE
2013-12-01
Full Text Available Reinforcement of soft soils by rigid vertical inclusions is an increasingly used technique over the last few years. The system consists of rigid or semi-rigid vertical inclusions and a granular platform for the loads transfer from the structure to the inclusions. This technique aims to reduce the differential settlements both at ground level as below the structure. Reinforcement by rigid inclusions is mainly used for foundation works for large commercial and industrial platforms, storage tanks, wastewater treatment plants, wind farms, bridges, roads, railway embankments. The subject is one of interest as it proves the recently concerns at international level in research and design; however, most studies deal more with the static behavior and less with the dynamic one.
Crack identification for rigid pavements using unmanned aerial vehicles
Bahaddin Ersoz, Ahmet; Pekcan, Onur; Teke, Turker
2017-09-01
Pavement condition assessment is an essential piece of modern pavement management systems as rehabilitation strategies are planned based upon its outcomes. For proper evaluation of existing pavements, they must be continuously and effectively monitored using practical means. Conventionally, truck-based pavement monitoring systems have been in-use in assessing the remaining life of in-service pavements. Although such systems produce accurate results, their use can be expensive and data processing can be time consuming, which make them infeasible considering the demand for quick pavement evaluation. To overcome such problems, Unmanned Aerial Vehicles (UAVs) can be used as an alternative as they are relatively cheaper and easier-to-use. In this study, we propose a UAV based pavement crack identification system for monitoring rigid pavements’ existing conditions. The system consists of recently introduced image processing algorithms used together with conventional machine learning techniques, both of which are used to perform detection of cracks on rigid pavements’ surface and their classification. Through image processing, the distinct features of labelled crack bodies are first obtained from the UAV based images and then used for training of a Support Vector Machine (SVM) model. The performance of the developed SVM model was assessed with a field study performed along a rigid pavement exposed to low traffic and serious temperature changes. Available cracks were classified using the UAV based system and obtained results indicate it ensures a good alternative solution for pavement monitoring applications.
[Stability of ventral, dorsal and combined spondylodesis in vertebral body prosthesis implantation].
Vahldiek, M; Gossè, F; Panjabi, M M
2002-05-01
The purpose of this study was to evaluate the biomechanical characteristics of short-segment anterior, posterior, and combined instrumentations in lumbar spine vertebral body replacement surgery. Eight fresh frozen human cadaveric thoracolumbar spine specimens (T12-L4) were prepared for biomechanical testing. Pure moments (2.5, 5, and 7.5 Nm) of flexion-extension, left-right axial torsion, and left-right lateral bending were applied to the top vertebra in a flexibility machine and the motions of L1 vertebra with respect to L3 were recorded with an optoelectronic motion measurement system after preconditioning. One anterior, two posterior pedicle screw systems, and two combined instrumentations were tested. Load-displacement curves were recorded and neutral zone (NZ) and range of motion (ROM) were determined. The anterior instrumentation, after vertebral body replacement, showed greater motion than the intact spine, especially in axial torsion. Posterior instrumentation provided greater rigidity than the anterior instrumentation, especially in flexion-extension. The combined instrumentation provided superior rigidity in all directions compared to all other instrumentations.
Flexible and rigid cystoscopy in women.
Gee, Jason R; Waterman, Bradley J; Jarrard, David F; Hedican, Sean P; Bruskewitz, Reginald C; Nakada, Stephen Y
2009-01-01
Previous studies have evaluated the tolerability of rigid versus flexible cystoscopy in men. Similar studies, however, have not been performed in women. We sought to determine whether office-based flexible cystoscopy was better tolerated than rigid cystoscopy in women. Following full IRB approval, women were prospectively randomized in a single-blind manner. Patients were randomized to flexible or rigid cystoscopy and draped in the lithotomy position to maintain blinding of the study. Questionnaires evaluated discomfort before, during, and after cystoscopy. Thirty-six women were randomized to flexible (18) or rigid (18) cystoscopy. Indications were surveillance (16), hematuria (15), recurrent UTIs (2), voiding dysfunction (1), and other (2). All questionnaires were returned by 31/36 women. Using a 10-point visual analog scale (VAS), median discomfort during the procedure for flexible and rigid cystoscopy were 1.4 and 1.8, respectively, in patients perceiving pain. Median recalled pain 1 week later was similar at 0.8 and 1.15, respectively. None of these differences were statistically significant. Flexible and rigid cystoscopy are well tolerated in women. Discomfort during and after the procedure is minimal in both groups. Urologists should perform either procedure in women based on their preference and skill level.
International Nuclear Information System (INIS)
Pollock, S; Tse, R; Martin, D; McLean, L; Pham, M; Tait, D; Estoesta, R; Whittington, G; Turley, J; Kearney, C; Cho, G; Pickard, S; Aston, P; Hill, R; Makhija, K; O’Brien, R; Keall, P
2016-01-01
Purpose: In abdominal radiotherapy inconsistent interfraction respiratory motion can result in deviations during treatment from what was planned in terms of target position and motion. Audiovisual biofeedback (AVB) is an interactive respiratory guide that produces a guiding interface that the patient follows over a course of radiotherapy to facilitate regular respiratory motion. This study assessed the impact of AVB on interfraction motion consistency over a course of liver cancer SBRT. Methods: Five liver cancer patients have been recruited into this study, 3 followed AVB over their course of SBRT and 2 were free breathing (FB). Respiratory signals from the Varian RPM were obtained during 4DCT and each treatment fraction. Respiratory signals were organized into 10 respiratory bins, and interfraction consistency was quantified by the difference between each treatment fraction respiratory bin and each respiratory bin from 4DCT. Interfraction consistency was considered as both the relative difference (as a percentage) and absolute difference (in centimeters) between treatment respiratory bins and 4DCT respiratory bins. Results: The relative difference between 4DCT and treatment respiratory bins was 22 ± 16% for FB, and 15 ± 10% for AVB, an improvement of 32% (p < 0.001) with AVB. The absolute difference between 4DCT and treatment respiratory bins was 0.15 ± 0.10 cm for FB, and 0.14 ± 0.13 cm for AVB, an improvement of 4% (p = 0.6) with AVB. Conclusion: This was the first study to compare the impact of AVB breathing guidance on interfraction motion consistency over a course of radiotherapy. AVB demonstrated to significantly reduce the relative difference between 4DCT and treatment respiratory motion, but the absolute differences were comparable, largely due to one AVB patient exhibiting a larger amplitude than the other patients. This study demonstrates the potential benefit of AVB in reducing motion variations during treatment from what was planned. Paul Keall
Energy Technology Data Exchange (ETDEWEB)
Pollock, S [Radiation Physics Laboratory, Sydney (Australia); Tse, R; Martin, D; McLean, L; Pham, M; Tait, D; Estoesta, R; Whittington, G; Turley, J; Kearney, C; Cho, G; Pickard, S; Aston, P [Chris OBrien Lifehouse, Sydney, NSW (Australia); Hill, R [Chris OBrien Lifehouse Camperdown (Australia); Makhija, K [University of Sydney, Camperdown, NSW (Australia); O’Brien, R; Keall, P [University of Sydney, Sydney, NSW (Australia)
2016-06-15
Purpose: In abdominal radiotherapy inconsistent interfraction respiratory motion can result in deviations during treatment from what was planned in terms of target position and motion. Audiovisual biofeedback (AVB) is an interactive respiratory guide that produces a guiding interface that the patient follows over a course of radiotherapy to facilitate regular respiratory motion. This study assessed the impact of AVB on interfraction motion consistency over a course of liver cancer SBRT. Methods: Five liver cancer patients have been recruited into this study, 3 followed AVB over their course of SBRT and 2 were free breathing (FB). Respiratory signals from the Varian RPM were obtained during 4DCT and each treatment fraction. Respiratory signals were organized into 10 respiratory bins, and interfraction consistency was quantified by the difference between each treatment fraction respiratory bin and each respiratory bin from 4DCT. Interfraction consistency was considered as both the relative difference (as a percentage) and absolute difference (in centimeters) between treatment respiratory bins and 4DCT respiratory bins. Results: The relative difference between 4DCT and treatment respiratory bins was 22 ± 16% for FB, and 15 ± 10% for AVB, an improvement of 32% (p < 0.001) with AVB. The absolute difference between 4DCT and treatment respiratory bins was 0.15 ± 0.10 cm for FB, and 0.14 ± 0.13 cm for AVB, an improvement of 4% (p = 0.6) with AVB. Conclusion: This was the first study to compare the impact of AVB breathing guidance on interfraction motion consistency over a course of radiotherapy. AVB demonstrated to significantly reduce the relative difference between 4DCT and treatment respiratory motion, but the absolute differences were comparable, largely due to one AVB patient exhibiting a larger amplitude than the other patients. This study demonstrates the potential benefit of AVB in reducing motion variations during treatment from what was planned. Paul Keall
Wells, Jered R.; Segars, W. Paul; Kigongo, Christopher J. N.; Dobbins, James T., III
2011-03-01
This paper describes a recently developed post-acquisition motion correction strategy for application to lower-cost computed tomography (LCCT) for under-resourced regions of the world. Increased awareness regarding global health and its challenges has encouraged the development of more affordable healthcare options for underserved people worldwide. In regions such as sub-Saharan Africa, intermediate level medical facilities may serve millions with inadequate or antiquated equipment due to financial limitations. In response, the authors have proposed a LCCT design which utilizes a standard chest x-ray examination room with a digital flat panel detector (FPD). The patient rotates on a motorized stage between the fixed cone-beam source and FPD, and images are reconstructed using a Feldkamp algorithm for cone-beam scanning. One of the most important proofs-of-concept in determining the feasibility of this system is the successful correction of undesirable motion. A 3D motion correction algorithm was developed in order to correct for potential patient motion, stage instabilities and detector misalignments which can all lead to motion artifacts in reconstructed images. Motion will be monitored by the radiographic position of fiducial markers to correct for rigid body motion in three dimensions. Based on simulation studies, projection images corrupted by motion were re-registered with average errors of 0.080 mm, 0.32 mm and 0.050 mm in the horizontal, vertical and depth dimensions, respectively. The overall absence of motion artifacts in motion-corrected reconstructions indicates that reasonable amounts of motion may be corrected using this novel technique without significant loss of image quality.
Directory of Open Access Journals (Sweden)
Ravil’ Kudermetov
2018-02-01
Full Text Available Nowadays multi-core processors are installed almost in each modern workstation, but the question of these computational resources effective utilization is still a topical one. In this paper the four-point block one-step integration method is considered, the parallel algorithm of this method is proposed and the Java programmatic implementation of this algorithm is discussed. The effectiveness of the proposed algorithm is demonstrated by way of spacecraft attitude motion simulation. The results of this work can be used for practical simulation of dynamic systems that are described by ordinary differential equations. The results are also applicable to the development and debugging of computer programs that integrate the dynamic and kinematic equations of the angular motion of a rigid body.
Gluck, P.; Krakower, Zeev
2010-01-01
We present a unit comprising theory, simulation and experiment for a body oscillating on a vertical spring, in which the simultaneous use of a force probe and an ultrasonic range finder enables one to explore quantitatively and understand many aspects of simple and damped harmonic motions. (Contains 14 figures.)
Estimation of object motion parameters from noisy images.
Broida, T J; Chellappa, R
1986-01-01
An approach is presented for the estimation of object motion parameters based on a sequence of noisy images. The problem considered is that of a rigid body undergoing unknown rotational and translational motion. The measurement data consists of a sequence of noisy image coordinates of two or more object correspondence points. By modeling the object dynamics as a function of time, estimates of the model parameters (including motion parameters) can be extracted from the data using recursive and/or batch techniques. This permits a desired degree of smoothing to be achieved through the use of an arbitrarily large number of images. Some assumptions regarding object structure are presently made. Results are presented for a recursive estimation procedure: the case considered here is that of a sequence of one dimensional images of a two dimensional object. Thus, the object moves in one transverse dimension, and in depth, preserving the fundamental ambiguity of the central projection image model (loss of depth information). An iterated extended Kalman filter is used for the recursive solution. Noise levels of 5-10 percent of the object image size are used. Approximate Cramer-Rao lower bounds are derived for the model parameter estimates as a function of object trajectory and noise level. This approach may be of use in situations where it is difficult to resolve large numbers of object match points, but relatively long sequences of images (10 to 20 or more) are available.
Directory of Open Access Journals (Sweden)
Karan Madan
2014-01-01
Full Text Available Background and Aim: Rigid bronchoscopy is often an indispensable procedure in the therapeutic management of a wide variety of tracheobronchial disorders. However, it is performed at only a few centers in adult patients in India. Herein, we report our initial 1-year experience with this procedure. Materials and Methods: A prospective observational study on the indications, outcomes, and safety of various rigid bronchoscopy procedures performed between November 2009 and October 2010. Improvement in dyspnea, cough, and the overall quality of life was recorded on a visual analog scale from 0 to 100 mm. A systematic review of PubMed was performed to identify studies reporting the use of rigid bronchoscopy from India. Results: Thirty-eight rigid bronchoscopies (50 procedures were performed in 19 patients during the study period. The commonest indication was benign tracheal stenosis followed by central airway tumor, and the procedures performed were rigid bronchoplasty, tumor debulking, and stent placement. The median procedure duration was 45 (range, 30-65 min. There was significant improvement in quality of life associated with therapeutic rigid bronchoscopy. Minor procedural complications were encountered in 18 bronchoscopies, and there was no procedural mortality. The systematic review identified 15 studies, all on the role of rigid bronchoscopy in foreign body removal. Conclusions: Rigid bronchoscopy is a safe and effective modality for treatment of a variety of tracheobronchial disorders. There is a dire need of rigid bronchoscopy training at teaching hospitals in India.
A Soft Gripper with Rigidity Tunable Elastomer Strips as Ligaments.
Nasab, Amir Mohammadi; Sabzehzar, Amin; Tatari, Milad; Majidi, Carmel; Shan, Wanliang
2017-12-01
Like their natural counterparts, soft bioinspired robots capable of actively tuning their mechanical rigidity can rapidly transition between a broad range of motor tasks-from lifting heavy loads to dexterous manipulation of delicate objects. Reversible rigidity tuning also enables soft robot actuators to reroute their internal loading and alter their mode of deformation in response to intrinsic activation. In this study, we demonstrate this principle with a three-fingered pneumatic gripper that contains "programmable" ligaments that change stiffness when activated with electrical current. The ligaments are composed of a conductive, thermoplastic elastomer composite that reversibly softens under resistive heating. Depending on which ligaments are activated, the gripper will bend inward to pick up an object, bend laterally to twist it, and bend outward to release it. All of the gripper motions are generated with a single pneumatic source of pressure. An activation-deactivation cycle can be completed within 15 s. The ability to incorporate electrically programmable ligaments in a pneumatic or hydraulic actuator has the potential to enhance versatility and reduce dependency on tubing and valves.
On the dynamics of semi-rigid chains
International Nuclear Information System (INIS)
Rodriguez Talavera, R.; Alexander-Katz, R.
1993-01-01
The dynamics of a semi-rigid polymer chain is studied. The force structure of the chain is derived from the statistics generated through a Wiener measure whose end-to-end distance is that of a Kratky-Porod chain. Additionally, the dissipative terms in the equation of motion will contain, besides the usual Stokes' term, a non-local friction term (internal viscosity) which is quadratic in the normal mode q, in order to take into account the resistance to changes in curvature. The analytical shape of this term is the same as the one introduced by Edwards and Freed. We show that this model of stiff chain reproduces both asymptotic limits: the flexible and the rod limits for the elastic moduli. A form for the internal viscosity coefficient is deduced from a phenomenological approach, which has the right solvent viscosity dependency as obtained by MacInnes. (Author)
Persistence-Driven Durotaxis: Generic, Directed Motility in Rigidity Gradients
Novikova, Elizaveta A.; Raab, Matthew; Discher, Dennis E.; Storm, Cornelis
2017-02-01
Cells move differently on substrates with different rigidities: the persistence time of their motion is higher on stiffer substrates. We show that this behavior—in and of itself—results in a net flux of cells directed up a soft-to-stiff gradient. Using simple random walk models with varying persistence and stochastic simulations, we characterize the propensity to move in terms of the durotactic index also measured in experiments. A one-dimensional model captures the essential features and highlights the competition between diffusive spreading and linear, wavelike propagation. Persistence-driven durokinesis is generic and may be of use in the design of instructive environments for cells and other motile, mechanosensitive objects.
Energy Technology Data Exchange (ETDEWEB)
Unseren, M.A.
1994-04-01
A rigid body model for the entire system which accounts for the load distribution scheme proposed in Part 1 as well as for the dynamics of the manipulators and the kinematic constraints is derived in the joint space. A technique is presented for expressing the object dynamics in terms of the joint variables of both manipulators which leads to a positive definite and symmetric inertia matrix. The model is then transformed to obtain reduced order equations of motion and a separate set of equations which govern the behavior of the internal contact forces. The control architecture is applied to the model which results in the explicit decoupling of the position and internal contact force-controlled degrees of freedom (DOF).
DEFF Research Database (Denmark)
Farahani, Saeed Davoudabadi; Andersen, Michael Skipper; de Zee, Mark
2012-01-01
derived from the detailed musculoskeletal analysis. The technique is demonstrated on a human model pedaling a bicycle. We use a physiology-based cost function expressing the mean square of all muscle activities over the cycle to predict a realistic motion pattern. Posture and motion prediction...... on a physics model including dynamic effects and a high level of anatomical realism. First, a musculoskeletal model comprising several hundred muscles is built in AMS. The movement is then parameterized by means of time functions controlling selected degrees of freedom of the model. Subsequently......, the parameters of these functions are optimized to produce an optimum posture or movement according to a user-defined cost function and constraints. The cost function and the constraints are typically express performance, comfort, injury risk, fatigue, muscle load, joint forces and other physiological properties...
Identifying Floppy and Rigid Regions in Proteins
Jacobs, D. J.; Thorpe, M. F.; Kuhn, L. A.
1998-03-01
In proteins it is possible to separate hard covalent forces involving bond lengths and bond angles from other weak forces. We model the microstructure of the protein as a generic bar-joint truss framework, where the hard covalent forces and strong hydrogen bonds are regarded as rigid bar constraints. We study the mechanical stability of proteins using FIRST (Floppy Inclusions and Rigid Substructure Topography) based on a recently developed combinatorial constraint counting algorithm (the 3D Pebble Game), which is a generalization of the 2D pebble game (D. J. Jacobs and M. F. Thorpe, ``Generic Rigidity: The Pebble Game'', Phys. Rev. Lett.) 75, 4051-4054 (1995) for the special class of bond-bending networks (D. J. Jacobs, "Generic Rigidity in Three Dimensional Bond-bending Networks", Preprint Aug (1997)). This approach is useful in identifying rigid motifs and flexible linkages in proteins, and thereby determines the essential degrees of freedom. We will show some preliminary results from the FIRST analysis on the myohemerythrin and lyozyme proteins.
Nearly automatic motion capture system for tracking octopus arm movements in 3D space.
Zelman, Ido; Galun, Meirav; Akselrod-Ballin, Ayelet; Yekutieli, Yoram; Hochner, Binyamin; Flash, Tamar
2009-08-30
Tracking animal movements in 3D space is an essential part of many biomechanical studies. The most popular technique for human motion capture uses markers placed on the skin which are tracked by a dedicated system. However, this technique may be inadequate for tracking animal movements, especially when it is impossible to attach markers to the animal's body either because of its size or shape or because of the environment in which the animal performs its movements. Attaching markers to an animal's body may also alter its behavior. Here we present a nearly automatic markerless motion capture system that overcomes these problems and successfully tracks octopus arm movements in 3D space. The system is based on three successive tracking and processing stages. The first stage uses a recently presented segmentation algorithm to detect the movement in a pair of video sequences recorded by two calibrated cameras. In the second stage, the results of the first stage are processed to produce 2D skeletal representations of the moving arm. Finally, the 2D skeletons are used to reconstruct the octopus arm movement as a sequence of 3D curves varying in time. Motion tracking, segmentation and reconstruction are especially difficult problems in the case of octopus arm movements because of the deformable, non-rigid structure of the octopus arm and the underwater environment in which it moves. Our successful results suggest that the motion-tracking system presented here may be used for tracking other elongated objects.
A study of semi-rigid support on ankle supination sprain kinematics.
Tang, Y M; Wu, Z H; Liao, W H; Chan, K M
2010-12-01
Ankle sprain injury is very common in sports and the use of ankle support is crucial. This research investigated the effect of an ankle brace in reducing the ankle angular displacement and angular velocity during sudden supination. In the experiment, 11 healthy males were tested. The bracing condition, semi-rigid ankle braces were investigated. The angular displacement and angular velocity of the ankle were computed. The motion-capture system was adopted to capture the three-dimensional coordinates of the reflective markers. The coordinates of the reflective markers were used to compute the ankle kinematics during simulated ankle supination. A mechanical supination platform was used to simulate the sprain motions. Experimental results showed that the semi-rigid brace tested significantly reduced the ankle angular displacement and angular velocity compared with control conditions during sudden supination. In conclusion, the semi-rigid-type brace can provide significant restriction to reduce the magnitudes of the angular displacement and angular velocity of the ankle during sudden supination sprain. The semi-rigid-type brace is suggested as the prophylactic bracing for the ankle. © 2009 John Wiley & Sons A/S.
Directory of Open Access Journals (Sweden)
Dilip Sengupta
2013-01-01
Full Text Available Conventional posterior dynamic stabilization devices demonstrated a tendency towards highly rigid stabilization approximating that of titanium rods in flexion. In extension, they excessively offload the index segment, making the device as the sole load-bearing structure, with concerns of device failure. The goal of this study was to compare the kinematics and intradiscal pressure of monosegmental stabilization utilizing a new device that incorporates both a flexion and extension dampening spacer to that of rigid internal fixation and a conventional posterior dynamic stabilization device. The hypothesis was the new device would minimize the overloading of adjacent levels compared to rigid and conventional devices which can only bend but not stretch. The biomechanics were compared following injury in a human cadaveric lumbosacral spine under simulated physiological loading conditions. The stabilization with the new posterior dynamic stabilization device significantly reduced motion uniformly in all loading directions, but less so than rigid fixation. The evaluation of adjacent level motion and pressure showed some benefit of the new device when compared to rigid fixation. Posterior dynamic stabilization designs which both bend and stretch showed improved kinematic and load-sharing properties when compared to rigid fixation and when indirectly compared to existing conventional devices without a bumper.