WorldWideScience

Sample records for rigid body mechanics

  1. Rigid body dynamics of mechanisms

    CERN Document Server

    Hahn, Hubert

    2003-01-01

    The second volume of Rigid Body Dynamics of Mechanisms covers applications via a systematic method for deriving model equations of planar and spatial mechanisms. The necessary theoretical foundations have been laid in the first volume that introduces the theoretical mechanical aspects of mechatronic systems. Here the focus is on the application of the modeling methodology to various examples of rigid-body mechanisms, simple planar ones as well as more challenging spatial problems. A rich variety of joint models, active constraints, plus active and passive force elements is treated. The book is intended for self-study by working engineers and students concerned with the control of mechanical systems, i.e. robotics, mechatronics, vehicles, and machine tools. The examples included are a likely source from which to choose models for university lectures.

  2. Quantum mechanics of a generalised rigid body

    International Nuclear Information System (INIS)

    Gripaios, Ben; Sutherland, Dave

    2016-01-01

    We consider the quantum version of Arnold’s generalisation of a rigid body in classical mechanics. Thus, we quantise the motion on an arbitrary Lie group manifold of a particle whose classical trajectories correspond to the geodesics of any one-sided-invariant metric. We show how the derivation of the spectrum of energy eigenstates can be simplified by making use of automorphisms of the Lie algebra and (for groups of type I) by methods of harmonic analysis. We show how the method can be extended to cosets, generalising the linear rigid rotor. As examples, we consider all connected and simply connected Lie groups up to dimension 3. This includes the universal cover of the archetypical rigid body, along with a number of new exactly solvable models. We also discuss a possible application to the topical problem of quantising a perfect fluid. (paper)

  3. A concise introduction to mechanics of rigid bodies multidisciplinary engineering

    CERN Document Server

    Huang, L

    2017-01-01

    This updated second edition broadens the explanation of rotational kinematics and dynamics — the most important aspect of rigid body motion in three-dimensional space and a topic of much greater complexity than linear motion. It expands treatment of vector and matrix, and includes quaternion operations to describe and analyze rigid body motion which are found in robot control, trajectory planning, 3D vision system calibration, and hand-eye coordination of robots in assembly work, etc. It features updated treatments of concepts in all chapters and case studies. The textbook retains its comprehensiveness in coverage and compactness in size, which make it easily accessible to the readers from multidisciplinary areas who want to grasp the key concepts of rigid body mechanics which are usually scattered in multiple volumes of traditional textbooks. Theoretical concepts are explained through examples taken from across engineering disciplines and links to applications and more advanced courses (e.g. industrial rob...

  4. Matrix methods applied to engineering rigid body mechanics

    Science.gov (United States)

    Crouch, T.

    The purpose of this book is to present the solution of a range of rigorous body mechanics problems using a matrix formulation of vector algebra. Essential theory concerning kinematics and dynamics is formulated in terms of matrix algebra. The solution of kinematics and dynamics problems is discussed, taking into account the velocity and acceleration of a point moving in a circular path, the velocity and acceleration determination for a linkage, the angular velocity and angular acceleration of a roller in a taper-roller thrust race, Euler's theroem on the motion of rigid bodies, an automotive differential, a rotating epicyclic, the motion of a high speed rotor mounted in gimbals, and the vibration of a spinning projectile. Attention is given to the activity of a force, the work done by a conservative force, the work and potential in a conservative system, the equilibrium of a mechanism, bearing forces due to rotor misalignment, and the frequency of vibrations of a constrained rod.

  5. Effort Flow Analysis: A Methodology for Directed Product Evolution Using Rigid Body and Compliant Mechanisms

    National Research Council Canada - National Science Library

    Greer, James

    2002-01-01

    This dissertation presents a systematic design methodology for directed product evolution that uses both rigid body and compliant mechanisms to facilitate component combination in the domain of mechanical products...

  6. The two-body problem of a pseudo-rigid body and a rigid sphere

    DEFF Research Database (Denmark)

    Kristiansen, Kristian Uldall; Vereshchagin, M.; Gózdziewski, K.

    2012-01-01

    n this paper we consider the two-body problem of a spherical pseudo-rigid body and a rigid sphere. Due to the rotational and "re-labelling" symmetries, the system is shown to possess conservation of angular momentum and circulation. We follow a reduction procedure similar to that undertaken...... in the study of the two-body problem of a rigid body and a sphere so that the computed reduced non-canonical Hamiltonian takes a similar form. We then consider relative equilibria and show that the notions of locally central and planar equilibria coincide. Finally, we show that Riemann's theorem on pseudo......-rigid bodies has an extension to this system for planar relative equilibria....

  7. Leonhard Euler and the mechanics of rigid bodies

    Science.gov (United States)

    Marquina, J. E.; Marquina, M. L.; Marquina, V.; Hernández-Gómez, J. J.

    2017-01-01

    In this work we present the original ideas and the construction of the rigid bodies theory realised by Leonhard Euler between 1738 and 1775. The number of treatises written by Euler on this subject is enormous, including the most notorious Scientia Navalis (1749), Decouverte d’un noveau principe de mecanique (1752), Du mouvement de rotation des corps solides autour d’un axe variable (1765), Theoria motus corporum solidorum seu rigidorum (1765) and Nova methodus motu corporum rigidorum determinandi (1776), in which he developed the ideas of the instantaneous rotation axis, the so-called Euler equations and angles, the components of what is now known as the inertia tensor, the principal axes of inertia, and, finally, the generalisation of the translation and rotation movement equations for any system. Euler, the man who ‘put most of mechanics into its modern form’ (Truesdell 1968 Essays in the History of Mechanics (Berlin: Springer) p 106).

  8. Rigid body motion in stereo 3D simulation

    International Nuclear Information System (INIS)

    Zabunov, Svetoslav

    2010-01-01

    This paper addresses the difficulties experienced by first-grade students studying rigid body motion at Sofia University. Most quantities describing the rigid body are in relations that the students find hard to visualize and understand. They also lose the notion of cause-result relations between vector quantities, such as the relation between torque and angular momentum. Consequently, the understanding of physical laws and conservation principles in free rigid body motion is hampered. This paper presents the capabilities of a 3D simulation, which aims to clarify these questions to the students, who are taught mechanics in the general physics course. The rigid body motion simulations may be observed at http://ialms.net/sim/, and are intended to complement traditional learning practices, not replace them, as the author shares the opinion that no simulation may fully resemble reality.

  9. Rigid body formulation in a finite element context with contact interaction

    Science.gov (United States)

    Refachinho de Campos, Paulo R.; Gay Neto, Alfredo

    2018-03-01

    The present work proposes a formulation to employ rigid bodies together with flexible bodies in the context of a nonlinear finite element solver, with contact interactions. Inertial contributions due to distribution of mass of a rigid body are fully developed, considering a general pole position associated with a single node, representing a rigid body element. Additionally, a mechanical constraint is proposed to connect a rigid region composed by several nodes, which is useful for linking rigid/flexible bodies in a finite element environment. Rodrigues rotation parameters are used to describe finite rotations, by an updated Lagrangian description. In addition, the contact formulation entitled master-surface to master-surface is employed in conjunction with the rigid body element and flexible bodies, aiming to consider their interaction in a rigid-flexible multibody environment. New surface parameterizations are presented to establish contact pairs, permitting pointwise interaction in a frictional scenario. Numerical examples are provided to show robustness and applicability of the methods.

  10. Rigid multibody system dynamics with uncertain rigid bodies

    Energy Technology Data Exchange (ETDEWEB)

    Batou, A., E-mail: anas.batou@univ-paris-est.fr; Soize, C., E-mail: christian.soize@univ-paris-est.fr [Universite Paris-Est, Laboratoire Modelisation et Simulation Multi Echelle, MSME UMR 8208 CNRS (France)

    2012-03-15

    This paper is devoted to the construction of a probabilistic model of uncertain rigid bodies for multibody system dynamics. We first construct a stochastic model of an uncertain rigid body by replacing the mass, the center of mass, and the tensor of inertia by random variables. The prior probability distributions of the stochastic model are constructed using the maximum entropy principle under the constraints defined by the available information. The generators of independent realizations corresponding to the prior probability distribution of these random quantities are further developed. Then several uncertain rigid bodies can be linked to each other in order to calculate the random response of a multibody dynamical system. An application is proposed to illustrate the theoretical development.

  11. A Compliant Bistable Mechanism Design Incorporating Elastica Buckling Beam Theory and Pseudo-Rigid-Body Model

    DEFF Research Database (Denmark)

    Sönmez, Ümit; Tutum, Cem Celal

    2008-01-01

    In this work, a new compliant bistable mechanism design is introduced. The combined use of pseudo-rigid-body model (PRBM) and the Elastica buckling theory is presented for the first time to analyze the new design. This mechanism consists of the large deflecting straight beams, buckling beams...... and the buckling Elastica solution for an original compliant mechanism kinematic analysis. New compliant mechanism designs are presented to highlight where such combined kinematic analysis is required....

  12. Almost-global tracking for a rigid body with internal rotors

    OpenAIRE

    Nayak, Aradhana; Banavar, Ravi N.

    2017-01-01

    Almost-global orientation trajectory tracking for a rigid body with external actuation has been well studied in the literature, and in the geometric setting as well. The tracking control law relies on the fact that a rigid body is a simple mechanical system (SMS) on the $3-$dimensional group of special orthogonal matrices. However, the problem of designing feedback control laws for tracking using internal actuation mechanisms, like rotors or control moment gyros, has received lesser attention...

  13. Higher order coupling between rigid-body and elastic motion in flexible mechanisms

    International Nuclear Information System (INIS)

    Esat, I.I.; Ianakiev, A.

    1995-01-01

    The paper presents an investigation of the influence of the higher order coupling terms between the rigid-body and elastic motion into flexible mechanism dynamics. The configuration of the mechanical system is obtained by using the so called hybrid coordinates. The kinematic description of the mechanism was obtained using the D-H 4 x 4 transformation matrices. The elastic deformation of each point of the mechanism is described by the finite element modeling (FEM) type interpolation scheme. The dynamic model of the flexible mechanism consists due to the hybrid coordinates of two groups of differential equations. The first group describes the manipulator transport motion and the second group describes the vibration. In this paper the authors evaluated the contribution of the coupling terms between the two groups of differential equations and selected only those with high contribution

  14. Computing the Free Energy along a Reaction Coordinate Using Rigid Body Dynamics.

    Science.gov (United States)

    Tao, Peng; Sodt, Alexander J; Shao, Yihan; König, Gerhard; Brooks, Bernard R

    2014-10-14

    The calculations of potential of mean force along complex chemical reactions or rare events pathways are of great interest because of their importance for many areas in chemistry, molecular biology, and material science. The major difficulty for free energy calculations comes from the great computational cost for adequate sampling of the system in high-energy regions, especially close to the reaction transition state. Here, we present a method, called FEG-RBD, in which the free energy gradients were obtained from rigid body dynamics simulations. Then the free energy gradients were integrated along a reference reaction pathway to calculate free energy profiles. In a given system, the reaction coordinates defining a subset of atoms (e.g., a solute, or the quantum mechanics (QM) region of a quantum mechanics/molecular mechanics simulation) are selected to form a rigid body during the simulation. The first-order derivatives (gradients) of the free energy with respect to the reaction coordinates are obtained through the integration of constraint forces within the rigid body. Each structure along the reference reaction path is separately subjected to such a rigid body simulation. The individual free energy gradients are integrated along the reference pathway to obtain the free energy profile. Test cases provided demonstrate both the strengths and weaknesses of the FEG-RBD method. The most significant benefit of this method comes from the fast convergence rate of the free energy gradient using rigid-body constraints instead of restraints. A correction to the free energy due to approximate relaxation of the rigid-body constraint is estimated and discussed. A comparison with umbrella sampling using a simple test case revealed the improved sampling efficiency of FEG-RBD by a factor of 4 on average. The enhanced efficiency makes this method effective for calculating the free energy of complex chemical reactions when the reaction coordinate can be unambiguously defined by a

  15. Diffusion-accomodated rigid-body translations along grain boundaries in nanostructured materials

    International Nuclear Information System (INIS)

    Bachurin, D.V.; Nazarov, A.A.; Shenderova, O.A.; Brenner, D.W.

    2003-01-01

    A model for the structural relaxation of grain boundaries (GBs) in nanostructured materials (NSMs) by diffusion-accommodated rigid body translations along GBs is proposed. The model is based on the results of recent computer simulations that have demonstrated that the GBs in NSMs retain a high-energy structure with random translational states due to severe geometrical constraints applied from neighboring grains (J. Appl. Phys. 78 (1995) 847; Scripta Metall. Mater. 33 (1995) 1245). The shear stresses within a GB caused by non-optimized rigid-body translations (RBTs) can be accommodated by diffusive flow of atoms along a GB. This mechanism is particularly important for low-angle and vicinal GBs, the energy of which noticeably depends on the rigid body translations. At moderate and high temperatures the model yields relaxation times that are very short and therefore GBs in NSMs can attain an equilibrium structure with optimized rigid body translations. In contrast, at room temperature the model predicts that in some metals non-equilibrium structures can be preserved for a long time, which may result in the observation of grain boundary structures different from those in coarse grained polycrystals

  16. Dual Quaternion Variational Integrator for Rigid Body Dynamic Simulation

    OpenAIRE

    Xu, Jiafeng; Halse, Karl Henning

    2016-01-01

    In rigid body dynamic simulations, often the algorithm is required to deal with general situations where both reference point and inertia matrix are arbitrarily de- fined. We introduce a novel Lie group variational integrator using dual quaternion for simulating rigid body dynamics in all six degrees of freedom. Dual quaternion is used to represent rigid body kinematics and one-step Lie group method is used to derive dynamic equations. The combination of these two becomes the first Lie group ...

  17. Euler-Poincare Reduction of a Rigid Body Motion

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2005-01-01

    |If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system afected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincare reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modeling, estimation and control of mechanical systems......-known Euler-Poincare reduction to a rigid body motion with forcing....

  18. Euler-Poincare Reduction of Externall Forced Rigid Body Motion

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2004-01-01

    If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system affected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincaré reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modelling, estimation and control of mechanical systems......-known Euler-Poincaré reduction to a rigid body motion with forcing....

  19. Euler-Poincaré Reduction of a Rigid Body Motion

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2004-01-01

    If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system affected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincaré reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modelling, estimation and control of mechanical systems......-known Euler-Poincaré reduction to a rigid body motion with forcing....

  20. Modeling of a light elastic beam by a system of rigid bodies

    Directory of Open Access Journals (Sweden)

    Šalinić Slaviša

    2004-01-01

    Full Text Available This paper has shown that a light elastic beam, in the case of small elastic deformations, can be modeled by a kinematic chain without branching composed of rigid bodies which are connected by passive revolute or prismatic joints with corresponding springs in them. Elastic properties of the beam are modeled by the springs introduced. The potential energy of the elastic beam is expressed as a function of components of the vector of elastic displacement and the vector of elastic rotation calculated for the elastic centre of the beam, which results in the diagonal stiffness matrix of the beam. As the potential energy of the introduced system of bodies with springs is expressed in the function of relative joint displacements, the diagonal stiffness matrix is obtained. In addition, these two stiffness matrices are equal. The modeling process has been demonstrated on the example of an elastic beam rotating about a fixed vertical axis, with a rigid body whose mass is considerably larger than the beam mass fixed to its free end. Differential equations of motion have been formed for this mechanical system. The modeling technique described here aims at expanding of usage of well developed methods of dynamics of systems of rigid bodies to the analysis of systems with elastic bodies. .

  1. Rigid Body Sampling and Individual Time Stepping for Rigid-Fluid Coupling of Fluid Simulation

    Directory of Open Access Journals (Sweden)

    Xiaokun Wang

    2017-01-01

    Full Text Available In this paper, we propose an efficient and simple rigid-fluid coupling scheme with scientific programming algorithms for particle-based fluid simulation and three-dimensional visualization. Our approach samples the surface of rigid bodies with boundary particles that interact with fluids. It contains two procedures, that is, surface sampling and sampling relaxation, which insures uniform distribution of particles with less iterations. Furthermore, we present a rigid-fluid coupling scheme integrating individual time stepping to rigid-fluid coupling, which gains an obvious speedup compared to previous method. The experimental results demonstrate the effectiveness of our approach.

  2. Nonlinear dynamics mathematical models for rigid bodies with a liquid

    CERN Document Server

    Lukovsky, Ivan A

    2015-01-01

    This book is devoted to analytically approximate methods in the nonlinear dynamics of a rigid body with cavities partly filled by liquid. It combines several methods and compares the results with experimental data. It is useful for experienced and early-stage readers interested in analytical approaches to fluid-structure interaction problems, the fundamental mathematical background and modeling the dynamics of such complex mechanical systems.

  3. Euler-Poincaré Reduction of Externally Forced Rigid Body Motion

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2004-01-01

    If a mechanical system experiences symmetry, the Lagrangian becomes invariant under a certain group action. This property leads to substantial simplification of the description of movement. The standpoint in this article is a mechanical system affected by an external force of a control action....... Assuming that the system possesses symmetry and the configuration manifold corresponds to a Lie group, the Euler-Poincaré reduction breaks up the motion into separate equations of dynamics and kinematics. This becomes of particular interest for modelling, estimation and control of mechanical systems......-known Euler-Poincaré reduction to a rigid body motion with forcing....

  4. Unifying Rigid and Soft Bodies Representation: The Sulfur Physics Engine

    Directory of Open Access Journals (Sweden)

    Dario Maggiorini

    2014-01-01

    Full Text Available Video games are (also real-time interactive graphic simulations: hence, providing a convincing physics simulation for each specific game environment is of paramount importance in the process of achieving a satisfying player experience. While the existing game engines appropriately address many aspects of physics simulation, some others are still in need of improvements. In particular, several specific physics properties of bodies not usually involved in the main game mechanics (e.g., properties useful to represent systems composed by soft bodies, are often poorly rendered by general-purpose engines. This issue may limit game designers when imagining innovative and compelling video games and game mechanics. For this reason, we dug into the problem of appropriately representing soft bodies. Subsequently, we have extended the approach developed for soft bodies to rigid ones, proposing and developing a unified approach in a game engine: Sulfur. To test the engine, we have also designed and developed “Escape from Quaoar,” a prototypal video game whose main game mechanic exploits an elastic rope, and a level editor for the game.

  5. Bang-Bang Practical Stabilization of Rigid Bodies

    Science.gov (United States)

    Serpelloni, Edoardo

    In this thesis, we study the problem of designing a practical stabilizer for a rigid body equipped with a set of actuators generating only constant thrust. Our motivation stems from the fact that modern space missions are required to accurately control the position and orientation of spacecraft actuated by constant-thrust jet-thrusters. To comply with the performance limitations of modern thrusters, we design a feedback controller that does not induce high-frequency switching of the actuators. The proposed controller is hybrid and it asymptotically stabilizes an arbitrarily small compact neighborhood of the target position and orientation of the rigid body. The controller is characterized by a hierarchical structure comprising of two control layers. At the low level of the hierarchy, an attitude controller stabilizes the target orientation of the rigid body. At the high level, after the attitude controller has steered the rigid body sufficiently close to its desired orientation, a position controller stabilizes the desired position. The size of the neighborhood being stabilized by the controller can be adjusted via a proper selection of the controller parameters. This allows us to stabilize the rigid body to virtually any degree of accuracy. It is shown that the controller, even in the presence of measurement noise, does not induce high-frequency switching of the actuators. The key component in the design of the controller is a hybrid stabilizer for the origin of double-integrators affected by bounded external perturbations. Specifically, both the position and the attitude stabilizers consist of multiple copies of such a double-integrator controller. The proposed controller is applied to two realistic spacecraft control problems. First, we apply the position controller to the problem of stabilizing the relative position between two spacecraft flying in formation in the vicinity of the L2 libration point of the Sun-Earth system as a part of a large space telescope

  6. An Explicit Formulation of Singularity-Free Dynamic Equations of Mechanical Systems in Lagrangian Form---Part one: Single Rigid Bodies

    Directory of Open Access Journals (Sweden)

    Pål Johan From

    2012-04-01

    Full Text Available This paper presents the explicit dynamic equations of a mechanical system. The equations are presented so that they can easily be implemented in a simulation software or controller environment and are also well suited for system and controller analysis. The dynamics of a general mechanical system consisting of one or more rigid bodies can be derived from the Lagrangian. We can then use several well known properties of Lie groups to guarantee that these equations are well defined. This will, however, often lead to rather abstract formulation of the dynamic equations that cannot be implemented in a simulation software directly. In this paper we close this gap and show what the explicit dynamic equations look like. These equations can then be implemented directly in a simulation software and no background knowledge on Lie theory and differential geometry on the practitioner's side is required. This is the first of two papers on this topic. In this paper we derive the dynamics for single rigid bodies, while in the second part we study multibody systems. In addition to making the equations more accessible to practitioners, a motivation behind the papers is to correct a few errors commonly found in literature. For the first time, we show the detailed derivations and how to arrive at the correct set of equations. We also show through some simple examples that these correspond with the classical formulations found from Lagrange's equations. The dynamics is derived from the Boltzmann--Hamel equations of motion in terms of local position and velocity variables and the mapping to the corresponding quasi-velocities. Finally we present a new theorem which states that the Boltzmann--Hamel formulation of the dynamics is valid for all transformations with a Lie group topology. This has previously only been indicated through examples, but here we also present the formal proof. The main motivation of these papers is to allow practitioners not familiar with

  7. Dynamic Multi-Rigid-Body Systems with Concurrent Distributed Contacts: Theory and Examples

    International Nuclear Information System (INIS)

    TRINKLE, JEFFREY C.; TZITZOURIS, J.A.; PANG, J.S.

    2001-01-01

    Consider a system of rigid bodies with multiple concurrent contacts. The multi-rigid-body contact problem is to predict the accelerations of the bodies and the normal friction loads acting at the contacts. This paper presents theoretical results for the multi-rigid-body contact problem under the assumptions that one or more contacts occur over locally planar, finite regions and that friction forces are consistent with the maximum work inequality. Existence and uniqueness results are presented for this problem under mild assumptions on the system inputs. In addition, the performance of two different time-stepping methods for integrating the dynamics are compared on two simple multi-body systems

  8. Estimation of the ground shaking from the response of rigid bodies

    Directory of Open Access Journals (Sweden)

    Filomena de Silva

    2016-12-01

    Full Text Available The paper illustrates and compares simplified approaches to interpret the mechanisms of damage observed on rigid bodies in the cemetery of Amatrice, after the main shock (August 24, 2016, MW=6.0 of the Central Italy earthquake. The final goal of the work is to link the observed movements of the fallen objects to specific characteristics of the ground motion occurred at the specific site.

  9. New integrable problems in a rigid body dynamics with cubic integral in velocities

    Science.gov (United States)

    Elmandouh, A. A.

    2018-03-01

    We introduce a new family of the 2D integrable mechanical system possessing an additional integral of the third degree in velocities. This system contains 20 arbitrary parameters. We also clarify that the majority of the previous systems with a cubic integral can be reconstructed from it as a special version for certain values of those parameters. The applications of this system are extended to include the problem of motion of a particle and rigid body about its fixed point. We announce new integrable problems describing the motion of a particle in the plane, pseudosphere, and surfaces of variable curvature. We also present a new integrable problem in a rigid body dynamics and this problem generalizes some of the previous results for Sokolov-Tsiganov, Yehia, Stretensky, and Goriachev.

  10. Numerical algorithm for rigid body position estimation using the quaternion approach

    Science.gov (United States)

    Zigic, Miodrag; Grahovac, Nenad

    2017-11-01

    This paper deals with rigid body attitude estimation on the basis of the data obtained from an inertial measurement unit mounted on the body. The aim of this work is to present the numerical algorithm, which can be easily applied to the wide class of problems concerning rigid body positioning, arising in aerospace and marine engineering, or in increasingly popular robotic systems and unmanned aerial vehicles. Following the considerations of kinematics of rigid bodies, the relations between accelerations of different points of the body are given. A rotation matrix is formed using the quaternion approach to avoid singularities. We present numerical procedures for determination of the absolute accelerations of the center of mass and of an arbitrary point of the body expressed in the inertial reference frame, as well as its attitude. An application of the algorithm to the example of a heavy symmetrical gyroscope is presented, where input data for the numerical procedure are obtained from the solution of differential equations of motion, instead of using sensor measurements.

  11. Rigid body displacement fields of an in-plane-deformable curved beam based on conventional strain definition

    International Nuclear Information System (INIS)

    Moon, Won Joo; Min, Oak Key; Kim, Yong Woo

    1998-01-01

    To improve the convergence and the accuracy of a finite element, the finite element has to describe not only displacement and stress distributions in a static analysis but also rigid body displacements. In this paper, we consider the in-plane-deformable curved beam element to understand the descriptive capability of rigid body displacements of a finite element. We derive the rigid body displacement fields of a single finite element under various essential boundary conditions when the nodal displacements are caused by the rigid body displacement. We also examine the rigid body displacement fields of a quadratic curved beam element by employing the reduced minimization theory

  12. Geometric integrators for stochastic rigid body dynamics

    KAUST Repository

    Tretyakov, Mikhail

    2016-01-05

    Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.

  13. Geometric integrators for stochastic rigid body dynamics

    KAUST Repository

    Tretyakov, Mikhail

    2016-01-01

    Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.

  14. Thermostability in rubredoxin and its relationship to mechanical rigidity

    Science.gov (United States)

    Rader, A. J.

    2010-03-01

    The source of increased stability in proteins from organisms that thrive in extreme thermal environments is not well understood. Previous experimental and theoretical studies have suggested many different features possibly responsible for such thermostability. Many of these thermostabilizing mechanisms can be accounted for in terms of structural rigidity. Thus a plausible hypothesis accounting for this remarkable stability in thermophilic enzymes states that these enzymes have enhanced conformational rigidity at temperatures below their native, functioning temperature. Experimental evidence exists to both support and contradict this supposition. We computationally investigate the relationship between thermostability and rigidity using rubredoxin as a case study. The mechanical rigidity is calculated using atomic models of homologous rubredoxin structures from the hyperthermophile Pyrococcus furiosus and mesophile Clostridium pasteurianum using the FIRST software. A global increase in structural rigidity (equivalently a decrease in flexibility) corresponds to an increase in thermostability. Locally, rigidity differences (between mesophilic and thermophilic structures) agree with differences in protection factors.

  15. Thermostability in rubredoxin and its relationship to mechanical rigidity

    International Nuclear Information System (INIS)

    Rader, A J

    2010-01-01

    The source of increased stability in proteins from organisms that thrive in extreme thermal environments is not well understood. Previous experimental and theoretical studies have suggested many different features possibly responsible for such thermostability. Many of these thermostabilizing mechanisms can be accounted for in terms of structural rigidity. Thus a plausible hypothesis accounting for this remarkable stability in thermophilic enzymes states that these enzymes have enhanced conformational rigidity at temperatures below their native, functioning temperature. Experimental evidence exists to both support and contradict this supposition. We computationally investigate the relationship between thermostability and rigidity using rubredoxin as a case study. The mechanical rigidity is calculated using atomic models of homologous rubredoxin structures from the hyperthermophile Pyrococcus furiosus and mesophile Clostridium pasteurianum using the FIRST software. A global increase in structural rigidity (equivalently a decrease in flexibility) corresponds to an increase in thermostability. Locally, rigidity differences (between mesophilic and thermophilic structures) agree with differences in protection factors

  16. Evolution of motions of a rigid body about its center of mass

    CERN Document Server

    Chernousko, Felix L; Leshchenko, Dmytro D

    2017-01-01

    The book presents a unified and well-developed approach to the dynamics of angular motions of rigid bodies subjected to perturbation torques of different physical nature. It contains both the basic foundations of the rigid body dynamics and of the asymptotic method of averaging. The rigorous approach based on the averaging procedure is applicable to bodies with arbitrary ellopsoids of inertia. Action of various perturbation torques, both external (gravitational, aerodynamical, solar pressure) and internal (due to viscous fluid in tanks, elastic and visco-elastic properties of a body) is considered in detail. The book can be used by researchers, engineers and students working in attitude dynamics of spacecraft.

  17. Almost Poisson integration of rigid body systems

    International Nuclear Information System (INIS)

    Austin, M.A.; Krishnaprasad, P.S.; Li-Sheng Wang

    1993-01-01

    In this paper we discuss the numerical integration of Lie-Poisson systems using the mid-point rule. Since such systems result from the reduction of hamiltonian systems with symmetry by lie group actions, we also present examples of reconstruction rules for the full dynamics. A primary motivation is to preserve in the integration process, various conserved quantities of the original dynamics. A main result of this paper is an O(h 3 ) error estimate for the Lie-Poisson structure, where h is the integration step-size. We note that Lie-Poisson systems appear naturally in many areas of physical science and engineering, including theoretical mechanics of fluids and plasmas, satellite dynamics, and polarization dynamics. In the present paper we consider a series of progressively complicated examples related to rigid body systems. We also consider a dissipative example associated to a Lie-Poisson system. The behavior of the mid-point rule and an associated reconstruction rule is numerically explored. 24 refs., 9 figs

  18. Rigid Body Energy Minimization on Manifolds for Molecular Docking.

    Science.gov (United States)

    Mirzaei, Hanieh; Beglov, Dmitri; Paschalidis, Ioannis Ch; Vajda, Sandor; Vakili, Pirooz; Kozakov, Dima

    2012-11-13

    Virtually all docking methods include some local continuous minimization of an energy/scoring function in order to remove steric clashes and obtain more reliable energy values. In this paper, we describe an efficient rigid-body optimization algorithm that, compared to the most widely used algorithms, converges approximately an order of magnitude faster to conformations with equal or slightly lower energy. The space of rigid body transformations is a nonlinear manifold, namely, a space which locally resembles a Euclidean space. We use a canonical parametrization of the manifold, called the exponential parametrization, to map the Euclidean tangent space of the manifold onto the manifold itself. Thus, we locally transform the rigid body optimization to an optimization over a Euclidean space where basic optimization algorithms are applicable. Compared to commonly used methods, this formulation substantially reduces the dimension of the search space. As a result, it requires far fewer costly function and gradient evaluations and leads to a more efficient algorithm. We have selected the LBFGS quasi-Newton method for local optimization since it uses only gradient information to obtain second order information about the energy function and avoids the far more costly direct Hessian evaluations. Two applications, one in protein-protein docking, and the other in protein-small molecular interactions, as part of macromolecular docking protocols are presented. The code is available to the community under open source license, and with minimal effort can be incorporated into any molecular modeling package.

  19. Anti-synchronization of the rigid body exhibiting chaotic dynamics ...

    African Journals Online (AJOL)

    Based on a method derived from nonlinear control theory, we present a ... In this framework, the active control technique is modified and employed to design control ... state space of the two rigid bodies was verified by numerical simulations.

  20. Student understanding of the application of Newton's second law to rotating rigid bodies

    Science.gov (United States)

    Close, Hunter G.; Gomez, Luanna S.; Heron, Paula R. L.

    2013-06-01

    We report on an investigation of student understanding of rigid body dynamics in which we asked students in introductory calculus-based physics to compare the translational motions of identical rigid bodies subject to forces that differed only in the point of contact at which they were applied. There was a widespread tendency to claim that forces that cause rotational motion have a diminished effect on translational motion. A series of related problems was developed to examine whether similar errors would be made in other contexts, and interviews were conducted to probe student thinking in greater depth. In this paper, we describe the results of our investigation and also describe a series of different interventions that culminated in the development of a tutorial that improves student ability to apply Newton's second law to rotating rigid bodies.

  1. Stabilization of Rigid Body Dynamics by Internal and External Torques

    National Research Council Canada - National Science Library

    Bloch, A. M; Krishnaprasad, P. S; Marsden, J. E; Sanchez de Alvarez, G

    1990-01-01

    ...] with quadratic feedback torques for internal rotors. We show that with such torques, the equations for the rigid body with momentum wheels are Hamiltonian with respect to a Lie-Poisson bracket structure. Further...

  2. Modeling and experimentation with asymmetric rigid bodies: a variation on disks and inclines

    International Nuclear Information System (INIS)

    Raviola, Lisandro A; Zárate, Oscar; Rodríguez, Eduardo E

    2014-01-01

    We study the ascending motion of a disk rolling on an incline when its centre of mass lies outside the disk axis. The problem is suitable as laboratory project for a first course in mechanics at the undergraduate level and goes beyond typical textbook problems about bi-dimensional rigid body motions. We develop a theoretical model for the disk motion based on mechanical energy conservation and compare its predictions with experimental data obtained by digital video recording. Using readily available resources, a very satisfactory agreement is obtained between the model and the experimental observations. These results complement previous ones that have been reported in the literature for similar systems. (paper)

  3. Coupling characteristics of rigid body motion and elastic deformation of a 3-PRR parallel manipulator with flexible links

    International Nuclear Information System (INIS)

    Zhang Xuping; Mills, James K.; Cleghorn, William L.

    2009-01-01

    Modeling of multibody dynamics with flexible links is a challenging task, which not only involves the effect of rigid body motion on elastic deformations, but also includes the influence of elastic deformations on rigid body motion. This paper presents coupling characteristics of rigid body motions and elastic motions of a 3-PRR parallel manipulator with three flexible intermediate links. The intermediate links are modeled as Euler-Bernoulli beams with pinned-pinned boundary conditions based on the assumed mode method (AMM). Using Lagrange multipliers, the fully coupled equations of motions of the flexible parallel manipulator are developed by incorporating the rigid body motions with elastic motions. The mutual dependence of elastic deformations and rigid body motions are investigated from the analysis of the derived equations of motion. Open-loop simulation without joint motion controls and closed-loop simulation with joint motion controls are performed to illustrate the effect of elastic motion on rigid body motions and the coupling effect amongst flexible links. These analyses and results provide valuable insight to the design and control of the parallel manipulator with flexible intermediate links

  4. A method for measuring the inertia properties of rigid bodies

    Science.gov (United States)

    Gobbi, M.; Mastinu, G.; Previati, G.

    2011-01-01

    A method for the measurement of the inertia properties of rigid bodies is presented. Given a rigid body and its mass, the method allows to measure (identify) the centre of gravity location and the inertia tensor during a single test. The proposed technique is based on the analysis of the free motion of a multi-cable pendulum to which the body under consideration is connected. The motion of the pendulum and the forces acting on the system are recorded and the inertia properties are identified by means of a proper mathematical procedure based on a least square estimation. After the body is positioned on the test rig, the full identification procedure takes less than 10 min. The natural frequencies of the pendulum and the accelerations involved are quite low, making this method suitable for many practical applications. In this paper, the proposed method is described and two test rigs are presented: the first is developed for bodies up to 3500 kg and the second for bodies up to 400 kg. A validation of the measurement method is performed with satisfactory results. The test rig holds a third part quality certificate according to an ISO 9001 standard and could be scaled up to measure the inertia properties of huge bodies, such as trucks, airplanes or even ships.

  5. The theory of pseudo-rigid bodies

    CERN Document Server

    Cohen, Harley

    1988-01-01

    This monograph concerns the development, analysis, and application of the theory of pseudo-rigid bodies. It collects together our work on that subject over the last five years. While some results have appeared else­ where, much of the work is new. Our objective in writing this mono­ graph has been to present a new theory of the deformation of bodies, one that has not only a firm theoretical basis, but also the simplicity to serve as an effective tool in practical problems. Consequently, the main body of the treatise is a multifaceted development of the theory, from foundations to explicit solutions to linearizations to methods of approximation. The fact that this variety of aspects, each examined in considerable detail, can be collected together in a single, unified treat­ ment gives this theory an elegance that we feel sets it apart from many others. While our goal has always been to give a complete treatment of the theory as it now stands, the work here is not meant to be definitive. Theories are not ent...

  6. Collisions of Constrained Rigid Body Systems with Friction

    Directory of Open Access Journals (Sweden)

    Haijun Shen

    1998-01-01

    Full Text Available A new approach is developed for the general collision problem of two rigid body systems with constraints (e.g., articulated systems, such as massy linkages in which the relative tangential velocity at the point of contact and the associated friction force can change direction during the collision. This is beyond the framework of conventional methods, which can give significant and very obvious errors for this problem, and both extends and consolidates recent work. A new parameterization and theory characterize if, when and how the relative tangential velocity changes direction during contact. Elastic and dissipative phenomena and different values for static and kinetic friction coefficients are included. The method is based on the explicitly physical analysis of events at the point of contact. Using this method, Example 1 resolves (and corrects a paradox (in the literature of the collision of a double pendulum with the ground. The method fundamentally subsumes other recent models and the collision of rigid bodies; it yields the same results as conventional methods when they would apply (Example 2. The new method reformulates and extends recent approaches in a completely physical context.

  7. Body fixed frame, rigid gauge rotations and large N random fields in QCD

    International Nuclear Information System (INIS)

    Levit, S.

    1995-01-01

    The ''body fixed frame'' with respect to local gauge transformations is introduced. Rigid gauge ''rotations'' in QCD and their Schroedinger equation are studied for static and dynamic quarks. Possible choices of the rigid gauge field configuration corresponding to a non-vanishing static colormagnetic field in the ''body fixed'' frame are discussed. A gauge invariant variational equation is derived in this frame. For large number N of colors the rigid gauge field configuration is regarded as random with maximally random probability distribution under constraints on macroscopic-like quantities. For the uniform magnetic field the joint probability distribution of the field components is determined by maximizing the appropriate entropy under the area law constraint for the Wilson loop. In the quark sector the gauge invariance requires the rigid gauge field configuration to appear not only as a background but also as inducing an instantaneous quark-quark interaction. Both are random in the large N limit. (orig.)

  8. Efficient time-symmetric simulation of torqued rigid bodies using Jacobi elliptic functions

    International Nuclear Information System (INIS)

    Celledoni, E; Saefstroem, N

    2006-01-01

    If the three moments of inertia are distinct, the solution to the Euler equations for the free rigid body is given in terms of Jacobi elliptic functions. Using the arithmetic-geometric mean algorithm (Abramowitz and Stegun 1992 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover)), these functions can be calculated efficiently and accurately. Compared to standard numerical ODE and Lie-Poisson solvers, the overall approach yields a faster and more accurate numerical solution to the Euler equations. This approach is designed for mass asymmetric rigid bodies. In the case of symmetric bodies, the exact solution is available in terms of trigonometric functions, see Dullweber et al (1997 J. Chem. Phys. 107 5840-51), Reich (1996 Fields Inst. Commun. 10 181-91) and Benettin et al (2001 SIAM J. Sci. Comp. 23 1189-203) for details. In this paper, we consider the case of asymmetric rigid bodies subject to external forces. We consider a strategy similar to the symplectic splitting method proposed in Reich (1996 Fields Inst. Commun. 10 181-91) and Dullweber et al (1997 J. Chem. Phys. 107 5840-51). The method proposed here is time-symmetric. We decompose the vector field of our problem into a free rigid body (FRB) problem and another completely integrable vector field. The FRB problem consists of the Euler equations and a differential equation for the 3 x 3 orientation matrix. The Euler equations are integrated exactly while the matrix equation is approximated using a truncated Magnus series. In our experiments, we observe that the overall numerical solution benefits greatly from the very accurate solution of the Euler equations. We apply the method to the heavy top and the simulation of artificial satellite attitude dynamics

  9. Estimating the orientation of a rigid body moving in space using inertial sensors

    Energy Technology Data Exchange (ETDEWEB)

    He, Peng, E-mail: peng.he.1@ulaval.ca; Cardou, Philippe, E-mail: pcardou@gmc.ulaval.ca [Université Laval, Robotics Laboratory, Department of Mechanical Engineering (Canada); Desbiens, André, E-mail: andre.desbiens@gel.ulaval.ca [Université Laval, Department of Electrical and Computer Engineering (Canada); Gagnon, Eric, E-mail: Eric.Gagnon@drdc-rddc.gc.ca [RDDC Valcartier (Canada)

    2015-09-15

    This paper presents a novel method of estimating the orientation of a rigid body moving in space from inertial sensors, by discerning the gravitational and inertial components of the accelerations. In this method, both a rigid-body kinematics model and a stochastic model of the human-hand motion are formulated and combined in a nonlinear state-space system. The state equation represents the rigid body kinematics and stochastic model, and the output equation represents the inertial sensor measurements. It is necessary to mention that, since the output equation is a nonlinear function of the state, the extended Kalman filter (EKF) is applied. The absolute value of the error from the proposed method is shown to be less than 5 deg in simulation and in experiments. It is apparently stable, unlike the time-integration of gyroscope measurements, which is subjected to drift, and remains accurate under large accelerations, unlike the tilt-sensor method.

  10. Estimating the orientation of a rigid body moving in space using inertial sensors

    International Nuclear Information System (INIS)

    He, Peng; Cardou, Philippe; Desbiens, André; Gagnon, Eric

    2015-01-01

    This paper presents a novel method of estimating the orientation of a rigid body moving in space from inertial sensors, by discerning the gravitational and inertial components of the accelerations. In this method, both a rigid-body kinematics model and a stochastic model of the human-hand motion are formulated and combined in a nonlinear state-space system. The state equation represents the rigid body kinematics and stochastic model, and the output equation represents the inertial sensor measurements. It is necessary to mention that, since the output equation is a nonlinear function of the state, the extended Kalman filter (EKF) is applied. The absolute value of the error from the proposed method is shown to be less than 5 deg in simulation and in experiments. It is apparently stable, unlike the time-integration of gyroscope measurements, which is subjected to drift, and remains accurate under large accelerations, unlike the tilt-sensor method

  11. Topological classification of the Goryachev integrable case in rigid body dynamics

    International Nuclear Information System (INIS)

    Nikolaenko, S S

    2016-01-01

    A topological analysis of the Goryachev integrable case in rigid body dynamics is made on the basis of the Fomenko-Zieschang theory. The invariants (marked molecules) which are obtained give a complete description, from the standpoint of Liouville classification, of the systems of Goryachev type on various level sets of the energy. It turns out that on appropriate energy levels the Goryachev case is Liouville equivalent to many classical integrable systems and, in particular, the Joukowski, Clebsch, Sokolov and Kovalevskaya-Yehia cases in rigid body dynamics, as well as to some integrable billiards in plane domains bounded by confocal quadrics -- in other words, the foliations given by the closures of generic solutions of these systems have the same structure. Bibliography: 15 titles

  12. Knowledge-In-Action: An Example with Rigid Body Motion

    Science.gov (United States)

    Da Costa, Sayonara Salvador Cabral; Moreira, Marco Antonio

    2005-01-01

    This paper reports the analysis of the resolution of a paper-and-pencil problem, by eight undergraduate students majoring in engineering (six) and physics (two) at the Pontifcia Universidade Catlica do Rio Grande do Sul, in Porto Alegre, Brazil. The problem concerns kinetics of a rigid body, and the analysis was done in the light of Johnson-Lairds…

  13. Contact point generation for convex polytopes in interactive rigid body dynamics

    DEFF Research Database (Denmark)

    Silcowitz-Hansen, Morten; Abel, Sarah Maria Niebe; Erleben, Kenny

    When computing contact forces in rigid body dynamics systems, most state-of-the-art solutions use iterative methods such as the projected Gauss–Seidel (PGS) method. Methods such as the PGS method are preferred for their robustness. However, the time-critical nature of interactive applications...... combined with the linear convergence rates of such methods, will often result in visual artifacts in the final simulation. With this paper, we address an issue which is of major impact on the animation quality, when using methods such as the PGS method. The issue is robust generation of contact points...... for convex polytopes. A novel contact point generation method is presented, which is based on growth distances and Gauss maps. We demonstrate improvements when using our method in the context of interactive rigid body simulation...

  14. Rigid Body Motion Calculated From Spatial Co-ordinates of Markers ...

    African Journals Online (AJOL)

    In this paper, we present a unified method for calculating spatial coordinates of markers for a rigid body motion such as in bones. Kinematical analysis of bone movement in cadaveric specimens or living objects had been developed. Here, we show how spatial co-ordinates of markers in or on bone can be calculated from ...

  15. Steady fall of a rigid body in viscous fluid

    Czech Academy of Sciences Publication Activity Database

    Nečasová, Šárka

    2005-01-01

    Roč. 63, Sp. Is. (2005), s. 2113-2119 ISSN 0362-546X. [Invited Talks from the Fourth World Congress of Nonlinear Analysts (WCNA 2004). Orlando , 30.7.2004-7.8.2004] R&D Projects: GA ČR(CZ) GA201/02/0684 Institutional research plan: CEZ:AV0Z1019905 Keywords : steady fall * rigid body * viscous fluid Subject RIV: BA - General Mathematics Impact factor: 0.519, year: 2005

  16. High-order conservative discretizations for some cases of the rigid body motion

    International Nuclear Information System (INIS)

    Kozlov, Roman

    2008-01-01

    Modified vector fields can be used to construct high-order structure-preserving numerical integrators for ordinary differential equations. In the present Letter we consider high-order integrators based on the implicit midpoint rule, which conserve quadratic first integrals. It is shown that these integrators are particularly suitable for the rigid body motion with an additional quadratic first integral. In this case high-order integrators preserve all four first integrals of motion. The approach is illustrated on the Lagrange top (a rotationally symmetric rigid body with a fixed point on the symmetry axis). The equations of motion are considered in the space fixed frame because in this frame Lagrange top admits a neat description. The Lagrange top motion includes the spherical pendulum and the planar pendulum, which swings in a vertical plane, as particular cases

  17. Rigid Body Time Integration by Convected Base Vectors with Implicit Constraints

    DEFF Research Database (Denmark)

    Krenk, Steen; Nielsen, Martin Bjerre

    2013-01-01

    of the kinetic energy used in the present formulation is deliberately chosen to correspond to a rigid body rotation, and the orthonormality constraints are introduced via the equivalent Green strain components of the base vectors. The particular form of the extended inertia tensor used here implies a set...

  18. Homogenized rigid body and spring-mass (HRBSM) model for the pushover analysis of out-of-plane loaded unreinforced and FRP reinforced walls

    Science.gov (United States)

    Bertolesi, Elisa; Milani, Gabriele

    2017-07-01

    The present paper is devoted to the discussion of a series of unreinforced and FRP retrofitted panels analyzed adopting the Rigid Body and Spring-Mass (HRBSM) model developed by the authors. To this scope, a total of four out of plane loaded masonry walls tested up to failure are considered. At a structural level, the non-linear analyses are conducted replacing the homogenized orthotropic continuum with a rigid element and non-linear spring assemblage by means of which out of plane mechanisms are allowed. FRP retrofitting is modeled adopting two noded truss elements whose mechanical properties are selected in order to describe possible debonding phenomenon or tensile rupture of the strengthening. The outcome provided numerically are compared to the experimental results showing a satisfactory agreement in terms of global pressure-deflection curves and failure mechanisms.

  19. A rigid-body least-squares program with angular and translation scan facilities

    CERN Document Server

    Kutschabsky, L

    1981-01-01

    The described computer program, written in CERN Fortran, is designed to enlarge the convergence radius of the rigid-body least-squares method by allowing a stepwise change of the angular and/or translational parameters within a chosen range. (6 refs).

  20. Research on Rigid Body Motion Tracing in Space based on NX MCD

    Science.gov (United States)

    Wang, Junjie; Dai, Chunxiang; Shi, Karen; Qin, Rongkang

    2018-03-01

    In the use of MCD (Mechatronics Concept Designer) which is a module belong to SIEMENS Ltd industrial design software UG (Unigraphics NX), user can define rigid body and kinematic joint to make objects move according to the existing plan in simulation. At this stage, user may have the desire to see the path of some points in the moving object intuitively. In response to this requirement, this paper will compute the pose through the transformation matrix which can be available from the solver engine, and then fit these sampling points through B-spline curve. Meanwhile, combined with the actual constraints of rigid bodies, the traditional equal interval sampling strategy was optimized. The result shown that this method could satisfy the demand and make up for the deficiency in traditional sampling method. User can still edit and model on this 3D curve. Expected result has been achieved.

  1. Lorentz Contraction, Bell's Spaceships and Rigid Body Motion in Special Relativity

    Science.gov (United States)

    Franklin, Jerrold

    2010-01-01

    The meaning of Lorentz contraction in special relativity and its connection with Bell's spaceships parable is discussed. The motion of Bell's spaceships is then compared with the accelerated motion of a rigid body. We have tried to write this in a simple form that could be used to correct students' misconceptions due to conflicting earlier…

  2. Topology Optimization of a Vibrating System of Rigid and Flexible Bodies for Maximizing Repeated Eigenfrequencies

    International Nuclear Information System (INIS)

    Ahn, Byungseong; Kim, Suh In; Kim, Yoon Young

    2016-01-01

    When a system consisting of rigid and flexible bodies is optimized to improve its dynamic characteristics, its eigenfrequencies are typically maximized. While topology optimization formulations dealing with simultaneous design of a system of rigid and flexible bodies are available, studies on eigenvalue maximization of the system are rare. In particular, no work has solved for the case when the target frequency becomes one of the repeated eigenfrequencies. The problem involving repeated eigenfrequencies is solved in this study, and a topology optimization formulation and sensitivity analysis are presented. Further, several numerical case studies are considered to demonstrate the validity of the proposed formulation

  3. Reconstructing rotations and rigid body motions from exact point correspondences through reflections

    NARCIS (Netherlands)

    Fontijne, D.; Dorst, L.; Dorst, L.; Lasenby, J.

    2011-01-01

    We describe a new algorithm to reconstruct a rigid body motion from point correspondences. The algorithm works by constructing a series of reflections which align the points with their correspondences one by one. This is naturally and efficiently implemented in the conformal model of geometric

  4. On the monoaxial stabilization of a rigid body under vanishing restoring torque

    Science.gov (United States)

    Aleksandrov, A. Yu.; Aleksandrova, E. B.; Tikhonov, A. A.

    2018-05-01

    The problem of monoaxial stabilization of a rigid body is studied. It is assumed that a linear time-invariant dissipative torque and a time-varying restoring torque vanishing as time increases act on the body. Both the case of linear restoring torque and that of essentially nonlinear one are considered. With the aid of the decomposition method, conditions are obtained under which we can guarantee the asymptotic stability of an equilibrium position of the body despite the vanishing of the restoring torque. A numerical simulation is provided to demonstrate the effectiveness of our theoretical results.

  5. Lorentz contraction, Bell's spaceships and rigid body motion in special relativity

    International Nuclear Information System (INIS)

    Franklin, Jerrold

    2010-01-01

    The meaning of Lorentz contraction in special relativity and its connection with Bell's spaceships parable is discussed. The motion of Bell's spaceships is then compared with the accelerated motion of a rigid body. We have tried to write this in a simple form that could be used to correct students' misconceptions due to conflicting earlier treatments.

  6. Nonlinear mechanics of non-rigid origami: an efficient computational approach

    Science.gov (United States)

    Liu, K.; Paulino, G. H.

    2017-10-01

    Origami-inspired designs possess attractive applications to science and engineering (e.g. deployable, self-assembling, adaptable systems). The special geometric arrangement of panels and creases gives rise to unique mechanical properties of origami, such as reconfigurability, making origami designs well suited for tunable structures. Although often being ignored, origami structures exhibit additional soft modes beyond rigid folding due to the flexibility of thin sheets that further influence their behaviour. Actual behaviour of origami structures usually involves significant geometric nonlinearity, which amplifies the influence of additional soft modes. To investigate the nonlinear mechanics of origami structures with deformable panels, we present a structural engineering approach for simulating the nonlinear response of non-rigid origami structures. In this paper, we propose a fully nonlinear, displacement-based implicit formulation for performing static/quasi-static analyses of non-rigid origami structures based on `bar-and-hinge' models. The formulation itself leads to an efficient and robust numerical implementation. Agreement between real models and numerical simulations demonstrates the ability of the proposed approach to capture key features of origami behaviour.

  7. Rigid-body displacement perpendicular to a {211} twin boundary in Mo

    Czech Academy of Sciences Publication Activity Database

    Gemperlová, Juliana; Vystavěl, Tomáš; Gemperle, Antonín; Pénisson, J. M.

    2001-01-01

    Roč. 31, č. 11 (2001), s. 1767-1778 ISSN 0141-8637 R&D Projects: GA AV ČR IAA1010916; GA ČR GA202/99/1665 Institutional research plan: CEZ:AV0Z1010914 Keywords : sigma=3 Mo bicrystal * rigid-body displacement * alfa- fringe method Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.238, year: 2001

  8. A comparative study of velocity increment generation between the rigid body and flexible models of MMET

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Norilmi Amilia, E-mail: aenorilmi@usm.my [School of Aerospace Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2016-02-01

    The motorized momentum exchange tether (MMET) is capable of generating useful velocity increments through spin–orbit coupling. This study presents a comparative study of the velocity increments between the rigid body and flexible models of MMET. The equations of motions of both models in the time domain are transformed into a function of true anomaly. The equations of motion are integrated, and the responses in terms of the velocity increment of the rigid body and flexible models are compared and analysed. Results show that the initial conditions, eccentricity, and flexibility of the tether have significant effects on the velocity increments of the tether.

  9. On potential energies and constraints in the dynamics of rigid bodies and particles

    Directory of Open Access Journals (Sweden)

    O'reilly Oliver M.

    2002-01-01

    Full Text Available A new treatment of kinematical constraints and potential energies arising in the dynamics of systems of rigid bodies and particles is presented which is suited to Newtonian and Lagrangian formulations. Its novel feature is the imposing of invariance requirements on the constraint functions and potential energy functions. These requirements are extensively used in continuum mechanics and, in the present context, one finds certain generalizations of Newton's third law of motion and an elucidation of the nature of constraint forces and moments. One motivation for such a treatment can be found by considering approaches where invariance requirements are ignored. In contrast to the treatment presented in this paper, it is shown that this may lead to a difficulty in formulating the equations governing the motion of the system.

  10. Dynamics of parallel robots from rigid bodies to flexible elements

    CERN Document Server

    Briot, Sébastien

    2015-01-01

    This book starts with a short recapitulation on basic concepts, common to any types of robots (serial, tree structure, parallel, etc.), that are also necessary for computation of the dynamic models of parallel robots. Then, as dynamics requires the use of geometry and kinematics, the general equations of geometric and kinematic models of parallel robots are given. After, it is explained that parallel robot dynamic models can be obtained by decomposing the real robot into two virtual systems: a tree-structure robot (equivalent to the robot legs for which all joints would be actuated) plus a free body corresponding to the platform. Thus, the dynamics of rigid tree-structure robots is analyzed and algorithms to obtain their dynamic models in the most compact form are given. The dynamic model of the real rigid parallel robot is obtained by closing the loops through the use of the Lagrange multipliers. The problem of the dynamic model degeneracy near singularities is treated and optimal trajectory planning for cro...

  11. Mechanical Characterization of Rigid Polyurethane Foams

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Mechanics of Materials

    2014-12-01

    Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.

  12. Calculating ensemble averaged descriptions of protein rigidity without sampling.

    Science.gov (United States)

    González, Luis C; Wang, Hui; Livesay, Dennis R; Jacobs, Donald J

    2012-01-01

    Previous works have demonstrated that protein rigidity is related to thermodynamic stability, especially under conditions that favor formation of native structure. Mechanical network rigidity properties of a single conformation are efficiently calculated using the integer body-bar Pebble Game (PG) algorithm. However, thermodynamic properties require averaging over many samples from the ensemble of accessible conformations to accurately account for fluctuations in network topology. We have developed a mean field Virtual Pebble Game (VPG) that represents the ensemble of networks by a single effective network. That is, all possible number of distance constraints (or bars) that can form between a pair of rigid bodies is replaced by the average number. The resulting effective network is viewed as having weighted edges, where the weight of an edge quantifies its capacity to absorb degrees of freedom. The VPG is interpreted as a flow problem on this effective network, which eliminates the need to sample. Across a nonredundant dataset of 272 protein structures, we apply the VPG to proteins for the first time. Our results show numerically and visually that the rigidity characterizations of the VPG accurately reflect the ensemble averaged [Formula: see text] properties. This result positions the VPG as an efficient alternative to understand the mechanical role that chemical interactions play in maintaining protein stability.

  13. Simulating Dynamics of the System of Articulated Rigid Bodies with Joint Friction

    Directory of Open Access Journals (Sweden)

    M. V. Michaylyuk

    2016-01-01

    Full Text Available The subject of the work is to simulate dynamics of the system of articulated rigid bodies in the virtual environment complexes. The work aim is to develop algorithms and methods to simulate the multi-body system dynamics with joint friction to ensure all calculations in real time in line with visual realistic behavior of objects in a scene.The paper describes the multibody system based on a maximal set of coordinates, and to simulate the joint friction is used a Coulomb's law of dry friction. Joints are described using the holonomic constraints and their derivatives that specify the constraints on velocities of joined bodies. Based on The Coulomb’s law a correlation for the friction impulse values has been derived as an inequality. If the friction impulse performs a constraint that is a lack of relative motion of two joint-joined bodies, there is a static friction in the joint. Otherwise, there is a dynamic friction in the joint. Using a semi-implicit Euler method allows us to describe dynamics of articulated rigid bodies with joint friction as a system of linear algebraic equations and inequalities for the unknown velocities and impulse values.To solve the obtained system of equations and inequalities is used an iterative method of sequential impulses, which sequentially processes constraints for each joint with impulse calculation and its application to the joined bodies rather than considers the entire system. To improve the method convergence, at each iteration the calculated impulses are accumulated for their further using as an initial approximation at the next step of simulation.The proposed algorithms and methods have been implemented in the training complex dynamics subsystem, developed in SRISA RAS. Evaluation of these methods and algorithms has demonstrated their full adequacy to requirements for virtual environment systems and training complexes.

  14. On the axioms of the forces in the mechanics of rigid bodies

    Directory of Open Access Journals (Sweden)

    Lámer Géza

    2017-01-01

    Full Text Available Newton summarised knowledge related to forces in three axioms. The first and second ones define the mechanical state and motion of the examined body when there is no force or when force is exerted on the body. The third defines the law of action and reaction. Newton did not define it as separate axiom but assumed that forces are completely independent from each other. The statics applies four axioms. The first applies to the balance of two forces while the second one applies of three forces. The third axiom defines the relationships inside an equilibrium force system. The fourth one is the axiom of action and reaction. The two axiom systems are independent from each other. Further the independent axioms are applied in case of constraint forces: frictionless reaction force orthogonal on the forced surface, friction force acts in the direction of the motion, the deformation can be elastic, plastic and viscous.

  15. EDF fragment relocation model based on the displacement of rigid bodies

    International Nuclear Information System (INIS)

    Callu, C.; Baron, D.; Ruck, J.M.

    1997-01-01

    In order to release the restricting conditions imposed to the reactor operations with regards to PCMI (Pellet-Cladding Mechanical Interaction), the simulation of a fuel rod thermomechanical behavior has to be improved. The computer programming has to cope with the more and more sophisticated mathematical modellings induced by the complexity and the interdependence of the phenomena. Therefore EDF is developing a new code - CYRANO3 - since 1990 putting emphasis on its evolution capacities. Concerning more precisely the PCMI simulation, the pellet fragmentation and the fragments relocation is one of the major aspect one must account for. Thanks to recent analytical experiments, EDF developed a new modelling based on the displacement of rigid bodies and on the calculation of the interaction efforts between the fragments. This paper presents the basis of the model, its introduction within the CYRANO3 code and its calibration on a specific analytical experiment. The modelling is then tested against PWR fuel rods deformations from the EDF data base. The results are presented and discussed. (author)

  16. Dynamical Behavior of a Rigid Body with One Fixed Point (Gyroscope. Basic Concepts and Results. Open Problems: a Review

    Directory of Open Access Journals (Sweden)

    Svetoslav Ganchev Nikolov

    2015-07-01

    Full Text Available The study of the dynamic behavior of a rigid body with one fixed point (gyroscope has a long history. A number of famous mathematicians and mechanical engineers have devoted enormous time and effort to clarify the role of dynamic effects on its movement (behavior – stable, periodic, quasi-periodic or chaotic. The main objectives of this review are: 1 to outline the characteristic features of the theory of dynamical systems and 2 to reveal the specific properties of the motion of a rigid body with one fixed point (gyroscope.This article consists of six sections. The first section addresses the main concepts of the theory of dynamical systems. Section two presents the main theoretical results (obtained so far concerning the dynamic behavior of a solid with one fixed point (gyroscope. Section three examines the problem of gyroscopic stabilization. Section four deals with the non-linear (chaotic dynamics of the gyroscope. Section five is a brief analysis of the gyroscope applications in engineering. The final section provides conclusions and generalizations on why the theory of dynamical systems should be used in the study of the movement of gyroscopic systems.

  17. iCub Whole-body Control through Force Regulation on Rigid Noncoplanar Contacts

    Directory of Open Access Journals (Sweden)

    Francesco eNori

    2015-03-01

    Full Text Available This paper details the implementation on the humanoid robot iCub of state-of-the-art algorithms for whole-body control. We regulate the forces between the robot and its surrounding environment to stabilize a desired robot posture. We assume that the forces and torques are exerted on rigid contacts. The validity of this assumption is guaranteed by constraining the contact forces and torques, e.g. the contact forces must belong to the associated friction cones. The implementation of this control strategy requires to estimate the external forces acting on the robot, and the internal joint torques. We then detail algorithms to obtain these estimations when using a robot with an iCub-like sensor set, i.e. distributed six-axis force-torque sensors and whole-body tactile sensors. A general theory for identifying the robot inertial parameters is also presented. From an actuation standpoint, we show how to implement a joint torque control in the case of DC brushless motors. In addition, the coupling mechanism of the iCub torso is investigated. The soundness of the entire control architecture is validated in a real scenario involving the robot iCub balancing and making contacts at both arms.

  18. Elasticity of Relativistic Rigid Bodies?

    Science.gov (United States)

    Smarandache, Florentin

    2013-10-01

    In the classical Twin Paradox, according to the Special Theory of Relativity, when the traveling twin blasts off from the Earth to a relative velocity v =√{/3 } 2 c with respect to the Earth, his measuring stick and other physical objects in the direction of relative motion shrink to half their lengths. How is that possible in the real physical world to have let's say a rigid rocket shrinking to half and then later elongated back to normal as an elastic material when it stops? What is the explanation for the traveler's measuring stick and other physical objects, in effect, return to the same length to their original length in the Stay-At-Home, but there is no record of their having shrunk? If it's a rigid (not elastic) object, how can it shrink and then elongate back to normal? It might get broken in such situation.

  19. Calculating ensemble averaged descriptions of protein rigidity without sampling.

    Directory of Open Access Journals (Sweden)

    Luis C González

    Full Text Available Previous works have demonstrated that protein rigidity is related to thermodynamic stability, especially under conditions that favor formation of native structure. Mechanical network rigidity properties of a single conformation are efficiently calculated using the integer body-bar Pebble Game (PG algorithm. However, thermodynamic properties require averaging over many samples from the ensemble of accessible conformations to accurately account for fluctuations in network topology. We have developed a mean field Virtual Pebble Game (VPG that represents the ensemble of networks by a single effective network. That is, all possible number of distance constraints (or bars that can form between a pair of rigid bodies is replaced by the average number. The resulting effective network is viewed as having weighted edges, where the weight of an edge quantifies its capacity to absorb degrees of freedom. The VPG is interpreted as a flow problem on this effective network, which eliminates the need to sample. Across a nonredundant dataset of 272 protein structures, we apply the VPG to proteins for the first time. Our results show numerically and visually that the rigidity characterizations of the VPG accurately reflect the ensemble averaged [Formula: see text] properties. This result positions the VPG as an efficient alternative to understand the mechanical role that chemical interactions play in maintaining protein stability.

  20. A conservative quaternion-based time integration algorithm for rigid body rotations with implicit constraints

    DEFF Research Database (Denmark)

    Nielsen, Martin Bjerre; Krenk, Steen

    2012-01-01

    A conservative time integration algorithm for rigid body rotations is presented in a purely algebraic form in terms of the four quaternions components and the four conjugate momentum variables via Hamilton’s equations. The introduction of an extended mass matrix leads to a symmetric set of eight...

  1. On Classical Dynamics of Affinely-Rigid Bodies Subject to the Kirchhoff-Love Constraints

    Directory of Open Access Journals (Sweden)

    Vasyl Kovalchuk

    2010-04-01

    Full Text Available In this article we consider the affinely-rigid body moving in the three-dimensional physical space and subject to the Kirchhoff-Love constraints, i.e., while it deforms homogeneously in the two-dimensional central plane of the body it simultaneously performs one-dimensional oscillations orthogonal to this central plane. For the polar decomposition we obtain the stationary ellipsoids as special solutions of the general, strongly nonlinear equations of motion. It is also shown that these solutions are conceptually different from those obtained earlier for the two-polar (singular value decomposition.

  2. Dynamics of Rigid Bodies and Flexible Beam Structures

    DEFF Research Database (Denmark)

    Nielsen, Martin Bjerre

    of rigid bodies and flexible beam structures with emphasis on the rotational motion. The first part deals with motion in a rotating frame of reference. A novel approach where the equations of motion are formulated in a hybrid state-space in terms of local displacements and global velocities is presented...... quaternion parameters or nine convected base vector components. In both cases, the equations of motion are obtained via Hamilton’s equations by including the kinematic constraints associated with the redundant rotation description by means of Lagrange multipliers. A special feature of the formulation...... of the global components of the position vectors and associated convected base vectors for the element nodes. The kinematics is expressed in a homogeneous quadratic form and the constitutive stiffness is derived from complementary energy of a set of equilibrium modes, each representing a state of constant...

  3. Case report: Inhaled foreign body mismanaged as TB, finally removed using a rigid bronchoscopy after 6 years of impaction

    Directory of Open Access Journals (Sweden)

    Justin Rubena Lumaya

    2016-02-01

    Full Text Available Foreign body aspiration is an important cause of mortality in children aged less than three years. Foreign body (FB inhalation can pose diagnostic and therapeutic challenges, especially in longstanding cases and complications such as recurrent pneumonia, lung collapse and lung abscess may develop. We report a case of an 11-year old boy with foreign body impacted in his bronchus for six years, which was mistakenly managed as pulmonary tuberculosis. Radiological evidence confirmed the diagnosis and a rigid bronchoscopy was used to remove the metallic foreign body. The standard of care for the management of a FB in a bronchus is a rigid bronchoscopy; however flexible bronchoscopy can be used, especially in adults. A thorough history with radiological evidence are essential and sometimes, followed by a diagnostic bronchoscopy.

  4. Diagnostic-Photographic Determination of Drag/Lift/Torque Coefficients of High Speed Rigid Body in Water Column

    National Research Council Canada - National Science Library

    Chu, Peter C; Fan, Chenwu; Gefken, Paul R

    2008-01-01

    Prediction of rigid body falling through water column with a high speed (such as Mk-84 bomb) needs formulas for drag/lift and torque coefficients, which depend on various physical processes such as supercavitation and bubbles...

  5. Flutter Instability of a Fluid-Conveying Fluid-Immersed Pipe Affixed to a Rigid Body

    Science.gov (United States)

    2011-01-01

    rigid body, denoted by y in Fig. 4, is small. This is in addition to the Euler– Bernoulli beam assumption that the slope of the tail is small everywhere...here. These include the efficiency with which the prime mover can generate fluid momentum , pipe losses, and external drag acting on both the hull and the

  6. Proposal of a high rigidity and high speed rotating mechanism using a new concept hydrodynamic bearing in X-ray tube for high speed computed tomography

    International Nuclear Information System (INIS)

    Hattori, Hitoshi; Fukushima, Harunobu; Yoshii, Yasuo; Nakamuta, Hironori; Iwase, Mitsuo; Kitade, Koichi

    2009-01-01

    In this paper, a high rigidity and high speed rotating mechanism using a new concept hydrodynamic bearing in X-ray tube for high speed computed tomography is proposed. In order to obtain both the stability and the high load carrying capacity, the hydrodynamic bearing lubricated by liquid metal (Gallium alloy), named as the hybrid hydrodynamic bearing generates the lubricating film by wedge effect on the plane region between the spiral grooves under high loading condition. The parallelism between the bearing and the rotating body can be secured by optimizing the rigidity distribution of stationary shaft in the proposed rotating mechanism. By carrying out the fundamental design by numerical analyses, it has been made clear that the hybrid hydrodynamic bearing and the rotating mechanism are suitable for the X-ray tube used in the CT with ever-increasingly scanning speed. (author)

  7. On the linear problem arising from motion of a fluid around a moving rigid body

    Czech Academy of Sciences Publication Activity Database

    Nečasová, Šárka; Wolf, J.

    2015-01-01

    Roč. 140, č. 2 (2015), s. 241-259 ISSN 0862-7959 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : incompressible fluid * rotating rigid body * strong solution Subject RIV: BA - General Mathematics http://hdl.handle.net/10338.dmlcz/144329

  8. The motion of the rigid body in viscous fluid including collisions. Global solvability result

    Czech Academy of Sciences Publication Activity Database

    Chemetov, N.; Nečasová, Šárka

    2017-01-01

    Roč. 34, April (2017), s. 416-445 ISSN 1468-1218 R&D Projects: GA ČR GA16-03230S Institutional support: RVO:67985840 Keywords : rigid body * global weak solution * collisions in finite time Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.659, year: 2016 http://www.sciencedirect.com/science/article/pii/S1468121816301146

  9. Rigid dietary control, flexible dietary control, and intuitive eating: Evidence for their differential relationship to disordered eating and body image concerns.

    Science.gov (United States)

    Linardon, Jake; Mitchell, Sarah

    2017-08-01

    This study aimed to replicate and extend from Tylka, Calogero, and Daníelsdóttir (2015) findings by examining the relationship between rigid control, flexible control, and intuitive eating on various indices of disordered eating (i.e., binge eating, disinhibition) and body image concerns (i.e., shape and weight over-evaluation, body checking, and weight-related exercise motivations). This study also examined whether the relationship between intuitive eating and outcomes was mediated by dichotomous thinking and body appreciation. Analysing data from a sample of 372 men and women recruited through the community, this study found that, in contrast to rigid dietary control, intuitive eating uniquely and consistently predicted lower levels of disordered eating and body image concerns. This intuitive eating-disordered eating relationship was mediated by low levels of dichotomous thinking and the intuitive eating-body image relationship was mediated by high levels of body appreciation. Flexible control predicted higher levels of body image concerns and lower levels of disordered eating only when rigid control was accounted for. Findings suggest that until the adaptive properties of flexible control are further elucidated, it may be beneficial to promote intuitive eating within public health approaches to eating disorder prevention. In addition to this, particular emphasis should also be made toward promoting body acceptance and eradicating a dichotomous thinking style around food and eating. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Motion of a Rigid Body Supported at One Point by a Rotating Arm

    Directory of Open Access Journals (Sweden)

    Jeffrey D. Stoen

    1993-01-01

    Full Text Available This article details a scheme for evaluating the stability of motions of a system consisting of a rigid body connected at one point to a rotating arm. The nonlinear equations of motion for the system are formulated, and a method for finding exact solutions representing motions that resemble a state of rest is presented. The equations are then linearized and roots of the eigensystem are classified and used to construct stability diagrams that facilitate the assessment of effects of varying the body's mass properties and system geometry, changing the position of the attachment joint, and adding energy dissipation in the joint.

  11. Modelling of transport and collisions between rigid bodies to simulate the jam formation in urban flows

    Directory of Open Access Journals (Sweden)

    S Hadji

    2008-09-01

    Full Text Available This study deals with the simulation of transport and interaction betweenbodies considered as a rectangular shape particles, in urban flow. We usedan hydrodynamic two-dimensional finite elements model coupled to theparticles model based on Maxey-Riley equations, and taking into accountof contact between bodies. The finite element discretization is based onthe velocity field richer than pressure field, and the particles displacementsare computed by using a rigid body motion method. A collision strategy isalso developed to handle cases in which bodies touch.

  12. Strongly coupled partitioned six degree-of-freedom rigid body motion solver with Aitken's dynamic under-relaxation

    Directory of Open Access Journals (Sweden)

    Jeng Hei Chow

    2016-07-01

    Full Text Available An implicit method of solving the six degree-of-freedom rigid body motion equations based on the second order Adams-Bashforth-Moulten method was utilised as an improvement over the leapfrog scheme by making modifications to the rigid body motion solver libraries directly. The implementation will depend on predictor-corrector steps still residing within the hybrid Pressure Implicit with Splitting of Operators - Semi-Implicit Method for Pressure Linked Equations (PIMPLE outer corrector loops to ensure strong coupling between fluid and motion. Aitken's under-relaxation is also introduced in this study to optimise the convergence rate and stability of the coupled solver. The resulting coupled solver ran on a free floating object tutorial test case when converged matches the original solver. It further allows a varying 70%–80% reduction in simulation times compared using a fixed under-relaxation to achieve the required stability.

  13. The general problem of the motion of coupled rigid bodies about a fixed point

    CERN Document Server

    Leimanis, Eugene

    1965-01-01

    In the theory of motion of several coupled rigid bodies about a fixed point one can distinguish three basic ramifications. 1. The first, the so-called classical direction of investigations, is concerned with particular cases of integrability ot the equations of motion of a single rigid body about a fixed point,1 and with their geo­ metrical interpretation. This path of thought was predominant until the beginning of the 20th century and its most illustrious represen­ tatives are L. EULER (1707-1783), J L. LAGRANGE (1736-1813), L. POINSOT (1777-1859), S. V. KOVALEVSKAYA (1850-1891), and others. Chapter I of the present monograph intends to reflect this branch of investigations. For collateral reading on the general questions dealt with in this chapter the reader is referred to the following textbooks and reports: A. DOMOGAROV [1J, F. KLEIN and A. SOMMERFELD [11, 1 , 1 J, A. G. 2 3 GREENHILL [10J, A. GRAY [1J, R. GRAMMEL [4 J, E. J. ROUTH [21' 2 , 1 2 31' 32J, J. B. SCARBOROUGH [1J, and V. V. GOLUBEV [1, 2J.

  14. Constrained non-rigid registration for whole body image registration: method and validation

    Science.gov (United States)

    Li, Xia; Yankeelov, Thomas E.; Peterson, Todd E.; Gore, John C.; Dawant, Benoit M.

    2007-03-01

    3D intra- and inter-subject registration of image volumes is important for tasks that include measurements and quantification of temporal/longitudinal changes, atlas-based segmentation, deriving population averages, or voxel and tensor-based morphometry. A number of methods have been proposed to tackle this problem but few of them have focused on the problem of registering whole body image volumes acquired either from humans or small animals. These image volumes typically contain a large number of articulated structures, which makes registration more difficult than the registration of head images, to which the vast majority of registration algorithms have been applied. To solve this problem, we have previously proposed an approach, which initializes an intensity-based non-rigid registration algorithm with a point based registration technique [1, 2]. In this paper, we introduce new constraints into our non-rigid registration algorithm to prevent the bones from being deformed inaccurately. Results we have obtained show that the new constrained algorithm leads to better registration results than the previous one.

  15. A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid

    International Nuclear Information System (INIS)

    Nikolaenko, S S

    2014-01-01

    The paper is concerned with the topological analysis of the Chaplygin integrable case in the dynamics of a rigid body in a fluid. A full list of the topological types of Chaplygin systems in their dependence on the energy level is compiled on the basis of the Fomenko-Zieschang theory. An effective description of the topology of the Liouville foliation in terms of natural coordinate variables is also presented, which opens a direct way to calculating topological invariants. It turns out that on all nonsingular energy levels Chaplygin systems are Liouville equivalent to the well-known Euler case in the dynamics of a rigid body with fixed point. Bibliography: 23 titles

  16. Damageable contact between an elastic body and a rigid foundation

    Science.gov (United States)

    Campo, M.; Fernández, J. R.; Silva, A.

    2009-02-01

    In this work, the contact problem between an elastic body and a rigid obstacle is studied, including the development of material damage which results from internal compression or tension. The variational problem is formulated as a first-kind variational inequality for the displacements coupled with a parabolic partial differential equation for the damage field. The existence of a unique local weak solution is stated. Then, a fully discrete scheme is introduced using the finite element method to approximate the spatial variable and an Euler scheme to discretize the time derivatives. Error estimates are derived on the approximate solutions, from which the linear convergence of the algorithm is deduced under suitable regularity conditions. Finally, three two-dimensional numerical simulations are performed to demonstrate the accuracy and the behaviour of the scheme.

  17. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

    International Nuclear Information System (INIS)

    Könik, Arda; Johnson, Karen L; Dasari, Paul; Pretorius, P H; Dey, Joyoni; King, Michael A; Connolly, Caitlin M; Segars, Paul W; Lindsay, Clifford

    2014-01-01

    The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory

  18. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

    Science.gov (United States)

    Könik, Arda; Connolly, Caitlin M.; Johnson, Karen L.; Dasari, Paul; Segars, Paul W.; Pretorius, P. H.; Lindsay, Clifford; Dey, Joyoni; King, Michael A.

    2014-07-01

    The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory

  19. Soft-rigid interaction mechanism towards a lobster-inspired hybrid actuator

    Science.gov (United States)

    Chen, Yaohui; Wan, Fang; Wu, Tong; Song, Chaoyang

    2018-01-01

    Soft pneumatic actuators (SPAs) are intrinsically light-weight, compliant and therefore ideal to directly interact with humans and be implemented into wearable robotic devices. However, they also pose new challenges in describing and sensing their continuous deformation. In this paper, we propose a hybrid actuator design with bio-inspirations from the lobsters, which can generate reconfigurable bending movements through the internal soft chamber interacting with the external rigid shells. This design with joint and link structures enables us to exactly track its bending configurations that previously posed a significant challenge to soft robots. Analytic models are developed to illustrate the soft-rigid interaction mechanism with experimental validation. A robotic glove using hybrid actuators to assist grasping is assembled to illustrate their potentials in safe human-robot interactions. Considering all the design merits, our work presents a practical approach to the design of next-generation robots capable of achieving both good accuracy and compliance.

  20. In silico single-molecule manipulation of DNA with rigid body dynamics.

    Directory of Open Access Journals (Sweden)

    Pascal Carrivain

    2014-02-01

    Full Text Available We develop a new powerful method to reproduce in silico single-molecule manipulation experiments. We demonstrate that flexible polymers such as DNA can be simulated using rigid body dynamics thanks to an original implementation of Langevin dynamics in an open source library called Open Dynamics Engine. We moreover implement a global thermostat which accelerates the simulation sampling by two orders of magnitude. We reproduce force-extension as well as rotation-extension curves of reference experimental studies. Finally, we extend the model to simulations where the control parameter is no longer the torsional strain but instead the torque, and predict the expected behavior for this case which is particularly challenging theoretically and experimentally.

  1. Dynamical analysis of an orbiting three-rigid-body system

    Energy Technology Data Exchange (ETDEWEB)

    Pagnozzi, Daniele, E-mail: daniele.pagnozzi@strath.ac.uk, E-mail: james.biggs@strath.ac.uk; Biggs, James D., E-mail: daniele.pagnozzi@strath.ac.uk, E-mail: james.biggs@strath.ac.uk [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, Scotland (United Kingdom)

    2014-12-10

    The development of multi-joint-spacecraft mission concepts calls for a deeper understanding of their nonlinear dynamics to inform and enhance system design. This paper presents a study of a three-finite-shape rigid-body system under the action of an ideal central gravitational field. The aim of this paper is to gain an insight into the natural dynamics of this system. The Hamiltonian dynamics is derived and used to identify relative attitude equilibria of the system with respect to the orbital reference frame. Then a numerical investigation of the behaviour far from the equilibria is provided using tools from modern dynamical systems theory such as energy methods, phase portraits and Poincarè maps. Results reveal a complex structure of the dynamics as well as the existence of connections between some of the equilibria. Stable equilibrium configurations appear to be surrounded by very narrow regions of regular and quasi-regular motions. Trajectories evolve on chaotic motions in the rest of the domain.

  2. Development of Swimming Human Simulation Model Considering Rigid Body Dynamics and Unsteady Fluid Force for Whole Body

    Science.gov (United States)

    Nakashima, Motomu; Satou, Ken; Miura, Yasufumi

    The purpose of this study is to develop a swimming human simulation model considering rigid body dynamics and unsteady fluid force for the whole body, which will be utilized to analyze various dynamical problems in human swimming. First, the modeling methods and their formulations for the human body and the fluid force are respectively described. Second, experiments to identify the coefficients of the normal drag and the added mass are conducted by use of an experimental setup, in which a limb model rotates in the water, and its rotating angle and the bending moment at the root are measured. As the result of the identification, the present model for the fluid force was found to have satisfactory performance in order to represent the unsteady fluctuations of the experimental data, although it has 10% error. Third, a simulation for the gliding position is conducted in order to identify the tangential drag coefficient. Finally, a simulation example of standard six beat front crawl swimming is shown. The swimming speed of the simulation became a reasonable value, indicating the validity of the present simulation model, although it is 7.5% lower than the actual swimming.

  3. Enhanced mechanical properties of linear segmented shape memory poly(urethane-urea) by incorporating flexible PEG400 and rigid piperazine

    Science.gov (United States)

    Zhang, Xiao-Yan; Ma, Yu-Fei; Li, Yong-Gang; Wang, Pin-Pin; Wang, Yuan-Liang; Luo, Yan-Feng

    2012-12-01

    The goal of this study is to design and synthesize a linear segmented shape memory poly(urethane-urea) (SMPUU) that possesses near-body-temperature shape memory temperature ( T tran) and enhanced mechanical properties by incorporating flexible poly(ethylene glycol) 400 (PEG400) to form poly(D,L-lactic acid)-based macrodiols (PDLLA-PEG400-PDLLA) and then rigid piperazine (PPZ) as a chain extender to form the desired SMPUUs (PEG400-PUU-PPZ). PEG400 increased M n while maintaining a lower T g of PDLLA-PEG400-PDLLA, which together with PPZ improved the mechanical properties of PEG400-PUU-PPZ. The obtained optimum SMPUU with enhanced mechanical properties ( σ y = 24.28 MPa; ɛ f = 698%; U f = 181.5 MJ/m3) and a T g of 40.62°C exhibited sound shape memory properties as well, suggesting a promising SMPUU for in vivo biomedical applications.

  4. Introduction to physics mechanics, hydrodynamics thermodynamics

    CERN Document Server

    Frauenfelder, P

    2013-01-01

    Introduction of Physics: Mechanics , Hydrodynamics, Thermodynamics covers the principles of matter and its motion through space and time, as well as the related concepts of energy and force. This book is composed of eleven chapters, and begins with an introduction to the basic principles of mechanics, hydrodynamics, and thermodynamics. The subsequent chapters deal with the statics of rigid bodies and the dynamics of particles and rigid bodies. These topics are followed by discussions on elasticity, mechanics of fluids, the basic concept of thermodynamic, kinetic theory, and crystal structure o

  5. Dynamic Behavior of Wind Turbine by a Mixed Flexible-Rigid Multi-Body Model

    Science.gov (United States)

    Wang, Jianhong; Qin, Datong; Ding, Yi

    A mixed flexible-rigid multi-body model is presented to study the dynamic behavior of a horizontal axis wind turbine. The special attention is given to flexible body: flexible rotor is modeled by a newly developed blade finite element, support bearing elasticities, variations in the number of teeth in contact as well as contact tooth's elasticities are mainly flexible components in the power train. The couple conditions between different subsystems are established by constraint equations. The wind turbine model is generated by coupling models of rotor, power train and generator with constraint equations together. Based on this model, an eigenproblem analysis is carried out to show the mode shape of rotor and power train at a few natural frequencies. The dynamic responses and contact forces among gears under constant wind speed and fixed pitch angle are analyzed.

  6. An iterative approach to dynamic simulation of 3D rigid body motions for real-time interactive computer animation

    NARCIS (Netherlands)

    Overveld, van C.W.A.M.

    1991-01-01

    A method is presented for approximating the motions of linked 3-dimensional rigid body systems that may be applied in the context of interactive motion specification for computer animation. The method is based on decoupling the ballistic (free) component of the motion of the points that constitute

  7. Generalized Predictive Control of Dynamic Systems with Rigid-Body Modes

    Science.gov (United States)

    Kvaternik, Raymond G.

    2013-01-01

    Numerical simulations to assess the effectiveness of Generalized Predictive Control (GPC) for active control of dynamic systems having rigid-body modes are presented. GPC is a linear, time-invariant, multi-input/multi-output predictive control method that uses an ARX model to characterize the system and to design the controller. Although the method can accommodate both embedded (implicit) and explicit feedforward paths for incorporation of disturbance effects, only the case of embedded feedforward in which the disturbances are assumed to be unknown is considered here. Results from numerical simulations using mathematical models of both a free-free three-degree-of-freedom mass-spring-dashpot system and the XV-15 tiltrotor research aircraft are presented. In regulation mode operation, which calls for zero system response in the presence of disturbances, the simulations showed reductions of nearly 100%. In tracking mode operations, where the system is commanded to follow a specified path, the GPC controllers produced the desired responses, even in the presence of disturbances.

  8. HOW CAN DYNAMIC RIGID-BODY MODELING BE HELPFUL IN MOTOR LEARNING? - DIAGNOSING PERFORMANCE USING DYNAMIC MODELING

    OpenAIRE

    Shan, Gongbing; Sust, Martin; Simard, Stephane; Bohn, Christina; Nicol, Klaus

    2004-01-01

    There are two main problems for biomechanists in motor learning practice. One is theory vs. experience, the other is the determination of dominative information directly helpful in the practice. This project aimed at addressing these problems from a quantitative aspect by using motion capture and biomechanical rigid body modeling. The purposes were to identify differences in the description of movements amongst motion analysists (external view), athletes (internal sight) and coaches (internal...

  9. Free Energy Landscapes of Alanine Oligopeptides in Rigid-Body and Hybrid Water Models.

    Science.gov (United States)

    Nayar, Divya; Chakravarty, Charusita

    2015-08-27

    Replica exchange molecular dynamics is used to study the effect of different rigid-body (mTIP3P, TIP4P, SPC/E) and hybrid (H1.56, H3.00) water models on the conformational free energy landscape of the alanine oligopeptides (acAnme and acA5nme), in conjunction with the CHARMM22 force field. The free energy landscape is mapped out as a function of the Ramachandran angles. In addition, various secondary structure metrics, solvation shell properties, and the number of peptide-solvent hydrogen bonds are monitored. Alanine dipeptide is found to have similar free energy landscapes in different solvent models, an insensitivity which may be due to the absence of possibilities for forming i-(i + 4) or i-(i + 3) intrapeptide hydrogen bonds. The pentapeptide, acA5nme, where there are three intrapeptide backbone hydrogen bonds, shows a conformational free energy landscape with a much greater degree of sensitivity to the choice of solvent model, though the three rigid-body water models differ only quantitatively. The pentapeptide prefers nonhelical, non-native PPII and β-sheet populations as the solvent is changed from SPC/E to the less tetrahedral liquid (H1.56) to an LJ-like liquid (H3.00). The pentapeptide conformational order metrics indicate a preference for open, solvent-exposed, non-native structures in hybrid solvent models at all temperatures of study. The possible correlations between the properties of solvent models and secondary structure preferences of alanine oligopeptides are discussed, and the competition between intrapeptide, peptide-solvent, and solvent-solvent hydrogen bonding is shown to be crucial in the relative free energies of different conformers.

  10. Conservative rigid body dynamics by convected base vectors with implicit constraints

    DEFF Research Database (Denmark)

    Krenk, Steen; Nielsen, Martin Bjerre

    2014-01-01

    of differential equations without additional algebraic constraints on the base vectors. A discretized form of the equations of motion is obtained by starting from a finite time increment of the Hamiltonian, and retracing the steps of the continuous formulation in discrete form in terms of increments and mean...... of the base vectors. Orthogonality and unit length of the base vectors are imposed by constraining the equivalent Green strain components, and the kinetic energy is represented corresponding to rigid body motion. The equations of motion are obtained via Hamilton’s equations including the zero...... values over each integration time increment. In this discrete form the Lagrange multipliers are given in terms of a representative value within the integration time interval, and the equations of motion are recast into a conservative mean-value and finite difference format. The Lagrange multipliers...

  11. APPLICATION OF RIGID LINKS IN STRUCTURAL DESIGN MODELS

    Directory of Open Access Journals (Sweden)

    Sergey Yu. Fialko

    2017-09-01

    Full Text Available A special finite element modelling rigid links is proposed for the linear static and buckling analysis. Unlike the classical approach based on the theorems of rigid body kinematics, the proposed approach preserves the similarity between the adjacency graph for a sparse matrix and the adjacency graph for nodes of the finite element model, which allows applying sparse direct solvers more effectively. Besides, the proposed approach allows significantly reducing the number of nonzero entries in the factored stiffness matrix in comparison with the classical one, which greatly reduces the duration of the solution. For buckling problems of structures containing rigid bodies, this approach gives correct results. Several examples demonstrate its efficiency.

  12. A soft-rigid contact model of MPM for granular flow impact on retaining structures

    Science.gov (United States)

    Li, Xinpo; Xie, Yanfang; Gutierrez, Marte

    2018-02-01

    Protective measures against hazards associated with rapid debris avalanches include a variety of retaining structures such as rock/boulder fences, gabions, earthfill barriers and retaining walls. However, the development of analytical and numerical methods for the rational assessment of impact force generated by granular flows is still a challenge. In this work, a soft-rigid contact model is built under the coding framework of MPM which is a hybrid method with Eulerian-Lagrangian description. The soft bodies are discretized into particles (material points), and the rigid bodies are presented by rigid node-based surfaces. Coulomb friction model is used to implement the modeled contact mechanics, and a velocity-dependent friction coefficient is coupled into the model. Simulations of a physical experiment show that the peak and residual value of impact forces are well captured by the MPM model. An idealized scenario of debris avalanche flow down a hillslope and impacting on a retaining wall are analyzed using the MPM model. The calculated forces can provide a quantitative estimate from which mound design could proceed for practical implementation in the field.

  13. Conservative integration of rigid body motion by quaternion parameters with implicit constraints

    DEFF Research Database (Denmark)

    Nielsen, Martin Bjerre; Krenk, Steen

    2012-01-01

    An angular momentum and energy‐conserving time integration algorithm for rigid body rotation is formulated in terms of the quaternion parameters and the corresponding four‐component conjugate momentum vector via Hamilton's equations. The introduction of an extended mass matrix leads to a symmetric...... these equations via the set of momentum equations. Initially, the normalization of the quaternion array is introduced via a Lagrange multiplier. However, this Lagrange multiplier can be expressed explicitly in terms of the gradient of the external load potential, and elimination of the Lagrange multiplier from...... the final format leaves only an explicit projection applied to the external load potential gradient. An algorithm is developed by forming a finite increment of the Hamiltonian. This procedure identifies the proper selection of increments and mean values, and leads to an algorithm with conservation...

  14. On the motion of rigid bodies in an incompressible or compressible viscous fluid under the action of gravitational forces

    Czech Academy of Sciences Publication Activity Database

    Ducomet, B.; Nečasová, Šárka

    2013-01-01

    Roč. 6, č. 5 (2013), s. 1193-1213 ISSN 1937-1632 R&D Projects: GA ČR(CZ) GAP201/11/1304 Institutional support: RVO:67985840 Keywords : motion of rigid bodies * incompressible fluid * compressible fluid Subject RIV: BA - General Mathematics https://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=8331

  15. Governing equations of multi-component rigid body-spring discrete element models of reinforced concrete columns

    International Nuclear Information System (INIS)

    Guan, P B; Tingatinga, E A; Longalong, R E; Saguid, J

    2016-01-01

    During the past decades, the complexity of conventional methods to perform seismic performance assessment of buildings led to the development of more effective approaches. The rigid body spring-discrete element method (RBS-DEM) is one of these approaches and has recently been applied to the study of the behavior of reinforced concrete (RC) buildings subjected to strong earthquakes. In this paper, the governing equations of RBS-DEM planar elements subjected to lateral loads and horizontal ground motion are presented and used to replicate the hysteretic behavior of experimental RC columns. The RBS-DEM models of columns are made up of rigid components connected by systems of springs that simulate axial, shear, and bending behavior of an RC section. The parameters of springs were obtained using Response-2000 software and the hysteretic response of the models of select columns from the Pacific Earthquake Engineering Research (PEER) Structural Performance Database were computed numerically. Numerical examples show that one-component models were able to simulate the initial stiffness reasonably, while the displacement capacity of actual columns undergoing large displacements were underestimated. (paper)

  16. A biomechanical testing system to determine micromotion between hip implant and femur accounting for deformation of the hip implant: Assessment of the influence of rigid body assumptions on micromotions measurements.

    Science.gov (United States)

    Leuridan, Steven; Goossens, Quentin; Roosen, Jorg; Pastrav, Leonard; Denis, Kathleen; Mulier, Michiel; Desmet, Wim; Vander Sloten, Jos

    2017-02-01

    Accurate pre-clinical evaluation of the initial stability of new cementless hip stems using in vitro micromotion measurements is an important step in the design process to assess the new stem's potential. Several measuring systems, linear variable displacement transducer-based and other, require assuming bone or implant to be rigid to obtain micromotion values or to calculate derived quantities such as relative implant tilting. An alternative linear variable displacement transducer-based measuring system not requiring a rigid body assumption was developed in this study. The system combined advantages of local unidirectional and frame-and-bracket micromotion measuring concepts. The influence and possible errors that would be made by adopting a rigid body assumption were quantified. Furthermore, as the system allowed emulating local unidirectional and frame-and-bracket systems, the influence of adopting rigid body assumptions were also analyzed for both concepts. Synthetic and embalmed bone models were tested in combination with primary and revision implants. Single-legged stance phase loading was applied to the implant - bone constructs. Adopting a rigid body assumption resulted in an overestimation of mediolateral micromotion of up to 49.7μm at more distal measuring locations. Maximal average relative rotational motion was overestimated by 0.12° around the anteroposterior axis. Frontal and sagittal tilting calculations based on a unidirectional measuring concept underestimated the true tilting by an order of magnitude. Non-rigid behavior is a factor that should not be dismissed in micromotion stability evaluations of primary and revision femoral implants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid

    Science.gov (United States)

    Ramodanov, Sergey M.; Tenenev, Valentin A.; Treschev, Dmitry V.

    2012-11-01

    We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are presented in the form of the Kirchhoff equations. The integrals of motion are given in the case of piecewise continuous control. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. Then an optimal control problem for several types of the inputs is solved using genetic algorithms.

  18. Mechanical impedance of the sitting human body in single-axis compared to multi-axis whole-body vibration exposure.

    Science.gov (United States)

    Holmlund, P; Lundström, R

    2001-01-01

    The study was aimed to investigate the mechanical impedance of the sitting human body and to compare data obtained in laboratory single-axis investigations with multi-axis data from in vehicle measurements. The experiments were performed in a laboratory for single-axis measurements. The multi-axis exposure was generated with an eight-seat minibus where the rear seats had been replaced with a rigid one. The subjects in the multi-axis experiment all participated in the single-axis experiments. There are quite a few investigations in the literature describing the human response to single-axis exposure. The response from the human body can be expected to be affected by multi-axis input in a different way than from a single-axis exposure. The present knowledge of the effect of multiple axis exposure is very limited. The measurements were performed using a specially designed force and accelerometer plate. This plate was placed between the subject and the hard seat. Outcome shows a clear difference between mechanical impedance for multi-axis exposure compared to single-axis. This is especially clear in the x-direction where the difference is very large. The conclusion is that it seems unlikely that single-axis mechanical impedance data can be directly transferred to a multi-axis environment. This is due to the force cross-talk between different directions.

  19. Reversible Rigidity Control Using Low Melting Temperature Alloys

    Science.gov (United States)

    Shan, Wanliang; Lu, Tong; Majidi, Carmel

    2013-03-01

    Inspired by nature, materials able to achieve rapid rigidity changes have important applications for human body protection in military and many other areas. This talk presents the fabrication and design of soft-matter technologies that exhibit rapid reversible rigidity control. Fabricated with a masked deposition technique, the soft-matter composite contains liquid-phase and phase-changing metal alloys embedded in a soft and highly stretchable elastomer. The composite material can reversibly change its rigidity by three orders of magnitude and sustain large deformation.

  20. Mechanics of deformable bodies

    CERN Document Server

    Sommerfeld, Arnold Johannes Wilhelm

    1950-01-01

    Mechanics of Deformable Bodies: Lectures on Theoretical Physics, Volume II covers topics on the mechanics of deformable bodies. The book discusses the kinematics, statics, and dynamics of deformable bodies; the vortex theory; as well as the theory of waves. The text also describes the flow with given boundaries. Supplementary notes on selected hydrodynamic problems and supplements to the theory of elasticity are provided. Physicists, mathematicians, and students taking related courses will find the book useful.

  1. Simulation of the steady-state energy transfer in rigid bodies, with convective-radiative boundary conditions, employing a minimum principle

    International Nuclear Information System (INIS)

    Gama, R.M.S. da.

    1992-08-01

    The energy transfer phenomenon in a rigid and opaque body that exchanges energy, with the environment, by convection and by diffuse thermal radiation is studied. The considered phenomenon is described by a partial differential equation, subjected to (nonlinear) boundary conditions. A minimum principle, suitable for a large class of energy transfer problems is presented. Some particular cases are simulated. (author)

  2. Quantum chemical approach for condensed-phase thermochemistry (V): Development of rigid-body type harmonic solvation model

    Science.gov (United States)

    Tarumi, Moto; Nakai, Hiromi

    2018-05-01

    This letter proposes an approximate treatment of the harmonic solvation model (HSM) assuming the solute to be a rigid body (RB-HSM). The HSM method can appropriately estimate the Gibbs free energy for condensed phases even where an ideal gas model used by standard quantum chemical programs fails. The RB-HSM method eliminates calculations for intra-molecular vibrations in order to reduce the computational costs. Numerical assessments indicated that the RB-HSM method can evaluate entropies and internal energies with the same accuracy as the HSM method but with lower calculation costs.

  3. Analogies between the Torque-Free Motion of a Rigid Body about a Fixed Point and Light Propagation in Anisotropic Media

    Science.gov (United States)

    Bellver-Cebreros, Consuelo; Rodriguez-Danta, Marcelo

    2009-01-01

    An apparently unnoticed analogy between the torque-free motion of a rotating rigid body about a fixed point and the propagation of light in anisotropic media is stated. First, a new plane construction for visualizing this torque-free motion is proposed. This method uses an intrinsic representation alternative to angular momentum and independent of…

  4. Dynamics on strata of trigonal Jacobians and some integrable problems of rigid body motion

    International Nuclear Information System (INIS)

    Braden, H W; Enolski, V Z; Fedorov, Yu N

    2013-01-01

    We present an algebraic geometrical and analytical description of the Goryachev case of rigid body motion. It belongs to a family of systems sharing the same properties: although completely integrable, they are not algebraically integrable, their solution is not meromorphic in the complex time and involves dynamics on the strata of the Jacobian varieties of trigonal curves. Although the strata of hyperelliptic Jacobians have already appeared in the literature in the context of some dynamical systems, the Goryachev case is the first example of an integrable system whose solution involves a more general curve. Several new features (and formulae) are encountered in the solution given in terms of sigma-functions of such a curve. (paper)

  5. Determination of Weight Suspension Rigidity in the Transport-Erector Aggregates

    Directory of Open Access Journals (Sweden)

    V. A. Zverev

    2016-01-01

    Full Text Available The aim is to determine weight suspension rigidity in aggregates designed to perform technological transport-erector operations at the miscellaneous launch complexes.We consider the weight suspension comprising the following distinctive structural components: the executive weight-lowering mechanism, polyspast mechanism, rope, traverse, and rods. A created structural dynamic model of suspension allowed us to define weight suspension rigidity. Within the framework of design analysis of a dynamic model we determined the rigidity of its structural units, i.e. traverse, rope, and polyspast.Known analytical relationships were used to calculate the rope rigidity. To determine rigidity of polyspast and traverse have been created special models based on the finite element method. For each model deformation in the specific points under the test load have been defined. Data obtained were used to determine trigidity of traverses and polyspast, and also rigidity of suspension in total. The rigidity models of polispast mechanism and traverse have been developed and calculated using the software complex "Zenit-95".As the research results, the paper presents a dynamic model of the weight suspension of the transport-erector aggregate, the finite element models of the polispast mechanism and traverse, an algorithm for determining the weight suspension rigidity and relevant analytical relationships.Independent calculation of weight suspension rigidity enables us to simplify further dynamic calculation of the aggregate-weight system because it allows attaining a simpler model of the aggregate-weight system that uses the weight suspension model as an element of equivalent rigidity. Despite this simplification the model allows us to determine correctly weight movement parameters and overloads in the aggregate-weight system in the process of technical operations.

  6. Tidal Evolution of Asteroidal Binaries. Ruled by Viscosity. Ignorant of Rigidity.

    Science.gov (United States)

    Efroimsky, Michael

    2015-10-01

    This is a pilot paper serving as a launching pad for study of orbital and spin evolution of binary asteroids. The rate of tidal evolution of asteroidal binaries is defined by the dynamical Love numbers kl divided by quality factors Q. Common in the literature is the (oftentimes illegitimate) approximation of the dynamical Love numbers with their static counterparts. Since the static Love numbers are, approximately, proportional to the inverse rigidity, this renders a popular fallacy that the tidal evolution rate is determined by the product of the rigidity by the quality factor: {k}l/Q\\propto 1/(μ Q). In reality, the dynamical Love numbers depend on the tidal frequency and all rheological parameters of the tidally perturbed body (not just rigidity). We demonstrate that in asteroidal binaries the rigidity of their components plays virtually no role in tidal friction and tidal lagging, and thereby has almost no influence on the intensity of tidal interactions (tidal torques, tidal dissipation, tidally induced changes of the orbit). A key quantity that overwhelmingly determines the tidal evolution is a product of the effective viscosity η by the tidal frequency χ . The functional form of the torque’s dependence on this product depends on who wins in the competition between viscosity and self-gravitation. Hence a quantitative criterion, to distinguish between two regimes. For higher values of η χ , we get {k}l/Q\\propto 1/(η χ ), {while} for lower values we obtain {k}l/Q\\propto η χ . Our study rests on an assumption that asteroids can be treated as Maxwell bodies. Applicable to rigid rocks at low frequencies, this approximation is used here also for rubble piles, due to the lack of a better model. In the future, as we learn more about mechanics of granular mixtures in a weak gravity field, we may have to amend the tidal theory with other rheological parameters, ones that do not show up in the description of viscoelastic bodies. This line of study provides

  7. Associative memory through rigid origami

    Science.gov (United States)

    Murugan, Arvind; Brenner, Michael

    2015-03-01

    Mechanisms such as Miura Ori have proven useful in diverse contexts since they have only one degree of freedom that is easily controlled. We combine the theory of rigid origami and associative memory in frustrated neural networks to create structures that can ``learn'' multiple generic folding mechanisms and yet can be robustly controlled. We show that such rigid origami structures can ``recall'' a specific learned mechanism when induced by a physical impulse that only need resemble the desired mechanism (i.e. robust recall through association). Such associative memory in matter, seen before in self-assembly, arises due to a balance between local promiscuity (i.e., many local degrees of freedom) and global frustration which minimizes interference between different learned behaviors. Origami with associative memory can lead to a new class of deployable structures and kinetic architectures with multiple context-dependent behaviors.

  8. A DNA Origami Mechanical Device for the Regulation of Microcosmic Structural Rigidity.

    Science.gov (United States)

    Wan, Neng; Hong, Zhouping; Wang, Huading; Fu, Xin; Zhang, Ziyue; Li, Chao; Xia, Han; Fang, Yan; Li, Maoteng; Zhan, Yi; Yang, Xiangliang

    2017-11-01

    DNA origami makes it feasible to fabricate a tremendous number of DNA nanostructures with various geometries, dimensions, and functionalities. Moreover, an increasing amount of research on DNA nanostructures is focused on biological and biomedical applications. Here, the reversible regulation of microcosmic structural rigidity is accomplished using a DNA origami device in vitro. The designed DNA origami monomer is composed of an internal central axis and an external sliding tube. Due to the external tube sliding, the device transforms between flexible and rigid states. By transporting the device into the liposome, the conformational change of the origami device induces a structural change in the liposome. The results obtained demonstrate that the programmed DNA origami device can be applied to regulate the microcosmic structural rigidity of liposomes. Because microcosmic structural rigidity is important to cell proliferation and function, the results obtained potentially provide a foundation for the regulation of cell microcosmic structural rigidity using DNA nanostructures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies

    Science.gov (United States)

    Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis

    2008-08-01

    The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries, Journal of Computational Physics 225 (2007) 1782-1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions the FSI algorithm is unconditionally unstable even when strong coupling FSI is employed. For such cases, however, combining the strong coupling iteration with under-relaxation in conjunction with the Aitken's acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the FSI

  10. Simulation Methods in the Contact with Impact of Rigid Bodies

    Directory of Open Access Journals (Sweden)

    Cristina Basarabă-Opritescu

    2007-10-01

    Full Text Available The analysis of impacts of elastic bodies is topical and it has many applications, practical and theoretical, too. The elastic character of collision is put in evidence, especially by the velocities of some parts of a particular body, named “ring”. In the presented paper, the situation of elastic collisions is put in evidence by the simulation with the help of the program ANSYS and it refers to the particular case of the ring, with the mechanical characteristics, given in the paper

  11. On the existence of global strong solutions to the equations modeling a motion of a rigid body around a viscous fluid

    Czech Academy of Sciences Publication Activity Database

    Nečasová, Šárka; Wolf, J.

    2016-01-01

    Roč. 36, č. 3 (2016), s. 1539-1562 ISSN 1078-0947 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : incompressible fluid * motion of rigid body * strong solutions Subject RIV: BA - General Mathematics Impact factor: 1.099, year: 2016 http://www.aimsciences.org/journals/displayArticlesnew.jsp?paperID=11589

  12. Rigidity of Glasses and Macromolecules

    Science.gov (United States)

    Thorpe, M. F.

    1998-03-01

    The simple yet powerful ideas of percolation theory have found their way into many different areas of research. In this talk we show how RIGIDITY PERCOLATION can be studied at a similar level of sophistication, using a powerful new program THE PEBBLE GAME (D. J. Jacobs and M. F. Thorpe, Phys. Rev. E) 53, 3682 (1996). that uses an integer algorithm. This program can analyse the rigidity of two and three dimensional networks containing more than one million bars and joints. We find the total number of floppy modes, and find the critical behavior as the network goes from floppy to rigid as more bars are added. We discuss the relevance of this work to network glasses, and how it relates to experiments that involve the mechanical properties like hardness and elasticity of covalent glassy networks like Ge_xAs_ySe_1-x-y and dicuss recent experiments that suggest that the rigidity transition may be first order (Xingwei Feng, W. J.Bresser and P. Boolchand, Phys. Rev. Lett 78), 4422 (1997).. This approach is also useful in macromolecules and proteins, where detailed information about the rigid domain structure can be obtained.

  13. Rigidity-tuning conductive elastomer

    Science.gov (United States)

    Shan, Wanliang; Diller, Stuart; Tutcuoglu, Abbas; Majidi, Carmel

    2015-06-01

    We introduce a conductive propylene-based elastomer (cPBE) that rapidly and reversibly changes its mechanical rigidity when powered with electrical current. The elastomer is rigid in its natural state, with an elastic (Young’s) modulus of 175.5 MPa, and softens when electrically activated. By embedding the cPBE in an electrically insulating sheet of polydimethylsiloxane (PDMS), we create a cPBE-PDMS composite that can reversibly change its tensile modulus between 37 and 1.5 MPa. The rigidity change takes ˜6 s and is initiated when a 100 V voltage drop is applied across the two ends of the cPBE film. This magnitude of change in elastic rigidity is similar to that observed in natural skeletal muscle and catch connective tissue. We characterize the tunable load-bearing capability of the cPBE-PDMS composite with a motorized tensile test and deadweight experiment. Lastly, we demonstrate the ability to control the routing of internal forces by embedding several cPBE-PDMS ‘active tendons’ into a soft robotic pneumatic bending actuator. Selectively activating the artificial tendons controls the neutral axis and direction of bending during inflation.

  14. Rigidity-tuning conductive elastomer

    International Nuclear Information System (INIS)

    Shan, Wanliang; Diller, Stuart; Tutcuoglu, Abbas; Majidi, Carmel

    2015-01-01

    We introduce a conductive propylene-based elastomer (cPBE) that rapidly and reversibly changes its mechanical rigidity when powered with electrical current. The elastomer is rigid in its natural state, with an elastic (Young’s) modulus of 175.5 MPa, and softens when electrically activated. By embedding the cPBE in an electrically insulating sheet of polydimethylsiloxane (PDMS), we create a cPBE–PDMS composite that can reversibly change its tensile modulus between 37 and 1.5 MPa. The rigidity change takes ∼6 s and is initiated when a 100 V voltage drop is applied across the two ends of the cPBE film. This magnitude of change in elastic rigidity is similar to that observed in natural skeletal muscle and catch connective tissue. We characterize the tunable load-bearing capability of the cPBE–PDMS composite with a motorized tensile test and deadweight experiment. Lastly, we demonstrate the ability to control the routing of internal forces by embedding several cPBE–PDMS ‘active tendons’ into a soft robotic pneumatic bending actuator. Selectively activating the artificial tendons controls the neutral axis and direction of bending during inflation. (paper)

  15. A review of a method for dynamic load distribution, dynamical modeling, and explicit internal force control when two manipulators mutually lift and transport a rigid body object

    International Nuclear Information System (INIS)

    Unseren, M.A.

    1997-01-01

    The paper reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restrict the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system

  16. A review of a method for dynamic load distribution, dynamical modeling, and explicit internal force control when two manipulators mutually lift and transport a rigid body object

    Energy Technology Data Exchange (ETDEWEB)

    Unseren, M.A.

    1997-04-20

    The paper reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restrict the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.

  17. Cracking of open traffic rigid pavement

    Directory of Open Access Journals (Sweden)

    Niken Chatarina

    2017-01-01

    Full Text Available The research is done by observing the growth of real structure cracking in Natar, Lampung, Indonesia compared to C. Niken’s et al research and literature study. The rigid pavement was done with open traffic system. There are two main crack types on Natar rigid pavement: cracks cross the road, and cracks spreads on rigid pavement surface. The observation of cracks was analyzed by analyzing material, casting, curing, loading and shrinkage mechanism. The relationship between these analysis and shrinkage mechanism was studied in concrete micro structure. Open traffic make hydration process occur under vibration; therefore, fresh concrete was compressed and tensioned alternately since beginning. High temperature together with compression, cement dissociation, the growth of Ca2+ at very early age leads abnormal swelling. No prevention from outside water movement leads hydration process occur with limited water which caused spreads fine cracks. Limited water improves shrinkage and plastic phase becomes shorter; therefore, rigid pavement can’t accommodate the abnormal swelling and shrinking alternately and creates the spread of cracks. Discontinuing casting the concrete makes both mix under different condition, the first is shrink and the second is swell and creates weak line on the border; so, the cracks appear as cracks across the road.

  18. Tile-based rigidization surface parametric design study

    Science.gov (United States)

    Giner Munoz, Laura; Luntz, Jonathan; Brei, Diann; Kim, Wonhee

    2018-03-01

    Inflatable technologies have proven useful in consumer goods as well as in more recent applications including civil structures, aerospace, medical, and robotics. However, inflatable technologies are typically lacking in their ability to provide rigid structural support. Particle jamming improves upon this by providing structures which are normally flexible and moldable but become rigid when air is removed. Because these are based on an airtight bladder filled with loose particles, they always occupy the full volume of its rigid state, even when not rigidized. More recent developments in layer jamming have created thin, compact rigidizing surfaces replacing the loose volume of particles with thinly layered surface materials. Work in this area has been applied to several specific applications with positive results but have not generally provided the broader understanding of the rigidization performance as a function of design parameters required for directly adapting layer rigidization technology to other applications. This paper presents a parametric design study of a new layer jamming vacuum rigidization architecture: tile-based vacuum rigidization. This form of rigidization is based on layers of tiles contained within a thin vacuum bladder which can be bent, rolled, or otherwise compactly stowed, but when deployed flat, can be vacuumed and form a large, flat, rigid plate capable of supporting large forces both localized and distributed over the surface. The general architecture and operation detailing rigidization and compliance mechanisms is introduced. To quantitatively characterize the rigidization behavior, prototypes rigidization surfaces are fabricated and an experimental technique is developed based on a 3-point bending test. Performance evaluation metrics are developed to describe the stiffness, load-bearing capacity, and internal slippage of tested prototypes. A set of experimental parametric studies are performed to better understand the impact of

  19. Diffuse interface immersed boundary method for multi-fluid flows with arbitrarily moving rigid bodies

    Science.gov (United States)

    Patel, Jitendra Kumar; Natarajan, Ganesh

    2018-05-01

    We present an interpolation-free diffuse interface immersed boundary method for multiphase flows with moving bodies. A single fluid formalism using the volume-of-fluid approach is adopted to handle multiple immiscible fluids which are distinguished using the volume fractions, while the rigid bodies are tracked using an analogous volume-of-solid approach that solves for the solid fractions. The solution to the fluid flow equations are carried out using a finite volume-immersed boundary method, with the latter based on a diffuse interface philosophy. In the present work, we assume that the solids are filled with a "virtual" fluid with density and viscosity equal to the largest among all fluids in the domain. The solids are assumed to be rigid and their motion is solved using Newton's second law of motion. The immersed boundary methodology constructs a modified momentum equation that reduces to the Navier-Stokes equations in the fully fluid region and recovers the no-slip boundary condition inside the solids. An implicit incremental fractional-step methodology in conjunction with a novel hybrid staggered/non-staggered approach is employed, wherein a single equation for normal momentum at the cell faces is solved everywhere in the domain, independent of the number of spatial dimensions. The scalars are all solved for at the cell centres, with the transport equations for solid and fluid volume fractions solved using a high-resolution scheme. The pressure is determined everywhere in the domain (including inside the solids) using a variable coefficient Poisson equation. The solution to momentum, pressure, solid and fluid volume fraction equations everywhere in the domain circumvents the issue of pressure and velocity interpolation, which is a source of spurious oscillations in sharp interface immersed boundary methods. A well-balanced algorithm with consistent mass/momentum transport ensures robust simulations of high density ratio flows with strong body forces. The

  20. Bound states in the continuum generated by supersymmetric quantum mechanics and phase rigidity of the corresponding wavefunctions

    International Nuclear Information System (INIS)

    Demić, Aleksandar; Milanović, Vitomir; Radovanović, Jelena

    2015-01-01

    Supersymmetric quantum mechanics (SUSYQM) is a method that can be used for generating complex potentials with entirely real spectrum with bound states in the continuum (BIC). These complex potentials are isospectral with the initial one, but SUSYQM method adds discrete BIC's at selected energies. Corresponding wavefunctions created by SUSYQM are biorthogonal and complex, hence we can discuss their phase rigidity and illustrate the application of SUSYQM on the examples of three specific potential profiles (free electron, negative Dirac potential and quantum well with infinite walls). - Highlights: • We present SUSYQM method for generating complex potentials with entirely real spectrum. • Phase rigidity and normalizability of wavefunctions in complex potential is discussed. • Numerical application is performed on three specific potential profiles.

  1. Comparison of a two-body threshold (π,2π) reaction mechanism with the usual one-body mechanism in the deuteron

    International Nuclear Information System (INIS)

    Rockmore, R.

    1984-01-01

    A two-body threshold (π +- ,π +- π -+ ) reaction mechanism is suggested in direct analogy with pion absorption. The mechanism involves boson rescattering via Δ excitation. The relative importance of this mechanism and the ordinary one-body mechanism in nuclei is studied in the particular case of S-wave deuteron targets. The contribution of the two-body mechanism to the threshold reaction cross section is found to be less than 1% of the simple one-body estimate

  2. Identifying Floppy and Rigid Regions in Proteins

    Science.gov (United States)

    Jacobs, D. J.; Thorpe, M. F.; Kuhn, L. A.

    1998-03-01

    In proteins it is possible to separate hard covalent forces involving bond lengths and bond angles from other weak forces. We model the microstructure of the protein as a generic bar-joint truss framework, where the hard covalent forces and strong hydrogen bonds are regarded as rigid bar constraints. We study the mechanical stability of proteins using FIRST (Floppy Inclusions and Rigid Substructure Topography) based on a recently developed combinatorial constraint counting algorithm (the 3D Pebble Game), which is a generalization of the 2D pebble game (D. J. Jacobs and M. F. Thorpe, ``Generic Rigidity: The Pebble Game'', Phys. Rev. Lett.) 75, 4051-4054 (1995) for the special class of bond-bending networks (D. J. Jacobs, "Generic Rigidity in Three Dimensional Bond-bending Networks", Preprint Aug (1997)). This approach is useful in identifying rigid motifs and flexible linkages in proteins, and thereby determines the essential degrees of freedom. We will show some preliminary results from the FIRST analysis on the myohemerythrin and lyozyme proteins.

  3. A navigator-based rigid body motion correction for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ullisch, Marcus Goerge

    2012-01-01

    A novel three-dimensional navigator k-space trajectory for rigid body motion detection for Magnetic Resonance Imaging (MRI) - the Lissajous navigator - was developed and quantitatively compared to the existing spherical navigator trajectory [1]. The spherical navigator cannot sample the complete spherical surface due to slew rate limitations of the scanner hardware. By utilizing a two dimensional Lissajous figure which is projected onto the spherical surface, the Lissajous navigator overcomes this limitation. The complete sampling of the sphere consequently leads to rotation estimates with higher and more isotropic accuracy. Simulations and phantom measurements were performed for both navigators. Both simulations and measurements show a significantly higher overall accuracy of the Lissajous navigator and a higher isotropy of the rotation estimates. Measured under identical conditions with identical postprocessing, the measured mean absolute error of the rotation estimates for the Lissajous navigator was 38% lower (0.3 ) than for the spherical navigator (0.5 ). The maximum error of the Lissajous navigator was reduced by 48% relative to the spherical navigator. The Lissajous navigator delivers higher accuracy of rotation estimation and a higher degree of isotropy than the spherical navigator with no evident drawbacks; these are two decisive advantages, especially for high-resolution anatomical imaging.

  4. A navigator-based rigid body motion correction for magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ullisch, Marcus Goerge

    2012-01-24

    A novel three-dimensional navigator k-space trajectory for rigid body motion detection for Magnetic Resonance Imaging (MRI) - the Lissajous navigator - was developed and quantitatively compared to the existing spherical navigator trajectory [1]. The spherical navigator cannot sample the complete spherical surface due to slew rate limitations of the scanner hardware. By utilizing a two dimensional Lissajous figure which is projected onto the spherical surface, the Lissajous navigator overcomes this limitation. The complete sampling of the sphere consequently leads to rotation estimates with higher and more isotropic accuracy. Simulations and phantom measurements were performed for both navigators. Both simulations and measurements show a significantly higher overall accuracy of the Lissajous navigator and a higher isotropy of the rotation estimates. Measured under identical conditions with identical postprocessing, the measured mean absolute error of the rotation estimates for the Lissajous navigator was 38% lower (0.3 ) than for the spherical navigator (0.5 ). The maximum error of the Lissajous navigator was reduced by 48% relative to the spherical navigator. The Lissajous navigator delivers higher accuracy of rotation estimation and a higher degree of isotropy than the spherical navigator with no evident drawbacks; these are two decisive advantages, especially for high-resolution anatomical imaging.

  5. A Compliant Mechanism Synthesis Theory for Fostering Innovation of Micro Air Vehicles

    Science.gov (United States)

    2016-04-01

    errors creep into the model only for very large loads, and it works extremely well for tip deflections as high as 70◦. A sensitivity analysis was also...D., and Howell, L. L., 1999. “A Pseudo-Rigid-Body Model for Initially- Curved Pinned-Pinned Segments Used in Compliant Mechanisms”. Journal of Me...synthesis theory that incorporate a general framework for determining pseudo-rigid-body models , type synthesis algorithms (determining mechanism topology

  6. Estimating the angular velocity of a rigid body moving in the plane from tangential and centripetal acceleration measurements

    International Nuclear Information System (INIS)

    Cardou, Philippe; Angeles, Jorge

    2008-01-01

    Two methods are available for the estimation of the angular velocity of a rigid body from point-acceleration measurements: (i) the time-integration of the angular acceleration and (ii) the square-rooting of the centripetal acceleration. The inaccuracy of the first method is due mainly to the accumulation of the error on the angular acceleration throughout the time-integration process, which does not prevent that it be used successfully in crash tests with dummies, since these experiments never last more than one second. On the other hand, the error resulting from the second method is stable through time, but becomes inaccurate whenever the rigid body angular velocity approaches zero, which occurs in many applications. In order to take advantage of the complementarity of these two methods, a fusion of their estimates is proposed. To this end, the accelerometer measurements are modeled as exact signals contaminated with bias errors and Gaussian white noise. The relations between the variables at stake are written in the form of a nonlinear state-space system in which the angular velocity and the angular acceleration are state variables. Consequently, a minimum-variance-error estimate of the state vector is obtained by means of extended Kalman filtering. The performance of the proposed estimation method is assessed by means of simulation. Apparently, the resulting estimation method is more robust than the existing accelerometer-only methods and competitive with gyroscope measurements. Moreover, it allows the identification and the compensation of any bias error in the accelerometer measurements, which is a significant advantage over gyroscopes

  7. Dynamic Modeling and Vibration Analysis for the Vehicles with Rigid Wheels Based on Wheel-Terrain Interaction Mechanics

    Directory of Open Access Journals (Sweden)

    Jianfeng Wang

    2015-01-01

    Full Text Available The contact mechanics for a rigid wheel and deformable terrain are complicated owing to the rigid flexible coupling characteristics. Bekker’s equations are used as the basis to establish the equations of the sinking rolling wheel, to vertical load pressure relationship. Since vehicle movement on the Moon is a complex and on-going problem, the researcher is poised to simplify this problem of vertical loading of the wheel. In this paper, the quarter kinetic models of a manned lunar rover, which are both based on the rigid road and deformable lunar terrain, are used as the simulation models. With these kinetic models, the vibration simulations were conducted. The simulation results indicate that the quarter kinetic model based on the deformable lunar terrain accurately reflects the deformable terrain’s influence on the vibration characteristics of a manned lunar rover. Additionally, with the quarter kinetic model of the deformable terrain, the vibration simulations of a manned lunar rover were conducted, which include a parametric analysis of the wheel parameters, vehicle speed, and suspension parameters. The results show that a manned lunar rover requires a lower damping value and stiffness to achieve better vibration performance.

  8. A review of a method for dynamic load distribution, dynamic modeling, and explicit internal force control when two serial link manipulators mutually lift and transport a rigid body object

    International Nuclear Information System (INIS)

    Unseren, M.A.

    1997-09-01

    The report reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restricts the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system

  9. A review of a method for dynamic load distribution, dynamic modeling, and explicit internal force control when two serial link manipulators mutually lift and transport a rigid body object

    Energy Technology Data Exchange (ETDEWEB)

    Unseren, M.A.

    1997-09-01

    The report reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restricts the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.

  10. Mechanical Paradox: The Uphill Roller

    Science.gov (United States)

    Cortes, Emilio; Cortes-Poza, D.

    2011-01-01

    We analyse in detail the dynamics of a mechanical system which is a rigid body with the geometry of a double cone. This double cone is apparently able to spontaneously roll uphill along inclined rails. The experiment has been known for some centuries, and because of its peculiar behaviour, it has been named "mechanical paradox". Although this…

  11. Characterization techniques to predict mechanical behaviour of green ceramic bodies fabricated by ceramic microstereolithography

    Science.gov (United States)

    Adake, Chandrashekhar V.; Bhargava, Parag; Gandhi, Prasanna

    2018-02-01

    Ceramic microstereolithography (CMSL) has emerged as solid free form (SFF) fabrication technology in which complex ceramic parts are fabricated from ceramic suspensions which are formulated by dispersing ceramic particles in UV curable resins. Ceramic parts are fabricated by exposing ceramic suspension to computer controlled UV light which polymerizes resin to polymer and this polymer forms rigid network around ceramic particles. A 3-dimensional part is created by piling cured layers one over the other. These ceramic parts are used to build microelectromechanical (MEMS) devices after thermal treatment. In many cases green ceramic parts can be directly utilized to build MEMS devices. Hence characterization of these parts is essential in terms of their mechanical behaviour prior to their use in MEMS devices. Mechanical behaviour of these green ceramic parts depends on cross link density which in turn depends on chemical structure of monomer, concentrations of photoinitiator and UV energy dose. Mechanical behaviour can be determined with the aid of nanoindentation. And extent of crosslinking can be verified with the aid of DSC. FTIR characterization is used to analyse (-C=C-) double bond conversion. This paper explains characterization tools to predict the mechanical behaviour of green ceramic bodies fabricated in CMSL

  12. Rigid-Plastic Post-Buckling Analysis of Columns and Quadratic Plates

    DEFF Research Database (Denmark)

    Jönsson, Jeppe

    2008-01-01

    the compressive load as a function of the transverse displacement. An estimate of the magnitude of the transverse displacement prior to the forming of the collapse mechanism is introduced into the compressive load function, determined by the virtual work equation, thereby revealing a qualified estimate...... yield lines accommodate differential rotations of rigid parts and the area “collapse” yield lines accommodate local area changes of the rigid parts thereby preserving compatibility of the rigid parts of a plate. The approach will be illustrated for rigid plastic column analysis and for a quadratic plate...

  13. Rigid-body-spring model numerical analysis of joint performance of engineered cementitious composites and concrete

    Science.gov (United States)

    Khmurovska, Y.; Štemberk, P.; Křístek, V.

    2017-09-01

    This paper presents a numerical investigation of effectiveness of using engineered cementitious composites with polyvinyl alcohol fibers for concrete cover layer repair. A numerical model of a monolithic concaved L-shaped concrete structural detail which is strengthened with an engineered cementitious composite layer with polyvinyl alcohol fibers is created and loaded with bending moment. The numerical analysis employs nonlinear 3-D Rigid-Body-Spring Model. The proposed material model shows reliable results and can be used in further studies. The engineered cementitious composite shows extremely good performance in tension due to the strain-hardening effect. Since durability of the bond can be decreased significantly by its degradation due to the thermal loading, this effect should be also taken into account in the future work, as well as the experimental investigation, which should be performed for validation of the proposed numerical model.

  14. Finite-difference analysis of shells impacting rigid barriers

    International Nuclear Information System (INIS)

    Pirotin, S.D.; Witmer, E.A.

    1977-01-01

    Nuclear power plants must be protected from the adverse effects of missile impacts. A significant category of missile impact involves deformable structures (pressure vessel components, whipping pipes) striking relatively rigid targets (concrete walls, bumpers) which act as protective devices. The response and interaction of these structures is needed to assess the adequacy of these barriers for protecting vital safety related equipment. The present investigation represents an initial attempt to develop an efficient numerical procedure for predicting the deformations and impact force time-histories of shells which impact upon a rigid target. The general large-deflection equations of motion of the shell are expressed in finite-difference form in space and integrated in time through application of the central-difference temporal operator. The effect of material nonlinearities is treated by a mechanical sublayer material model which handles the strain-hardening, Bauschinger, and strain-rate effects. The general adequacy of this shell treatment has been validated by comparing predictions with the results of various experiments in which structures have been subjected to well-defined transient forcing functions (typically high-explosive impulse loading). The 'new' ingredient addressed in the present study involves an accounting for impact interaction and response of both the target structure and the attacking body. (Auth.)

  15. Nucleon many-body problem using quantum-mechanical few-body technique

    International Nuclear Information System (INIS)

    Horiuchi, Wataru

    2016-01-01

    A nucleus is treated as a quantum-mechanical many-body system consisting of protons and neutrons that interact with each other by nuclear force. This paper explains the variational calculation using the correlated basis function as a powerful technique for obtaining the precise solution of Schroedinger equation of many-body, and tries to understand the nucleon many-body system from the viewpoint of a few-body through the application cases of various nuclear systems. It describes the important correlation that characterizes the nucleon many-body system such as the mean field, cluster, and tensor of bound state, and shows that non-bound state is also describable. Since such precise theory is mantic, it is essential for explaining the nature of unknown unstable nuclei, and for determining the nuclear reaction rate under the environment of the stars difficult for experiment. The method is general and flexible, and can be applied to various quantum-mechanical many-body problems. For example, the multi-body calculation of atoms and molecules, hypernuclei, and hadron spectroscopy can be carried out only by changing the potential and particles. (A.O.)

  16. Knowledge-in-action: a study on the integration of forces and energy in a rigid body

    Directory of Open Access Journals (Sweden)

    Consuelo Escudero

    2009-03-01

    Full Text Available This paper intends to go on with the study of problem solving in a compatible way with the theories of conceptual fields (TCC of Vergnaud (1990,1994,1998 and mental models of Johnson-Laird (1983,1990. Together with findings of another study (Escudero & Jaime 2007, some achievements and difficulties of freshmore engineering students when solving problems of the motion of rigid body in terms of the knowledge-in-action are analysed. The research methodology under a qualitative paradigm grouped data into categories which are not provided a priori by the theoretical framework. It can be said that the quality of the conceptual representation has been explicit in the quality of the proposed solution. Some meanings introduced by students in their problem solving activities can be characterized as operational invariants.

  17. Method of adhering bone to a rigid substrate using a graphite fiber reinforced bone cement

    Science.gov (United States)

    Knoell, A. C.; Maxwell, H. G. (Inventor)

    1977-01-01

    A method is described for adhering bone to the surface of a rigid substrate such as a metal or resin prosthesis using an improved surgical bone cement. The bone cement has mechanical properties more nearly matched to those of animal bone and thermal curing characteristics which result in less traumatization of body tissues and comprises a dispersion of short high modulus graphite fibers within a bonder composition including polymer dissolved in reactive monomer such as polymethylmethacrylate dissolved in methylmethacrylate monomer.

  18. Analysis of the Gyroscopic Stabilization of a System of Rigid Bodies

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Kliem, Wolfhard

    1996-01-01

    We study the gyroscopic of a three-body system. A new method offinding stability regions, based on mechanism and criteria for gyroscopicstabilization, is presented. Of particular interest in this connection isthe theory of interaction of eigenvalues. This leads to a complete 3-dimensionalanalysis......, which shows the regions of stability, divergence, and flutter ofa simple model of a rotating spaceship....

  19. ANALYTIC EVALUATION OF RECTILINEARITY OF LOW RIGIDITY SHAFT DURING HARDENING PROCESS

    Directory of Open Access Journals (Sweden)

    Antoni Świć

    2013-03-01

    Full Text Available The essential influence of the unevenness of temperature distribution while heating in the technological process on dimensions stability of low rigidity elements was shown. The new approach was applied to formulate mathematical models, which describe the elastic and inelastic behaviour of piece using transfer functions and block diagrams, allowing to use frequency method for evaluation of the behaviour of dynamic semi-finished element as the rigid body.

  20. Unified Creep Plasticity Damage (UCPD) Model for Rigid Polyurethane Foams.

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Michael K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lu, Wei-Yang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scherzinger, William M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hinnerichs, Terry D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lo, Chi S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    Numerous experiments were performed to characterize the mechanical response of several different rigid polyurethane foams (FR3712, PMDI10, PMDI20, and TufFoam35) to large deformation. In these experiments, the effects of load path, loading rate, and temperature were investigated. Results from these experiments indicated that rigid polyurethane foams exhibit significant volumetric and deviatoric plasticity when they are compressed. Rigid polyurethane foams were also found to be very strain-rate and temperature dependent. These foams are also rather brittle and crack when loaded to small strains in tension or to larger strains in compression. Thus, a new Unified Creep Plasticity Damage (UCPD) model was developed and implemented into SIERRA with the name Foam Damage to describe the mechanical response of these foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments and experimental findings. Next, development of a UCPD model for rigid, polyurethane foams is described. Selection of material parameters for a variety of rigid polyurethane foams is then discussed and finite element simulations with the new UCPD model are compared with experimental results to show behavior that can be captured with this model.

  1. Dynamic bending of bionic flexible body driven by pneumatic artificial muscles(PAMs) for spinning gait of quadruped robot

    Science.gov (United States)

    Lei, Jingtao; Yu, Huangying; Wang, Tianmiao

    2016-01-01

    The body of quadruped robot is generally developed with the rigid structure. The mobility of quadruped robot depends on the mechanical properties of the body mechanism. It is difficult for quadruped robot with rigid structure to achieve better mobility walking or running in the unstructured environment. A kind of bionic flexible body mechanism for quadruped robot is proposed, which is composed of one bionic spine and four pneumatic artificial muscles(PAMs). This kind of body imitates the four-legged creatures' kinematical structure and physical properties, which has the characteristic of changeable stiffness, lightweight, flexible and better bionics. The kinematics of body bending is derived, and the coordinated movement between the flexible body and legs is analyzed. The relationship between the body bending angle and the PAM length is obtained. The dynamics of the body bending is derived by the floating coordinate method and Lagrangian method, and the driving force of PAM is determined. The experiment of body bending is conducted, and the dynamic bending characteristic of bionic flexible body is evaluated. Experimental results show that the bending angle of the bionic flexible body can reach 18°. An innovation body mechanism for quadruped robot is proposed, which has the characteristic of flexibility and achieve bending by changing gas pressure of PAMs. The coordinated movement of the body and legs can achieve spinning gait in order to improve the mobility of quadruped robot.

  2. Analysis of the gyroscopic stabilization of a system of rigid bodies

    DEFF Research Database (Denmark)

    Kliem, Wolfhard; Seyranian, Alexander P.

    1997-01-01

    We study the gyroscopic stability of a three-body system. A new method of finding stability regions, based on mechanism and criteria for gyroscopic stabilization, is presented. Of particular interest in this connection is the theory of interaction of eigenvalues. This leads to a complete 3......-dimensional analysis, which shows the regions of stability, divergence, and flutter of a simple model of a rotating spaceship....

  3. Pharmacological targeting of membrane rigidity: implications on cancer cell migration and invasion

    International Nuclear Information System (INIS)

    Braig, Simone; Stoiber, Katharina; Zahler, Stefan; Vollmar, Angelika M

    2015-01-01

    The invasive potential of cancer cells strongly depends on cellular stiffness, a physical quantity that is not only regulated by the mechanical impact of the cytoskeleton but also influenced by the membrane rigidity. To analyze the specific role of membrane rigidity in cancer progression, we treated cancer cells with the Acetyl-CoA carboxylase inhibitor Soraphen A and revealed an alteration of the phospholipidome via mass spectrometry. Migration, invasion, and cell death assays were employed to relate this alteration to functional consequences, and a decrease of migration and invasion without significant impact on cell death has been recorded. Fourier fluctuation analysis of giant plasma membrane vesicles showed that Soraphen A increases membrane rigidity of carcinoma cell membranes. Mechanical measurements of the creep deformation response of whole intact cells were performed using the optical stretcher. The increase in membrane rigidity was observed in one cell line without changing the creep deformation response indicating no restructuring of the cytoskeleton. These data indicate that the increase of membrane rigidity alone is sufficient to inhibit invasiveness of cancer cells, thus disclosing the eminent role of membrane rigidity in migratory processes. (paper)

  4. Mechanics lectures on theoretical physics

    CERN Document Server

    Sommerfeld, Arnold Johannes Wilhelm

    1952-01-01

    Mechanics: Lectures on Theoretical Physics, Volume I covers a general course on theoretical physics. The book discusses the mechanics of a particle; the mechanics of systems; the principle of virtual work; and d'alembert's principle. The text also describes oscillation problems; the kinematics, statics, and dynamics of a rigid body; the theory of relative motion; and the integral variational principles of mechanics. Lagrange's equations for generalized coordinates and the theory of Hamilton are also considered. Physicists, mathematicians, and students taking Physics courses will find the book

  5. Understanding geological processes: Visualization of rigid and non-rigid transformations

    Science.gov (United States)

    Shipley, T. F.; Atit, K.; Manduca, C. A.; Ormand, C. J.; Resnick, I.; Tikoff, B.

    2012-12-01

    Visualizations are used in the geological sciences to support reasoning about structures and events. Research in cognitive sciences offers insights into the range of skills of different users, and ultimately how visualizations might support different users. To understand the range of skills needed to reason about earth processes we have developed a program of research that is grounded in the geosciences' careful description of the spatial and spatiotemporal patterns associated with earth processes. In particular, we are pursuing a research program that identifies specific spatial skills and investigates whether and how they are related to each other. For this study, we focus on a specific question: Is there an important distinction in the geosciences between rigid and non-rigid deformation? To study a general spatial thinking skill we employed displays with non-geological objects that had been altered by rigid change (rotation), and two types of non-rigid change ("brittle" (or discontinuous) and "ductile" (or continuous) deformation). Disciplinary scientists (geosciences and chemistry faculty), and novices (non-science faculty and undergraduate psychology students) answered questions that required them to visualize the appearance of the object before the change. In one study, geologists and chemists were found to be superior to non-science faculty in reasoning about rigid rotations (e.g., what an object would look like from a different perspective). Geologists were superior to chemists in reasoning about brittle deformations (e.g., what an object looked like before it was broken - here the object was a word cut into many fragments displaced in different directions). This finding is consistent with two hypotheses: 1) Experts are good at visualizing the types of changes required for their domain; and 2) Visualization of rigid and non-rigid changes are not the same skill. An additional important finding is that there was a broad range of skill in both rigid and non-rigid

  6. Mechanical and assembly units of viral capsids identified via quasi-rigid domain decomposition.

    Directory of Open Access Journals (Sweden)

    Guido Polles

    Full Text Available Key steps in a viral life-cycle, such as self-assembly of a protective protein container or in some cases also subsequent maturation events, are governed by the interplay of physico-chemical mechanisms involving various spatial and temporal scales. These salient aspects of a viral life cycle are hence well described and rationalised from a mesoscopic perspective. Accordingly, various experimental and computational efforts have been directed towards identifying the fundamental building blocks that are instrumental for the mechanical response, or constitute the assembly units, of a few specific viral shells. Motivated by these earlier studies we introduce and apply a general and efficient computational scheme for identifying the stable domains of a given viral capsid. The method is based on elastic network models and quasi-rigid domain decomposition. It is first applied to a heterogeneous set of well-characterized viruses (CCMV, MS2, STNV, STMV for which the known mechanical or assembly domains are correctly identified. The validated method is next applied to other viral particles such as L-A, Pariacoto and polyoma viruses, whose fundamental functional domains are still unknown or debated and for which we formulate verifiable predictions. The numerical code implementing the domain decomposition strategy is made freely available.

  7. Matrix rigidity regulates cancer cell growth and cellular phenotype.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    2010-09-01

    Full Text Available The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness of the microenvironment and how this response varies among cancer cell lines.In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: "rigidity dependent" (those which show an increase in cell growth as extracellular rigidity is increased, and "rigidity independent" (those which grow equally on both soft and stiff substrates. Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug.These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models.

  8. Matrix Rigidity Regulates Cancer Cell Growth and Cellular Phenotype

    Science.gov (United States)

    Tilghman, Robert W.; Cowan, Catharine R.; Mih, Justin D.; Koryakina, Yulia; Gioeli, Daniel; Slack-Davis, Jill K.; Blackman, Brett R.; Tschumperlin, Daniel J.; Parsons, J. Thomas

    2010-01-01

    Background The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness) of the microenvironment and how this response varies among cancer cell lines. Methodology/Principal Findings In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: “rigidity dependent” (those which show an increase in cell growth as extracellular rigidity is increased), and “rigidity independent” (those which grow equally on both soft and stiff substrates). Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug. Conclusions/Significance These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models. PMID:20886123

  9. Modeling meniscus rise in capillary tubes using fluid in rigid-body motion approach

    Science.gov (United States)

    Hamdan, Mohammad O.; Abu-Nabah, Bassam A.

    2018-04-01

    In this study, a new term representing net flux rate of linear momentum is introduced to Lucas-Washburn equation. Following a fluid in rigid-body motion in modeling the meniscus rise in vertical capillary tubes transforms the nonlinear Lucas-Washburn equation to a linear mass-spring-damper system. The linear nature of mass-spring-damper system with constant coefficients offers a nondimensional analytical solution where meniscus dynamics are dictated by two parameters, namely the system damping ratio and its natural frequency. This connects the numerous fluid-surface interaction physical and geometrical properties to rather two nondimensional parameters, which capture the underlying physics of meniscus dynamics in three distinct cases, namely overdamped, critically damped, and underdamped systems. Based on experimental data available in the literature and the understanding meniscus dynamics, the proposed model brings a new approach of understanding the system initial conditions. Accordingly, a closed form relation is produced for the imbibition velocity, which equals half of the Bosanquet velocity divided by the damping ratio. The proposed general analytical model is ideal for overdamped and critically damped systems. While for underdamped systems, the solution shows fair agreement with experimental measurements once the effective viscosity is determined. Moreover, the presented model shows meniscus oscillations around equilibrium height occur if the damping ratio is less than one.

  10. A 3D, fully Eulerian, VOF-based solver to study the interaction between two fluids and moving rigid bodies using the fictitious domain method

    Science.gov (United States)

    Pathak, Ashish; Raessi, Mehdi

    2016-04-01

    We present a three-dimensional (3D) and fully Eulerian approach to capturing the interaction between two fluids and moving rigid structures by using the fictitious domain and volume-of-fluid (VOF) methods. The solid bodies can have arbitrarily complex geometry and can pierce the fluid-fluid interface, forming contact lines. The three-phase interfaces are resolved and reconstructed by using a VOF-based methodology. Then, a consistent scheme is employed for transporting mass and momentum, allowing for simulations of three-phase flows of large density ratios. The Eulerian approach significantly simplifies numerical resolution of the kinematics of rigid bodies of complex geometry and with six degrees of freedom. The fluid-structure interaction (FSI) is computed using the fictitious domain method. The methodology was developed in a message passing interface (MPI) parallel framework accelerated with graphics processing units (GPUs). The computationally intensive solution of the pressure Poisson equation is ported to GPUs, while the remaining calculations are performed on CPUs. The performance and accuracy of the methodology are assessed using an array of test cases, focusing individually on the flow solver and the FSI in surface-piercing configurations. Finally, an application of the proposed methodology in simulations of the ocean wave energy converters is presented.

  11. A New and Versatile Adjustable Rigidity Actuator with Add-on Locking Mechanism (ARES-XL

    Directory of Open Access Journals (Sweden)

    Manuel Cestari

    2018-01-01

    Full Text Available Adjustable compliant actuators are being designed and implemented in robotic devices because of their ability to minimize large forces due to impacts, to safely interact with the user, and to store and release energy in passive elastic elements. Conceived as a new force-controlled compliant actuator, an adjustable rigidity with embedded sensor and locking mechanism actuator (ARES-XL is presented in this paper. This compliant system is intended to be implemented in a gait exoskeleton for children with neuro muscular diseases (NMDs to exploit the intrinsic dynamics during locomotion. This paper describes the mechanics and initial evaluation of the ARES-XL, a novel variable impedance actuator (VIA that allows the implementation of an add-on locking mechanism to this system, and in combination with its zero stiffness capability and large deflection range, provides this novel joint with improved properties when compared to previous prototypes developed by the authors and other state-of-the-art (SoA devices. The evaluation of the system proves how this design exceeds the main capabilities of a previous prototype as well as providing versatile actuation that could lead to its implementation in multiple joints.

  12. Continuum mechanics of single-substance bodies

    CERN Document Server

    Eringen, A Cemal

    1975-01-01

    Continuum Physics, Volume II: Continuum Mechanics of Single-Substance Bodies discusses the continuum mechanics of bodies constituted by a single substance, providing a thorough and precise presentation of exact theories that have evolved during the past years. This book consists of three parts-basic principles, constitutive equations for simple materials, and methods of solution. Part I of this publication is devoted to a discussion of basic principles irrespective of material geometry and constitution that are valid for all kinds of substances, including composites. The geometrical notions, k

  13. Sensing of substratum rigidity and directional migration by fast-crawling cells

    Science.gov (United States)

    Okimura, Chika; Sakumura, Yuichi; Shimabukuro, Katsuya; Iwadate, Yoshiaki

    2018-05-01

    Living cells sense the mechanical properties of their surrounding environment and respond accordingly. Crawling cells detect the rigidity of their substratum and migrate in certain directions. They can be classified into two categories: slow-moving and fast-moving cell types. Slow-moving cell types, such as fibroblasts, smooth muscle cells, mesenchymal stem cells, etc., move toward rigid areas on the substratum in response to a rigidity gradient. However, there is not much information on rigidity sensing in fast-moving cell types whose size is ˜10 μ m and migration velocity is ˜10 μ m /min . In this study, we used both isotropic substrata with different rigidities and an anisotropic substratum that is rigid on the x axis but soft on the y axis to demonstrate rigidity sensing by fast-moving Dictyostelium cells and neutrophil-like differentiated HL-60 cells. Dictyostelium cells exerted larger traction forces on a more rigid isotropic substratum. Dictyostelium cells and HL-60 cells migrated in the "soft" direction on the anisotropic substratum, although myosin II-null Dictyostelium cells migrated in random directions, indicating that rigidity sensing of fast-moving cell types differs from that of slow types and is induced by a myosin II-related process.

  14. Real-time motion compensated patient positioning and non-rigid deformation estimation using 4-D shape priors.

    Science.gov (United States)

    Wasza, Jakob; Bauer, Sebastian; Hornegger, Joachim

    2012-01-01

    Over the last years, range imaging (RI) techniques have been proposed for patient positioning and respiration analysis in motion compensation. Yet, current RI based approaches for patient positioning employ rigid-body transformations, thus neglecting free-form deformations induced by respiratory motion. Furthermore, RI based respiration analysis relies on non-rigid registration techniques with run-times of several seconds. In this paper we propose a real-time framework based on RI to perform respiratory motion compensated positioning and non-rigid surface deformation estimation in a joint manner. The core of our method are pre-procedurally obtained 4-D shape priors that drive the intra-procedural alignment of the patient to the reference state, simultaneously yielding a rigid-body table transformation and a free-form deformation accounting for respiratory motion. We show that our method outperforms conventional alignment strategies by a factor of 3.0 and 2.3 in the rotation and translation accuracy, respectively. Using a GPU based implementation, we achieve run-times of 40 ms.

  15. The mechanics of ship impacts against bridges

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    a glancing blow between the ship and the bridge structure. This model is based on rigid body mechanics and well suited for inclusion in a probabilistic analysis procedure. Finally, some empirical expressions are presented which relate the energy absorbed by crushing of ship structures to the maximum impact...

  16. Theoretical mechanics an introduction to mathematical physics

    CERN Document Server

    Sweetman Ames, Joseph

    1958-01-01

    In this book Professors Ames and Murnaghan undertake a mathematically rigorous development of theoretical mechanics from the point of view of modern physics. It gives an intensive survey of this basis field with extensive and extremely thorough discussions of vector and tensor methods, the displacement and motion of a rigid body, dynamics of inertial and non-inertial reference frames, dynamics of a particle, harmonic vibrations, nonrectilinear motion of a particle, central forces and universal gravitation, dynamics of a systems of material particle,impulsive forces, motion of a rigid body about a fixed point, gyroscopic and barygyroscopic theory, general dynamical theorems, vibrations about a point of equilibrium, the principle of least action, holonomic and nonholonomic systems, the principle of least constraint, general methods of integration and the three body problem, the potential function (including simple-layer and double-layer potentials), wave motion, the Lorentz-Einstein transformation and an illumi...

  17. Methods for improving mechanical properties of partially stabilized zirconia and the resulting product

    International Nuclear Information System (INIS)

    Aronov, V.A.

    1987-01-01

    A method for improving mechanical surface properties of a rigid body comprising partially stabilized zirconia as a constituent is described comprising the following steps: (i) providing a rigid body having an exposed surface and an interior volume; (ii) subjecting the exposed surface region of partially stabilized zirconia to external heating to heat the exposed surface region to 1100 0 C-1600 0 C without heating the interior volume above 500 0 C-800 0 C; and (iii) cooling the rigid body to a temperature of less than 500 0 C to cause a portion of the exposed surface region to transform from the tetragonal lattice modification to the monoclinic lattice modification, thereby creating a compressive stress field in the exposed surface region and improving the mechanical surface properties of the exposed surface region. In a ceramic body comprising a first exposed region of a partially stabilized zirconia, and a second region of a partially stabilized zirconia at an interior portion of the ceramic body, the improvement is described comprising the ceramic body having in the first, exposed region a greater percentage of the monoclinic lattice modification than in the second region; having in the first, exposed region 5 percent to 100 percent in the monoclinic lattice modification; and having a molded surface finish in the first, exposed region; the first, exposed region being subjected to a compressive field resulting from the greater percentage of the monoclinic lattice modification

  18. Botulinum toxin in myotonia congenita: it does not help against rigidity and pain.

    Science.gov (United States)

    Dressler, Dirk; Adib Saberi, Fereshte

    2014-05-01

    Botulinum toxin (BT) is a potent local muscle relaxant with analgetic properties. Myotonia congenita (MC) is a genetic disorder producing muscle rigidity and pain. BT injected into the trapezius produced mild paresis, but no effect on rigidity and pain. There were no signs of systemic effects. Lack of BT efficacy on MC rigidity confirms its origin from muscle membrane dysfunction rather than from inappropriate neuromuscular activation. Lack of BT efficacy on pain could be caused by lack of anti-rigidity effect. It could also be due to separate non-muscular pain mechanisms unresponsive to BT.

  19. Rigidity of the magic pentagram game

    Science.gov (United States)

    Kalev, Amir; Miller, Carl A.

    2018-01-01

    A game is rigid if a near-optimal score guarantees, under the sole assumption of the validity of quantum mechanics, that the players are using an approximately unique quantum strategy. Rigidity has a vital role in quantum cryptography as it permits a strictly classical user to trust behavior in the quantum realm. This property can be traced back as far as 1998 (Mayers and Yao) and has been proved for multiple classes of games. In this paper we prove ridigity for the magic pentagram game, a simple binary constraint satisfaction game involving two players, five clauses and ten variables. We show that all near-optimal strategies for the pentagram game are approximately equivalent to a unique strategy involving real Pauli measurements on three maximally-entangled qubit pairs.

  20. Rigidity of the magic pentagram game.

    Science.gov (United States)

    Kalev, Amir; Miller, Carl A

    2018-01-01

    A game is rigid if a near-optimal score guarantees, under the sole assumption of the validity of quantum mechanics, that the players are using an approximately unique quantum strategy. Rigidity has a vital role in quantum cryptography as it permits a strictly classical user to trust behavior in the quantum realm. This property can be traced back as far as 1998 (Mayers and Yao) and has been proved for multiple classes of games. In this paper we prove ridigity for the magic pentagram game, a simple binary constraint satisfaction game involving two players, five clauses and ten variables. We show that all near-optimal strategies for the pentagram game are approximately equivalent to a unique strategy involving real Pauli measurements on three maximally-entangled qubit pairs.

  1. Rigid-plastic seismic design of reinforced concrete structures

    DEFF Research Database (Denmark)

    Costa, Joao Domingues; Bento, R.; Levtchitch, V.

    2007-01-01

    structural strength with respect to a pre-defined performance parameter using a rigid-plastic response spectrum, which is characteristic of the ground motion alone. The maximum strength demand at any point is solely dependent on the intensity of the ground motion, which facilitates the task of distributing......In this paper a new seismic design procedure for Reinforced Concrete (R/C) structures is proposed-the Rigid-Plastic Seismic Design (RPSD) method. This is a design procedure based on Non-Linear Time-History Analysis (NLTHA) for systems expected to perform in the non-linear range during a lifetime...... earthquake event. The theoretical background is the Theory of Plasticity (Rigid-Plastic Structures). Firstly, a collapse mechanism is chosen and the corresponding stress field is made safe outside the regions where plastic behaviour takes place. It is shown that this allows the determination of the required...

  2. The Routh theorem for mechanical systems with unknown first integrals

    Directory of Open Access Journals (Sweden)

    Karapetyan Alexander V.

    2017-01-01

    Full Text Available In this paper we discuss problems of stability of stationary motions of conservative and dissipative mechanical systems with first integrals. General results are illustrated by the problem of motion of a rotationally symmetric rigid body on a perfectly rough plane.

  3. Underlying role of mechanical rigidity and topological constraints in physical sputtering and reactive ion etching of amorphous materials

    Science.gov (United States)

    Bhattarai, Gyanendra; Dhungana, Shailesh; Nordell, Bradley J.; Caruso, Anthony N.; Paquette, Michelle M.; Lanford, William A.; King, Sean W.

    2018-05-01

    Analytical expressions describing ion-induced sputter or etch processes generally relate the sputter yield to the surface atomic binding energy (Usb) for the target material. While straightforward to measure for the crystalline elemental solids, Usb is more complicated to establish for amorphous and multielement materials due to composition-driven variations and incongruent sublimation. In this regard, we show that for amorphous multielement materials, the ion-driven yield can instead be better understood via a consideration of mechanical rigidity and network topology. We first demonstrate a direct relationship between Usb, bulk modulus, and ion sputter yield for the elements, and then subsequently prove our hypothesis for amorphous multielement compounds by demonstrating that the same relationships exist between the reactive ion etch (RIE) rate and nanoindentation Young's modulus for a series of a -Si Nx :H and a -Si OxCy :H thin films. The impact of network topology is further revealed via application of the Phillips-Thorpe theory of topological constraints, which directly relates the Young's modulus to the mean atomic coordination () for an amorphous solid. The combined analysis allows the trends and plateaus in the RIE rate to be ultimately reinterpreted in terms of the atomic structure of the target material through a consideration of . These findings establish the important underlying role of mechanical rigidity and network topology in ion-solid interactions and provide additional considerations for the design and optimization of radiation-hard materials in nuclear and outer space environments.

  4. Effect of chain rigidity on network architecture and deformation behavior of glassy polymer networks

    Science.gov (United States)

    Knowles, Kyler Reser

    Processing carbon fiber composite laminates creates molecular-level strains in the thermoset matrix upon curing and cooling which can lead to failures such as geometry deformations, micro-cracking, and other issues. It is known strain creation is attributed to the significant volume and physical state changes undergone by the polymer matrix throughout the curing process, though storage and relaxation of cure-induced strains remain poorly understood. This dissertation establishes two approaches to address the issue. The first establishes testing methods to simultaneously measure key volumetric properties of a carbon fiber composite laminate and its polymer matrix. The second approach considers the rigidity of the polymer matrix in regards to strain storage and relaxation mechanisms which ultimately control composite performance throughout manufacturing and use. Through the use of a non-contact, full-field strain measurement technique known as digital image correlation (DIC), we describe and implement useful experiments which quantify matrix and composite parameters necessary for simulation efforts and failure models. The methods are compared to more traditional techniques and show excellent correlation. Further, we established relationships which represent matrix-fiber compatibility in regards to critical processing constraints. The second approach involves a systematic study of epoxy-amine networks which are chemically-similar but differ in chain segment rigidity. Prior research has investigated the isomer effect of glassy polymers, showing sizeable differences in thermal, volumetric, physical, and mechanical properties. This work builds on these themes and shows the apparent isomer effect is rather an effect of chain rigidity. Indeed, it was found that structurally-dissimilar polymer networks exhibit very similar properties as a consequence of their shared average network rigidity. Differences in chain packing, as a consequence of chain rigidity, were shown to

  5. Modeling the Flexural Rigidity of Rod Photoreceptors

    Science.gov (United States)

    Haeri, Mohammad; Knox, Barry E.; Ahmadi, Aphrodite

    2013-01-01

    In vertebrate eyes, the rod photoreceptor has a modified cilium with an extended cylindrical structure specialized for phototransduction called the outer segment (OS). The OS has numerous stacked membrane disks and can bend or break when subjected to mechanical forces. The OS exhibits axial structural variation, with extended bands composed of a few hundred membrane disks whose thickness is diurnally modulated. Using high-resolution confocal microscopy, we have observed OS flexing and disruption in live transgenic Xenopus rods. Based on the experimental observations, we introduce a coarse-grained model of OS mechanical rigidity using elasticity theory, representing the axial OS banding explicitly via a spring-bead model. We calculate a bending stiffness of ∼105 nN⋅μm2, which is seven orders-of-magnitude larger than that of typical cilia and flagella. This bending stiffness has a quadratic relation to OS radius, so that thinner OS have lower fragility. Furthermore, we find that increasing the spatial frequency of axial OS banding decreases OS rigidity, reducing its fragility. Moreover, the model predicts a tendency for OS to break in bands with higher spring number density, analogous to the experimental observation that transgenic rods tended to break preferentially in bands of high fluorescence. We discuss how pathological alterations of disk membrane properties by mutant proteins may lead to increased OS rigidity and thus increased breakage, ultimately contributing to retinal degeneration. PMID:23442852

  6. Explicit integration of some integrable systems of classical mechanics

    OpenAIRE

    Basak Gancheva, Inna

    2011-01-01

    The main objective of the thesis is the analytical and geometrical study of several integrable finite-dimentional dynamical systems of classical mechanics, which are closely related, namely: - the classical generalization of the Euler top: the Zhukovski-Volterra (ZV) system describing the free motion of a gyrostat, i.e., a rigid body carrying a symmetric rotator whose axis is fixed in the body; - the Steklov-Lyapunov integrable case of the Kirchhoff equations describing the motio...

  7. Engineering cell wall synthesis mechanism for enhanced PHB accumulation in E. coli.

    Science.gov (United States)

    Zhang, Xing-Chen; Guo, Yingying; Liu, Xu; Chen, Xin-Guang; Wu, Qiong; Chen, Guo-Qiang

    2018-01-01

    The rigidity of bacterial cell walls synthesized by a complicated pathway limit the cell shapes as coccus, bar or ellipse or even fibers. A less rigid bacterium could be beneficial for intracellular accumulation of poly-3-hydroxybutyrate (PHB) as granular inclusion bodies. To understand how cell rigidity affects PHB accumulation, E. coli cell wall synthesis pathway was reinforced and weakened, respectively. Cell rigidity was achieved by thickening the cell walls via insertion of a constitutive gltA (encoding citrate synthase) promoter in front of a series of cell wall synthesis genes on the chromosome of several E. coli derivatives, resulting in 1.32-1.60 folds increase of Young's modulus in mechanical strength for longer E. coli cells over-expressing fission ring FtsZ protein inhibiting gene sulA. Cell rigidity was weakened by down regulating expressions of ten genes in the cell wall synthesis pathway using CRISPRi, leading to elastic cells with more spaces for PHB accumulation. The regulation on cell wall synthesis changes the cell rigidity: E. coli with thickened cell walls accumulated only 25% PHB while cell wall weakened E. coli produced 93% PHB. Manipulation on cell wall synthesis mechanism adds another possibility to morphology engineering of microorganisms. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  8. Can deformation of a polymer film with a rigid coating model geophysical processes?

    Science.gov (United States)

    Volynskii, A. L.; Bazhenov, S. L.

    2007-12-01

    The structural and mechanical behavior of polymer films with a thin rigid coating is analyzed. The behavior of such systems under applied stress is accompanied by the formation of a regular wavy surface relief and by regular fragmentation of the coating. The above phenomena are shown to be universal. Both phenomena (stress-induced development of a regular wavy surface relief and regular fragmentation of the coating) are provided by the specific features of mechanical stress transfer from a compliant soft support to a rigid thin coating. The above phenomena are associated with a specific structure of the system, which is referred to as “a rigid coating on a soft substratum” system (RCSS). Surface microrelief in RCSS systems is similar to the ocean floor relief in the vicinity of mid-oceanic ridges. Thus, the complex system composed of a young oceanic crust and upper Earth's mantle may be considered as typically “a solid coating on a soft substratum” system. Specific features of the ocean floor relief are analyzed in terms of the approach advanced for the description of the structural mechanical behavior of polymer films with a rigid coating. This analysis allowed to estimate the strength of an ocean floor.

  9. Proper body mechanics from an engineering perspective.

    Science.gov (United States)

    Mohr, Edward G

    2010-04-01

    The economic viability of the manual therapy practitioner depends on the number of massages/treatments that can be given in a day or week. Fatigue or injuries can have a major impact on the income potential and could ultimately reach the point which causes the practitioner to quit the profession, and seek other, less physically demanding, employment. Manual therapy practitioners in general, and massage therapists in particular, can utilize a large variety of body postures while giving treatment to a client. The hypothesis of this paper is that there is an optimal method for applying force to the client, which maximizes the benefit to the client, and at the same time minimizes the strain and effort required by the practitioner. Two methods were used to quantifiably determine the effect of using "poor" body mechanics (Improper method) and "best" body mechanics (Proper/correct method). The first approach uses computer modeling to compare the two methods. Both postures were modeled, such that the biomechanical effects on the practitioner's elbow, shoulder, hip, knee and ankle joints could be calculated. The force applied to the client, along with the height and angle of application of the force, was held constant for the comparison. The second approach was a field study of massage practitioners (n=18) to determine their maximal force capability, again comparing methods using "Improper and Proper body mechanics". Five application methods were tested at three different application heights, using a digital palm force gauge. Results showed that there was a definite difference between the two methods, and that the use of correct body mechanics can have a large impact on the health and well being of the massage practitioner over both the short and long term. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Methods of Celestial Mechanics Volume II: Application to Planetary System, Geodynamics and Satellite Geodesy

    CERN Document Server

    Beutler, Gerhard

    2005-01-01

    G. Beutler's Methods of Celestial Mechanics is a coherent textbook for students as well as an excellent reference for practitioners. Volume II is devoted to the applications and to the presentation of the program system CelestialMechanics. Three major areas of applications are covered: (1) Orbital and rotational motion of extended celestial bodies. The properties of the Earth-Moon system are developed from the simplest case (rigid bodies) to more general cases, including the rotation of an elastic Earth, the rotation of an Earth partly covered by oceans and surrounded by an atmosphere, and the rotation of an Earth composed of a liquid core and a rigid shell (Poincaré model). (2) Artificial Earth Satellites. The oblateness perturbation acting on a satellite and the exploitation of its properties in practice is discussed using simulation methods (CelestialMechanics) and (simplified) first order perturbation methods. The perturbations due to the higher-order terms of the Earth's gravitational potential and reso...

  11. Introduction to solid mechanics an integrated approach

    CERN Document Server

    Lubliner, Jacob

    2017-01-01

    This expanded second edition presents in one text the concepts and processes covered in statics and mechanics of materials curricula following a systematic, topically integrated approach. Building on the novel pedagogy of fusing concepts covered in traditional undergraduate courses in rigid-body statics and deformable body mechanics, rather than simply grafting them together, this new edition develops further the authors’ very original treatment of solid mechanics with additional figures, an elaboration on selected solved problems, and additional text as well as a new subsection on viscoelasticity in response to students’ feedback. Introduction to Solid Mechanics: An Integrated Approach, Second Edition, offers a holistic treatment of the depth and breadth of solid mechanics and the inter-relationships of its underlying concepts. Proceeding from first principles to applications, the book stands as a whole greater than the sum of its parts.  .

  12. Unified connected theory of few-body reaction mechanisms in N-body scattering theory

    Science.gov (United States)

    Polyzou, W. N.; Redish, E. F.

    1978-01-01

    A unified treatment of different reaction mechanisms in nonrelativistic N-body scattering is presented. The theory is based on connected kernel integral equations that are expected to become compact for reasonable constraints on the potentials. The operators T/sub +-//sup ab/(A) are approximate transition operators that describe the scattering proceeding through an arbitrary reaction mechanism A. These operators are uniquely determined by a connected kernel equation and satisfy an optical theorem consistent with the choice of reaction mechanism. Connected kernel equations relating T/sub +-//sup ab/(A) to the full T/sub +-//sup ab/ allow correction of the approximate solutions for any ignored process to any order. This theory gives a unified treatment of all few-body reaction mechanisms with the same dynamic simplicity of a model calculation, but can include complicated reaction mechanisms involving overlapping configurations where it is difficult to formulate models.

  13. A rigidity transition and glassy dynamics in a model for confluent 3D tissues

    Science.gov (United States)

    Merkel, Matthias; Manning, M. Lisa

    The origin of rigidity in disordered materials is an outstanding open problem in statistical physics. Recently, a new type of rigidity transition was discovered in a family of models for 2D biological tissues, but the mechanisms responsible for rigidity remain unclear. This is not just a statistical physics problem, but also relevant for embryonic development, cancer growth, and wound healing. To gain insight into this rigidity transition and make new predictions about biological bulk tissues, we have developed a fully 3D self-propelled Voronoi (SPV) model. The model takes into account shape, elasticity, and self-propelled motion of the individual cells. We find that in the absence of self-propulsion, this model exhibits a rigidity transition that is controlled by a dimensionless model parameter describing the preferred cell shape, with an accompanying structural order parameter. In the presence of self-propulsion, the rigidity transition appears as a glass-like transition featuring caging and aging effects. Given the similarities between this transition and jamming in particulate solids, it is natural to ask if the two transitions are related. By comparing statistics of Voronoi geometries, we show the transitions are surprisingly close but demonstrably distinct. Furthermore, an index theorem used to identify topologically protected mechanical modes in jammed systems can be extended to these vertex-type models. In our model, residual stresses govern the transition and enter the index theorem in a different way compared to jammed particles, suggesting the origin of rigidity may be different between the two.

  14. Impact Mechanics

    Science.gov (United States)

    Stronge, W. J.

    2004-03-01

    Impact mechanics is concerned with the reaction forces that develop during a collision and the dynamic response of structures to these reaction forces. The subject has a wide range of engineering applications, from designing sports equipment to improving the crashworthiness of automobiles. This book develops several different methodologies for analysing collisions between structures. These range from rigid body theory for structures that are stiff and compact, to vibration and wave analyses for flexible structures. The emphasis is on low-speed impact where damage is local to the small region of contact between the colliding bodies. The analytical methods presented give results that are more robust or less sensitive to initial conditions than have been achieved hitherto. As a text, Impact Mechanics builds upon foundation courses in dynamics and strength of materials. It includes numerous industrially relevant examples and end-of-chapter homework problems drawn from industry and sports. Practising engineers will also find the methods presented in this book useful in calculating the response of a mechanical system to impact.

  15. Introduction to solid mechanics an integrated approach

    CERN Document Server

    Lubliner, Jacob

    2014-01-01

    This textbook presents for the first time in one text the concepts and processes covered in statics and mechanics of materials curricula following a systematic, topically integrated approach. Since the turn of the millennium, it has become common in engineering schools to combine the traditional undergraduate offerings in rigid-body statics (usually called “statics”) and deformable body mechanics (known traditionally as “strength of materials” or, more recently, “mechanics of materials”) into a single, introductory course in solid mechanics. Many textbooks for the new course sequentially meld pieces of existing, discrete books—sometimes, but not always, acknowledging the origin—into two halves covering Statics and Mechanics of Materials. In this volume, Professors Lubliner and Papadopoulos methodically combine the essentials of statics and mechanics of materials, illustrating the relationship of concepts throughout, into one "integrated" text. This book also: ·         Offers thorough...

  16. Rigidly foldable origami gadgets and tessellations

    Science.gov (United States)

    Evans, Thomas A.; Lang, Robert J.; Magleby, Spencer P.; Howell, Larry L.

    2015-01-01

    Rigidly foldable origami allows for motion where all deflection occurs at the crease lines and facilitates the application of origami in materials other than paper. In this paper, we use a recently discovered method for determining rigid foldability to identify existing flat-foldable rigidly foldable tessellations, which are also categorized. We introduce rigidly foldable origami gadgets which may be used to modify existing tessellations or to create new tessellations. Several modified and new rigidly foldable tessellations are presented. PMID:26473037

  17. Analytical mechanics

    CERN Document Server

    Lemos, Nivaldo A

    2018-01-01

    Analytical mechanics is the foundation of many areas of theoretical physics including quantum theory and statistical mechanics, and has wide-ranging applications in engineering and celestial mechanics. This introduction to the basic principles and methods of analytical mechanics covers Lagrangian and Hamiltonian dynamics, rigid bodies, small oscillations, canonical transformations and Hamilton–Jacobi theory. This fully up-to-date textbook includes detailed mathematical appendices and addresses a number of advanced topics, some of them of a geometric or topological character. These include Bertrand's theorem, proof that action is least, spontaneous symmetry breakdown, constrained Hamiltonian systems, non-integrability criteria, KAM theory, classical field theory, Lyapunov functions, geometric phases and Poisson manifolds. Providing worked examples, end-of-chapter problems, and discussion of ongoing research in the field, it is suitable for advanced undergraduate students and graduate students studying analyt...

  18. Gas-induced friction and diffusion of rigid rotors

    Science.gov (United States)

    Martinetz, Lukas; Hornberger, Klaus; Stickler, Benjamin A.

    2018-05-01

    We derive the Boltzmann equation for the rotranslational dynamics of an arbitrary convex rigid body in a rarefied gas. It yields as a limiting case the Fokker-Planck equation accounting for friction, diffusion, and nonconservative drift forces and torques. We provide the rotranslational friction and diffusion tensors for specular and diffuse reflection off particles with spherical, cylindrical, and cuboidal shape, and show that the theory describes thermalization, photophoresis, and the inverse Magnus effect in the free molecular regime.

  19. Mechanics and thermodynamics

    CERN Document Server

    Demtröder, Wolfgang

    2017-01-01

    This introduction to classical mechanics and thermodynamics provides an accessible and clear treatment of the fundamentals. Starting with particle mechanics and an early introduction to special relativity this textbooks enables the reader to understand the basics in mechanics. The text is written from the experimental physics point of view, giving numerous real life examples and applications of classical mechanics in technology. This highly motivating presentation deepens the knowledge in a very accessible way. The second part of the text gives a concise introduction to rotational motion, an expansion to rigid bodies, fluids and gases. Finally, an extensive chapter on thermodynamics and a short introduction to nonlinear dynamics with some instructive examples intensify the knowledge of more advanced topics. Numerous problems with detailed solutions are perfect for self study.

  20. Explicit symplectic integrators of molecular dynamics algorithms for rigid-body molecules in the canonical, isobaric-isothermal, and related ensembles.

    Science.gov (United States)

    Okumura, Hisashi; Itoh, Satoru G; Okamoto, Yuko

    2007-02-28

    The authors propose explicit symplectic integrators of molecular dynamics (MD) algorithms for rigid-body molecules in the canonical and isobaric-isothermal ensembles. They also present a symplectic algorithm in the constant normal pressure and lateral surface area ensemble and that combined with the Parrinello-Rahman algorithm. Employing the symplectic integrators for MD algorithms, there is a conserved quantity which is close to Hamiltonian. Therefore, they can perform a MD simulation more stably than by conventional nonsymplectic algorithms. They applied this algorithm to a TIP3P pure water system at 300 K and compared the time evolution of the Hamiltonian with those by the nonsymplectic algorithms. They found that the Hamiltonian was conserved well by the symplectic algorithm even for a time step of 4 fs. This time step is longer than typical values of 0.5-2 fs which are used by the conventional nonsymplectic algorithms.

  1. H infinity controller design to a rigid-flexible satellite with two vibration modes

    International Nuclear Information System (INIS)

    De Souza, A G; De Souza, L C G

    2015-01-01

    The satellite attitude control system (ACS) design becomes more complex when the satellite structure has components like, flexible solar panels, antennas and mechanical manipulators. These flexible structures can interact with the satellite rigid parts during translational and/or rotational manoeuvre damaging the ACS pointing accuracy. Although, a well-designed controller can suppress such disturbances quickly, the controller error pointing may be limited by the minimum time necessary to suppress such disturbances thus affecting the satellite attitude acquisition. This paper deals with the rigid-flexible satellite ACS design using the H infinity method. The rigid-flexible satellite is represented by a beam connected to a central rigid hub at one end and free at the other one. The equations of motions are obtained considering small flexible deformations and the Euler-Bernoulli hypothesis. The results of the simulations have shown that the H-infinity controller was able to control the rigid motion and suppress the vibrations. (paper)

  2. The Mechanism of Graviton Exchange between Bodies, Part 1

    DEFF Research Database (Denmark)

    javadi, Hossein; Forouzbakhsh, Farshid

    2016-01-01

    In spite of publishing many articles about graviton, but it has not been done any considerable work about mechanism of graviton exchange between bodies/particles. The reason is that the old graviton definition (in modern physics) is unable to describe this mechanism and also it is impossible to get...... the theory of the quantum gravity. In this article with re-considering physical phenomena, a new definition of graviton is given which by its using; the mechanism of graviton exchange between bodies/particle is described and surveyed....

  3. Soft-Body Muscles for Evolved Virtual Creatures: The Next Step on a Bio-Mimetic Path to Meaningful Morphological Complexity

    DEFF Research Database (Denmark)

    Lessin, Dan; Risi, Sebastian

    2015-01-01

    In the past, evolved virtual creatures (EVCs) have been developed with rigid, segmented bodies, and with soft bodies, but never before with a combination of the two. In nature, however, creatures combining a rigid skeleton and non-rigid muscles are some of the most complex and successful examples...... of life on earth. Now, for the first time, creatures with fully evolved rigid-body skeletons and soft-body muscles can be developed in the virtual world, as well. By exploiting and re-purposing the capabilities of existing soft-body simulation systems, we can evolve complex and effective simulated muscles...

  4. A High Performance Computing Approach to the Simulation of Fluid Solid Interaction Problems with Rigid and Flexible Components (Open Access Author’s Manuscript)

    Science.gov (United States)

    2014-08-01

    Thiscorrection takes into account the velocity of neighboring mark-ers through a mean velocity evaluated within the support of anominal marker a as v̂a...right hand side of Eqs. (7) and (8), are accounted for,the total rigid body force and torque due to the interaction withthe fluid can be obtained by...absolute nodal coordinate formulation. In: Pro-ceedings of the ASME 2005 IDETC/ CIE , Orlando, FL, USA.American Society of Mechanical Engineers (2005)[35

  5. Distinct neural mechanisms for body form and body motion discriminations

    NARCIS (Netherlands)

    Vangeneugden, Joris; Peelen, Marius V; Tadin, Duje; Battelli, Lorella

    2014-01-01

    Actions can be understood based on form cues (e.g., static body posture) as well as motion cues (e.g., gait patterns). A fundamental debate centers on the question of whether the functional and neural mechanisms processing these two types of cues are dissociable. Here, using fMRI, psychophysics, and

  6. SEACAS Theory Manuals: Part II. Nonlinear Continuum Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.

    1998-09-01

    This report summarizes the key continuum mechanics concepts required for the systematic prescription and numerical solution of finite deformation solid mechanics problems. Topics surveyed include measures of deformation appropriate for media undergoing large deformations, stress measures appropriate for such problems, balance laws and their role in nonlinear continuum mechanics, the role of frame indifference in description of large deformation response, and the extension of these theories to encompass two dimensional idealizations, structural idealizations, and rigid body behavior. There are three companion reports that describe the problem formulation, constitutive modeling, and finite element technology for nonlinear continuum mechanics systems.

  7. Homogenized approach for the non linear dynamic analysis of entire masonry buildings by means of rigid plate elements and damaging interfaces

    Science.gov (United States)

    Bertolesi, Elisa; Milani, Gabriele

    2017-07-01

    The present paper is devoted to the analysis of entire 3D masonry structures adopting a Rigid Body and Spring-Mass (HRBSM) model. A series of non linear static and dynamic analyses are conducted with respect to two structures with technical relevance. The elementary cell is discretized by means of three-noded plane stress elements and non-linear interfaces. At a structural level, the non-linear analyses are performed replacing the homogenized orthotropic continuum with a rigid element and non-linear spring assemblage (RBSM) by means of which both in and out of plane mechanisms are allowed. In order to validate the proposed model for the analyses of full scale structures subjected to seismic actions, two different examples are critically discussed, namely a church façade and an in-scale masonry building, both subjected to dynamic excitation. The results obtained are compared with experimental or numerical results available in literature.

  8. Missed distal tracheal foreign body in consecutive bronchoscopies in a 6-year-old boy

    Directory of Open Access Journals (Sweden)

    Oghenevware Joel Eyekpegha

    2017-01-01

    Full Text Available It is unusual but not uncommon for foreign bodies to be missed at bronchoscopy. This case report highlights the importance of the clinical history in the diagnosis of aspirated foreign bodies and the usefulness of chest imaging modalities. A 6-year-old boy presented with recurrent breathlessness and cough of 2 months. He was said to have aspirated the base cap of a pen at about the time symptoms started. He had two sessions of rigid bronchoscopy and a session of flexible bronchoscopy at three different hospitals. He had an initial rigid bronchoscopy which failed to show the foreign body (FB. A chest computerized tomographic scan demonstrated the FB, which was retrieved at combined flexible/rigid bronchoscopy. Although rigid bronchoscopy is the gold standard for managing airway foreign bodies, there remains a false negative rate for this procedure and where necessary, appropriate imaging may compliment rigid bronchoscopy, especially where there is some confusion.

  9. Left ventricular rigid body rotation in a diffuse large B-cell lymphoma patient with cardiac involvement: A case from the three-dimensional speckle-tracking echocardiographic MAGYAR-Path Study.

    Science.gov (United States)

    Földeák, Dóra; Kalapos, Anita; Domsik, Péter; Sinkó, Mária; Szeleczki, Nóra; Bagdi, Enikő; Krenács, László; Forster, Tamás; Borbényi, Zita; Nemes, Attila

    2017-02-01

    Secondary myocardial involvement by diffuse large B-cell lymphoma is a rare occurrence. Left ventricular (LV) twist is considered an essential part of LV function. In normal circumstances LV twist results from the movement of two orthogonally oriented muscular bands of a helical myocardial structure with consequent clockwise rotation of the base and counterclockwise rotation of the apex. Three-dimensional (3D) speckle-tracking echocardiography (3DSTE) has been found to be feasible for non-invasive 3D quantification of LV wall motion and rotational mechanics. The present report aimed to assess LV twisting motion in a patient with diffuse large B-cell lymphoma with positron emission tomography/computer tomography-proven cardiac involvement by 3DSTE. During 3DSTE, reduction in some segmental radial, longitudinal, circumferential, area and 3D LV strains were found. Apical and basal LV rotations were found to be in the same counterclockwise direction, confirming near absence of LV twist - so-called rigid body rotation. Copyright © 2016 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Esophageal Foreign Bodies

    Directory of Open Access Journals (Sweden)

    Ufuk Cobanoglu

    2014-04-01

    Full Text Available Esophageal foreign body aspiration is a common event which can cause serious morbidity and mortality in the children and adult population. For that reason, early diagnosis and treatment are crucial for preventing these life threateining complications. Children most often ingest coins and toys whereas adults commonly tend to have problems with meat and bones. Esophageal foreign bodies are located at the cricopharyngeus muscle level in 70%, the thoracic esophagus in 15% and the gastroesophageal junction in the remaining 15%. Symptoms can vary according to the shape and structure of the ingested object, type of location, patient%u2019s age and complications caused by the foreign body. Delay in treatment, esophageal perforation and an underlying esophageal disease are poor prognostic factors. In treatment, observation, foley catheter, rigid or flexible esophagoscopy and removing the foreign body with a Magill forceps, pushing the foreign body into the stomach, giving intravenous glucagon and surgical treatment methods can be used. Rigid esophagoscopy is an effective and safe procedure for foreign body diagnosis and removal. Improved endoscopic experience and clinical management of thoracic surgeons led to reduced morbidity and mortality in recent years. Most of those emergencies of childhood are preventable. Family education is very important.

  11. Rigid-body rotation of an electron cloud in divergent magnetic fields

    International Nuclear Information System (INIS)

    Fruchtman, A.; Gueroult, R.; Fisch, N. J.

    2013-01-01

    For a given voltage across a divergent poloidal magnetic field, two electric potential distributions, each supported by a rigid-rotor electron cloud rotating with a different frequency, are found analytically. The two rotation frequencies correspond to the slow and fast rotation frequencies known in uniform plasma. Due to the centrifugal force, the equipotential surfaces, that correspond to the two electric potential distributions, diverge more than the magnetic surfaces do, the equipotential surfaces in the fast mode diverge largely in particular. The departure of the equipotential surfaces from the magnetic field surfaces may have a significant focusing effect on the ions accelerated by the electric field. The focusing effect could be important for laboratory plasma accelerators as well as for collimation of astrophysical jets

  12. Initial Development of an Electronic Testis Rigidity Tester

    Directory of Open Access Journals (Sweden)

    Petros Mirilas

    2011-01-01

    Full Text Available We aimed to develop our previously presented mechanical device, the Testis Rigidity Tester (TRT, into an electronic system (Electronic Testis Rigidity Tester, ETRT by applying tactile imaging, which has been used successfully with other solid organs. A measuring device, located at the front end of the ETRT incorporates a tactile sensor comprising an array of microsensors. By application of a predetermined deformation of 2 mm, increased pressure alters linearly the resistance of each microsensor, producing changes of voltage. These signals were amplified, filtered, and digitized, and then processed by an electronic collector system, which presented them as a color-filled contour plot of the area of the testis coming into contact with the sensor. Testis models of different rigidity served for initial evaluation of ETRT; their evacuated central spaces contained different, increasing glue masses. An independent method of rigidity measurement, using an electric weight scale and a micrometer, showed that the more the glue injected, the greater the force needed for a 2-mm deformation. In a preliminary test, a single sensor connected to a multimeter showed similar force measurement for the same deformation in these phantoms. For each of the testis models compressed in the same manner, the ETRT system offered a map of pressures, represented by a color scale within the contour plot of the contact area with the sensor. ETRT found certain differences in rigidity between models that had escaped detection by a blind observer. ETRT is easy to use and provides a color-coded “insight“ of the testis internal structure. After experimental testing, it could be valuable in intraoperative evaluation of testes, so that the surgeon can decide about orchectomy or orcheopexy.

  13. Rigidity and symmetry

    CERN Document Server

    Weiss, Asia; Whiteley, Walter

    2014-01-01

    This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures, and to explore the interaction of geometry, algebra, and combinatorics. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme.  Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology.  The volume will also be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and gradu...

  14. Effects of Structural Deformations of the Crank-Slider Mechanism on the Estimation of the Instantaneous Engine Friction Torque

    Science.gov (United States)

    CHALHOUB, N. G.; NEHME, H.; HENEIN, N. A.; BRYZIK, W.

    1999-07-01

    The focus on the current study is to assess the effects of structural deformations of the crankshaft/connecting-rod/piston mechanism on the computation of the instantaneous engine friction torque. This study is performed in a fully controlled environment in order to isolate the effects of structural deformations from those of measurement errors or noise interference. Therefore, a detailed model, accounting for the rigid and flexible motions of the crank-slider mechanism and including engine component friction formulations, is considered in this study. The model is used as a test bed to generate the engine friction torque,Tfa, and to predict the rigid and flexible motions of the system in response to the cylinder gas pressure. The torsional vibrations and the rigid body angular velocity of the crankshaft, as predicted by the detailed model of the crank-slider mechanism, are used along with the engine load torque and the cylinder gas pressure in the (P-ω) method to estimate the engine friction torque,Tfe. This method is well suited for the purpose of this study because its formulation is based on the rigid body model of the crank-slider mechanism. The digital simulation results demonstrate that the exclusion of the structural deformations of the crank-slider mechanism from the formulation of the (P-ω) method leads to an overestimation of the engine friction torque near the top-dead-center (TDC) position of the piston under firing conditions. Moreover, for the remainder of the engine cycle, the estimated friction torque exhibits large oscillations and takes on positive numerical values as if it is inducing energy into the system. Thus, the adverse effects of structural deformations of the crank-slider mechanism on the estimation of the engine friction torque greatly differ in their nature from one phase of the engine cycle to another.

  15. Study on the effect of testing machine rigidity on strength and ductility temperature dependences obtained

    International Nuclear Information System (INIS)

    Krashchenko, V.P.; Statsenko, V.E.; Rudnitskij, N.P.

    1984-01-01

    Investigation procedures are described for rigidity of testing machines and mechanical properties of tantalum and nickel in the temperature range 293-1873K. Temperature dependences are presented for strength characteristics of the investigated materials obtained with the use of installations of different rigidity. Dependence analysis is carried out and recommendations are given as to the characteristics application

  16. Classical mechanics from Newton to Einstein : a modern introduction

    CERN Document Server

    McCall, Martin

    2011-01-01

    This new edition of Classical Mechanics, aimed at undergraduate physics and engineering students, presents in a user-friendly style an authoritative approach to the complementary subjects of classical mechanics and relativity.   The text starts with a careful look at Newton's Laws, before applying them in one dimension to oscillations and collisions. More advanced applications - including gravitational orbits and rigid body dynamics - are discussed after the limitations of Newton's inertial frames have been highlighted through an exposition of Einstein's Special Relativity. Examples gi

  17. Birationally rigid varieties

    CERN Document Server

    Pukhlikov, Aleksandr

    2013-01-01

    Birational rigidity is a striking and mysterious phenomenon in higher-dimensional algebraic geometry. It turns out that certain natural families of algebraic varieties (for example, three-dimensional quartics) belong to the same classification type as the projective space but have radically different birational geometric properties. In particular, they admit no non-trivial birational self-maps and cannot be fibred into rational varieties by a rational map. The origins of the theory of birational rigidity are in the work of Max Noether and Fano; however, it was only in 1970 that Iskovskikh and Manin proved birational superrigidity of quartic three-folds. This book gives a systematic exposition of, and a comprehensive introduction to, the theory of birational rigidity, presenting in a uniform way, ideas, techniques, and results that so far could only be found in journal papers. The recent rapid progress in birational geometry and the widening interaction with the neighboring areas generate the growing interest ...

  18. Comparison of rigid and flexible endoscopy for removing esophageal foreign bodies in an emergency.

    Science.gov (United States)

    Tseng, Chia-Chen; Hsiao, Tzu-Yu; Hsu, Wei-Chung

    2016-08-01

    Despite the effectiveness of endoscopies in removing ingested foreign bodies (FBs) impacted in the esophagus, the merits and limitations of flexible endoscopy (FE) and rigid endoscopy (RE) remain unclear. Therefore, this study compares the advantages and disadvantages of both endoscopic procedures from a clinical perspective. A retrospective review was made of 273 patients suspected of esophageal FBs in emergency consultations of a tertiary medical referral center from March 2010 to March 2014. All patients received routine physical examinations, otolaryngological examinations, and X-rays of the neck and chest. The door-to-endoscopy time, procedure time, postendoscopic hospital stay, successful removal rates, and complications were analyzed as well. In this study, the most common esophageal FBs were fish and animal bones (76%) in adults and coins (74%) in children. The patients with existing esophageal FBs had significantly more frequent symptoms of dysphagia and signs of linear opacity as detected with lateral neck radiography than those without FB. Additionally, the door-to-endoscopy time, procedure time, and postendoscopic hospital stay was significantly shorter in FE patients than in RE patients. However, both RE and FE patients had high rates of successful FB removal (95%) and low complication rates (2%). Both FE and RE remove esophageal FBs successfully, as evidenced by their high success rates, low complication rates, and high detection rates. Although FE under local anesthesia is a less time-consuming procedure for adults, RE under general anesthesia may be preferable for children and can serve as an alternative to FE. Copyright © 2015. Published by Elsevier B.V.

  19. Classical mechanics systems of particles and Hamiltonian dynamics

    CERN Document Server

    Greiner, Walter

    2010-01-01

    This textbook Classical Mechanics provides a complete survey on all aspects of classical mechanics in theoretical physics. An enormous number of worked examples and problems show students how to apply the abstract principles to realistic problems. The textbook covers Newtonian mechanics in rotating coordinate systems, mechanics of systems of point particles, vibrating systems and mechanics of rigid bodies. It thoroughly introduces and explains the Lagrange and Hamilton equations and the Hamilton-Jacobi theory. A large section on nonlinear dynamics and chaotic behavior of systems takes Classical Mechanics to newest development in physics. The new edition is completely revised and updated. New exercises and new sections in canonical transformation and Hamiltonian theory have been added.

  20. Planar rigid-flexible coupling spacecraft modeling and control considering solar array deployment and joint clearance

    Science.gov (United States)

    Li, Yuanyuan; Wang, Zilu; Wang, Cong; Huang, Wenhu

    2018-01-01

    Based on Nodal Coordinate Formulation (NCF) and Absolute Nodal Coordinate Formulation (ANCF), this paper establishes rigid-flexible coupling dynamic model of the spacecraft with large deployable solar arrays and multiple clearance joints to analyze and control the satellite attitude under deployment disturbance. Considering torque spring, close cable loop (CCL) configuration and latch mechanisms, a typical spacecraft composed of a rigid main-body described by NCF and two flexible panels described by ANCF is used as a demonstration case. Nonlinear contact force model and modified Coulomb friction model are selected to establish normal contact force and tangential friction model, respectively. Generalized elastic force are derived and all generalized forces are defined in the NCF-ANCF frame. The Newmark-β method is used to solve system equations of motion. The availability and superiority of the proposed model is verified through comparing with numerical co-simulations of Patran and ADAMS software. The numerical results reveal the effects of panel flexibility, joint clearance and their coupling on satellite attitude. The effects of clearance number, clearance size and clearance stiffness on satellite attitude are investigated. Furthermore, a proportional-differential (PD) attitude controller of spacecraft is designed to discuss the effect of attitude control on the dynamic responses of the whole system.

  1. Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery.

    Directory of Open Access Journals (Sweden)

    Robert Kalescky

    2016-04-01

    Full Text Available Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2 in the human PTP1E protein is examined as model system to advance a recently developed rigid residue scan method combining with configurational entropy calculation and principal component analysis. The contributions from individual residues to whole-protein dynamics and allostery were systematically assessed via rigid body simulations of both unbound and ligand-bound states of the protein. The entropic contributions of individual residues to whole-protein dynamics were evaluated based on covariance-based correlation analysis of all simulations. The changes of overall protein entropy when individual residues being held rigid support that the rigidity/flexibility equilibrium in protein structure is governed by the La Châtelier's principle of chemical equilibrium. Key residues of PDZ2 allostery were identified with good agreement with NMR studies of the same protein bound to the same peptide. On the other hand, the change of entropic contribution from each residue upon perturbation revealed intrinsic differences among all the residues. The quasi-harmonic and principal component analyses of simulations without rigid residue perturbation showed a coherent allosteric mode from unbound and bound states, respectively. The projection of simulations with rigid residue perturbation onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions supporting the population-shift theory of protein allostery. Overall, the study presented here provides a robust and systematic approach to estimate the contribution of individual residue internal motion to overall protein dynamics and allostery.

  2. Efficient transfer of large-area graphene films onto rigid substrates by hot pressing.

    Science.gov (United States)

    Kang, Junmo; Hwang, Soonhwi; Kim, Jae Hwan; Kim, Min Hyeok; Ryu, Jaechul; Seo, Sang Jae; Hong, Byung Hee; Kim, Moon Ki; Choi, Jae-Boong

    2012-06-26

    Graphene films grown on metal substrates by chemical vapor deposition (CVD) method have to be safely transferred onto desired substrates for further applications. Recently, a roll-to-roll (R2R) method has been developed for large-area transfer, which is particularly efficient for flexible target substrates. However, in the case of rigid substrates such as glass or wafers, the roll-based method is found to induce considerable mechanical damages on graphene films during the transfer process, resulting in the degradation of electrical property. Here we introduce an improved dry transfer technique based on a hot-pressing method that can minimize damage on graphene by neutralizing mechanical stress. Thus, we enhanced the transfer efficiency of the large-area graphene films on a substrate with arbitrary thickness and rigidity, evidenced by scanning electron microscope (SEM) and atomic force microscope (AFM) images, Raman spectra, and various electrical characterizations. We also performed a theoretical multiscale simulation from continuum to atomic level to compare the mechanical stresses caused by the R2R and the hot-pressing methods, which also supports our conclusion. Consequently, we believe that the proposed hot-pressing method will be immediately useful for display and solar cell applications that currently require rigid and large substrates.

  3. Analytical mechanics

    CERN Document Server

    Helrich, Carl S

    2017-01-01

    This advanced undergraduate textbook begins with the Lagrangian formulation of Analytical Mechanics and then passes directly to the Hamiltonian formulation and the canonical equations, with constraints incorporated through Lagrange multipliers. Hamilton's Principle and the canonical equations remain the basis of the remainder of the text. Topics considered for applications include small oscillations, motion in electric and magnetic fields, and rigid body dynamics. The Hamilton-Jacobi approach is developed with special attention to the canonical transformation in order to provide a smooth and logical transition into the study of complex and chaotic systems. Finally the text has a careful treatment of relativistic mechanics and the requirement of Lorentz invariance. The text is enriched with an outline of the history of mechanics, which particularly outlines the importance of the work of Euler, Lagrange, Hamilton and Jacobi. Numerous exercises with solutions support the exceptionally clear and concise treatment...

  4. A study of semi-rigid support on ankle supination sprain kinematics.

    Science.gov (United States)

    Tang, Y M; Wu, Z H; Liao, W H; Chan, K M

    2010-12-01

    Ankle sprain injury is very common in sports and the use of ankle support is crucial. This research investigated the effect of an ankle brace in reducing the ankle angular displacement and angular velocity during sudden supination. In the experiment, 11 healthy males were tested. The bracing condition, semi-rigid ankle braces were investigated. The angular displacement and angular velocity of the ankle were computed. The motion-capture system was adopted to capture the three-dimensional coordinates of the reflective markers. The coordinates of the reflective markers were used to compute the ankle kinematics during simulated ankle supination. A mechanical supination platform was used to simulate the sprain motions. Experimental results showed that the semi-rigid brace tested significantly reduced the ankle angular displacement and angular velocity compared with control conditions during sudden supination. In conclusion, the semi-rigid-type brace can provide significant restriction to reduce the magnitudes of the angular displacement and angular velocity of the ankle during sudden supination sprain. The semi-rigid-type brace is suggested as the prophylactic bracing for the ankle. © 2009 John Wiley & Sons A/S.

  5. 49 CFR 238.207 - Link between coupling mechanism and car body.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Link between coupling mechanism and car body. 238.207 Section 238.207 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL... Requirements for Tier I Passenger Equipment § 238.207 Link between coupling mechanism and car body. All...

  6. Mechanics problems in undergraduate physics

    CERN Document Server

    Strelkov, S P

    2013-01-01

    Problems in Undergraduate Physics, Volume I: Mechanics focuses on solutions to problems in physics. The book first discusses the fundamental problems in physics. Topics include laws of conservation of momentum and energy; dynamics of a point particle in circular motion; dynamics of a rotating rigid body; hydrostatics and aerostatics; and acoustics. The text also offers information on solutions to problems in physics. Answers to problems in kinematics, statics, gravity, elastic deformations, vibrations, and hydrostatics and aerostatics are discussed. Solutions to problems related to the laws of

  7. An Explicit Formulation of Singularity-Free Dynamic Equations of Mechanical Systems in Lagrangian Form---Part Two: Multibody Systems

    Directory of Open Access Journals (Sweden)

    Pål Johan From

    2012-04-01

    Full Text Available This paper presents the explicit dynamic equations of multibody mechanical systems. This is the second paper on this topic. In the first paper the dynamics of a single rigid body from the Boltzmann--Hamel equations were derived. In this paper these results are extended to also include multibody systems. We show that when quasi-velocities are used, the part of the dynamic equations that appear from the partial derivatives of the system kinematics are identical to the single rigid body case, but in addition we get terms that come from the partial derivatives of the inertia matrix, which are not present in the single rigid body case. We present for the first time the complete and correct derivation of multibody systems based on the Boltzmann--Hamel formulation of the dynamics in Lagrangian form where local position and velocity variables are used in the derivation to obtain the singularity-free dynamic equations. The final equations are written in global variables for both position and velocity. The main motivation of these papers is to allow practitioners not familiar with differential geometry to implement the dynamic equations of rigid bodies without the presence of singularities. Presenting the explicit dynamic equations also allows for more insight into the dynamic structure of the system. Another motivation is to correct some errors commonly found in the literature. Unfortunately, the formulation of the Boltzmann-Hamel equations used here are presented incorrectly. This has been corrected by the authors, but we present here, for the first time, the detailed mathematical details on how to arrive at the correct equations. We also show through examples that using the equations presented here, the dynamics of a single rigid body is reduced to the standard equations on a Lagrangian form, for example Euler's equations for rotational motion and Euler--Lagrange equations for free motion.

  8. On flexible and rigid nouns

    DEFF Research Database (Denmark)

    Rijkhoff, Jan

    2010-01-01

    classes. Finally this article wants to claim that the distinction between rigid and flexible noun categories (a) adds a new dimension to current classifications of parts of speech systems, (b) correlates with certain grammatical phenomena (e.g. so-called number discord), and (c) helps to explain the parts......This article argues that in addition to the major flexible lexical categories in Hengeveld’s classification of parts of speech systems (Contentive, Non-Verb, Modifier), there are also flexible word classes within the rigid lexical category Noun (Set Noun, Sort Noun, General Noun). Members...... by the flexible item in the external world. I will then argue that flexible word classes constitute a proper category (i.e. they are not the result of a merger of some rigid word classes) in that members of flexible word categories display the same properties regarding category membership as members of rigid word...

  9. Puncture mechanics of soft elastomeric membrane with large deformation by rigid cylindrical indenter

    Science.gov (United States)

    Liu, Junjie; Chen, Zhe; Liang, Xueya; Huang, Xiaoqiang; Mao, Guoyong; Hong, Wei; Yu, Honghui; Qu, Shaoxing

    2018-03-01

    Soft elastomeric membrane structures are widely used and commonly found in engineering and biological applications. Puncture is one of the primary failure modes of soft elastomeric membrane at large deformation when indented by rigid objects. In order to investigate the puncture failure mechanism of soft elastomeric membrane with large deformation, we study the deformation and puncture failure of silicone rubber membrane that results from the continuous axisymmetric indentation by cylindrical steel indenters experimentally and analytically. In the experiment, effects of indenter size and the friction between the indenter and the membrane on the deformation and puncture failure of the membrane are investigated. In the analytical study, a model within the framework of nonlinear field theory is developed to describe the large local deformation around the punctured area, as well as to predict the puncture failure of the membrane. The deformed membrane is divided into three parts and the friction contact between the membrane and indenter is modeled by Coulomb friction law. The first invariant of the right Cauchy-Green deformation tensor I1 is adopted to predict the puncture failure of the membrane. The experimental and analytical results agree well. This work provides a guideline in designing reliable soft devices featured with membrane structures, which are present in a wide variety of applications.

  10. Uncommon, undeclared oesophageal foreign bodies

    African Journals Online (AJOL)

    2011-05-11

    May 11, 2011 ... presented with a sudden onset of total dysphagia and history of ingestion of foreign bodies was not volunteered by any despite direct questioning. Plain radiograph of the neck and chest in either case did not reveal presence of foreign body. Both were successfully removed through rigid oesophagoscopy.

  11. Fullrmc, a rigid body Reverse Monte Carlo modeling package enabled with machine learning and artificial intelligence.

    Science.gov (United States)

    Aoun, Bachir

    2016-05-05

    A new Reverse Monte Carlo (RMC) package "fullrmc" for atomic or rigid body and molecular, amorphous, or crystalline materials is presented. fullrmc main purpose is to provide a fully modular, fast and flexible software, thoroughly documented, complex molecules enabled, written in a modern programming language (python, cython, C and C++ when performance is needed) and complying to modern programming practices. fullrmc approach in solving an atomic or molecular structure is different from existing RMC algorithms and software. In a nutshell, traditional RMC methods and software randomly adjust atom positions until the whole system has the greatest consistency with a set of experimental data. In contrast, fullrmc applies smart moves endorsed with reinforcement machine learning to groups of atoms. While fullrmc allows running traditional RMC modeling, the uniqueness of this approach resides in its ability to customize grouping atoms in any convenient way with no additional programming efforts and to apply smart and more physically meaningful moves to the defined groups of atoms. In addition, fullrmc provides a unique way with almost no additional computational cost to recur a group's selection, allowing the system to go out of local minimas by refining a group's position or exploring through and beyond not allowed positions and energy barriers the unrestricted three dimensional space around a group. © 2016 Wiley Periodicals, Inc.

  12. A bistable mechanism for chord extension morphing rotors

    Science.gov (United States)

    Johnson, Terrence; Frecker, Mary; Gandhi, Farhan

    2009-03-01

    Research efforts have shown that helicopter rotor blade morphing is an effective means to improve flight performance. Previous example of rotor blade morphing include using smart-materials for trailing deflection and rotor blade twist and tip twist, the development of a comfortable airfoil using compliant mechanisms, the use of a Gurney flap for air-flow deflection and centrifugal force actuated device to increase the span of the blade. In this paper we explore the use of a bistable mechanism for rotor morphing, specifically, blade chord extension using a bistable arc. Increasing the chord of the rotor blade is expected to generate more lift-load and improve helicopter performance. Bistable or "snap through" mechanisms have multiple stable equilibrium states and are a novel way to achieve large actuation output stroke. Bistable mechanisms do not require energy input to maintain a stable equilibrium state as both states do not require locking. In this work, we introduce a methodology for the design of bistable arcs for chord morphing using the finite element analysis and pseudo-rigid body model, to study the effect of different arc types, applied loads and rigidity on arc performance.

  13. Nucleosome–nucleosome interactions via histone tails and linker DNA regulate nuclear rigidity

    Science.gov (United States)

    Shimamoto, Yuta; Tamura, Sachiko; Masumoto, Hiroshi; Maeshima, Kazuhiro

    2017-01-01

    Cells, as well as the nuclei inside them, experience significant mechanical stress in diverse biological processes, including contraction, migration, and adhesion. The structural stability of nuclei must therefore be maintained in order to protect genome integrity. Despite extensive knowledge on nuclear architecture and components, however, the underlying physical and molecular mechanisms remain largely unknown. We address this by subjecting isolated human cell nuclei to microneedle-based quantitative micromanipulation with a series of biochemical perturbations of the chromatin. We find that the mechanical rigidity of nuclei depends on the continuity of the nucleosomal fiber and interactions between nucleosomes. Disrupting these chromatin features by varying cation concentration, acetylating histone tails, or digesting linker DNA results in loss of nuclear rigidity. In contrast, the levels of key chromatin assembly factors, including cohesin, condensin II, and CTCF, and a major nuclear envelope protein, lamin, are unaffected. Together with in situ evidence using living cells and a simple mechanical model, our findings reveal a chromatin-based regulation of the nuclear mechanical response and provide insight into the significance of local and global chromatin structures, such as those associated with interdigitated or melted nucleosomal fibers. PMID:28428255

  14. Control of fluid-containing rotating rigid bodies

    CERN Document Server

    Gurchenkov, Anatoly A

    2013-01-01

    This book is devoted to the study of the dynamics of rotating bodies with cavities containing liquid. Two basic classes of motions are analyzed: rotation and libration. Cases of complete and partial filling of cavities with ideal liquid and complete filling with viscous liquid are treated. The volume presents a method for obtaining relations between angular velocities perpendicular to main rotation and external force momentums, which are treated as control. The developed models and methods of solving dynamical problems as well as numerical methods for solving problems of optimal control can be

  15. Analytic analysis of auxetic metamaterials through analogy with rigid link systems

    Science.gov (United States)

    Rayneau-Kirkhope, Daniel; Zhang, Chengzhao; Theran, Louis; Dias, Marcelo A.

    2018-02-01

    In recent years, many structural motifs have been designed with the aim of creating auxetic metamaterials. One area of particular interest in this subject is the creation of auxetic material properties through elastic instability. Such metamaterials switch from conventional behaviour to an auxetic response for loads greater than some threshold value. This paper develops a novel methodology in the analysis of auxetic metamaterials which exhibit elastic instability through analogy with rigid link lattice systems. The results of our analytic approach are confirmed by finite-element simulations for both the onset of elastic instability and post-buckling behaviour including Poisson's ratio. The method gives insight into the relationships between mechanisms within lattices and their mechanical behaviour; as such, it has the potential to allow existing knowledge of rigid link lattices with auxetic paths to be used in the design of future buckling-induced auxetic metamaterials.

  16. CT-3DRA registration for radiosurgery treatments: a comparison among rigid, affine and non rigid approaches

    International Nuclear Information System (INIS)

    Stancanello, J.; Loeckx, D.; Francescon, P.; Calvedon, C.; Avanzo, M.; Cora, S.; Scalchi, P.; Cerveri, P.; Ferrigno, G.

    2004-01-01

    This work aims at comparing rigid, affine and Local Non Rigid (LNR) CT-3D Rotational Angiography (CT-3DRA) registrations based on mutual information. 10 cranial and 1 spinal cases have been registered by rigid and affine transformations; while LNR has been applied to the cases where residual deformation must be corrected. An example of CT-3DRA registration without regularization term and an example of LNR using the similarity criterion and the regularization term as well as 3D superposition of the 3DRA before and after the registration without the regularization term are presented. All the registrations performed by rigid transformation converged to an acceptable solution. The results about the robustness test in axial direction are reported. Conclusions: For cranial cases, affine transformation endowed with threshold-segmentation pre-processing can be considered the most favourable solution for almost all registrations; for some cases, LNR provides more accurate results. For the spinal case rigid transformation is the most suitable when immobilizing patient during examinations; in this case the increase of accuracy by using LNR registrations seems to be not significant

  17. Mechanical study of a modern yo-yo

    International Nuclear Information System (INIS)

    De Izarra, Charles

    2011-01-01

    This paper presents the study of a modern yo-yo having a centrifugal clutch allowing the free rolling. First, the mechanical parts of the yo-yo are measured, allowing us to determine analytically its velocity according to its height of fall. Then, we are more particularly interested in the centrifugal device constituted by springs and small masses. The physics of this toy is suitable for undergraduate students, illustrating the concepts of dynamics of rigid bodies and of potential energy.

  18. Torsional Rigidity of Minimal Submanifolds

    DEFF Research Database (Denmark)

    Markvorsen, Steen; Palmer, Vicente

    2006-01-01

    We prove explicit upper bounds for the torsional rigidity of extrinsic domains of minimal submanifolds $P^m$ in ambient Riemannian manifolds $N^n$ with a pole $p$. The upper bounds are given in terms of the torsional rigidities of corresponding Schwarz symmetrizations of the domains in warped...

  19. A heterogeneous system based on GPU and multi-core CPU for real-time fluid and rigid body simulation

    Science.gov (United States)

    da Silva Junior, José Ricardo; Gonzalez Clua, Esteban W.; Montenegro, Anselmo; Lage, Marcos; Dreux, Marcelo de Andrade; Joselli, Mark; Pagliosa, Paulo A.; Kuryla, Christine Lucille

    2012-03-01

    Computational fluid dynamics in simulation has become an important field not only for physics and engineering areas but also for simulation, computer graphics, virtual reality and even video game development. Many efficient models have been developed over the years, but when many contact interactions must be processed, most models present difficulties or cannot achieve real-time results when executed. The advent of parallel computing has enabled the development of many strategies for accelerating the simulations. Our work proposes a new system which uses some successful algorithms already proposed, as well as a data structure organisation based on a heterogeneous architecture using CPUs and GPUs, in order to process the simulation of the interaction of fluids and rigid bodies. This successfully results in a two-way interaction between them and their surrounding objects. As far as we know, this is the first work that presents a computational collaborative environment which makes use of two different paradigms of hardware architecture for this specific kind of problem. Since our method achieves real-time results, it is suitable for virtual reality, simulation and video game fluid simulation problems.

  20. Flexible and rigid cystoscopy in women.

    Science.gov (United States)

    Gee, Jason R; Waterman, Bradley J; Jarrard, David F; Hedican, Sean P; Bruskewitz, Reginald C; Nakada, Stephen Y

    2009-01-01

    Previous studies have evaluated the tolerability of rigid versus flexible cystoscopy in men. Similar studies, however, have not been performed in women. We sought to determine whether office-based flexible cystoscopy was better tolerated than rigid cystoscopy in women. Following full IRB approval, women were prospectively randomized in a single-blind manner. Patients were randomized to flexible or rigid cystoscopy and draped in the lithotomy position to maintain blinding of the study. Questionnaires evaluated discomfort before, during, and after cystoscopy. Thirty-six women were randomized to flexible (18) or rigid (18) cystoscopy. Indications were surveillance (16), hematuria (15), recurrent UTIs (2), voiding dysfunction (1), and other (2). All questionnaires were returned by 31/36 women. Using a 10-point visual analog scale (VAS), median discomfort during the procedure for flexible and rigid cystoscopy were 1.4 and 1.8, respectively, in patients perceiving pain. Median recalled pain 1 week later was similar at 0.8 and 1.15, respectively. None of these differences were statistically significant. Flexible and rigid cystoscopy are well tolerated in women. Discomfort during and after the procedure is minimal in both groups. Urologists should perform either procedure in women based on their preference and skill level.

  1. Two-body quantum mechanical problem on spheres

    OpenAIRE

    Shchepetilov, Alexey V.

    2005-01-01

    The quantum mechanical two-body problem with a central interaction on the sphere ${\\bf S}^{n}$ is considered. Using recent results in representation theory an ordinary differential equation for some energy levels is found. For several interactive potentials these energy levels are calculated in explicit form.

  2. Crack identification for rigid pavements using unmanned aerial vehicles

    Science.gov (United States)

    Bahaddin Ersoz, Ahmet; Pekcan, Onur; Teke, Turker

    2017-09-01

    Pavement condition assessment is an essential piece of modern pavement management systems as rehabilitation strategies are planned based upon its outcomes. For proper evaluation of existing pavements, they must be continuously and effectively monitored using practical means. Conventionally, truck-based pavement monitoring systems have been in-use in assessing the remaining life of in-service pavements. Although such systems produce accurate results, their use can be expensive and data processing can be time consuming, which make them infeasible considering the demand for quick pavement evaluation. To overcome such problems, Unmanned Aerial Vehicles (UAVs) can be used as an alternative as they are relatively cheaper and easier-to-use. In this study, we propose a UAV based pavement crack identification system for monitoring rigid pavements’ existing conditions. The system consists of recently introduced image processing algorithms used together with conventional machine learning techniques, both of which are used to perform detection of cracks on rigid pavements’ surface and their classification. Through image processing, the distinct features of labelled crack bodies are first obtained from the UAV based images and then used for training of a Support Vector Machine (SVM) model. The performance of the developed SVM model was assessed with a field study performed along a rigid pavement exposed to low traffic and serious temperature changes. Available cracks were classified using the UAV based system and obtained results indicate it ensures a good alternative solution for pavement monitoring applications.

  3. Non-rigid registration of tomographic images with Fourier transforms

    International Nuclear Information System (INIS)

    Osorio, Ar; Isoardi, Ra; Mato, G

    2007-01-01

    Spatial image registration of deformable body parts such as thorax and abdomen has important medical applications, but at the same time, it represents an important computational challenge. In this work we propose an automatic algorithm to perform non-rigid registration of tomographic images using a non-rigid model based on Fourier transforms. As a measure of similarity, we use the correlation coefficient, finding that the optimal order of the transformation is n = 3 (36 parameters). We apply this method to a digital phantom and to 7 pairs of patient images corresponding to clinical CT scans. The preliminary results indicate a fairly good agreement according to medical experts, with an average registration error of 2 mm for the case of clinical images. For 2D images (dimensions 512x512), the average running time for the algorithm is 15 seconds using a standard personal computer. Summarizing, we find that intra-modality registration of the abdomen can be achieved with acceptable accuracy for slight deformations and can be extended to 3D with a reasonable execution time

  4. Therapeutic rigid bronchoscopy at a tertiary care center in North India: Initial experience and systematic review of Indian literature

    Directory of Open Access Journals (Sweden)

    Karan Madan

    2014-01-01

    Full Text Available Background and Aim: Rigid bronchoscopy is often an indispensable procedure in the therapeutic management of a wide variety of tracheobronchial disorders. However, it is performed at only a few centers in adult patients in India. Herein, we report our initial 1-year experience with this procedure. Materials and Methods: A prospective observational study on the indications, outcomes, and safety of various rigid bronchoscopy procedures performed between November 2009 and October 2010. Improvement in dyspnea, cough, and the overall quality of life was recorded on a visual analog scale from 0 to 100 mm. A systematic review of PubMed was performed to identify studies reporting the use of rigid bronchoscopy from India. Results: Thirty-eight rigid bronchoscopies (50 procedures were performed in 19 patients during the study period. The commonest indication was benign tracheal stenosis followed by central airway tumor, and the procedures performed were rigid bronchoplasty, tumor debulking, and stent placement. The median procedure duration was 45 (range, 30-65 min. There was significant improvement in quality of life associated with therapeutic rigid bronchoscopy. Minor procedural complications were encountered in 18 bronchoscopies, and there was no procedural mortality. The systematic review identified 15 studies, all on the role of rigid bronchoscopy in foreign body removal. Conclusions: Rigid bronchoscopy is a safe and effective modality for treatment of a variety of tracheobronchial disorders. There is a dire need of rigid bronchoscopy training at teaching hospitals in India.

  5. Analysis of Switched-Rigid Floating Oscillator

    Directory of Open Access Journals (Sweden)

    Prabhakar R. Marur

    2009-01-01

    Full Text Available In explicit finite element simulations, a technique called deformable-to-rigid (D2R switching is used routinely to reduce the computation time. Using the D2R option, the deformable parts in the model can be switched to rigid and reverted back to deformable when needed during the analysis. The time of activation of D2R however influences the overall dynamics of the system being analyzed. In this paper, a theoretical basis for the selection of time of rigid switching based on system energy is established. A floating oscillator problem is investigated for this purpose and closed-form analytical expressions are derived for different phases in rigid switching. The analytical expressions are validated by comparing the theoretical results with numerical computations.

  6. Body ownership and embodiment: vestibular and multisensory mechanisms.

    Science.gov (United States)

    Lopez, C; Halje, P; Blanke, O

    2008-06-01

    Body ownership and embodiment are two fundamental mechanisms of self-consciousness. The present article reviews neurological data about paroxysmal illusions during which body ownership and embodiment are affected differentially: autoscopic phenomena (out-of-body experience, heautoscopy, autoscopic hallucination, feeling-of-a-presence) and the room tilt illusion. We suggest that autoscopic phenomena and room tilt illusion are related to different types of failures to integrate body-related information (vestibular, proprioceptive and tactile cues) in addition to a mismatch between vestibular and visual references. In these patients, altered body ownership and embodiment has been shown to occur due to pathological activity at the temporoparietal junction and other vestibular-related areas arguing for a key importance of vestibular processing. We also review the possibilities of manipulating body ownership and embodiment in healthy subjects through exposition to weightlessness as well as caloric and galvanic stimulation of the peripheral vestibular apparatus. In healthy subjects, disturbed self-processing might be related to interference of vestibular stimulation with vestibular cortex leading to disintegration of bodily information and altered body ownership and embodiment. We finally propose a differential contribution of the vestibular cortical areas to the different forms of altered body ownership and embodiment.

  7. The quantum mechanics of many-body systems

    CERN Document Server

    Thouless, David James; Brueckner, Keith A

    1961-01-01

    The Quantum Mechanics of Many-Body Systems provides an introduction to that field of theoretical physics known as """"many-body theory."""" It is concerned with problems that are common to nuclear physics, atomic physics, the electron theory of metals, and to the theories of liquid helium three and four, and it describes the methods which have recently been developed to solve such problems. The aim has been to produce a unified account of the field, rather than to describe all the parallel methods that have been developed; as a result, a number of important papers are not mentioned. The main

  8. Torsional rigidity, isospectrality and quantum graphs

    International Nuclear Information System (INIS)

    Colladay, Don; McDonald, Patrick; Kaganovskiy, Leon

    2017-01-01

    We study torsional rigidity for graph and quantum graph analogs of well-known pairs of isospectral non-isometric planar domains. We prove that such isospectral pairs are distinguished by torsional rigidity. (paper)

  9. A geometrically controlled rigidity transition in a model for confluent 3D tissues

    Science.gov (United States)

    Merkel, Matthias; Manning, M. Lisa

    2018-02-01

    The origin of rigidity in disordered materials is an outstanding open problem in statistical physics. Previously, a class of 2D cellular models has been shown to undergo a rigidity transition controlled by a mechanical parameter that specifies cell shapes. Here, we generalize this model to 3D and find a rigidity transition that is similarly controlled by the preferred surface area S 0: the model is solid-like below a dimensionless surface area of {s}0\\equiv {S}0/{\\bar{V}}2/3≈ 5.413 with \\bar{V} being the average cell volume, and fluid-like above this value. We demonstrate that, unlike jamming in soft spheres, residual stresses are necessary to create rigidity. These stresses occur precisely when cells are unable to obtain their desired geometry, and we conjecture that there is a well-defined minimal surface area possible for disordered cellular structures. We show that the behavior of this minimal surface induces a linear scaling of the shear modulus with the control parameter at the transition point, which is different from the scaling observed in particulate matter. The existence of such a minimal surface may be relevant for biological tissues and foams, and helps explain why cell shapes are a good structural order parameter for rigidity transitions in biological tissues.

  10. Higgs mechanism and the added-mass effect.

    Science.gov (United States)

    Krishnaswami, Govind S; Phatak, Sachin S

    2015-04-08

    In the Higgs mechanism, mediators of the weak force acquire masses by interacting with the Higgs condensate, leading to a vector boson mass matrix. On the other hand, a rigid body accelerated through an inviscid, incompressible and irrotational fluid feels an opposing force linearly related to its acceleration, via an added-mass tensor. We uncover a striking physical analogy between the two effects and propose a dictionary relating them. The correspondence turns the gauge Lie algebra into the space of directions in which the body can move, encodes the pattern of gauge symmetry breaking in the shape of an associated body and relates symmetries of the body to those of the scalar vacuum manifold. The new viewpoint is illustrated with numerous examples, and raises interesting questions, notably on the fluid analogues of the broken symmetry and Higgs particle, and the field-theoretic analogue of the added mass of a composite body.

  11. Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    Full Text Available Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy.This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa, cells on soft substrates (150-300 Pa exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins and glycolysis (e.g., phosphofructokinase-1, whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway.The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical

  12. Management of rigid post-traumatic kyphosis.

    Science.gov (United States)

    Wu, S S; Hwa, S Y; Lin, L C; Pai, W M; Chen, P Q; Au, M K

    1996-10-01

    Rigid post-traumatic kyphosis after fracture of the thoracolumbar and lumbar spine represents a failure of initial management of the injury. Kyphosis moves the center of gravity anterior. The kyphosis and instability may result in pain, deformity, and increased neurologic deficits. Management for symptomatic post-traumatic kyphosis always has presented a challenge to orthopedic surgeons. To evaluate the surgical results of one stage posterior correction for rigid symptomatic post-traumatic kyphosis of the thoracolumbar and lumbar spine. The management for post-traumatic kyphosis remains controversial. Anterior, posterior, or combined anterior and posterior procedures have been advocated by different authors and show various degrees of success. One vertebra immediately above and below the level of the deformity was instrumented posteriorly by a transpedicular system (internal fixator AO). Posterior decompression was performed by excision of the spinal process and bilateral laminectomy. With the deformed vertebra through the pedicle, the vertebral body carefully is removed around the pedicle level, approximating a wedge shape. The extent to which the deformed vertebral body should be removed is determined by the attempted correction. Correction of the deformity is achieved by manipulation of the operating table and compression of the adjacent Schanz screws above and below the lesion. Thirteen patients with post-traumatic kyphosis with symptoms of fatigue and pain caused by slow progression of kyphotic deformities received posterior decompression, correction, and stabilization as a definitive treatment. The precorrection kyphosis ranged from 30-60 degrees, with a mean of 40 degrees +/- 10.8 degrees. After correction, kyphosis was reduced to an average of 1.5 degrees +/- 3.8 degrees, with a range from -5 degrees to 5 degrees. The average angle of correction was 38.8 degrees +/- 10.4 degrees, with a range from 25 degrees to 60 degrees. Significant difference was found

  13. On the two-body problem in quantum mechanics

    International Nuclear Information System (INIS)

    Micu, L.

    2008-01-01

    Following the representation of a two-body system in classical mechanics, we build up a quantum picture which is free of spurious effects and retains the intrinsic features of the internal bodies. In the coordinate space the system is represented by the real particles, individually bound to a center of forces which in a certain limit coincides with the center of mass and the wave function writes as product of the individual wave functions with correlated arguments. (author)

  14. METHOD OF ACHIEVING ACCURACY OF THERMO-MECHANICAL TREATMENT OF LOW-RIGIDITY SHAFTS

    Directory of Open Access Journals (Sweden)

    Antoni Świć

    2016-03-01

    Full Text Available The paper presents a method combining the processes of straightening and thermal treatment. Technological processes with axial strain were considered, for the case of heated material and without its heating. The essence of the process in the case of heated material consisted in the fact that if under tension all longitudinal forces in the first approximation are uniform - the same strains are generated. The presented technological approach, aimed at reducing the curvature of axial-symmetrical parts, is acceptable as the process of rough, preliminary machining, in the case of shafts with the ratio L/D≤100 (L – shaft length, d – shaft diameter and without a tendency of strengthening. To improve the accuracy and stability of geometric form of low-rigidity parts, a method was developed that combines the processes of straightening and heat treatment. The method consists in that axial strain – tension, is applied to the shaft during heating, and during cooling the product is fixed in a fixture, the cooling rate of the shaft being several-fold greater than that of the fixture. A device is presented for the realisation of the method of controlling the process of plastic deformation of low-rigidity shafts. In the case of the presented device and the adopted calculation scheme, a method was developed that permits the determination of the length of shaft section and of the time of its cooling.

  15. Dimensional Metrology of Non-rigid Parts Without Specialized Inspection Fixtures =

    Science.gov (United States)

    Sabri, Vahid

    Quality control is an important factor for manufacturing companies looking to prosper in an era of globalization, market pressures and technological advances. Functionality and product quality cannot be guaranteed without this important aspect. Manufactured parts have deviations from their nominal (CAD) shape caused by the manufacturing process. Thus, geometric inspection is a very important element in the quality control of mechanical parts. We will focus here on the geometric inspection of non-rigid (flexible) parts which are widely used in the aeronautic and automotive industries. Non-rigid parts can have different forms in a free-state condition compared with their nominal models due to residual stress and gravity loads. To solve this problem, dedicated inspection fixtures are generally used in industry to compensate for the displacement of such parts for simulating the use state in order to perform geometric inspections. These fixtures and the installation and inspection processes are expensive and time-consuming. Our aim in this thesis is therefore to develop an inspection method which eliminates the need for specialized fixtures. This is done by acquiring a point cloud from the part in a free-state condition using a contactless measuring device such as optical scanning and comparing it with the CAD model for the deviation identification. Using a non-rigid registration method and finite element analysis, we numerically inspect the profile of a non-rigid part. To do so, a simulated displacement is performed using an improved definition of displacement boundary conditions for simulating unfixed parts. In addition, we propose a numerical method for dimensional metrology of non-rigid parts in a free-state condition based on the arc length measurement by calculating the geodesic distance using the Fast Marching Method (FMM). In this thesis, we apply our developed methods on industrial non-rigid parts with free-form surfaces simulated with different types of

  16. Identifying links between origami and compliant mechanisms

    Directory of Open Access Journals (Sweden)

    H. C. Greenberg

    2011-12-01

    Full Text Available Origami is the art of folding paper. In the context of engineering, orimimetics is the application of folding to solve problems. Kinetic origami behavior can be modeled with the pseudo-rigid-body model since the origami are compliant mechanisms. These compliant mechanisms, when having a flat initial state and motion emerging out of the fabrication plane, are classified as lamina emergent mechanisms (LEMs. To demonstrate the feasibility of identifying links between origami and compliant mechanism analysis and design methods, four flat folding paper mechanisms are presented with their corresponding kinematic and graph models. Principles from graph theory are used to abstract the mechanisms to show them as coupled, or inter-connected, mechanisms. It is anticipated that this work lays a foundation for exploring methods for LEM synthesis based on the analogy between flat-folding origami models and linkage assembly.

  17. A first course in mechanics

    CERN Document Server

    Lunn, Mary

    1991-01-01

    This textbook provides a simple introduction to mechanics for students coming to the subject for the first time. The text is based on courses given to first and second year undergraduates and has been written with this audience very much in mind. Prerequisites are only a basic familiarity with vectors, matrices, and elementary calculus. The author's aim is to provide an understanding of Newtonian mechanics using the tools of modern algebra. The first chapters of the book introduce the fundamentals of the motion of rigid bodies: Newton's laws, forces, linear and angular momentum, and the conservation of energy. In the later chapters the theory of Lagrangian mechanics is developed and extended to cover applications to impulsive forces. Throughout the theory is illustrated with many worked examples and numerous exercises (some with solutions) are provided.

  18. Rigidity of monodromies for Appell's hypergeometric functions

    Directory of Open Access Journals (Sweden)

    Yoshishige Haraoka

    2015-01-01

    Full Text Available For monodromy representations of holonomic systems, the rigidity can be defined. We examine the rigidity of the monodromy representations for Appell's hypergeometric functions, and get the representations explicitly. The results show how the topology of the singular locus and the spectral types of the local monodromies work for the study of the rigidity.

  19. The effect of rigid taping with tension on mechanical displacement of the skin and change in pain perception.

    Science.gov (United States)

    Chen, Shu-Mei; Lo, Sing Kai; Cook, Jill

    2018-04-01

    To investigate the effect of rigid taping that induces mechanical displacement of the skin on pain perception. Single group experiment design with repeated measures. Twenty-three active healthy volunteers (12 men and 11 women) participated in the study. All participants received three different taping procedures: no tape, taping with tension, and taping without tension. The order of three taping conditions was randomised. Skin displacement was measured during taping with tension. A pressure algometer was used to measure the level of pain perception once before taping, and again after each taping condition, in one testing session. The participants were blind to the values of their pressure pain threshold (PPT) during the experimental period. The mean±SD skin displacement in the condition of taping with tension was 2.58±0.49cm. There were significant differences in PPT between taping with tension and taping without tension (mean difference (mean diff)±standard error (SE) 36.43±4.22kPa, p=0.000) and no tape (mean diff±SE 44.31±3.13kPa, p=0.000). No significant difference in PPT between no tape and taping without tension was found (mean diff±SE 7.88±2.83kPa, p=0.067). Taping with tension increases the threshold of pressure pain perception. Therefore, stretch and compression caused by rigid taping with tension could disturb the nociceptive signal transmission and alter pain perception. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. Neural Control Mechanisms and Body Fluid Homeostasis

    Science.gov (United States)

    Johnson, Alan Kim

    1998-01-01

    The goal of the proposed research was to study the nature of afferent signals to the brain that reflect the status of body fluid balance and to investigate the central neural mechanisms that process this information for the activation of response systems which restore body fluid homeostasis. That is, in the face of loss of fluids from intracellular or extracellular fluid compartments, animals seek and ingest water and ionic solutions (particularly Na(+) solutions) to restore the intracellular and extracellular spaces. Over recent years, our laboratory has generated a substantial body of information indicating that: (1) a fall in systemic arterial pressure facilitates the ingestion of rehydrating solutions and (2) that the actions of brain amine systems (e.g., norepinephrine; serotonin) are critical for precise correction of fluid losses. Because both acute and chronic dehydration are associated with physiological stresses, such as exercise and sustained exposure to microgravity, the present research will aid in achieving a better understanding of how vital information is handled by the nervous system for maintenance of the body's fluid matrix which is critical for health and well-being.

  1. On Hydroelastic Body-Boundary Condition of Floating Structures

    DEFF Research Database (Denmark)

    Xia, Jinzhu

    1996-01-01

    A general linear body boundary condition of hydroelastic analysis of arbitrary shaped floating structures generalizes the classic kinematic rigid-body (Timman-Newman) boundary condition for seakeeping problems. The new boundary condition is consistent with the existing theories under certain...

  2. The discrete null space method for the energy-consistent integration of constrained mechanical systems. Part III: Flexible multibody dynamics

    International Nuclear Information System (INIS)

    Leyendecker, Sigrid; Betsch, Peter; Steinmann, Paul

    2008-01-01

    In the present work, the unified framework for the computational treatment of rigid bodies and nonlinear beams developed by Betsch and Steinmann (Multibody Syst. Dyn. 8, 367-391, 2002) is extended to the realm of nonlinear shells. In particular, a specific constrained formulation of shells is proposed which leads to the semi-discrete equations of motion characterized by a set of differential-algebraic equations (DAEs). The DAEs provide a uniform description for rigid bodies, semi-discrete beams and shells and, consequently, flexible multibody systems. The constraints may be divided into two classes: (i) internal constraints which are intimately connected with the assumption of rigidity of the bodies, and (ii) external constraints related to the presence of joints in a multibody framework. The present approach thus circumvents the use of rotational variables throughout the whole time discretization, facilitating the design of energy-momentum methods for flexible multibody dynamics. After the discretization has been completed a size-reduction of the discrete system is performed by eliminating the constraint forces. Numerical examples dealing with a spatial slider-crank mechanism and with intersecting shells illustrate the performance of the proposed method

  3. Multiscale multiphysics and multidomain models—Flexibility and rigidity

    International Nuclear Information System (INIS)

    Xia, Kelin; Opron, Kristopher; Wei, Guo-Wei

    2013-01-01

    The emerging complexity of large macromolecules has led to challenges in their full scale theoretical description and computer simulation. Multiscale multiphysics and multidomain models have been introduced to reduce the number of degrees of freedom while maintaining modeling accuracy and achieving computational efficiency. A total energy functional is constructed to put energies for polar and nonpolar solvation, chemical potential, fluid flow, molecular mechanics, and elastic dynamics on an equal footing. The variational principle is utilized to derive coupled governing equations for the above mentioned multiphysical descriptions. Among these governing equations is the Poisson-Boltzmann equation which describes continuum electrostatics with atomic charges. The present work introduces the theory of continuum elasticity with atomic rigidity (CEWAR). The essence of CEWAR is to formulate the shear modulus as a continuous function of atomic rigidity. As a result, the dynamics complexity of a macromolecular system is separated from its static complexity so that the more time-consuming dynamics is handled with continuum elasticity theory, while the less time-consuming static analysis is pursued with atomic approaches. We propose a simple method, flexibility-rigidity index (FRI), to analyze macromolecular flexibility and rigidity in atomic detail. The construction of FRI relies on the fundamental assumption that protein functions, such as flexibility, rigidity, and energy, are entirely determined by the structure of the protein and its environment, although the structure is in turn determined by all the interactions. As such, the FRI measures the topological connectivity of protein atoms or residues and characterizes the geometric compactness of the protein structure. As a consequence, the FRI does not resort to the interaction Hamiltonian and bypasses matrix diagonalization, which underpins most other flexibility analysis methods. FRI's computational complexity is of O

  4. Reliably Modeling the Mechanical Stability of Rigid and Flexible Metal-Organic Frameworks.

    Science.gov (United States)

    Rogge, Sven M J; Waroquier, Michel; Van Speybroeck, Veronique

    2018-01-16

    , however, it is unclear which set of properties are suited and reliable for a given application, as a comprehensive comparison for a broad variety of MOFs is absent, impeding the widespread use of these theoretical frameworks. Herein, we fill this gap by critically assessing the performance of the three computational models on a broad set of MOFs that are representative for current applications. These materials encompass the mechanically rigid UiO-66(Zr) and MOF-5(Zn) as well as the flexible MIL-47(V) and MIL-53(Al), which undergo pressure-induced phase transitions. It is observed that the Born stability criteria and pressure-versus-volume equations of state give complementary insight into the macroscopic and microscopic origins of instability, respectively. However, interpretation of the Born stability criteria becomes increasingly difficult when less symmetric materials are considered. Moreover, pressure fluctuations during the simulations hamper their accuracy for flexible materials. In contrast, the pressure-versus-volume equations of state are determined in a thermodynamic ensemble specifically targeted to mitigate the effects of these instantaneous fluctuations, yielding more accurate results. The critical Account presented here paves the way toward a solid computational framework for an extensive presynthetic screening of MOFs to select those that are mechanically stable and can be postsynthetically densified before their use in targeted applications.

  5. Structural rigidity in the capsid assembly of cowpea chlorotic mottle virus

    International Nuclear Information System (INIS)

    Hespenheide, B M; Jacobs, D J; Thorpe, M F

    2004-01-01

    The cowpea chlorotic mottle virus (CCMV) has a protein cage, or capsid, which encloses its genetic material. The structure of the capsid consists of 180 copies of a single protein that self-assemble inside a cell to form a complete capsid with icosahedral symmetry. The icosahedral surface can be naturally divided into pentagonal and hexagonal faces, and the formation of either of these faces has been proposed to be the first step in the capsid assembly process. We have used the software FIRST to analyse the rigidity of pentameric and hexameric substructures of the complete capsid to explore the viability of certain capsid assembly pathways. FIRST uses the 3D pebble game to determine structural rigidity, and a brief description of this algorithm, as applied to body-bar networks, is given here. We find that the pentameric substructure, which corresponds to a pentagonal face on the icosahedral surface, provides the best structural properties for nucleating the capsid assembly process, consistent with experimental observations

  6. Structural rigidity in the capsid assembly of cowpea chlorotic mottle virus

    Science.gov (United States)

    Hespenheide, B. M.; Jacobs, D. J.; Thorpe, M. F.

    2004-11-01

    The cowpea chlorotic mottle virus (CCMV) has a protein cage, or capsid, which encloses its genetic material. The structure of the capsid consists of 180 copies of a single protein that self-assemble inside a cell to form a complete capsid with icosahedral symmetry. The icosahedral surface can be naturally divided into pentagonal and hexagonal faces, and the formation of either of these faces has been proposed to be the first step in the capsid assembly process. We have used the software FIRST to analyse the rigidity of pentameric and hexameric substructures of the complete capsid to explore the viability of certain capsid assembly pathways. FIRST uses the 3D pebble game to determine structural rigidity, and a brief description of this algorithm, as applied to body-bar networks, is given here. We find that the pentameric substructure, which corresponds to a pentagonal face on the icosahedral surface, provides the best structural properties for nucleating the capsid assembly process, consistent with experimental observations.

  7. Structural rigidity in the capsid assembly of cowpea chlorotic mottle virus

    Energy Technology Data Exchange (ETDEWEB)

    Hespenheide, B M [Department of Physics and Astronomy, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504 (United States); Jacobs, D J [Department of Physics and Astronomy, California State University, 18111 Nordhoff Street, Northridge, CA 91330-8268 (United States); Thorpe, M F [Department of Physics and Astronomy, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504 (United States)

    2004-11-10

    The cowpea chlorotic mottle virus (CCMV) has a protein cage, or capsid, which encloses its genetic material. The structure of the capsid consists of 180 copies of a single protein that self-assemble inside a cell to form a complete capsid with icosahedral symmetry. The icosahedral surface can be naturally divided into pentagonal and hexagonal faces, and the formation of either of these faces has been proposed to be the first step in the capsid assembly process. We have used the software FIRST to analyse the rigidity of pentameric and hexameric substructures of the complete capsid to explore the viability of certain capsid assembly pathways. FIRST uses the 3D pebble game to determine structural rigidity, and a brief description of this algorithm, as applied to body-bar networks, is given here. We find that the pentameric substructure, which corresponds to a pentagonal face on the icosahedral surface, provides the best structural properties for nucleating the capsid assembly process, consistent with experimental observations.

  8. From Wage Rigidities to Labour Market Rigidities: A Turning-Point in Explaining Equilibrium Unemployment?

    OpenAIRE

    Marco Guerrazzi; Nicola Meccheri

    2009-01-01

    This paper offers a critical discussion of the concept of labour market rigidity relevant to explaining unemployment. Starting from Keynes’s own view, we discuss how the concept of labour market flexibility has changed over time, involving nominal or real wage flexibility, contract flexibility or labour market institution flexibility. We also provide a critical assessment of the factors that lead the search framework highlighting labour market rigidities (frictions) to challenge the more wide...

  9. Transferring the Cost of Wage Rigidity to Subcontracting Firms: The Case of Korea

    Directory of Open Access Journals (Sweden)

    Kwangho Woo

    2016-08-01

    Full Text Available We select a Korean case with ample subcontracting practices and a rigid wage system. Workplaces with subcontract transactions would have reason to impute the additional wage incremental costs associated with the seniority-based wage system (Hobong in Korea to subcontractors. Our empirical results identify the cost-transferring mechanism under which the cost of wage rigidity for contractors is transferred to subcontracting firms and aggravates the wage inequality among workers in contracting and subcontracting firms. We analyze the industrial difference in the intensity of this transferring mechanism and probe policy directions considering the improvement of both the subcontracting structure and pay system simultaneously. For the sustainability of firms, they need to reform a seniority-based wage system, an incentive-based wage system or a job-based wage system and the exploited subcontracting structure for creating share value.

  10. Foreign Body Retrieval

    Medline Plus

    Full Text Available ... provides real-time imaging, making it a good tool for guiding removal procedures. In some cases, it is potentially more harmful to remove the ... provides real-time imaging, making it a good tool for guiding foreign body removal ... rare cases, the general anesthesia used during rigid esophagoscopy can ...

  11. Homogenization for rigid suspensions with random velocity-dependent interfacial forces

    KAUST Repository

    Gorb, Yuliya

    2014-12-01

    We study suspensions of solid particles in a viscous incompressible fluid in the presence of random velocity-dependent interfacial forces. The flow at a small Reynolds number is modeled by the Stokes equations, coupled with the motion of rigid particles arranged in a periodic array. The objective is to perform homogenization for the given suspension and obtain an equivalent description of a homogeneous (effective) medium, the macroscopic effect of the interfacial forces and the effective viscosity are determined using the analysis on a periodicity cell. In particular, the solutions uωε to a family of problems corresponding to the size of microstructure ε and describing suspensions of rigid particles with random surface forces imposed on the interface, converge H1-weakly as ε→0 a.s. to a solution of a Stokes homogenized problem, with velocity dependent body forces. A corrector to a homogenized solution that yields a strong H1-convergence is also determined. The main technical construction is built upon the Γ-convergence theory. © 2014 Elsevier Inc.

  12. Integration of car-body flexibility into train-track coupling system dynamics analysis

    Science.gov (United States)

    Ling, Liang; Zhang, Qing; Xiao, Xinbiao; Wen, Zefeng; Jin, Xuesong

    2018-04-01

    The resonance vibration of flexible car-bodies greatly affects the dynamics performances of high-speed trains. In this paper, we report a three-dimensional train-track model to capture the flexible vibration features of high-speed train carriages based on the flexible multi-body dynamics approach. The flexible car-body is modelled using both the finite element method (FEM) and the multi-body dynamics (MBD) approach, in which the rigid motions are obtained by using the MBD theory and the structure deformation is calculated by the FEM and the modal superposition method. The proposed model is applied to investigate the influence of the flexible vibration of car-bodies on the dynamics performances of train-track systems. The dynamics performances of a high-speed train running on a slab track, including the car-body vibration behaviour, the ride comfort, and the running safety, calculated by the numerical models with rigid and flexible car-bodies are compared in detail. The results show that the car-body flexibility not only significantly affects the vibration behaviour and ride comfort of rail carriages, but also can has an important influence on the running safety of trains. The rigid car-body model underestimates the vibration level and ride comfort of rail vehicles, and ignoring carriage torsional flexibility in the curving safety evaluation of trains is conservative.

  13. Mechanical impedance of the human body in vertical direction.

    Science.gov (United States)

    Holmlund, P; Lundström, R; Lindberg, L

    2000-08-01

    The mechanical impedance of the human body in sitting posture and vertical direction was measured during different experimental conditions, such as vibration level (0.5-1.4 m/s2), frequency (2-100 Hz), body weight (57-92 kg), relaxed and erect upper body posture. The outcome shows that impedance increases with frequency up to a peak at about 5 Hz after which it decreases in a complex manner which includes two additional peaks. The frequency at which the first and second impedance peak occurs decreases with higher vibration level. Erect, compared with relaxed body posture resulted in higher impedance magnitudes and with peaks located at somewhat higher frequencies. Heavy persons show higher impedance magnitudes and peaks at lower frequencies.

  14. Lagrangian relative equilibria for a gyrostat in the three-body problem: bifurcations and stability

    Energy Technology Data Exchange (ETDEWEB)

    Guirao, Juan L G; Vera, Juan A, E-mail: juan.garcia@upct.e, E-mail: juanantonio.vera@upct.e [Departamento de Matematica Aplicada y EstadIstica, Universidad Politecnica de Cartagena, Hospital de Marina, 30203 Cartagena, Region de Murcia (Spain)

    2010-05-14

    In this paper we consider the non-canonical Hamiltonian dynamics of a gyrostat in the frame of the three-body problem. Using geometric/mechanic methods we study the approximate dynamics of the truncated Legendre series representation of the potential of an arbitrary order. Working in the reduced problem, we study the existence of relative equilibria that we refer to as Lagrange type following the analogy with the standard techniques. We provide necessary and sufficient conditions for the linear stability of Lagrangian relative equilibria if the gyrostat morphology form is close to a sphere. Thus, we generalize the classical results on equilibria of the three-body problem and many results on them obtained by the classic approach for the case of rigid bodies.

  15. Dynamics formulas and problems : engineering mechanics 3

    CERN Document Server

    Gross, Dietmar; Wriggers, Peter; Schröder, Jörg; Müller, Ralf

    2017-01-01

    This book contains the most important formulas and more than 190 completely solved problems from Kinetics and Hydrodynamics. It provides engineering students material to improve their skills and helps to gain experience in solving engineering problems. Particular emphasis is placed on finding the solution path and formulating the basic equations. Topics include: - Kinematics of a Point - Kinetics of a Point Mass- Dynamics of a System of Point Masses - Kinematics of Rigid Bodies - Kinetics of Rigid Bodies - Impact - Vibrations - Non-Inertial Reference Frames - Hydrodynamics .

  16. On the atmosphere of a moving body

    DEFF Research Database (Denmark)

    Pedersen, Johan Rønby; Aref, Hassan

    2010-01-01

    We explore whether a rigid body moving freely with no circulation around it in a two-dimensional ideal fluid can carry a fluid "atmosphere" with it in its motion. Somewhat surprisingly, the answer appears to be "yes." When the body is elongated and the motion is dominated by rotation, we demonstr...

  17. On the atmosphere of a moving body

    DEFF Research Database (Denmark)

    Pedersen, Johan Rønby; Aref, Hassan

    2010-01-01

    We have explored whether a rigid body moving freely with no circulation around it in a two-dimensional ideal fluid can carry a fluid ``atmosphere'' with it in its motion. Somewhat surprisingly, the answer appears to be ``yes''. When the body is elongated and the motion is dominated by rotation, w...

  18. Soft soils reinforced by rigid vertical inclusions

    Directory of Open Access Journals (Sweden)

    Iulia-Victoria NEAGOE

    2013-12-01

    Full Text Available Reinforcement of soft soils by rigid vertical inclusions is an increasingly used technique over the last few years. The system consists of rigid or semi-rigid vertical inclusions and a granular platform for the loads transfer from the structure to the inclusions. This technique aims to reduce the differential settlements both at ground level as below the structure. Reinforcement by rigid inclusions is mainly used for foundation works for large commercial and industrial platforms, storage tanks, wastewater treatment plants, wind farms, bridges, roads, railway embankments. The subject is one of interest as it proves the recently concerns at international level in research and design; however, most studies deal more with the static behavior and less with the dynamic one.

  19. Mechanics from Newton's laws to deterministic chaos

    CERN Document Server

    Scheck, Florian

    2018-01-01

    This book covers all topics in mechanics from elementary Newtonian mechanics, the principles of canonical mechanics and rigid body mechanics to relativistic mechanics and nonlinear dynamics. It was among the first textbooks to include dynamical systems and deterministic chaos in due detail. As compared to the previous editions the present 6th edition is updated and revised with more explanations, additional examples and problems with solutions, together with new sections on applications in science.   Symmetries and invariance principles, the basic geometric aspects of mechanics as well as elements of continuum mechanics also play an important role. The book will enable the reader to develop general principles from which equations of motion follow, to understand the importance of canonical mechanics and of symmetries as a basis for quantum mechanics, and to get practice in using general theoretical concepts and tools that are essential for all branches of physics.   The book contains more than 150 problems ...

  20. Human epithelial cells increase their rigidity with ageing in vitro: direct measurements

    International Nuclear Information System (INIS)

    Berdyyeva, Tamara K; Woodworth, Craig D; Sokolov, Igor

    2005-01-01

    The decrease in elasticity of epithelial tissues with ageing contributes to many human diseases. This change was previously attributed to increased crosslinking of extracellular matrix proteins. Here we show that individual human epithelial cells also become significantly more rigid during ageing in vitro. Using atomic force microscopy (AFM), we found that the Young's modulus of viable cells was consistently increased two- to four-fold in older versus younger cells. Direct visualization of the cytoskeleton using a novel method involving the AFM suggested that increased rigidity of ageing cells was due to a higher density of cytoskeletal fibres. Our results identify a unique mechanism that might contribute to the age-related loss of elasticity in epithelial tissues

  1. Influence of mechanical stimulation on human dermal fibroblasts derived from different body sites.

    Science.gov (United States)

    Kuang, Ruixia; Wang, Zhiguo; Xu, Quanchen; Liu, Su; Zhang, Weidong

    2015-01-01

    Mechanical stimulation is highly associated with pathogenesis of human hypertrophic scar. Although much work has focused on the influence of mechanical stress on fibroblast populations from various tissues and organs in the human body, their effects on cultured dermal fibroblasts by the area of the body have not been as well studied. In this study, cultures of skin fibroblasts from two different body sites were subjected to cyclic mechanical stimulation with a 10% stretching amplitude at a frequency of 0.1 Hz for 24, 36 and 48 hours, respectively, and thereafter harvested for experimental assays. Fibroblasts from scapular upper back skin, subjected to mechanical loads for 36 and 48 hours, respectively, were observed to proliferate at a higher rate and reach confluent more rapidly during in vitro culturing, had higher expression levels of mRNA and protein production of integrin β1, p130Cas and TGF β1 versus those from medial side of upper arm. These data indicate that skin fibroblasts, with regard to originated body sites studied in the experiments, display a diversity of mechanotransduction properties and biochemical reactions in response to applied mechanical stress, which contributes to the increased susceptibility to hypertrophic scars formation at certain areas of human body characterized by higher skin and muscle tension.

  2. A coated rigid elliptical inclusion loaded by a couple in the presence of uniform interfacial and hoop stresses

    Science.gov (United States)

    Wang, Xu; Schiavone, Peter

    2018-06-01

    We consider a confocally coated rigid elliptical inclusion, loaded by a couple and introduced into a remote uniform stress field. We show that uniform interfacial and hoop stresses along the inclusion-coating interface can be achieved when the two remote normal stresses and the remote shear stress each satisfy certain conditions. Our analysis indicates that: (i) the uniform interfacial tangential stress depends only on the area of the inclusion and the moment of the couple; (ii) the rigid-body rotation of the rigid inclusion depends only on the area of the inclusion, the coating thickness, the shear moduli of the composite and the moment of the couple; (iii) for given remote normal stresses and material parameters, the coating thickness and the aspect ratio of the inclusion are required to satisfy a particular relationship; (iv) for prescribed remote shear stress, moment and given material parameters, the coating thickness, the size and aspect ratio of the inclusion are also related. Finally, a harmonic rigid inclusion emerges as a special case if the coating and the matrix have identical elastic properties.

  3. Mechanical energy expenditures and movement efficiency in full body reaching movements.

    Science.gov (United States)

    Sha, Daohang; France, Christopher R; Thomas, James S

    2010-02-01

    The effect of target location, speed, and handedness on the average total mechanical energy and movement efficiency is studied in 15 healthy subjects (7 males and 8 females with age 22.9 +/- 1.79 years old) performing full body reaching movements. The average total mechanical energy is measured as the time average of integration of joint power, potential energy, and kinetic energy respectively. Movement efficiency is calculated as the ratio of total kinetic energy to the total joint power and potential energy. Results show that speed and target location have significant effects on total mechanical energy and movement efficiency, but reaching hand only effects kinetic energy. From our findings we conclude that (1) efficiency in whole body reaching is dependent on whether the height of the body center of mass is raised or lowered during the task; (2) efficiency is increased as movement speed is increased, in part because of greater changes in potential energy; and (3) the CNS does not appear to use movement efficiency as a primary planning variable in full body reaching. It may be dependent on a combination of other factors or constraints.

  4. A two-dimensional finite element method for analysis of solid body contact problems in fuel rod mechanics

    International Nuclear Information System (INIS)

    Nissen, K.L.

    1988-06-01

    Two computer codes for the analysis of fuel rod behavior have been developed. Fuel rod mechanics is treated by a two-dimensional, axisymmetric finite element method. The program KONTAKT is used for detailed examinations on fuel rod sections, whereas the second program METHOD2D allows instationary calculations of whole fuel rods. The mechanical contact of fuel and cladding during heating of the fuel rod is very important for it's integrity. Both computer codes use a Newton-Raphson iteration for the solution of the nonlinear solid body contact problem. A constitutive equation is applied for the dependency of contact pressure on normal approach of the surfaces which are assumed to be rough. If friction is present on the contacting surfaces, Coulomb's friction law is used. Code validation is done by comparison with known analytical solutions for special problems. Results of the contact algorithm for an elastic ball pressing against a rigid surface are confronted with Hertzian theory. Influences of fuel-pellet geometry as well as influences of discretisation of displacements and stresses of a single fuel pellet are studied. Contact of fuel and cladding is calculated for a fuel rod section with two fuel pellets. The influence of friction forces between fuel and cladding on their axial expansion is demonstrated. By calculation of deformations and temperatures during an instationary fuel rod experiment of the CABRI-series the feasibility of two-dimensional finite element analysis of whole fuel rods is shown. (orig.) [de

  5. Long runout landslides: a solution from granular mechanics

    Directory of Open Access Journals (Sweden)

    Stanislav eParez

    2015-10-01

    Full Text Available Large landslides exhibit surprisingly long runout distances compared to a rigid body sliding from the same slope, and the mechanism of this phenomena has been studied for decades. This paper shows that the observed long runouts can be explained quite simply via a granular pile flowing downhill, while collapsing and spreading, without the need for frictional weakening that has traditionally been suggested to cause long runouts. Kinematics of the granular flow is divided into center of mass motion and spreading due to flattening of the flowing mass. We solve the center of mass motion analytically based on a frictional law valid for granular flow, and find that center of mass runout is similar to that of a rigid body. Based on the shape of deposits observed in experiments with collapsing granular columns and numerical simulations of landslides, we derive a spreading length Rf~V^1/3. Spreading of a granular pile, leading to a deposit angle much lower than the angle of repose or the dynamic friction angle, is shown to be an important, often dominating, contribution to the total runout distance, accounting for the long runouts observed for natural landslides.

  6. Price Rigidity and Industrial Concentration: Evidence from the Indonesian Food and Beverages Industry

    NARCIS (Netherlands)

    Setiawan, M.; Emvalomatis, G.; Oude Lansink, A.G.J.M.

    2015-01-01

    This paper investigates the relationship between industrial concentration and price rigidity in the Indonesian food and beverages industry. A Cournot model of firm behavior is used in which prices adjust according to a partial adjustment mechanism. The model is applied to panel data of the

  7. A Rigid Mid-Lift-to-Drag Ratio Approach to Human Mars Entry, Descent, and Landing

    Science.gov (United States)

    Cerimele, Christopher J.; Robertson, Edward A.; Sostaric, Ronald R.; Campbell, Charles H.; Robinson, Phil; Matz, Daniel A.; Johnson, Breanna J.; Stachowiak, Susan J.; Garcia, Joseph A.; Bowles, Jeffrey V.; hide

    2017-01-01

    Current NASA Human Mars architectures require delivery of approximately 20 metric tons of cargo to the surface in a single landing. A proposed vehicle type for performing the entry, descent, and landing at Mars associated with this architecture is a rigid, enclosed, elongated lifting body shape that provides a higher lift-to-drag ratio (L/D) than a typical entry capsule, but lower than a typical winged entry vehicle (such as the Space Shuttle Orbiter). A rigid Mid-L/D shape has advantages for large mass Mars EDL, including loads management, range capability during entry, and human spaceflight heritage. Previous large mass Mars studies have focused more on symmetric and/or circular cross-section Mid-L/D shapes such as the ellipsled. More recent work has shown performance advantages for non-circular cross section shapes. This paper will describe efforts to design a rigid Mid-L/D entry vehicle for Mars which shows mass and performance improvements over previous Mid-L/D studies. The proposed concept, work to date and evolution, forward path, and suggested future strategy are described.

  8. Mechanisms of body weight fluctuations in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Andrea eKistner

    2014-06-01

    Full Text Available Typical body weight changes are known to occur in PD. Weight loss has been reported in early stages as well as in advanced disease and malnutrition may worsen the clinical state of the patient. On the other hand an increasing number of patients show weight gain under dopamine replacement therapy or after surgery. These weight changes are multifactorial and involve changes in energy expenditure, perturbation of homeostatic control, and eating behavior modulated by dopaminergic treatment. Comprehension of the different mechanisms contributing to body weight is a prerequisite for the management of body weight and nutritional state of an individual PD patient. This review summarizes the present knowledge and highlights the necessity of evaluation of body weight and related factors, as eating behavior, energy intake and expenditure in PD.

  9. Three-body decays: structure, decay mechanism and fragment properties

    International Nuclear Information System (INIS)

    Alvarez-Rodriguez, R.; Jensen, A.S.; Fedorov, D.V.; Fynbo, H.O.U.; Kirsebom, O.S.; Garrido, E.

    2009-01-01

    We discuss the three-body decay mechanisms of many-body resonances. R-matrix sequential description is compared with full Faddeev computation. The role of the angular momentum and boson symmetries is also studied. As an illustration we show the computed ?-particle energy distribution after the decay of 12 C(1 + ) resonance at 12.7 MeV. This article is based on the presentation by R. Alvarez-Rodriguez at the Fifth Workshop on Critical Stability, Erice, Sicily. (author)

  10. Foreign body in children?s airways

    Directory of Open Access Journals (Sweden)

    Cassol Vitor

    2003-01-01

    Full Text Available OBJECTIVE: To determine the clinical characteristics and the results of bronchoscopic treatment of children due to foreign body aspiration in a university hospital. METHOD: Time series of children who underwent bronchoscopies for foreign bodies aspirated into the airway between March 1993 and July 2002. Each patient was analyzed for age, sex, initial clinical diagnosis, nature and location of the foreign body, duration of symptoms between aspiration and bronchoscopy, radiological findings, results of bronchoscopic removal, complications of bronchoscopy and presence of foreign bodies in the airways. RESULTS: Thirty-four children, 20 (59% boys, ages ranging from nine months to nine years (median = 23 months. In 32 (94% children the foreign body was removed by rigid bronchoscope, and two resulted in thoracotomy. Foreign bodies were more frequent in children under three years of age (66%. A clinical history of foreign body inhalation was obtained in 27 (80% cases. Most of the foreign bodies removed were organic (65% and more frequently found in the right bronchial tree (59%. Foreign bodies were removed within 24 hours in 18 (53% cases. The most frequent radiographic findings were: unilateral air trapping, atelectasis and radiopac foreign body. Major bronchoscopy complications occurred in seven children (22%, and there were no deaths. CONCLUSIONS: More attention is necessary to the respiratory symptoms of aspirations, mainly in boys at early ages, with clinical history and compatible radiological findings. Most foreign bodies removed were of organic nature. In this case series, therapeutic rigid bronchoscopy was effective with few complications.

  11. A LARGE FOREIGN BODY IN THE TRACHEA (SEWING NEEDLE

    Directory of Open Access Journals (Sweden)

    P. D. Pryanikov

    2017-01-01

    Full Text Available The authors present a case study: an unusual foreign body (sewing needle in the trachea. Despite the large size and unusual shape of a foreign body, we managed to remove it through the airways with rigid upper traheobronchoscopy, avoiding complications.

  12. Vesicle fluctuation analysis of the effects of sterols on membrane bending rigidity

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Rowat, Amy C.; Ipsen, John H.

    2004-01-01

    Sterols are regulators of both biological function and structure. The role of cholesterol in promoting the structural and mechanical stability of membranes is widely recognized. Knowledge of how the related sterols, lanosterol and ergosterol, affect membrane mechanical properties is sparse. This ...... on vesicle behaviour are also discussed. These recent modifications render vesicle fluctuation analysis an efficient and accurate method for determining how cholesterol, lanosterol, and ergosterol increase membrane bending rigidity....

  13. Modelling of magnetorheological squeeze film dampers for vibration suppression of rigid rotors

    Czech Academy of Sciences Publication Activity Database

    Zapoměl, Jaroslav; Ferfecki, Petr; Kozánek, Jan

    2017-01-01

    Roč. 127, Jul SI (2017), s. 191-197 ISSN 0020-7403 R&D Projects: GA ČR GA15-06621S Institutional support: RVO:61388998 Keywords : squeeze film damper * magnetorheological fluid * bilinear material * rigid rotor * frequency response Subject RIV: JR - Other Machinery OBOR OECD: Mechanical engineering Impact factor: 2.884, year: 2016

  14. Theoretical physics 1 classical mechanics

    CERN Document Server

    Nolting, Wolfgang

    2016-01-01

    This textbook offers a clear and comprehensive introduction to classical mechanics, one of the core components of undergraduate physics courses. The book starts with a thorough introduction to the mathematical tools needed, to make this textbook self-contained for learning. The second part of the book introduces the mechanics of the free mass point and details conservation principles. The third part expands the previous to mechanics of many particle systems. Finally the mechanics of the rigid body is illustrated with rotational forces, inertia and gyroscope movement. Ideally suited to undergraduate students in their first year, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series...

  15. Tilting mode in rigidly rotating field-reversed configurations

    International Nuclear Information System (INIS)

    Clemente, R.A.; Milovich, J.L.

    1983-01-01

    The tilting-mode stability of field-reversed configurations is analyzed taking into account plasma rotational effects that had not been included in previous theoretical treatments. It is shown that for a rigidly rotating plasma in stationary equilibrium, stability can be attained if the plasma rotational energy is of the same order as the thermal energy. Since presently available values of the rotational velocities are quite lower than required by the stabilization mechanism considered here, the contribution of this effect to the overall stability of the mode does not appear to be significant

  16. Continuum mechanics elasticity, plasticity, viscoelasticity

    CERN Document Server

    Dill, Ellis H

    2006-01-01

    FUNDAMENTALS OF CONTINUUM MECHANICSMaterial ModelsClassical Space-TimeMaterial BodiesStrainRate of StrainCurvilinear Coordinate SystemsConservation of MassBalance of MomentumBalance of EnergyConstitutive EquationsThermodynamic DissipationObjectivity: Invariance for Rigid MotionsColeman-Mizel ModelFluid MechanicsProblems for Chapter 1BibliographyNONLINEAR ELASTICITYThermoelasticityMaterial SymmetriesIsotropic MaterialsIncompressible MaterialsConjugate Measures of Stress and StrainSome Symmetry GroupsRate Formulations for Elastic MaterialsEnergy PrinciplesGeometry of Small DeformationsLinear ElasticitySpecial Constitutive Models for Isotropic MaterialsMechanical Restrictions on the Constitutive RelationsProblems for Chapter 2BibliographyLINEAR ELASTICITYBasic EquationsPlane StrainPlane StressProperties of SolutionsPotential EnergySpecial Matrix NotationThe Finite Element Method of SolutionGeneral Equations for an Assembly of ElementsFinite Element Analysis for Large DeformationsProblems for Chapter 3Bibliograph...

  17. COMPUTER SIMULATION THE MECHANICAL MOVEMENT BODY BY MEANS OF MATHCAD

    Directory of Open Access Journals (Sweden)

    Leonid Flehantov

    2017-03-01

    Full Text Available Here considered the technique of using computer mathematics system MathCAD for computer implementation of mathematical model of the mechanical motion of the physical body thrown at an angle to the horizon, and its use for educational computer simulation experiment in teaching the fundamentals of mathematical modeling. The advantages of MathCAD as environment of implementation mathematical models in the second stage of higher education are noted. It describes the creation the computer simulation model that allows you to comprehensively analyze the process of mechanical movement of the body, changing the input parameters of the model: the acceleration of gravity, the initial and final position of the body, the initial velocity and angle, the geometric dimensions of the body and goals. The technique aimed at the effective assimilation of basic knowledge and skills of students on the basics of mathematical modeling, it provides an opportunity to better master the basic theoretical principles of mathematical modeling and related disciplines, promotes logical thinking development of students, their motivation to learn discipline, improves cognitive interest, forms skills research activities than creating conditions for the effective formation of professional competence of future specialists.

  18. Mechanics of solids and fluids

    International Nuclear Information System (INIS)

    Ziegler, F.

    1991-01-01

    This book is a comprehensive treatise on the mechanics of solids and fluids, with a significant application to structural mechanics. In reading through the text, I can not help being impressed with Dr. Ziegler's command of both historical and contemporary developments of theoretical and applied mechanics. The book is a unique volume which contains information not easily found throughout the related literature. The book opens with a fundamental consideration of the kinematics of particle motion, followed by those of rigid body and deformable medium .In the latter case, both small and finite deformation have been presented concisely, paving the way for the constitutive description given later in the book. In both chapters one and two, the author has provided sufficient applications of the theoretical principles introduced. Such a connection between theory and appication is a common theme throughout every chapter, and is quite an attractive feature of the book

  19. Thermo-mechanical response of rigid plastic laminates for greenhouse covering

    Directory of Open Access Journals (Sweden)

    Silvana Fuina

    2016-09-01

    Full Text Available Innovation in the field of protected crops represents an argument of great applied and theoretical research attention due to constantly evolving technologies and automation for higher quality flower and vegetable production and to the corresponding environmental and economic impact. The aim of this paper is to provide an analysis of some thermomechanical properties of rigid polymeric laminates for greenhouses claddings, including innovative tests such as the thermographic ones. Four types of laminates have been analysed: two polycarbonates, a polymethylmethacrylate and a polyethylene terephthalate (PET. The tests gave interesting results on different important properties, such as radiometric properties, limit stresses, strains and ductility. Moreover, a direct comparison of infrared images and force elongation curves gave important information on the relation of the (localised or homogeneous damage evolution, with both an applicative and theoretical implication. Finally, even if to the authors knowledge at present there are no examples of using PET for covering greenhouses, the results of this paper indicates the thermomechanical and radiometric characteristics of this material make it interesting for agricultural applications.

  20. Development of a mechanical model to analysis motion of standing up from the sitting position

    Directory of Open Access Journals (Sweden)

    Kasım Serbest

    2013-08-01

    Full Text Available In this study, a human body has been composed as a 6 rigid-open loop-body model which is consisted of a leg, a foot, a thigh, a trunk, an arm and a fore arm. To determine the anthropometric characteristics of the bodies has been benefited from anthropometric models and the computer software. The movements of the subject markers placed on body was viewed with a video camera in order to get location data of joints and the digitization process was made. It was computed the angular displacement, angular velocity and angular acceleration of the joints using by MATLAB (7.6.0. The obtained data was used to actuate inverse dynamics model which is created by SimMechanics (2.7.1.Motion of standing up from the sitting position was simulated by using SimMechanics software. It was compared ground reaction force calculated by SimMechanics with ground reaction force measured by force platform. This study was also shown that SimMechanics software which is developed to analyse mechanical systems in real dimensions dynamically can be used for human motion analysis. Furthermore, the simulating process has been useful to explain kinetic behaviour of the human movement.

  1. Human body mass estimation: a comparison of "morphometric" and "mechanical" methods.

    Science.gov (United States)

    Auerbach, Benjamin M; Ruff, Christopher B

    2004-12-01

    In the past, body mass was reconstructed from hominin skeletal remains using both "mechanical" methods which rely on the support of body mass by weight-bearing skeletal elements, and "morphometric" methods which reconstruct body mass through direct assessment of body size and shape. A previous comparison of two such techniques, using femoral head breadth (mechanical) and stature and bi-iliac breadth (morphometric), indicated a good general correspondence between them (Ruff et al. [1997] Nature 387:173-176). However, the two techniques were never systematically compared across a large group of modern humans of diverse body form. This study incorporates skeletal measures taken from 1,173 Holocene adult individuals, representing diverse geographic origins, body sizes, and body shapes. Femoral head breadth, bi-iliac breadth (after pelvic rearticulation), and long bone lengths were measured on each individual. Statures were estimated from long bone lengths using appropriate reference samples. Body masses were calculated using three available femoral head breadth (FH) formulae and the stature/bi-iliac breadth (STBIB) formula, and compared. All methods yielded similar results. Correlations between FH estimates and STBIB estimates are 0.74-0.81. Slight differences in results between the three FH estimates can be attributed to sampling differences in the original reference samples, and in particular, the body-size ranges included in those samples. There is no evidence for systematic differences in results due to differences in body proportions. Since the STBIB method was validated on other samples, and the FH methods produced similar estimates, this argues that either may be applied to skeletal remains with some confidence. 2004 Wiley-Liss, Inc.

  2. A rigid porous filter and filtration method

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Ta-Kuan; Straub, Douglas, Straub L.; Dennis, Richard A.

    1998-12-01

    The present invention involves a porous rigid filter comprising a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulate from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulate. The present filter has the advantage of requiring fewer filter elements due to the high surface area- to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.

  3. Fundamentals of the mechanics of solids

    CERN Document Server

    Mariano, Paolo Maria

    2015-01-01

    This distinctive textbook aims to introduce readers to the basic structures of the mechanics of deformable bodies, with a special emphasis on the description of the elastic behavior of simple materials and structures composed by elastic beams.  The authors take a deductive rather than inductive approach and start from a few first, foundational principles.  A wide selection of exercises, many with hints and solutions, are provided throughout and organized in a way that will allow readers to form a link between abstract mathematical concepts and real-world applications. The text begins with the definition of bodies and deformations, keeping the kinematics of rigid bodies as a special case; the authors also distinguish between material and spatial metrics, defining each one in the pertinent space.  Subsequent chapters cover observers and classes of possible changes; forces, torques, and related balances, which are derived from the invariance under classical changes in observers of the power of the external ...

  4. 49 CFR 587.18 - Dimensions of fixed rigid barrier.

    Science.gov (United States)

    2010-10-01

    ... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) DEFORMABLE BARRIERS Offset Deformable Barrier § 587.18 Dimensions of fixed rigid barrier. (a) The fixed rigid barrier has a mass of not... 49 Transportation 7 2010-10-01 2010-10-01 false Dimensions of fixed rigid barrier. 587.18 Section...

  5. RIGIDITY, SENSITIVITY AND QUALITY OF ATTACHMENT - THE ROLE OF MATERNAL RIGIDITY IN THE EARLY SOCIOEMOTIONAL DEVELOPMENT OF PREMATURE-INFANTS

    NARCIS (Netherlands)

    BUTCHER, PR; KALVERBOER, A; MINDERAA, RB; VANDOORMAAL, EF; TENWOLDE, Y

    1993-01-01

    The associations between a mother's rigidity, her sensitivity in early (3 month) interaction and the quality of her premature infant's attachment at 13 months were investigated. Rigidity as a personality characteristic was not found to be significantly associated with sensitivity or quality of

  6. Mid-Lift-to-Drag Ratio Rigid Vehicle Control System Design and Simulation for Human Mars Entry

    Science.gov (United States)

    Johnson, Breanna J.; Cerimele, Christopher J.; Stachowiak, Susan J.; Sostaric, Ronald R.; Matz, Daniel A.; Lu, Ping

    2018-01-01

    The Mid-Lift-to-Drag Ratio Rigid Vehicle (MRV) is a proposed candidate in the NASA Evolvable Mars Campaign's (EMC) Pathfinder Entry, Descent, and Landing (EDL) architecture study. The purpose of the study is to design a mission and vehicle capable of transporting a 20mt payload to the surface of Mars. The MRV is unique in its rigid, asymmetrical lifting-body shape which enables a higher lift-to-drag ratio (L/D) than the typical robotic Mars entry capsule vehicles that carry much less mass. This paper presents the formulation and six-degree-of-freedom (6DOF) performance of the MRV's control system, which uses both aerosurfaces and a propulsive reaction control system (RCS) to affect longitudinal and lateral directional behavior.

  7. Non-strictly black body spectrum from the tunnelling mechanism

    International Nuclear Information System (INIS)

    Corda, Christian

    2013-01-01

    The tunnelling mechanism is widely used to explain Hawking radiation. However, in many cases the analysis used to obtain the Hawking temperature only involves comparing the emission probability for an outgoing particle with the Boltzmann factor. Banerjee and Majhi improved this approach by explicitly finding a black body spectrum associated with black holes. Their result, obtained using a reformulation of the tunnelling mechanism, is in contrast to that of Parikh and Wilczek, who found an emission probability that is compatible with a non-strictly thermal spectrum. Using the recently identified effective state for a black hole, we solve this contradiction via a slight modification of the analysis by Banerjee and Majhi. The final result is a non-strictly black body spectrum from the tunnelling mechanism. We also show that for an effective temperature, we can express the corresponding effective metric using Hawking’s periodicity arguments. Potential important implications for the black hole information puzzle are discussed. -- Highlights: •We review an important result by Banerjee and Majhi on the tunnelling mechanism in the framework of Hawking radiation. •This result is in contrast to another result reported by Parikh and Wilczek. •We introduce the effective state of a black hole. •We explain the contrast via a slight modification of the analysis by Banerjee and Majhi. •We discuss potential important implications for the black hole information puzzle

  8. Perception of biological motion from size-invariant body representations

    Directory of Open Access Journals (Sweden)

    Markus eLappe

    2015-03-01

    Full Text Available The visual recognition of action is one of the socially most important and computationally demanding capacities of the human visual system. It combines visual shape recognition with complex non-rigid motion perception. Action presented as a point-light animation is a striking visual experience for anyone who sees it for the first time. Information about the shape and posture of the human body is sparse in point-light animations, but it is essential for action recognition. In the posturo-temporal filter model of biological motion perception posture information is picked up by visual neurons tuned to the form of the human body before body motion is calculated. We tested whether point-light stimuli are processed through posture recognition of the human body form by using a typical feature of form recognition, namely size invariance. We constructed a point-light stimulus that can only be perceived through a size-invariant mechanism. This stimulus changes rapidly in size from one image to the next. It thus disrupts continuity of early visuo-spatial properties but maintains continuity of the body posture representation. Despite this massive manipulation at the visuo-spatial level, size-changing point-light figures are spontaneously recognized by naive observers, and support discrimination of human body motion.

  9. Sliding contact on the interface of elastic body and rigid surface using a single block Burridge-Knopoff model

    Science.gov (United States)

    Amireghbali, A.; Coker, D.

    2018-01-01

    Burridge and Knopoff proposed a mass-spring model to explore interface dynamics along a fault during an earthquake. The Burridge and Knopoff (BK) model is composed of a series of blocks of equal mass connected to each other by springs of same stiffness. The blocks also are attached to a rigid driver via another set of springs that pulls them at a constant velocity against a rigid substrate. They studied dynamics of interface for an especial case with ten blocks and a specific set of fault properties. In our study effects of Coulomb and rate-state dependent friction laws on the dynamics of a single block BK model is investigated. The model dynamics is formulated as a system of coupled nonlinear ordinary differential equations in state-space form which lends itself to numerical integration methods, e.g. Runge-Kutta procedure for solution. The results show that the rate and state dependent friction law has the potential of triggering dynamic patterns that are different from those under Coulomb law.

  10. Classical mechanics with Mathematica

    CERN Document Server

    Romano, Antonio

    2018-01-01

    This textbook takes a broad yet thorough approach to mechanics, aimed at bridging the gap between classical analytic and modern differential geometric approaches to the subject. Developed by the authors from over 30 years of teaching experience, the presentation is designed to give students an overview of the many different models used through the history of the field—from Newton to Hamilton—while also painting a clear picture of the most modern developments. The text is organized into two parts. The first focuses on developing the mathematical framework of linear algebra and differential geometry necessary for the remainder of the book. Topics covered include tensor algebra, Euclidean and symplectic vector spaces, differential manifolds, and absolute differential calculus. The second part of the book applies these topics to kinematics, rigid body dynamics, Lagrangian and Hamiltonian dynamics, Hamilton–Jacobi theory, completely integrable systems, statistical mechanics of equilibrium, and impulsive dyna...

  11. EINSTAIN AND FRETTING. BULGAKOV AND QUANTUM MECHANICS. Part 1

    Directory of Open Access Journals (Sweden)

    IVASYSHIN Henrich Stepanovich

    2013-10-01

    Full Text Available Mathematical and tribophysical models based on the increased accuracy of determining physical and mechanical characteristics of materials and aimed at creation of competitive technologies in the field of quantum mechanics applications are considered. In particular the specialist in mechanics, tribology and transport G.S. Gura [5] regards the problems concerning the nature of friction and materials wearing, fundamentals of tribology in his monograph. «…The modern explanation of the theoretical mechanics is based on the principal statements put forward by I. Newton…». «…I. Newton placed the notions of space, time, force and mass at the heart of his mechanics. There is a logical relation between these principal notions and it is expressed in the fundamental laws of Newton mechanics…». «…However the development of science and engineering caused the appearance of new challenges which cannot be solved within the scientific hypotheses proposed by Newton. First of all, that concerns bounded motion of the body. The important restriction in the explanation of the one of the most important fields of the modern engineering mechanics – friction – is the postulate of the rigid body and constancy of its mass…». «…A.Einstein and many other outstanding scientists paid attention to the incompleteness of Newton’s mechanics, they had doubts in absolutism of some basic notions. The concept of Newton force is also restricted semantically in some interactions in quantum mechanics. In the modern models of solid states it is not enough to represent mechanical interactions using Newton forces. This statement can be soundly refered to mechanical systems with friction…». «For centuries many great brains of the world have studied the phenomenon of friction. It was not occasionally when the prominent Russian scientists D.I. Mendeleev (1834–1907 pointed out that the the subject of solid body friction is complex. Many experiments are needed to

  12. The Role of Adaptation in Body Load-Regulating Mechanisms During Locomotion

    Science.gov (United States)

    Ruttley, Tara; Holt, Christopher; Mulavara, Ajitkumar; Bloomberg, Jacob

    2010-01-01

    Body loading is a fundamental parameter that modulates motor output during locomotion, and is especially important for controlling the generation of stepping patterns, dynamic balance, and termination of locomotion. Load receptors that regulate and control posture and stance in locomotion include the Golgi tendon organs and muscle spindles at the hip, knee, and ankle joints, and the Ruffini endings and the Pacinian corpuscles in the soles of the feet. Increased body weight support (BWS) during locomotion results in an immediate reorganization of locomotor control, such as a reduction in stance and double support duration and decreased hip, ankle, and knee angles during the gait cycle. Previous studies on the effect during exposure to increased BWS while walking showed a reduction in lower limb joint angles and gait cycle timing that represents a reorganization of locomotor control. Until now, no studies have investigated how locomotor control responds after a period of exposure to adaptive modification in the body load sensing system. The goal of this research was to determine the adaptive properties of body load-regulating mechanisms in locomotor control during locomotion. We hypothesized that body load-regulating mechanisms contribute to locomotor control, and adaptive changes in these load-regulating mechanisms require reorganization to maintain forward locomotion. Head-torso coordination, lower limb movement patterns, and gait cycle timing were evaluated before and after a 30-minute adaptation session during which subjects walked on a treadmill at 5.4 km/hr with 40% body weight support (BWS). Before and after the adaptation period, head-torso and lower limb 3D kinematic data were obtained while performing a goal directed task during locomotion with 0% BWS using a video-based motion analysis system, and gait cycle timing parameters were collected by foot switches positioned under the heel and toe of the subjects shoes. Subjects showed adaptive modification in

  13. Analytic analysis of auxetic metamaterials through analogy with rigid link systems

    OpenAIRE

    Rayneau-Kirkhope, Daniel; Zhang, Chengzhao; Theran, Louis; Dias, Marcelo A.

    2017-01-01

    Recent progress in advanced additive manufacturing techniques has stimulated the growth of the field of mechanical metamaterials. One area particular interest in this subject is the creation of auxetic material properties through elastic instability. This paper focuses on a novel methodology in the analysis of auxetic metamaterials through analogy with rigid link lattice systems. Our analytic methodology gives extremely good agreement with finite element simulations for both the onset of elas...

  14. Body-induced vortical flows: a common mechanism for self-corrective trimming control in boxfishes.

    Science.gov (United States)

    Bartol, Ian K; Gharib, Morteza; Webb, Paul W; Weihs, Daniel; Gordon, Malcolm S

    2005-01-01

    Boxfishes (Teleostei: Ostraciidae) are marine fishes having rigid carapaces that vary significantly among taxa in their shapes and structural ornamentation. We showed previously that the keels of the carapace of one species of tropical boxfish, the smooth trunkfish, produce leading edge vortices (LEVs) capable of generating self-correcting trimming forces during swimming. In this paper we show that other tropical boxfishes with different carapace shapes have similar capabilities. We conducted a quantitative study of flows around the carapaces of three morphologically distinct boxfishes (spotted boxfish, scrawled cowfish and buffalo trunkfish) using stereolithographic models and three separate but interrelated analytical approaches: digital particle image velocimetry (DPIV), pressure distribution measurements, and force balance measurements. The ventral keels of all three forms produced LEVs that grew in circulation along the bodies, resembling the LEVs produced around delta-winged aircraft. These spiral vortices formed above the keels and increased in circulation as pitch angle became more positive, and formed below the keels and increased in circulation as pitch angle became more negative. Vortices also formed along the eye ridges of all boxfishes. In the spotted boxfish, which is largely trapezoidal in cross section, consistent dorsal vortex growth posterior to the eye ridge was also present. When all three boxfishes were positioned at various yaw angles, regions of strongest concentrated vorticity formed in far-field locations of the carapace compared with near-field areas, and vortex circulation was greatest posterior to the center of mass. In general, regions of localized low pressure correlated well with regions of attached, concentrated vorticity, especially around the ventral keels. Although other features of the carapace also affect flow patterns and pressure distributions in different ways, the integrated effects of the flows were consistent for all forms

  15. Influence of flock coating on bending rigidity of woven fabrics

    Science.gov (United States)

    Ozdemir, O.; Kesimci, M. O.

    2017-10-01

    This work presents the preliminary results of our efforts that focused on the effect of the flock coating on the bending rigidity of woven fabrics. For this objective, a laboratory scale flocking unit is designed and flocked samples of controlled flock density are produced. Bending rigidity of the samples with different flock densities are measured on both flocked and unflocked sides. It is shown that the bending rigidity depends on both flock density and whether the side to be measured is flocked or not. Adhesive layer thickness on the bending rigidity is shown to be dramatic. And at higher basis weights, flock density gets less effective on bending rigidity.

  16. An Unusual Case of Foreign Body Aspiration in an Infant

    African Journals Online (AJOL)

    any radio opaque foreign body. Blood gases revealed severe hypoxia with severe metabolic acidosis. Child was being planned to be taken up for emergency tracheostomy, and rigid bronchoscopic removal of foreign body, but child succumbed during resuscitation measures. During the removal of the endotracheal tube the ...

  17. Soft-matter composites with electrically tunable elastic rigidity

    International Nuclear Information System (INIS)

    Shan, Wanliang; Lu, Tong; Majidi, Carmel

    2013-01-01

    We use a phase-changing metal alloy to reversibly tune the elastic rigidity of an elastomer composite. The elastomer is embedded with a sheet of low-melting-point Field’s metal and an electric Joule heater composed of a serpentine channel of liquid-phase gallium–indium–tin (Galinstan ® ) alloy. At room temperature, the embedded Field’s metal is solid and the composite remains elastically rigid. Joule heating causes the Field’s metal to melt and allows the surrounding elastomer to freely stretch and bend. Using a tensile testing machine, we measure that the effective elastic modulus of the composite reversibly changes by four orders of magnitude when powered on and off. This dramatic change in rigidity is accurately predicted with a model for an elastic composite. Reversible rigidity control is also accomplished by replacing the Field’s metal with shape memory polymer. In addition to demonstrating electrically tunable rigidity with an elastomer, we also introduce a new technique to rapidly produce soft-matter electronics and multifunctional materials in several minutes with laser-patterned adhesive film and masked deposition of liquid-phase metal alloy. (paper)

  18. Soft-matter composites with electrically tunable elastic rigidity

    Science.gov (United States)

    Shan, Wanliang; Lu, Tong; Majidi, Carmel

    2013-08-01

    We use a phase-changing metal alloy to reversibly tune the elastic rigidity of an elastomer composite. The elastomer is embedded with a sheet of low-melting-point Field’s metal and an electric Joule heater composed of a serpentine channel of liquid-phase gallium-indium-tin (Galinstan®) alloy. At room temperature, the embedded Field’s metal is solid and the composite remains elastically rigid. Joule heating causes the Field’s metal to melt and allows the surrounding elastomer to freely stretch and bend. Using a tensile testing machine, we measure that the effective elastic modulus of the composite reversibly changes by four orders of magnitude when powered on and off. This dramatic change in rigidity is accurately predicted with a model for an elastic composite. Reversible rigidity control is also accomplished by replacing the Field’s metal with shape memory polymer. In addition to demonstrating electrically tunable rigidity with an elastomer, we also introduce a new technique to rapidly produce soft-matter electronics and multifunctional materials in several minutes with laser-patterned adhesive film and masked deposition of liquid-phase metal alloy.

  19. Strongly Coupled Fluid-Body Dynamics in the Immersed Boundary Projection Method

    Science.gov (United States)

    Wang, Chengjie; Eldredge, Jeff D.

    2014-11-01

    A computational algorithm is developed to simulate dynamically coupled interaction between fluid and rigid bodies. The basic computational framework is built upon a multi-domain immersed boundary method library, whirl, developed in previous work. In this library, the Navier-Stokes equations for incompressible flow are solved on a uniform Cartesian grid by the vorticity-based immersed boundary projection method of Colonius and Taira. A solver for the dynamics of rigid-body systems is also included. The fluid and rigid-body solvers are strongly coupled with an iterative approach based on the block Gauss-Seidel method. Interfacial force, with its intimate connection with the Lagrange multipliers used in the fluid solver, is used as the primary iteration variable. Relaxation, developed from a stability analysis of the iterative scheme, is used to achieve convergence in only 2-4 iterations per time step. Several two- and three-dimensional numerical tests are conducted to validate and demonstrate the method, including flapping of flexible wings, self-excited oscillations of a system of linked plates and three-dimensional propulsion of flexible fluked tail. This work has been supported by AFOSR, under Award FA9550-11-1-0098.

  20. The Role of MreB in Escherichia Coli's Cellular Rigidity

    Science.gov (United States)

    Shaevitz, Joshua W.

    2009-03-01

    Bacteria possess homologs of all three classes of eukaryotic cytoskeletal proteins. These filamentous proteins have been shown to localize proteins essential for a number of cell-biological processes in prokaryotes such as cell growth and division. However, to date, there has been no direct evidence that the cytoskeleton in bacteria bears mechanical loads or can generate physical forces than are used by the cell. I will present evidence from combined fluorescence and force microscopy measurements that MreB, an actin homolog, is responsible for half of Escherichia coli's cellular rigidity. These data support an interpretation in which the cytoskeleton, the peptidoglycan cell wall and a large turgor pressure work together to give gram-negative cells their mechanical properties.

  1. How soft is that pillow? The perceptual localization of the hand and the haptic assessment of contact rigidity.

    Science.gov (United States)

    Pressman, Assaf; Karniel, Amir; Mussa-Ivaldi, Ferdinando A

    2011-04-27

    A new haptic illusion is described, in which the location of the mobile object affects the perception of its rigidity. There is theoretical and experimental support for the notion that limb position sense results from the brain combining ongoing sensory information with expectations arising from prior experience. How does this probabilistic state information affect one's tactile perception of the environment mechanics? In a simple estimation process, human subjects were asked to report the relative rigidity of two simulated virtual objects. One of the objects remained fixed in space and had various coefficients of stiffness. The other virtual object had constant stiffness but moved with respect to the subjects. Earlier work suggested that the perception of an object's rigidity is consistent with a process of regression between the contact force and the perceived amount of penetration inside the object's boundary. The amount of penetration perceived by the subject was affected by varying the position of the object. This, in turn, had a predictable effect on the perceived rigidity of the contact. Subjects' reports on the relative rigidity of the object are best accounted for by a probabilistic model in which the perceived boundary of the object is estimated based on its current location and on past observations. Therefore, the perception of contact rigidity is accounted for by a stochastic process of state estimation underlying proprioceptive localization of the hand.

  2. Motion control of rigid bodies in SE(3)

    Science.gov (United States)

    Roza, Ashton

    This thesis investigates the control of motion for a general class of vehicles that rotate and translate in three-space, and are propelled by a thrust vector which has fixed direction in body frame. The thesis addresses the problems of path following and position control. For path following, a feedback linearization controller is presented that makes the vehicle follow an arbitrary closed curve while simultaneously allowing the designer to specify the velocity profile of the vehicle on the path and its heading. For position control, a two-stage approach is presented that decouples position control from attitude control, allowing for a modular design and yielding almost global asymptotic stability of any desired hovering equilibrium. The effectiveness of the proposed method is verified both in simulation and experimentally by means of a hardware-in-the-loop setup emulating a co-axial helicopter.

  3. A Structural Analysis of a Mechanical Heart Valve Prosthesis with Flat Leaflet

    Science.gov (United States)

    Kwon, Young Joo

    This paper addresses the basic concept of MDO methodology and the structural analysis that should be performed in the design process of a mechanical heart valve prosthesis with flat leaflet using MDO methodology. In the structural design of the mechanical heart valve (MHV) prosthesis, the fluid mechanics analysis is executed for the blood flow passing through the leaflets of a mechanical heart valve prosthesis. Thereafter, the rigid body dynamics analysis of the leaflet motion is performed to obtain the structural condition for the structural mechanics analysis of the deformed leaflet. Then the structural mechanics analysis of the deformed leaflet follows to confirm the minimum thickness of the leaflet for the structural durability of the mechanical heart valve prosthesis. This paper shows that the minimum leaflet thickness can be evaluated to be 0.6mm among the suggested thicknesses.

  4. Intelligent design of mechanical parameters of the joint in vehicle body concept design model

    Science.gov (United States)

    Hou, Wen-bin; Zhang, Hong-zhe; Hou, Da-jun; Hu, Ping

    2013-05-01

    In order to estimate the mechanical properties of the overall structure of the body accurately and quickly in conceptual design phase of the body, the beam and shell mixing elements was used to build simplified finite element model of the body. Through the BP neural network algorithm, the parameters of the mechanical property of joints element which had more affection on calculation accuracy were calculated and the joint finite element model based on the parameters was also constructed. The case shown that the method can improve the accuracy of the vehicle simulation results, while not too many design details were needed, which was fit to the demand in the vehicle body conceptual design phase.

  5. A Soft Gripper with Rigidity Tunable Elastomer Strips as Ligaments.

    Science.gov (United States)

    Nasab, Amir Mohammadi; Sabzehzar, Amin; Tatari, Milad; Majidi, Carmel; Shan, Wanliang

    2017-12-01

    Like their natural counterparts, soft bioinspired robots capable of actively tuning their mechanical rigidity can rapidly transition between a broad range of motor tasks-from lifting heavy loads to dexterous manipulation of delicate objects. Reversible rigidity tuning also enables soft robot actuators to reroute their internal loading and alter their mode of deformation in response to intrinsic activation. In this study, we demonstrate this principle with a three-fingered pneumatic gripper that contains "programmable" ligaments that change stiffness when activated with electrical current. The ligaments are composed of a conductive, thermoplastic elastomer composite that reversibly softens under resistive heating. Depending on which ligaments are activated, the gripper will bend inward to pick up an object, bend laterally to twist it, and bend outward to release it. All of the gripper motions are generated with a single pneumatic source of pressure. An activation-deactivation cycle can be completed within 15 s. The ability to incorporate electrically programmable ligaments in a pneumatic or hydraulic actuator has the potential to enhance versatility and reduce dependency on tubing and valves.

  6. Effect of rigid inclusions on sintering

    International Nuclear Information System (INIS)

    Rahaman, M.N.; De Jonghe, L.C.

    1988-01-01

    The predictions of recent theoretical studies on the effect of inert, rigid inclusions on the sintering of ceramic powder matrices are examined and compared with experimental data. The densification of glass matrix composites with inclusion volume fractions of ≤0.15 can be adequately explained by Scherer's theory for viscous sintering with rigid inclusions. Inclusions cause a vast reduction in the densification rates of polycrystalline matrix composites even at low inclusion volume fractions. Models put forward to explain the sintering of polycrystalline matrix composites are discussed

  7. Assessment of rigid multi-modality image registration consistency using the multiple sub-volume registration (MSR) method

    International Nuclear Information System (INIS)

    Ceylan, C; Heide, U A van der; Bol, G H; Lagendijk, J J W; Kotte, A N T J

    2005-01-01

    Registration of different imaging modalities such as CT, MRI, functional MRI (fMRI), positron (PET) and single photon (SPECT) emission tomography is used in many clinical applications. Determining the quality of any automatic registration procedure has been a challenging part because no gold standard is available to evaluate the registration. In this note we present a method, called the 'multiple sub-volume registration' (MSR) method, for assessing the consistency of a rigid registration. This is done by registering sub-images of one data set on the other data set, performing a crude non-rigid registration. By analysing the deviations (local deformations) of the sub-volume registrations from the full registration we get a measure of the consistency of the rigid registration. Registration of 15 data sets which include CT, MR and PET images for brain, head and neck, cervix, prostate and lung was performed utilizing a rigid body registration with normalized mutual information as the similarity measure. The resulting registrations were classified as good or bad by visual inspection. The resulting registrations were also classified using our MSR method. The results of our MSR method agree with the classification obtained from visual inspection for all cases (p < 0.02 based on ANOVA of the good and bad groups). The proposed method is independent of the registration algorithm and similarity measure. It can be used for multi-modality image data sets and different anatomic sites of the patient. (note)

  8. The Mechanism of Graviton Exchange between Bodies, Part II

    DEFF Research Database (Denmark)

    Javadi, Hossein; Forouzbakhsh, Farshid

    2016-01-01

    Further to Special Relativity, modern physics includes two great theories which describe universe in a new different way. One of them is Quantum Mechanics which describes elementary particles, atoms and molecules and the other one is General Relativity which has been replaced the Newtonian...... Gravitational Law by space-time curvature. Quantum gravity is a part of quantum mechanics which is expected to combine these two theories, and it describes gravity force according to the principles of quantum mechanics which has not got the desired result, yet. In CPH theory, after reconsidering and analyzing...... the behavior of photon in the gravitational field, a new definition of graviton based on carrying the gravity force is given. By using this definition, graviton exchange mechanism between bodies/objects is described. As the purpose of quantum gravity is describing the force of gravity by using the principles...

  9. Dimensionality controls cytoskeleton assembly and metabolism of fibroblast cells in response to rigidity and shape.

    Directory of Open Access Journals (Sweden)

    Mirjam Ochsner

    2010-03-01

    Full Text Available Various physical parameters, including substrate rigidity, size of adhesive islands and micro-and nano-topographies, have been shown to differentially regulate cell fate in two-dimensional (2-D cell cultures. Cells anchored in a three-dimensional (3-D microenvironment show significantly altered phenotypes, from altered cell adhesions, to cell migration and differentiation. Yet, no systematic analysis has been performed that studied how the integrated cellular responses to the physical characteristics of the environment are regulated by dimensionality (2-D versus 3-D.Arrays of 5 or 10 microm deep microwells were fabricated in polydimethylsiloxane (PDMS. The actin cytoskeleton was compared for single primary fibroblasts adhering either to microfabricated adhesive islands (2-D or trapped in microwells (3-D of controlled size, shape, and wall rigidity. On rigid substrates (Young's Modulus = 1 MPa, cytoskeleton assembly within single fibroblast cells occurred in 3-D microwells of circular, rectangular, square, and triangular shapes with 2-D projected surface areas (microwell bottom surface area and total surface areas of adhesion (microwell bottom plus wall surface area that inhibited stress fiber assembly in 2-D. In contrast, cells did not assemble a detectable actin cytoskeleton in soft 3-D microwells (20 kPa, regardless of their shapes, but did so on flat, 2-D substrates. The dependency on environmental dimensionality was also reflected by cell viability and metabolism as probed by mitochondrial activities. Both were upregulated in 3-D cultured cells versus cells on 2-D patterns when surface area of adhesion and rigidity were held constant.These data indicate that cell shape and rigidity are not orthogonal parameters directing cell fate. The sensory toolbox of cells integrates mechanical (rigidity and topographical (shape and dimensionality information differently when cell adhesions are confined to 2-D or occur in a 3-D space.

  10. Stable and Unstable Rotational Dynamics of a Smartphone

    Science.gov (United States)

    Loth, Matthew; Gibbons, Chad; Belaiter, Sami; Clarage, James B.

    2017-01-01

    One of the canonical, and memorable, classroom demonstrations from an upper-division mechanics course is to toss a rigid body with three distinct principal moments of inertia into the air, giving it a spin along one of its three principal axes. A student's mechanics textbook itself works great for the body, secured rigidly shut with a rubber band.…

  11. About deformation and rigidity in relativity

    International Nuclear Information System (INIS)

    Coll, Bartolome

    2007-01-01

    The notion of deformation involves that of rigidity. In relativity, starting from Born's early definition of rigidity, some other ones have been proposed, offering more or less interesting aspects but also accompanied of undesired or even pathological properties. In order to clarify the origin of these difficulties presented by the notion of rigidity in relativity, we analyze with some detail significant aspects of the unambiguous classical, Newtonian, notion. In particular, the relative character of its kinetic definition is pointed out, allowing to predict and to understand the limitations imposed by Herglotz-Noether theorem. Also, its equivalent dynamic definition is obtained and, in contrast, its absolute character is shown. But in spite of this absolute character, the dynamic definition is shown to be not extensible to relativity. The metric deformation of Minkowski space by the presence of a gravitational field is interpreted as a universal deformation, and it is shown that, under natural conditions, only a simple deformation law is possible, relating locally, but in an one-to-one way, gravitational fields and gauge classes of two-forms. We argue that fields of unit vectors associated to the internal gauge class of two-forms of every space-time (and, in particular, of Minkowski space-time) are the relativistic analogues of the classical accelerated observers, i.e. of the classical rigid motions. Some other consequences of the universal law of gravitational deformation are commented

  12. Genus Ranges of 4-Regular Rigid Vertex Graphs.

    Science.gov (United States)

    Buck, Dorothy; Dolzhenko, Egor; Jonoska, Nataša; Saito, Masahico; Valencia, Karin

    2015-01-01

    A rigid vertex of a graph is one that has a prescribed cyclic order of its incident edges. We study orientable genus ranges of 4-regular rigid vertex graphs. The (orientable) genus range is a set of genera values over all orientable surfaces into which a graph is embedded cellularly, and the embeddings of rigid vertex graphs are required to preserve the prescribed cyclic order of incident edges at every vertex. The genus ranges of 4-regular rigid vertex graphs are sets of consecutive integers, and we address two questions: which intervals of integers appear as genus ranges of such graphs, and what types of graphs realize a given genus range. For graphs with 2 n vertices ( n > 1), we prove that all intervals [ a, b ] for all a genus ranges. For graphs with 2 n - 1 vertices ( n ≥ 1), we prove that all intervals [ a, b ] for all a genus ranges. We also provide constructions of graphs that realize these ranges.

  13. Theoretical Physics 1. Theoretical Mechanics

    International Nuclear Information System (INIS)

    Dreizler, Reiner M.; Luedde, Cora S.

    2010-01-01

    After an introduction to basic concepts of mechanics more advanced topics build the major part of this book. Interspersed is a discussion of selected problems of motion. This is followed by a concise treatment of the Lagrangian and the Hamiltonian formulation of mechanics, as well as a brief excursion on chaotic motion. The last chapter deals with applications of the Lagrangian formulation to specific systems (coupled oscillators, rotating coordinate systems, rigid bodies). The level of this textbook is advanced undergraduate. The authors combine teaching experience of more than 40 years in all fields of Theoretical Physics and related mathematical disciplines and thorough knowledge in creating advanced eLearning content. The text is accompanied by an extensive collection of online material, in which the possibilities of the electronic medium are fully exploited, e.g. in the form of applets, 2D- and 3D-animations. (orig.)

  14. Theoretical Physics 1. Theoretical Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Dreizler, Reiner M.; Luedde, Cora S. [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik

    2010-07-01

    After an introduction to basic concepts of mechanics more advanced topics build the major part of this book. Interspersed is a discussion of selected problems of motion. This is followed by a concise treatment of the Lagrangian and the Hamiltonian formulation of mechanics, as well as a brief excursion on chaotic motion. The last chapter deals with applications of the Lagrangian formulation to specific systems (coupled oscillators, rotating coordinate systems, rigid bodies). The level of this textbook is advanced undergraduate. The authors combine teaching experience of more than 40 years in all fields of Theoretical Physics and related mathematical disciplines and thorough knowledge in creating advanced eLearning content. The text is accompanied by an extensive collection of online material, in which the possibilities of the electronic medium are fully exploited, e.g. in the form of applets, 2D- and 3D-animations. (orig.)

  15. Solutions Stability of Initial Boundary Problem, Modeling of Dynamics of Some Discrete Continuum Mechanical System

    Directory of Open Access Journals (Sweden)

    D. A. Eliseev

    2015-01-01

    Full Text Available The solution stability of an initial boundary problem for a linear hybrid system of differential equations, which models the rotation of a rigid body with two elastic rods located in the same plane is studied in the paper. To an axis passing through the mass center of the rigid body perpendicularly to the rods location plane is applied the stabilizing moment proportional to the angle of the system rotation, derivative of the angle, integral of the angle. The external moment provides a feedback. A method of studying the behavior of solutions of the initial boundary problem is proposed. This method allows to exclude from the hybrid system of differential equations partial differential equations, which describe the dynamics of distributed elements of a mechanical system. It allows us to build one equation for an angle of the system rotation. Its characteristic equation defines the stability of solutions of all the system. In the space of feedback-coefficients the areas that provide the asymptotic stability of solutions of the initial boundary problem are built up.

  16. A virtual pebble game to ensemble average graph rigidity.

    Science.gov (United States)

    González, Luis C; Wang, Hui; Livesay, Dennis R; Jacobs, Donald J

    2015-01-01

    The body-bar Pebble Game (PG) algorithm is commonly used to calculate network rigidity properties in proteins and polymeric materials. To account for fluctuating interactions such as hydrogen bonds, an ensemble of constraint topologies are sampled, and average network properties are obtained by averaging PG characterizations. At a simpler level of sophistication, Maxwell constraint counting (MCC) provides a rigorous lower bound for the number of internal degrees of freedom (DOF) within a body-bar network, and it is commonly employed to test if a molecular structure is globally under-constrained or over-constrained. MCC is a mean field approximation (MFA) that ignores spatial fluctuations of distance constraints by replacing the actual molecular structure by an effective medium that has distance constraints globally distributed with perfect uniform density. The Virtual Pebble Game (VPG) algorithm is a MFA that retains spatial inhomogeneity in the density of constraints on all length scales. Network fluctuations due to distance constraints that may be present or absent based on binary random dynamic variables are suppressed by replacing all possible constraint topology realizations with the probabilities that distance constraints are present. The VPG algorithm is isomorphic to the PG algorithm, where integers for counting "pebbles" placed on vertices or edges in the PG map to real numbers representing the probability to find a pebble. In the VPG, edges are assigned pebble capacities, and pebble movements become a continuous flow of probability within the network. Comparisons between the VPG and average PG results over a test set of proteins and disordered lattices demonstrate the VPG quantitatively estimates the ensemble average PG results well. The VPG performs about 20% faster than one PG, and it provides a pragmatic alternative to averaging PG rigidity characteristics over an ensemble of constraint topologies. The utility of the VPG falls in between the most

  17. The Almost Periodic Rigidity of Crystallographic Bar-Joint Frameworks

    Directory of Open Access Journals (Sweden)

    Ghada Badri

    2014-04-01

    Full Text Available A crystallographic bar-joint framework, C in Rd, is shown to be almost periodically infinitesimally rigid if and only if it is strictly periodically infinitesimally rigid and the rigid unit mode (RUM spectrum, Ω (C, is a singleton. Moreover, the almost periodic infinitesimal flexes of C are characterised in terms of a matrix-valued function, ΦC(z, on the d-torus, Td, determined by a full rank translation symmetry group and an associated motif of joints and bars.

  18. Wobbling motion: A γ-rigid or γ-soft mode?

    International Nuclear Information System (INIS)

    Casten, R.F.; McCutchan, E.A.; Beausang, C.W.; Zamfir, N.V.; Zhang Jingye

    2003-01-01

    For even-even nuclei, it is shown that the predicted B(E2) values from the odd spin states of the quasi-γ band in a γ-soft nucleus to the yrast band are quite similar to those predicted for the one-phonon wobbling mode of a rigidly triaxial nucleus. This suggests that the observation of wobbling points to axial asymmetry, but not necessarily to rigid triaxiality. However, another observable that does distinguish γ-soft from γ-rigid structure is identified

  19. Rigidity and resistance of larval- and adult schistosomes-medium interface

    Energy Technology Data Exchange (ETDEWEB)

    Migliardo, Federica, E-mail: fmigliardo@unime.it [Department of Physics and Earth Sciences, University of Messina, 98166 Messina (Italy); Tallima, Hatem; El Ridi, Rashika [Zoology Department, Faculty of Science, Cairo University, Cairo 12613 (Egypt)

    2014-03-28

    Graphical abstract: - Highlights: • Schistosoma larvae and worms are studied by neutron scattering. • Measurements on larvae were repeated after one day and by increasing temperature. • The flexibility properties of larvae and adult parasites are compared. • The parasite rigidity is related to their resistance to the hostile environment. • Insight into the parasite defense mechanisms to the immune system attack is achieved. - Abstract: Schistosomiasis is second only to malaria in prevalence and severity, and is still a major health problem in many tropical countries worldwide with about 200–300 million cases and with more than 800 million people at risk of infection. Based on these data, the World Health Organization recommends fostering research efforts for understanding at any level the mechanisms of the infection and then decreasing the social and economical impact of schistosomiasis. A key role is played by the parasite apical lipid membrane, which is entirely impervious to the surrounding elements of the immune system. We have previously demonstrated that the interaction between schistosomes and surrounding medium is governed by a parasite surface membrane sphingomyelin-based hydrogen barrier. In the present article, the elastic contribution to the total motion as a function of the exchanged wave-vector Q and the mean square displacement values for Schistosoma mansoni larvae and worms and Schistosomahaematobium worms have been evaluated by quasi elastic neutron scattering (QENS). The results point out that S. mansoni larvae show a smaller mean square displacement in comparison to S. mansoni and S. haematobium worms. These values increased by repeating the measurements after one day. These differences, which are analogous to those observed for the diffusion coefficient we previously evaluated, are interpreted in terms of rigidity of the parasite-medium interaction. S. mansoni larvae are the most rigid systems, while S. haematobium worms are the most

  20. Mechanisms of Body Weight Reduction and Metabolic Syndrome Alleviation by Tea

    Science.gov (United States)

    Yang, Chung S.; Zhang, Jinsong; Zhang, Le; Huang, Jinbao; Wang, Yijun

    2016-01-01

    Tea, a popular beverage made from leaves of the plant Camellia sinensis, has been shown to reduce body weight, alleviate metabolic syndrome, and prevent diabetes and cardiovascular diseases in animal models and humans. Such beneficial effects have generally been observed in most human studies when the level of tea consumption was 3 to 4 cups (600–900 mg tea catechins) or more per day. Green tea is more effective than black tea. In spite of numerous studies, the fundamental mechanisms for these actions still remain unclear. From a review of the literature, we propose that the two major mechanisms are: 1) decreasing absorption of lipids and proteins by tea constituents in the intestine, thus reducing calorie intake; and 2) activating AMPK by tea polyphenols that are bioavailable in the liver, skeletal muscle, and adipose tissues. The relative importance of these two mechanisms depends on the types of tea and diet consumed by individuals. The activated AMPK would decrease gluconeogenesis and fatty acid synthesis and increase catabolism, leading to body weight reduction and MetS alleviation. Other mechanisms and the health relevance of these beneficial effects of tea consumption remain to be further investigated. PMID:26577614

  1. Rigid Spine Syndrome among Children in Oman

    Directory of Open Access Journals (Sweden)

    Roshan Koul

    2015-08-01

    Full Text Available Objectives: Rigidity of the spine is common in adults but is rarely observed in children. The aim of this study was to report on rigid spine syndrome (RSS among children in Oman. Methods: Data on children diagnosed with RSS were collected consecutively at presentation between 1996 and 2014 at the Sultan Qaboos University Hospital (SQUH in Muscat, Oman. A diagnosis of RSS was based on the patient’s history, clinical examination, biochemical investigations, electrophysiological findings, neuro-imaging and muscle biopsy. Atrophy of the paraspinal muscles, particularly the erector spinae, was the diagnostic feature; this was noted using magnetic resonance imaging of the spine. Children with disease onset in the paraspinal muscles were labelled as having primary RSS or rigid spinal muscular dystrophy. Secondary RSS was classified as RSS due to the late involvement of other muscle diseases. Results: Over the 18-year period, 12 children were included in the study, with a maleto- female ratio of 9:3. A total of 10 children were found to have primary RSS or rigid spinal muscular dystrophy syndrome while two had secondary RSS. Onset of the disease ranged from birth to 18 months of age. A family history was noted, with two siblings from one family and three siblings from another (n = 5. On examination, children with primary RSS had typical features of severe spine rigidity at onset, with the rest of the neurological examination being normal. Conclusion: RSS is a rare disease with only 12 reported cases found at SQUH during the study period. Cases of primary RSS should be differentiated from the secondary type.

  2. an unusual foreign body in human oesophagus – case report

    African Journals Online (AJOL)

    drclement

    ABSTRACT. We report a case of a 65year old. Nigerian male with an unusual foreign body, a fishing hook in the oesophagus. This was confirmed with a plain radiograph of the chest done on a routine medical check-up, although patient was asymptomatic. The foreign body was removed via a rigid oesphagoscopy without ...

  3. Identification of Nonlinear Micron-Level Mechanics for a Precision Deployable Joint

    Science.gov (United States)

    Bullock, S. J.; Peterson, L. D.

    1994-01-01

    The experimental identification of micron-level nonlinear joint mechanics and dynamics for a pin-clevis joint used in a precision, adaptive, deployable space structure are investigated. The force-state mapping method is used to identify the behavior of the joint under a preload. The results of applying a single tension-compression cycle to the joint under a tensile preload are presented. The observed micron-level behavior is highly nonlinear and involves all six rigid body motion degrees-of-freedom of the joint. it is also suggests that at micron levels of motion modelling of the joint mechanics and dynamics must include the interactions between all internal components, such as the pin, bushings, and the joint node.

  4. Many-body problem in quantum mechanics and quantum statistical mechanics

    International Nuclear Information System (INIS)

    Lee, T.D.; Yang, C.N.

    1983-01-01

    This is a progress report on some work concerning the quantum mechanical calculation of the fugacity coefficients b/sub l/ (which correspond to the classical cluster integrals) of a Bose, a Fermi, and a Boltzmann gas at low temperatures. A binary collision expansion method is developed which allows for the systematic calculation of b/sub l/ as expansions in powers of a/λ, where a represents the parameters of the dimensions of length that characterize the low-energy two-body collision and λ is the thermal wavelength. To any power of (a/λ) the calculation of any specific b/sub l/ is reduced to a finite number of quadratures. The method, therefore, is the low-temperature counterpart of the high-temperature expansion of b/sub l/

  5. Modelling the dynamic mechanisms associated with the principal resonance of the seated human body.

    Science.gov (United States)

    Matsumoto, Y; Griffin, M J

    2001-01-01

    Simple mathematical models have been developed to obtain insights into resonance phenomena observed at about 5 Hz in the dynamic responses of the seated human body exposed to vertical whole-body vibration. Alternative lumped parameter models with a few degrees-of-freedom have been investigated. Rotational degrees-of-freedom, with eccentricity of the centre of gravity of the mass elements, represented responses in the fore-and-aft and pitch axes caused by vertical vibration. The causes of body resonance are not fully understood, but this information is required to develop cause-effect relationships between vibration exposures and effects on human health, comfort and performance.Method. The inertial and geometric parameters for models were based on published anatomical data. Other mechanical parameters were determined by comparing model responses to experimental data. Two models, with four and five degrees-of-freedom, gave more reasonable representations than other models. Mechanical parameters obtained with median and individual experimental data were consistent for vertical degrees-of-freedom but varied for rotational degrees-of-freedom. The resonance of the apparent mass at about 5 Hz may be attributed to a vibration mode consisting of vertical motion of the pelvis and legs and a pitch motion of the pelvis, both of which cause vertical motion of the upper-body above the pelvis, a bending motion of the spine, and vertical motion of the viscera. The mathematical models developed in this study may assist understanding of the dynamic mechanisms responsible for resonances in the seated human body. The information is required to represent mechanical responses of the body and assist the development of models for specific effects of vibration.

  6. Biomimetic model systems of rigid hair beds: Part I - Theory

    Science.gov (United States)

    Hood, Kaitlyn; Jammalamadaka, Mani S. S.; Hosoi, Anette

    2017-11-01

    Crustaceans - such as lobsters, crabs, and stomapods - have hairy appendages that they use to recognize and track odorants in the surrounding fluid. An array of rigid hairs impedes flow at different rates depending on the spacing between hairs and the Reynolds number, Re. At larger Reynolds numbers (Re >1), fluid travels through the hairs rather than around them, a phenomenon called leakiness. Crustaceans flick their appendages at different speeds in order to manipulate the leakiness between the hairs, allowing the hairs to either detect odors in a sample of fluid or collect a new sample. A single hair can be represented as a slender body attached at one end to a wall. Using both slender body theory and numerical methods, we observe that there is a region of flow around the hair that speeds up relative to the unobstructed flow. As the Reynolds number increases, this fast flow region moves closer to the hair. Using this model, we predict that an array of hairs can be engineered to have a desired leakiness profile.

  7. Customizable rigid head fixation for infants: technical note.

    Science.gov (United States)

    Udayakumaran, Suhas; Onyia, Chiazor U

    2016-01-01

    The need and advantages of rigid fixation of the head in cranial surgeries are well documented (Berryhill et al., Otolaryngol Head Neck Surg 121:269-273, 1999). Head fixation for neurosurgical procedures in infants and in early years has been a challenge and is fraught with risk. Despite the fact that pediatric pins are designed, rigid head fixation involving direct application of pins to the head of infants and slightly older children is still generally not safe (Agrawal and Steinbok, Childs Nerv Syst 22:1473-1474, 2006). Yet, there are some surgeries in which some form of rigid fixation is required (Agrawal and Steinbok, Childs Nerv Syst 22:1473-1474, 2006). We describe a simple technique to achieve rigid fixation of the head in infants for neurosurgical procedures. This involves applying a head band made of Plaster of Paris (POP) around the head and then applying the fixation pins of the fixation frame directly on to the POP. We have used this technique of head fixation successfully for infants with no complications.

  8. "Mind the trap": mindfulness practice reduces cognitive rigidity.

    Directory of Open Access Journals (Sweden)

    Jonathan Greenberg

    Full Text Available Two experiments examined the relation between mindfulness practice and cognitive rigidity by using a variation of the Einstellung water jar task. Participants were required to use three hypothetical jars to obtain a specific amount of water. Initial problems were solvable by the same complex formula, but in later problems ("critical" or "trap" problems solving was possible by an additional much simpler formula. A rigidity score was compiled through perseverance of the complex formula. In Experiment 1, experienced mindfulness meditators received significantly lower rigidity scores than non-meditators who had registered for their first meditation retreat. Similar results were obtained in randomized controlled Experiment 2 comparing non-meditators who underwent an eight meeting mindfulness program with a waiting list group. The authors conclude that mindfulness meditation reduces cognitive rigidity via the tendency to be "blinded" by experience. Results are discussed in light of the benefits of mindfulness practice regarding a reduced tendency to overlook novel and adaptive ways of responding due to past experience, both in and out of the clinical setting.

  9. Rigidity of outermost MOTS: the initial data version

    Science.gov (United States)

    Galloway, Gregory J.

    2018-03-01

    In the paper Commun Anal Geom 16(1):217-229, 2008, a rigidity result was obtained for outermost marginally outer trapped surfaces (MOTSs) that do not admit metrics of positive scalar curvature. This allowed one to treat the "borderline case" in the author's work with R. Schoen concerning the topology of higher dimensional black holes (Commun Math Phys 266(2):571-576, 2006). The proof of this rigidity result involved bending the initial data manifold in the vicinity of the MOTS within the ambient spacetime. In this note we show how to circumvent this step, and thereby obtain a pure initial data version of this rigidity result and its consequence concerning the topology of black holes.

  10. High frequency permeameter with semi-rigid pick-up coil

    International Nuclear Information System (INIS)

    Shin, Sung-Yong; Shin, Kwang-Ho . E-mail : khshin@star.ks.ac.kr; Kim, Jong-sung; Kim, Young-Hak; Lim, Sang-Ho; Sa-gong, Geon

    2006-01-01

    In this study, we propose the application of semi-rigid cable loop as a single turn shielded loop pick-up coil for the high frequency permeameter. Since the semi-rigid cable pick-up coil has simple structure, it is very easy to make the pick-up coil with bending and conventional soldering. The permeability of cobalt base amorphous ribbon was investigated using the developed permeameter for demonstrating its performance. The permeability of the amorphous ribbon was driven from the S-parameters measured using a network analyzer and permameter having the semi-rigid pick-up coil

  11. Durable bistable auxetics made of rigid solids

    Science.gov (United States)

    Shang, Xiao; Liu, Lu; Rafsanjani, Ahmad; Pasini, Damiano

    2018-02-01

    Bistable Auxetic Metamaterials (BAMs) are a class of monolithic perforated periodic structures with negative Poisson's ratio. Under tension, a BAM can expand and reach a second state of equilibrium through a globally large shape transformation that is ensured by the flexibility of its elastomeric base material. However, if made from a rigid polymer, or metal, BAM ceases to function due to the inevitable rupture of its ligaments. The goal of this work is to extend the unique functionality of the original kirigami architecture of BAM to a rigid solid base material. We use experiments and numerical simulations to assess performance, bistability and durability of rigid BAMs at 10,000 cycles. Geometric maps are presented to elucidate the role of the main descriptors of BAM architecture. The proposed design enables the realization of BAM from a large palette of materials, including elastic-perfectly plastic materials and potentially brittle materials.

  12. Utility of semi-rigid thoracoscopy in undiagnosed exudative pleural effusion.

    Science.gov (United States)

    Nattusamy, Loganathan; Madan, Karan; Mohan, Anant; Hadda, Vijay; Jain, Deepali; Madan, Neha Kawatra; Arava, Sudheer; Khilnani, Gopi C; Guleria, Randeep

    2015-01-01

    Semi-rigid thoracoscopy is a safe and efficacious procedure in patients with undiagnosed pleural effusion. Literature on its utility from developing countries is limited. We herein describe our initial experience on the utility of semi-rigid thoracoscopy from a tertiary care teaching and referral center in north India. We also perform a systematic review of studies reporting the utility of semi-rigid thoracoscopy from India. The primary objective was to evaluate the diagnostic utility of semi-rigid thoracoscopy in patients with undiagnosed exudative pleural effusion. Semi-rigid thoracoscopy was performed under local anesthesia and conscious sedation in the bronchoscopy suite. A total of 48 patients underwent semi-rigid thoracoscopy between August 2012 and December 2013 for undiagnosed pleural effusion. Mean age was 50.9 ± 14.1 years (range: 17-78 years). Pre-procedure clinico-radiological diagnoses were malignant pleural effusion [36 patients (75%)], tuberculosis (TB) [10 (20.83%) patients], and empyema [2 patients (4.17%)]. Patients with empyema underwent the procedure for pleural biopsy, optimal placement of intercostal tube and adhesiolysis. Thoracoscopic pleural biopsy diagnosed pleural malignancy in 30 (62.5%) patients and TB in 2 (4.17%) patients. Fourteen (29.17%) patients were diagnosed with non-specific pleuritis and normal pleura was diagnosed on a pleural biopsy in 2 (4.17%) patients. Overall, a definitive diagnosis of either pleural malignancy or TB was obtained in 32 (66.7%) patients. Combined overall sensitivity, specificity, positive predictive value and negative predictive value of thoracoscopic pleural biopsy for malignant pleural effusion were 96.77%, 100%, 100% and 66.67%, respectively. There was no procedure-related mortality. On performing a systematic review of literature, four studies on semi-rigid thoracoscopy from India were identified. Semi-rigid thoracoscopy is a safe and efficacious procedure in patients with undiagnosed exudative

  13. Theoretical Mechanics Theoretical Physics 1

    CERN Document Server

    Dreizler, Reiner M

    2011-01-01

    After an introduction to basic concepts of mechanics more advanced topics build the major part of this book. Interspersed is a discussion of selected problems of motion. This is followed by a concise treatment of the Lagrangian and the Hamiltonian formulation of mechanics, as well as a brief excursion on chaotic motion. The last chapter deals with applications of the Lagrangian formulation to specific systems (coupled oscillators, rotating coordinate systems, rigid bodies). The level of this textbook is advanced undergraduate. The authors combine teaching experience of more than 40 years in all fields of Theoretical Physics and related mathematical disciplines and thorough knowledge in creating advanced eLearning content. The text is accompanied by an extensive collection of online material, in which the possibilities of the electronic medium are fully exploited, e.g. in the form of applets, 2D- and 3D-animations. - A collection of 74 problems with detailed step-by-step guidance towards the solutions. - A col...

  14. Algebraic Methods for Counting Euclidean Embeddings of Rigid Graphs

    NARCIS (Netherlands)

    I.Z. Emiris; E.P. Tsigaridas; A. Varvitsiotis (Antonios); E.R. Gasner

    2009-01-01

    textabstract The study of (minimally) rigid graphs is motivated by numerous applications, mostly in robotics and bioinformatics. A major open problem concerns the number of embeddings of such graphs, up to rigid motions, in Euclidean space. We capture embeddability by polynomial systems

  15. Equilibria of the three-body problem with rigid dumb-bell satellite

    International Nuclear Information System (INIS)

    Elipe, A.; Palacios, M.; Pretka-Ziomek, H.

    2008-01-01

    This paper is concerned with the orbital-rotational motion of an asymmetric dumb-bell (two masses with fixed distance among them) under the attraction of a central body. For this model, we find some equilibria and give sufficient conditions for their stability

  16. Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Dombrowski, Stefan von [Institute of Robotics and Mechatronics, German Aerospace Center (DLR) (Germany)], E-mail: stefan.von.dombrowski@dlr.de

    2002-11-15

    To consider large deformation problems in multibody system simulations a finite element approach, called absolute nodal coordinate.formulation,has been proposed. In this formulation absolute nodal coordinates and their material derivatives are applied to represent both deformation and rigid body motion. The choice of nodal variables allows a fully nonlinear representation of rigid body motion and can provide the exact rigid body inertia in the case of large rotations. The methodology is especially suited for but not limited to modeling of beams, cables and shells in multibody dynamics.This paper summarizes the absolute nodal coordinate formulation for a 3D Euler-Bernoulli beam model, in particular the definition of nodal variables, corresponding generalized elastic and inertia forces and equations of motion. The element stiffness matrix is a nonlinear function of the nodal variables even in the case of linearized strain/displacement relations. Nonlinear strain/displacement relations can be calculated from the global displacements using quadrature formulae.Computational examples are given which demonstrate the capabilities of the applied methodology. Consequences of the choice of shape.functions on the representation of internal forces are discussed. Linearized strain/displacement modeling is compared to the nonlinear approach and significant advantages of the latter, when using the absolute nodal coordinate formulation, are outlined.

  17. Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates

    International Nuclear Information System (INIS)

    Dombrowski, Stefan von

    2002-01-01

    To consider large deformation problems in multibody system simulations a finite element approach, called absolute nodal coordinate.formulation,has been proposed. In this formulation absolute nodal coordinates and their material derivatives are applied to represent both deformation and rigid body motion. The choice of nodal variables allows a fully nonlinear representation of rigid body motion and can provide the exact rigid body inertia in the case of large rotations. The methodology is especially suited for but not limited to modeling of beams, cables and shells in multibody dynamics.This paper summarizes the absolute nodal coordinate formulation for a 3D Euler-Bernoulli beam model, in particular the definition of nodal variables, corresponding generalized elastic and inertia forces and equations of motion. The element stiffness matrix is a nonlinear function of the nodal variables even in the case of linearized strain/displacement relations. Nonlinear strain/displacement relations can be calculated from the global displacements using quadrature formulae.Computational examples are given which demonstrate the capabilities of the applied methodology. Consequences of the choice of shape.functions on the representation of internal forces are discussed. Linearized strain/displacement modeling is compared to the nonlinear approach and significant advantages of the latter, when using the absolute nodal coordinate formulation, are outlined

  18. Mechanics of the Delayed Fracture of Viscoelastic Bodies with Cracks: Theory and Experiment (Review)

    Science.gov (United States)

    Kaminsky, A. A.

    2014-09-01

    Theoretical and experimental studies on the deformation and delayed fracture of viscoelastic bodies due to slow subcritical crack growth are reviewed. The focus of this review is on studies of subcritical growth of cracks with well-developed fracture process zones, the conditions that lead to their critical development, and all stages of slow crack growth from initiation to the onset of catastrophic growth. Models, criteria, and methods used to study the delayed fracture of viscoelastic bodies with through and internal cracks are analyzed. Experimental studies of the fracture process zones in polymers using physical and mechanical methods as well as theoretical studies of these zones using fracture mesomechanics models that take into account the structural and rheological features of polymers are reviewed. Particular attention is given to crack growth in anisotropic media, the effect of the aging of viscoelastic materials on their delayed fracture, safe external loads that do not cause cracks to propagate, the mechanism of multiple-flaw fracture of viscoelastic bodies with several cracks and, especially, processes causing cracks to coalesce into a main crack, which may result in a break of the body. Methods and results of solving two- and three-dimensional problems of the mechanics of delayed fracture of aging and non-aging viscoelastic bodies with cracks under constant and variable external loads, wedging, and biaxial loads are given

  19. Missed Distal Tracheal Foreign Body in Consecutive ...

    African Journals Online (AJOL)

    2017-05-18

    May 18, 2017 ... Since invention, bronchoscopy has become the gold standard in the diagnosis and extraction of airway FB.[4]. Foreign bodies may be missed at ... Since the discovery by Gustav Killian,[9] extraction of tracheobronchial FB has been accomplished with rigid bronchoscopy which is still considered as the gold.

  20. Simultaneous PET-MR acquisition and MR-derived motion fields for correction of non-rigid motion in PET

    International Nuclear Information System (INIS)

    Tsoumpas, C.; Mackewn, J.E.; Halsted, P.; King, A.P.; Buerger, C.; Totman, J.J.; Schaeffter, T.; Marsden, P.K.

    2010-01-01

    Positron emission tomography (PET) provides an accurate measurement of radiotracer concentration in vivo, but performance can be limited by subject motion which degrades spatial resolution and quantitative accuracy. This effect may become a limiting factor for PET studies in the body as PET scanner technology improves. In this work, we propose a new approach to address this problem by employing motion information from images measured simultaneously using a magnetic resonance (MR) scanner. The approach is demonstrated using an MR-compatible PET scanner and PET-MR acquisition with a purpose-designed phantom capable of non-rigid deformations. Measured, simultaneously acquired MR data were used to correct for motion in PET, and results were compared with those obtained using motion information from PET images alone. Motion artefacts were significantly reduced and the PET image quality and quantification was significantly improved by the use of MR motion fields, whilst the use of PET-only motion information was less successful. Combined PET-MR acquisitions potentially allow PET motion compensation in whole-body acquisitions without prolonging PET acquisition time or increasing radiation dose. This, to the best of our knowledge, is the first study to demonstrate that simultaneously acquired MR data can be used to estimate and correct for the effects of non-rigid motion in PET. (author)

  1. Matlab/simMechanics based control of four-bar passive lower-body mechanism for rehabilitation

    Directory of Open Access Journals (Sweden)

    Ashish Singla

    2016-09-01

    Full Text Available In recent times, use of wearable devices is becoming popular for providing precise ways of rehabilitation. The focus of this paper is to propose a passive lower body mechanism using a four-bar linkage, which can be actuated via the hip joint to move the other two joints at knee and ankle as well. Simulations are performed here by considering an average male human (height six feet by modelling the gait cycle in CAD software and executing the control strategy in the SimMechanics, which provides a convenient way to study without use of detailed computational mathematics. The study of the controller aspects of the passive mechanism is presented with both PD and PID controllers with auto- and manual-tuned gains. Significant reduction in actuator torques is observed with the manually-tuned PID controller over automatically-tuned PID controller with marginal degradation in the overshoot and settling time.

  2. Numerical rigid plastic modelling of shear capacity of keyed joints

    DEFF Research Database (Denmark)

    Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao

    2015-01-01

    Keyed shear joints are currently designed using simple and conservative design formulas, yet these formulas do not take the local mechanisms in the concrete core of the joint into account. To investigate this phenomenon a rigid, perfectly plastic finite element model of keyed joints is used....... The model is formulated for second-order conic optimisation as a lower bound problem, which yields a statically admissible stress field that satisfies the yield condition in every point. The dual solution to the problem can be interpreted as the collapse mode and will be used to analyse the properties...

  3. Poisson equations of rotational motion for a rigid triaxial body with application to a tumbling artificial satellite

    Science.gov (United States)

    Liu, J. J. F.; Fitzpatrick, P. M.

    1975-01-01

    A mathematical model is developed for studying the effects of gravity gradient torque on the attitude stability of a tumbling triaxial rigid satellite. Poisson equations are used to investigate the rotation of the satellite (which is in elliptical orbit about an attracting point mass) about its center of mass. An averaging method is employed to obtain an intermediate set of differential equations for the nonresonant, secular behavior of the osculating elements which describe the rotational motions of the satellite, and the averaged equations are then integrated to obtain long-term secular solutions for the osculating elements.

  4. Jets from pulsed-ultrasound-induced cavitation bubbles near a rigid boundary

    Science.gov (United States)

    Brujan, Emil-Alexandru

    2017-06-01

    The dynamics of cavitation bubbles, generated from short (microsecond) pulses of ultrasound and situated near a rigid boundary, are investigated numerically. The temporal development of the bubble shape, bubble migration, formation of the liquid jet during bubble collapse, and the kinetic energy of the jet are investigated as a function of the distance between bubble and boundary. During collapse, the bubble migrates towards the boundary and the liquid jet reaches a maximum velocity between 80 m s-1 and 120 m s-1, depending on the distance between bubble and boundary. The conversion of bubble energy to kinetic energy of the jet ranges from 16% to 23%. When the bubble is situated in close proximity to the boundary, the liquid jet impacts the boundary with its maximum velocity, resulting in an impact pressure of the order of tens of MPa. The rapid expansion of the bubble, the impact of the liquid jet onto the nearby boundary material, and the high pressure developed inside the bubble at its minimum volume can all contribute to the boundary material damage. The high pressure developed during the impact of the liquid jet onto the biological material and the shearing forces acting on the material surface as a consequence of the radial flow of the jet outward from the impact site are the main damage mechanisms of rigid biological materials. The results are discussed with respect to cavitation damage of rigid biological materials, such as disintegration of renal stones and calcified tissue and collateral effects in pulsed ultrasound surgery.

  5. Jets from pulsed-ultrasound-induced cavitation bubbles near a rigid boundary

    International Nuclear Information System (INIS)

    Brujan, Emil-Alexandru

    2017-01-01

    The dynamics of cavitation bubbles, generated from short (microsecond) pulses of ultrasound and situated near a rigid boundary, are investigated numerically. The temporal development of the bubble shape, bubble migration, formation of the liquid jet during bubble collapse, and the kinetic energy of the jet are investigated as a function of the distance between bubble and boundary. During collapse, the bubble migrates towards the boundary and the liquid jet reaches a maximum velocity between 80 m s −1 and 120 m s −1 , depending on the distance between bubble and boundary. The conversion of bubble energy to kinetic energy of the jet ranges from 16% to 23%. When the bubble is situated in close proximity to the boundary, the liquid jet impacts the boundary with its maximum velocity, resulting in an impact pressure of the order of tens of MPa. The rapid expansion of the bubble, the impact of the liquid jet onto the nearby boundary material, and the high pressure developed inside the bubble at its minimum volume can all contribute to the boundary material damage. The high pressure developed during the impact of the liquid jet onto the biological material and the shearing forces acting on the material surface as a consequence of the radial flow of the jet outward from the impact site are the main damage mechanisms of rigid biological materials. The results are discussed with respect to cavitation damage of rigid biological materials, such as disintegration of renal stones and calcified tissue and collateral effects in pulsed ultrasound surgery. (paper)

  6. Perception of the Body in Space: Mechanisms

    Science.gov (United States)

    Young, Laurence R.

    1991-01-01

    The principal topic is the perception of body orientation and motion in space and the extent to which these perceptual abstraction can be related directly to the knowledge of sensory mechanisms, particularly for the vestibular apparatus. Spatial orientation is firmly based on the underlying sensory mechanisms and their central integration. For some of the simplest situations, like rotation about a vertical axis in darkness, the dynamic response of the semicircular canals furnishes almost enough information to explain the sensations of turning and stopping. For more complex conditions involving multiple sensory systems and possible conflicts among their messages, a mechanistic response requires significant speculative assumptions. The models that exist for multisensory spatial orientation are still largely of the non-rational parameter variety. They are capable of predicting relationships among input motions and output perceptions of motion, but they involve computational functions that do not now and perhaps never will have their counterpart in central nervous system machinery. The challenge continues to be in the iterative process of testing models by experiment, correcting them where necessary, and testing them again.

  7. Functionally rigid bistable [2]rotaxanes

    DEFF Research Database (Denmark)

    Nygaard, Sune; Leung, Ken C-F; Aprahamian, Ivan

    2007-01-01

    defines an unambiguous distance of 1.5 nm over which the ring moves between the MPTTF and NP units. The degenerate NP/NP [2]rotaxane was used to investigate the shuttling barrier by dynamic 1H NMR spectroscopy for the movement of the CBPQT4+ ring across the new rigid spacer. It is evident from...... better control over the position of the ring component in the ground state but also for control over the location of the CBPQT4+ ring during solution-state switching experiments, triggered either chemically (1H NMR) or electrochemically (cyclic voltammetry). In this instance, the use of the rigid spacer......Two-station [2]rotaxanes in the shape of a degenerate naphthalene (NP) shuttle and a nondegenerate monopyrrolotetrathiafulvalene (MPTTF)/NP redox-controllable switch have been synthesized and characterized in solution. Their dumbbell-shaped components are composed of polyether chains interrupted...

  8. Collapse mechanisms and the existence of equilibrium solutions for masonry bodies

    Czech Academy of Sciences Publication Activity Database

    Šilhavý, Miroslav

    2014-01-01

    Roč. 19, č. 7 (2014), s. 821-831 ISSN 1081-2865 Institutional support: RVO:67985840 Keywords : equilibrium of masonry bodies * collapse mechanism * coercivity Subject RIV: BA - General Mathematics Impact factor: 1.298, year: 2014 http://mms.sagepub.com/content/19/7/821

  9. Collapse mechanisms and the existence of equilibrium solutions for masonry bodies

    Czech Academy of Sciences Publication Activity Database

    Šilhavý, Miroslav

    2014-01-01

    Roč. 19, č. 7 (2014), s. 821-831 ISSN 1081-2865 Institutional support: RVO:67985840 Keywords : equilibrium of masonry bodies * collapse mechanism * coercivity Subject RIV: BA - General Mathematics Impact factor: 1.298, year: 2014 http:// mms .sagepub.com/content/19/7/821

  10. Rigid external maxillary distraction and rhinoplasty for pyknodysostosis.

    Science.gov (United States)

    Varol, Altan; Sabuncuoglu, Fidan Alakus; Sencimen, Metin; Akcam, Timur; Olmez, Hüseyin; Basa, Selçuk

    2011-05-01

    This article reports the treatment of an 33-year-old female patient with pyknodysostosis by rigid external distraction II midface distraction system. The patient with pyknodysostosis described in this report had severe midfacial hypoplasia. Correction of this by use of routine orthognathic surgery would require osteosynthesis and bone grafting. Risk of infection and/or nonunion after such a surgical procedure was considered too great, and therefore the possibility of treatment by distraction osteogenesis of the maxilla was evaluated. The rigid external distraction II midface distraction system was used to relocate the hypoplastic maxilla at anterior-inferior projection. Distraction osteogenesis should be considered as the primary reconstructive method for maxillofacial deformities in patients with sclerosing bone dysplasias, since this is the second reported case treated successfully with rigid external distraction.

  11. Super rigid nature of super-deformed bands

    International Nuclear Information System (INIS)

    Sharma, Neha; Mittal, H.M.; Jain, A.K.

    2012-01-01

    The phenomenon of high-spin super-deformation represents one of the most remarkable discoveries in nuclear physics. A large number of SD bands have been observed in A = 60, 80, 130, 150, 190 mass regions. The cascades of SD bands are known to be connected by electric quadruple E2 transitions. Because of absence of linking transitions between superdeformed (SD) and normal deformed (ND) levels, the spin assignments of most of these bands carry a minimum uncertainty ≈ 1-2ħ. It was found in an analysis of SD bands in the context of semi classical approach that moment of inertia comes close to the rigid body value in most of the cases. Lack of knowledge of spins has led to an emphasis on the study of dynamical moment of inertia of SD bands and systematic of kinematic moment of inertia has not been examined so far. In this paper, we extract the band moment of inertia J 0 and softness parameter (σ) of all the SD bands corresponding to axes ratio (x) = 1.5 and present their systematic

  12. The diagnostic role of thoracoscope in undiagnosed pleural effusion: Rigid versus flexible

    Directory of Open Access Journals (Sweden)

    Mostafa Mahmoud Abdel Mageid Shaheen

    2014-07-01

    Conclusions: Thoracoscopy using either fibreoptic bronchoscope or rigid thoracoscope is safe and well tolerated. Rigid thoracoscope has a higher diagnostic yield, easier handling, better orientation and is less expensive. Nevertheless, fibreoptic bronchoscope is an alternative technique if rigid thoracoscopy is not available.

  13. N=2 superconformal Newton-Hooke algebra and many-body mechanics

    International Nuclear Information System (INIS)

    Galajinsky, Anton

    2009-01-01

    A representation of the conformal Newton-Hooke algebra on a phase space of n particles in arbitrary dimension which interact with one another via a generic conformal potential and experience a universal cosmological repulsion or attraction is constructed. The minimal N=2 superconformal extension of the Newton-Hooke algebra and its dynamical realization in many-body mechanics are studied.

  14. Rigid origami vertices: conditions and forcing sets

    Directory of Open Access Journals (Sweden)

    Zachary Abel

    2016-04-01

    Full Text Available We develop an intrinsic necessary and sufficient condition for single-vertex origami crease patterns to be able to fold rigidly.  We classify such patterns in the case where the creases are pre-assigned to be mountains and valleys as well as in the unassigned case.  We also illustrate the utility of this result by applying it to the new concept of minimal forcing sets for rigid origami models, which are the smallest collection of creases that, when folded, will force all the other creases to fold in a prescribed way.

  15. Type number and rigidity of fibred surfaces

    International Nuclear Information System (INIS)

    Markov, P E

    2001-01-01

    Infinitesimal l-th order bendings, 1≤l≤∞, of higher-dimensional surfaces are considered in higher-dimensional flat spaces (for l=∞ an infinitesimal bending is assumed to be an analytic bending). In terms of the Allendoerfer type number, criteria are established for the (r,l)-rigidity (in the terminology of Sabitov) of such surfaces. In particular, an (r,l)-infinitesimal analogue is proved of the classical theorem of Allendoerfer on the unbendability of surfaces with type number ≥3 and the class of (r,l)-rigid fibred surfaces is distinguished

  16. Evaluating a method for automated rigid registration

    DEFF Research Database (Denmark)

    Darkner, Sune; Vester-Christensen, Martin; Larsen, Rasmus

    2007-01-01

    to point distance. T-test for common mean are used to determine the performance of the two methods (supported by a Wilcoxon signed rank test). The performance influence of sampling density, sampling quantity, and norms is analyzed using a similar method.......We evaluate a novel method for fully automated rigid registration of 2D manifolds in 3D space based on distance maps, the Gibbs sampler and Iterated Conditional Modes (ICM). The method is tested against the ICP considered as the gold standard for automated rigid registration. Furthermore...

  17. Multibody Dynamic Stress Simulation of Rigid-Flexible Shovel Crawler Shoes

    Directory of Open Access Journals (Sweden)

    Samuel Frimpong

    2016-06-01

    Full Text Available Electric shovels are used in surface mining operations to achieve economic production capacities. The capital investments and operating costs associated with the shovels deployed in the Athabasca oil sands formation are high due to the abrasive conditions. The shovel crawler shoes interact with sharp and abrasive sand particles, and, thus, are subjected to high transient dynamic stresses. These high stresses cause wear and tear leading to crack initiation, propagation and premature fatigue failure. The objective of this paper is to develop a model to characterize the crawler stresses and deformation for the P&H 4100C BOSS during propel and loading using rigid-flexible multi-body dynamic theory. A 3-D virtual prototype model of the rigid-flexible crawler track assembly and its interactions with oil sand formation is simulated to capture the model dynamics within multibody dynamics software MSC ADAMS. The modal and stress shapes and modal loads due to machine weight for each flexible crawler shoes are generated from finite element analysis (FEA. The modal coordinates from the simulation are combined with mode and stress shapes using modal superposition method to calculate real-time stresses and deformation of flexible crawler shoes. The results show a maximum von Mises stress value of 170 MPa occurring in the driving crawler shoe during the propel motion. This study provides a foundation for the subsequent fatigue life analysis of crawler shoes for extending crawler service life.

  18. Simulating coupled dynamics of a rigid-flexible multibody system and compressible fluid

    Science.gov (United States)

    Hu, Wei; Tian, Qiang; Hu, HaiYan

    2018-04-01

    As a subsequent work of previous studies of authors, a new parallel computation approach is proposed to simulate the coupled dynamics of a rigid-flexible multibody system and compressible fluid. In this approach, the smoothed particle hydrodynamics (SPH) method is used to model the compressible fluid, the natural coordinate formulation (NCF) and absolute nodal coordinate formulation (ANCF) are used to model the rigid and flexible bodies, respectively. In order to model the compressible fluid properly and efficiently via SPH method, three measures are taken as follows. The first is to use the Riemann solver to cope with the fluid compressibility, the second is to define virtual particles of SPH to model the dynamic interaction between the fluid and the multibody system, and the third is to impose the boundary conditions of periodical inflow and outflow to reduce the number of SPH particles involved in the computation process. Afterwards, a parallel computation strategy is proposed based on the graphics processing unit (GPU) to detect the neighboring SPH particles and to solve the dynamic equations of SPH particles in order to improve the computation efficiency. Meanwhile, the generalized-alpha algorithm is used to solve the dynamic equations of the multibody system. Finally, four case studies are given to validate the proposed parallel computation approach.

  19. Unusual sinonasal foreign body: presentation of three cases.

    Science.gov (United States)

    Nazar, Rodolfo; Cabrera, Natalia; Martelo, Grettel; Machiavello, Cecilia; Naser, Alfredo

    2014-01-01

    Sinonasal foreign bodies are rare clinical entities. Their presence in the sinuses can originate complications, so their removal is always indicated. We present 3 cases of sinonasal foreign body, indicating their symptoms, imaging findings and surgical removal. Each patient was assessed with computerized tomography of the sinuses, rigid endoscopy, and then surgical removal. We confirmed the presence of the foreign bodies in all 3 cases and then performed a successful surgical removal by transnasal endoscopy. Sinonasal foreign bodies are infrequent entities that require surgical removal to prevent complications, with transnasal endoscopic surgery being the most commonly used surgical approach. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  20. Lateral rigidity of cracked concrete structures

    International Nuclear Information System (INIS)

    Castellani, A.; Chesi, C.

    1979-01-01

    Numerical results are discussed on the lateral rigidity of reinforced concrete structures with a given crack distribution. They have been favourably checked with experimental results for cylindrical shells under the effect of a thermal gradient producing vertical cracking or vertical plus horizontal cracking. The main effects characterizing the concrete behaviour are: (1) The shear transfer across a crack; (2) The shear transfer degradation after cyclic loading; (3) The tension stiffening provided by the concrete between crack and crack, in the normal stress transfer; (4) The temperature effect on the elastic moduli of concrete, when cracks are of thermal origin. Only the 1st effect is discussed on an experimental basis. Two broad cathegories of reinforced concrete structures have been investigated in this respect: shear walls of buildings and cylindrical containment structures. The main conclusions so far reached are: (1) Vertical cracks are unlikely to decrease the lateral rigidity to less than 80% of the original one, and to less than 90% when they do not involve the entire thickness of the wall; (2) The appearence of horizontal cracks can reduce the lateral rigidity by some 30% or more; (3) A noticeable but not yet evaluated influence is shown by cyclic loading. (orig.)

  1. Mechanical test of the model coil wound with large conductor

    International Nuclear Information System (INIS)

    Hiue, Hisaaki; Sugimoto, Makoto; Nakajima, Hideo; Yasukawa, Yukio; Yoshida, Kiyoshi; Hasegawa, Mitsuru; Ito, Ikuo; Konno, Masayuki.

    1992-09-01

    The high rigidity and strength of the winding pack are required to realize the large superconducting magnet for the fusion reactor. This paper describes mechanical tests concerning the rigidity of the winding pack. Samples were prepared to evaluate the adhesive strength between conductors and insulators. Epoxy and Bismaleimide-Triazine resin (BT resin) were used as the conductor insulator. The stainless steel (SS) 304 bars, whose surface was treated mechanically and chemically, was applied to the modeled conductor. The model coil was would with the model conductors covered with the insulator by grand insulator. A winding model combining 3 x 3 conductors was produced for measuring shearing rigidity. The sample was loaded with pure shearing force at the LN 2 temperature. The bar winding sample, by 8 x 6 conductors, was measured the bending rigidity. These three point bending tests were carried out at room temperature. The pancake winding sample was loaded with compressive forces to measure compressive rigidity of winding. (author)

  2. Connections rigidity effect on probability of fracture in steel moment frames

    Directory of Open Access Journals (Sweden)

    Gholamreza Abdollahzadeh

    2017-08-01

    Full Text Available Connections in steel moment frames are idealized in full pinned and full rigid conditions. Because with this assumption, in spite of real behavior of connection, real story drifts are less anticipated and maybe frame is designed without performance of bracing. There are several methods for modeling actual behavior of semi rigid connections. In this method a connection with certain rigidity is modeled by a rotational spring with corresponding stiffness. This stiffness is achieved by certain formula. In other words, each percent of rigidity corresponds to one rotational spring stiffness. In this research in order to evaluate the real behavior of connection in analysis and designing process and fracture probability one frame including four stories and one bay with three types of connection has been modeled and designed in ETABS. Each model has an individual rigidity which is equal to 10, 75 and 90 percent. With respect to maximum drift and different PGA in roof, probabilities of low, medium, high and complete fracture were calculated. For this purpose, with applying different PGA to modeled frames, amounts of drift in the roof are achieved. Then these values are compared with given values in American code. Finally, investigation showed that when rigidity in frame connections increases, the probability of frame fracture decreases. In other words, fully rigid assumption of connection in analysis process leads to decreasing in real probability of fracture in frames which is a noticeable risk in building designing processes.

  3. Enstatite, Mg2Si2O6: A neutron diffraction refinement of the crystal structure and a rigid-body analysis of the thermal vibration

    International Nuclear Information System (INIS)

    Ghose, S.; Schomaker, V.; McMullan, R.K.

    1986-01-01

    Synthetic enstatite, Mg 2 Si 2 O 6 , is orthorhombic, space group Pbca, with eight formula units per cell and lattice parameters a = 18.235(3), b = 8.818(1), c = 5.179(1) A at 23 0 C. A least-squares structure refinement based on 1790 neutron intensity data converged with an agreement factor R(F 2 ) = 0.032, yielding Mg-O and Si-O bond lengths with standard deviations of 0.0007 and 0.0008 A, respectively. The variations observed in the Si-O bond lengths within the silicate tetrahedra A and B are caused by the differences in primary coordination of the oxygen atoms and the proximity of the magnesium ions to the silicon atoms. The latter effect is most pronounced for the bridging bonds of tetrahedron. A. The smallest O-Si-O angle is the result of edge-sharing by the Mg(2) octahedron and the A tetrahedron. An analysis of rigid-body thermal vibrations of the two crystallographically independent [SiO 4 ] tetrahedra indicates considerable librational motion, leading to a thermal correction of apparent Si-O bond lengths as large as +0.002 A at room temperature. (orig.)

  4. Physiological mechanisms of the effect of weightlessness on the body

    Science.gov (United States)

    Kasyan, I. I.; Kopanev, V. I.

    1975-01-01

    Experimental data show that physiological reactions observed under weightlessness conditions are caused by: (1) The direct effect of weightlessness, as a consequence of decrease (""disappearance'') of the weight of body tissues and organs; and (2) the mediated effect of weightlessness, as a result of changes in the functional state of the central nervous system and the cooperative work of the analyzers. The human body adopts to weightless conditions under the prolonged effects of it. In this case, four periods can be distinguished: The first period, a transitional process lasting from 1 to 24 hours; second period, initial adaptation to conditions of weightlessness and readjustment of all functional systems of the body; the third period, adaptation to the unusual mechanical conditions of the external environment, lasting from 3 to 8 days and more; and the fourth period, the stage of possible imbalance of the functions and the systems of some astronauts, as a result of the prolonged effect of weightlessness.

  5. On flexible and rigid nouns

    DEFF Research Database (Denmark)

    Rijkhoff, Jan

    2008-01-01

    Studies in Language 32-3 (2008), 727-752. Special issue: Parts of Speech: Descriptive tools, theoretical constructs Jan Rijkhoff - On flexible and rigid nouns This article argues that in addition to the flexible lexical categories in Hengeveld’s classification of parts-of-speech systems (Contentive......, Non-Verb, Modifier), there are also flexible word classes within the rigid lexical category Noun (Set Noun, Sort Noun, General Noun). Members of flexible word classes are characterized by their vague semantics, which in the case of nouns means that values for the semantic features Shape...... and Homogeneity are either left undetermined or they are specified in such a way that they do not quite match the properties of the kind of entity denoted by the flexible item in the external world. I will then argue that flexible word classes constitute a proper category (i.e. they are not the result of a merger...

  6. Rigidity spectrum of Forbush decrease

    International Nuclear Information System (INIS)

    Sakakibara, S.; Munakata, K.; Nagashima, K.

    1985-01-01

    Using data from neutron monitors and muon telescopes at surface and underground stations, the average rigidity spectrum of Forbush decreases (Fds) during the period of 1978-1982 were obtained. Thirty eight Ed-events are classified into two groups, Hard Fd and Soft FD according to size of Fd at the Sakashita station. It is found that a spectral form of a fractional-power type (P to the-gamma sub 1 (P+P sub c) to the -gamma sub2) is more suitable than that of a power-exponential type or of a power type with an upper limiting rigidity. The best fitted spectrum of the fractional-power type is expressed by gamma sub1 = 0.37, gamma sub2 = 0.89 and P subc = 10 GV for Hard Fd and gamma sub1 = 0.77, gamma sub2 = 1.02 and P sub c - 14GV for Soft Fd

  7. An evaluation of canonical forms for non-rigid 3D shape retrieval

    OpenAIRE

    Pickup, David; Liu, Juncheng; Sun, Xianfang; Rosin, Paul L.; Martin, Ralph R.; Cheng, Zhiquan; Lian, Zhouhui; Nie, Sipin; Jin, Longcun; Shamai, Gil; Sahillioğlu, Yusuf; Kavan, Ladislav

    2018-01-01

    Canonical forms attempt to factor out a non-rigid shape’s pose, giving a pose-neutral shape. This opens up the\\ud possibility of using methods originally designed for rigid shape retrieval for the task of non-rigid shape retrieval.\\ud We extend our recent benchmark for testing canonical form algorithms. Our new benchmark is used to evaluate a\\ud greater number of state-of-the-art canonical forms, on five recent non-rigid retrieval datasets, within two different\\ud retrieval frameworks. A tota...

  8. Blast wave interaction with a rigid surface

    International Nuclear Information System (INIS)

    Josey, T.; Whitehouse, D.R.; Ripley, R.C.; Dionne, J.P.

    2004-01-01

    A simple model used to investigate blast wave interactions with a rigid surface is presented. The model uses a constant volume energy source analogue to predict pressure histories at gauges located directly above the charge. A series of two-dimensional axi-symmetric CFD calculations were performed, varying the height of the charge relative to the ground. Pressure histories, along with isopycnic plots are presented to evaluate the effects of placing a charge in close proximity to a rigid surface. When a charge is placed near a solid surface the pressure histories experienced at gauges above the charge indicate the presence of two distinct pressure peaks. The first peak is caused by the primary shock and the second peak is a result of the wave reflections from the rigid surface. As the distance from the charge to the wall is increased the magnitude of the second pressure peak is reduced, provided that the distance between the charge and the gauge is maintained constant. The simple model presented is able to capture significant, predictable flow features. (author)

  9. Hydrodynamics of a flexible plate between pitching rigid plates

    Science.gov (United States)

    Kim, Junyoung; Kim, Daegyoum

    2017-11-01

    The dynamics of a flexible plate have been studied as a model problem in swimming and flying of animals and fluid-structure interaction of plants and flags. Motivated by fish schooling and an array of sea grasses, we investigate the dynamics of a flexible plate closely placed between two pitching rigid plates. In most studies on passive deformation of the flexible plate, the plate is immersed in a uniform flow or a wavy flow. However, in this study, the flexible plate experiences periodic deformation by the oscillatory flow generated by the prescribed pitching motion of the rigid plates. In our model, the pitching axes of the rigid plates and the clamping position of the flexible plate are aligned on the same line. The flexible plate shows various responses depending on length and pitching frequency of rigid plates, thickness of a flexible plate, and free-stream velocity. To find the effect of each variable on the response of the flexible plate, amplitude of a trailing edge and modal contribution of a flapping motion are compared, and flow structure around the flexible plate is examined.

  10. Body Fineness Ratio as a Predictor of Maximum Prolonged-Swimming Speed in Coral Reef Fishes

    Science.gov (United States)

    Walker, Jeffrey A.; Alfaro, Michael E.; Noble, Mae M.; Fulton, Christopher J.

    2013-01-01

    The ability to sustain high swimming speeds is believed to be an important factor affecting resource acquisition in fishes. While we have gained insights into how fin morphology and motion influences swimming performance in coral reef fishes, the role of other traits, such as body shape, remains poorly understood. We explore the ability of two mechanistic models of the causal relationship between body fineness ratio and endurance swimming-performance to predict maximum prolonged-swimming speed (Umax) among 84 fish species from the Great Barrier Reef, Australia. A drag model, based on semi-empirical data on the drag of rigid, submerged bodies of revolution, was applied to species that employ pectoral-fin propulsion with a rigid body at U max. An alternative model, based on the results of computer simulations of optimal shape in self-propelled undulating bodies, was applied to the species that swim by body-caudal-fin propulsion at Umax. For pectoral-fin swimmers, Umax increased with fineness, and the rate of increase decreased with fineness, as predicted by the drag model. While the mechanistic and statistical models of the relationship between fineness and Umax were very similar, the mechanistic (and statistical) model explained only a small fraction of the variance in Umax. For body-caudal-fin swimmers, we found a non-linear relationship between fineness and Umax, which was largely negative over most of the range of fineness. This pattern fails to support either predictions from the computational models or standard functional interpretations of body shape variation in fishes. Our results suggest that the widespread hypothesis that a more optimal fineness increases endurance-swimming performance via reduced drag should be limited to fishes that swim with rigid bodies. PMID:24204575

  11. Mechanics

    CERN Document Server

    Chester, W

    1979-01-01

    When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How­ ever, the presentation is more sophisticated than might be considered appropri­ ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element­ ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. Howev...

  12. The anchoring mechanism of a bluff-body stabilized laminar premixed flame

    KAUST Repository

    Kedia, Kushal S.

    2014-09-01

    The objective of this work is to investigate the mechanism of the laminar premixed flame anchoring near a heat-conducting bluff-body. We use unsteady, fully resolved, two-dimensional simulations with detailed chemical kinetics and species transport for methane-air combustion. No artificial flame anchoring boundary conditions were imposed. Simulations show a shear-layer stabilized flame just downstream of the bluff-body, with a recirculation zone formed by the products of combustion. A steel bluff-body resulted in a slightly larger recirculation zone than a ceramic bluff-body; the size of which grew as the equivalence ratio was decreased. A significant departure from the conventional two-zone flame-structure is shown in the anchoring region. In this region, the reaction zone is associated with a large negative energy convection (directed from products to reactants) resulting in a negative flame-displacement speed. It is shown that the premixed flame anchors at an immediate downstream location near the bluff-body where favorable ignition conditions are established; a region associated with (1) a sufficiently high temperature impacted by the conjugate heat exchange between the heat-conducting bluff-body and the hot reacting flow and (2) a locally maximum stoichiometry characterized by the preferential diffusion effects. © 2014 The Combustion Institute.

  13. Topology preserving non-rigid image registration using time-varying elasticity model for MRI brain volumes.

    Science.gov (United States)

    Ahmad, Sahar; Khan, Muhammad Faisal

    2015-12-01

    In this paper, we present a new non-rigid image registration method that imposes a topology preservation constraint on the deformation. We propose to incorporate the time varying elasticity model into the deformable image matching procedure and constrain the Jacobian determinant of the transformation over the entire image domain. The motion of elastic bodies is governed by a hyperbolic partial differential equation, generally termed as elastodynamics wave equation, which we propose to use as a deformation model. We carried out clinical image registration experiments on 3D magnetic resonance brain scans from IBSR database. The results of the proposed registration approach in terms of Kappa index and relative overlap computed over the subcortical structures were compared against the existing topology preserving non-rigid image registration methods and non topology preserving variant of our proposed registration scheme. The Jacobian determinant maps obtained with our proposed registration method were qualitatively and quantitatively analyzed. The results demonstrated that the proposed scheme provides good registration accuracy with smooth transformations, thereby guaranteeing the preservation of topology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Comparison of Rigid and Adaptive Methods of Propagating Gross Tumor Volume Through Respiratory Phases of Four-Dimensional Computed Tomography Image Data Set

    International Nuclear Information System (INIS)

    Ezhil, Muthuveni; Choi, Bum; Starkschall, George; Bucci, M. Kara; Vedam, Sastry; Balter, Peter

    2008-01-01

    Purpose: To compare three different methods of propagating the gross tumor volume (GTV) through the respiratory phases that constitute a four-dimensional computed tomography image data set. Methods and Materials: Four-dimensional computed tomography data sets of 20 patients who had undergone definitive hypofractionated radiotherapy to the lung were acquired. The GTV regions of interest (ROIs) were manually delineated on each phase of the four-dimensional computed tomography data set. The ROI from the end-expiration phase was propagated to the remaining nine phases of respiration using the following three techniques: (1) rigid-image registration using in-house software, (2) rigid image registration using research software from a commercial radiotherapy planning system vendor, and (3) rigid-image registration followed by deformable adaptation originally intended for organ-at-risk delineation using the same software. The internal GTVs generated from the various propagation methods were compared with the manual internal GTV using the normalized Dice similarity coefficient (DSC) index. Results: The normalized DSC index of 1.01 ± 0.06 (SD) for rigid propagation using the in-house software program was identical to the normalized DSC index of 1.01 ± 0.06 for rigid propagation achieved with the vendor's research software. Adaptive propagation yielded poorer results, with a normalized DSC index of 0.89 ± 0.10 (paired t test, p <0.001). Conclusion: Propagation of the GTV ROIs through the respiratory phases using rigid- body registration is an acceptable method within a 1-mm margin of uncertainty. The adaptive organ-at-risk propagation method was not applicable to propagating GTV ROIs, resulting in an unacceptable reduction of the volume and distortion of the ROIs

  15. Jammed packings of deformable and rigid 2D spherocylinders and spheropolygons

    Science.gov (United States)

    Shattuck, Mark

    We study mechanically stable packings of deformable and rigid 2D spheropolygons using computer simulation. A 2D sphereopolygon is a particle shape formed by the collection of all points within a perpendicular distance r from the edge of a polygon. It is a generalization of the 2D spherocylinder and a circle, which are the collection of all points within a distance r from a line and a point. In our model, the spheropolygon can be deformable. The lengths of the sides are fixed, but the angles are only constrained by the requirement that the shape factor, S = 4 πA /p2 is fixed, where A is the area of the polygon and p is the perimeter. The particles can be made rigid by requiring that the shape factor is the maximum possible for the edge length ratios. For example, the maximum for a square is S = π /4. We present densities and average contact numbers for collections of mono- and bi-disperse packings of spheropolygons for a range of shape factors, edge numbers, and system sizes. We find mechically stable packings with fewer than isostatic contacts.

  16. Elastic properties of rigid fiber-reinforced composites

    Science.gov (United States)

    Chen, J.; Thorpe, M. F.; Davis, L. C.

    1995-05-01

    We study the elastic properties of rigid fiber-reinforced composites with perfect bonding between fibers and matrix, and also with sliding boundary conditions. In the dilute region, there exists an exact analytical solution. Around the rigidity threshold we find the elastic moduli and Poisson's ratio by decomposing the deformation into a compression mode and a rotation mode. For perfect bonding, both modes are important, whereas only the compression mode is operative for sliding boundary conditions. We employ the digital-image-based method and a finite element analysis to perform computer simulations which confirm our analytical predictions.

  17. Tracheobronchial foreign body aspiration in children: A continuing ...

    African Journals Online (AJOL)

    Ten children in early diagnosis group and 29 children in late diagnosis group presented with complications. The diagnosis delay was mainly attributed to physician misdiagnosis (41.6%). Rigid bronchoscopy was performed in all patients. Foreign body was found in all of the cases except six. Watermelon seeds and peanuts ...

  18. Rigid pricing and rationally inattentive consumer

    Czech Academy of Sciences Publication Activity Database

    Matějka, Filip

    158 B, July (2015), s. 656-678 ISSN 0022-0531 Institutional support: RVO:67985998 Keywords : rational inattention * imperfect information * nominal rigidity Subject RIV: AH - Economics Impact factor: 1.097, year: 2015

  19. Korn inequalities for elastic junctions of massive bodies, thin plates, and rods

    International Nuclear Information System (INIS)

    Nazarov, S A

    2008-01-01

    Korn inequalities have been obtained for junctions of massive elastic bodies, thin plates, and rods in many different combinations. These inequalities are asymptotically sharp thanks to the introduction of various weight factors in the L 2 -norms of the displacements and their derivatives. Since thin bodies display different reactions to stretching and bending, such Korn inequalities are necessarily anisotropic. Junctions of elastic bodies with contrasting stiffness are allowed, but the constants in the inequalities obtained are independent of both the relative thickness h element of (0,1] and the relative rigidity μ element of (0,+∞). The norms corresponding to rigidly clamped elements of a structure are essentially different from the norms corresponding to hard-movable or movable elements that are not fastened directly, but only by means of neighbouring elements; therefore, an adequate structure of the weighted anisotropic norms is determined by the geometry of the whole junction. Each variant of Korn inequality is supplied with an example confirming the optimal choice of the weight factors

  20. Signature of Thermal Rigidity Percolation

    International Nuclear Information System (INIS)

    Huerta, Adrián

    2013-01-01

    To explore the role that temperature and percolation of rigidity play in determining the macroscopic properties, we propose a model that adds translational degrees of freedom to the spins of the well known Ising hamiltonian. In particular, the Ising model illustrate the longstanding idea that the growth of correlations on approach to a critical point could be describable in terms of the percolation of some sort of p hysical cluster . For certain parameters of this model we observe two well defined peaks of C V , that suggest the existence of two kinds of p hysical percolation , namely connectivity and rigidity percolation. Thermal fluctuations give rise to two different kinds of elementary excitations, i.e. droplets and configuron, as suggested by Angell in the framework of a bond lattice model approach. The later is reflected in the fluctuations of redundant constraints that gives stability to the structure and correlate with the order parameter

  1. Rigid pricing and rationally inattentive consumer

    Czech Academy of Sciences Publication Activity Database

    Matějka, Filip

    158 B, July (2015), s. 656-678 ISSN 0022-0531 Institutional support: PRVOUK-P23 Keywords : rational inattention * imperfect information * nominal rigidity Subject RIV: AH - Economics Impact factor: 1.097, year: 2015

  2. Encountered-Type Haptic Interface for Representation of Shape and Rigidity of 3D Virtual Objects.

    Science.gov (United States)

    Takizawa, Naoki; Yano, Hiroaki; Iwata, Hiroo; Oshiro, Yukio; Ohkohchi, Nobuhiro

    2017-01-01

    This paper describes the development of an encountered-type haptic interface that can generate the physical characteristics, such as shape and rigidity, of three-dimensional (3D) virtual objects using an array of newly developed non-expandable balloons. To alter the rigidity of each non-expandable balloon, the volume of air in it is controlled through a linear actuator and a pressure sensor based on Hooke's law. Furthermore, to change the volume of each balloon, its exposed surface area is controlled by using another linear actuator with a trumpet-shaped tube. A position control mechanism is constructed to display virtual objects using the balloons. The 3D position of each balloon is controlled using a flexible tube and a string. The performance of the system is tested and the results confirm the effectiveness of the proposed principle and interface.

  3. Graphene Statistical Mechanics

    Science.gov (United States)

    Bowick, Mark; Kosmrlj, Andrej; Nelson, David; Sknepnek, Rastko

    2015-03-01

    Graphene provides an ideal system to test the statistical mechanics of thermally fluctuating elastic membranes. The high Young's modulus of graphene means that thermal fluctuations over even small length scales significantly stiffen the renormalized bending rigidity. We study the effect of thermal fluctuations on graphene ribbons of width W and length L, pinned at one end, via coarse-grained Molecular Dynamics simulations and compare with analytic predictions of the scaling of width-averaged root-mean-squared height fluctuations as a function of distance along the ribbon. Scaling collapse as a function of W and L also allows us to extract the scaling exponent eta governing the long-wavelength stiffening of the bending rigidity. A full understanding of the geometry-dependent mechanical properties of graphene, including arrays of cuts, may allow the design of a variety of modular elements with desired mechanical properties starting from pure graphene alone. Supported by NSF grant DMR-1435794

  4. Accuracy limit of rigid 3-point water models

    Science.gov (United States)

    Izadi, Saeed; Onufriev, Alexey V.

    2016-08-01

    Classical 3-point rigid water models are most widely used due to their computational efficiency. Recently, we introduced a new approach to constructing classical rigid water models [S. Izadi et al., J. Phys. Chem. Lett. 5, 3863 (2014)], which permits a virtually exhaustive search for globally optimal model parameters in the sub-space that is most relevant to the electrostatic properties of the water molecule in liquid phase. Here we apply the approach to develop a 3-point Optimal Point Charge (OPC3) water model. OPC3 is significantly more accurate than the commonly used water models of same class (TIP3P and SPCE) in reproducing a comprehensive set of liquid bulk properties, over a wide range of temperatures. Beyond bulk properties, we show that OPC3 predicts the intrinsic charge hydration asymmetry (CHA) of water — a characteristic dependence of hydration free energy on the sign of the solute charge — in very close agreement with experiment. Two other recent 3-point rigid water models, TIP3PFB and H2ODC, each developed by its own, completely different optimization method, approach the global accuracy optimum represented by OPC3 in both the parameter space and accuracy of bulk properties. Thus, we argue that an accuracy limit of practical 3-point rigid non-polarizable models has effectively been reached; remaining accuracy issues are discussed.

  5. Flexible thermoplastic composite of Polyvinyl Butyral (PVB and waste of rigid Polyurethane foam

    Directory of Open Access Journals (Sweden)

    Marilia Sônego

    2015-04-01

    Full Text Available This study reports the preparation and characterization of composites with recycled poly(vinyl butyral (PVB and residue of rigid polyurethane foam (PUr, with PUr contents of 20, 35 and 50 wt %, using an extruder equipped with a Maillefer single screw and injection molding. The components of the composites were thermally characterized using differential scanning calorimetry (DSC and thermogravimetry. The composites were evaluated by melt flow index (MFI, tensile and hardness mechanical tests and scanning electron microscopy (SEM. Tg determined by DSC of PVB sample (53 °C indicated the presence of plasticizer (Tg of pure PVB is 70 °C. MFI of the composites indicated a viscosity increase with the PUr content and, as the shear rate was held constant during injection molding, higher viscosities promoted higher shear stresses in the composites, thereby causing breaking or tearing of the PUr particles. The SEM micrographs showed low adhesion between PVB and PUr and the presence of voids, both inherent in the rigid foam and in the interphase PVB-PUr. The SEM micrographs also showed that PVB/PUr (50/50 composite exhibited the smallest particle size and a more homogeneous and compact structure with fewer voids in the interface. The stiffness of the composites increases with addition of the PUr particles, as evidenced in the mechanical tests.

  6. Verification of the Rigidity of the Coulomb Field in Motion

    Science.gov (United States)

    Blinov, S. V.; Bulyzhenkov, I. É.

    2018-06-01

    Laplace, analyzing the stability of the Solar System, was the first to calculate that the velocity of the motion of force fields can significantly exceed the velocity of light waves. In electrodynamics, the Coulomb field should rigidly accompany its source for instantaneous force action in distant regions. Such rigid motion was recently inferred from experiments at the Frascati Beam Test Facility with short beams of relativistic electrons. The comments of the authors on their observations are at odds with the comments of theoreticians on retarded potentials, which motivates a detailed study of the positions of both sides. Predictions of measurements, based on the Lienard-Wiechert potentials, are used to propose an unambiguous scheme for testing the rigidity of the Coulomb field. Realization of the proposed experimental scheme could independently refute or support the assertions of the Italian physicists regarding the rigid motion of Coulomb fields and likewise the nondual field approach to macroscopic reality.

  7. Method of hyperspherical functions in a few-body quantum mechanics

    International Nuclear Information System (INIS)

    Dzhibuti, R.I.; Krupennikova, N.B.

    1984-01-01

    A new method for solving a few-body problem in quantum mechanics based on the expansion of the wave function of many-particle system in terms of basis hyperspherical functions is outlined in the monograph. This method gives the possibility to obtain important results in nuclear physics. A materials of general character is presented which can be useful when considering a few-body problem in atomic and molecular physics as well as in elementary particle physics. The paper deals with the theory of hyperspherical functions and the method of expansion in terms of hyperspherical functions basis can be formally considered as a certain generalization of the partial expansion method in the two-body problem. The Raynal-Revai theory is stated for the three-body problem and coe-- fficients of unitary transformations for four-particle hyperspherical function coefficients are introduced. Five-particle hyperspherical functions are introduced and an attempt of generalization of the theory for the systems With any number of particles has been made. The rules of plotting symmetrized hyperspherical functions for three and four identical particles are given. Also described is the method of expansion in terms of hyperspherical functions basis in the coordinate and impulse representations for discrete and continuous spectrum, respectively

  8. Facilitating Transitional Processes in Rigid Institutional Regimes for Water Management and Wetland Conservation: Experience from the Guadalquivir Estuary

    Directory of Open Access Journals (Sweden)

    Pablo F. Méndez

    2012-03-01

    Full Text Available Traditional policies for water resources management and wetland conservation are often based on command-and-control approaches. The latter tend to drive the human-wetland-water system into pathological states, characterized by more vulnerable ecosystems and rigid institutions for governance. The overcoming of these states may rest in the development of flexible and adaptive institutional regimes that rely on adaptive governance and management. Because past factors might constrain the implementation of more flexible adaptive approaches to management, it is important to understand the historical mechanisms underlying the genesis of institutional rigidity. We first present the results of a historical analysis of Doñana, which can be characterized as a pathological water socio-ecosystem governed through rigid institutional regimes for water resources management and wetland conservation. In a second step, we analyze the advances achieved during a recent, large-scale restoration program for the Doñana wetlands, which adhered explicitly to the tenets of adaptive management. Our analysis indicated that the historical persistence of command-and-control approaches has been a path-dependent process that led to the emergence of a rigid institutional regime and caused it to enter a rigidity trap. However, the achievements of the restoration program suggest that a more flexible and adaptive regime could be developed through the introduction of adaptive management at the operational levels, using specifically tailored action research programs. To conclude, we speculate that the research strategy outlined could be extended to comply with, or complement, the requirements of the EU's Water Framework Directive in other European water socio-ecosystems.

  9. Mechanisms of Earth activity forsed by external celestial bodies:energy budjet and nature of cyclicity

    Science.gov (United States)

    Barkin, Yu. V.; Ferrandiz, J. M.

    2003-04-01

    In given report we discuss tidal and non-tidal mechanisms of forced tectonic (endogenous) activity of the Earth caused by gravitational attraction of the Moon, Sun and the planets. On the base of the classical solution of the problem of elasticity for model of the Earth with concentric mass distribution the evaluations of the tidal energy and power of Earth lunar-solar deformations, including their joint effect, were obtained. Important role of the joint energetic effect of rotational deformation of the Earth with lunar and solar tides was illustrated. Gravitational interaction of the Moon and Sun with non-spherical, non-homogeneous shells of the Earth generates big additional mechanical forces and moments of the interaction of the neighboring shells (rigid core, liquid core, mantle, lithosphere and separate plates). Acting of these forces and moments in the different time scales on the corresponding sells generates cyclic perturbations of the tensional state of the shells, their deformations, small relative translational displacements and small relative rotational oscillations of the shells. In geological period of time it leads to a fundamental tectonic reconstruction of the Earth. These additional forces and moments of the cyclic celestial-mechanical nature produce cyclic deformations of the all layers of the body and organize and control practically all natural processes. The additional force between mantle and core is cyclic and characterized by the wide basis of frequencies typical for orbital motions (of the Sun, Moon and planets), for rotational motion of the Earth, Moon and Sun and for many from observed natural processes. The problem about small relative translatory-rotary motion of the two shells separated by the thin viscous-elastic layer is studied. The differential equations of motion were obtained and have been studied in particular cases (plane motion of system; case of two axisymmetrical interacting shells and oth.) by approximate methods of small

  10. Financial Constraints and Nominal Price Rigidities

    DEFF Research Database (Denmark)

    Menno, Dominik Francesco; Balleer, Almut; Hristov, Nikolay

    This paper investigates how financial market imperfections and the frequency of price adjustment interact. Based on new firm-level evidence for Germany, we document that financially constrained firms adjust prices more often than their unconstrained counterparts, both upwards and downwards. We show...... that these empirical patterns are consistent with a partial equilibrium menu-cost model with a working capital constraint. We then use the model to show how the presence of financial frictions changes profits and the price distribution of firms compared to a model without financial frictions. Our results suggest...... that tighter financial constraints are associated with higher nominal rigidities, higher prices and lower output. Moreover, in response to aggregate shocks, aggregate price rigidity moves substantially, the response of inflation is dampened, while output reacts more in the presence of financial frictions...

  11. Nonlinear mechanics of surface growth for cylindrical and spherical elastic bodies

    Science.gov (United States)

    Sozio, Fabio; Yavari, Arash

    2017-01-01

    In this paper we formulate the initial-boundary value problems of accreting cylindrical and spherical nonlinear elastic solids in a geometric framework. It is assumed that the body grows as a result of addition of new (stress-free or pre-stressed) material on part of its boundary. We construct Riemannian material manifolds for a growing body with metrics explicitly depending on the history of applied external loads and deformation during accretion and the growth velocity. We numerically solve the governing equilibrium equations in the case of neo-Hookean solids and compare the accretion and residual stresses with those calculated using the linear mechanics of surface growth.

  12. Rigid supersymmetry with boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, D.V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Van Nieuwenhuizen, P. [State Univ. of New York, Stony Brook, NY (United States). C.N. Yang Inst. for Theoretical Physics

    2008-01-15

    We construct rigidly supersymmetric bulk-plus-boundary actions, both in x-space and in superspace. For each standard supersymmetric bulk action a minimal supersymmetric bulk-plus-boundary action follows from an extended F- or D-term formula. Additional separately supersymmetric boundary actions can be systematically constructed using co-dimension one multiplets (boundary superfields). We also discuss the orbit of boundary conditions which follow from the Euler-Lagrange variational principle. (orig.)

  13. Frontal Tasks and Behavior in Rigid or Tremor-Dominant Parkinson Disease.

    Science.gov (United States)

    Moretti, Rita; Milner, Vera; Caruso, Paola; Gazzin, Silvia; Rumiati, Raffaella

    2017-08-01

    Parkinson disease (PD) is not an unambiguous entity, and there is a general consensus for the statement that an akinetic-rigid dominant type of presentation has a worse prognosis, in the follow-up. The aim of our study was to examine the differences in frontal tasks and behavior, in 2 PD naive groups: the rigid and the tremor-dominant types of presentation, according to motor scores. Our study has showed some important differences in frontal tasks and in behavior, performing more apathy, aggressiveness, and irritability in the rigid type, and more depression and anxiety in the tremor-dominant type. The former group causes the caregiver more distress and has a very rapid disease progression. It can be argued that rigid type PD presentation needs specific dedicated cares and more strong clinical attention.

  14. Mechanisms of taurine hyperexcretion after whole-body irradiation of rats

    International Nuclear Information System (INIS)

    Beskrovnaya, L.A.; Lapteva, T.A.; Dokshina, G.A.; Baranova, M.I.

    1976-01-01

    Mechanisms of postirradiation hyperexcretion of taurine with urine have been investigated. In the course of three days after a whole-body exposure of rats (700 rads), the excretion of taurine increases. The experiments in vitro have demonstrated that taurine synthesis decreases in the thymus and liver of irradiated animals. The experiments conducted have shown that the postirradiation hyperexcretion of taurine is partly due to its release from the lymohoid tissue (thymus)

  15. Non-rigid image registration using bone growth model

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten; Gramkow, Claus; Kreiborg, Sven

    1997-01-01

    Non-rigid registration has traditionally used physical models like elasticity and fluids. These models are very seldom valid models of the difference between the registered images. This paper presents a non-rigid registration algorithm, which uses a model of bone growth as a model of the change...... between time sequence images of the human mandible. By being able to register the images, this paper at the same time contributes to the validation of the growth model, which is based on the currently available medical theories and knowledge...

  16. Your body mechanics in motion : proactive training for stepping, handling, lifting

    Energy Technology Data Exchange (ETDEWEB)

    Hanchara, L.; Strong, J. [Kinetic Safety Consulting Inc., Grande Prairie, AB (Canada)

    2007-07-01

    Over a third of all injuries in the oil and gas industry are caused by strains. Nearly 50 per cent of back injuries in the industry are reported by workers on the job for less than 6 months. This presentation provided details of Mechanics in Motion, a program designed to promote proactive and safe conditions for workers in the petroleum industry. The program presented methods of improving posture when lifting, stepping, reaching, and carrying. The program was created in 2005 in order to serve as a preventative tool in the oilfield. Outlines of body fulcrums and levers were presented, as well as the types of joints that are most prone to workplace injuries. Field and office ergonomics were reviewed, and various correct lifting techniques were presented. Worksite warm-up programs were provided, as well as a set of stretches designed specifically for the back. It was concluded that understanding oilfield ergonomics and the mechanical principles of the body may help to prevent injuries in the workplace. tabs., figs.

  17. A mathematical high bar-human body model for analysing and interpreting mechanical-energetic processes on the high bar.

    Science.gov (United States)

    Arampatzis, A; Brüggemann, G P

    1998-12-01

    The aims of this study were: 1. To study the transfer of energy between the high bar and the gymnast. 2. To develop criteria from the utilisation of high bar elasticity and the utilisation of muscle capacity to assess the effectiveness of a movement solution. 3. To study the influence of varying segment movement upon release parameters. For these purposes a model of the human body attached to the high bar (high bar-human body model) was developed. The human body was modelled using a 15-segment body system. The joint-beam element method (superelement) was employed for modelling the high bar. A superelement consists of four rigid segments connected by joints (two Cardan joints and one rotational-translational joint) and springs (seven rotation springs and one tension-compression spring). The high bar was modelled using three superelements. The input data required for the high bar human body model were collected with video-kinematographic (50 Hz) and dynamometric (500 Hz) techniques. Masses and moments of inertia of the 15 segments were calculated using the data from the Zatsiorsky et al. (1984) model. There are two major phases characteristic of the giant swing prior to dismounts from the high bar. In the first phase the gymnast attempts to supply energy to the high bar-humanbody system through muscle activity and to store this energy in the high bar. The difference between the energy transferred to the high bar and the reduction in the total energy of the body could be adopted as a criterion for the utilisation of high bar elasticity. The energy previously transferred into the high bar is returned to the body during the second phase. An advantageous increase in total body energy at the end of the exercise could only be obtained through muscle energy supply. An index characterising the utilisation of muscle capacity was developed out of the difference between the increase in total body energy and the energy returned from the high bar. A delayed and initially slow but

  18. Evaluating the reliability of multi-body mechanisms: A method considering the uncertainties of dynamic performance

    International Nuclear Information System (INIS)

    Wu, Jianing; Yan, Shaoze; Zuo, Ming J.

    2016-01-01

    Mechanism reliability is defined as the ability of a certain mechanism to maintain output accuracy under specified conditions. Mechanism reliability is generally assessed by the classical direct probability method (DPM) derived from the first order second moment (FOSM) method. The DPM relies strongly on the analytical form of the dynamic solution so it is not applicable to multi-body mechanisms that have only numerical solutions. In this paper, an indirect probability model (IPM) is proposed for mechanism reliability evaluation of multi-body mechanisms. IPM combines the dynamic equation, degradation function and Kaplan–Meier estimator to evaluate mechanism reliability comprehensively. Furthermore, to reduce the amount of computation in practical applications, the IPM is simplified into the indirect probability step model (IPSM). A case study of a crank–slider mechanism with clearance is investigated. Results show that relative errors between the theoretical and experimental results of mechanism reliability are less than 5%, demonstrating the effectiveness of the proposed method. - Highlights: • An indirect probability model (IPM) is proposed for mechanism reliability evaluation. • The dynamic equation, degradation function and Kaplan–Meier estimator are used. • Then the simplified form of indirect probability model is proposed. • The experimental results agree well with the predicted results.

  19. Mechanical Control of Whole Body Shape by a Single Cuticular Protein Obstructor-E in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Reiko Tajiri

    2017-01-01

    Full Text Available Body shapes are much more variable than body plans. One way to alter body shapes independently of body plans would be to mechanically deform bodies. To what extent body shapes are regulated physically, or molecules involved in physical control of morphogenesis, remain elusive. During fly metamorphosis, the cuticle (exoskeleton covering the larval body contracts longitudinally and expands laterally to become the ellipsoidal pupal case (puparium. Here we show that Drosophila melanogaster Obstructor-E (Obst-E is a protein constituent of the larval cuticle that confers the oriented contractility/expandability. In the absence of obst-E function, the larval cuticle fails to undergo metamorphic shape change and finally becomes a twiggy puparium. We present results indicating that Obst-E regulates the arrangement of chitin, a long-chain polysaccharide and a central component of the insect cuticle, and directs the formation of supracellular ridges on the larval cuticle. We further show that Obst-E is locally required for the oriented shape change of the cuticle during metamorphosis, which is associated with changes in the morphology of those ridges. Thus, Obst-E dramatically affects the body shape in a direct, physical manner by controlling the mechanical property of the exoskeleton.

  20. A New Trend in the Management of Esophageal Foreign Body: Transnasal Esophagoscopy.

    Science.gov (United States)

    Shih, Chun-Wen; Hao, Chung-Yu; Wang, Yu-Jung; Hao, Sheng-Po

    2015-08-01

    (1) To analyze the outcomes of patients with esophageal foreign body managed by transnasal esophagoscopy. (2) To review the value of lateral neck X-ray. Case series with chart review. Tertiary referral center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan. Lateral neck X-ray was used for initial screening in patients suspected of having an esophageal foreign body between 2007 and 2013. Rigid esophagoscopy was used as standard for further investigations before July 2010 and transnasal esophagoscopy after July 2010. From January 2007 to June 2010, 43 patients who were suspected of having an esophageal foreign body under lateral neck X-ray received rigid esophagoscopy, 31 of whom were found to have an esophageal foreign body. From July 2010 to December 2013, 302 patients underwent transnasal esophagoscopy, and an esophageal foreign body was noted in only 52 of these patients. In the 302 patients who underwent transnasal esophagoscopy, the sensitivity and specificity of having an esophageal foreign body by lateral neck X-ray were 59% and 83%, respectively. The introduction of transnasal esophagoscopy has changed the diagnosis and management for an esophageal foreign body. Transnasal esophagoscopy is a quick and safe procedure that can be performed under local anesthesia. Transnasal esophagoscopy could replace lateral neck X-ray to become the initial screening procedure and a useful treatment for patients with an esophageal foreign body. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  1. Parental employment and children's body weight: Mothers, others, and mechanisms.

    Science.gov (United States)

    Ziol-Guest, Kathleen M; Dunifon, Rachel E; Kalil, Ariel

    2013-10-01

    A robust body of literature spanning several countries indicates a positive association between maternal employment and child body mass index (BMI). Fewer studies have examined the role of paternal employment. More importantly, little empirical work examines the mechanisms that might explain the relationships between parental employment and children's BMI. Our paper tests the relationship between the cumulative experience of maternal and spouse employment over a child's lifetime and that child's BMI, overweight, and obesity at age 13 or 14. We further examine several mechanisms that may explain these associations. We use data from the U.S. National Longitudinal Survey of Youth (NLSY79) merged mother-child file on cohorts of children who were born during a period of dramatic increase in both childhood obesity and maternal employment. We find that the number of hours that highly-educated mothers work over her child's lifetime is positively and statistically significantly associated with her child's BMI and risk of overweight at ages 13 or 14. The work hours of mothers' spouses and partners, on the other hand, are not significantly associated with these outcomes. Results suggest that, for children of highly-educated mothers, the association between maternal work hours and child BMI is partially mediated by television viewing time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Towards Sub-Microarsecond Rigid Earth Nutation Series in the Hamiltonian Theory

    National Research Council Canada - National Science Library

    Souchay, Jean; Folgueira, M

    2000-01-01

    ...) are based on the works of Kinoshita (1977) and Wahr (1979). In Kinoshita's work, the rigid Earth nutation series were calculated by the application of the Hamiltonian canonical equations to the rotation of the rigid and elliptical Earth...

  3. Three-dimensional solutions of the magnetohydrostatic equations for rigidly rotating magnetospheres in cylindrical coordinates

    Science.gov (United States)

    Wilson, F.; Neukirch, T.

    2018-01-01

    We present new analytical three-dimensional solutions of the magnetohydrostatic equations, which are applicable to the co-rotating frame of reference outside a rigidly rotating cylindrical body, and have potential applications to planetary magnetospheres and stellar coronae. We consider the case with centrifugal force only, and use a transformation method in which the governing equation for the "pseudo-potential" (from which the magnetic field can be calculated) becomes the Laplace partial differential equation. The new solutions extend the set of previously found solutions to those of a "fractional multipole" nature, and offer wider possibilities for modelling than before. We consider some special cases, and present example solutions.

  4. Evolution of flexural rigidity according to the cross-sectional dimension of a superelastic nickel titanium orthodontic wire.

    Science.gov (United States)

    Garrec, Pascal; Tavernier, Bruno; Jordan, Laurence

    2005-08-01

    The choice of the most suitable orthodontic wire for each stage of treatment requires estimation of the forces generated. In theory, the selection of wire sequences should initially utilize a lower flexural rigidity; thus clinicians use smaller round cross-sectional dimension wires to generate lighter forces during the preliminary alignment stage. This assessment is true for conventional alloys, but not necessarily for superelastic nickel titanium (NiTi). In this case, the flexural rigidity dependence on cross-sectional dimension differs from the linear elasticity prediction because of the martensitic transformation process. It decreases with increasing deflection and this phenomenon is accentuated in the unloading process. This behaviour should lead us to consider differently the biomechanical approach to orthodontic treatment. The present study compared bending in 10 archwires made from NiTi orthodontics alloy of two cross-sectional dimensions. The results were based on microstructural and mechanical investigations. With conventional alloys, the flexural rigidity was constant for each wire and increased largely with the cross-sectional dimension for the same strain. With NiTi alloys, the flexural rigidity is not constant and the influence of size was not as important as it should be. This result can be explained by the non-constant elastic modulus during the martensite transformation process. Thus, in some cases, treatment can begin with full-size (rectangular) wires that nearly fill the bracket slot with a force application deemed to be physiologically desirable for tooth movement and compatible with patient comfort.

  5. Rigid missiles impact on reinforced concrete structures: analysis by discrete element method

    International Nuclear Information System (INIS)

    Shiu, W.J.

    2008-10-01

    The constructions likely to be subjected to some extreme loadings like reactor containment buildings have to be dimensioned accordingly. As a part of study of concrete structures, this thesis focuses on numerical modelling of rigid missile impacts against a rigid reinforced concrete slab. Based on some experiment tests data, an elasto-plastic-damaged constitutive law has been implanted into a discrete element numerical code. To calibrate certain parameters of the numerical model, some quasi static tests have been first simulated. Once the model calibration was done, some missile impact simulation tests have then been carried out. The numerical results are well agree with these provided by French Atomic Energy Agency (Cea) and the French Electrical power Company (EDF) in terms of the trajectory of the missile. We were able to show the need of a constitutive law taking into account the compaction behaviour of the concrete when the predictions of penetration and perforation of a thick slab was demanded. Finally, a parametric study confirmed that the numerical model can be used the way predictive as well as the empirical prediction law, while the first can provide additional significant mechanical description. (author)

  6. Rigid two-axis MEMS force plate for measuring cellular traction force

    International Nuclear Information System (INIS)

    Takahashi, Hidetoshi; Jung, Uijin G; Shimoyama, Isao; Kan, Tetsuo; Tsukagoshi, Takuya; Matsumoto, Kiyoshi

    2016-01-01

    Cellular traction force is one of the important factors for understanding cell behaviors, such as spreading, migration and differentiation. Cells are known to change their behavior according to the mechanical stiffness of the environment. However, the measurement of cell traction forces on a rigid environment has remained difficult. This paper reports a micro-electromechanical systems (MEMS) force plate that provides a cellular traction force measurement on a rigid substrate. Both the high force sensitivity and high stiffness of the substrate were obtained using piezoresistive sensing elements. The proposed force plate consists of a 70 µ m  ×  15 µ m  ×  5 µ m base as the substrate for cultivating a bovine aortic smooth muscle cell, and the supporting beams with piezoresistors on the sidewall and the surface were used to measure the forces in both the horizontal and vertical directions. The spring constant and force resolution of the fabricated force plate in the horizontal direction were 0.2 N m −1 and less than 0.05 µ N, respectively. The cell traction force was measured, and the traction force increased by approximately 1 µ N over 30 min. These results demonstrate that the proposed force plate is applicable as an effective traction force measurement. (paper)

  7. Experimental consequences of predicted charge rigidity of superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, J.E., E-mail: jhirsch@ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093-0319 (United States)

    2012-08-15

    The theory of hole superconductivity predicts that in superconductors the charged superfluid is about a million times more rigid than the normal electron fluid. We point out that this physics should give rise to large changes in the bulk and surface plasmon dispersion relations of metals entering the superconducting state, that have not yet been experimentally detected and would be in stark contradiction with the expected behavior within conventional BCS-London theory. We also propose that this explains the puzzling experimental observations of Avramenko et al. on electron sound propagation in superconductors and the puzzling experiments of de Heer et al. detecting large electric dipole moments in small metal clusters, as well as the Tao effect on aggregation of superconducting microparticles in an electric field. Associated with the enhanced charge rigidity is a large increase in the electric screening length of superconductors at low temperatures that has not yet been experimentally detected. The physical origin of the enhanced charge rigidity and its relation to other aspects of the theory of hole superconductivity is discussed.

  8. Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells

    Science.gov (United States)

    Arshi, Armin; Nakashima, Yasuhiro; Nakano, Haruko; Eaimkhong, Sarayoot; Evseenko, Denis; Reed, Jason; Stieg, Adam Z.; Gimzewski, James K.; Nakano, Atsushi

    2013-04-01

    While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell-cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examine the role of matrix rigidity on cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using a genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal β- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes.

  9. Evaluation for rigidity of box construction of nuclear reactor building

    International Nuclear Information System (INIS)

    Yamakawa, Tetsuo

    1979-01-01

    A huge box-shaped structure (hereafter, called box construction) of reinforced concrete is presently utilized as the reactor building structure in nuclear power plants. Evaluation of the rigidity of the huge box construction is required for making a vibration analysis model of nuclear reactor buildings. It is necessary to handle the box construction as the plates to which the force in plane is applied. This paper describes that the bending theory in elementary beam theory is equivalent to a peculiar, orthogonally anisotropic plate, the shearing rigidity and film rigidity in y direction of which are put to infinity and the Poisson's ratio is put to zero, viewed from the two-dimensional theory of elasticity. The form factor of 1.2 for shearing deformation in rectangular cross section was calculated from the parabolic distribution of shearing stress intensity, and it is the maximum value. The factor is equal to 1.2 for slender beams, but smaller than 1.2 for short and thick beams, having tendency to converge to 1.0. The non-conformity of boundary conditions regarding the shearing force at the both ends of cantilevers does not affect very seriously the evaluation of shearing rigidity. From the above results, it was found that the application of the theory to the box construction was able to give the rigidity evaluation with sufficient engineering accuracy. The theory can also be applied to the evaluation of tube type ultrahigh buildings. (Wakatsuki, Y.)

  10. Existence of time-periodic weak solutions to the stochastic Navier-Stokes equations around a moving body

    International Nuclear Information System (INIS)

    Chen, Feng; Han, Yuecai

    2013-01-01

    The existence of time-periodic stochastic motions of an incompressible fluid is obtained. Here the fluid is subject to a time-periodic body force and an additional time-periodic stochastic force that is produced by a rigid body moves periodically stochastically with the same period in the fluid

  11. Existence of time-periodic weak solutions to the stochastic Navier-Stokes equations around a moving body

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Feng, E-mail: chenfengmath@163.com, E-mail: hanyc@jlu.edu.cn; Han, Yuecai, E-mail: chenfengmath@163.com, E-mail: hanyc@jlu.edu.cn [School of Mathematics, Jilin University, Changchun 130012 (China)

    2013-12-15

    The existence of time-periodic stochastic motions of an incompressible fluid is obtained. Here the fluid is subject to a time-periodic body force and an additional time-periodic stochastic force that is produced by a rigid body moves periodically stochastically with the same period in the fluid.

  12. Frictionless contact of a rigid punch indenting a transversely isotropic elastic layer

    Directory of Open Access Journals (Sweden)

    Rajesh Patra

    2016-03-01

    Full Text Available This article is concerned with the study of frictionless contact between a rigid punch and a transversely isotropic elastic layer. The rigid punch is assumed to be axially symmetric and is being pressed towards the layer by an applied concentrated load. The layer is resting on a rigid base and is assumed to be ufficiently thick in comparison with the amount of indentation by the rigid punch. The relationship between the applied load $P$ and the contact area is obtained by solving the mathematically formulated problem through use of Hankel transform of different order. Effect of indentation on the distribution of normal stress at the surface as well as the relationship between the applied load and the area of contact have been shown graphically.

  13. Superplastic flow of two-phase ceramics containing rigid inclusions-zirconia/mullite composites

    International Nuclear Information System (INIS)

    Yoon, C.K.; Chen, I.W.

    1990-01-01

    A continuum theory for non-newtonian flow of a two-phase composite containing rigid inclusions is presented. It predicts flow suppression by a factor of (1 - V) q , where V is the volume fraction of the rigid inclusion and q depends on the stress exponent and the inclusion shape. Stress concentrations in the rigid inclusion have also been evaluated. As the stress exponent increases, flow suppression is more pronounced even though stress concentration is less severe. To test this theory, superplastic flow of zirconia/mullite composites, in which zirconia is a soft, non-Newtonian super-plastic matrix and mullite is a rigid phase of various size, shape, and amount, is studied. The continuum theory is found to describe the two-phase superplastic flow reasonably well

  14. Extreme Mechanics in Soft Pneumatic Robots and Soft Microfluidic Electronics and Sensors

    Science.gov (United States)

    Majidi, Carmel

    2012-02-01

    In the near future, machines and robots will be completely soft, stretchable, impact resistance, and capable of adapting their shape and functionality to changes in mission and environment. Similar to biological tissue and soft-body organisms, these next-generation technologies will contain no rigid parts and instead be composed entirely of soft elastomers, gels, fluids, and other non-rigid matter. Using a combination of rapid prototyping tools, microfabrication methods, and emerging techniques in so-called ``soft lithography,'' scientists and engineers are currently introducing exciting new families of soft pneumatic robots, soft microfluidic sensors, and hyperelastic electronics that can be stretched to as much as 10x their natural length. Progress has been guided by an interdisciplinary collection of insights from chemistry, life sciences, robotics, microelectronics, and solid mechanics. In virtually every technology and application domain, mechanics and elasticity have a central role in governing functionality and design. Moreover, in contrast to conventional machines and electronics, soft pneumatic systems and microfluidics typically operate in the finite deformation regime, with materials stretching to several times their natural length. In this talk, I will review emerging paradigms in soft pneumatic robotics and soft microfluidic electronics and highlight modeling and design challenges that arise from the extreme mechanics of inflation, locomotion, sensor operation, and human interaction. I will also discuss perceived challenges and opportunities in a broad range of potential application, from medicine to wearable computing.

  15. Visual diet versus associative learning as mechanisms of change in body size preferences.

    Directory of Open Access Journals (Sweden)

    Lynda G Boothroyd

    Full Text Available Systematic differences between populations in their preferences for body size may arise as a result of an adaptive 'prepared learning' mechanism, whereby cues to health or status in the local population are internalized and affect body preferences. Alternatively, differences between populations may reflect their 'visual diet' as a cognitive byproduct of mere exposure. Here we test the relative importance of these two explanations for variation in body preferences. Two studies were conducted where female observers were exposed to pictures of high or low BMI women which were either aspirational (healthy, attractive models in high status clothes or non-aspirational (eating disordered patients in grey leotards, or to combinations thereof, in order to manipulate their body-weight preferences which were tested at baseline and at post-test. Overall, results showed good support for visual diet effects (seeing a string of small or large bodies resulted in a change from pre- to post-test whether the bodies were aspirational or not and also some support for the associative learning explanation (exposure to aspirational images of overweight women induced a towards preferring larger bodies, even when accompanied by equal exposure to lower weight bodies in the non-aspirational category. Thus, both influences may act in parallel.

  16. New classes of tough composite materials-Lessons from natural rigid biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, G. [Department of Materials Science and Engineering, Box 352120, University of Washington, Seattle, WA 98195-2120 (United States)]. E-mail: gmayer@u.washington.edu

    2006-09-15

    The structures and properties of a new class of composite materials, containing a predominantly high volume fraction ceramic or glass phase, combined with minor organic (adhesive) phases, have been studied. These composites have unusual combinations of mechanical properties, such as stiffness, strength, and toughness. They are based on the architecture of a rigid natural material, the nacre structure, such as those found in the shells of the abalone Haliotis rufescens, and those of other mollusk shells. The mechanisms underlying these properties have also been studied. Analogs (utilizing high-performance engineering materials), that mimic many of the mechanisms underlying those superior combinations of properties, have been built. The results of the foregoing investigations are discussed. It was found that the toughness of segmented composite beams which have high volume fractions of ceramic (89 v / o) exceeded those of continuous layered beams, as well as the monolithic ceramic (alumina) on which they are based.

  17. New classes of tough composite materials-Lessons from natural rigid biological systems

    International Nuclear Information System (INIS)

    Mayer, G.

    2006-01-01

    The structures and properties of a new class of composite materials, containing a predominantly high volume fraction ceramic or glass phase, combined with minor organic (adhesive) phases, have been studied. These composites have unusual combinations of mechanical properties, such as stiffness, strength, and toughness. They are based on the architecture of a rigid natural material, the nacre structure, such as those found in the shells of the abalone Haliotis rufescens, and those of other mollusk shells. The mechanisms underlying these properties have also been studied. Analogs (utilizing high-performance engineering materials), that mimic many of the mechanisms underlying those superior combinations of properties, have been built. The results of the foregoing investigations are discussed. It was found that the toughness of segmented composite beams which have high volume fractions of ceramic (89 v / o) exceeded those of continuous layered beams, as well as the monolithic ceramic (alumina) on which they are based

  18. Rigid Bodies in Contact

    DEFF Research Database (Denmark)

    Niebe, Sarah Maria

    . A contact point determination method, based on boolean surface maps, is developed to handle collisions between tetrahedral meshes. The novel nonsmooth nonlinear conjugate gradient (NNCG) method is presented. The NNCG method is comparable in terms of accuracy to the state-of-the-art method, projected Gauss...

  19. Rigid-flexible coupling dynamics of three-dimensional hub-beams system

    International Nuclear Information System (INIS)

    Liu Jinyang; Lu Hao

    2007-01-01

    In the previous research of the coupling dynamics of a hub-beam system, coupling between the rotational motion of hub and the torsion deformation of beam is not taken into account since the system undergoes planar motion. Due to the small longitudinal deformation, coupling between the rotational motion of hub and the longitudinal deformation of beam is also neglected. In this paper, rigid-flexible coupling dynamics is extended to a hub-beams system with three-dimensional large overall motion. Not only coupling between the large overall motion and the bending deformation, but also coupling between the large overall motion and the torsional deformation are taken into account. In case of temperature increase, the longitudinal deformation caused by the thermal expansion is significant, such that coupling between the large overall motion and the longitudinal deformation is also investigated. Combining the characteristics of the hybrid coordinate formulation and the absolute nodal coordinate formulation, the system generalized coordinates include the relative nodal displacement and the slope of each beam element with respect to the body-fixed frame of the hub, and the variables related to the spatial large overall motion of the hub and beams. Based on precise strain-displacement relation, the geometric stiffening effect is taken into account, and the rigid-flexible coupling dynamic equations are derived using velocity variational principle. Finite element method is employed for discretization. Simulation of a hub-beams system is used to show the coupling effect between the large overall motion and the torsional deformation as well as the longitudinal deformation. Furthermore, conservation of energy in case of free motion is shown to verify the formulation

  20. Complete subglottic tracheal stenosis managed with rigid bronchoscopy and T-tube placement

    Directory of Open Access Journals (Sweden)

    Kuruswamy Thurai Prasad

    2016-01-01

    Full Text Available Surgery is the preferred treatment modality for benign tracheal stenosis. Interventional bronchoscopy is used as a bridge to surgery or in instances when surgery is not feasible or has failed. Stenosis in the subglottic trachea is particularly a treatment challenge, in view of its proximity to the vocal cords. Herein, we describe a patient with complete tracheal stenosis in the subglottic region, which developed after prolonged intubation and mechanical ventilation. The patient developed recurrent stenosis despite multiple surgical and endoscopic procedures. We were able to manage the patient successfully with rigid bronchoscopy and Montgomery T-tube placement.

  1. On the mechanical prototypes of fundamental hydrodynamic invariants and slow manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Dolzhansky, Feliks V

    2005-12-31

    Arnol'd's group-theoretical concept of generalized rigid body includes the Euler equations of motion of the classical gyroscope and ideal homogeneous fluid as particular representatives. Here, this concept is extended to motion in force fields with a scalar or vector potential and in a Coriolis force field. The concepts of generalized heavy top and generalized MHD system are introduced. As particular cases, they include, on the one hand, the Euler-Poisson equations of the classical heavy top and the Kirchhoff equations of motion of a solid body in a potential flow of an ideal incompressible fluid and, on the other hand, the Oberbeck-Boussinesq equations of motion of a heavy fluid and MHD equations. On this basis, mechanical prototypes are constructed for all known fundamental hydrodynamic invariants and global geophysical flows, including a prototype of the general atmospheric circulation. (reviews of topical problems)

  2. On the mechanical prototypes of fundamental hydrodynamic invariants and slow manifolds

    International Nuclear Information System (INIS)

    Dolzhansky, Feliks V

    2005-01-01

    Arnol'd's group-theoretical concept of generalized rigid body includes the Euler equations of motion of the classical gyroscope and ideal homogeneous fluid as particular representatives. Here, this concept is extended to motion in force fields with a scalar or vector potential and in a Coriolis force field. The concepts of generalized heavy top and generalized MHD system are introduced. As particular cases, they include, on the one hand, the Euler-Poisson equations of the classical heavy top and the Kirchhoff equations of motion of a solid body in a potential flow of an ideal incompressible fluid and, on the other hand, the Oberbeck-Boussinesq equations of motion of a heavy fluid and MHD equations. On this basis, mechanical prototypes are constructed for all known fundamental hydrodynamic invariants and global geophysical flows, including a prototype of the general atmospheric circulation. (reviews of topical problems)

  3. Posttranscriptional mechanisms controlling diurnal gene expression cycles by body temperature rhythms.

    Science.gov (United States)

    Gotic, Ivana; Schibler, Ueli

    2017-10-03

    In mammals, body temperature oscillates in a daily fashion around a set point of 36°C-37°C. These fluctuations are controlled by the circadian master clock residing in the brain's suprachiasmatic nucleus and, despite their small amplitudes, contribute to the diurnal expression of genes throughout the organism. By focusing on the mechanisms underlying the temperature-dependent accumulation of the cold-inducible RNA-binding protein CIRBP - a factor involved in the tuning of amplitude and phase in circadian clocks of peripheral tissues - we have recently identified a novel mechanism governing temperature-dependent gene expression. This mechanism involves the differential spicing efficiency of primary RNA transcripts under different temperature conditions and thereby determines the fraction of Cirbp pre-mRNA processed into mature mRNA. A genome-wide transcriptome analysis revealed that this mechanism affects the output of hundreds of genes. Here we discuss our findings and future directions toward the identification of specific factors and parameters governing temperature-sensitive splicing efficacy.

  4. Extracting a Purely Non-rigid Deformation Field of a Single Structure

    Science.gov (United States)

    Demirci, Stefanie; Manstad-Hulaas, Frode; Navab, Nassir

    During endovascular aortic repair (EVAR) treatment, the aortic shape is subject to severe deformation that is imposed by medical instruments such as guide wires, catheters, and the stent graft. The problem definition of deformable registration of images covering the entire abdominal region, however, is highly ill-posed. We present a new method for extracting the deformation of an aneurysmatic aorta. The outline of the procedure includes initial rigid alignment of two abdominal scans, segmentation of abdominal vessel trees, and automatic reduction of their centerline structures to one specified region of interest around the aorta. Our non-rigid registration procedure then only computes local non-rigid deformation and leaves out all remaining global rigid transformations. In order to evaluate our method, experiments for the extraction of aortic deformation fields are conducted on 15 patient datasets from endovascular aortic repair (EVAR) treatment. A visual assessment of the registration results were performed by two vascular surgeons and one interventional radiologist who are all experts in EVAR procedures.

  5. Controlled Wake of a Moving Axisymmetric Bluff Body

    Science.gov (United States)

    Lee, E.; Vukasinovic, B.; Glezer, A.

    2017-11-01

    The aerodynamic loads exerted on a wire-mounted axisymmetric bluff body in prescribed rigid motion are controlled by fluidic manipulation of its near wake. The body is supported by a six-degree of freedom eight-wire traverse and its motion is controlled using a dedicated servo actuator and inline load cell for each wire. The instantaneous aerodynamic forces and moments on the moving body are manipulated by controlled interactions of an azimuthal array of integrated synthetic jet actuators with the cross flow to induce localized flow attachment over the body's aft end and thereby alter the symmetry of the wake. The coupled interactions between the wake structure and the effected aerodynamic loads during prescribed time-periodic and transitory (gust like) motions are investigated with emphasis on enhancing or diminishing the loads for maneuver control, and decoupling the body's motion from its far wake.

  6. Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature

    Science.gov (United States)

    Zhang, Yihui; Webb, Richard Chad; Luo, Hongying; Xue, Yeguang; Kurniawan, Jonas; Cho, Nam Heon; Krishnan, Siddharth; Li, Yuhang; Huang, Yonggang

    2016-01-01

    Long-term, continuous measurement of core body temperature is of high interest, due to the widespread use of this parameter as a key biomedical signal for clinical judgment and patient management. Traditional approaches rely on devices or instruments in rigid and planar forms, not readily amenable to intimate or conformable integration with soft, curvilinear, time-dynamic, surfaces of the skin. Here, materials and mechanics designs for differential temperature sensors are presented which can attach softly and reversibly onto the skin surface, and also sustain high levels of deformation (e.g., bending, twisting, and stretching). A theoretical approach, together with a modeling algorithm, yields core body temperature from multiple differential measurements from temperature sensors separated by different effective distances from the skin. The sensitivity, accuracy, and response time are analyzed by finite element analyses (FEA) to provide guidelines for relationships between sensor design and performance. Four sets of experiments on multiple devices with different dimensions and under different convection conditions illustrate the key features of the technology and the analysis approach. Finally, results indicate that thermally insulating materials with cellular structures offer advantages in reducing the response time and increasing the accuracy, while improving the mechanics and breathability. PMID:25953120

  7. Strategic rigidity and foresight for technology adoption among electric utilities

    International Nuclear Information System (INIS)

    Shah, Arsalan Nisar; Palacios, Miguel; Ruiz, Felipe

    2013-01-01

    The variation in the adoption of a technology as a major source of competitive advantage has been attributed to the wide-ranging strategic foresight and the integrative capability of a firm. These possible areas of competitive advantage can exist in the periphery of the firm's strategic vision and can get easily blurred as a result of rigidness and can permeate in the decision-making process of the firm. This article explores how electric utility firms with a renewable energy portfolio can become strategically rigid in terms of adoption of newer technologies. The reluctance or delay in the adoption of new technology can be characterized as strategic rigidness, brought upon as a result of a firm's core competence or core capability in the other, more conventional technology arrangement. This paper explores the implications of such rigidness on the performance of a firm and consequently on the energy eco-system. The paper substantiates the results by emphasizing the case of Iberdrola S.A., an incumbent firm as a wind energy developer and its adoption decision behavior. We illustrate that the very routines that create competitive advantage for firms in the electric utility industry are vulnerable as they might also develop as sources of competitive disadvantage, when firms confront environmental change and uncertainty. - Highlights: • Present a firm-level perspective on technology adoption behavior among electric utilities. • Firms with mature technology can become rigid towards newer technologies. • Case study analysis of a major electric utility firm. • Implications of ‘technology rigidness’ on the energy eco-system

  8. Dimensionally regularized Tsallis' statistical mechanics and two-body Newton's gravitation

    Science.gov (United States)

    Zamora, J. D.; Rocca, M. C.; Plastino, A.; Ferri, G. L.

    2018-05-01

    Typical Tsallis' statistical mechanics' quantifiers like the partition function and the mean energy exhibit poles. We are speaking of the partition function Z and the mean energy 〈 U 〉 . The poles appear for distinctive values of Tsallis' characteristic real parameter q, at a numerable set of rational numbers of the q-line. These poles are dealt with dimensional regularization resources. The physical effects of these poles on the specific heats are studied here for the two-body classical gravitation potential.

  9. The effect of rigid and non-rigid connections between implants and teeth on biological and technical complications: a systematic review and a meta-analysis.

    Science.gov (United States)

    Tsaousoglou, Phoebus; Michalakis, Konstantinos; Kang, Kiho; Weber, Hans-Peter; Sculean, Anton

    2017-07-01

    To assess survival, as well as technical and biological complication rates of partial fixed dental prostheses (FDPs) supported by implants and teeth. An electronic Medline search was conducted to identify articles, published in dental journals from January 1980 to August 2015, reporting on partial FDPs supported by implants and teeth. The search terms were categorized into four groups comprising the PICO question. Manual searches of published full-text articles and related reviews were also performed. The initial database search produced 3587 relevant titles. Three hundred and eighty-six articles were retrieved for abstract review, while 39 articles were selected for full-text review. A total of 10 studies were selected for inclusion. Overall survival rate for implants ranged between 90% and 100%, after follow-up periods with a mean range of 18-120 months. The survival of the abutment teeth was 94.1-100%, while the prostheses survival was 85-100% for the same time period. The most frequent complications were "periapical lesions" (11.53%). The most frequent technical complication was "porcelain occlusal fracture" (16.6%), followed by "screw loosening" (15%). According to the meta-analysis, no intrusion was noted on the rigid connection group, while five teeth (8.19%) were intruded in the non-rigid connection group [95% CI (0.013-0.151)]. The tooth-implant FDP seems to be a possible alternative to an implant-supported FDP. There is limited evidence that rigid connection between teeth and implants presents better results when compared with the non-rigid one. The major drawback of non-rigidly connected FDPs is tooth intrusion. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Rigid pricing and rationally inattentive consumer

    Czech Academy of Sciences Publication Activity Database

    Matějka, Filip

    2010-01-01

    Roč. 20, č. 2 (2010), s. 1-40 ISSN 1211-3298 R&D Projects: GA MŠk LC542 Institutional research plan: CEZ:AV0Z70850503 Keywords : rational inattention * nominal rigidity Subject RIV: AH - Economics http://www.cerge-ei.cz/pdf/wp/Wp409.pdf

  11. Public policies targeting labour market rigidities

    Directory of Open Access Journals (Sweden)

    Andreea Claudia ŞERBAN

    2013-02-01

    Full Text Available Labour market rigidity becomes an issue of increasing importance under conditions of shocks associated with the economic crisis due to the need to increase the adaptability and responsiveness to them. Thus, labour market policies must be directed towards mitigating rigidities caused by institutional or demographic factors or certain mismatch between demand and supply of education qualifications. This paper highlights the major role of the active labour market policies targeting the increase of labour flexibility, stressing the importance and impact on the ability to adapt quickly and effectively to macroeconomic shocks. Located on a declining trend in the years preceding the crisis, spending on labour market policies increased in 2009 in all the Member States of the European Union. Spending differences are significant between countries, Romania being at the lowest end of the European Union. This requires special attention because the increased adaptability of workers through training, as active measure, is of major importance considering the increased speed of changes in the labour market.

  12. Rigid cohomology over Laurent series fields

    CERN Document Server

    Lazda, Christopher

    2016-01-01

    In this monograph, the authors develop a new theory of p-adic cohomology for varieties over Laurent series fields in positive characteristic, based on Berthelot's theory of rigid cohomology. Many major fundamental properties of these cohomology groups are proven, such as finite dimensionality and cohomological descent, as well as interpretations in terms of Monsky-Washnitzer cohomology and Le Stum's overconvergent site. Applications of this new theory to arithmetic questions, such as l-independence and the weight monodromy conjecture, are also discussed. The construction of these cohomology groups, analogous to the Galois representations associated to varieties over local fields in mixed characteristic, fills a major gap in the study of arithmetic cohomology theories over function fields. By extending the scope of existing methods, the results presented here also serve as a first step towards a more general theory of p-adic cohomology over non-perfect ground fields. Rigid Cohomology over Laurent Series Fields...

  13. Normal Reflection Characteristics of One-Dimensional Unsteady Flow Shock Waves on Rigid Walls from Pulse Discharge in Water

    Directory of Open Access Journals (Sweden)

    Dong Yan

    2017-01-01

    Full Text Available Strong shock waves can be generated by pulse discharge in water, and the characteristics due to the shock wave normal reflection from rigid walls have important significance to many fields, such as industrial production and defense construction. This paper investigates the effects of hydrostatic pressures and perturbation of wave source (i.e., charging voltage on normal reflection of one-dimensional unsteady flow shock waves. Basic properties of the incidence and reflection waves were analyzed theoretically and experimentally to identify the reflection mechanisms and hence the influencing factors and characteristics. The results indicated that increased perturbation (i.e., charging voltage leads to increased peak pressure and velocity of the reflected shock wave, whereas increased hydrostatic pressure obviously inhibited superposition of the reflection waves close to the rigid wall. The perturbation of wave source influence on the reflected wave was much lower than that on the incident wave, while the hydrostatic pressure obviously affected both incident and reflection waves. The reflection wave from the rigid wall in water exhibited the characteristics of a weak shock wave, and with increased hydrostatic pressure, these weak shock wave characteristics became more obvious.

  14. Evaluation of aluminum ultralight rigid wheelchairs versus other ultralight wheelchairs using ANSI/RESNA standards.

    Science.gov (United States)

    Liu, Hsin-yi; Pearlman, Jonathan; Cooper, Rosemarie; Hong, Eun-kyoung; Wang, Hongwu; Salatin, Benjamin; Cooper, Rory A

    2010-01-01

    Previous studies found that select titanium ultralight rigid wheelchairs (TURWs) had fewer equivalent cycles and less value than select aluminum ultralight folding wheelchairs (AUFWs). The causes of premature failure of TURWs were not clear because the TURWs had different frame material and design than the AUFWs. We tested 12 aluminum ultralight rigid wheelchairs (AURWs) with similar frame designs and dimensions as the TURWs using the American National Standards Institute/Rehabilitation Engineering and Assistive Technology Society of North America and International Organization for Standardization wheelchair standards and hypothesized that the AURWs would be more durable than the TURWs. Across wheelchair models, no significant differences were found in the test results between the AURWs and TURWs, except in their overall length. Tire pressure, tube-wall thickness, and tube manufacturing were proposed to be the factors affecting wheelchair durability through comparison of the failure modes, frames, and components. The frame material did not directly affect the performance of AURWs and TURWs, but proper wheelchair manufacture and design based on mechanical properties are important.

  15. Use of beam probes for rigidity calibration of the A1900 fragment separator

    Energy Technology Data Exchange (ETDEWEB)

    Ginter, T.N. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Farinon, F. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Baumann, T. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Hausmann, M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Kwan, E.; Naviliat Cuncic, O. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Portillo, M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Rogers, A.M.; Stetson, J.; Sumithrarachchi, C. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Villari, A.C.C. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Williams, S.J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States)

    2016-06-01

    Use of a beam-based approach is presented for establishing a rigidity calibration for the A1900 fragment separator located at the National Superconducting Cyclotron Laboratory. Also presented is why an alternative approach to the rigidity calibration – using detailed field maps of individual magnetic components – is not a feasible basis for deriving an accurate calibration. The level of accuracy achieved for the rigidity calibration is ±0.1%.

  16. Mechanical generation of spin current

    Directory of Open Access Journals (Sweden)

    Mamoru eMatsuo

    2015-07-01

    Full Text Available We focus the recent results on spin-current generation from mechanical motion such as rigid rotation and elastic deformations. Spin transport theory in accelerating frames is constructed by using the low energy expansion of the generally covariant Dirac equation. Related issues on spin-manipulation by mechanical rotation are also discussed.

  17. A rapid mechanism to remobilize and homogenize highly crystalline magma bodies.

    Science.gov (United States)

    Burgisser, Alain; Bergantz, George W

    2011-03-10

    The largest products of magmatic activity on Earth, the great bodies of granite and their corresponding large eruptions, have a dual nature: homogeneity at the large scale and spatial and temporal heterogeneity at the small scale. This duality calls for a mechanism that selectively removes the large-scale heterogeneities associated with the incremental assembly of these magmatic systems and yet occurs rapidly despite crystal-rich, viscous conditions seemingly resistant to mixing. Here we show that a simple dynamic template can unify a wide range of apparently contradictory observations from both large plutonic bodies and volcanic systems by a mechanism of rapid remobilization (unzipping) of highly viscous crystal-rich mushes. We demonstrate that this remobilization can lead to rapid overturn and produce the observed juxtaposition of magmatic materials with very disparate ages and complex chemical zoning. What distinguishes our model is the recognition that the process has two stages. Initially, a stiff mushy magma is reheated from below, producing a reduction in crystallinity that leads to the growth of a subjacent buoyant mobile layer. When the thickening mobile layer becomes sufficiently buoyant, it penetrates the overlying viscous mushy magma. This second stage rapidly exports homogenized material from the lower mobile layer to the top of the system, and leads to partial overturn within the viscous mush itself as an additional mechanism of mixing. Model outputs illustrate that unzipping can rapidly produce large amounts of mobile magma available for eruption. The agreement between calculated and observed unzipping rates for historical eruptions at Pinatubo and at Montserrat demonstrates the general applicability of the model. This mechanism furthers our understanding of both the formation of periodically homogenized plutons (crust building) and of ignimbrites by large eruptions.

  18. Tracheobronchial Foreign Body Aspiration: Dental Prosthesis

    Directory of Open Access Journals (Sweden)

    Ataman Köse

    2014-01-01

    Full Text Available It is important to extract foreign bodies for avoiding life-threatening complications. They can lead to death if they are not treated. Different signs and symptoms could occur according to the complete or partial airway obstruction. Foreign body aspiration is a rare incident in adults. The organic foreign materials such as foods are found to be aspirated more commonly and are usually settled in the right bronchial system. However, dental prosthesis and teeth aspirations are rare in literature. In our study, a 52-year-old male patient who had aspirated the front part of his lower dental prosthesis accidentally is presented and the foreign body is extracted by using rigid bronchoscopy. There are many causes of aspiration but dental prosthetic aspirations should be kept in mind during sleep. For this reason, dental apparatus must be taken out while asleep.

  19. Few-body problem in celestial mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Dermott, S F [Cornell Univ., Ithaca, NY (USA). Center for Radiophysics and Space Research

    1984-03-26

    The approaches taken by solar system dynamicists to various outstanding problems has changed considerably in recent years. Some problems for which few-body approaches have been tried in the past are now thought to involve collective phenomena. Observed features in Saturn's rings associated with resonances are examples. On the other hand, the problem of the origin of the Kirkwood gaps in the asteroid belt, for which a number of a many-body approaches (involving collisions or gas friction) have been tried, probably has a few-body solution and may involve chaos.

  20. An active cooperation-aware spectrum allocation mechanism for body sensor networks.

    Science.gov (United States)

    Jiang, Fu; Guo, Ying; Peng, Jun; Hu, Jiankun

    2015-01-28

    A cognitive radio-based spectrum allocation scheme using an active cooperative-aware mechanism is proposed in this paper. The scheme ensures that the primary user and secondary users cooperate actively for their own benefits. The primary user releases some spectrum resources to secondary users to actively stimulate them to actively join the cooperative transmission of the primary user, and secondary users help the primary user to relay data in return, as well as its self-data transmission at the same time. The Stackelberg game is used to evenly and jointly optimize the utilities of both the primary and secondary users. Simulation results show that the proposed active cooperation-aware mechanism could improve the body sensor network performance.

  1. Quantum-mechanical few-body scattering equations with half-on-shell energy-independent subsystem input

    International Nuclear Information System (INIS)

    Zeiger, E.M.

    1978-01-01

    New equations are presented for three- and four-body scattering, within the context of nonrelativistic quantum mechanics and a Hamiltonian scattering theory. For the three-body case Faddeev-type equations are presented which, although obtained from the rigorous Faddeev theory, only require two-body bound state wave functions and half-off-shell transition amplitudes as input. In addition, their effective potentials are independent of the three-body energy, and can easily be made real after an angular momentum decomposition. The equations are formulated in terms of physical transition amplitudes for three-body processes, except that in the breakup case the partial-wave amplitudes differ from the corresponding full amplitudes by a Watson final-state-interaction factor. Also presented are new equations for four-body scattering, obtained by generalizing our three-body formalism to the four-body case. These equations, although equivalent to those of Faddeev--Yakubovskii, are expressed in terms of singularity-free transition amplitudes, and their energy-independent effective potentials require only half-on-shell subsystem transition amplitudes (and bound state wave functions) as input. However, due to the detailed index structure of the Faddeev--Yakubovskii formalsim, the result of the generalization is considerably more complicated than in the three-body case

  2. Non-rigid connector: The wand to allay the stresses on abutment

    OpenAIRE

    Banerjee, Saurav; Khongshei, Arlingstone; Gupta, Tapas; Banerjee, Ardhendu

    2011-01-01

    The use of rigid connectors in 5-unit fixed dental prosthesis with a pier abutment can result in failure of weaker retainer in the long run as the pier abutment acts as a fulcrum. Non-rigid connector placed on the distal aspect of pier seems to reduce potentially excess stress concentration on the pier abutment.

  3. Structure of the N-terminal Gyrase B fragment in complex with ADP⋅Pi reveals rigid-body motion induced by ATP hydrolysis.

    Directory of Open Access Journals (Sweden)

    Frédéric V Stanger

    Full Text Available Type II DNA topoisomerases are essential enzymes that catalyze topological rearrangement of double-stranded DNA using the free energy generated by ATP hydrolysis. Bacterial DNA gyrase is a prototype of this family and is composed of two subunits (GyrA, GyrB that form a GyrA2GyrB2 heterotetramer. The N-terminal 43-kDa fragment of GyrB (GyrB43 from E. coli comprising the ATPase and the transducer domains has been studied extensively. The dimeric fragment is competent for ATP hydrolysis and its structure in complex with the substrate analog AMPPNP is known. Here, we have determined the remaining conformational states of the enzyme along the ATP hydrolysis reaction path by solving crystal structures of GyrB43 in complex with ADP⋅BeF3, ADP⋅Pi, and ADP. Upon hydrolysis, the enzyme undergoes an obligatory 12° domain rearrangement to accommodate the 1.5 Å increase in distance between the γ- and β-phosphate of the nucleotide within the sealed binding site at the domain interface. Conserved residues from the QTK loop of the transducer domain (also part of the domain interface couple the small structural change within the binding site with the rigid body motion. The domain reorientation is reflected in a significant 7 Å increase in the separation of the two transducer domains of the dimer that would embrace one of the DNA segments in full-length gyrase. The observed conformational change is likely to be relevant for the allosteric coordination of ATP hydrolysis with DNA binding, cleavage/re-ligation and/or strand passage.

  4. Fluid-Structure Interaction Mechanisms for Close-In Explosions

    Directory of Open Access Journals (Sweden)

    Andrew B. Wardlaw Jr.

    2000-01-01

    Full Text Available This paper examines fluid-structure interaction for close-in internal and external underwater explosions. The resulting flow field is impacted by the interaction between the reflected explosion shock and the explosion bubble. This shock reflects off the bubble as an expansion that reduces the pressure level between the bubble and the target, inducing cavitation and its subsequent collapse that reloads the target. Computational examples of several close-in interaction cases are presented to document the occurrence of these mechanisms. By comparing deformable and rigid body simulations, it is shown that cavitation collapse can occur solely from the shock-bubble interaction without the benefit of target deformation. Addition of a deforming target lowers the flow field pressure, facilitates cavitation and cavitation collapse, as well as reducing the impulse of the initial shock loading.

  5. Determination of the transient vibrations of a rigid rotor attenuated by a semiactive magnetorheological damping device by means of computational modelling

    Czech Academy of Sciences Publication Activity Database

    Zapoměl, Jaroslav; Ferfecki, Petr; Kozánek, Jan

    2013-01-01

    Roč. 7, č. 2 (2013), s. 223-234 ISSN 1802-680X. [COMPUTATIONAL MECHANICS 2012 /28./. Špičák, 12.11.2012-14.11.2012] Institutional support : RVO:61388998 Keywords : rigid rotors * controllable damping * hybrid magnetorheological dampers * transient response Subject RIV: JR - Other Machinery

  6. Environmentally Friendly Flame-Retardant and Its Application in Rigid Polyurethane Foam

    Directory of Open Access Journals (Sweden)

    Yongjun Chen

    2014-01-01

    Full Text Available A novel Flame-Retardant N-(P,P′-diphenyl phosphorus-based-(3-triethoxysilicon propylamine (DPTP was synthesized in this study. The impact of DPTP on the mechanical properties, thermal stability, and flame retardancy of rigid polyurethane foam (RPUF was studied. The addition of DPTP to RPUF can significantly reduce the undesirable thermal effects and smoke density during combustion, as well as increasing the limiting oxygen index. Compared with pure RPUF, the peak heat release rate of RPUF containing 10 phr of DPTP decreased by 39.4%, while its peak smoke production rate decreased by 49.9%. However, it was also found that the addition of DPTP reduced the compressive strength of RPUF.

  7. On certain two-dimensional conservative mechanical systems with a cubic second integral

    CERN Document Server

    Yehia, H M

    2002-01-01

    In a previous paper (Yehia H M 1986 J. Mec. Theor. Appl. 5 55-71) we have introduced a method for constructing integrable conservative two-dimensional mechanical systems whose second integral of motion is polynomial in the velocities. This method has proved successful in constructing a multitude of irreversible systems (involving gyroscopic forces) with a second quadratic integral (Yehia H M 1992 J. Phys. A: Math. Gen. 25 197-221). The objective of this paper is to apply the same method for the systematic construction of mechanical systems with a cubic integral. As in our previous works, the configuration space is not assumed to be a Euclidean plane. This widens the range of applicability of the results to diverse mechanical systems to include such problems as rigid body dynamics. Several new reversible and irreversible integrable systems are obtained. Some of these systems generalize previously known ones by introducing additional parameters which may change either or both of the configuration manifold and t...

  8. Mechanical component design for upgrading of whole body counter ND7500

    International Nuclear Information System (INIS)

    Norizam Saad; Mohamad Annuar Assadat Husain; Ishak Mansor

    2007-01-01

    The Whole Body Counter (WBC) ND7500 is a bed type counting system that used for measuring radionuclide in the entire human body. Malaysian Nuclear Agency has this system, which savaged from Institute of Medical Research (IMR) in 1987. This system consists of a nuclear counting system and mechanical system that totally inoperable due to its counting system failures. In April 2003, both counting system and the mechanical system were tested. The mechanical component is working properly but needs some readjustment for the bed movement while for the counting system, only detectors can work but with a poor detecting capability. During IAEA expert visits on July 2003, both detectors were verified cannot be use any longer due to poor resolution and aging factor and a single (3 x 5 x 16) inches rectangular NaI(Tl) detector was then purchased in the end of 2004 to replace (3 x 5) inches cylindrical Na(Tl) detectors. The existing shielding cannot accommodate this new (3 x 5 x 16) inches dimension and the (5 x 16) inches detecting area. Therefore, shielding modification has been done based on effective detecting area and positioning test results. A new detector's entrance and detector stage were built at the bottom shielding. A new features, which is a detectors protection also been developed for detector safety. This upgrading task successfully accomplished as from experimental the design of positioning component can make system operated easily and also can give a good results to meets user's requirements. (Author)

  9. Rigid particle revisited: Extrinsic curvature yields the Dirac equation

    Energy Technology Data Exchange (ETDEWEB)

    Deriglazov, Alexei, E-mail: alexei.deriglazov@ufjf.edu.br [Depto. de Matemática, ICE, Universidade Federal de Juiz de Fora, MG (Brazil); Laboratory of Mathematical Physics, Tomsk Polytechnic University, 634050 Tomsk, Lenin Ave. 30 (Russian Federation); Nersessian, Armen, E-mail: arnerses@ysu.am [Yerevan State University, 1 Alex Manoogian St., Yerevan 0025 (Armenia); Laboratory of Mathematical Physics, Tomsk Polytechnic University, 634050 Tomsk, Lenin Ave. 30 (Russian Federation)

    2014-03-01

    We reexamine the model of relativistic particle with higher-derivative linear term on the first extrinsic curvature (rigidity). The passage from classical to quantum theory requires a number of rather unexpected steps which we report here. We found that, contrary to common opinion, quantization of the model in terms of so(3.2)-algebra yields massive Dirac equation. -- Highlights: •New way of canonical quantization of relativistic rigid particle is proposed. •Quantization made in terms of so(3.2) angular momentum algebra. •Quantization yields massive Dirac equation.

  10. Topology-Preserving Rigid Transformation of 2D Digital Images.

    Science.gov (United States)

    Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues

    2014-02-01

    We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping.

  11. FOREIGN BODY ASPIRATION: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Nafia Ozlem Kazanci

    2013-03-01

    Full Text Available Foreign body aspiration (FBA is common under 3 years of age. FBA can cause sudden respiratory failure. Furthermore, it leads to many respiratory system complications. Therefore, FBA is an important cause of mortality and morbidity for this age group. FBA cases are usually followed by diagnoses like pneumonia, bronchitis or bronchial asthma in the late period that history, clinical and laboratory findings suggesting foreign body aspiration can not be detected. We reported a 2-year-old male patient with pneumonia, who were administered various treatments. In thorax CT of this case, an image compatible with foreign body was seen in the right middle lobe-upper lobe separation area. Granulation tissue was detected in the entrance of the right main bronchus by rigid bronchoscopy and marked improvement occured in lung aeration after bronchoscopy. This case was reported to emphasize the importance of early diagnosis of foreign body aspiration because of high mortality and morbidity and the necessity of considering the foreign body aspiration in children with recurrent pulmonary infections. [J Contemp Med 2013; 3(1.000: 58-61

  12. Parental Employment and Children’s Body Weight: Mothers, Others, and Mechanisms

    Science.gov (United States)

    Ziol-Guest, Kathleen M.; Dunifon, Rachel E.; Kalil, Ariel

    2012-01-01

    A robust body of literature spanning several countries indicates a positive association between maternal employment and child body mass index (BMI). Fewer studies have examined the role of paternal employment. More importantly, little empirical work examines the mechanisms that might explain the relationships between parental employment and children’s BMI. Our paper tests the relationship between the cumulative experience of maternal and spouse employment over a child’s lifetime and that child’s BMI, overweight, and obesity at age 13 or 14. We further examine several mechanisms that may explain these associations. We use data from the U.S. National Longitudinal Survey of Youth (NLSY79) merged mother-child file on cohorts of children who were born during a period of dramatic increase in both childhood obesity and maternal employment. We find that the number of hours that highly-educated mothers work over her child’s lifetime is positively and statistically significantly associated with her child’s BMI and risk of overweight at ages 13 or 14. The work hours of mothers’ spouses and partners, on the other hand, are not significantly associated with these outcomes. Results suggest that, for children of highly-educated mothers, the association between maternal work hours and child BMI is partially mediated by television viewing time. PMID:23031605

  13. Mechanical properties of tannin-based rigid foams undergoing compression

    Energy Technology Data Exchange (ETDEWEB)

    Celzard, A., E-mail: Alain.Celzard@enstib.uhp-nancy.fr [Institut Jean Lamour - UMR CNRS 7198, CNRS - Nancy-Universite - UPV-Metz, Departement Chimie et Physique des Solides et des Surfaces, ENSTIB, 27 rue du Merle Blanc, BP 1041, 88051 Epinal cedex 9 (France); Zhao, W. [Institut Jean Lamour - UMR CNRS 7198, CNRS - Nancy-Universite - UPV-Metz, Departement Chimie et Physique des Solides et des Surfaces, ENSTIB, 27 rue du Merle Blanc, BP 1041, 88051 Epinal cedex 9 (France); Pizzi, A. [ENSTIB-LERMAB, Nancy-University, 27 rue du Merle Blanc, BP 1041, 88051 Epinal cedex 9 (France); Fierro, V. [Institut Jean Lamour - UMR CNRS 7198, CNRS - Nancy-Universite - UPV-Metz, Departement Chimie et Physique des Solides et des Surfaces, ENSTIB, 27 rue du Merle Blanc, BP 1041, 88051 Epinal cedex 9 (France)

    2010-06-25

    The mechanical properties of a new class of extremely lightweight tannin-based materials, namely organic foams and their carbonaceous counterparts are detailed. Scaling laws are shown to describe correctly the observed behaviour. Information about the mechanical characteristics of the elementary forces acting within these solids is derived. It is suggested that organic materials present a rather bending-dominated behaviour and are partly plastic. On the contrary, carbon foams obtained by pyrolysis of the former present a fracture-dominated behaviour and are purely brittle. These conclusions are supported by the differences in the exponent describing the change of Young's modulus as a function of relative density, while that describing compressive strength is unchanged. Features of the densification strain also support such conclusions. Carbon foams of very low density may absorb high energy when compressed, making them valuable materials for crash protection.

  14. Enstatite, Mg/sub 2/Si/sub 2/O/sub 6/: A neutron diffraction refinement of the crystal structure and a rigid-body analysis of the thermal vibration

    Energy Technology Data Exchange (ETDEWEB)

    Ghose, S.; Schomaker, V.; McMullan, R.K.

    1986-01-01

    Synthetic enstatite, Mg/sub 2/Si/sub 2/O/sub 6/, is orthorhombic, space group Pbca, with eight formula units per cell and lattice parameters a = 18.235(3), b = 8.818(1), c = 5.179(1) A at 23/sup 0/C. A least-squares structure refinement based on 1790 neutron intensity data converged with an agreement factor R(F/sup 2/) = 0.032, yielding Mg-O and Si-O bond lengths with standard deviations of 0.0007 and 0.0008 A, respectively. The variations observed in the Si-O bond lengths within the silicate tetrahedra A and B are caused by the differences in primary coordination of the oxygen atoms and the proximity of the magnesium ions to the silicon atoms. The latter effect is most pronounced for the bridging bonds of tetrahedron. A. The smallest O-Si-O angle is the result of edge-sharing by the Mg(2) octahedron and the A tetrahedron. An analysis of rigid-body thermal vibrations of the two crystallographically independent (SiO/sub 4/) tetrahedra indicates considerable librational motion, leading to a thermal correction of apparent Si-O bond lengths as large as +0.002 A at room temperature.

  15. Mechanical paradox: the uphill roller

    International Nuclear Information System (INIS)

    Cortes, Emilio; Cortes-Poza, D

    2011-01-01

    We analyse in detail the dynamics of a mechanical system which is a rigid body with the geometry of a double cone. This double cone is apparently able to spontaneously roll uphill along inclined rails. The experiment has been known for some centuries, and because of its peculiar behaviour, it has been named 'mechanical paradox'. Although this instrument is well known today, we have not found in the literature a dynamical study like the one we are presenting. A deeper analysis of this mechanical object will allow us to go further than explaining the apparent paradox in the system; it will show interesting features of the dynamics that are not evident or intuitive. In this work, we follow a complete study of the geometry, the kinematic variables and the Lagrangian dynamics of the problem for any set of the angular parameters and initial values, and obtain as a result a full description of the dynamic variables of this mechanical device. In addition to studying the dynamics of the system with the angles that yield the typical paradoxical behaviour, we study carefully what we call the constant potential geometry regime, where the centre of mass maintains its height, and found in this particular case some features of the dynamics which are not common in rolling objects. We believe that this work can offer the student good material to review some fundamental concepts of analytical mechanics.

  16. Emotional rigidity negatively impacts remission from anxiety and recovery of well-being.

    Science.gov (United States)

    Wiltgen, Anika; Shepard, Christopher; Smith, Ryan; Fowler, J Christopher

    2018-08-15

    Emotional rigidity is described in clinical literature as a significant barrier to recovery; however, few there are few empirical measures of the construct. The current study had two aims: Study 1 aimed to identify latent factors that may bear on the construct of emotional rigidity while Study 2 assessed the potential impact of the latent factor(s) on anxiety remission rates and well-being. This study utilized data from 2472 adult inpatients (1176 females and 1296 males) with severe psychopathology. Study 1 utilized exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) to identify latent factors of emotional rigidity. Study 2 utilized hierarchical logistic regression analyses to assess the relationships among emotional rigidity factors and anxiety remission and well-being recovery at discharge. Study 1 yielded a two-factor solution identified in EFA was confirmed with CFA. Factor 1 consisted of neuroticism, experiential avoidance, non-acceptance of emotions, impaired goal-directed behavior, impulse control difficulties and limited access to emotion regulation strategies when experiencing negative emotions. Factor 2 consisted of lack of emotional awareness and lack of emotional clarity when experiencing negative emotions. Results of Study 2 indicated higher scores on Factor 1 was associated with lower remission rates from anxiety and poorer well-being upon discharge. Factor 2 was not predictive of outcome. Emotional rigidity appears to be a latent construct that negatively impacts remission rates from anxiety. Limitations of the present study include its retrospective design, and inefficient methods of assessing emotional rigidity. Copyright © 2018. Published by Elsevier B.V.

  17. Trajectory Correction and Locomotion Analysis of a Hexapod Walking Robot with Semi-Round Rigid Feet

    Science.gov (United States)

    Zhu, Yaguang; Jin, Bo; Wu, Yongsheng; Guo, Tong; Zhao, Xiangmo

    2016-01-01

    Aimed at solving the misplaced body trajectory problem caused by the rolling of semi-round rigid feet when a robot is walking, a legged kinematic trajectory correction methodology based on the Least Squares Support Vector Machine (LS-SVM) is proposed. The concept of ideal foothold is put forward for the three-dimensional kinematic model modification of a robot leg, and the deviation value between the ideal foothold and real foothold is analyzed. The forward/inverse kinematic solutions between the ideal foothold and joint angular vectors are formulated and the problem of direct/inverse kinematic nonlinear mapping is solved by using the LS-SVM. Compared with the previous approximation method, this correction methodology has better accuracy and faster calculation speed with regards to inverse kinematics solutions. Experiments on a leg platform and a hexapod walking robot are conducted with multi-sensors for the analysis of foot tip trajectory, base joint vibration, contact force impact, direction deviation, and power consumption, respectively. The comparative analysis shows that the trajectory correction methodology can effectively correct the joint trajectory, thus eliminating the contact force influence of semi-round rigid feet, significantly improving the locomotion of the walking robot and reducing the total power consumption of the system. PMID:27589766

  18. Psychological Prices and Price Rigidity in Grocery Retailing: Analysis of German Scanner Data

    OpenAIRE

    Herrmann, Roland; Moeser, Anke

    2005-01-01

    A substantial degree of price rigidity has been reported for branded foods in various studies with scanner data. One possible explanation for price rigidity is the existence of psychological pricing points. We analyze to which extent psychological pricing plays a role in grocery retailing and whether it contributes to price rigidity of branded foods in Germany. Psychological pricing defined here as just-below-the-round-figure-pricing is empirically analyzed with scanner data of weekly prices ...

  19. Biological mechanisms discriminating growth rate and adult body weight phenotypes in two Chinese indigenous chicken breeds.

    Science.gov (United States)

    Dou, Tengfei; Zhao, Sumei; Rong, Hua; Gu, Dahai; Li, Qihua; Huang, Ying; Xu, Zhiqiang; Chu, Xiaohui; Tao, Linli; Liu, Lixian; Ge, Changrong; Te Pas, Marinus F W; Jia, Junjing

    2017-06-20

    Intensive selection has resulted in increased growth rates and muscularity in broiler chickens, in addition to adverse effects, including delayed organ development, sudden death syndrome, and altered metabolic rates. The biological mechanisms underlying selection responses remain largely unknown. Non-artificially-selected indigenous Chinese chicken breeds display a wide variety of phenotypes, including differential growth rate, body weight, and muscularity. The Wuding chicken breed is a fast growing large chicken breed, and the Daweishan mini chicken breed is a slow growing small chicken breed. Together they form an ideal model system to study the biological mechanisms underlying broiler chicken selection responses in a natural system. The objective of this study was to study the biological mechanisms underlying differential phenotypes between the two breeds in muscle and liver tissues, and relate these to the growth rate and body development phenotypes of the two breeds. The muscle tissue in the Wuding breed showed higher expression of muscle development genes than muscle tissue in the Daweishan chicken breed. This expression was accompanied by higher expression of acute inflammatory response genes in Wuding chicken than in Daweishan chicken. The muscle tissue of the Daweishan mini chicken breed showed higher expression of genes involved in several metabolic mechanisms including endoplasmic reticulum, protein and lipid metabolism, energy metabolism, as well as specific immune traits than in the Wuding chicken. The liver tissue showed fewer differences between the two breeds. Genes displaying higher expression in the Wuding breed than in the Daweishan breed were not associated with a specific gene network or biological mechanism. Genes highly expressed in the Daweishan mini chicken breed compared to the Wuding breed were enriched for protein metabolism, ABC receptors, signal transduction, and IL6-related mechanisms. We conclude that faster growth rates and larger

  20. Densification of porous bodies in a granular pressure-transmitting medium

    International Nuclear Information System (INIS)

    Olevsky, E.A.; Ma, J.; LaSalvia, J.C.; Meyers, M.A.

    2007-01-01

    Densification is a critical step in the manufacture of near-net-shaped components via powder processing. A non-isostatic stress state will in general result in shape distortion in addition to densification. In the quasi-isostatic pressing (QIP) process the green body is placed into a granular pressure-transmitting medium (i.e. PTM), which is itself contained in a rigid die. Upon the application of a uniaxial load, the PTM redistributes the tractions on the green body, thereby creating a stress state that is quasi-isostatic. The character of the deformation of the PTM is studied using model experiments on pressing of the PTM in a rigid die and a scanning electron microscopy analysis of the PTM powder. An important problem of the optimization of the PTM chemical composition enabling the maximum densification of a porous specimen with the minimum possible shape distortion is solved. The results of modeling agree satisfactorily with the experimental data on cold QIPing Ti and Ni powder samples and hot QIPing TiC-TiNi cermet composites

  1. Rigid inclusions-Comparison between analytical and numerical methods

    International Nuclear Information System (INIS)

    Gomez Perez, R.; Melentijevic, S.

    2014-01-01

    This paper compares different analytical methods for analysis of rigid inclusions with finite element modeling. First of all, the load transfer in the distribution layer is analyzed for its different thicknesses and different inclusion grids to define the range between results obtained by analytical and numerical methods. The interaction between the soft soil and the inclusion in the estimation of settlements is studied as well. Considering different stiffness of the soft soil, settlements obtained analytical and numerically are compared. The influence of the soft soil modulus of elasticity on the neutral point depth was also performed by finite elements. This depth has a great importance for the definition of the total length of rigid inclusion. (Author)

  2. A study on mechanism of wear on body seat in nozzle of diesel fuel injector

    Energy Technology Data Exchange (ETDEWEB)

    Jeonggee, Son; Yamashita, Toru; Sato, Susumu; Kosaka, Hidenori; Masuko, Masabumi [Tokyo Institute of Technology (Japan)

    2013-06-01

    Wear of nozzle's body seat of diesel fuel injector, which is caused by the collision of needle on the body seat in a nozzle, affects fuel spray behaviors and injection characteristics. Recently, to reduce the wear of body seat, DLC nozzles are widely used. The DLC on the needle which is called diamond-like carbon has a certain effect in reducing wear of body seat. However, disallowable wear is reported at limited engine operating conditions. Moreover, the wear mechanism of body seat with DLC coated needle has not been made clear yet. In this study, the influence of temperature of the body seat and fuel property on the wear of DLC nozzle was investigated with a newly developed wear testing device which was constructed based on common-rail injection system. Worn surfaces of body seat were observed by FE-SEM, laser scanning microscope and EPMA. The obtained results from the measurements show that DLC nozzle has much less wear amount than non-DLC nozzle on the body seat and the corrosive wear effect is suppressed with DLC nozzle. (orig.)

  3. Weight Gain in Breast Cancer Patients on Chemotheraphy: Exploring Hormonal Body Composition and Behavioral Mechanisms

    National Research Council Canada - National Science Library

    Kumar, Nagi

    1999-01-01

    Purpose: The purpose of this study is to prospectively and systematically observe the relative contribution of each viable mechanism such as nutritional intake, activity levels, body composition, hormonal...

  4. A conserved quantity in thin body dynamics

    Science.gov (United States)

    Hanna, J. A.; Pendar, H.

    2016-02-01

    Thin, solid bodies with metric symmetries admit a restricted form of reparameterization invariance. Their dynamical equilibria include motions with both rigid and flowing aspects. On such configurations, a quantity is conserved along the intrinsic coordinate corresponding to the symmetry. As an example of its utility, this conserved quantity is combined with linear and angular momentum currents to construct solutions for the equilibria of a rotating, flowing string, for which it is akin to Bernoulli's constant.

  5. GENERAL THEORY OF THE ROTATION OF THE NON-RIGID EARTH AT THE SECOND ORDER. I. THE RIGID MODEL IN ANDOYER VARIABLES

    International Nuclear Information System (INIS)

    Getino, J.; Miguel, D.; Escapa, A.

    2010-01-01

    This paper is the first part of an investigation where we will present an analytical general theory of the rotation of the non-rigid Earth at the second order, which considers the effects of the interaction of the rotation of the Earth with itself, also named as the spin-spin coupling. Here, and as a necessary step in the development of that theory, we derive complete, explicit, analytical formulae of the rigid Earth rotation that account for the second-order rotation-rotation interaction. These expressions are not provided in this form by any current rigid Earth model. Working within the Hamiltonian framework established by Kinoshita, we study the second-order effects arising from the interaction of the main term in the Earth geopotential expansion with itself, and with the complementary term arising when referring the rotational motion to the moving ecliptic. To this aim, we apply a canonical perturbation method to solve analytically the canonical equations at the second order, determining the expressions that provide the nutation-precession, the polar motion, and the length of day. In the case of the motion of the equatorial plane, nutation-precession, we compare our general approach with the particular study for this motion developed by Souchay et al., showing the existence of new terms whose numerical values are within the truncation level of 0.1 μas adopted by those authors. These terms emerge as a consequence of not assuming in this work the same restrictive simplifications taken by Souchay et al. The importance of these additional contributions is that, as the analytical formulae show, they depend on the Earth model considered, in such a way that the fluid core resonance could amplify them significatively when extending this theory to the non-rigid Earth models.

  6. Anthraquinone derivatives as organic stabilizers for rigid poly (vinyl chloride) against photo-degradation

    International Nuclear Information System (INIS)

    Sabaa, M.W.; Mohamed, R.R.

    2005-01-01

    Anthraquinone derivatives have been prepared and investigated as photo-stabilizers for rigid PVC by measuring the extent of weight loss (%), the amount of gel formation as well as the intrinsic viscosity of the soluble fractions of the degraded polymer. The results indicated a reasonable stabilizing effect of these derivatives compared with UV-commorcially used stabilizers. A synergistic effect is achieved when the Anthraquinone derivatives are mixed with UV-absorbers in a weight ratio of 75 % of investigated organic stabilizer and 25 % of reference stabilizer. A probable radical mechanism is proposed to account for the stabilizing action of the organic investigated materials

  7. Green waste cooking oil-based rigid polyurethane foam

    Science.gov (United States)

    Enderus, N. F.; Tahir, S. M.

    2017-11-01

    Polyurethane is a versatile polymer traditionally prepared using petroleum-based raw material. Petroleum, however, is a non-renewable material and polyurethane produced was found to be non-biodegradable. In quest for a more environmentally friendly alternative, wastecooking oil, a highly abundant domestic waste with easily derivatized structure, is a viable candidate to replace petroleum. In this study,an investigation to determine physical and chemical properties of rigid polyurethane (PU) foam from waste cooking oil (WCO) was carried out. WCO was first adsorbed by using coconut husk activated carbon adsorbent prior to be used for polyol synthesis. The purified WCO was then used to synthesize polyol via transesterification reaction to yield alcohol groups in the WCO chains structure. Finally, the WCO-based polyol was used to prepare rigid PU foam. The optimum formulation for PU formation was found to be 90 polyol: 60 glycerol: 54 water: 40 diethanolamine: 23 diisocyanate. The rigid PU foam has density of 208.4 kg/m3 with maximum compressive strength and capability to receive load at 0.03 MPa and 0.09 kN, respectively. WCO-based PU can potentially be used to replace petroleum-based PU as house construction materials such as insulation panels.

  8. Solved problems in classical mechanics analytical and numerical solutions with comments

    CERN Document Server

    de Lange, O L

    2010-01-01

    Apart from an introductory chapter giving a brief summary of Newtonian and Lagrangian mechanics, this book consists entirely of questions and solutions on topics in classical mechanics that will be encountered in undergraduate and graduate courses. These include one-, two-, and three- dimensional motion; linear and nonlinear oscillations; energy, potentials, momentum, and angular momentum; spherically symmetric potentials; multi-particle systems; rigid bodies; translation androtation of the reference frame; the relativity principle and some of its consequences. The solutions are followed by a set of comments intended to stimulate inductive reasoning and provide additional information of interest. Both analytical and numerical (computer) techniques are used to obtain andanalyze solutions. The computer calculations use Mathematica (version 7), and the relevant code is given in the text. It includes use of the interactive Manipulate function which enables one to observe simulated motion on a computer screen, and...

  9. Airway foreign body in children

    Directory of Open Access Journals (Sweden)

    Marina GONZÁLEZ-HERRERO

    2018-03-01

    Full Text Available Introduction and objective: The aspiration of a foreign body in children is a frequent emergency in pediatrics, being potentially lethal. Method: Narrative review. Results: This pathology mainly affects children under 5 years of age with a peak of incidence between the first and third years of life. The clinic will depend on the type of foreign body (size, shape, possibility of breaking, organic or not, the age of the child and the location of the object. In our environment, the most frequent is the aspiration of nuts (peanuts and sunflower seeds. After the initial picture, an asymptomatic period tends to occur, which favors delayed diagnosis and leads to possible errors in the diagnosis. Discussion: An adequate clinical history and a high diagnostic suspicion are fundamental to favor an early treatment. The presence of a normal chest X-ray does not exclude the presence of a foreign body in the airway, so a bronchoscopy is indicated if the diagnostic suspicion is high. The treatment of choice is extraction by rigid bronchoscopy, being controversial the use of flexible fibrobronchoscope. Conclusions: Conclusions: The aspiration of a foreign body is a pediatric emergency that requires a diagnosis and early treatment. The highest incidence occurs in children under 3 years and more frequently in men. The most commonly aspirated material in our environment are nuts, mainly located in the bronchial tree. The initial episode may go unnoticed, delaying the diagnosis and may lead to progressive respiratory distress in the child. A detailed clinical history and suspicion of this pathology are essential in children at risk age who present with cough and dyspnea of sudden onset. The existence of a normal chest radiograph should not postpone bronchoscopy when there is high clinical suspicion. The treatment of choice for the extraction of foreign bodies in airways in children is rigid bronchoscopy, being controversial the use of the flexible fibrobronchoscope

  10. The many-body content of quantum gauge theories and its connection to mass generation mechanisms

    International Nuclear Information System (INIS)

    Natoli, C.R.; Palumbo, F.

    1985-01-01

    The aim of the paper is to get more knowledge about many-body systems and their properties, about many-body content of quantum gauge theories and its connection with mass generation mechanisms. The way to achieve this is to perform the galilean limit of the relativistic theory by sending the speed of light c to infinity. This limiting process exposes the low energy behaviour of the relativistic theory

  11. Mitral stenosis due to pannus overgrowth after rigid ring annuloplasty.

    Science.gov (United States)

    Oda, Takeshi; Kato, Seiya; Tayama, Eiki; Fukunaga, Shuji; Akashi, Hidetoshi; Aoyagi, Shigeaki

    2010-03-01

    Although mitral stenosis (MS) due to pannus overgrowth after mitral valve repair for rheumatic mitral regurgitation (MR) is not uncommon, it is extremely rare in relation to non-rheumatic mitral regurgitation. Whilst it has been suggested that the rigid annuloplasty ring induces pannus overgrowth in the same manner as the flexible ring, to date only in cases using the flexible ring has pannus formation been confirmed by a pathological examination after redo surgery. The case is described of a woman who had undergone mitral valve repair using a 28 mm rigid ring three years previously because of non-rheumatic MR, and subsequently suffered from MS due to pannus formation over the annuloplasty ring. To the present authors' knowledge, this is the first report of MS due to pannus formation after mitral valve repair using a rigid annuloplasty ring to treat non-rheumatic MR documented at reoperation.

  12. Authoritarianism, cognitive rigidity, and the processing of ambiguous visual information.

    Science.gov (United States)

    Duncan, Lauren E; Peterson, Bill E

    2014-01-01

    Intolerance of ambiguity and cognitive rigidity are unifying aspects of authoritarianism as defined by Adorno, Frenkel-Brunswik, Levinson, and Sanford (1982/1950), who hypothesized that authoritarians view the world in absolute terms (e.g., good or evil). Past studies have documented the relationship between authoritarianism and intolerance of ambiguity and rigidity. Frenkel-Brunswik (1949) hypothesized that this desire for absolutism was rooted in perceptual processes. We present a study with three samples that directly tests the relationship between right wing authoritarianism (RWA) and the processing of ideologically neutral but ambiguous visual stimuli. As hypothesized, in all three samples we found that RWA was related to the slower processing of visual information that required participants to recategorize objects. In a fourth sample, RWA was unrelated to speed of processing visual information that did not require recategorization. Overall, results suggest a relationship between RWA and rigidity in categorization.

  13. Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements

    International Nuclear Information System (INIS)

    Garcia-Vallejo, D.; Mayo, J.; Escalona, J. L.; Dominguez, J.

    2008-01-01

    Multibody systems generally contain solids with appreciable deformations and which decisively influence the dynamics of the system. These solids have to be modeled by means of special formulations for flexible solids. At the same time, other solids are of such a high stiffness that they may be considered rigid, which simplifies their modeling. For these reasons, for a rigid-flexible multibody system, two types of formulations coexist in the equations of the system. Among the different possibilities provided in the literature on the material, the formulation in natural coordinates and the formulation in absolute nodal coordinates are utilized in this paper to model the rigid and flexible solids, respectively. This paper contains a mixed formulation based on the possibility of sharing coordinates between a rigid solid and a flexible solid. The global mass matrix of the system is shown to be constant and, in addition, many of the constraint equations obtained upon utilizing these formulations are linear and can be eliminated

  14. An Active Cooperation-Aware Spectrum Allocation Mechanism for Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Fu Jiang

    2015-01-01

    Full Text Available A cognitive radio-based spectrum allocation scheme using an active cooperative-aware mechanism is proposed in this paper. The scheme ensures that the primary user and secondary users cooperate actively for their own benefits. The primary user releases some spectrum resources to secondary users to actively stimulate them to actively join the cooperative transmission of the primary user, and secondary users help the primary user to relay data in return, as well as its self-data transmission at the same time. The Stackelberg game is used to evenly and jointly optimize the utilities of both the primary and secondary users. Simulation results show that the proposed active cooperation-aware mechanism could improve the body sensor network performance.

  15. Impact of whole-body rehabilitation in patients receiving chronic mechanical ventilation.

    Science.gov (United States)

    Martin, Ubaldo J; Hincapie, Luis; Nimchuk, Mark; Gaughan, John; Criner, Gerard J

    2005-10-01

    To evaluate the prevalence and magnitude of weakness in patients receiving chronic mechanical ventilation and the impact of providing aggressive whole-body rehabilitation on conventional weaning variables, muscle strength, and overall functional status. Retrospective analysis of 49 consecutive patients. Multidisciplinary ventilatory rehabilitation unit in an academic medical center. Forty-nine consecutive chronic ventilator-dependent patients referred to a tertiary care hospital ventilator rehabilitation unit. None. Patients were 58 +/- 7 yrs old with multiple etiologies for respiratory failure. On admission, all patients were bedridden and had severe weakness of upper and lower extremities measured by a 5-point muscle strength score and a 7-point Functional Independence Measurement. Postrehabilitation, patients had increases in upper and lower extremity strength (p respiratory muscle training with an improvement in strength, weaning outcome, and functional status. Whole-body rehabilitation should be considered a significant component of their therapy.

  16. Mechanical transduction via a single soft polymer

    Science.gov (United States)

    Hou, Ruizheng; Wang, Nan; Bao, Weizhu; Wang, Zhisong

    2018-04-01

    Molecular machines from biology and nanotechnology often depend on soft structures to perform mechanical functions, but the underlying mechanisms and advantages or disadvantages over rigid structures are not fully understood. We report here a rigorous study of mechanical transduction along a single soft polymer based on exact solutions to the realistic three-dimensional wormlike-chain model and augmented with analytical relations derived from simpler polymer models. The results reveal surprisingly that a soft polymer with vanishingly small persistence length below a single chemical bond still transduces biased displacement and mechanical work up to practically significant amounts. This "soft" approach possesses unique advantages over the conventional wisdom of rigidity-based transduction, and potentially leads to a unified mechanism for effective allosterylike transduction and relay of mechanical actions, information, control, and molecules from one position to another in molecular devices and motors. This study also identifies an entropy limit unique to the soft transduction, and thereby suggests a possibility of detecting higher efficiency for kinesin motor and mutants in future experiments.

  17. Extremal surfaces and the rigidity of null geodesic incompleteness

    International Nuclear Information System (INIS)

    Silva, I P Costa e; Flores, J L

    2015-01-01

    An important, if relatively less well known aspect of the singularity theorems in Lorentzian geometry, is to understand how their conclusions fare upon weakening or suppression of one or more of their hypotheses. Then, theorems with modified conclusion may arise, showing that those conclusions will fail only in special cases, at least some of which may be described. These are the so-called rigidity theorems, and have many important examples in the specialized literature. In this paper, we prove rigidity results for generalized plane waves and certain globally hyperbolic spacetimes in the presence of extremal compact surfaces. (paper)

  18. Risk of perforation using rigid oesophagoscopy in the distal part of oesophagus

    DEFF Research Database (Denmark)

    Wennervaldt, Kasper; Melchiors, Jacob

    2012-01-01

    Endoscopic examination and treatment of disorders in the oesophagus have been a part of the otolaryngological specialty since the introduction of the rigid endoscope. Today, both flexible and rigid oesophagoscopy (RO) is used to that end. The aim of this study was to evaluate the safety of the RO....

  19. On the rigidity of rank gradient in a group of intermediate growth

    OpenAIRE

    Grigorchuk, Rostislav; Kravchenko, Rostyslav

    2018-01-01

    We introduce and investigate the rigidity property of rank gradient in the case of the group $\\mathcal G$ of intermediate growth constructed by the first author. We show that $\\mathcal G$ is normally $(f,g)$-RG rigid where $f(n)=\\log(n)$ and $g(n) =\\log(\\log(n)).$

  20. An energy-efficient leader election mechanism for wireless body area networks

    OpenAIRE

    Zhang , Rongrong; Moungla , Hassine; Mehaoua , Ahmed

    2014-01-01

    International audience; In Wireless Body Area Networks (WBANs), the energy consumption determines the lifetime of the entire network. As a result, how to conserve the energy to prolong the network lifetime becomes a key problem in WBANs. In this paper, to address the energy conservation problem in WBANs, we develop an Energy-Efficient Leader Election mechanism, called EELE. In EELE, each node competes for the leader following the distributed leader election algorithm in which a utility functi...