WorldWideScience

Sample records for right-lateral strike-slip focal

  1. Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet

    Science.gov (United States)

    England, Philip; Molnar, Peter

    1990-01-01

    Bounds are placed here on the rate of rotation proposed by Cobbold and Davy (1988) for the major strike-slip faults in the eastern Tibetan Plateau. It is also concluded here that the image of lateral transport on such faults, known also as continental escape, extrusion, or expulsion, is an illusion, and that instead the left-lateral slip on east-striking plates in eastern Tibet is a manifestation of north-striking right-lateral simple shear. If this conclusion is correct, the east-striking left-lateral faults and the crustal blocks between them are rotating clockwise at 1-2 deg/Myr, the east-west dimension of eastern Tibet is shortening at 10-20 mm/yr, and little material is moving eastward out of India's path into Eursasia by left-lateral simple shear.

  2. THE ILICA BRANCH OF THE SOUTHEASTERN ESKIŞEHIR FAULT ZONE: AN ACTIVE RIGHT LATERAL STRIKE-SLIP STRUCTURE IN CENTRAL ANATOLIA, TURKEY

    Directory of Open Access Journals (Sweden)

    Korhan ESAT

    2016-12-01

    Full Text Available The Eskişehir Fault Zone is one of the prominent neotectonic structures of Turkey. It separates the west  Anatolian extensional province and the strike-slip induced northwest central Anatolian contractional area in the Anatolian Block. Its southeastern part is generally divided into three branches, namely the Ilıca, Yeniceoba, and Cihanbeyli from north to south, respectively. The right lateral strike-slip Ilıca branch (IB is an approximately 100-km-long fault and it is composed of several segments in a northwest-southeast direction. The slickensides, subsidiary fractures, cataclastic zone, fracture-controlled drainage pattern, right lateral stream deflections, deformation in the Quaternary unit observing in the seismic reflection sections, and seismicity of the region all indicate that the IB is an active right lateral strike-slip fault. The IB has also a regional tectonic importance as a boundary fault between the contractional and the extensional regions in central Anatolia considering that it is the southern limit of the contraction-related structures in the west-southwest of Ankara.

  3. The 2014 Mw6.9 Gokceada and 2017 Mw6.3 Lesvos Earthquakes in the Northern Aegean Sea: The Transition from Right-Lateral Strike-Slip Faulting on the North Anatolian Fault to Extension in the Central Aegean

    Science.gov (United States)

    Cetin, S.; Konca, A. O.; Dogan, U.; Floyd, M.; Karabulut, H.; Ergintav, S.; Ganas, A.; Paradisis, D.; King, R. W.; Reilinger, R. E.

    2017-12-01

    The 2014 Mw6.9 Gokceada (strike-slip) and 2017 Mw6.3 Lesvos (normal) earthquakes represent two of the set of faults that accommodate the transition from right-lateral strike-slip faulting on the North Anatolian Fault (NAF) to normal faulting along the Gulf of Corinth. The Gokceada earthquake was a purely strike-slip event on the western extension of the NAF where it enters the northern Aegean Sea. The Lesvos earthquake, located roughly 200 km south of Gokceada, occurred on a WNW-ESE-striking normal fault. Both earthquakes respond to the same regional stress field, as indicated by their sub-parallel seismic tension axis and far-field coseismic GPS displacements. Interpretation of GPS-derived velocities, active faults, crustal seismicity, and earthquake focal mechanisms in the northern Aegean indicates that this pattern of complementary faulting, involving WNW-ESE-striking normal faults (e.g. Lesvos earthquake) and SW-NE-striking strike-slip faults (e.g. Gokceada earthquake), persists across the full extent of the northern Aegean Sea. The combination of these two "families" of faults, combined with some systems of conjugate left-lateral strike-slip faults, complement one another and culminate in the purely extensional rift structures that form the large Gulfs of Evvia and Corinth. In addition to being consistent with seismic and geodetic observations, these fault geometries explain the increasing velocity of the southern Aegean and Peloponnese regions towards the Hellenic subduction zone. Alignment of geodetic extension and seismic tension axes with motion of the southern Aegean towards the Hellenic subduction zone suggests a direct association of Aegean extension with subduction, possibly by trench retreat, as has been suggested by prior investigators.

  4. Crimea-Kopet Dagh zone of concentrated orogenic deformations as a transregional late collisional right-lateral strike-slip fault

    Science.gov (United States)

    Patina, I. S.; Leonov, Yu. G.; Volozh, Yu. A.; Kopp, M. L.; Antipov, M. P.

    2017-07-01

    It is shown that the Crimea, Caucasus, and Kopet Dagh fold systems make up a single whole unified by a lithospheric strike-slip fault zone of concentrated dislocations. The strike-slip fault that dissects the sedimentary cover and consolidated crust is rooted in subcrustal layers of the mantle. The notions about strike-slip dislocations in the structure of the Crimea-Kopet Dagh System are considered. Comparative analysis of structure, age, and amplitude of strike-slip fault segments is carried out. The effect of strike-slip faulting on the deep-seated and near-surface structure of the Earth's crust is considered. Based on estimation of strike-slip offsets, the paleogeography of Paleogene basins is refined; their initial contours, which have been disturbed and fragmented by slipping motion strike-slip displacement, have been reconstructed.

  5. What causes an icy fault to slip? Investigating strike-slip failure conditions on Ganymede at Dardanus and Tiamat Sulcus.

    Science.gov (United States)

    Cameron, M. E.; Smith-Konter, B. R.; Burkhard, L. M.; Collins, G. C.; Seifert, F.; Pappalardo, R. T.

    2015-12-01

    Ganymede exhibits two geologically distinct terrains known as dark and light (grooved) terrain. The mechanism for a transition from dark to light terrain remains unclear; however, inferences of strike-slip faulting and distributed shear zones suggest that strike-slip tectonism may be important to the structural development of Ganymede's surface and in this transition. Here we investigate the role of tidal stresses on Ganymede in the formation and evolution of strike-slip structures in both dark and grooved terrains. Using numerical code SatStress, we calculate both diurnal and non-synchronous rotation (NSR) tidal stresses at Ganymede's surface. Specifically, we investigate the role of fault friction and orbital eccentricity in the development of ~45 km of right-lateral offset at Dardanus Sulcus and a possible case of study with a detailed morphological mapping of strike-slip morphologies (en echelon structures, strike-slip duplexes, laterally offset pre-existing features, and possible strained craters) at Nun Sulcus and several other locations. These structures serve as example regions to provide improved constraints for global stress mechanisms responsible for strike-slip fault evolution on Ganymede.

  6. Shell Tectonics: A Mechanical Model for Strike-slip Displacement on Europa

    Science.gov (United States)

    Rhoden, Alyssa Rose; Wurman, Gilead; Huff, Eric M.; Manga, Michael; Hurford, Terry A.

    2012-01-01

    We introduce a new mechanical model for producing tidally-driven strike-slip displacement along preexisting faults on Europa, which we call shell tectonics. This model differs from previous models of strike-slip on icy satellites by incorporating a Coulomb failure criterion, approximating a viscoelastic rheology, determining the slip direction based on the gradient of the tidal shear stress rather than its sign, and quantitatively determining the net offset over many orbits. This model allows us to predict the direction of net displacement along faults and determine relative accumulation rate of displacement. To test the shell tectonics model, we generate global predictions of slip direction and compare them with the observed global pattern of strike-slip displacement on Europa in which left-lateral faults dominate far north of the equator, right-lateral faults dominate in the far south, and near-equatorial regions display a mixture of both types of faults. The shell tectonics model reproduces this global pattern. Incorporating a small obliquity into calculations of tidal stresses, which are used as inputs to the shell tectonics model, can also explain regional differences in strike-slip fault populations. We also discuss implications for fault azimuths, fault depth, and Europa's tectonic history.

  7. The significance of strike-slip faulting in the basement of the Zagros fold and thrust belt

    Energy Technology Data Exchange (ETDEWEB)

    Hessami, K.; Koyi, H.A.; Talbot, C.J. [Uppsala University (Sweden). Institute of Earth Sciences

    2000-01-01

    Lateral offsets in the pattern of seismicity along the Zagros fold and thrust belt indicate that transverse faults segmenting the Arabian basement are active deep-seated strike-slip faults. The dominant NW-SE trending features of the belt have undergone repeated horizontal displacements along these transverse faults. These reactivated basement faults, which are inherited from the Pan-African construction phase, controlled both deposition of the Phanerozoic cover before Tertiary-Recent deformation of the Zagros and probably the entrapment of hydrocarbons on the NE margin of Arabia and in the Zagros area. We have used observations of faulting recognized on Landsat satellite images, in conjunction with the spatial distribution of earthquakes and their focal mechanism solutions, to infer a tectonic model for the Zagros basement. Deformation in the NW Zagros appears to be concentrated on basement thrusts and a few widely-spaced north-south trending strike-slip faults which separate major structural segments. In the SE Zagros, two main structural domains can be distinguished. A domain of NNW-trending right-lateral faults in the northern part of the SE Zagros implies that fault-bounded blocks are likely to have rotated anticlockwise about vertical axes relative to both Arabia and Central Iran. In contrast, the predominance of NNE-trending left-lateral faults in the southern part of the SE Zagros implies that fault-bounded blocks may have rotated clockwise about vertical axes. We propose a tectonic model in which crustal blocks bounded by strike-slip faults in a zone of simple shear rotate about vertical axes relative to both Arabia and Central Iran. The presence of domains of strike-slip and thrust faulting in the Zagros basement suggest that some of the convergence between Arabia and Central Iran is accommodated by rotation and possible lateral movement of crust along the belt by strike-slip faults, as well as by obvious crustal shortening and thickening along thrust

  8. The 2005 - 2007 Bala (Ankara, central Turkey) earthquakes: a case study for strike-slip fault terminations

    OpenAIRE

    Esat, K.; Çivgin, B.; Kaypak, B.; Isik, V.; Ecevitoglu, B.; Seyitoglu, G.

    2014-01-01

    An intense seismic activity has been observed after the Bala (Ankara, NW central Turkey) earthquakes (30 July 2005: Mw=5.3, 20 December 2007: Mw=5.4, and 26 December 2007: Mw=5.3), continuing up to the present. The epicenters and the focal mechanism solutions of the earthquakes indicate that the right lateral strike-slip Afşar fault, trending N55-60°W, is responsible for the main shocks. The Afşar fault is thought to be the NW continuation of the Tuzgölü fault zone, which is one of the main n...

  9. Strike-slip faults offshore southern Taiwan: implications for the oblique arc-continent collision processes

    Science.gov (United States)

    Fuh, Shi-Chie; Liu, Char-Shine; Lundberg, Neil; Reed, Donald L.

    1997-06-01

    Taiwan is the site of present-day oblique arc-continent collision between the Luzon arc of the Philippine Sea plate and the Chinese continental margin. The major structural pattern revealed from marine geophysical studies in the area offshore southern Taiwan is that of a doubly-vergent orogenic belt, bounded by significant zones of thrusting on the west and east of the submarine accretionary wedge. Due to the oblique collision process, strike-slip faults could play an important role in this convergent domain. Topographic lineaments revealed from new digital bathymetry data and seismic reflection profiles confirm the existence of three sets of strike-slip faults in the collision-subduction zone offshore southern Taiwan: the N-S-trending left-lateral strike-slip faults within the Luzon volcanic arc, the NE-SW-trending right-lateral strike-slip faults across the accretionary wedge, and the NNE-SSW-trending left-lateral strike-slip faults lie in the frontal portion of the accretionary wedge. These strike-slip faults overprint pre-existing folds and thrusts and may convert into oblique thrusts or thrusts as the forearc blocks accrete to the mountain belt. A bookshelf rotation model is used to explain the observed geometrical relationships of these strike-slip fault systems. Based on this model, the counter-clockwise rotation of the forearc blocks in the area offshore southern Taiwan could have caused extrusion of the accretionary wedge material into the forearc basin. The originally continuous forearc basin is thus deformed into several closed and separate proto-collisional basins such as the Southern Longitudinal Trough and Taitung Trough. A tectonic evolution model which emphasizes on the development of various structures at different stages of the oblique arc-continent collision for the Taiwan mountain belt is proposed.

  10. Strike-slip deformation reflects complex partitioning of strain in the Nankai Accretionary Prism (SE Japan)

    Science.gov (United States)

    Azevedo, Marco C.; Alves, Tiago M.; Fonseca, Paulo E.; Moore, Gregory F.

    2018-01-01

    Previous studies have suggested predominant extensional tectonics acting, at present, on the Nankai Accretionary Prism (NAP), and following a parallel direction to the convergence vector between the Philippine Sea and Amur Plates. However, a complex set of thrusts, pop-up structures, thrust anticlines and strike-slip faults is observed on seismic data in the outer wedge of the NAP, hinting at a complex strain distribution across SE Japan. Three-dimensional (3D) seismic data reveal three main families of faults: (1) NE-trending thrusts and back-thrusts; (2) NNW- to N-trending left-lateral strike-slip faults; and (3) WNW-trending to E-W right-lateral strike-slip faults. Such a fault pattern suggests that lateral slip, together with thrusting, are the two major styles of deformation operating in the outer wedge of the NAP. Both styles of deformation reflect a transpressional tectonic regime in which the maximum horizontal stress is geometrically close to the convergence vector. This work is relevant because it shows a progressive change from faults trending perpendicularly to the convergence vector, to a broader partitioning of strain in the form of thrusts and conjugate strike-slip faults. We suggest that similar families of faults exist within the inner wedge of the NAP, below the Kumano Basin, and control stress accumulation and strain accommodation in this latter region.

  11. Origin and structure of major orogen-scale exhumed strike-slip

    Science.gov (United States)

    Cao, Shuyun; Neubauer, Franz

    2016-04-01

    The formation of major exhumed strike-slip faults represents one of the most important dynamic processes affecting the evolution of the Earth's lithosphere and surface. Detailed models of the potential initiation and properties and architecture of orogen-scale exhumed strike-slip faults and how these relate to exhumation are rare. In this study, we deal with key properties controlling the development of major exhumed strike-slip fault systems, which are equivalent to the deep crustal sections of active across fault zones. We also propose two dominant processes for the initiation of orogen-scale exhumed strike-slip faults: (1) pluton-controlled and (2) metamorphic core complex-controlled strike-slip faults. In these tectonic settings, the initiation of faults occurs by rheological weakening along hot-to-cool contacts and guides the overall displacement and ultimate exhumation. These processes result in a specific thermal and structural architecture of such faults. These types of strike-slip dominated fault zones are often subparallel to mountain ranges and expose a wide variety of mylonitic, cataclastic and non-cohesive fault rocks, which were formed at different structural levels of the crust during various stages of faulting. The high variety of distinctive fault rocks is a potential evidence for recognition of these types of strike-slip faults. Exhumation of mylonitic rocks is, therefore, a common feature of such reverse oblique-slip strike-slip faults, implying major transtensive and/or transpressive processes accompanying pure strike-slip motion during exhumation. Some orogen-scale strike-slip faults nucleate and initiate along rheologically weak zones, e.g. at granite intrusions, zones of low-strength minerals, thermally weakened crust due to ascending fluids, and lateral borders of hot metamorphic core complexes. A further mechanism is the juxtaposition of mechanically strong mantle lithosphere to hot asthenosphere in continental transform faults (e.g., San

  12. Active strike-slip faulting in El Salvador, Central America

    Science.gov (United States)

    Corti, Giacomo; Carminati, Eugenio; Mazzarini, Francesco; Oziel Garcia, Marvyn

    2005-12-01

    Several major earthquakes have affected El Salvador, Central America, during the Past 100 yr as a consequence of oblique subduction of the Cocos plate under the Caribbean plate, which is partitioned between trench-orthogonal compression and strike-slip deformation parallel to the volcanic arc. Focal mechanisms and the distribution of the most destructive earthquakes, together with geomorphologic evidence, suggest that this transcurrent component of motion may be accommodated by a major strike-slip fault (El Salvador fault zone). We present field geological, structural, and geomorphological data collected in central El Salvador that allow the constraint of the kinematics and the Quaternary activity of this major seismogenic strike-slip fault system. Data suggest that the El Salvador fault zone consists of at least two main ˜E-W fault segments (San Vicente and Berlin segments), with associated secondary synthetic (WNW-ESE) and antithetic (NNW-SSE) Riedel shears and NW-SE tensional structures. The two main fault segments overlap in a dextral en echelon style with the formation of an intervening pull-apart basin. Our original geological and geomorphologic data suggest a late Pleistocene Holocene slip rate of ˜11 mm/yr along the Berlin segment, in contrast with low historical seismicity. The kinematics and rates of deformation suggested by our new data are consistent with models involving slip partitioning during oblique subduction, and support the notion that a trench-parallel component of motion between the Caribbean and Cocos plates is concentrated along E-W dextral strike-slip faults parallel to the volcanic arc.

  13. Timing of metamorphism of the Lansang gneiss and implications for left-lateral motion along the Mae Ping (Wang Chao) strike-slip fault, Thailand

    Science.gov (United States)

    Palin, R. M.; Searle, M. P.; Morley, C. K.; Charusiri, P.; Horstwood, M. S. A.; Roberts, N. M. W.

    2013-10-01

    The Mae Ping fault (MPF), western Thailand, exhibits dominantly left-lateral strike-slip motion and stretches for >600 km, reportedly branching off the right-lateral Sagaing fault in Myanmar and extending southeast towards Cambodia. Previous studies have suggested that the fault assisted the large-scale extrusion of Sundaland that occurred during the Late Eocene-Early Oligocene, with a geological offset of ˜120-150 km estimated from displaced high-grade gneisses and granites of the Chiang Mai-Lincang belt. Exposures of high-grade orthogneiss in the Lansang National Park, part of this belt, locally contain strong mylonitic textures and are bounded by strike-slip ductile shear zones and brittle faults. Geochronological analysis of monazite from a sample of sheared biotite-K-feldspar orthogneiss suggests two episodes of crystallization, with core regions documenting Th-Pb ages between c. 123 and c. 114 Ma and rim regions documenting a significantly younger age range between c. 45-37 Ma. These data are interpreted to represent possible magmatic protolith emplacement for the Lansang orthogneiss during the Early Cretaceous, with a later episode of metamorphism occurring during the Eocene. Textural relationships provided by in situ analysis suggest that ductile shearing along the MPF occurred during the latter stages of, or after, this metamorphic event. In addition, monazite analyzed from an undeformed garnet-two-mica granite dyke intruding metamorphic units at Bhumipol Lake outside of the Mae Ping shear zone produced a Th-Pb age of 66.2 ± 1.6 Ma. This age is interpreted to date the timing of dyke emplacement, implying that the MPF cuts through earlier formed magmatic and high-grade metamorphic rocks. These new data, when combined with regional mapping and earlier geochronological work, show that neither metamorphism, nor regional cooling, was directly related to strike-slip motion.

  14. Late Pleistocene-Holocene Activity of the Strike-slip Xianshuihe Fault Zone, Tibetan Plateau, Inferred from Tectonic Landforms

    Science.gov (United States)

    Lin, A.; Yan, B.

    2017-12-01

    Knowledges on the activity of the strike-slip fault zones on the Tibetan Plateau have been promoted greatly by the interpretation of remote sensing images (Molnar and Tapponnier, 1975; Tapponnier and Molnar, 1977). The active strike-slip Xianshuihe-Xiaojiang Fault System (XXFS), with the geometry of an arc projecting northeastwards, plays an important role in the crustal deformation of the Tibetan Plateau caused by the continental collision between the Indian and Eurasian plates. The Xianshuihe Fault Zone (XFZ) is located in the central segment of the XXFS and extends for 370 km, with a maximum sinistral offset of 60 km since 13‒5 Ma. In this study, we investigated the tectonic landforms and slip rate along the central segment of the left-lateral strike-slip XFZ. Field investigations and analysis of ttectonic landforms show that horizontal offset has been accumulated on the topographical markers of different scales that developed since the Last Glacial Maximum (LGM). The central segment of the XFZ is composed of three major faults: Yalahe, Selaha, and Zheduotang faults showing a right-stepping echelon pattern, that is characterized by systematical offset of drainages, alluvial fans and terrace risers with typical scissoring structures, indicating a structural feature of left-lateral strike-slip fault. Based on the offset glacial morphology and radiocarbon dating ages, we estimate the Late Pleistocene-Holocene slip rate to be 10 mm/yr for the central segment of the XFZ, which is consistent with that estimated from the GPS observations and geological evidence as reported previously. Across the central segment of the XFZ, the major Selaha and Zheduotang faults participate a slip rate of 5.8 mm/yr and 3.4 mm/yr, respectively. Detailed investigations of tectonic landforms are essential for the understanding the activity of active faults. Our findings suggest that the left-lateral slipping of the XFZ partitions the deformation of eastward extrusion and northeastward

  15. The 2012 Strike-slip Earthquake Sequence in Black Sea and its Link to the Caucasus Collision Zone

    Science.gov (United States)

    Tseng, T. L.; Hsu, C. H.; Legendre, C. P.; Jian, P. R.; Huang, B. S.; Karakhanian, A.; Chen, C. W.

    2016-12-01

    The Black Sea formed as a back-arc basin in Late Cretaceous to Paleogene with lots of extensional features. However, the Black Sea is now tectonically stable and absent of notable earthquakes except for the coastal region. In this study we invert regional waveforms of a new seismic array to constrain the focal mechanisms and depths of the 2012/12/23 earthquake sequence occurred in northeastern Black Sea basin that can provide unique estimates on the stress field in the region. The results show that the focal mechanisms for the main shock and 5 larger aftershocks are all strike-slip faulting and resembling with each other. The main rupture fall along the vertical dipping, NW-SE trending sinistral fault indicated by the lineation of most aftershocks. The fault strike and aftershock distribution are both consistent with the Shatsky Ridge, which is continental in nature but large normal faults was created by previous subsidence. The occurrence of 2012 earthquakes can be re-activated, as strike-slip, on one of the pre-existing normal fault cutting at depth nearly 20-30 km in the extended crust. Some of the aftershocks, including a larger one occurred 5 days later, are distributed toward NE direction 20 km away from main fault zone. Those events might be triggered by the main shock along a conjugate fault, which is surprisingly at the extension of proposed transform fault perpendicular to the rift axis of eastern Black Sea Basin. The focal mechanisms also indicate that the maximum compression in northeast Black Sea is at E-W direction, completely different from the N-S compression in the Caucasus and East Turkey controlled by Arabia-Eurasia collision. The origin of E-W maximum compression is probably the same as the secondary stress inferred from earthquakes in Racha region of the Greater Caucasus.

  16. Evolution of strike-slip fault systems and associated geomorphic structures. Model test

    International Nuclear Information System (INIS)

    Ueta, Keichi

    2003-01-01

    Sandbox experiments were performed to investigate evolution of fault systems and its associated geomorphic structures caused by strike-slip motion on basement faults. A 200 cm long, 40 cm wide, 25 cm high sandbox was used in a strike-slip fault model test. Computerized X-ray tomography applied to the sandbox experiments made it possible to analyze the kinematic evaluation, as well as the three-dimensional geometry, of the faults. The deformation of the sand pack surface was analyzed by use of a laser method 3D scanner, which is a three-dimensional noncontact surface profiling instrument. A comparison of the experimental results with natural cases of active faults reveals the following: In the left-lateral strike-slip fault experiments, the deformation of the sand pack with increasing basement displacement is observed as follows. 1) In three dimensions, the right-stepping shears that have a cirque'/'shell'/'shipbody' shape develop on both sides of the basement fault. The shears on one side of the basement fault join those on the other side, resulting in helicoidal shaped shear surfaces. Shears reach the surface of the sand near or above the basement fault and en echelon Riedel shears are observed at the surface of the sand. The region between two Riedels is always an up-squeezed block. 2) lower-angle shears generally branch off from the first Riedel shears. 3) Pressure ridges develop within the zone defined by the right-stepping helicoidal shaped lower-angle shears. 4) Grabens develop between the pressure ridges. 5) Y-shears offset the pressure ridges. 6) With displacement concentrated on the central throughgoing fault zone, a liner trough developed directly above the basement fault. R1 shear and P foliation are observed in the liner trough. Such evolution of the shears and its associated structures in the fault model tests agrees well with that of strike-slip fault systems and its associated geomorphic structures. (author)

  17. The cenozoic strike-slip faults and TTHE regional crust stability of Beishan area

    International Nuclear Information System (INIS)

    Guo Zhaojie; Zhang Zhicheng; Zhang Chen; Liu Chang; Zhang Yu; Wang Ju; Chen Weiming

    2008-01-01

    The remote sensing images and geological features of Beishan area indicate that the Altyn Tagh fault, Sanweishan-Shuangta fault, Daquan fault and Hongliuhe fault are distributed in Beishan area from south to north. The faults are all left-lateral strike-slip faults with trending of NE40-50°, displaying similar distribution pattern. The secondary branch faults are developed at the end of each main strike-slip fault with nearly east to west trending form dendritic oblique crossings at the angle of 30-50°. Because of the left-lateral slip of the branch faults, the granites or the blocks exposed within the branch faults rotate clockwisely, forming 'Domino' structures. So the structural style of Beishan area consists of the Altyn Tagh fault, Sanweishan-Shuangta fault, Daquan fault, Hongliuhe fault and their branch faults and rotational structures between different faults. Sedimentary analysis on the fault valleys in the study area and ESR chronological test of fault clay exhibit that the Sanweishan-Shuangta fault form in the late Pliocene (N2), while the Daquan fault displays formation age of l.5-1.2 Ma, and the activity age of the relevant branch faults is Late Pleistocene (400 ka). The ages become younger from the Altyn Tagh fault to the Daquan fault and strike-slip faults display NW trending extension, further revealing the lateral growth process of the strike-slip boundary at the northern margin during the Cenozoic uplift of Tibetan Plateau. The displacement amounts on several secondary faults caused by the activities of the faults are slight due to the above-mentioned structural distribution characteristics of Beishan area, which means that this area is the most stable active area with few seismic activities. We propose the main granitic bodies in Beishan area could be favorable preselected locations for China's high level radioactive waste repository. (authors)

  18. The Role of Near-Fault Relief in Creating and Maintaining Strike-Slip Landscape Features

    Science.gov (United States)

    Harbert, S.; Duvall, A. R.; Tucker, G. E.

    2016-12-01

    Geomorphic landforms, such as shutter ridges, offset river terraces, and deflected stream channels, are often used to assess the activity and slip rates of strike-slip faults. However, in some systems, such as parts of the Marlborough Fault System (South Island, NZ), an active strike-slip fault does not leave a strong landscape signature. Here we explore the factors that dampen or enhance the landscape signature of strike-slip faulting using the Channel-Hillslope Integrated Landscape Development model (CHILD). We focus on variables affecting the length of channel offsets, which enhance the signature of strike-slip motion, and the frequency of stream captures, which eliminate offsets and reduce this signature. We model a strike-slip fault that passes through a mountain ridge, offsetting streams that drain across this fault. We use this setup to test the response of channel offset length and capture frequency to fault characteristics, such as slip rate and ratio of lateral to vertical motion, and to landscape characteristics, such as relief contrasts controlled by erodibility. Our experiments show that relief downhill of the fault, whether generated by differential uplift across the fault or by an erodibility contrast, has the strongest effect on offset length and capture frequency. This relief creates shutter ridges, which block and divert streams while being advected along a fault. Shutter ridges and the streams they divert have long been recognized as markers of strike-slip motion. Our results show specifically that the height of shutter ridges is most responsible for the degree to which they create long channel offsets by preventing stream captures. We compare these results to landscape metrics in the Marlborough Fault System, where shutter ridges are common and often lithologically controlled. We compare shutter ridge length and height to channel offset length in order to assess the influence of relief on offset channel features in a real landscape. Based on our

  19. Non-Andersonian conjugate strike-slip faults: Observations, theory, and tectonic implications

    International Nuclear Information System (INIS)

    Yin, A; Taylor, M H

    2008-01-01

    Formation of conjugate strike-slip faults is commonly explained by the Anderson fault theory, which predicts a X-shaped conjugate fault pattern with an intersection angle of ∼30 degrees between the maximum compressive stress and the faults. However, major conjugate faults in Cenozoic collisional orogens, such as the eastern Alps, western Mongolia, eastern Turkey, northern Iran, northeastern Afghanistan, and central Tibet, contradict the theory in that the conjugate faults exhibit a V-shaped geometry with intersection angles of 60-75 degrees, which is 30-45 degrees greater than that predicted by the Anderson fault theory. In Tibet and Mongolia, geologic observations can rule out bookshelf faulting, distributed deformation, and temporal changes in stress state as explanations for the abnormal fault patterns. Instead, the GPS-determined velocity field across the conjugate fault zones indicate that the fault formation may have been related to Hagen-Poiseuille flow in map view involving the upper crust and possibly the whole lithosphere based on upper mantle seismicity in southern Tibet and basaltic volcanism in Mongolia. Such flow is associated with two coeval and parallel shear zones having opposite shear sense; each shear zone produce a set of Riedel shears, respectively, and together the Riedel shears exhibit the observed non-Andersonian conjugate strike-slip fault pattern. We speculate that the Hagen-Poiseuille flow across the lithosphere that hosts the conjugate strike-slip zones was produced by basal shear traction related to asthenospheric flow, which moves parallel and away from the indented segment of the collisional fronts. The inferred asthenospheric flow pattern below the conjugate strike-slip fault zones is consistent with the magnitude and orientations of seismic anisotropy observed across the Tibetan and Mongolian conjugate fault zones, suggesting a strong coupling between lithospheric deformation and asthenospheric flow. The laterally moving

  20. Non-Andersonian conjugate strike-slip faults: Observations, theory, and tectonic implications

    Energy Technology Data Exchange (ETDEWEB)

    Yin, A [Department of Earth and Space Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, CA 90025-1567 (United States); Taylor, M H [Department of Geology, University of Kansas, 1475 Jayhawk Blvd., Lawrence, KS 66044 (United States)], E-mail: yin@ess.ucla.edu

    2008-07-01

    Formation of conjugate strike-slip faults is commonly explained by the Anderson fault theory, which predicts a X-shaped conjugate fault pattern with an intersection angle of {approx}30 degrees between the maximum compressive stress and the faults. However, major conjugate faults in Cenozoic collisional orogens, such as the eastern Alps, western Mongolia, eastern Turkey, northern Iran, northeastern Afghanistan, and central Tibet, contradict the theory in that the conjugate faults exhibit a V-shaped geometry with intersection angles of 60-75 degrees, which is 30-45 degrees greater than that predicted by the Anderson fault theory. In Tibet and Mongolia, geologic observations can rule out bookshelf faulting, distributed deformation, and temporal changes in stress state as explanations for the abnormal fault patterns. Instead, the GPS-determined velocity field across the conjugate fault zones indicate that the fault formation may have been related to Hagen-Poiseuille flow in map view involving the upper crust and possibly the whole lithosphere based on upper mantle seismicity in southern Tibet and basaltic volcanism in Mongolia. Such flow is associated with two coeval and parallel shear zones having opposite shear sense; each shear zone produce a set of Riedel shears, respectively, and together the Riedel shears exhibit the observed non-Andersonian conjugate strike-slip fault pattern. We speculate that the Hagen-Poiseuille flow across the lithosphere that hosts the conjugate strike-slip zones was produced by basal shear traction related to asthenospheric flow, which moves parallel and away from the indented segment of the collisional fronts. The inferred asthenospheric flow pattern below the conjugate strike-slip fault zones is consistent with the magnitude and orientations of seismic anisotropy observed across the Tibetan and Mongolian conjugate fault zones, suggesting a strong coupling between lithospheric deformation and asthenospheric flow. The laterally moving

  1. High tsunami frequency as a result of combined strike-slip faulting and coastal landslides

    Science.gov (United States)

    Hornbach, Matthew J.; Braudy, Nicole; Briggs, Richard W.; Cormier, Marie-Helene; Davis, Marcy B.; Diebold, John B.; Dieudonne, Nicole; Douilly, Roby; Frohlich, Cliff; Gulick, Sean P.S.; Johnson, Harold E.; Mann, Paul; McHugh, Cecilia; Ryan-Mishkin, Katherine; Prentice, Carol S.; Seeber, Leonardo; Sorlien, Christopher C.; Steckler, Michael S.; Symithe, Steeve Julien; Taylor, Frederick W.; Templeton, John

    2010-01-01

    Earthquakes on strike-slip faults can produce devastating natural hazards. However, because they consist predominantly of lateral motion, these faults are rarely associated with significant uplift or tsunami generation. And although submarine slides can generate tsunami, only a few per cent of all tsunami are believed to be triggered in this way. The 12 January Mw 7.0 Haiti earthquake exhibited primarily strike-slip motion but nevertheless generated a tsunami. Here we present data from a comprehensive field survey that covered the onshore and offshore area around the epicentre to document that modest uplift together with slope failure caused tsunamigenesis. Submarine landslides caused the most severe tsunami locally. Our analysis suggests that slide-generated tsunami occur an order-of-magnitude more frequently along the Gonave microplate than global estimates predict. Uplift was generated because of the earthquake's location, where the Caribbean and Gonave microplates collide obliquely. The earthquake also caused liquefaction at several river deltas that prograde rapidly and are prone to failure. We conclude that coastal strike-slip fault systems such as the Enriquillo-Plantain Garden fault produce relief conducive to rapid sedimentation, erosion and slope failure, so that even modest predominantly strike-slip earthquakes can cause potentially catastrophic slide-generated tsunami - a risk that is underestimated at present.

  2. Rheological structure of the lithosphere in plate boundary strike-slip fault zones

    Science.gov (United States)

    Chatzaras, Vasileios; Tikoff, Basil; Kruckenberg, Seth C.; Newman, Julie; Titus, Sarah J.; Withers, Anthony C.; Drury, Martyn R.

    2016-04-01

    How well constrained is the rheological structure of the lithosphere in plate boundary strike-slip fault systems? Further, how do lithospheric layers, with rheologically distinct behaviors, interact within the strike-slip fault zones? To address these questions, we present rheological observations from the mantle sections of two lithospheric-scale, strike-slip fault zones. Xenoliths from ˜40 km depth (970-1100 ° C) beneath the San Andreas fault system (SAF) provide critical constraints on the mechanical stratification of the lithosphere in this continental transform fault. Samples from the Bogota Peninsula shear zone (BPSZ, New Caledonia), which is an exhumed oceanic transform fault, provide insights on lateral variations in mantle strength and viscosity across the fault zone at a depth corresponding to deformation temperatures of ˜900 ° C. Olivine recrystallized grain size piezometry suggests that the shear stress in the SAF upper mantle is 5-9 MPa and in the BPSZ is 4-10 MPa. Thus, the mantle strength in both fault zones is comparable to the crustal strength (˜10 MPa) of seismogenic strike-slip faults in the SAF system. Across the BPSZ, shear stress increases from 4 MPa in the surrounding rocks to 10 MPa in the mylonites, which comprise the core of the shear zone. Further, the BPSZ is characterized by at least one order of magnitude difference in the viscosity between the mylonites (1018 Paṡs) and the surrounding rocks (1019 Paṡs). Mantle viscosity in both the BPSZ mylonites and the SAF (7.0ṡ1018-3.1ṡ1020 Paṡs) is relatively low. To explain our observations from these two strike-slip fault zones, we propose the "lithospheric feedback" model in which the upper crust and lithospheric mantle act together as an integrated system. Mantle flow controls displacement and the upper crust controls the stress magnitude in the system. Our stress data combined with data that are now available for the middle and lower crustal sections of other transcurrent fault

  3. The role of post-collisional strike-slip tectonics in the geological evolution of the late Neoproterozoic volcano-sedimentary Guaratubinha Basin, southern Brazil

    Science.gov (United States)

    Barão, Leonardo M.; Trzaskos, Barbara; Vesely, Fernando F.; de Castro, Luís Gustavo; Ferreira, Francisco J. F.; Vasconcellos, Eleonora M. G.; Barbosa, Tiago C.

    2017-12-01

    The Guaratubinha Basin is a late Neoproterozoic volcano-sedimentary basin included in the transitional-stage basins of the South American Platform. The aim of this study is to investigate its tectonic evolution through a detailed structural analysis based on remote sensing and field data. The structural and aerogeophysics data indicate that at least three major deformational events affected the basin. Event E1 caused the activation of the two main basin-bounding fault zones, the Guaratubinha Master Fault and the Guaricana Shear Zone. These structures, oriented N20-45E, are associated with well-defined right-lateral to oblique vertical faults, conjugate normal faults and vertical flow structures. Progressive transtensional deformation along the two main fault systems was the main mechanism for basin formation and the deposition of thick coarse-grained deposits close to basin-borders. The continuous opening of the basin provided intense intermediate and acid magmatism as well as deposition of volcaniclastic sediments. Event E2 characterizes generalized compression, recorded as minor thrust faults with tectonic transport toward the northwest and left-lateral activation of the NNE-SSW Palmital Shear Zone. Event E3 is related to the Mesozoic tectonism associated with the South Atlantic opening, which generated diabase dykes and predominantly right-lateral strike-slip faults oriented N10-50W. Its rhomboidal geometry with long axis parallel to major Precambrian shear zones, the main presence of high-angle, strike-slip or oblique faults, the asymmetric distribution of geological units and field evidence for concomitant Neoproterozoic magmatism and strike-slip movements are consistent with pull-apart basins reported in the literature.

  4. Role of N-S strike-slip faulting in structuring of north-eastern Tunisia; geodynamic implications

    Science.gov (United States)

    Arfaoui, Aymen; Soumaya, Abdelkader; Ben Ayed, Noureddine; Delvaux, Damien; Ghanmi, Mohamed; Kadri, Ali; Zargouni, Fouad

    2017-05-01

    Three major compressional events characterized by folding, thrusting and strike-slip faulting occurred in the Eocene, Late Miocene and Quaternary along the NE Tunisian domain between Bou Kornine-Ressas-Msella and Cap Bon Peninsula. During the Plio-Quaternary, the Grombalia and Mornag grabens show a maximum of collapse in parallelism with the NNW-SSE SHmax direction and developed as 3rd order distensives zones within a global compressional regime. Using existing tectonic and geophysical data supplemented by new fault-kinematic observations, we show that Cenozoic deformation of the Mesozoic sedimentary sequences is dominated by first order N-S faults reactivation, this sinistral wrench system is responsible for the formation of strike-slip duplexes, thrusts, folds and grabens. Following our new structural interpretation, the major faults of N-S Axis, Bou Kornine-Ressas-Messella (MRB) and Hammamet-Korbous (HK) form an N-S first order compressive relay within a left lateral strike-slip duplex. The N-S master MRB fault is dominated by contractional imbricate fans, while the parallel HK fault is characterized by a trailing of extensional imbricate fans. The Eocene and Miocene compression phases in the study area caused sinistral strike-slip reactivation of pre-existing N-S faults, reverse reactivation of NE-SW trending faults and normal-oblique reactivation of NW-SE faults, creating a NE-SW to N-S trending system of east-verging folds and overlaps. Existing seismic tomography images suggest a key role for the lithospheric subvertical tear or STEP fault (Slab Transfer Edge Propagator) evidenced below this region on the development of the MRB and the HK relay zone. The presence of extensive syntectonic Pliocene on top of this crustal scale fault may be the result of a recent lithospheric vertical kinematic of this STEP fault, due to the rollback and lateral migration of the Calabrian slab eastward.

  5. Strike-slip linked core complexes: A new kinematic model of basement rock exhumation in a crustal-scale fault system

    Science.gov (United States)

    Meyer, Sven Erik; Passchier, Cees; Abu-Alam, Tamer; Stüwe, Kurt

    2014-05-01

    Metamorphic core complexes usually develop as extensional features during continental crustal thinning, such as the Basin and Range and the Aegean Terrane. The Najd fault system in Saudi Arabia is a 2000 km-long and 400 km-wide complex network of crustal-scale strike-slip shear zones in a Neoproterozoic collision zone. Locally, the anastomosing shear zones lead to exhumation of lower crustal segments and represent a new kinematic model for the development of core complexes. We report on two such structures: the Qazaz complex in Saudi Arabia and the Hafafit complex in Egypt. The 15 km-wide Qazaz complex is a triangular dome of gently dipping mylonitic foliations within the 140 km-long sinistral strike-slip Qazaz mylonite zone. The gneissic dome consists of high-grade rocks, surrounded by low-grade metasediments and metavolcanics. The main SE-trending strike-slip Qazaz shear zone splits southwards into two branches around the gneiss dome: the western branch is continuous with the shallow dipping mylonites of the dome core, without overprinting, and changes by more than 90 degrees from a NS-trending strike-slip zone to an EW-trending 40 degree south-dipping detachment that bounds the gneiss dome to the south. The eastern SE-trending sinistral strike-slip shear zone branch is slightly younger and transects the central dome fabrics. The gneiss dome appears to have formed along a jog in the strike-slip shear zone during 40 km of horizontal strike-slip motion, which caused local exhumation of lower crustal rocks by 25 km along the detachment. The eastern shear zone branch formed later during exhumation, transacted the gneiss dome and offset the two parts by another 70 km. The Hafafit core complex in Egypt is of similar shape and size to the Qazaz structure, but forms the northern termination of a sinistral strike-slip zone that is at least 100 km in length. This zone may continue into Saudi Arabia as the Ajjaj shear zone for another 100 km. The NW trending strike slip

  6. Evidence of extensional and strike-slip deformation in the offshore Gökova-Kos area affected by the July 2017 Mw6.6 Bodrum-Kos earthquake, eastern Aegean Sea

    Science.gov (United States)

    Ocakoğlu, Neslihan; Nomikou, Paraskevi; İşcan, Yeliz; Loreto, Maria Filomena; Lampridou, Danai

    2018-01-01

    The interpretation of new multichannel seismic profiles and previously published high-resolution swath and seismic reflection data from the Gökova Gulf and southeast of Kos Island in the eastern Aegean Sea revealed new morphotectonic features related to the July 20, 2017 Mw6.6 Bodrum-Kos earthquake offshore between Kos Island and the Bodrum Peninsula. The seafloor morphology in the northern part of the gulf is characterized by south-dipping E-W-oriented listric normal faults. These faults bend to a ENE-WSW direction towards Kos Island, and then extend parallel to the southern coastline. A left-lateral SW-NE strike-slip fault zone is mapped with segments crossing the Gökova Gulf from its northern part to south of Kos Island. This fault zone intersects and displaces the deep basins in the gulf. The basins are thus interpreted as the youngest deformed features in the study area. The strike-slip faults also produce E-W-oriented ridges between the basin segments, and the ridge-related vertical faults are interpreted as reverse faults. This offshore study reveals that the normal and strike-slip faults are well correlated with the focal mechanism solutions of the recent earthquake and general seismicity of the Gökova Gulf. Although the complex morphotectonic features could suggest that the area is under a transtensional regime, kinematic elements normally associated with a transtensional system are missing. At present, the Gökova Gulf is experiencing strike-slip motion with dominant extensional deformation, rather than transtensional deformation.

  7. Evidence of extensional and strike-slip deformation in the offshore Gökova-Kos area affected by the July 2017 Mw6.6 Bodrum-Kos earthquake, eastern Aegean Sea

    Science.gov (United States)

    Ocakoğlu, Neslihan; Nomikou, Paraskevi; İşcan, Yeliz; Loreto, Maria Filomena; Lampridou, Danai

    2018-06-01

    The interpretation of new multichannel seismic profiles and previously published high-resolution swath and seismic reflection data from the Gökova Gulf and southeast of Kos Island in the eastern Aegean Sea revealed new morphotectonic features related to the July 20, 2017 Mw6.6 Bodrum-Kos earthquake offshore between Kos Island and the Bodrum Peninsula. The seafloor morphology in the northern part of the gulf is characterized by south-dipping E-W-oriented listric normal faults. These faults bend to a ENE-WSW direction towards Kos Island, and then extend parallel to the southern coastline. A left-lateral SW-NE strike-slip fault zone is mapped with segments crossing the Gökova Gulf from its northern part to south of Kos Island. This fault zone intersects and displaces the deep basins in the gulf. The basins are thus interpreted as the youngest deformed features in the study area. The strike-slip faults also produce E-W-oriented ridges between the basin segments, and the ridge-related vertical faults are interpreted as reverse faults. This offshore study reveals that the normal and strike-slip faults are well correlated with the focal mechanism solutions of the recent earthquake and general seismicity of the Gökova Gulf. Although the complex morphotectonic features could suggest that the area is under a transtensional regime, kinematic elements normally associated with a transtensional system are missing. At present, the Gökova Gulf is experiencing strike-slip motion with dominant extensional deformation, rather than transtensional deformation.

  8. FMC: a one-liner Python program to manage, classify and plot focal mechanisms

    Science.gov (United States)

    Álvarez-Gómez, José A.

    2014-05-01

    The analysis of earthquake focal mechanisms (or Seismic Moment Tensor, SMT) is a key tool on seismotectonics research. Each focal mechanism is characterized by several location parameters of the earthquake hypocenter, the earthquake size (magnitude and scalar moment tensor) and some geometrical characteristics of the rupture (nodal planes orientations, SMT components and/or SMT main axes orientations). The aim of FMC is to provide a simple but powerful tool to manage focal mechanism data. The data should be input to the program formatted as one of two of the focal mechanisms formatting options of the GMT (Generic Mapping Tools) package (Wessel and Smith, 1998): the Harvard CMT convention and the single nodal plane Aki and Richards (1980) convention. The former is a SMT format that can be downloaded directly from the Global CMT site (http://www.globalcmt.org/), while the later is the simplest way to describe earthquake rupture data. FMC is programmed in Python language, which is distributed as Open Source GPL-compatible, and therefore can be used to develop Free Software. Python runs on almost any machine, and has a wide support and presence in any operative system. The program has been conceived with the modularity and versatility of the classical UNIX-like tools. Is called from the command line and can be easily integrated into shell scripts (*NIX systems) or batch files (DOS/Windows systems). The program input and outputs can be done by means of ASCII files or using standard input (or redirection "") and pipes ("|"). By default FMC will read the input and write the output as a Harvard CMT (psmeca formatted) ASCII file, although other formats can be used. Optionally FMC will produce a classification diagram representing the rupture type of the focal mechanisms processed. In order to count with a detailed classification of the focal mechanisms I decided to classify the focal mechanism in a series of fields that include the oblique slip regimes. This approximation

  9. Strike-slip tectonics during rift linkage

    Science.gov (United States)

    Pagli, C.; Yun, S. H.; Ebinger, C.; Keir, D.; Wang, H.

    2017-12-01

    The kinematics of triple junction linkage and the initiation of transforms in magmatic rifts remain debated. Strain patterns from the Afar triple junction provide tests of current models of how rifts grow to link in area of incipient oceanic spreading. Here we present a combined analysis of seismicity, InSAR and GPS derived strain rate maps to reveal that the plate boundary deformation in Afar is accommodated primarily by extensional tectonics in the Red Sea and Gulf of Aden rifts, and does not require large rotations about vertical axes (bookshelf faulting). Additionally, models of stress changes and seismicity induced by recent dykes in one sector of the Afar triple junction provide poor fit to the observed strike-slip earthquakes. Instead we explain these patterns as rift-perpendicular shearing at the tips of spreading rifts where extensional strains terminate against less stretched lithosphere. Our results demonstrate that rift-perpendicular strike-slip faulting between rift segments achieves plate boundary linkage during incipient seafloor spreading.

  10. Structural setting and kinematics of Nubian fault system, SE Western Desert, Egypt: An example of multi-reactivated intraplate strike-slip faults

    Science.gov (United States)

    Sakran, Shawky; Said, Said Mohamed

    2018-02-01

    Detailed surface geological mapping and subsurface seismic interpretation have been integrated to unravel the structural style and kinematic history of the Nubian Fault System (NFS). The NFS consists of several E-W Principal Deformation Zones (PDZs) (e.g. Kalabsha fault). Each PDZ is defined by spectacular E-W, WNW and ENE dextral strike-slip faults, NNE sinistral strike-slip faults, NE to ENE folds, and NNW normal faults. Each fault zone has typical self-similar strike-slip architecture comprising multi-scale fault segments. Several multi-scale uplifts and basins were developed at the step-over zones between parallel strike-slip fault segments as a result of local extension or contraction. The NNE faults consist of right-stepping sinistral strike-slip fault segments (e.g. Sin El Kiddab fault). The NNE sinistral faults extend for long distances ranging from 30 to 100 kms and cut one or two E-W PDZs. Two nearly perpendicular strike-slip tectonic regimes are recognized in the NFS; an inactive E-W Late Cretaceous - Early Cenozoic dextral transpression and an active NNE sinistral shear.

  11. A Study of Interactions Between Thrust and Strike-slip Faults

    Directory of Open Access Journals (Sweden)

    Jeng-Cheng Wang

    2013-01-01

    Full Text Available A 3-D finite difference method is applied in this study to investigate a spontaneous rupture within a fault system which includes a primary thrust fault and two strike-slip sub-faults. With the occurrence of a rupture on a fault, the rupture condition follows Coulomb¡¦s friction law wherein the stress-slip obeys the slip-weakening fracture criteria. To overcome the geometrical complexity of such a system, a finite difference method is encoded in two different coordinate systems; then, the calculated displacements are connected between the two systems using a 2-D interpolation technique. The rupture is initiated at the center of the main fault under the compression of regional tectonic stresses and then propagates to the boundaries whereby the main fault rupture triggers two strike-slip sub-faults. Simulation results suggest that the triggering of two sub-faults is attributed to two primary factors, regional tectonic stresses and the relative distances between the two sub-faults and the main fault.

  12. Geologic Inheritance and Earthquake Rupture Processes: The 1905 M ≥ 8 Tsetserleg-Bulnay Strike-Slip Earthquake Sequence, Mongolia

    Science.gov (United States)

    Choi, Jin-Hyuck; Klinger, Yann; Ferry, Matthieu; Ritz, Jean-François; Kurtz, Robin; Rizza, Magali; Bollinger, Laurent; Davaasambuu, Battogtokh; Tsend-Ayush, Nyambayar; Demberel, Sodnomsambuu

    2018-02-01

    In 1905, 14 days apart, two M 8 continental strike-slip earthquakes, the Tsetserleg and Bulnay earthquakes, occurred on the Bulnay fault system, in Mongolia. Together, they ruptured four individual faults, with a total length of 676 km. Using submetric optical satellite images "Pleiades" with ground resolution of 0.5 m, complemented by field observation, we mapped in detail the entire surface rupture associated with this earthquake sequence. Surface rupture along the main Bulnay fault is 388 km in length, striking nearly E-W. The rupture is formed by a series of fault segments that are 29 km long on average, separated by geometric discontinuities. Although there is a difference of about 2 m in the average slip between the western and eastern parts of the Bulnay rupture, along-fault slip variations are overall limited, resulting in a smooth slip distribution, except for local slip deficit at segment boundaries. We show that damage, including short branches and secondary faulting, associated with the rupture propagation, occurred significantly more often along the western part of the Bulnay rupture, while the eastern part of the rupture appears more localized and thus possibly structurally simpler. Eventually, the difference of slip between the western and eastern parts of the rupture is attributed to this difference of rupture localization, associated at first order with a lateral change in the local geology. Damage associated to rupture branching appears to be located asymmetrically along the extensional side of the strike-slip rupture and shows a strong dependence on structural geologic inheritance.

  13. Geometry and kinematics of adhesive wear in brittle strike-slip fault zones

    Science.gov (United States)

    Swanson, Mark T.

    2005-05-01

    Detailed outcrop surface mapping in Late Paleozoic cataclastic strike-slip faults of coastal Maine shows that asymmetric sidewall ripouts, 0.1-200 m in length, are a significant component of many mapped faults and an important wall rock deformation mechanism during faulting. The geometry of these structures ranges from simple lenses to elongate slabs cut out of the sidewalls of strike-slip faults by a lateral jump of the active zone of slip during adhesion along a section of the main fault. The new irregular trace of the active fault after this jump creates an indenting asperity that is forced to plow through the adjoining wall rock during continued adhesion or be cut off by renewed motion along the main section of the fault. Ripout translation during adhesion sets up the structural asymmetry with trailing extensional and leading contractional ends to the ripout block. The inactive section of the main fault trace at the trailing end can develop a 'sag' or 'half-graben' type geometry due to block movement along the scallop-shaped connecting ramp to the flanking ripout fault. Leading contractional ramps can develop 'thrust' type imbrication and forces the 'humpback' geometry to the ripout slab due to distortion of the inactive main fault surface by ripout translation. Similar asymmetric ripout geometries are recognized in many other major crustal scale strike-slip fault zones worldwide. Ripout structures in the 5-500 km length range can be found on the Atacama fault system of northern Chile, the Qujiang and Xiaojiang fault zones in western China, the Yalakom-Hozameen fault zone in British Columbia and the San Andreas fault system in southern California. For active crustal-scale faults the surface expression of ripout translation includes a coupled system of extensional trailing ramps as normal oblique-slip faults with pull-apart basin sedimentation and contractional leading ramps as oblique thrust or high angle reverse faults with associated uplift and erosion. The

  14. A Possible Differentially Shortened Strike-slip Plate Boundary: the Okhotsk Plate Example.

    Science.gov (United States)

    Hindle, D.; Egorov, V.; Mackey, K. G.; Fujita, K.

    2004-12-01

    The Okhotsk plate has been postulated based on a combination of GPS geodetic inversions (REVEL1), seimsicity, geologic and lineament data. Lying between the North American and Eurasian plates, its northwestern corner would appear to be undergoing compression in a scissors motion between the two bounding plates. Extrusion tectonics along multiple, large strike-slip faults within the Okhotsk plate itself have been suggested to allow the escape of material away from the apex of Eurasia-North America. The plate boundary between Okhotsk and North America has been suggested to be diffuse, based on widely scattered minor seismicity. However, the large, left lateral, Ulakhan fault has also been suggested as a candidate plate boundary. We present field geological and geomorphological evidence of the partitioning of deformation between the Ulakhan fault, and several parallel and oblique, linked faults. The Ulakhan fault strand appears to have a maximum displacement of 24 km based on river valley offsets and closing large pull apart basins. Some of the displacement from the Ulakhan fault appears relayed into the plate margin along oblique trending, thrust/oblique slip faults. Estimated shortening over these faults is equivalent to the amount of shortening relayed into the plate margin from the plate boundary. There may be several thrust/oblique slip faults along the Ulakhan fault, which leads to the interesting situation of a segmented, strike-slip plate boundary being actively shortened in a margin parallel direction. This may be the result of postulated extrusion of the Okhotsk plate due to North America/Eurasia convergence. Such a situation would have important consequences for the interpretation of GPS data in a plate tectonic context.

  15. Onset of aseismic creep on major strike-slip faults

    KAUST Repository

    Çakir, Ziyadin

    2012-10-02

    Time series analysis of spaceborne synthetic aperture radar (SAR) data, GPS measurements, and fi eld observations reveal that the central section of the Izmit (Turkey) fault that slipped with a supershear rupture velocity in the A.D. 1999, Mw7.4, Izmit earthquake began creeping aseismically following the earthquake. Rapid initial postseismic afterslip decayed logarithmically with time and appears to have reached a steady rate comparable to the preearthquake full fault-crossing rate, suggesting that it may continue for decades and possibly until late in the earthquake cycle. If confi rmed by future monitoring, these observations identify postseismic afterslip as a mechanism for initiating creep behavior along strike-slip faults. Long-term afterslip and/or creep has signifi cant implications for earthquake cycle models, recurrence intervals of large earthquakes, and accordingly, seismic hazard estimation along mature strike-slip faults, in particular for Istanbul which is believed to lie adjacent to a seismic gap along the North Anatolian fault in the Sea of Marmara. © 2012 Geological Society of America.

  16. Onset of aseismic creep on major strike-slip faults

    KAUST Repository

    Ç akir, Ziyadin; Ergintav, Semih; Ö zener, Haluk; Doǧan, Uǧur; Akoglu, Ahmet; Meghraoui, Mustapha; Reilinger, Robert E.

    2012-01-01

    Time series analysis of spaceborne synthetic aperture radar (SAR) data, GPS measurements, and fi eld observations reveal that the central section of the Izmit (Turkey) fault that slipped with a supershear rupture velocity in the A.D. 1999, Mw7.4, Izmit earthquake began creeping aseismically following the earthquake. Rapid initial postseismic afterslip decayed logarithmically with time and appears to have reached a steady rate comparable to the preearthquake full fault-crossing rate, suggesting that it may continue for decades and possibly until late in the earthquake cycle. If confi rmed by future monitoring, these observations identify postseismic afterslip as a mechanism for initiating creep behavior along strike-slip faults. Long-term afterslip and/or creep has signifi cant implications for earthquake cycle models, recurrence intervals of large earthquakes, and accordingly, seismic hazard estimation along mature strike-slip faults, in particular for Istanbul which is believed to lie adjacent to a seismic gap along the North Anatolian fault in the Sea of Marmara. © 2012 Geological Society of America.

  17. Seismotectonics and fault structure of the California Central Coast

    Science.gov (United States)

    Hardebeck, Jeanne L.

    2010-01-01

    I present and interpret new earthquake relocations and focal mechanisms for the California Central Coast. The relocations improve upon catalog locations by using 3D seismic velocity models to account for lateral variations in structure and by using relative arrival times from waveform cross-correlation and double-difference methods to image seismicity features more sharply. Focal mechanisms are computed using ray tracing in the 3D velocity models. Seismicity alignments on the Hosgri fault confirm that it is vertical down to at least 12 km depth, and the focal mechanisms are consistent with right-lateral strike-slip motion on a vertical fault. A prominent, newly observed feature is an ~25 km long linear trend of seismicity running just offshore and parallel to the coastline in the region of Point Buchon, informally named the Shoreline fault. This seismicity trend is accompanied by a linear magnetic anomaly, and both the seismicity and the magnetic anomaly end where they obliquely meet the Hosgri fault. Focal mechanisms indicate that the Shoreline fault is a vertical strike-slip fault. Several seismicity lineations with vertical strike-slip mechanisms are observed in Estero Bay. Events greater than about 10 km depth in Estero Bay, however, exhibit reverse-faulting mechanisms, perhaps reflecting slip at the top of the remnant subducted slab. Strike-slip mechanisms are observed offshore along the Hosgri–San Simeon fault system and onshore along the West Huasna and Rinconada faults, while reverse mechanisms are generally confined to the region between these two systems. This suggests a model in which the reverse faulting is primarily due to restraining left-transfer of right-lateral slip.

  18. Seismic Evidence for Conjugate Slip and Block Rotation Within the San Andreas Fault System, Southern California

    Science.gov (United States)

    Nicholson, Craig; Seeber, Leonardo; Williams, Patrick; Sykes, Lynn R.

    1986-08-01

    The pattern of seismicity in southern California indicates that much of the activity is presently occurring on secondary structures, several of which are oriented nearly orthogonal to the strikes of the major through-going faults. Slip along these secondary transverse features is predominantly left-lateral and is consistent with the reactivation of conjugate faults by the current regional stress field. Near the intersection of the San Jacinto and San Andreas faults, however, these active left-lateral faults appear to define a set of small crustal blocks, which in conjunction with both normal and reverse faulting earthquakes, suggests contemporary clockwise rotation as a result of regional right-lateral shear. Other left-lateral faults representing additional rotating block systems are identified in adjacent areas from geologic and seismologic data. Many of these structures predate the modern San Andreas system and may control the pattern of strain accumulation in southern California. Geodetic and paleomagnetic evidence confirm that block rotation by strike-slip faulting is nearly ubiquitous, particularly in areas where shear is distributed, and that it accommodates both short-term elastic and long-term nonelastic strain. A rotating block model accounts for a number of structural styles characteristic of strike-slip deformation in California, including: variable slip rates and alternating transtensional and transpressional features observed along strike of major wrench faults; domains of evenly-spaced antithetic faults that terminate against major fault boundaries; continued development of bends in faults with large lateral displacements; anomalous focal mechanisms; and differential uplift in areas otherwise expected to experience extension and subsidence. Since block rotation requires a detachment surface at depth to permit rotational movement, low-angle structures like detachments, of either local or regional extent, may be involved in the contemporary strike-slip

  19. Combining Earthquake Focal Mechanism Inversion and Coulomb Friction Law to Yield Tectonic Stress Magnitudes in Strike-slip Faulting Regime

    Science.gov (United States)

    Soh, I.; Chang, C.

    2017-12-01

    The techniques for estimating present-day stress states by inverting multiple earthquake focal mechanism solutions (FMS) provide orientations of the three principal stresses and their relative magnitudes. In order to estimate absolute magnitudes of the stresses that are generally required to analyze faulting mechanics, we combine the relative stress magnitude parameter (R-value) derived from the inversion process and the concept of frictional equilibrium of stress state defined by Coulomb friction law. The stress inversion in Korean Peninsula using 152 FMS data (magnitude≥2.5) conducted at regularly spaced grid points yields a consistent strike-slip faulting regime in which the maximum (S1) and the minimum (S3) principal stresses act in horizontal planes (with an S1 azimuth in ENE-WSW) and the intermediate principal stress (S2) close to vertical. However, R-value varies from 0.28 to 0.75 depending on locations, systematically increasing eastward. Based on the assumptions that the vertical stress is lithostatic, pore pressure is hydrostatic, and the maximum differential stress (S1-S3) is limited by Byerlee's friction of optimally oriented faults for slip, we estimate absolute magnitudes of the two horizontal principal stresses using R-value. As R-value increases, so do the magnitudes of the horizontal stresses. Our estimation of the stress magnitudes shows that the maximum horizontal principal stress (S1) normalized by vertical stress tends to increase from 1.3 in the west to 1.8 in the east. The estimated variation of stress magnitudes is compatible with distinct clustering of faulting types in different regions. Normal faulting events are densely populated in the west region where the horizontal stress is relatively low, whereas numerous reverse faulting events prevail in the east offshore where the horizontal stress is relatively high. Such a characteristic distribution of distinct faulting types in different regions can only be explained in terms of stress

  20. Stress near geometrically complex strike-slip faults - Application to the San Andreas fault at Cajon Pass, southern California

    Science.gov (United States)

    Saucier, Francois; Humphreys, Eugene; Weldon, Ray, II

    1992-01-01

    A model is presented to rationalize the state of stress near a geometrically complex major strike-slip fault. Slip on such a fault creates residual stresses that, with the occurrence of several slip events, can dominate the stress field near the fault. The model is applied to the San Andreas fault near Cajon Pass. The results are consistent with the geological features, seismicity, the existence of left-lateral stress on the Cleghorn fault, and the in situ stress orientation in the scientific well, found to be sinistral when resolved on a plane parallel to the San Andreas fault. It is suggested that the creation of residual stresses caused by slip on a wiggle San Andreas fault is the dominating process there.

  1. Assemblage of strike-slip faults and tectonic extension and ...

    Indian Academy of Sciences (India)

    12

    the formation, evolution and distribution of these strike-slip faults have important. 80 ...... function of coal-derived gas study for natural gas industry development in China; .... Bohai-Zhangjiakou seismotectonic zone based on 3D visco-elastic ...

  2. The 2015 Mw7.2 Sarez Strike-Slip Earthquake in the Pamir Interior: Response to the Underthrusting of India's Western Promontory

    Science.gov (United States)

    Metzger, Sabrina; Schurr, Bernd; Ratschbacher, Lothar; Sudhaus, Henriette; Kufner, Sofia-Katerina; Schöne, Tilo; Zhang, Yong; Perry, Mason; Bendick, Rebecca

    2017-11-01

    The Pamir orogen, Central Asia, is the result of the ongoing northward advance of the Indian continent causing shortening inside Asia. Geodetic and seismic data place the most intense deformation along the northern rim of the Pamir, but the recent 7 December 2015, Mw7.2 Sarez earthquake occurred in the Pamir's interior. We present a distributed slip model of this earthquake using coseismic geodetic data and postseismic field observations. The earthquake ruptured an ˜80 km long, subvertical, sinistral fault consisting of three right-stepping segments from the surface to ˜30 km depth with a maximum slip of three meters in the upper 10 km of the crust. The coseismic slip model agrees well with en échelon secondary surface breaks that are partly influenced by liquefaction-induced mass movements. These structures reveal up to 2 m of sinistral offset along the northern, low-offset segment of modeled rupture. The 2015 event initiated close to the presumed epicenter of the 1911 Mw˜7.3 Lake Sarez earthquake, which had a similar strike-slip mechanism. These earthquakes highlight the importance of NE trending sinistral faults in the active tectonics of the Pamir. Strike-slip deformation accommodates shear between the rapidly northward moving eastern Pamir and the Tajik basin in the west and is part of the westward (lateral) extrusion of thickened Pamir plateau crust into the Tajik basin. The Sarez-Karakul fault system and the two large Sarez earthquakes likely are crustal expressions of the underthrusting of the northwestern leading edge of the Indian mantle lithosphere beneath the Pamir.

  3. Fault structure and kinematics of the Long Valley Caldera region, California, revealed by high-accuracy earthquake hypocenters and focal mechanism stress inversions

    Science.gov (United States)

    Prejean, Stephanie; Ellsworth, William L.; Zoback, Mark; Waldhauser, Felix

    2002-01-01

    We have determined high-resolution hypocenters for 45,000+ earthquakes that occurred between 1980 and 2000 in the Long Valley caldera area using a double-difference earthquake location algorithm and routinely determined arrival times. The locations reveal numerous discrete fault planes in the southern caldera and adjacent Sierra Nevada block (SNB). Intracaldera faults include a series of east/west-striking right-lateral strike-slip faults beneath the caldera's south moat and a series of more northerly striking strike-slip/normal faults beneath the caldera's resurgent dome. Seismicity in the SNB south of the caldera is confined to a crustal block bounded on the west by an east-dipping oblique normal fault and on the east by the Hilton Creek fault. Two NE-striking left-lateral strike-slip faults are responsible for most seismicity within this block. To understand better the stresses driving seismicity, we performed stress inversions using focal mechanisms with 50 or more first motions. This analysis reveals that the least principal stress direction systematically rotates across the studied region, from NE to SW in the caldera's south moat to WNW-ESE in Round Valley, 25 km to the SE. Because WNW-ESE extension is characteristic of the western boundary of the Basin and Range province, caldera area stresses appear to be locally perturbed. This stress perturbation does not seem to result from magma chamber inflation but may be related to the significant (???20 km) left step in the locus of extension along the Sierra Nevada/Basin and Range province boundary. This implies that regional-scale tectonic processes are driving seismic deformation in the Long Valley caldera.

  4. Rupture model of the 2015 M7.2 Sarez, Central Pamir, earthquake and the importance of strike-slip faulting in the Pamir interior

    Science.gov (United States)

    Metzger, S.; Schurr, B.; Schoene, T.; Zhang, Y.; Sudhaus, H.

    2016-12-01

    The Pamir mountain range, located in the Northwest of the India-Asia collision zone, accommodates approximately one third of the northward advance of the Indian continent at this longitude (i.e. 34 mm/yr) mostly by shortening at its northern thrust system. Geodetic and seismic data sets reveal here a narrow zone of high deformation and M7+ earthquakes of mostly thrust type with some dextral strike-slip faulting observed, too. The Pamir interior shows sinistral strike-slip and normal faulting indicating north-south compression and east-west extension. In this tectonic setting the two largest instrumentally recorded earthquakes, the M7+ 1911 and 2015 earthquake events in the central Pamir occurred with left-lateral shear along a NE-SW rupture plane. We present the co-seismic deformation field of the 2015 earthquake observed by Radar satellite interferometry (InSAR), SAR amplitude offsets and high-rate Global Positioning System (GPS). The InSAR and offset results reveal that the earthquake created a 50 km long surface rupture with maximum left-lateral offsets of more than two meters on a yet unmapped fault trace of the Sarez Karakul Fault System (SKFS). We further derive a distributed slip-model including a thorough model parameter uncertainty study. Using a two-step approach to first find the optimal rupture geometry and then invert for slip on discrete patches, we show that a data-driven patch resolution produces yields a better representation of the near-surface slip and an increased slip precision than a uniform patch approach without increasing the number of parameters and thus calculation time. Our best-fit model yields a sub-vertical fault plane with a strike of N39.5 degrees and a rupture area of 80 x 40 km2 with a maximum slip of 2 meters in the upper 10 km of the crust near the surface rupture. The 1911 and 2015 earthquakes demonstrate the importance of sinistral strike-slip faulting on the SKFS, contributing both to shear between the western and eastern

  5. Structure of the la VELA Offshore Basin, Western Venezuela: AN Obliquely-Opening Rift Basin Within the South America-Caribbean Strike-Slip Plate Boundary

    Science.gov (United States)

    Blanco, J. M.; Mann, P.

    2015-12-01

    Bathymetric, gravity and magnetic maps show that the east-west trend of the Cretaceous Great Arc of the Caribbean in the Leeward Antilles islands is transected by an en echelon series of obliquely-sheared rift basins that show right-lateral offsets ranging from 20 to 40 km. The basins are 75-100 km in length and 20-30 km in width and are composed of sub-parallel, oblique slip normal faults that define deep, bathymetric channels that bound the larger islands of the Leeward Antilles including Aruba, Curacao and Bonaire. A single basin of similar orientation and structure, the Urumaco basin, is present to the southwest in the Gulf of Venezuela. We mapped structures and sedimentation in the La Vela rift basin using a 3D seismic data volume recorded down to 6 seconds TWT. The basin can be mapped from the Falcon coast where it is correlative with the right-lateral Adicora fault mapped onshore, and its submarine extension. To the southeast of the 3D survey area, previous workers have mapped a 70-km-wide zone of northeast-striking, oblique, right-lateral faults, some with apparent right-lateral offsets of the coastline. On seismic data, the faults vary in dip from 45 to 60 degrees and exhibit maximum vertical offsets of 600 m. The La Vela and other obliquely-opening rifts accommodate right-lateral shear with linkages to intervening, east-west-striking right-lateral faults like the Adicora. The zone of oblique rifts is restricted to the trend of the Great Arc of the Caribbean and may reflect the susceptiblity of this granitic basement to active shearing. The age of onset for the basins known from previous studies on the Leeward Antilles is early Miocene. As most of these faults occur offshore their potential to generate damaging earthquakes in the densely populated Leeward Antilles is not known.

  6. Using regional moment tensors to constrain the kinematics and stress evolution of the 2010–2013 Canterbury earthquake sequence, South Island, New Zealand

    Science.gov (United States)

    Herman, Matthew W.; Herrmann, Robert B.; Benz, Harley M.; Furlong, Kevin P.

    2014-01-01

    On September 3, 2010, a MW 7.0 (U.S. Geological Survey moment magnitude) earthquake ruptured across the Canterbury Plains in South Island, New Zealand. Since then, New Zealand GNS Science has recorded over 10,000 aftershocks ML 2.0 and larger, including three destructive ~ MW 6.0 earthquakes near Christchurch. We treat the Canterbury earthquake sequence as an intraplate earthquake sequence, and compare its kinematics to an Andersonian model for fault slip in a uniform stress field. We determined moment magnitudes and double couple solutions for 150 earthquakes having MW 3.7 and larger through the use of a waveform inversion technique using data from broadband seismic stations on South Island, New Zealand. The majority (126) of these double couple solutions have strike-slip focal mechanisms, with right-lateral slip on ENE fault planes or equivalently left-lateral slip on SSE fault planes. The remaining focal mechanisms indicate reverse faulting, except for two normal faulting events. The strike-slip segments have compatible orientations for slip in a stress field with a horizontal σ1 oriented ~ N115°E, and horizontal σ3. The preference for right lateral strike-slip earthquakes suggests that these structures are inherited from previous stages of deformation. Reverse slip is interpreted to have occurred on previously existing structures in regions with an absence of existing structures optimally oriented for strike-slip deformation. Despite the variations in slip direction and faulting style, most aftershocks had nearly the same P-axis orientation, consistent with the regional σ1. There is no evidence for significant changes in these stress orientations throughout the Canterbury earthquake sequence.

  7. Characterization of Aftershock Sequences from Large Strike-Slip Earthquakes Along Geometrically Complex Faults

    Science.gov (United States)

    Sexton, E.; Thomas, A.; Delbridge, B. G.

    2017-12-01

    Large earthquakes often exhibit complex slip distributions and occur along non-planar fault geometries, resulting in variable stress changes throughout the region of the fault hosting aftershocks. To better discern the role of geometric discontinuities on aftershock sequences, we compare areas of enhanced and reduced Coulomb failure stress and mean stress for systematic differences in the time dependence and productivity of these aftershock sequences. In strike-slip faults, releasing structures, including stepovers and bends, experience an increase in both Coulomb failure stress and mean stress during an earthquake, promoting fluid diffusion into the region and further failure. Conversely, Coulomb failure stress and mean stress decrease in restraining bends and stepovers in strike-slip faults, and fluids diffuse away from these areas, discouraging failure. We examine spatial differences in seismicity patterns along structurally complex strike-slip faults which have hosted large earthquakes, such as the 1992 Mw 7.3 Landers, the 2010 Mw 7.2 El-Mayor Cucapah, the 2014 Mw 6.0 South Napa, and the 2016 Mw 7.0 Kumamoto events. We characterize the behavior of these aftershock sequences with the Epidemic Type Aftershock-Sequence Model (ETAS). In this statistical model, the total occurrence rate of aftershocks induced by an earthquake is λ(t) = λ_0 + \\sum_{i:t_i

  8. Late Quaternary strike-slip along the Taohuala Shan-Ayouqi fault zone and its tectonic implications in the Hexi Corridor and the southern Gobi Alashan, China

    Science.gov (United States)

    Yu, Jing-xing; Zheng, Wen-jun; Zhang, Pei-zhen; Lei, Qi-yun; Wang, Xu-long; Wang, Wei-tao; Li, Xin-nan; Zhang, Ning

    2017-11-01

    The Hexi Corridor and the southern Gobi Alashan are composed of discontinuous a set of active faults with various strikes and slip motions that are located to the north of the northern Tibetan Plateau. Despite growing understanding of the geometry and kinematics of these active faults, the late Quaternary deformation pattern in the Hexi Corridor and the southern Gobi Alashan remains controversial. The active E-W trending Taohuala Shan-Ayouqi fault zone is located in the southern Gobi Alashan. Study of the geometry and nature of slip along this fault zone holds crucial value for better understanding the regional deformation pattern. Field investigations combined with high-resolution imagery show that the Taohuala Shan fault and the E-W trending faults within the Ayouqi fault zone (F2 and F5) are left-lateral strike-slip faults, whereas the NW or WNW-trending faults within the Ayouqi fault zone (F1 and F3) are reverse faults. We collected Optically Stimulated Luminescence (OSL) and cosmogenic exposure age dating samples from offset alluvial fan surfaces, and estimated a vertical slip rate of 0.1-0.3 mm/yr, and a strike-slip rate of 0.14-0.93 mm/yr for the Taohuala Shan fault. Strata revealed in a trench excavated across the major fault (F5) in the Ayouqi fault zone and OSL dating results indicate that the most recent earthquake occurred between ca. 11.05 ± 0.52 ka and ca. 4.06 ± 0.29 ka. The geometry and kinematics of the Taohuala Shan-Ayouqi fault zone enable us to build a deformation pattern for the entire Hexi Corridor and the southern Gobi Alashan, which suggest that this region experiences northeastward oblique extrusion of the northern Tibetan Plateau. These left-lateral strike-slip faults in the region are driven by oblique compression but not associated with the northeastward extension of the Altyn Tagh fault.

  9. Seismicity, focal mechanisms, and stress distribution in the Tres Virgenes volcanic and geothermal region, Baja California Sur, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Victor; Munguia, Luis [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (Mexico)

    2006-01-15

    In October 1993 we carried out a seismic monitoring in the Tres Virgenes volcanic region in order to record the background seismicity associated with the volcanic structures, the geothermal field and the tectonic features of the area. Hypocenters for 257 microearthquakes were located in the volcanic edifices and along the northwest right-lateral, strike-slip La Virgen fault. Focal depths range from close to the Earth surface to about 8 km. Shallow depths occur mainly in the volcanic edifices. Deeper seismic events occurred outside the volcanic area. The duration magnitudes of the located microearthquakes range between 1 and 3. The Vp/Vs ratio and the low-Q values estimated suggest heterogeneous material properties in the volcanic structures mainly toward the El Azufre fault and the El Aguajito Caldera, where hydrothermal activity has been reported. The P- and T-axes of focal mechanisms for 90 microearthquakes suggest that the region is under N-S compression and E-W extension, in agreement with the regional tectonic stress field of the NW-SE right-lateral strike-slip transform fault system of the Gulf of California. [Spanish] En octubre de 1993 se llevo a cabo un monitoreo sismico en la region volcanica Las Tres Virgenes con el proposito de registrar la actividad sismica asociada a las estructuras volcanicas, al campo geotermico y a la tectonica local. Se localizaron 257 microsismos con hipocentros en los edificios volcanicos y a lo largo de la falla de rumbo, lateral derecha conocida como falla La Virgen. La profundidad focal de los sismos varia desde los muy cercanos a la superficie de la Tierra hasta los 8 km. Las profundidades someras ocurren principalmente en los edificios volcanicos. Los sismos mas profundos ocurren fuera del area volcanica. La magnitud de duracion de los microsismos localizados varia entre 1 y 3. La razon Vp/Vs y los valores bajos de Q que se estimaron en la zona sugieren un material con propiedades heterogeneas bajo las estructuras

  10. Transition from strike-slip faulting to oblique subduction: active tectonics at the Puysegur Margin, South New Zealand

    Science.gov (United States)

    Lamarche, Geoffroy; Lebrun, Jean-Frédéric

    2000-01-01

    South of New Zealand the Pacific-Australia (PAC-AUS) plate boundary runs along the intracontinental Alpine Fault, the Puysegur subduction front and the intraoceanic Puysegur Fault. The Puysegur Fault is located along Puysegur Ridge, which terminates at ca. 47°S against the continental Puysegur Bank in a complex zone of deformation called the Snares Zone. At Puysegur Trench, the Australian Plate subducts beneath Puysegur Bank and the Fiordland Massif. East of Fiordland and Puysegur Bank, the Moonlight Fault System (MFS) represents the Eocene strike-slip plate boundary. Interpretation of seafloor morphology and seismic reflection profiles acquired over Puysegur Bank and the Snares Zone allows study of the transition from intraoceanic strike-slip faulting along the Puysegur Ridge to oblique subduction at the Puysegur Trench and to better understand the genetic link between the Puysegur Fault and the MFS. Seafloor morphology is interpreted from a bathymetric dataset compiled from swath bathymetry data acquired during the 1993 Geodynz survey, and single beam echo soundings acquired by the NZ Royal Navy. The Snares Zone is the key transition zone from strike-slip faulting to subduction. It divides into three sectors, namely East, NW and SW sectors. A conspicuous 3600 m-deep trough (the Snares Trough) separates the NW and East sectors. The East sector is characterised by the NE termination of Puysegur Ridge into right-stepping en echelon ridges that accommodate a change of strike from the Puysegur Fault to the MFS. Between 48°S and 47°S, in the NW sector and the Snares Trough, a series of transpressional faults splay northwards from the Puysegur Fault. Between 49°50'S and 48°S, thrusts develop progressively at Puysegur Trench into a decollement. North of 48°S the Snares Trough develops between two splays of the Puysegur Fault, indicating superficial extension associated with the subsidence of Puysegur Ridge. Seismic reflection profiles and bathymetric maps show a

  11. The rupture process of the Manjil, Iran earthquake of 20 june 1990 and implications for intraplate strike-slip earthquakes

    Science.gov (United States)

    Choy, G.L.; Zednik, J.

    1997-01-01

    In terms of seismically radiated energy or moment release, the earthquake of 20 January 1990 in the Manjil Basin-Alborz Mountain region of Iran is the second largest strike-slip earthquake to have occurred in an intracontinental setting in the past decade. It caused enormous loss of life and the virtual destruction of several cities. Despite a very large meizoseismal area, the identification of the causative faults has been hampered by the lack of reliable earthquake locations and conflicting field reports of surface displacement. Using broadband data from global networks of digitally recording seismographs, we analyse broadband seismic waveforms to derive characteristics of the rupture process. Complexities in waveforms generated by the earthquake indicate that the main shock consisted of a tiny precursory subevent followed in the next 20 seconds by a series of four major subevents with depths ranging from 10 to 15 km. The focal mechanisms of the major subevents, which are predominantly strike-slip, have a common nodal plane striking about 285??-295??. Based on the coincidence of this strike with the dominant tectonic fabric of the region we presume that the EW striking planes are the fault planes. The first major subevent nucleated slightly south of the initial precursor. The second subevent occurred northwest of the initial precursor. The last two subevents moved progressively southeastward of the first subevent in a direction collinear with the predominant strike of the fault planes. The offsets in the relative locations and the temporal delays of the rupture subevents indicate heterogeneous distribution of fracture strength and the involvement of multiple faults. The spatial distribution of teleseismic aftershocks, which at first appears uncorrelated with meizoseismal contours, can be decomposed into stages. The initial activity, being within and on the periphery of the rupture zone, correlates in shape and length with meizoseismal lines. In the second stage

  12. Inferences about the local stress field from focal mechanisms: Applications to earthquakes in the southern Great Basin of Nevada

    International Nuclear Information System (INIS)

    Harmsen, S.C.; Rogers, A.M.

    1986-01-01

    Focal mechanisms determined from regional-network earthquake data or aftershock field investigation often contain members ranging from strike slip to normal slip in extensional tectonic environments or from strike slip to thrust slip in compressional environments. Although the coexistence of normal and strike-slip faulting has suggested to some investigators that the maximum and intermediate principal stresses are of approximately equal magnitude, several have asserted that the directions of principle stresses can or must interchange to accommodate both types of mechanisms (Zoback and Zoback 1980b; Vetter and Ryall, 1983). A Coulomb-Navier criterion of slip is invoked to demonstrate that both types of mechanisms, as well as oblique members having preferred nodal-plane dips intermediate between those of the strike-slip and normal mechanisms, may be observed in a region where the stress field, resolved into principal components, is axially symmetric. The proximate coexistence of earthquakes having diverse focal mechanisms could be interpreted as evidence for an approximately axially symmetric stress field in a region where optimally oriented planes of weakness are known to exist in the host rock. 10 refs., 6 figs

  13. Holocene paleoearthquakes on the strike-slip Porters Pass Fault, Canterbury, New Zealand

    International Nuclear Information System (INIS)

    Howard, M.; Nicol, A.; Campbell, J.; Pettinga, J.R.

    2005-01-01

    The Porters Pass Fault comprises a series of discontinuous Holocene active traces which extend for c. 40 km between the Rakaia and Waimakariri Rivers in the foothills of the Southern Alps. There have been no historical earthquakes on the Porters Pass Fault (i.e., within the last 150 yr), and the purpose of this paper is to establish the timing and magnitudes of displacements on the fault at the ground surface during Holocene paleoearthquakes. Displaced geomorphic features (e.g., relict streams, stream channels, and ridge crests), measured using either tape measure (n = 20) or surveying equipment (n = 5), range from 5.5 to 33 m right lateral strike slip and are consistent with six earthquakes characterised by slip per event of c. 5-7 m. The timing of these earthquakes is constrained by radiocarbon dates from four trenches excavated across the fault and two auger sites from within swamps produced by ponding of drainage along the fault scarp. These data indicate markedly different Holocene earthquake histories along the fault length separated by a behavioural segment boundary near Lake Coleridge. On the eastern segment at least six Holocene earthquakes were identified at 8400-9000, 5700-6700, 4500-6000, 2300-2500, 800-1100, and 500-600 yr BP, producing an average recurrence interval of c. 1500 yr. On the western segment of the fault in the Rakaia River valley, a single surface-rupturing earthquake displaced Acheron Advance glacial deposits (c.10,000-14,000 yr in age) and may represent the southward continuation of the 2300-2500 yr event identified on the eastern segment. These data suggest Holocene slip rates of 3.2-4.1 mm/yr and 0.3-0.9 mm/yr on the eastern and western sections of the fault, respectively. Displacement and timing data suggest that earthquakes ruptured the western segment of the fault in no more than one-sixth of cases and that for a sample period of 10,000 yr the recurrence intervals were not characteristic. (auth). 45 refs., 10 figs., 3 tabs

  14. Strike-slip tectonics and Quaternary basin formation along the Vienna Basin fault system inferred from Bouguer gravity derivatives

    NARCIS (Netherlands)

    Salcher, B. C.; Meurers, B.; Smit, J.; Decker, K.; HöLzel, M.; Wagreich, M.

    2012-01-01

    The Vienna Basin at the transition between the Alpine and Carpathian belt hosts a number of large Pleistocene sub-basins forming along an active continental scale strike-slip fault (Vienna Basin strike-slip fault). We utilize first-order derivatives from industrial Bouguer gravity data to unravel

  15. Magmatic control along a strike-slip volcanic arc: The central Aeolian arc (Italy)

    Science.gov (United States)

    Ruch, J.; Vezzoli, L.; De Rosa, R.; Di Lorenzo, R.; Acocella, V.

    2016-02-01

    The regional stress field in volcanic areas may be overprinted by that produced by magmatic activity, promoting volcanism and faulting. In particular, in strike-slip settings, the definition of the relationships between the regional stress field and magmatic activity remains elusive. To better understand these relationships, we collected stratigraphic, volcanic, and structural field data along the strike-slip central Aeolian arc (Italy): here the islands of Lipari and Vulcano separate the extensional portion of the arc (to the east) from the contractional one (to the west). We collected >500 measurements of faults, extension fractures, and dikes at 40 sites. Most structures are NNE-SSW to NNW-SSE oriented, eastward dipping, and show almost pure dip-slip motion, consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55 ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic activities steadily migrated eastward and currently focus on a 10 km long × 2 km wide active segment. Faulting appears to mostly occur in temporal and spatial relation with magmatic events, supporting that most of the observable deformation derives from transient magmatic activity (shorter term, days to months), rather than from steady longer-term regional tectonics (102-104 years). More in general, the central Aeolian case shows how magmatic activity may affect the structure and evolution of volcanic arcs, overprinting any strike-slip motion with magma-induced extension at the surface.

  16. Magmatic control along a strike-slip volcanic arc: The central Aeolian arc (Italy)

    KAUST Repository

    Ruch, Joel

    2016-01-23

    The regional stress field in volcanic areas may be overprinted by that produced by magmatic activity, promoting volcanism and faulting. In particular, in strike-slip settings, the definition of the relationships between the regional stress field and magmatic activity remains elusive. To better understand these relationships, we collected stratigraphic, volcanic and structural field data along the strike-slip Central Aeolian arc (Italy): here the islands of Lipari and Vulcano separate the extensional portion of the arc (to the east) from the contractional one (to the west). We collected >500 measurements of faults, extension fractures and dikes at 40 sites. Most structures are NNE-SSW to NNW-SSE oriented, eastward dipping, and show almost pure dip-slip motion; consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55 ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic activity steadily migrated eastward and currently focus on a 10 km long x 2 km wide active segment. Faulting appears to mostly occur in temporal and spatial relation with magmatic events, supporting that most of the observable deformation derives from transient magmatic activity (shorter-term, days to months), rather than from steady longer-term regional tectonics (102-104 years). More in general, the Central Aeolian case shows how magmatic activity may affect the structure and evolution of volcanic arcs, overprinting any strike-slip motion with magma-induced extension at the surface.

  17. States of stress and slip partitioning in a continental scale strike-slip duplex: Tectonic and magmatic implications by means of finite element modeling

    Science.gov (United States)

    Iturrieta, Pablo Cristián; Hurtado, Daniel E.; Cembrano, José; Stanton-Yonge, Ashley

    2017-09-01

    Orogenic belts at oblique convergent subduction margins accommodate deformation in several trench-parallel domains, one of which is the magmatic arc, commonly regarded as taking up the margin-parallel, strike-slip component. However, the stress state and kinematics of volcanic arcs is more complex than usually recognized, involving first- and second-order faults with distinctive slip senses and mutual interaction. These are usually organized into regional scale strike-slip duplexes, associated with both long-term and short-term heterogeneous deformation and magmatic activity. This is the case of the 1100 km-long Liquiñe-Ofqui Fault System in the Southern Andes, made up of two overlapping margin-parallel master faults joined by several NE-striking second-order faults. We present a finite element model addressing the nature and spatial distribution of stress across and along the volcanic arc in the Southern Andes to understand slip partitioning and the connection between tectonics and magmatism, particularly during the interseismic phase of the subduction earthquake cycle. We correlate the dynamics of the strike-slip duplex with geological, seismic and magma transport evidence documented by previous work, showing consistency between the model and the inferred fault system behavior. Our results show that maximum principal stress orientations are heterogeneously distributed within the continental margin, ranging from 15° to 25° counter-clockwise (with respect to the convergence vector) in the master faults and 10-19° clockwise in the forearc and backarc domains. We calculate the stress tensor ellipticity, indicating simple shearing in the eastern master fault and transpressional stress in the western master fault. Subsidiary faults undergo transtensional-to-extensional stress states. The eastern master fault displays slip rates of 5 to 10 mm/yr, whereas the western and subsidiary faults show slips rates of 1 to 5 mm/yr. Our results endorse that favorably oriented

  18. Structure of the Melajo clay near Arima, Trinidad and strike-slip motion in the El Pilar fault zone

    Science.gov (United States)

    Robertson, P.; Burke, K.; Wadge, G.

    1985-01-01

    No consensus has yet emerged on the sense, timing and amount of motion in the El Pilar fault zone. As a contribution to the study of this problem, a critical area within the zone in North Central Trinidad has been mapped. On the basis of the mapping, it is concluded that the El Pilar zone has been active in right-lateral strike-slip motion during the Pleistocene. Recognition of structural styles akin to those of the mapped area leads to the suggestion that the El Pilar zone is part of a 300 km wide plate boundary zone extending from the Orinoco delta northward to Grenada. Lateral motion of the Caribbean plate with respect to South America has been suggested to amount to 1900 km in the last 38 Ma. Part of this displacement since the Miocene can be readily accommodated within the broad zone identified here. No one fault system need account for more than a fraction of the total motion and all faults need not be active simultaneously.

  19. Tsunamis from strike-slip earthquakes in the Wharton Basin, northeast Indian Ocean: March 2016 Mw7.8 event and its relationship with the April 2012 Mw 8.6 event

    Science.gov (United States)

    Heidarzadeh, Mohammad; Harada, Tomoya; Satake, Kenji; Ishibe, Takeo; Takagawa, Tomohiro

    2017-12-01

    The Wharton Basin, off southwest Sumatra, ruptured to a large intraplate left-lateral strike-slip Mw 7.8 earthquake on 2016 March 2. The epicentre was located ∼800 km to the south of another similar-mechanism intraplate Mw 8.6 earthquake in the same basin on 2012 April 11. Small tsunamis from these strike-slip earthquakes were registered with maximum amplitudes of 0.5-1.5 cm on DARTs and 1-19 cm on tide gauges for the 2016 event, and the respective values of 0.5-6 and 6-40 cm for the 2012 event. By using both teleseismic body waves and tsunami observations of the 2016 event, we obtained optimum slip models with rupture velocity (Vr) in the range of 2.8-3.6 km s-1 belonging to both EW and NS faults. While the EW fault plane cannot be fully ruled out, we chose the best model as the NS fault plane with a Vr of 3.6 km s-1, a maximum slip of 7.7 m and source duration of 33 s. The tsunami energy period bands were 4-15 and 7-24 min for the 2016 and 2012 tsunamis, respectively, reflecting the difference in source sizes. Seismicity in the Wharton Basin is dominated by large strike-slip events including the 2012 (Mw 8.6 and 8.2) and 2016 (Mw 7.8) events, indicating that these events are possible tsunami sources in the Wharton Basin. Cumulative number and cumulative seismic-moment curves revealed that most earthquakes are of strike-slip mechanisms and the largest seismic-moment is provided by the strike-slip earthquakes in this basin.

  20. Strike-slip pull-apart process and emplacement of Xiangshan uranium-producing volcanic basin

    International Nuclear Information System (INIS)

    Qiu Aijin; Guo Lingzhi; Shu Liangshu

    2001-01-01

    Xiangshan volcanic basin is one of the famous uranium-producing volcanic basins in China. Emplacement mechanism of Xiangshan uranium-producing volcanic basin is discussed on the basis of the latest research achievements of deep geology in Xiangshan area and the theory of continental dynamics. The study shows that volcanic activity in Xiangshan volcanic basin may be divided into two cycles, and its emplacement is controlled by strike-ship pull-apart process originated from the deep regional faults. Volcanic apparatus in the first cycle was emplaced in EW-trending structure activated by clockwise strike-slipping of NE-trending deep fault, forming the EW-trending fissure-type volcanic effusion belt. Volcanic apparatus in the second cycle was emplaced at junction points of SN-trending pull-apart structure activated by sinistral strike-slipping of NE-trending deep faults and EW-trending basement faults causing the center-type volcanic magma effusion and extrusion. Moreover, the formation mechanism of large-rich uranium deposits is discussed as well

  1. Evolution of the stress fields in the Zagros Foreland Folded Belt using focal mechanisms and kinematic analyses: the case of the Fars salient, Iran

    Science.gov (United States)

    Sarkarinejad, Khalil; Zafarmand, Bahareh; Oveisi, Behnam

    2018-03-01

    The NW-SE trending Zagros orogenic belt was initiated during the convergence of the Afro-Arabian continent and the Iranian microcontinent in the Late Cretaceous. Ongoing convergence is confirmed by intense seismicity related to compressional stresses collision-related in the Zagros orogenic belt by reactivation of an early extensional faulting to latter compressional segmented strike-slip and dip-slip faulting. These activities are strongly related either to the deep-seated basement fault activities (deep-seated earthquakes) underlies the sedimentary cover or gently dipping shallow-seated décollement horizon of the rheological weak rocks of the infra-Cambrian Hormuz salt. The compressional stress regimes in the different units play an important role in controlling the stress conditions between the different units within the sedimentary cover and basement. A significant set of nearly N-S trending right-lateral strike-slip faults exists throughout the study area in the Fars area in the Zagros Foreland Folded Belt. Fault-slip and focal mechanism data were analyzed using the stress inversion method to reconstruct the paleo and recent stress conditions. The results suggest that the current direction of maximum principal stress averages N19°E, with N38°E that for the past from Cretaceous to Tertiary (although a few sites on the Kar-e-Bass fault yield a different direction). The results are consistent with the collision of the Afro-Arabian continent and the Iranian microcontinent. The difference between the current and paleo-stress directions indicates an anticlockwise rotation in the maximum principle stress direction over time. This difference resulted from changes in the continental convergence path, but was also influenced by the local structural evolution, including the lateral propagation of folds and the presence of several local décollement horizons that facilitated decoupling of the deformation between the basement and the sedimentary cover. The obliquity of

  2. Effect of inherited structures on strike-slip plate boundaries: insight from analogue modelling of the central Levant Fracture System, Lebanon

    Science.gov (United States)

    Ghalayini, Ramadan; Daniel, Jean-Marc; Homberg, Catherine; Nader, Fadi

    2015-04-01

    Analogue sandbox modeling is a tool to simulate deformation style and structural evolution of sedimentary basins. The initial goal is to test what is the effect of inherited and crustal structures on the propagation, evolution, and final geometry of major strike-slip faults at the boundary between two tectonic plates. For this purpose, we have undertaken a series of analogue models to validate and reproduce the structures of the Levant Fracture System, a major NNE-SSW sinistral strike-slip fault forming the boundary between the Arabian and African plates. Onshore observations and recent high quality 3D seismic data in the Levant Basin offshore Lebanon demonstrated that Mesozoic ENE striking normal faults were reactivated into dextral strike-slip faults during the Late Miocene till present day activity of the plate boundary which shows a major restraining bend in Lebanon with a ~ 30°clockwise rotation in its trend. Experimental parameters consisted of a silicone layer at the base simulating the ductile crust, overlain by intercalated quartz sand and glass sand layers. Pre-existing structures were simulated by creating a graben in the silicone below the sand at an oblique (>60°) angle to the main throughgoing strike-slip fault. The latter contains a small stepover at depth to create transpression during sinistral strike-slip movement and consequently result in mountain building similarly to modern day Lebanon. Strike-slip movement and compression were regulated by steady-speed computer-controlled engines and the model was scanned using a CT-scanner continuously while deforming to have a final 4D model of the system. Results showed that existing normal faults were reactivated into dextral strike-slip faults as the sinistral movement between the two plates accumulated. Notably, the resulting restraining bend is asymmetric and segmented into two different compartments with differing geometries. One compartment shows a box fold anticline, while the second shows an

  3. The geometry of the active strike-slip El Tigre Fault, Precordillera of San Juan, Central-Western Argentina: integrating resistivity surveys with structural and geomorphological data

    Science.gov (United States)

    Fazzito, Sabrina Y.; Cortés, José M.; Rapalini, Augusto E.; Terrizzano, Carla M.

    2013-07-01

    The geometry and related geomorphological features of the right-lateral strike-slip El Tigre Fault, one of the main morphostructural discontinuities in the Central-Western Precordillera of Argentina, were investigated. Achievements of this survey include: recognition of structural and geometrical discontinuities along the fault trace, identification and classification of landforms associated with local transpressional and transtensional sectors, observation of significant changes in the fault strike and detection of right and left bends of different wavelength. In the Central Segment of the El Tigre Fault, 2D electrical resistivity tomography surveys were carried out across the fault zone. The resistivity imaging permitted to infer the orientation of the main fault surface, the presence of blind fault branches along the fault zone, tectonic tilting of the Quaternary sedimentary cover, subsurface structure of pressure ridges and depth to the water table. Based on this information, it is possible to characterize the El Tigre Fault also as an important hydro-geological barrier. Our survey shows that the main fault surface changes along different segments from a high-angle to a subvertical setting whilst the vertical-slip component is either reverse or normal, depending on the local transpressive or transtensive regime induced by major bends along the trace. These local variations are expressed as sections of a few kilometres in length with relatively homogeneous behaviour and frequently separated by oblique or transversal structures.

  4. Strike-Slip Fault Deformation and Its Control in Hydrocarbon Trapping in Ketaling Area, Jambi Subbasin, Indonesia

    Science.gov (United States)

    Ramadhan, Aldis; Badai Samudra, Alexis; Jaenudin; Puji Lestari, Enik; Saputro, Julian; Sugiono; Hirosiadi, Yosi; Amrullah, Indi

    2018-03-01

    Geologically, Ketaling area consists of a local high considered as flexure margin of Tempino-Kenali Asam Deep in west part and graben in east part also known as East Ketaling Deep. Numerous proven plays were established in Ketaling area with reservoir in early Miocene carbonate and middle Miocene sand. This area underwent several major deformations. Faults are developed widely, yet their geometrical features and mechanisms of formation remained so far indistinct, which limited exploration activities. With new three-dimensional seismic data acquired in 2014, this area evidently interpreted as having strike-slip mechanism. The objective of this study is to examine characteristic of strike slip fault and its affect to hydrocarbon trapping in Ketaling Area. Structural pattern and characteristic of strike slip fault deformation was examined with integration of normal seismic with variance seismic attribute analysis and the mapping of Syn-rift to Post-rift horizon. Seismic flattening on 2D seismic cross section with NW-SE direction is done to see the structural pattern related to horst (paleohigh) and graben. Typical flower structure, branching strike-slip fault system and normal fault in synrift sediment clearly showed in section. An echelon pattern identified from map view as the result of strike slip mechanism. Detail structural geology analysis show the normal fault development which has main border fault in the southern of Ketaling area dipping to the Southeast-East with NE-SW lineament. These faults related to rift system in Ketaling area. NW-SE folds with reactive NE-SW fault which act as hydrocarbon trapping in the shallow zone. This polyphase tectonic formed local graben, horst and inverted structure developed a good kitchen area (graben) and traps (horst, inverted structure). Subsequently, hydrocarbon accumulation potentials such as basement fractures, inverted syn-rift deposit and shallow zone are very interesting to explore in this area.

  5. Finite element models of earthquake cycles in mature strike-slip fault zones

    Science.gov (United States)

    Lynch, John Charles

    The research presented in this dissertation is on the subject of strike-slip earthquakes and the stresses that build and release in the Earth's crust during earthquake cycles. Numerical models of these cycles in a layered elastic/viscoelastic crust are produced using the finite element method. A fault that alternately sticks and slips poses a particularly challenging problem for numerical implementation, and a new contact element dubbed the "Velcro" element was developed to address this problem (Appendix A). Additionally, the finite element code used in this study was bench-marked against analytical solutions for some simplified problems (Chapter 2), and the resolving power was tested for the fault region of the models (Appendix B). With the modeling method thus developed, there are two main questions posed. First, in Chapter 3, the effect of a finite-width shear zone is considered. By defining a viscoelastic shear zone beneath a periodically slipping fault, it is found that shear stress concentrates at the edges of the shear zone and thus causes the stress tensor to rotate into non-Andersonian orientations. Several methods are used to examine the stress patterns, including the plunge angles of the principal stresses and a new method that plots the stress tensor in a manner analogous to seismic focal mechanism diagrams. In Chapter 4, a simple San Andreas-like model is constructed, consisting of two great earthquake producing faults separated by a freely-slipping shorter fault. The model inputs of lower crustal viscosity, fault separation distance, and relative breaking strengths are examined for their effect on fault communication. It is found that with a lower crustal viscosity of 1018 Pa s (in the lower range of estimates for California), the two faults tend to synchronize their earthquake cycles, even in the cases where the faults have asymmetric breaking strengths. These models imply that postseismic stress transfer over hundreds of kilometers may play a

  6. Effects of Strike-Slip Fault Segmentation on Earthquake Energy and Seismic Hazard

    Science.gov (United States)

    Madden, E. H.; Cooke, M. L.; Savage, H. M.; McBeck, J.

    2014-12-01

    Many major strike-slip faults are segmented along strike, including those along plate boundaries in California and Turkey. Failure of distinct fault segments at depth may be the source of multiple pulses of seismic radiation observed for single earthquakes. However, how and when segmentation affects fault behavior and energy release is the basis of many outstanding questions related to the physics of faulting and seismic hazard. These include the probability for a single earthquake to rupture multiple fault segments and the effects of segmentation on earthquake magnitude, radiated seismic energy, and ground motions. Using numerical models, we quantify components of the earthquake energy budget, including the tectonic work acting externally on the system, the energy of internal rock strain, the energy required to overcome fault strength and initiate slip, the energy required to overcome frictional resistance during slip, and the radiated seismic energy. We compare the energy budgets of systems of two en echelon fault segments with various spacing that include both releasing and restraining steps. First, we allow the fault segments to fail simultaneously and capture the effects of segmentation geometry on the earthquake energy budget and on the efficiency with which applied displacement is accommodated. Assuming that higher efficiency correlates with higher probability for a single, larger earthquake, this approach has utility for assessing the seismic hazard of segmented faults. Second, we nucleate slip along a weak portion of one fault segment and let the quasi-static rupture propagate across the system. Allowing fractures to form near faults in these models shows that damage develops within releasing steps and promotes slip along the second fault, while damage develops outside of restraining steps and can prohibit slip along the second fault. Work is consumed in both the propagation of and frictional slip along these new fractures, impacting the energy available

  7. Three-dimensional shuffling of horses in a strike-slip duplex: an example from the Lambertville sill, New Jersey

    Science.gov (United States)

    Laney, Stephen E.; Gates, Alexander E.

    1996-06-01

    Detailed analysis of a dextral strike-slip duplex within the relatively isotropic rocks of the Lambertville sill, New Jersey indicates that horses have experienced vertical, horizontal and oblique movements resulting from extrusional shuffling within a restraining bend. This is the first documentation of the three-dimensional movement of horses within a strike-slip duplex. Deformation within the duplex shows a complex system of early synthetic fractures and reverse faults followed by antithetic fractures which dissect previously continuous slab-shaped horses into diamond-shaped lenses. Most faults are oblique slip. Antithetic fault movements and clockwise rigid rotation of horses dominate the south half of the duplex and synthetic movements and counterclockwise rotations dominate the north half. Slickenline plunges on curved horse-bounding fault surfaces within the duplex range from nearly horizontal to 40° resulting in both lateral movements (middle) to normal movements (tails) on a single horse. Curved slickensides commonly have opposite senses of movement on either side of individual horses indicating relative emergence or submergence. Such a geometry could also result from a group of horses moving in the same oblique direction but at different rates. These complex extrusional-type movements were observed in both cross-sectional and plan views. The net result of the movements is a contraction or flattening of the duplex normal to the bounding faults. The horses shifted to accommodate this flattening as overall displacement was transferred between the bounding faults along curved internal faults.

  8. The morphology of strike-slip faults - Examples from the San Andreas Fault, California

    Science.gov (United States)

    Bilham, Roger; King, Geoffrey

    1989-01-01

    The dilatational strains associated with vertical faults embedded in a horizontal plate are examined in the framework of fault kinematics and simple displacement boundary conditions. Using boundary element methods, a sequence of examples of dilatational strain fields associated with commonly occurring strike-slip fault zone features (bends, offsets, finite rupture lengths, and nonuniform slip distributions) is derived. The combinations of these strain fields are then used to examine the Parkfield region of the San Andreas fault system in central California.

  9. Using an Earthquake Simulator to Model Tremor Along a Strike Slip Fault

    Science.gov (United States)

    Cochran, E. S.; Richards-Dinger, K. B.; Kroll, K.; Harrington, R. M.; Dieterich, J. H.

    2013-12-01

    We employ the earthquake simulator, RSQSim, to investigate the conditions under which tremor occurs in the transition zone of the San Andreas fault. RSQSim is a computationally efficient method that uses rate- and state- dependent friction to simulate a wide range of event sizes for long time histories of slip [Dieterich and Richards-Dinger, 2010; Richards-Dinger and Dieterich, 2012]. RSQSim has been previously used to investigate slow slip events in Cascadia [Colella et al., 2011; 2012]. Earthquakes, tremor, slow slip, and creep occurrence are primarily controlled by the rate and state constants a and b and slip speed. We will report the preliminary results of using RSQSim to vary fault frictional properties in order to better understand rupture dynamics in the transition zone using observed characteristics of tremor along the San Andreas fault. Recent studies of tremor along the San Andreas fault provide information on tremor characteristics including precise locations, peak amplitudes, duration of tremor episodes, and tremor migration. We use these observations to constrain numerical simulations that examine the slip conditions in the transition zone of the San Andreas Fault. Here, we use the earthquake simulator, RSQSim, to conduct multi-event simulations of tremor for a strike slip fault modeled on Cholame section of the San Andreas fault. Tremor was first observed on the San Andreas fault near Cholame, California near the southern edge of the 2004 Parkfield rupture [Nadeau and Dolenc, 2005]. Since then, tremor has been observed across a 150 km section of the San Andreas with depths between 16-28 km and peak amplitudes that vary by a factor of 7 [Shelly and Hardebeck, 2010]. Tremor episodes, comprised of multiple low frequency earthquakes (LFEs), tend to be relatively short, lasting tens of seconds to as long as 1-2 hours [Horstmann et al., in review, 2013]; tremor occurs regularly with some tremor observed almost daily [Shelly and Hardebeck, 2010; Horstmann

  10. A recent Mw 4.3 earthquake proving activity of a shallow strike-slip fault in the northern part of the Western Desert, Egypt

    Science.gov (United States)

    Ezzelarab, Mohamed; Ebraheem, Mohamed O.; Zahradník, Jiří

    2018-03-01

    The Mw 4.3 earthquake of September 2015 is the first felt earthquake since 1900 A.D in the northern part of the Western Desert, Egypt, south of the El-Alamein City. The available waveform data observed at epicentral distances 52-391 km was collected and carefully evaluated. Nine broad-band stations were selected to invert full waveforms for the centroid position (horizontal and vertical) and for the focal mechanism solution. The first-arrival travel times, polarities and low-frequency full waveforms (0.03-0.08 Hz) are consistently explained in this paper as caused by a shallow source of the strike-slip mechanism. This finding indicates causal relation of this earthquake to the W-E trending South El-Alamein fault, which developed in Late Cretaceous as dextral strike slip fault. Recent activity of this fault, proven by the studied rare earthquake, is of fundamental importance for future seismic hazard evaluations, underlined by proximity (∼65 km) of the source zone to the first nuclear power plant planned site in Egypt. Safe exploration and possible future exploitation of hydrocarbon reserves, reported around El-Alamein fault in the last decade, cannot be made without considering the seismic potential of this fault.

  11. The 2015 M7.2 Sarez, Central Pamir, Earthquake And The Importance Of Strike-Slip Faulting In The Pamir Interior: Insights From Geodesy And Field Observations

    Science.gov (United States)

    Metzger, Sabrina; Schurr, Bernd; Ratschbacher, Lothar; Schöne, Tilo; Kufner, Sofia-Katerina; Zhang, Yong; Sudhaus, Henriette

    2017-04-01

    The Pamir mountain range, located in the Northwest of the India-Asia collision zone, accommodates approximately one third of the northward advance of the Indian continent at this longitude (i. e. ˜34 mm/yr) mostly by shortening at its northern thrust system. Geodetic and seismic data sets reveal here a narrow zone of high deformation and M7+ earthquakes of mostly thrust type with some dextral strike-slip faulting observed, too. The Pamir interior shows sinistral strike-slip and normal faulting indicating north-south compression and east-west extension. In this tectonic setting the two largest instrumentally recorded earthquakes, the M7+ 1911 and 2015 earthquake events in the central Pamir occurred with left-lateral shear along a NE-SW rupture plane. We present the co-seismic deformation field of the 2015 earthquake observed by radar satellite interferometry (InSAR), SAR amplitude pixel offsets and high-rate Global Positioning System (GPS). The InSAR and pixel offset results suggest a 50+ km long rupture with sinistral fault offsets at the surface of more than 2 m on a yet unmapped fault trace of the Sarez Karakul Fault System (SKFS). A distributed slip model with a data-driven slip patch resolution yields a sub-vertical fault plane with a strike of N39.5 degrees and a rupture area of ˜80 x 40 km with a maximum slip of 2 m in the upper 10 km of the crust near the surface rupture. Field observations collected some nine months after the earthquake confirm the rupture mechanism, surface trace location and fault offset measurements as constrained by geodetic data. Diffuse deformation was observed across a 1-2 km wide zone, hosting primary fractures sub-parallel to the rupture strike with offsets of 2 m and secondary, en echelon fractures including Riedel shears and hybrid fractures often related to gravitational mass movements. The 1911 and 2015 earthquakes demonstrate the importance of sinistral strike-slip faulting on the SKFS, contributing both to shear between the

  12. Recent state of stress change in the Walker Lane zone, western Basin and Range province, United States

    Science.gov (United States)

    Bellier, Olivier; Zoback, Mary Lou

    1995-06-01

    the youngest striae observed on faults in Plio-Quaternary deposits. Geologic control on the timing of the change is poor; it is impossible to determine if there has been a single recent absolute change or if there is, rather, an alternating or cyclical variation in stress magnitudes. Our slip data, in particular, the cross-cutting normal and strike-slip striae on the same fault plane, are inconsistent with postulated simple strain partitioning of deformation within a single regional stress field suggested for the WLZ by Wesnousky and Jones [1994]. The location of the WLZ between the deep-seated regional extension of the Basin and Range and the right-lateral strike-slip regional tectonics of the San Andreas fault zone is probably responsible for the complex interaction of tectonic regimes in this transition zone. In early to mid-Tertiary time the WLZ appears to have had a similarly complex deformational history, in this case as a back arc or intra-arc region, accommodating at least part of the right-lateral component of oblique convergence as well as a component of extension.

  13. San Andreas-sized Strike-slip Fault on Europa

    Science.gov (United States)

    1998-01-01

    This mosaic of the south polar region of Jupiter's moon Europa shows the northern 290 kilometers (180 miles) of a strike-slip fault named Astypalaea Linea. The entire fault is about 810 kilometers (500 miles) long, about the size of the California portion of the San Andreas fault, which runs from the California-Mexico border north to the San Francisco Bay. In a strike-slip fault, two crustal blocks move horizontally past one another, similar to two opposing lanes of traffic. Overall motion along the fault seems to have followed a continuous narrow crack along the feature's entire length, with a path resembling steps on a staircase crossing zones that have been pulled apart. The images show that about 50 kilometers (30 miles) of displacement have taken place along the fault. The fault's opposite sides can be reconstructed like a puzzle, matching the shape of the sides and older, individual cracks and ridges broken by its movements. [figure removed for brevity, see original site] The red line marks the once active central crack of the fault. The black line outlines the fault zone, including material accumulated in the regions which have been pulled apart. Bends in the fault have allowed the surface to be pulled apart. This process created openings through which warmer, softer ice from below Europa's brittle ice shell surface, or frozen water from a possible subsurface ocean, could reach the surface. This upwelling of material formed large areas of new ice within the boundaries of the original fault. A similar pulling-apart phenomenon can be observed in the geological trough surrounding California's Salton Sea, in Death Valley and the Dead Sea. In those cases, the pulled-apart regions can include upwelled materials, but may be filled mostly by sedimentary and eroded material from above. One theory is that fault motion on Europa is induced by the pull of variable daily tides generated by Jupiter's gravitational tug on Europa. Tidal tension opens the fault and

  14. Carpathian Shear Corridor – A strike-slip boundary of an extruded crustal segment

    Czech Academy of Sciences Publication Activity Database

    Marko, F.; Andriessen, P.A.M.; Tomek, Č.; Bezák, V.; Fojtíková, Lucia; Bošanský, M.; Piovarči, M.; Reichenwalder, P.

    703-704, APR 22 (2017), s. 119-134 ISSN 0040-1951 Grant - others:Slovak Foundation Grant(SK) VEGA 2/0188/15 Institutional support: RVO:67985891 Keywords : extrusion * Neo-alpine evolution * strike-slip faulting * uplift history * Western Carpathians Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Geology Impact factor: 2.693, year: 2016

  15. Evidence for slip partitioning and bimodal slip behavior on a single fault: Surface slip characteristics of the 2013 Mw7.7 Balochistan, Pakistan earthquake

    Science.gov (United States)

    Barnhart, William; Briggs, Richard; Reitman, Nadine G.; Gold, Ryan D.; Hayes, Gavin

    2015-01-01

    Deformation is commonly accommodated by strain partitioning on multiple, independent strike-slip and dip-slip faults in continental settings of oblique plate convergence. As a corollary, individual faults tend to exhibit one sense of slip – normal, reverse, or strike-slip – until whole-scale changes in boundary conditions reactivate preexisting faults in a new deformation regime. In this study, we show that a single continental fault may instead partition oblique strain by alternatively slipping in a strike-slip or a dip-slip sense during independent fault slip events. We use 0.5 m resolution optical imagery and sub-pixel correlation analysis of the 200+ km 200+km"> 2013 Mw7.7 Balochistan, Pakistan earthquake to document co-seismic surface slip characteristics and Quaternary tectonic geomorphology along the causative Hoshab fault. We find that the 2013 earthquake, which involved a ∼6:1 strike-slip to dip-slip ratio, ruptured a structurally segmented fault. Quaternary geomorphic indicators of gross fault-zone morphology reveal both reverse-slip and strike-slip deformation in the rupture area of the 2013 earthquake that varies systematically along fault strike despite nearly pure strike-slip motion in 2013. Observations of along-strike variations in range front relief and geomorphic offsets suggest that the Hoshab fault accommodates a substantial reverse component of fault slip in the Quaternary, especially along the southern section of the 2013 rupture. We surmise that Quaternary bimodal slip along the Hoshab fault is promoted by a combination of the arcuate geometry of the Hoshab fault, the frictional weakness of the Makran accretionary prism, and time variable loading conditions from adjacent earthquakes and plate interactions.

  16. Structural characteristics and implication on tectonic evolution of the Daerbute strike-slip fault in West Junggar area, NW China

    Science.gov (United States)

    Wu, Kongyou; Pei, Yangwen; Li, Tianran; Wang, Xulong; Liu, Yin; Liu, Bo; Ma, Chao; Hong, Mei

    2018-03-01

    The Daerbute fault zone, located in the northwestern margin of the Junggar basin, in the Central Asian Orogenic Belt, is a regional strike-slip fault with a length of 400 km. The NE-SW trending Daerbute fault zone presents a distinct linear trend in plain view, cutting through both the Zair Mountain and the Hala'alate Mountain. Because of the intense contraction and shearing, the rocks within the fault zone experienced high degree of cataclasis, schistosity, and mylonization, resulting in rocks that are easily eroded to form a valley with a width of 300-500 m and a depth of 50-100 m after weathering and erosion. The well-exposed outcrops along the Daerbute fault zone present sub-horizontal striations and sub-vertical fault steps, indicating sub-horizontal shearing along the observed fault planes. Flower structures and horizontal drag folds are also observed in both the well-exposed outcrops and high-resolution satellite images. The distribution of accommodating strike-slip splay faults, e.g., the 973-pluton fault and the Great Jurassic Trough fault, are in accordance with the Riedel model of simple shear. The seismic and time-frequency electromagnetic (TFEM) sections also demonstrate the typical strike-slip characteristics of the Daerbute fault zone. Based on detailed field observations of well-exposed outcrops and seismic sections, the Daerbute fault can be subdivided into two segments: the western segment presents multiple fault cores and damage zones, whereas the eastern segment only presents a single fault core, in which the rocks experienced a higher degree of rock cataclasis, schistosity, and mylonization. In the central overlapping portion between the two segments, the sediments within the fault zone are primarily reddish sandstones, conglomerates, and some mudstones, of which the palynological tests suggest middle Permian as the timing of deposition. The deformation timing of the Daerbute fault was estimated by integrating the depocenters' basinward

  17. Geomorphic Evidence of a Complex late-Cenozoic Uplift and Lateral Displacement History Along the 2013 M7.7 Baluchistan, Pakistan Strike-slip Rupture

    Science.gov (United States)

    Harbor, D. J.; Barnhart, W. D.

    2017-12-01

    The 2013 M7.7 Baluchistan earthquake in southern Pakistan ruptured 200 km of the north-dipping Hoshab reverse fault with dominantly lateral motion, clearly at odds with the regional topography created by previous reverse fault offsets. The kinematics of this earthquake led to the hypotheses that the Hoshab fault may alternatively slip in a reverse and lateral sense (bi-modal slip), and that the southeast Makran rotates as a uniform block around the fault (ball-and-socket rotation). Here, we use river profiles, regional relief, fault locations, and detailed geomorphic maps derived from optical imagery and DEMs to evaluate the recent uplift history of this region. We find that late Cenozoic fault zone geomorphology supports a spatially complex transition from lateral-dominated offsets in the NE to reverse-dominated offsets in the SW. Additionally, fault zone geomorphology suggests that the location of the Hoshab fault itself may change through time, leading to active incision of footwall alluvial fans and pediments. Stream profiles likewise record incision patterns that vary along the Hoshab fault. Incision and deposition in the SW are illustrative of relative footwall subsidence, consistent with recent uplift on the Hoshab fault; whereas incision and deposition in the NE are illustrative of relative footwall uplift consistent with ongoing regional uplift due to ball-and-socket rotations and dominantly lateral offsets along the northern Hoshab fault. The largest streams also record multiple, discrete, base-level drops, including the presence of convex-up river profiles in the hanging wall of the Hoshab fault. These profiles along hanging wall streams highlight a complex spatial and temporal history of reverse offset, lateral channel offset, and base-level resetting in regional streams that are altogether inconsistent with the kinematics of the 2013 earthquake alone, but that are consistent with the bi-modal slip model. Additionally, the evidence of footwall uplift in

  18. Magma storage in a strike-slip caldera.

    Science.gov (United States)

    Saxby, J; Gottsmann, J; Cashman, K; Gutiérrez, E

    2016-07-22

    Silicic calderas form during explosive volcanic eruptions when magma withdrawal triggers collapse along bounding faults. The nature of specific interactions between magmatism and tectonism in caldera-forming systems is, however, unclear. Regional stress patterns may control the location and geometry of magma reservoirs, which in turn may control the spatial and temporal development of faults. Here we provide new insight into strike-slip volcano-tectonic relations by analysing Bouguer gravity data from Ilopango caldera, El Salvador, which has a long history of catastrophic explosive eruptions. The observed low gravity beneath the caldera is aligned along the principal horizontal stress orientations of the El Salvador Fault Zone. Data inversion shows that the causative low-density structure extends to ca. 6 km depth, which we interpret as a shallow plumbing system comprising a fractured hydrothermal reservoir overlying a magmatic reservoir with vol% exsolved vapour. Fault-controlled localization of magma constrains potential vent locations for future eruptions.

  19. Rupture geometry and slip distribution of the 2016 January 21st Ms6.4 Menyuan, China earthquake

    Science.gov (United States)

    Zhou, Y.

    2017-12-01

    On 21 January 2016, an Ms6.4 earthquake stroke Menyuan country, Qinghai Province, China. The epicenter of the main shock and locations of its aftershocks indicate that the Menyuan earthquake occurred near the left-lateral Lenglongling fault. However, the focal mechanism suggests that the earthquake should take place on a thrust fault. In addition, field investigation indicates that the earthquake did not rupture the ground surface. Therefore, the rupture geometry is unclear as well as coseismic slip distribution. We processed two pairs of InSAR images acquired by the ESA Sentinel-1A satellite with the ISCE software, and both ascending and descending orbits were included. After subsampling the coseismic InSAR images into about 800 pixels, coseismic displacement data along LOS direction are inverted for earthquake source parameters. We employ an improved mixed linear-nonlinear Bayesian inversion method to infer fault geometric parameters, slip distribution, and the Laplacian smoothing factor simultaneously. This method incorporates a hybrid differential evolution algorithm, which is an efficient global optimization algorithm. The inversion results show that the Menyuan earthquake ruptured a blind thrust fault with a strike of 124°and a dip angle of 41°. This blind fault was never investigated before and intersects with the left-lateral Lenglongling fault, but the strikes of them are nearly parallel. The slip sense is almost pure thrusting, and there is no significant slip within 4km depth. The max slip value is up to 0.3m, and the estimated moment magnitude is Mw5.93, in agreement with the seismic inversion result. The standard error of residuals between InSAR data and model prediction is as small as 0.5cm, verifying the correctness of the inversion results.

  20. A note on 2-D lithospheric deformation due to a blind strike-slip fault

    Indian Academy of Sciences (India)

    mic deformation. Several researchers have devel- oped models of coseismic lithospheric deformation. Rybicki (1971) found a closed-form analytical solu- tion for the problem of a long vertical strike-slip fault in a two-layer model of the earth. Chinnery and Jovanovich (1972) extended the solution to a three-layer model.

  1. Source study of the Jan Mayen transform fault strike-slip earthquakes

    Science.gov (United States)

    Rodríguez-Pérez, Q.; Ottemöller, L.

    2014-07-01

    Seismic source parameters of oceanic transform zone earthquakes have been relatively poorly studied. Previous studies showed that this type of earthquakes has unique characteristics such as not only the relatively common occurrence of slow events with weak seismic radiation at high frequencies but also the occurrence of some events that have high apparent stress indicating strong high frequency radiation. We studied 5 strike-slip earthquakes in the Jan Mayen fracture zone with magnitudes in the range of 5.9 centroid time delay compared to other oceanic transform fault earthquakes.

  2. Slicing up the San Francisco Bay Area: Block kinematics and fault slip rates from GPS-derived surface velocities

    Science.gov (United States)

    d'Alessio, M. A.; Johanson, I.A.; Burgmann, R.; Schmidt, D.A.; Murray, M.H.

    2005-01-01

    Observations of surface deformation allow us to determine the kinematics of faults in the San Francisco Bay Area. We present the Bay Area velocity unification (BA??VU??, "bay view"), a compilation of over 200 horizontal surface velocities computed from campaign-style and continuous Global Positioning System (GPS) observations from 1993 to 2003. We interpret this interseismic velocity field using a three-dimensional block model to determine the relative contributions of block motion, elastic strain accumulation, and shallow aseismic creep. The total relative motion between the Pacific plate and the rigid Sierra Nevada/Great Valley (SNGV) microplate is 37.9 ?? 0.6 mm yr-1 directed toward N30.4??W ?? 0.8?? at San Francisco (??2??). Fault slip rates from our preferred model are typically within the error bounds of geologic estimates but provide a better fit to geodetic data (notable right-lateral slip rates in mm yr-1: San Gregorio fault, 2.4 ?? 1.0; West Napa fault, 4.0 ?? 3.0; zone of faulting along the eastern margin of the Coast Range, 5.4 ?? 1.0; and Mount Diablo thrust, 3.9 ?? 1.0 of reverse slip and 4.0 ?? 0.2 of right-lateral strike slip). Slip on the northern Calaveras is partitioned between both the West Napa and Concord/ Green Valley fault systems. The total convergence across the Bay Area is negligible. Poles of rotation for Bay Area blocks progress systematically from the North America-Pacific to North America-SNGV poles. The resulting present-day relative motion cannot explain the strike of most Bay Area faults, but fault strike does loosely correlate with inferred plate motions at the time each fault initiated. Copyright 2005 by the American Geophysical Union.

  3. A note on 2-D lithospheric deformation due to a blind strike-slip fault

    Indian Academy of Sciences (India)

    Analytical solution for the problem of a surface-breaking long strike-slip fault in an elastic layer overlying an elastic half-space is well known. The purpose of this note is to obtain the corresponding solution for a blind fault. Since the solution is valid for arbitrary values of the fault-depth and the dip angle, the effects of these ...

  4. The San Andreas Fault and a Strike-slip Fault on Europa

    Science.gov (United States)

    1998-01-01

    The mosaic on the right of the south polar region of Jupiter's moon Europa shows the northern 290 kilometers (180 miles) of a strike-slip fault named Astypalaea Linea. The entire fault is about 810 kilometers (500 miles) long, the size of the California portion of the San Andreas fault on Earth which runs from the California-Mexico border north to the San Francisco Bay. The left mosaic shows the portion of the San Andreas fault near California's san Francisco Bay that has been scaled to the same size and resolution as the Europa image. Each covers an area approximately 170 by 193 kilometers(105 by 120 miles). The red line marks the once active central crack of the Europan fault (right) and the line of the San Andreas fault (left). A strike-slip fault is one in which two crustal blocks move horizontally past one another, similar to two opposing lanes of traffic. The overall motion along the Europan fault seems to have followed a continuous narrow crack along the entire length of the feature, with a path resembling stepson a staircase crossing zones which have been pulled apart. The images show that about 50 kilometers (30 miles) of displacement have taken place along the fault. Opposite sides of the fault can be reconstructed like a puzzle, matching the shape of the sides as well as older individual cracks and ridges that had been broken by its movements. Bends in the Europan fault have allowed the surface to be pulled apart. This pulling-apart along the fault's bends created openings through which warmer, softer ice from below Europa's brittle ice shell surface, or frozen water from a possible subsurface ocean, could reach the surface. This upwelling of material formed large areas of new ice within the boundaries of the original fault. A similar pulling apart phenomenon can be observed in the geological trough surrounding California's Salton Sea, and in Death Valley and the Dead Sea. In those cases, the pulled apart regions can include upwelled materials, but may

  5. Respecting the right to strike

    CERN Multimedia

    Staff Association

    2015-01-01

    Since two years the representatives of the employers in the ILO, a tripartite multilateral body responsible for guaranteeing the correct application of an international labour code, try to weaken the global work regulations. On the occasion of the Global Day of Action for the right to strike at the invitation of the Geneva community of Union action (Communauté genevoise d’action syndicale) and the Swiss Trade Union Association (Union syndicale suisse) around noon on Wednesday 18th February some fifty staff representatives of international organizations gathered on the place des Nations in Geneva to reaffirm the importance of this fundamental right, too often flouted. A delegation of the CERN Staff Association was also present. In a short speech, the Staff Association said that, while being one of the fundamental human rights, to be efficient the right to strike must be used intelligently. It must be implemented taking into account the sensitivities of the professional environment and r...

  6. COMPARISON OF COSEISMIC IONOSPHERIC DISTURBANCE WAVEFORMS REVISITED: STRIKE-SLIP, NORMAL, AND REVERSE FAULT EARTHQUAKE

    Directory of Open Access Journals (Sweden)

    Mokhamad Nur Cahyadi

    2015-02-01

    Full Text Available Using Total Electron Content (TEC measurements with Global Positioning System we studied ionospheric responses to three large earthquakes with difference focal mechanism that occurred in the Sumatra Andaman 26 December 2004, North off Sumatra 11 April 2012, and North Japan 7 December 2012. These earthquakes have different focal mechanisms, i.e. high-angle reverse, strike-slip, and normal faulting, respectively. TEC responses to the Sumatra Andaman 2004 and north Japan 2012 events initiated with positive changes. On the other hand, the initial TEC changes in the Sumatra 2012 earthquake showed both positive and negative polarities depending on the azimuth around the focal area. Such a variety may reflect differences in coseismic vertical crustal displacements, which are dominated by uplift and subsidence in the Sumatra 2012 event. This phenomena has same characteristic with 1994 Kuril Arch earthquake. There are three different propagation velocity in the Sumatra 2012 earthquake, within the first 300 km until 430 km, the CID propagation velocity was ~3 km/s, which is equal to the secod sound speed at the height of the ionospheric F-layer. Starting from 380 km until 750 km out from the epicenter, the disturbance seems to divide into two separate perturbations, with each propagating at a different velocity, about 1 km/s for the one and about 0.4 m/s for the other. The apparent velocity in the Sumatra Andaman 2004 and Japan 2012 propagated ~ 1 km/s and ~ 0.3 km/s, consistent with the sound speed at the ionospheric F layer height and internal gravity wave respectively. Resonant oscillation of TEC with a frequency of ~ 3.7 mHZ and ~4.4 mHz have been found in the Sumatra 2012 and Sumatra Andaman 2004 events. Those earthquakes, which occurred during a period of quiet geomagnetic activity, also showed clear preseismic TEC anomalies similar to those before the 2011 Tohoku-Oki and 2007 Bengkulu earthquake.   The positive anomalies started 30-60 minutes

  7. A Physical Analog Model of Strike-Slip Faulting for Model-Based Inquiry in the Classroom

    Science.gov (United States)

    Curren, I. S.; Glesener, G.

    2013-12-01

    Geoscience educators often use qualitative physical analog models to demonstrate natural processes; while these are effective teaching tools, they often neglect the fundamental scientific practices that make up the core of scientific work. Physical analog models with dynamic properties that can be manipulated and measured quantitatively in real-time, on the other hand, can give students the opportunity to explore, observe and empirically test their own ideas and hypotheses about the relevant target concepts within a classroom setting. Providing classroom content for inquiry, such as a hands-on physical analog model, which fosters students' production and refinement of their mental models in participatory and discursive activities have been argued by many education researchers to help students build a deeper understanding of science and scientific reasoning. We present a physical analog model that was originally developed by UCLA's Modeling and Educational Demonstrations Laboratory (MEDL) for the purpose of engaging students in the study of elastic rebound on a strike-slip fault; it was later modified to accommodate research of complex tectonic processes associated with strike-slip faulting, which are currently debated by scientists in both the geology and geophysics disciplines. During experimentation, it became clear that this new design could be used as a relevant resource for inquiry from which students would be able to make and discuss real-time empirical measurements and observations to help them infer causal accounts of theoretical and/or unobservable dynamic processes within the Earth's crust. In our poster session, we will: 1) demonstrate the physical analog model; 2) describe various real-time data collection tools, as well as quantitative methods students can use to process their data; and 3) describe the surficial, structural and relational similarities between the physical analog model and the target concepts intended for students to explore in the

  8. An Iterative Travel Time Inversion and Waveform Modeling Method to Determine the Crust Structure and Focal Mechanism: Case Study of 2015 Alxa Left Banner Ms5.8 Earthquake

    Science.gov (United States)

    Song, C.; Ge, Z.

    2017-12-01

    The boundary region between Alxa Block and Ordos Block is an area of stress concentration with strong seismicity and frequent small earthquakes. However, the knowledge of this area is limited since only a few seismic stations were deployed in this area. The 2015 Ms5.8 Alxa Left Banner Earthquake on April 15 is the largest one occurred in the surroundings since the 1976 Ms6.2 Bayinmuren Earthquake. Abundant stations built in the northern part of Chinese North-South Seismic Belt recorded this event sequence well within short distance, which provides us a great opportunity to carry out studies. We use these data to obtain a mean 1-D layered velocity structure via iterative inversion based on both travel time and waveform misfits. Then we use the travel time difference between data and synthetic seismograms to relocate the epicenter. Finally we invert the best double-couple focal mechanism and centroid depths of the source. As the result, the source is located at (39.7027° N, 106.4207° E) with a depth of 18 km and Mw 5.28. Nodal plane Ⅰ has strike 86°, dip angle 90° and slip angle -3°, while plane Ⅱ has strike 176°, dip angle 87° and slip angle 180°. Considering the dynamic structure of regional fault zone, we believe this earthquake is caused by a nearly pure left-lateral strike-slip fault with nodal plane Ⅰ being the fault plane. The seismogenic structure is likely to be an E-W striking buried fault nearby. There develops several groups of NE, NEE and E-W striking faults in Jilantai tectonic zone, parts of which have been verified by geophysical investigations. But we still know little about the dynamic nature of them. From our study, the corresponding fault of this event may indicate all groups of faults with same E-W strike has the common character of large-dip left-lateral strike-slip. Moreover, there may be some buried faults being newly born or not found yet. These results could be an important supplement to the future research of seismicity and

  9. Geodynamics and Stress State of the Earth's Crust in the Greater and Lesser Caucasus (Azerbaijan) collision region

    Science.gov (United States)

    Babayev, Gulam; Akhmedova, Elnare; Babayev, Elvin

    2017-04-01

    The current study researches the present-day stress state of the Earth's crust within the territory of Azerbaijan by using the database of the international research project "World Stress Map" (WSM). The present stress state was also assessed by exploring the effects of the contemporary topographic properties of Caucasus in three-dimensional frame. Aiming to explore the relative roles of regional tectonic conditions in the definition of stress state of Greater and Lesser Caucasus, stress distribution model was developed by the earthquake data (1998-2016) and by the standard techniques of stress field calculation. The results show that the stress orientations are influenced also by the combination of topography and crust thickness distribution even at very large depth. Stress data and earthquake focal mechanisms indicate that the stress state of the Earth's crust of the Greater and Lesser Caucasus is characterized by the compression predominantly oriented across the regional strike. The model results suggest that the Lesser Caucasus and Kur depression are rotating coherently, with little or no internal deformation in a counter-clockwise rotation located near the north-eastern corner of the Black Sea. Orientation of stress axes well consistent with earthquake focal mechanisms revealed that within Upper and Lower Crusts, earthquakes are predominantly thrust-faulting with a number of normal-faulting and some strike-slip faulting. The map of the focal mechanisms and stress distribution suggests that the research area is characterized by the thrust of horizontal compression trending north-north-east in the western part of the southern Caucasus. In the western part of Azerbaijan, the compression takes place between the Main Caucasus Fault and the Kur depression, which strikes south along the northern margin of the mountain range. In addition, a clear transition from the left-lateral strike slip to the predominantly right-lateral strike slip is observed in the southern of

  10. Fault-Slip Data Analysis and Cover Versus Basement Fracture Patterns - Implications for Subsurface Technical Processes in Thuringia, Germany

    Science.gov (United States)

    Kasch, N.; Kley, J.; Navabpour, P.; Siegburg, M.; Malz, A.

    2014-12-01

    Recent investigations in Thuringia, Central Germany, focus on the potential for carbon sequestration, groundwater supply and geothermal energy. We report on the results of an integrated fault-slip data analysis to characterize the geometries and kinematics of systematic fractures in contrasting basement and cover rock lithologies. The lithostratigraphy of the area comprises locally exposed crystalline rocks and intermittently overlying Permian volcanic and clastic sedimentary rocks, together referred to as basement. A Late Permian sequence of evaporites, carbonates and shale constitutes the transition to the continuous sedimentary cover of Triassic age. Major NW-SE-striking fault zones and minor NNE-SSW-striking faults affect this stratigraphic succession. These characteristic narrow deforming areas ( 15 km) non-deforming areas suggesting localized zones of mechanical weakness, which can be confirmed by the frequent reactivation of single fault strands. Along the major fault zones, the basement and cover contain dominant inclined to sub-vertical NW-SE-striking fractures. These fractures indicate successive normal, dextral strike-slip and reverse senses of slip, evidencing events of NNE-SSW extension and contraction. Another system of mostly sub-vertical NNW-SSE- and NE-SW-striking conjugate strike-slip faults mainly developed within the cover implies NNE-SSW contraction and WNW-ESE extension. Earthquake focal mechanisms and in-situ stress measurements reveal a NW-SE trend for the modern SHmax. Nevertheless, fractures and fault-slip indicators are rare in the non-deforming areas, which characterizes Thuringia as a dual domain of (1) large unfractured areas and (2) narrow zones of high potential for technical applications. Our data therefore provide a basis for estimation of slip and dilation tendency of the contrasting fractures in the basement and cover under the present-day stress field, which must be taken into account for different subsurface technical

  11. The role of the East Asian active margin in widespread extensional and strike-slip deformation in East Asia

    NARCIS (Netherlands)

    Schellart, Wouter P.; Lister, G. S.

    2005-01-01

    East Asia is a region of widespread deformation, dominated by normal and strike-slip faults. Deformation has been interpreted to result from extrusion tectonics related to the India-Eurasia collision, which started in the Early Eocene. In East and SE China, however, deformation started earlier than

  12. Earthquake focal mechanisms and stress orientations in the eastern Swiss Alps

    International Nuclear Information System (INIS)

    Marschall, I.; Deichmann, N.; Marone, F.

    2013-01-01

    This study presents an updated set of earthquake focal mechanisms in the Helvetic and Penninic/Austroalpine domains of the eastern Swiss Alps. In eight cases, based on high-precision relative hypocentre locations of events within individual earthquake sequences, it was possible to identify the active fault plane. Whereas the focal mechanisms in the Helvetic domain are mostly strike-slip, the Penninic/Austroalpine domain is dominated by normal-faulting mechanisms. Given this systematic difference in faulting style, an inversion for the stress field was performed separately for the two regions. The stress field in the Penninic/Austroalpine domain is characterized by extension oriented obliquely to the E-W strike of the orogen. Hence, the Penninic nappes, which were emplaced as large-scale compressional structures during the Alpine orogenesis, are now deforming in an extensional mode. This contrasts with the more compressional strike-slip regime in the Helvetic domain towards the northern Alpine front. Relative to the regional stress field seen in the northern Alpine foreland with a NNW-SSE compression and an ENE-WSW extension, the orientation of the least compressive stress in the Penninic/Austroalpine domain is rotated counter-clockwise by about 40 °C. Following earlier studies, the observed rotation of the orientation of the least compressive stress in the Penninic/Austroalpine region can be explained as the superposition of the regional stress field of the northern foreland and a uniaxial extensional stress perpendicular to the local trend of the Alpine mountain belt. (authors)

  13. Focal mechanism of the seismic series prior to the 2011 El Hierro eruption

    Science.gov (United States)

    del Fresno, C.; Buforn, E.; Cesca, S.; Domínguez Cerdeña, I.

    2015-12-01

    The onset of the submarine eruption of El Hierro (10-Oct-2011) was preceded by three months of low-magnitude seismicity (Mw3.5). Amplitude spectra was fitted at local distances (<20km). Reliability and stability of the results were evaluated with synthetic data. Results show a change in the focal mechanism pattern within the first days of October, varying from complex sources of higher non-double-couple components before that date to a simpler strike-slip mechanism with horizontal tension axes on E-W direction the week prior to the eruption onset. A detailed study was carried out for the 8 October 2011 earthquake (Mw=4.0). Focal mechanism was retrieved using a MT inversion at regional and local distances. Results indicate an important component of strike-slip fault and null isotropic component. The stress pattern obtained corresponds to horizontal compression in a NNW-SSE direction, parallel to the southern ridge of the island, and a quasi-horizontal extension in an EW direction. Finally, a simple source time function of 0.3s has been estimated for this shock using the Empirical Green function methodology.

  14. Oblique strike-slip motion off the Southeastern Continental Margin of India: Implication for the separation of Sri Lanka from India

    Science.gov (United States)

    Desa, Maria Ana; Ismaiel, Mohammad; Suresh, Yenne; Krishna, Kolluru Sree

    2018-05-01

    The ocean floor in the Bay of Bengal has evolved after the breakup of India from Antarctica since the Early Cretaceous. Recent geophysical investigations including updated satellite derived gravity map postulated two phases for the tectonic evolution of the Bay of Bengal, the first phase of spreading occurred in the NW-SE direction forming its Western Basin, while the second phase occurred in the N-S direction resulting in its Eastern Basin. Lack of magnetic data along the spreading direction in the Western Basin prompted us to acquire new magnetic data along four tracks (totaling ∼3000 km) to validate the previously identified magnetic anomaly picks. Comparison of the synthetic seafloor spreading model with the observed magnetic anomalies confirmed the presence of Mesozoic anomalies M12n to M0 in the Western Basin. Further, the model suggests that this spreading between India and Antarctica took place with half-spreading rates of 2.7-4.5 cm/yr. The trend of the fracture zones in the Western Basin with respect to that of the Southeastern Continental Margin of India (SCMI) suggests that SCMI is an oblique transform margin with 37° obliquity. Further, the SCMI consists of two oblique transform segments separated by a small rift segment. The strike-slip motion along the SCMI is bounded by the rift segments of the Northeastern Continental Margin of India and the southern margin of Sri Lanka. The margin configuration and fracture zones inferred in its conjugate Western Enderby Basin, East Antarctica helped in inferring three spreading corridors off the SCMI in the Western Basin of the Bay of Bengal. Detailed grid reconstruction models traced the oblique strike-slip motion off the SCMI since M12n time. The strike-slip motion along the short northern transform segment ended by M11n time. The longer transform segment, found east of Sri Lanka lost its obliquity and became a pure oceanic transform fault by M0 time. The eastward propagation of the Africa

  15. Magnetic resonance imaging at primary diagnosis cannot predict subsequent contralateral slip in slipped capital femoral epiphysis

    Energy Technology Data Exchange (ETDEWEB)

    Wensaas, Anders [Akershus University Hospital, Department of Orthopaedic Surgery, Loerenskog (Norway); Wiig, Ola; Terjesen, Terje [Oslo University Hospital, Department of Orthopaedic Surgery, Rikshospitalet (Norway); Castberg Hellund, Johan; Khoshnewiszadeh, Behzad [Oslo University Hospital, Department of Radiology and Nuclear Medicine, Ullevaal (Norway)

    2017-12-15

    Prophylactic fixation of the contralateral hip in slipped capital femoral epiphysis (SCFE) is controversial, and no reliable method has been established to predict subsequent contralateral slip. The main purpose of this study was to evaluate if magnetic resonance imaging (MRI) performed at primary diagnosis could predict future contralateral slip. Twenty-two patients with unilateral SCFE were included, all had MRI of both hips taken before operative fixation. Six different parameters were measured on the MRI: the MRI slip angle, the greatest focal widening of the physis, the global widening of the physis measured at three locations (the midpoint of the physis and 1 cm lateral and medial to the midpoint), periphyseal (epiphyseal and metaphyseal) bone marrow edema, the presence of pathological joint effusion, and the amount of joint effusion measured from the lateral edge of the greater trochanter. Mean follow-up was 33 months (range, 16-63 months). Six patients were treated for contralateral slip during the follow-up time and a comparison of the MRI parameters of the contralateral hip in these six patients and in the 16 patients that remained unilateral was done to see if subsequent contralateral slip was possible to predict at primary diagnosis. All MRI parameters were significantly altered in hips with established SCFE compared with the contralateral hips. However, none of the MRI parameters showed any significant difference between patients who had a subsequent contralateral slip and those that remained unilateral. MRI taken at primary diagnosis could not predict future contralateral slip. (orig.)

  16. Structural analysis of S-wave seismics around an urban sinkhole: evidence of enhanced dissolution in a strike-slip fault zone

    Science.gov (United States)

    Wadas, Sonja H.; Tanner, David C.; Polom, Ulrich; Krawczyk, Charlotte M.

    2017-12-01

    In November 2010, a large sinkhole opened up in the urban area of Schmalkalden, Germany. To determine the key factors which benefited the development of this collapse structure and therefore the dissolution, we carried out several shear-wave reflection-seismic profiles around the sinkhole. In the seismic sections we see evidence of the Mesozoic tectonic movement in the form of a NW-SE striking, dextral strike-slip fault, known as the Heßleser Fault, which faulted and fractured the subsurface below the town. The strike-slip faulting created a zone of small blocks ( sinkholes and dissolution-induced depressions. Since the processes are still ongoing, the occurrence of a new sinkhole cannot be ruled out. This case study demonstrates how S-wave seismics can characterize a sinkhole and, together with geological information, can be used to study the processes that result in sinkhole formation, such as a near-surface fault zone located in soluble rocks. The more complex the fault geometry and interaction between faults, the more prone an area is to sinkhole occurrence.

  17. Influence of slip-surface geometry on earth-flow deformation, Montaguto earth flow, southern Italy

    Science.gov (United States)

    Guerriero, L.; Coe, Jeffrey A.; Revellio, P.; Grelle, G.; Pinto, F.; Guadagno, F.

    2016-01-01

    We investigated relations between slip-surface geometry and deformational structures and hydrologic features at the Montaguto earth flow in southern Italy between 1954 and 2010. We used 25 boreholes, 15 static cone-penetration tests, and 22 shallow-seismic profiles to define the geometry of basal- and lateral-slip surfaces; and 9 multitemporal maps to quantify the spatial and temporal distribution of normal faults, thrust faults, back-tilted surfaces, strike-slip faults, flank ridges, folds, ponds, and springs. We infer that the slip surface is a repeating series of steeply sloping surfaces (risers) and gently sloping surfaces (treads). Stretching of earth-flow material created normal faults at risers, and shortening of earth-flow material created thrust faults, back-tilted surfaces, and ponds at treads. Individual pairs of risers and treads formed quasi-discrete kinematic zones within the earth flow that operated in unison to transmit pulses of sediment along the length of the flow. The locations of strike-slip faults, flank ridges, and folds were not controlled by basal-slip surface topography but were instead dependent on earth-flow volume and lateral changes in the direction of the earth-flow travel path. The earth-flow travel path was strongly influenced by inactive earth-flow deposits and pre-earth-flow drainages whose positions were determined by tectonic structures. The implications of our results that may be applicable to other earth flows are that structures with strikes normal to the direction of earth-flow motion (e.g., normal faults and thrust faults) can be used as a guide to the geometry of basal-slip surfaces, but that depths to the slip surface (i.e., the thickness of an earth flow) will vary as sediment pulses are transmitted through a flow.

  18. High-Precision Locations and the Stress Field from Instrumental Seismicity, Moment Tensors, and Short-Period Mechanisms through the Mina Deflection, Central Walker Lane

    Science.gov (United States)

    Ruhl, C. J.; Smith, K. D.

    2012-12-01

    The Mina Deflection (MD) region of the central Walker Lane of eastern California and western Nevada, is a complex zone of northeast-trending normal, and primarily left-lateral strike-slip to oblique-slip faulting that separates the Southern Walker Lane (SWL) from a series of east-tilted normal fault blocks in the Central Walker Lane (CWL) (Faulds and Henry, 2008; Surpless, 2008). The MD accommodates the transfer of right-lateral strike-slip motion from northwest-striking faults in the SWL to a series of left-stepping northwest-striking right-lateral strike-slip faults in the CWL, east of the Wassuk Range near Hawthorne, NV. The ~50 km wide ~80 km long right-step is a distinct transition in regional physiography that has been attributed to strain accommodation through pre-Cenozoic lithospheric structures. Several slip transfer mechanisms have been proposed within the MD, from clockwise rotation of high-angle fault blocks (Wesnousky, 2005), to low-angle displacement within the Silver Peak-Lone Mountain complex (Oldow et al., 2001), and curved fault arrays associated with localized basins and tectonic depressions (Ferranti et al., 2009). The region has been a regular source of M4+ events, the most recent being an extended sequence that included twenty-seven M 3.5+ earthquakes (largest event M 4.6) south of Hawthorne in 2011. These earthquakes (Mina, NV, and the 1932 M 7.1 Cedar Mountains earthquake east of the Pilot Mountains. Another persistent feature in the seismicity is an ~40 km long arcuate distribution of activity extending from approximately Queen Valley, north of the White Mountains, to Mono Lake that appears to reflect a southwestern boundary to northeast-striking structures in the MD. Here we develop high-precision relocations of instrumental seismicity in the MD from 1984 through 2012, including relocations of the 2004 sequence, and account for the historical seismic record. MT solutions from published reports and computed from recent M 3.5+ earthquakes as

  19. The balancing act between the constitutional right to strike and the constitutional right to education

    Directory of Open Access Journals (Sweden)

    H J (Jaco Deacon

    2014-06-01

    Full Text Available While the South African Constitution enshrines both children's right to a basic education and teachers' right to strike, conflict between these two often occurs when the way in which teachers' unions conduct strike actions detracts from learners' education. This article identifies the parties affected by industrial action in the school context, and then proceeds to examine educators' right to strike as defined by the provisions of the Labour Relations Act. The unique implications of picketing in the education environment are then discussed, covering relevant questions such as where pickets may be held, the issue of picketing rules as well as unprotected pickets. Even though we are faced with a qualified right to strike as opposed to an unqualified right to education, the South African reality seems to be that striking teachers are handled with kid gloves. It is therefore concluded that the vast range of existing laws regulating protest action should be applied more effectively. One of the most important aspects should be the picketing rules, which should clearly determine whether picketing in fact contributes to resolution of the dispute, and how learners' interests and rights may best be actualised.

  20. The Damage and Geochemical Signature of a Crustal Scale Strike-Slip Fault Zone

    Science.gov (United States)

    Gomila, R.; Mitchell, T. M.; Arancibia, G.; Jensen Siles, E.; Rempe, M.; Cembrano, J. M.; Faulkner, D. R.

    2013-12-01

    Fluid-flow migration in the upper crust is strongly controlled by fracture network permeability and connectivity within fault zones, which can lead to fluid-rock chemical interaction represented as mineral precipitation in mesh veins and/or mineralogical changes (alteration) of the host rock. While the dimensions of fault damage zones defined by fracture intensity is beginning to be better understood, how such dimensions compare to the size of alteration zones is less well known. Here, we show quantitative structural and chemical analyses as a function of distance from a crustal-scale strike-slip fault in the Atacama Fault System, Northern Chile, to compare fault damage zone characteristics with its geochemical signature. The Jorgillo Fault (JF) is a ca. 18 km long NNW striking strike-slip fault cutting Mesozoic rocks with sinistral displacement of ca. 4 km. In the study area, the JF cuts through orthogranulitic and gabbroic rocks at the west (JFW) and the east side (JFE), respectively. A 200 m fault perpendicular transect was mapped and sampled for structural and XRF analyses of the core, damage zone and protolith. The core zone consists of a ca. 1 m wide cataclasite zone bounded by two fault gouge zones ca. 40 cm. The damage zone width defined by fracture density is ca. 50 m wide each side of the core. The damage zone in JFW is characterized by NW-striking subvertical 2 cm wide cataclastic rocks and NE-striking milimetric open fractures. In JFE, 1-20 mm wide chlorite, quartz-epidote and quartz-calcite veins, cut the gabbro. Microfracture analysis in JFW reveal mm-wide cataclasitic/ultracataclasitic bands with clasts of protolith and chlorite orientated subparallel to the JF in the matrix, calcite veins in a T-fractures orientation, and minor polidirectional chlorite veins. In JFE, chlorite filled conjugate fractures with syntaxial growth textures and evidence for dilational fracturing processes are seen. Closest to the core, calcite veins crosscut chlorite veins

  1. Fault zone architecture of a major oblique-slip fault in the Rawil depression, Western Helvetic nappes, Switzerland

    Science.gov (United States)

    Gasser, D.; Mancktelow, N. S.

    2009-04-01

    solution seams and veins and in the sandstones of coarse breccia and veins. Later, straight, sharp fault planes cross-cut all these features. In all lithologies, common veins and calcite-cemented fault rocks indicate the strong involvement of fluids during faulting. Today, the southern Rawil depression and the Rhone Valley belong to one of the seismically most active regions in Switzerland. Seismogenic faults interpreted from earthquake focal mechanisms strike ENE-WSW to WNW-ESE, with dominant dextral strike-slip and minor normal components and epicentres at depths of the current stress field inferred from the current seismicity. This implies that the same mechanisms that formed these fault zones in the past may still persist at depth. The Rezli fault zone allows the detailed study of a fossil fault zone that can act as a model for processes still occurring at deeper levels in this seismically active region.

  2. Pan-African deformations in the basement of the Negele area, southern Ethiopia

    Science.gov (United States)

    Yihunie, Tadesse

    2002-03-01

    Polydeformed and metamorphosed Neoproterozoic rocks of the East African Orogen in the Negele area constituted three lithostructurally distinct and thrust-bounded terranes. These are, from west to east, the Kenticha, Alghe and Bulbul terranes. The Kenticha and Bulbul terranes are metavolcano-sedimentary and ultramafic sequences, representing parts of the Arabian-Nubian Shield (ANS), which are welded to the central Alghe gneissic terrane of the Mozambique Belt affinity along N-S-trending sheared thrust contacts. Structural data suggest that the Negele basement had evolved through three phases of deformation. During D1 (folding) deformation, north-south upright and inclined folds with north-trending axes were developed. East and west-verging thrusts, right-lateral shearing along the north-oriented Kenticha and Bulbul thrust contacts and related structural elements were developed during D2 (thrusting) deformation. The pervasive D1 event is interpreted to have occurred at 620-610 Ma and the D2 event ended prior to 554 Ma. Right-lateral strike-slips along thrust contacts are interpreted to have been initiated during late D2. During D3, left-lateral strike-slip along the Wadera Shear Zone and respective strike-slip movements along conjugate set of shear zones were developed in the Alghe terrane, and are interpreted to have occurred later than 557 Ma. The structural data suggest that eastward thrusting of the Kenticha and westward tectonic transport of the Bulbul sequences over the Alghe gneissic terrane of the Mozambique Belt, during D2, were accompanied by right-lateral strike-slip displacements along thrust contacts. Right-lateral strike-slip movements along the Kenticha thrust contact, further suggest northward movement of the Kenticha sequence during the Pan-African orogeny in the Neoproterozoic. Left-lateral strike-slip along the orogen-parallel NNE-SSW Wadera Shear Zone and strike-slip movements along a conjugate set of shear zones completed final terrane

  3. Palaeopermeability anisotropies of a strike-slip fault damage zone: 3D Insights of quantitative fluid flow from µCT analysis.

    Science.gov (United States)

    Gomila, R.; Arancibia, G.; Nehler, M.; Bracke, R.; Morata, D.

    2017-12-01

    Fault zones and their related structural permeability are a key aspect in the migration of fluids through the continental crust. Therefore, the estimation of the hydraulic properties (palaeopermeability conditions; k) and the spatial distribution of the fracture mesh within the damage zone (DZ) are critical in the assessment of fault zones behavior for fluids. The study of the real spatial distribution of the veinlets of the fracture mesh (3D), feasible with the use of µCT analyses, is a first order factor to unravel both, the real structural permeability conditions of a fault-zone, and the validation of previous (and classical) estimations made in 2D analyses in thin-sections. This work shows the results of a fault-related fracture mesh and its 3D spatial distribution in the damage-zone of the Jorgillo Fault (JF), an ancient subvertical left-lateral strike-slip fault exposed in the Atacama Fault System in northern Chile. The JF is a ca. 20 km long NNW-striking strike-slip fault with sinistral displacement of ca. 4 km. The methodology consisted of drilling 5 mm vertically oriented plugs at several locations within the JF damage zone. Each specimen was scanned with an X-Ray µCT scanner, to assess the fracture mesh, with a voxel resolution of ca. 4.5 µm in the 3D reconstructed data. Tensor permeability modeling, using Lattice-Boltzmann Method, through the segmented microfracture mesh show GMkmin (geometric mean values) of 2.1x10-12 and 9.8x10-13 m2, and GMkmax of 6.4x10-12 and 2.1x10-12 m2. A high degree of anisotropy of the DZ permeability tensor both sides of the JF (eastern and western side, respectively) is observed, where the k values in the kmax plane are 2.4 and 1.9 times higher than the kmin direction at the time of fracture sealing. This style of anisotropy is consistent with the obtained for bedded sandstones supporting the idea that damage zones have an analogous effect - but vertically orientated - on bulk permeability (in low porosity rocks) as

  4. Stress regimes in the northwest of Iran from stress inversion of earthquake focal mechanisms

    Science.gov (United States)

    Afra, Mahsa; Moradi, Ali; Pakzad, Mehrdad

    2017-11-01

    Northwestern Iran is one of the seismically active regions with a high seismic risk in the world. This area is a part of the complex tectonic system due to the interaction between Arabia, Anatolia and Eurasia. The purpose of this study is to deduce the stress regimes in the northwestern Iran and surrounding regions from stress inversion of earthquake focal mechanisms. We compile 92 focal mechanisms data from the Global CMT catalogue and other sources and also determine the focal mechanisms of 14 earthquakes applying the moment tensor inversion. We divide the studied region into 9 zones using similarity of the horizontal GPS velocities and existing focal mechanisms. We implement two stress inversion methods, Multiple Inverse Method and Iterative Joint Inversion Method, which provide comparable results in terms of orientations of maximum horizontal stress axes SHmax. The similar results of the two methods should make us more confident about the interpretations. We consider zones of exclusion surrounding all the earthquakes according to independent focal mechanisms hypothesis. The hypothesis says that the inversion should involve events that are far enough from each other in order that any previous event doesn't affect the stress field near the earthquake under consideration. Accordingly we deal with the matter by considering zones of exclusion around all the events. The result of exclusion is only significant for eastern Anatolia. The stress regime in this region changes from oblique to strike slip faulting because of the exclusion. In eastern Anatolia, the direction of maximum horizontal stress is nearly north-south. The direction alters to east-west in Talesh region. Errors of σ1 are lower in all zones comparing with errors of σ2 and σ3 and there is a trade-off between data resolution and covariance of the model. The results substantiate the strike-slip and thrust faulting stress regimes in the northwest of Iran.

  5. Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults

    Science.gov (United States)

    Parsons, T.; Stein, R.S.; Simpson, R.W.; Reasenberg, P.A.

    1999-01-01

    We present a new three-dimensional inventory of the southern San Francisco Bay area faults and use it to calculate stress applied principally by the 1989 M = 7.1 Loma Prieta earthquake and to compare fault seismicity rates before and after 1989. The major high-angle right-lateral faults exhibit a different response to the stress change than do minor oblique (right-lateral/thrust) faults. Seismicity on oblique-slip faults in the southern Santa Clara Valley thrust belt increased where the faults were unclamped. The strong dependence of seismicity change on normal stress change implies a high coefficient of static friction. In contrast, we observe that faults with significant offset (>50-100 km) behave differently; microseismicity on the Hayward fault diminished where right-lateral shear stress was reduced and where it was unclamped by the Loma Prieta earthquake. We observe a similar response on the San Andreas fault zone in southern California after the Landers earthquake sequence. Additionally, the offshore San Gregorio fault shows a seismicity rate increase where right-lateral/oblique shear stress was increased by the Loma Prieta earthquake despite also being clamped by it. These responses are consistent with either a low coefficient of static friction or high pore fluid pressures within the fault zones. We can explain the different behavior of the two styles of faults if those with large cumulative offset become impermeable through gouge buildup; coseismically pressurized pore fluids could be trapped and negate imposed normal stress changes, whereas in more limited offset faults, fluids could rapidly escape. The difference in behavior between minor and major faults may explain why frictional failure criteria that apply intermediate coefficients of static friction can be effective in describing the broad distributions of aftershocks that follow large earthquakes, since many of these events occur both inside and outside major fault zones.

  6. Fault Slip Partitioning in the Eastern California Shear Zone-Walker Lane Belt: Pliocene to Late Pleistocene Contraction Across the Mina Deflection

    Science.gov (United States)

    Lee, J.; Stockli, D.; Gosse, J.

    2007-12-01

    Two different mechanisms have been proposed for fault slip transfer between the subparallel NW-striking dextral- slip faults that dominant the Eastern California Shear Zone (ECSZ)-Walker Lane Belt (WLB). In the northern WLB, domains of sinistral-slip along NE-striking faults and clockwise block rotation within a zone of distributed deformation accommodated NW-dextral shear. A somewhat modified version of this mechanism was also proposed for the Mina deflection, southern WLB, whereby NE-striking sinistral faults formed as conjugate faults to the primary zone of NW-dextral shear; clockwise rotation of the blocks bounding the sinistral faults accommodated dextral slip. In contrast, in the northern ECSZ and Mina deflection, domains of NE-striking pure dip-slip normal faults, bounded by NW-striking dextral-slip faults, exhibited no rotation; the proposed mechanism of slip transfer was one of right-stepping, high angle normal faults in which the magnitude of extension was proportional to the amount of strike-slip motion transferred. New geologic mapping, tectonic geomorphologic, and geochronologic data from the Queen Valley area, southern Mina deflection constrain Pliocene to late Quaternary fault geometries, slip orientations, slip magnitudes, and slip rates that bear on the mechanism of fault slip transfer from the relatively narrow northern ECSZ to the broad deformation zone that defines the Mina deflection. Four different fault types and orientations cut across the Queen Valley area: (1) The NE-striking normal-slip Queen Valley fault; (2) NE-striking sinistral faults; (3) the NW-striking dextral Coyote Springs fault, which merges into (4) a set of EW-striking thrust faults. (U-Th)/He apatite and cosmogenic radionuclide data, combined with magnitude of fault offset measurements, indicate a Pliocene to late Pleistocene horizontal extension rate of 0.2-0.3 mm/yr across the Queen Valley fault. Our results, combined with published slip rates for the dextral White Mountain

  7. Kinematic Analysis of Fault-Slip Data in the Central Range of Papua, Indonesia

    Directory of Open Access Journals (Sweden)

    Benyamin Sapiie

    2016-01-01

    Full Text Available DOI:10.17014/ijog.3.1.1-16Most of the Cenozoic tectonic evolution in New Guinea is a result of obliquely convergent motion that ledto an arc-continent collision between the Australian and Pacific Plates. The Gunung Bijih (Ertsberg Mining District(GBMD is located in the Central Range of Papua, in the western half of the island of New Guinea. This study presentsthe results of detailed structural mapping concentrated on analyzing fault-slip data along a 15-km traverse of theHeavy Equipment Access Trail (HEAT and the Grasberg mine access road, providing new information concerning thedeformation in the GBMD and the Cenozoic structural evolution of the Central Range. Structural analysis indicatesthat two distinct stages of deformation have occurred since ~12 Ma. The first stage generated a series of en-echelonNW-trending (π-fold axis = 300° folds and a few reverse faults. The second stage resulted in a significant left-lateralstrike-slip faulting sub-parallel to the regional strike of upturned bedding. Kinematic analysis reveals that the areasbetween the major strike-slip faults form structural domains that are remarkably uniform in character. The changein deformation styles from contractional to a strike-slip offset is explained as a result from a change in the relativeplate motion between the Pacific and Australian Plates at ~4 Ma. From ~4 - 2 Ma, transform motion along an ~ 270°trend caused a left-lateral strike-slip offset, and reactivated portions of pre-existing reverse faults. This action had aprofound effect on magma emplacement and hydrothermal activity.

  8. Long term fault system reorganization of convergent and strike-slip systems

    Science.gov (United States)

    Cooke, M. L.; McBeck, J.; Hatem, A. E.; Toeneboehn, K.; Beyer, J. L.

    2017-12-01

    Laboratory and numerical experiments representing deformation over many earthquake cycles demonstrate that fault evolution includes episodes of fault reorganization that optimize work on the fault system. Consequently, the mechanical and kinematic efficiencies of fault systems do not increase monotonically through their evolution. New fault configurations can optimize the external work required to accommodate deformation, suggesting that changes in system efficiency can drive fault reorganization. Laboratory evidence and numerical results show that fault reorganization within accretion, strike-slip and oblique convergent systems is associated with increasing efficiency due to increased fault slip (frictional work and seismic energy) and commensurate decreased off-fault deformation (internal work and work against gravity). Between episodes of fault reorganization, fault systems may become less efficient as they produce increasing off fault deformation. For example, laboratory and numerical experiments show that the interference and interaction between different fault segments may increase local internal work or that increasing convergence can increase work against gravity produced by a fault system. This accumulation of work triggers fault reorganization as stored work provides the energy required to grow new faults that reorganize the system to a more efficient configuration. The results of laboratory and numerical experiments reveal that we should expect crustal fault systems to reorganize following periods of increasing inefficiency, even in the absence of changes to the tectonic regime. In other words, fault reorganization doesn't require a change in tectonic loading. The time frame of fault reorganization depends on fault system configuration, strain rate and processes that relax stresses within the crust. For example, stress relaxation may keep pace with stress accumulation, which would limit the increase in the internal work and gravitational work so that

  9. Fault slip and earthquake recurrence along strike-slip faults — Contributions of high-resolution geomorphic data

    KAUST Repository

    Zielke, Olaf

    2015-01-01

    the latter. While slip accumulation along a fault segment may be dominated by repetition of large, nearly constant offset increments, timing of surface-rupture is less regular. (C) 2014 Elsevier B.V. All rights reserved.

  10. SAR-revealed slip partitioning on a bending fault plane for the 2014 Northern Nagano earthquake at the northern Itoigawa-Shizuoka tectonic line

    Science.gov (United States)

    Kobayashi, Tomokazu; Morishita, Yu; Yarai, Hiroshi

    2018-05-01

    By applying conventional cross-track synthetic aperture radar interferometry (InSAR) and multiple aperture InSAR techniques to ALOS-2 data acquired before and after the 2014 Northern Nagano, central Japan, earthquake, a three-dimensional ground displacement field has been successfully mapped. Crustal deformation is concentrated in and around the northern part of the Kamishiro Fault, which is the northernmost section of the Itoigawa-Shizuoka tectonic line. The full picture of the displacement field shows contraction in the northwest-southeast direction, but northeastward movement along the fault strike direction is prevalent in the northeast portion of the fault, which suggests that a strike-slip component is a significant part of the activity of this fault, in addition to a reverse faulting. Clear displacement discontinuities are recognized in the southern part of the source region, which falls just on the previously known Kamishiro Fault trace. We inverted the SAR and GNSS data to construct a slip distribution model; the preferred model of distributed slip on a two-plane fault surface shows a combination of reverse and left-lateral fault motions on a bending east-dipping fault surface with a dip of 30° in the shallow part and 50° in the deeper part. The hypocenter falls just on the estimated deeper fault plane where a left-lateral slip is inferred, whereas in the shallow part, a reverse slip is predominant, which causes surface ruptures on the ground. The slip partitioning may be accounted for by shear stress resulting from a reverse fault slip with left-lateral component at depth, for which a left-lateral slip is suppressed in the shallow part where the reverse slip is inferred. The slip distribution model with a bending fault surface, instead of a single fault plane, produces moment tensor solution with a non-double couple component, which is consistent with the seismically estimated mechanism.

  11. The Palos Verdes Fault offshore southern California: late Pleistocene to present tectonic geomorphology, seascape evolution and slip rate estimate based on AUV and ROV surveys

    Science.gov (United States)

    Brothers, Daniel S.; Conrad, James E.; Maier, Katherine L.; Paull, Charles K.; McGann, Mary L.; Caress, David W.

    2015-01-01

    The Palos Verdes Fault (PVF) is one of few active faults in Southern California that crosses the shoreline and can be studied using both terrestrial and subaqueous methodologies. To characterize the near-seafloor fault morphology, tectonic influences on continental slope sedimentary processes and late Pleistocene to present slip rate, a grid of high-resolution multibeam bathymetric data, and chirp subbottom profiles were acquired with an autonomous underwater vehicle (AUV) along the main trace of PVF in water depths between 250 and 600 m. Radiocarbon dates were obtained from vibracores collected using a remotely operated vehicle (ROV) and ship-based gravity cores. The PVF is expressed as a well-defined seafloor lineation marked by subtle along-strike bends. Right-stepping transtensional bends exert first-order control on sediment flow dynamics and the spatial distribution of Holocene depocenters; deformed strata within a small pull-apart basin record punctuated growth faulting associated with at least three Holocene surface ruptures. An upper (shallower) landslide scarp, a buried sedimentary mound, and a deeper scarp have been right-laterally offset across the PVF by 55 ± 5, 52 ± 4 , and 39 ± 8 m, respectively. The ages of the upper scarp and buried mound are approximately 31 ka; the age of the deeper scarp is bracketed to 17–24 ka. These three piercing points bracket the late Pleistocene to present slip rate to 1.3–2.8 mm/yr and provide a best estimate of 1.6–1.9 mm/yr. The deformation observed along the PVF is characteristic of strike-slip faulting and accounts for 20–30% of the total right-lateral slip budget accommodated offshore Southern California.

  12. Lateralizing value of unilateral relative ictal immobility in patients with refractory focal seizures--Looking beyond unilateral automatisms.

    Science.gov (United States)

    Agarwal, Priya; Kaul, Bhavna; Shukla, Garima; Srivastava, Achal; Singh, Mamta Bhushan; Goyal, Vinay; Behari, Madhuri; Suri, Ashish; Gupta, Aditya; Garg, Ajay; Gaikwad, Shailesh; Bal, C S

    2015-12-01

    Ictal motor phenomena play a crucial role in the localization of seizure focus in the management of refractory focal epilepsy. While the importance of unilateral automatisms is well established, little attention is paid to the contralateral relatively immobile limb. In cases where automatisms mimic clonic or dystonic movements and in the absence of previously well-established signs, unilateral relative ictal immobility (RII) is potentially useful as a lateralizing sign. This study was carried out to examine the lateralizing value of this sign and to define its characteristics among patients of refractory focal epilepsy. VEEGs of 69 consecutive patients of refractory focal epilepsy who had undergone epilepsy surgery at our center over last four years were reviewed and analyzed for the presence of RII. Unilateral RII was defined as a paucity of movement in one limb lasting for at least 10s while the contralateral limb showed purposive or semi-purposive movements (in the absence of tonic or dystonic posturing or clonic movements in the involved limb). The findings were seen in the light of VEEG, radiological and nuclear imaging data, and with post-surgical outcome. Unilateral RII as a lateralizing sign was found in 24 of 69 patients (34.78%), consisting of both temporal and extra temporal epilepsy, with 100% concordance with VEEG and MRI data. All patients demonstrating this sign had a good post-surgical outcome. RII, when well characterized is a frequent and reliable lateralizing sign in patients of refractory focal epilepsy. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  13. The Trans-Rocky Mountain Fault System - A Fundamental Precambrian Strike-Slip System

    Science.gov (United States)

    Sims, P.K.

    2009-01-01

    Recognition of a major Precambrian continental-scale, two-stage conjugate strike-slip fault system - here designated as the Trans-Rocky Mountain fault system - provides new insights into the architecture of the North American continent. The fault system consists chiefly of steep linear to curvilinear, en echelon, braided and branching ductile-brittle shears and faults, and local coeval en echelon folds of northwest strike, that cut indiscriminately across both Proterozoic and Archean cratonic elements. The fault system formed during late stages of two distinct tectonic episodes: Neoarchean and Paleoproterozoic orogenies at about 2.70 and 1.70 billion years (Ga). In the Archean Superior province, the fault system formed (about 2.70-2.65 Ga) during a late stage of the main deformation that involved oblique shortening (dextral transpression) across the region and progressed from crystal-plastic to ductile-brittle deformation. In Paleoproterozoic terranes, the fault system formed about 1.70 Ga, shortly following amalgamation of Paleoproterozoic and Archean terranes and the main Paleoproterozoic plastic-fabric-producing events in the protocontinent, chiefly during sinistral transpression. The postulated driving force for the fault system is subcontinental mantle deformation, the bottom-driven deformation of previous investigators. This model, based on seismic anisotropy, invokes mechanical coupling and subsequent shear between the lithosphere and the asthenosphere such that a major driving force for plate motion is deep-mantle flow.

  14. Analysis of the growth of strike-slip faults using effective medium theory

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, A.; Berryman, J.G.

    2009-10-15

    Increases in the dimensions of strike-slip faults including fault length, thickness of fault rock and the surrounding damage zone collectively provide quantitative definition of fault growth and are commonly measured in terms of the maximum fault slip. The field observations indicate that a common mechanism for fault growth in the brittle upper crust is fault lengthening by linkage and coalescence of neighboring fault segments or strands, and fault rock-zone widening into highly fractured inner damage zone via cataclastic deformation. The most important underlying mechanical reason in both cases is prior weakening of the rocks surrounding a fault's core and between neighboring fault segments by faulting-related fractures. In this paper, using field observations together with effective medium models, we analyze the reduction in the effective elastic properties of rock in terms of density of the fault-related brittle fractures and fracture intersection angles controlled primarily by the splay angles. Fracture densities or equivalent fracture spacing values corresponding to the vanishing Young's, shear, and quasi-pure shear moduli were obtained by extrapolation from the calculated range of these parameters. The fracture densities or the equivalent spacing values obtained using this method compare well with the field data measured along scan lines across the faults in the study area. These findings should be helpful for a better understanding of the fracture density/spacing distribution around faults and the transition from discrete fracturing to cataclastic deformation associated with fault growth and the related instabilities.

  15. Paleomagnetic and structural evidence for oblique slip in a fault-related fold, Grayback monocline, Colorado

    Science.gov (United States)

    Tetreault, J.; Jones, C.H.; Erslev, E.; Larson, S.; Hudson, M.; Holdaway, S.

    2008-01-01

    Significant fold-axis-parallel slip is accommodated in the folded strata of the Grayback monocline, northeastern Front Range, Colorado, without visible large strike-slip displacement on the fold surface. In many cases, oblique-slip deformation is partitioned; fold-axis-normal slip is accommodated within folds, and fold-axis-parallel slip is resolved onto adjacent strike-slip faults. Unlike partitioning strike-parallel slip onto adjacent strike-slip faults, fold-axis-parallel slip has deformed the forelimb of the Grayback monocline. Mean compressive paleostress orientations in the forelimb are deflected 15??-37?? clockwise from the regional paleostress orientation of the northeastern Front Range. Paleomagnetic directions from the Permian Ingleside Formation in the forelimb are rotated 16??-42?? clockwise about a bedding-normal axis relative to the North American Permian reference direction. The paleostress and paleomagnetic rotations increase with the bedding dip angle and decrease along strike toward the fold tip. These measurements allow for 50-120 m of fold-axis-parallel slip within the forelimb, depending on the kinematics of strike-slip shear. This resolved horizontal slip is nearly equal in magnitude to the ???180 m vertical throw across the fold. For 200 m of oblique-slip displacement (120 m of strike slip and 180 m of reverse slip), the true shortening direction across the fold is N90??E, indistinguishable from the regionally inferred direction of N90??E and quite different from the S53??E fold-normal direction. Recognition of this deformational style means that significant amounts of strike slip can be accommodated within folds without axis-parallel surficial faulting. ?? 2008 Geological Society of America.

  16. The balancing act between the constitutional right to strike and the ...

    African Journals Online (AJOL)

    While the South African Constitution enshrines both children's right to a basic education and teachers' right to strike, conflict between these two often occurs when the way in which teachers' unions conduct strike actions detracts from learners' education. This article identifies the parties affected by industrial action in the ...

  17. Insights on the seismotectonics of the western part of northern Calabria (southern Italy) by integrated geological and geophysical data: Coexistence of shallow extensional and deep strike-slip kinematics

    Science.gov (United States)

    Ferranti, L.; Milano, G.; Pierro, M.

    2017-11-01

    We assess the seismotectonics of the western part of the border area between the Southern Apennines and Calabrian Arc, centered on the Mercure extensional basin, by integrating recent seismicity with a reconstruction of the structural frame from surface to deep crust. The analysis of low-magnitude (ML ≤ 3.5) events occurred in the area during 2013-2017, when evaluated in the context of the structural model, has revealed an unexpected complexity of seismotectonics processes. Hypocentral distribution and kinematics allow separating these events into three groups. Focal mechanisms of the shallower (kinematics. These results are consistent with the last kinematic event recorded on outcropping faults, and with the typical depth and kinematics of normal faulting earthquakes in the axial part of southern Italy. By contrast, intermediate ( 9-17 km) and deep ( 17-23 km) events have fault plane solutions characterized by strike- to reverse-oblique slip, but they differ from each other in the orientation of the principal axes. The intermediate events have P axes with a NE-SW trend, which is at odds with the NW-SE trend recorded by strike-slip earthquakes affecting the Apulia foreland plate in the eastern part of southern Italy. The intermediate events are interpreted to reflect reactivation of faults in the Apulia unit involved in thrust uplift, and appears aligned along an WNW-ESE trending deep crustal, possibly lithospheric boundary. Instead, deep events beneath the basin, which have P-axis with a NW-SE trend, hint to the activity of a deep overthrust of the Tyrrhenian back-arc basin crust over the continental crust of the Apulia margin, or alternatively, to a tear fault in the underthrust Apulia plate. Results of this work suggest that extensional faulting, as believed so far, does not solely characterizes the seismotectonics of the axial part of the Southern Apennines.

  18. Lateral Offset Quality Rating along Low Slip Rate Faults: Application to the Alhama de Murcia Fault (SE Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    Marta Ferrater

    2015-11-01

    Full Text Available Seismic hazard assessment of strike-slip faults is based partly on the identification and mapping of landforms laterally offset due to fault activity. The characterization of these features affected by slow-moving faults is challenging relative to studies emphasizing rapidly slipping faults. We propose a methodology for scoring fault offsets based on subjective and objective qualities. We apply this methodology to the Alhama de Murcia fault (SE Iberian Peninsula where we identify 138 offset features that we mapped on a high-resolution (0.5 × 0.5 m pixel size Digital Elevation Model (DEM. The amount of offset, the uncertainty of the measurement, the subjective and objective qualities, and the parameters that affect objective quality are independent variables, suggesting that our methodological scoring approach is good. Based on the offset measurements and qualifications we calculate the Cumulative Offset Probability Density (COPD for the entire fault and for each fault segment. The COPD for the segments differ from each other. Tentative interpretation of the COPDs implies that the slip rate varies from one segment to the other (we assume that channels with the same amount of offset were incised synchronously. We compare the COPD with climate proxy curves (aligning using the very limited age control to test if entrenchment events are coincident with climatic changes. Channel incision along one of the traces in Lorca-Totana segment may be related to transitions from glacial to interglacial periods.

  19. Analogue Modeling of Oblique Convergent Strike-Slip Faulting and Application to The Seram Island, Eastern Indonesia

    Directory of Open Access Journals (Sweden)

    Benyamin Sapiie

    2014-12-01

    Full Text Available DOI:10.17014/ijog.v1i3.189Sandbox experiment is one of the types of analogue modeling in geological sciences in which the main purpose is simulating deformation style and structural evolution of the sedimentary basin.  Sandbox modeling is one of the effective ways in conducting physically modeling and evaluates complex deformation of sedimentary rocks. The main purpose of this paper is to evaluate structural geometry and deformation history of oblique convergent deformation using of integrated technique of analogue sandbox modeling applying to deformation of Seram Fold-Thrust-Belt (SFTB in the Seram Island, Eastern Indonesia. Oblique convergent strike-slip deformation has notoriously generated area with structural complex geometry and pattern resulted from role of various local parameters that control stress distributions. Therefore, a special technique is needed for understanding and solving such problem in particular to relate 3D fault geometry and its evolution. The result of four case (Case 1 to 4 modeling setting indicated that two of modeling variables clearly affected in our sandbox modeling results; these are lithological variation (mainly stratigraphy of Seram Island and pre-existing basement fault geometry (basement configuration. Lithological variation was mainly affected in the total number of faults development.  On the other hand, pre-existing basement fault geometry was highly influenced in the end results particularly fault style and pattern as demonstrated in Case 4 modeling.  In addition, this study concluded that deformation in the Seram Island is clearly best described using oblique convergent strike-slip (transpression stress system.

  20. Tectonic Implication of the 5th March 2005, Doublet Earthquake in Ilan, Taiwan

    Directory of Open Access Journals (Sweden)

    En-Chao Yeh

    2016-01-01

    Full Text Available The 5th March 2005 earthquake doublet focal mechanism was determined as strike-slip faulting from Harvard and BATS moment tensor inversion. However, based on first motion polarities, the first shock has a normal focal mechanism (Wu et al. 2008a. This discrepancy has caused a debate over the focal mechanism solution because different focal mechanisms have different tectonic implications. Based on the dislocation determination from Global Position System (GPS measurements, we find this event includes both tensile and strike-slip components. This finding illustrates the reason for the differences in the determined focal mechanisms using two different types of seismic data and analyzing methods. Field mapping and microstructure examination results indicate that the ductile deformation around the study area was characterized by the evolution from transpression to transtension with a predominant strike-slip component, but present-day active structures may be dominated by normal faulting. Thus, the active tensile slip result determined from dislocation modeling strongly suggests that the back arc extension of the Okinawa trough influences the stress state in this region, and changes the major transtension from strike-slip faulting to normal faulting.

  1. Refining fault slip rates using multiple displaced terrace risers-An example from the Honey Lake fault, NE California, USA

    Science.gov (United States)

    Gold, Ryan D.; Briggs, Richard W.; Crone, Anthony J.; DuRoss, Christopher B.

    2017-11-01

    Faulted terrace risers are semi-planar features commonly used to constrain Quaternary slip rates along strike-slip faults. These landforms are difficult to date directly and therefore their ages are commonly bracketed by age estimates of the adjacent upper and lower terrace surfaces. However, substantial differences in the ages of the upper and lower terrace surfaces (a factor of 2.4 difference observed globally) produce large uncertainties in the slip-rate estimate. In this investigation, we explore how the full range of displacements and bounding ages from multiple faulted terrace risers can be combined to yield a more accurate fault slip rate. We use 0.25-m cell size digital terrain models derived from airborne lidar data to analyze three sites where terrace risers are offset right-laterally by the Honey Lake fault in NE California, USA. We use ages for locally extensive subhorizontal surfaces to bracket the time of riser formation: an upper surface is the bed of abandoned Lake Lahontan having an age of 15.8 ± 0.6 ka and a lower surface is a fluvial terrace abandoned at 4.7 ± 0.1 ka. We estimate lateral offsets of the risers ranging between 6.6 and 28.3 m (median values), a greater than fourfold difference in values. The amount of offset corresponds to the riser's position relative to modern stream meanders: the smallest offset is in a meander cutbank position, whereas the larger offsets are in straight channel or meander point-bar positions. Taken in isolation, the individual terrace-riser offsets yield slip rates ranging from 0.3 to 7.1 mm/a. However, when the offset values are collectively assessed in a probabilistic framework, we find that a uniform (linear) slip rate of 1.6 mm/a (1.4-1.9 mm/a at 95% confidence) can satisfy the data, within their respective uncertainties. This investigation demonstrates that integrating observations of multiple offset elements (crest, midpoint, and base) from numerous faulted and dated terrace risers at closely spaced

  2. Refining fault slip rates using multiple displaced terrace risers—An example from the Honey Lake fault, NE California, USA

    Science.gov (United States)

    Gold, Ryan D.; Briggs, Richard; Crone, Anthony J.; Duross, Christopher

    2017-01-01

    Faulted terrace risers are semi-planar features commonly used to constrain Quaternary slip rates along strike-slip faults. These landforms are difficult to date directly and therefore their ages are commonly bracketed by age estimates of the adjacent upper and lower terrace surfaces. However, substantial differences in the ages of the upper and lower terrace surfaces (a factor of 2.4 difference observed globally) produce large uncertainties in the slip-rate estimate. In this investigation, we explore how the full range of displacements and bounding ages from multiple faulted terrace risers can be combined to yield a more accurate fault slip rate. We use 0.25-m cell size digital terrain models derived from airborne lidar data to analyze three sites where terrace risers are offset right-laterally by the Honey Lake fault in NE California, USA. We use ages for locally extensive subhorizontal surfaces to bracket the time of riser formation: an upper surface is the bed of abandoned Lake Lahontan having an age of 15.8 ± 0.6 ka and a lower surface is a fluvial terrace abandoned at 4.7 ± 0.1 ka. We estimate lateral offsets of the risers ranging between 6.6 and 28.3 m (median values), a greater than fourfold difference in values. The amount of offset corresponds to the riser's position relative to modern stream meanders: the smallest offset is in a meander cutbank position, whereas the larger offsets are in straight channel or meander point-bar positions. Taken in isolation, the individual terrace-riser offsets yield slip rates ranging from 0.3 to 7.1 mm/a. However, when the offset values are collectively assessed in a probabilistic framework, we find that a uniform (linear) slip rate of 1.6 mm/a (1.4–1.9 mm/a at 95% confidence) can satisfy the data, within their respective uncertainties. This investigation demonstrates that integrating observations of multiple offset elements (crest, midpoint, and base) from numerous faulted and dated terrace risers at closely spaced

  3. Surface slip during large Owens Valley earthquakes

    KAUST Repository

    Haddon, E. K.; Amos, C. B.; Zielke, Olaf; Jayko, A. S.; Burgmann, R.

    2016-01-01

    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from approximate to 1.0 to 6.0 m and average 3.31.1 m (2 sigma). Vertical offsets are predominantly east-down between approximate to 0.1 and 2.4 m, with a mean of 0.80.5 m. The average lateral-to-vertical ratio compiled at specific sites is approximate to 6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7-11 m and net average of 4.41.5 m, corresponding to a geologic M-w approximate to 7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.12.0 m, 12.8 +/- 1.5 m, and 16.6 +/- 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between approximate to 0.6 and 1.6 mm/yr (1 sigma) over the late Quaternary.

  4. Surface slip during large Owens Valley earthquakes

    Science.gov (United States)

    Haddon, E.K.; Amos, C.B.; Zielke, O.; Jayko, Angela S.; Burgmann, R.

    2016-01-01

    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from ∼1.0 to 6.0 m and average 3.3 ± 1.1 m (2σ). Vertical offsets are predominantly east-down between ∼0.1 and 2.4 m, with a mean of 0.8 ± 0.5 m. The average lateral-to-vertical ratio compiled at specific sites is ∼6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7–11 m and net average of 4.4 ± 1.5 m, corresponding to a geologic Mw ∼7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.1 ± 2.0 m, 12.8 ± 1.5 m, and 16.6 ± 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between ∼0.6 and 1.6 mm/yr (1σ) over the late Quaternary.

  5. Surface slip during large Owens Valley earthquakes

    KAUST Repository

    Haddon, E. K.

    2016-01-10

    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from approximate to 1.0 to 6.0 m and average 3.31.1 m (2 sigma). Vertical offsets are predominantly east-down between approximate to 0.1 and 2.4 m, with a mean of 0.80.5 m. The average lateral-to-vertical ratio compiled at specific sites is approximate to 6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7-11 m and net average of 4.41.5 m, corresponding to a geologic M-w approximate to 7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.12.0 m, 12.8 +/- 1.5 m, and 16.6 +/- 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between approximate to 0.6 and 1.6 mm/yr (1 sigma) over the late Quaternary.

  6. Analogue modelling of a reactivated, basement controlled strike-slip zone, Sierra de Albarracín, Spain: application of sandbox modelling to polyphase deformation

    NARCIS (Netherlands)

    Merten, S.; Smit, W.G.; Nieuwland, D.A.; Rondeel, H.E.

    2006-01-01

    This paper presents the results of an analogue modelling study on the reactivation of Riedel shears generated by basement-induced sinistral strike-slip faulting. It is based on a natural example in the Sierra de Albarracín, Iberian Range (Spain). The area has a polyphase deformation history, defined

  7. The Evolution from Late Miocene West Salton Detachment Faulting to Cross-Cutting Pleistocene Oblique Strike-Slip Faults in the SW Salton Trough, Southern California

    OpenAIRE

    Steely, Alexander N.

    2006-01-01

    Field studies in the southwest Salton Trough between Yaqui Ridge and Borrego Mountain show that the West Salton detachment fault was active during the Pliocene and may have initiated during the latest Miocene. At Yaqui Ridge dominantly east-directed extension is recorded by slickenlines on the NW-striking detachment fault, and shows that the fault is actually a low-angle dextral oblique strike-slip fault. Crustal inheritance is responsible for the position of the fault at Yaqui Ridge, which r...

  8. Structural analysis of S-wave seismics around an urban sinkhole: evidence of enhanced dissolution in a strike-slip fault zone

    Directory of Open Access Journals (Sweden)

    S. H. Wadas

    2017-12-01

    Full Text Available In November 2010, a large sinkhole opened up in the urban area of Schmalkalden, Germany. To determine the key factors which benefited the development of this collapse structure and therefore the dissolution, we carried out several shear-wave reflection-seismic profiles around the sinkhole. In the seismic sections we see evidence of the Mesozoic tectonic movement in the form of a NW–SE striking, dextral strike-slip fault, known as the Heßleser Fault, which faulted and fractured the subsurface below the town. The strike-slip faulting created a zone of small blocks ( < 100 m in size, around which steep-dipping normal faults, reverse faults and a dense fracture network serve as fluid pathways for the artesian-confined groundwater. The faults also acted as barriers for horizontal groundwater flow perpendicular to the fault planes. Instead groundwater flows along the faults which serve as conduits and forms cavities in the Permian deposits below ca. 60 m depth. Mass movements and the resulting cavities lead to the formation of sinkholes and dissolution-induced depressions. Since the processes are still ongoing, the occurrence of a new sinkhole cannot be ruled out. This case study demonstrates how S-wave seismics can characterize a sinkhole and, together with geological information, can be used to study the processes that result in sinkhole formation, such as a near-surface fault zone located in soluble rocks. The more complex the fault geometry and interaction between faults, the more prone an area is to sinkhole occurrence.

  9. (Plio-)Pleistocene alluvial-lacustrine basin infill evolution in a strike-slip active zone (Northern Andes, Western-Central Cordilleras, Colombia)

    OpenAIRE

    SUTER, F.; NEUWERTH, R.; GORIN, G.; GUZMÁN, C.

    2009-01-01

    The (Plio)-Pleistocene Zarzal Formation was deposited in the Cauca Depression and Quindío-Risaralda Basin between the Western and Central Cordilleras (Northern Andes). This area is structurally located on the transcurrent Romeral Fault System (RFS). Because of the interaction between the Nazca plate and the Chocó-Panamá block (an active indenter), the RFS strike-slip component changes direction around the study zone (dextral in the south, senestral in the north). Zarzal sediments are the olde...

  10. Tectonics earthquake distribution pattern analysis based focal mechanisms (Case study Sulawesi Island, 1993–2012)

    International Nuclear Information System (INIS)

    Ismullah M, Muh. Fawzy; Lantu,; Aswad, Sabrianto; Massinai, Muh. Altin

    2015-01-01

    Indonesia is the meeting zone between three world main plates: Eurasian Plate, Pacific Plate, and Indo – Australia Plate. Therefore, Indonesia has a high seismicity degree. Sulawesi is one of whose high seismicity level. The earthquake centre lies in fault zone so the earthquake data gives tectonic visualization in a certain place. This research purpose is to identify Sulawesi tectonic model by using earthquake data from 1993 to 2012. Data used in this research is the earthquake data which consist of: the origin time, the epicenter coordinate, the depth, the magnitude and the fault parameter (strike, dip and slip). The result of research shows that there are a lot of active structures as a reason of the earthquake in Sulawesi. The active structures are Walannae Fault, Lawanopo Fault, Matano Fault, Palu – Koro Fault, Batui Fault and Moluccas Sea Double Subduction. The focal mechanism also shows that Walannae Fault, Batui Fault and Moluccas Sea Double Subduction are kind of reverse fault. While Lawanopo Fault, Matano Fault and Palu – Koro Fault are kind of strike slip fault

  11. Tectonics earthquake distribution pattern analysis based focal mechanisms (Case study Sulawesi Island, 1993–2012)

    Energy Technology Data Exchange (ETDEWEB)

    Ismullah M, Muh. Fawzy, E-mail: mallaniung@gmail.com [Master Program Geophysical Engineering, Faculty of Mining and Petroleum Engineering (FTTM), Bandung Institute of Technology (ITB), Jl. Ganesha no. 10, Bandung, 40116, Jawa Barat (Indonesia); Lantu,; Aswad, Sabrianto; Massinai, Muh. Altin [Geophysics Program Study, Faculty of Mathematics and Natural Sciences, Hasanuddin University (UNHAS), Jl. PerintisKemerdekaan Km. 10, Makassar, 90245, Sulawesi Selatan (Indonesia)

    2015-04-24

    Indonesia is the meeting zone between three world main plates: Eurasian Plate, Pacific Plate, and Indo – Australia Plate. Therefore, Indonesia has a high seismicity degree. Sulawesi is one of whose high seismicity level. The earthquake centre lies in fault zone so the earthquake data gives tectonic visualization in a certain place. This research purpose is to identify Sulawesi tectonic model by using earthquake data from 1993 to 2012. Data used in this research is the earthquake data which consist of: the origin time, the epicenter coordinate, the depth, the magnitude and the fault parameter (strike, dip and slip). The result of research shows that there are a lot of active structures as a reason of the earthquake in Sulawesi. The active structures are Walannae Fault, Lawanopo Fault, Matano Fault, Palu – Koro Fault, Batui Fault and Moluccas Sea Double Subduction. The focal mechanism also shows that Walannae Fault, Batui Fault and Moluccas Sea Double Subduction are kind of reverse fault. While Lawanopo Fault, Matano Fault and Palu – Koro Fault are kind of strike slip fault.

  12. 'Extra-regional' strike-slip fault systems in Chile and Alaska: the North Pacific Rim orogenic Stream vs. Beck's Buttress

    Science.gov (United States)

    Redfield, T. F.; Scholl, D. W.; Fitzgerald, P. G.

    2010-12-01

    The ~2000 km long Denali Fault System (DFS) of Alaska is an example of an extra-regional strike-slip fault system that terminates in a zone of widely-distributed deformation. The ~1200 km long Liquiñe-Ofqui Fault Zone (LOFZ) of Patagonia (southern Chile) is another. Both systems are active, having undergone large-magnitude seismic rupture is 2002 (DFS) and 2007 (LOFZ). Both systems appear to be long-lived: the DFS juxtaposes terranes that docked in at least early Tertiary time, whilst the central LOFZ appears to also record early Tertiary or Mesozoic deformation. Both fault systems comprise a relatively well-defined central zone where individual fault traces can be identified from topographic features or zones of deformed rock. In both cases the proximal and distal traces are much more diffuse tributary and distributary systems of individual, branching fault traces. However, since their inception the DFS and LOFZ have followed very different evolutionary paths. Copious Alaskan paleomagnetic data are consistent with vertical axis small block rotation, long-distance latitudinal translation, and a recently-postulated tectonic extrusion towards a distributary of subordinate faults that branch outward towards the Aleution subduction zone (the North Pacific Rim orogenic Stream; see Redfield et al., 2007). Paleomagnetic data from the LOFZ region are consistent with small block rotation but preclude statistically-significant latitudinal transport. Limited field data from the southernmost LOFZ suggest that high-angle normal and reverse faults dominate over oblique to strike-slip structures. Rather than the high-angle oblique 'slivering regime' of the southeasternmost DFS, the initiation of the LOFZ appears to occur across a 50 to 100 km wide zone of brittly-deformed granitic and gneissic rock characterized by bulk compression and vertical pathways of exhumation. In both cases, relative plate motions are consistent with the hypothetical style, and degree, of offset, leading

  13. 3D deformation in strike-slip systems: Analogue modelling and numerical restoration Deformación 3D en sistemas de rumbo: modelación analógica y restauración numérica

    Directory of Open Access Journals (Sweden)

    Daniel González

    2012-05-01

    Full Text Available Regional and local strike-slip systems in Chile are complex and pose interesting questions, such as the interaction between strike-slip and reverse faults, how they evolve, and the relationship between shortening, rotation and uplift. Within this context, we developed a new analytical method based on analogue and numerical modelling applied to 3D, pure and transtensional-transpressional strike-slip systems. Analogue modelling results indicate that in restraining stepovers of strike-slip fault systems, where antiformal pop-up structures are usually formed, pre-existent basement structures with a high angle to the main strike-slip fault will generate a higher rotation of blocks. However, when these structures are oriented at a high angle with respect to the main stress convergence vector, the rotation will be less and therefore a higher tendency to uplift will be produced. These results were applied to NW- and SE-striking basement faults oblique to N-S mega-thrust faults in central Chile (32°-35°S, for which we propose a simultaneous development based on the analogue model results. Moreover, we propose that strike-slip movement occurred on thrust faults in central Chile. Furthermore, we performed a numerical restoration of an analogue experiment which modeled a pure strike-slip system, and concluded that the restoration is very sensitive to shortening data as well as to rotational data. These results are extremely important for future numerical and regional analysis of strike-slip systems.Los sistemas de rumbo regionales y locales en Chile son complejos y plantean interesantes preguntas, tales como la interacción entre fallas de rumbo y fallas inversas, cómo evolucionan ellas, y la relación entre acortamiento, rotación y alzamiento. En este contexto, desarrollamos un nuevo método analítico basado en modelamiento analógico y numérico de sistemas de rumbo de cizalle puro y sistemas transpresionales-trantensionales en 3D. Los resultados del

  14. Inefficient postural responses to unexpected slips during walking in older adults.

    Science.gov (United States)

    Tang, P F; Woollacott, M H

    1998-11-01

    Slips account for a high percentage of falls and subsequent injuries in community-dwelling older adults but not in young adults. This phenomenon suggests that although active and healthy older adults preserve a mobility level comparable to that of young adults, these older adults may have difficulty generating efficient reactive postural responses when they slip. This study tested the hypothesis that active and healthy older adults use a less effective reactive balance strategy than young adults when experiencing an unexpected forward slip occurring at heel strike during walking. This less effective balance strategy would be manifested by slower and smaller postural responses, altered temporal and spatial organization of the postural responses, and greater upper trunk instability after the slip. Thirty-three young adults (age range=19-34 yrs, mean=25+/-4 yrs) and 32 community-dwelling older adults (age range=70-87 yrs, mean=74+/-14 yrs) participated. Subjects walked across a movable forceplate which simulated a forward slip at heel strike. Surface electromyography was recorded from bilateral leg, thigh, hip, and trunk muscles. Kinematic data were collected from the right (perturbed) side of the body. Although the predominant postural muscles and the activation sequence of these muscles were similar between the two age groups, the postural responses of older adults were of longer onset latencies, smaller magnitudes, and longer burst durations compared to young adults. Older adults also showed a longer coactivation duration for the ankle, knee, and trunk agonist/antagonist pairs on the perturbed side and for the knee agonist/antagonist pair on the nonperturbed side. Behaviorally, older adults became less stable after the slips. This was manifested by a higher incidence of being tripped (21 trials in older vs 5 trials in young adults) and a greater trunk hyperextension with respect to young adults. Large arm elevation was frequently used by older adults to assist in

  15. Earthquake scaling laws for rupture geometry and slip heterogeneity

    Science.gov (United States)

    Thingbaijam, Kiran K. S.; Mai, P. Martin; Goda, Katsuichiro

    2016-04-01

    We analyze an extensive compilation of finite-fault rupture models to investigate earthquake scaling of source geometry and slip heterogeneity to derive new relationships for seismic and tsunami hazard assessment. Our dataset comprises 158 earthquakes with a total of 316 rupture models selected from the SRCMOD database (http://equake-rc.info/srcmod). We find that fault-length does not saturate with earthquake magnitude, while fault-width reveals inhibited growth due to the finite seismogenic thickness. For strike-slip earthquakes, fault-length grows more rapidly with increasing magnitude compared to events of other faulting types. Interestingly, our derived relationship falls between the L-model and W-model end-members. In contrast, both reverse and normal dip-slip events are more consistent with self-similar scaling of fault-length. However, fault-width scaling relationships for large strike-slip and normal dip-slip events, occurring on steeply dipping faults (δ~90° for strike-slip faults, and δ~60° for normal faults), deviate from self-similarity. Although reverse dip-slip events in general show self-similar scaling, the restricted growth of down-dip fault extent (with upper limit of ~200 km) can be seen for mega-thrust subduction events (M~9.0). Despite this fact, for a given earthquake magnitude, subduction reverse dip-slip events occupy relatively larger rupture area, compared to shallow crustal events. In addition, we characterize slip heterogeneity in terms of its probability distribution and spatial correlation structure to develop a complete stochastic random-field characterization of earthquake slip. We find that truncated exponential law best describes the probability distribution of slip, with observable scale parameters determined by the average and maximum slip. Applying Box-Cox transformation to slip distributions (to create quasi-normal distributed data) supports cube-root transformation, which also implies distinctive non-Gaussian slip

  16. Style and rate of quaternary deformation of the Hosgri Fault Zone, offshore south-central coastal California

    Science.gov (United States)

    Hanson, Kathryn L.; Lettis, William R.; McLaren, Marcia; Savage, William U.; Hall, N. Timothy; Keller, Mararget A.

    2004-01-01

    The Hosgri Fault Zone is the southernmost component of a complex system of right-slip faults in south-central coastal California that includes the San Gregorio, Sur, and San Simeon Faults. We have characterized the contemporary style of faulting along the zone on the basis of an integrated analysis of a broad spectrum of data, including shallow high-resolution and deep penetration seismic reflection data; geologic and geomorphic data along the Hosgri and San Simeon Fault Zones and the intervening San Simeon/Hosgri pull-apart basin; the distribution and nature of near-coast seismicity; regional tectonic kinematics; and comparison of the Hosgri Fault Zone with worldwide strike-slip, oblique-slip, and reverse-slip fault zones. These data show that the modern Hosgri Fault Zone is a convergent right-slip (transpressional) fault having a late Quaternary slip rate of 1 to 3 mm/yr. Evidence supporting predominantly strike-slip deformation includes (1) a long, narrow, linear zone of faulting and associated deformation; (2) the presence of asymmetric flower structures; (3) kinematically consistent localized extensional and compressional deformation at releasing and restraining bends or steps, respectively, in the fault zone; (4) changes in the sense and magnitude of vertical separation both along trend of the fault zone and vertically within the fault zone; (5) strike-slip focal mechanisms along the fault trace; (6) a distribution of seismicity that delineates a high-angle fault extending through the seismogenic crust; (7) high ratios of lateral to vertical slip along the fault zone; and (8) the separation by the fault of two tectonic domains (offshore Santa Maria Basin, onshore Los Osos domain) that are undergoing contrasting styles of deformation and orientations of crustal shortening. The convergent component of slip is evidenced by the deformation of the early-late Pliocene unconformity. In characterizing the style of faulting along the Hosgri Fault Zone, we assessed

  17. Tectonic implications of the 2017 Ayvacık (Çanakkale) earthquakes, Biga Peninsula, NW Turkey

    Science.gov (United States)

    Özden, Süha; Över, Semir; Poyraz, Selda Altuncu; Güneş, Yavuz; Pınar, Ali

    2018-04-01

    The west to southwestward motion of the Anatolian block results from the relative motions between the Eurasian, Arabian and African plates along the right-lateral North Anatolian Fault Zone in the north and left-lateral East Anatolian Fault Zone in the east. The Biga Peninsula is tectonically influenced by the Anatolian motion originating along the North Anatolian Fault Zone which splits into two main (northern and southern) branches in the east of Marmara region: the southern branch extends towards the Biga Peninsula which is characterized by strike-slip to oblique normal faulting stress regime in the central to northern part. The southernmost part of peninsula is characterized by a normal to oblique faulting stress regime. The analysis of both seismological and structural field data confirms the change of stress regime from strike-slip character in the center and north to normal faulting character in the south of peninsula where the earthquake swarm recently occurred. The earthquakes began on 14 January 2017 (Mw: 4.4) on Tuzla Fault and migrated southward along the Kocaköy and Babakale's stepped-normal faults of over three months. The inversion of focal mechanisms yields a normal faulting stress regime with an approximately N-S (N4°E) σ3 axis. The inversion of earthquakes occurring in central and northern Biga Peninsula and the north Aegean region gives a strike-slip stress regime with approximately WNW-ESE (N85°W) σ1 and NNE-SSW (N17°E) σ3 axis. The strike-slip stress regime is attributed to westward Anatolian motion, while the normal faulting stress regime is attributed to both the extrusion of Anatolian block and the slab-pull force of the subducting African plate along the Hellenic arc.

  18. The initiation and linkage of surface fractures above a buried strike ...

    Indian Academy of Sciences (India)

    a buried strike-slip fault: An experimental approach. N Ghosh and A ... conditions viz., (i) heterogeneous simple shear of the cover rocks above a buried strike slip fault. (wrench .... (iii) study of fracture types in the damage zones from Gozo .... was dominant, the results may vary from a true ... For example, as shown in figure 5 ...

  19. Source Rupture Process of the 2016 Kumamoto Prefecture, Japan, Earthquake Derived from Near-Source Strong-Motion Records

    Science.gov (United States)

    Zheng, A.; Zhang, W.

    2016-12-01

    On 15 April, 2016 the great earthquake with magnitude Mw7.1 occurred in Kumamoto prefecture, Japan. The focal mechanism solution released by F-net located the hypocenter at 130.7630°E, 32.7545°N, at a depth of 12.45 km, and the strike, dip, and the rake angle of the fault were N226°E, 84° and -142° respectively. The epicenter distribution and focal mechanisms of aftershocks implied the mechanism of the mainshock might have changed in the source rupture process, thus a single focal mechanism was not enough to explain the observed data adequately. In this study, based on the inversion result of GNSS and InSAR surface deformation with active structures for reference, we construct a finite fault model with focal mechanism changes, and derive the source rupture process by multi-time-window linear waveform inversion method using the strong-motion data (0.05 1.0Hz) obtained by K-NET and KiK-net of Japan. Our result shows that the Kumamoto earthquake is a right-lateral strike slipping rupture event along the Futagawa-Hinagu fault zone, and the seismogenic fault is divided into a northern segment and a southern one. The strike and the dip of the northern segment are N235°E, 60° respectively. And for the southern one, they are N205°E, 72° respectively. The depth range of the fault model is consistent with the depth distribution of aftershocks, and the slip on the fault plane mainly concentrate on the northern segment, in which the maximum slip is about 7.9 meter. The rupture process of the whole fault continues for approximately 18-sec, and the total seismic moment released is 5.47×1019N·m (Mw 7.1). In addition, the essential feature of the distribution of PGV and PGA synthesized by the inversion result is similar to that of observed PGA and seismic intensity.

  20. Source Rupture Process of the 2016 Kumamoto, Japan, Earthquake Inverted from Strong-Motion Records

    Science.gov (United States)

    Zhang, Wenbo; Zheng, Ao

    2017-04-01

    On 15 April, 2016 the great earthquake with magnitude Mw7.1 occurred in Kumamoto prefecture, Japan. The focal mechanism solution released by F-net located the hypocenter at 130.7630°E, 32.7545°N, at a depth of 12.45 km, and the strike, dip, and the rake angle of the fault were N226°E, 84˚ and -142° respectively. The epicenter distribution and focal mechanisms of aftershocks implied the mechanism of the mainshock might have changed in the source rupture process, thus a single focal mechanism was not enough to explain the observed data adequately. In this study, based on the inversion result of GNSS and InSAR surface deformation with active structures for reference, we construct a finite fault model with focal mechanism changes, and derive the source rupture process by multi-time-window linear waveform inversion method using the strong-motion data (0.05 1.0Hz) obtained by K-NET and KiK-net of Japan. Our result shows that the Kumamoto earthquake is a right-lateral strike slipping rupture event along the Futagawa-Hinagu fault zone, and the seismogenic fault is divided into a northern segment and a southern one. The strike and the dip of the northern segment are N235°E, 60˚ respectively. And for the southern one, they are N205°E, 72˚ respectively. The depth range of the fault model is consistent with the depth distribution of aftershocks, and the slip on the fault plane mainly concentrate on the northern segment, in which the maximum slip is about 7.9 meter. The rupture process of the whole fault continues for approximately 18-sec, and the total seismic moment released is 5.47×1019N·m (Mw 7.1). In addition, the essential feature of the distribution of PGV and PGA synthesized by the inversion result is similar to that of observed PGA and seismic intensity.

  1. Spatial Comparisons of Tremor and Slow Slip as a Constraint on Fault Strength in the Northern Cascadia Subduction Zone

    Science.gov (United States)

    Hall, K.; Schmidt, D. A.; Houston, H.

    2017-12-01

    We measure displacement vectors from about 50 or more PANGA 3-component GPS stations to analyze six large ETS events from 2007 - 2016 in northern Cascadia, and invert for slip on a realistic plate interface. Our previous results indicated that significant slip of up to 2 cm occurs 10 to 15 km up-dip of the western edge of tremor beneath the Olympic Peninsula. This far up-dip aseismic slip persists in several of the ETS events. We also find that this offset appears to vary along-strike with a greater offset beneath the Olympic Peninsula and up into the Strait of Juan de Fuca in comparison to lower Puget Sound. To explain this, we explore how properties (temperature and permeability) of the overlying structure may influence fault strength. In our conceptual model, the observation that slip inferred from GPS can extend updip of tremor suggests that updip of the observed edge of tremor, seismogenic patches that could produce tremor and low frequency earthquakes (LFEs) are too strong to fail from the relatively minor amount of far up-dip slow slip. This is consistent with the observation that, within the ETS zone, down-dip LFEs occur frequently, whereas up-dip LFEs occur only during the largest ETS events and are unaffected by tidal stresses until the later stages of an ETS event. This suggests that the up-dip seismogenic patches have a larger discrepancy between their strength and stress states, and therefore require larger stress perturbations (such as those from a propagating ETS slip pulse) to trigger seismic failure. We consider whether lateral variations in overlying structure may explain the along-strike variations in far up-dip aseismic slip. There is an abrupt change in lithology from the meta-sediments of the Olympic accretionary complex to the mafic basalts of the Crescent terrane. The juxtaposition of these different lithologies could potentially explain the along-strike variations in far up-dip aseismic slip. We propose to explore whether relative changes

  2. Triggered surface slips in the Salton Trough associated with the 1999 Hector Mine, California, earthquake

    Science.gov (United States)

    Rymer, M.J.; Boatwright, J.; Seekins, L.C.; Yule, J.D.; Liu, J.

    2002-01-01

    Surface fracturing occurred along the southern San Andreas, Superstition Hills, and Imperial faults in association with the 16 October 1999 (Mw 7.1) Hector Mine earthquake, making this at least the eighth time in the past 31 years that a regional earthquake has triggered slip along faults in the Salton Trough. Fractures associated with the event formed discontinuous breaks over a 39-km-long stretch of the San Andreas fault, from the Mecca Hills southeastward to Salt Creek and Durmid Hill, a distance from the epicenter of 107 to 139 km. Sense of slip was right lateral; only locally was there a minor (~1 mm) vertical component of slip. Dextral slip ranged from 1 to 13 mm. Maximum slip values in 1999 and earlier triggered slips are most common in the central Mecca Hills. Field evidence indicates a transient opening as the Hector Mine seismic waves passed the southern San Andreas fault. Comparison of nearby strong-motion records indicates several periods of relative opening with passage of the Hector Mine seismic wave-a similar process may have contributed to the field evidence of a transient opening. Slip on the Superstition Hills fault extended at least 9 km, at a distance from the Hector Mine epicenter of about 188 to 196 km. This length of slip is a minimum value, because we saw fresh surface breakage extending farther northwest than our measurement sites. Sense of slip was right lateral; locally there was a minor (~1 mm) vertical component of slip. Dextral slip ranged from 1 to 18 mm, with the largest amounts found distributed (or skewed) away from the Hector Mine earthquake source. Slip triggered on the Superstition Hills fault commonly is skewed away from the earthquake source, most notably in 1968, 1979, and 1999. Surface slip on the Imperial fault and within the Imperial Valley extended about 22 km, representing a distance from the Hector Mine epicenter of about 204 to 226 km. Sense of slip dominantly was right lateral; the right-lateral component of slip

  3. Tectonic stress orientations and magnitudes, and friction of faults, deduced from earthquake focal mechanism inversions over the Korean Peninsula

    Science.gov (United States)

    Soh, Inho; Chang, Chandong; Lee, Junhyung; Hong, Tae-Kyung; Park, Eui-Seob

    2018-05-01

    We characterize the present-day stress state in and around the Korean Peninsula using formal inversions of earthquake focal mechanisms. Two different methods are used to select preferred fault planes in the double-couple focal mechanism solutions: one that minimizes average misfit angle and the other choosing faults with higher instability. We invert selected sets of fault planes for estimating the principal stresses at regularly spaced grid points, using a circular-area data-binning method, where the bin radius is optimized to yield the best possible stress inversion results based on the World Stress Map quality ranking scheme. The inversions using the two methods yield well constrained and fairly comparable results, which indicate that the prevailing stress regime is strike-slip, and the maximum horizontal principal stress (SHmax) is oriented ENE-WSW throughout the study region. Although the orientation of the stresses is consistent across the peninsula, the relative stress magnitude parameter (R-value) varies significantly, from 0.22 in the northwest to 0.89 in the southeast. Based on our knowledge of the R-values and stress regime, and using a value for vertical stress (Sv) estimated from the overburden weight of rock, together with a value for the maximum differential stress (based on the Coulomb friction of faults optimally oriented for slip), we estimate the magnitudes of the two horizontal principal stresses. The horizontal stress magnitudes increase from west to east such that SHmax/Sv ratio rises from 1.5 to 2.4, and the Shmin/Sv ratio from 0.6 to 0.8. The variation in the magnitudes of the tectonic stresses appears to be related to differences in the rigidity of crustal rocks. Using the complete stress tensors, including both orientations and magnitudes, we assess the possible ranges of frictional coefficients for different types of faults. We show that normal and reverse faults have lower frictional coefficients than strike-slip faults, suggesting that

  4. Influence of fault steps on rupture termination of strike-slip earthquake faults

    Science.gov (United States)

    Li, Zhengfang; Zhou, Bengang

    2018-03-01

    A statistical analysis was completed on the rupture data of 29 historical strike-slip earthquakes across the world. The purpose of this study is to examine the effects of fault steps on the rupture termination of these events. The results show good correlations between the type and length of steps with the seismic rupture and a poor correlation between the step number and seismic rupture. For different magnitude intervals, the smallest widths of the fault steps (Lt) that can terminate the rupture propagation are variable: Lt = 3 km for Ms 6.5 6.9, Lt = 4 km for Ms 7.0 7.5, Lt = 6 km for Ms 7.5 8.0, and Lt = 8 km for Ms 8.0 8.5. The dilational fault step is easier to rupture through than the compression fault step. The smallest widths of the fault step for the rupture arrest can be used as an indicator to judge the scale of the rupture termination of seismic faults. This is helpful for research on fault segmentation, as well as estimating the magnitude of potential earthquakes, and is thus of significance for the assessment of seismic risks.

  5. Constraining slip rates and spacings for active normal faults

    Science.gov (United States)

    Cowie, Patience A.; Roberts, Gerald P.

    2001-12-01

    Numerous observations of extensional provinces indicate that neighbouring faults commonly slip at different rates and, moreover, may be active over different time intervals. These published observations include variations in slip rate measured along-strike of a fault array or fault zone, as well as significant across-strike differences in the timing and rates of movement on faults that have a similar orientation with respect to the regional stress field. Here we review published examples from the western USA, the North Sea, and central Greece, and present new data from the Italian Apennines that support the idea that such variations are systematic and thus to some extent predictable. The basis for the prediction is that: (1) the way in which a fault grows is fundamentally controlled by the ratio of maximum displacement to length, and (2) the regional strain rate must remain approximately constant through time. We show how data on fault lengths and displacements can be used to model the observed patterns of long-term slip rate where measured values are sparse. Specifically, we estimate the magnitude of spatial variation in slip rate along-strike and relate it to the across-strike spacing between active faults.

  6. The Right to strike: International and regional legal instruments with accent of legislation in Republic of Macedonia

    OpenAIRE

    Majhosev, Andon; Denkova, Jadranka

    2013-01-01

    The right to strike is a universal democratic right of all employees, regardless of where they are employed: Real or public sector. Depending on the degree of realization of this right in a state, it is accordingly evaluated on the scale of democracy. Therefore, we can say that the right to strike is a fundamental measure of democratic values of a society. There is no real democracy without the right to strike. The right to strike is governed by international legal instruments (acts) of the U...

  7. Tiechanshan-Tunghsiao anticline earthquake analysis: Implications for northwestern Taiwan potential carbon dioxide storage site seismic hazard

    Directory of Open Access Journals (Sweden)

    Ruey-Juin Rau

    2017-01-01

    Full Text Available We analyze the seismicity and earthquake focal mechanisms beneath the Tiechanshan-Tunghsiao (TCS-TH anticline over the last two decades for seismic hazard evaluation of a potential carbon dioxide storage site in northwestern Taiwan. Seismicity in the TCS-TH anticline indicates both spatial and temporal clustering at a depth range of 7 - 12 km. Thirteen 3.0 ≤ ML ≤ 5.2 earthquake focal mechanisms show a combination of thrust, strike-slip, and normal faulting mechanisms under the TCS-TH anticline. A 1992 ML 5.2 earthquake with a focal depth of ~10 km, the largest event ever recorded beneath the TCS-TH anticline during the last two decades, has a normal fault mechanism with the T-axis trending NNE-SSW and nodal planes oriented NNW-SSE, dipping either gently to the NNE or steeply to the SSW. Thrust fault mechanisms that occurred with mostly E-W or NWW-SEE striking P-axes and strike-slip faulting events indicate NWW-SEE striking P-axes and NNE-SSW trending T-axes, which are consistent with the regional plate convergence direction. For the strike-slip faulting events, if we take the N-S or NNW-SSE striking nodal planes as the fault planes, the strike-slip faults are sinistral motions and correspond to the Tapingting fault, which is a strike-slip fault reactivated from the inherited normal fault and intersects the Tiechanshan and Tunghsiao anticlines.

  8. Silurian to Devonian magmatism, molybdenite mineralization, regional exhumation and brittle strike-slip deformation along the Loch Shin Line, NW Scotland

    OpenAIRE

    Holdsworth, R.; Dempsey, E.; Selby, D.; Darling, James Richard; Feely, M.; Costanzo, A.; Strachan, Robin A; Waters, P.; Finlay, A.J.

    2015-01-01

    The Loch Shin Line is a geological–geophysical lineament associated with a zone of mantle-derived appinites, granites and strike-slip faulting that runs NW–SE across the Moine Nappe, northern Scotland. U–Pb zircon and Re–Os molybdenite dating of the Loch Shin and Grudie plutons, which lie immediately SW of the NW–SE Loch Shin–Strath Fleet fault system, yield c. 427–430 Ma ages that overlap within error. They also coincide with previously obtained U–Pb zircon ages for the Rogart pluton, which ...

  9. A nonlinear least-squares inverse analysis of strike-slip faulting with application to the San Andreas fault

    Science.gov (United States)

    Williams, Charles A.; Richardson, Randall M.

    1988-01-01

    A nonlinear weighted least-squares analysis was performed for a synthetic elastic layer over a viscoelastic half-space model of strike-slip faulting. Also, an inversion of strain rate data was attempted for the locked portions of the San Andreas fault in California. Based on an eigenvector analysis of synthetic data, it is found that the only parameter which can be resolved is the average shear modulus of the elastic layer and viscoelastic half-space. The other parameters were obtained by performing a suite of inversions for the fault. The inversions on data from the northern San Andreas resulted in predicted parameter ranges similar to those produced by inversions on data from the whole fault.

  10. The balancing act between the constitutional right to strike and the ...

    African Journals Online (AJOL)

    (a) a service the interruption of which endangers the life, personal safety or health of the whole or ... companies act through organs such as the board of directors. ... Once a right to strike is recognised, an application for the right to picket must.

  11. Excitation of tsunami by a pure strike-slip earthquake. ; Izu Oshima kinkai earthquake tsunami on Feb. 20, 1990. Yokozure danso jishin ni yoru tsunami no reiki. ; 1990 nen 2 gatsu 20 nichi Izu Oshima kinkai jishin tsunami

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K. (Nippon Dental University, Tokyo (Japan). Niigata Junior College); Okada, M. (Meteorological Research Institute, Tsukuba (Japan))

    1993-06-24

    A numerical experiment was performed to reproduce the tsunami from the Izu-Oshima Kinkai Earthquake which occurred on February 20, 1990, using a tsunami excited by a pure strike-slip fault. An existence of a vertical fault with a length of 15 km and a width of 12 km was hypothesized in the south-north direction on the ocean bottom around the focal region. Then, a tsunami was assumed to have been excited when the fault was given a side-slip movement to create discrepancies of 1 m in the fault. Water level change for one hour after onset of the tsunami was calculated in one-second interval in each unit square with a side length of 1 km over an ocean area of 200 km from east to west and 150 km from north to south centering on the wave source. The results obtained from the calculation were harmonious with tsunami waveforms observed at five stations in the subject region and their spectral analytic results. Reproduced were the two predominant frequencies commonly observed at more than two stations, and difference in predominant cycles that appear according to azimuths of the observation points to the epicenter. These facts endorse the reasonability of the above hypothesis. 9 refs., 11 figs.

  12. [Left lateral gaze paresis due to subcortical hematoma in the right precentral gyrus].

    Science.gov (United States)

    Sato, K; Takamori, M

    1998-03-01

    We report a case of transient left lateral gaze paresis due to a hemorrhagic lesion restricted in the right precentral gyrus. A 74-year-old female experienced a sudden clumsiness of the left upper extremity. A neurological examination revealed a left central facial paresis, distal dominant muscle weakness in the left upper limb and left lateral gaze paresis. There were no other focal neurological signs. Laboratory data were all normal. Brain CTs and MRIs demonstrated a subcortical hematoma in the right precentral gyrus. The neurological symptoms and signs disappeared over seven days. A recent physiological study suggested that the human frontal eye field (FEF) is located in the posterior part of the middle frontal gyrus (Brodmann's area 8) and the precentral gyrus around the precentral sulcus. More recent studies stressed the role of the precentral sulcus and the precentral gyrus. Our case supports those physiological findings. The hematoma affected both the FEF and its underlying white matter in our case. We assume the lateral gaze paresis is attributable to the disruption of the fibers from the FEF. It is likely that fibers for motor control of the face, upper extremity, and lateral gaze lie adjacently in the subcortical area.

  13. Escape tectonism in the Gulf of Thailand: Paleogene left-lateral pull-apart rifting in the Vietnamese part of the Malay Basin

    DEFF Research Database (Denmark)

    Fyhn, Michael B.W.; Boldreel, Lars Ole; Nielsen, Lars H

    2010-01-01

    The Malay Basin represents one of the largest rift basins of SE Asia. Based on a comprehensive 2-D seismic database tied to wells covering mainly Vietnamese acreage, the evolution of the Vietnamese part of the basin is outlined and a new tectonic model is proposed for the development of the basin....... The Vietnamese part of the Malay Basin comprises a large and deep Paleogene pull-apart basin formed through Middle or Late Eocene to Oligocene left-lateral strike-slip along NNW-trending fault zones. The Tho Chu Fault Zone constitutes a significant Paleogene left-lateral strike-slip zone most likely associated......–Strending faults in the central part of the basin. However, the lack of inversion in Vietnamese territory only seems to merit a few kilometers of dextral inversion....

  14. Earthquake focal mechanism forecasting in Italy for PSHA purposes

    Science.gov (United States)

    Roselli, Pamela; Marzocchi, Warner; Mariucci, Maria Teresa; Montone, Paola

    2018-01-01

    In this paper, we put forward a procedure that aims to forecast focal mechanism of future earthquakes. One of the primary uses of such forecasts is in probabilistic seismic hazard analysis (PSHA); in fact, aiming at reducing the epistemic uncertainty, most of the newer ground motion prediction equations consider, besides the seismicity rates, the forecast of the focal mechanism of the next large earthquakes as input data. The data set used to this purpose is relative to focal mechanisms taken from the latest stress map release for Italy containing 392 well-constrained solutions of events, from 1908 to 2015, with Mw ≥ 4 and depths from 0 down to 40 km. The data set considers polarity focal mechanism solutions until to 1975 (23 events), whereas for 1976-2015, it takes into account only the Centroid Moment Tensor (CMT)-like earthquake focal solutions for data homogeneity. The forecasting model is rooted in the Total Weighted Moment Tensor concept that weighs information of past focal mechanisms evenly distributed in space, according to their distance from the spatial cells and magnitude. Specifically, for each cell of a regular 0.1° × 0.1° spatial grid, the model estimates the probability to observe a normal, reverse, or strike-slip fault plane solution for the next large earthquakes, the expected moment tensor and the related maximum horizontal stress orientation. These results will be available for the new PSHA model for Italy under development. Finally, to evaluate the reliability of the forecasts, we test them with an independent data set that consists of some of the strongest earthquakes with Mw ≥ 3.9 occurred during 2016 in different Italian tectonic provinces.

  15. Space Geodetic Observations and Modeling of 2016 Mw 5.9 Menyuan Earthquake: Implications on Seismogenic Tectonic Motion

    Directory of Open Access Journals (Sweden)

    Yongsheng Li

    2016-06-01

    Full Text Available Determining the relationship between crustal movement and faulting in thrust belts is essential for understanding the growth of geological structures and addressing the proposed models of a potential earthquake hazard. A Mw 5.9 earthquake occurred on 21 January 2016 in Menyuan, NE Qinghai Tibetan plateau. We combined satellite interferometry from Sentinel-1A Terrain Observation with Progressive Scans (TOPS images, historical earthquake records, aftershock relocations and geological data to determine fault seismogenic structural geometry and its relationship with the Lenglongling faults. The results indicate that the reverse slip of the 2016 earthquake is distributed on a southwest dipping shovel-shaped fault segment. The main shock rupture was initiated at the deeper part of the fault plane. The focal mechanism of the 2016 earthquake is quite different from that of a previous Ms 6.5 earthquake which occurred in 1986. Both earthquakes occurred at the two ends of a secondary fault. Joint analysis of the 1986 and 2016 earthquakes and aftershocks distribution of the 2016 event reveals an intense connection with the tectonic deformation of the Lenglongling faults. Both earthquakes resulted from the left-lateral strike-slip of the Lenglongling fault zone and showed distinct focal mechanism characteristics. Under the shearing influence, the normal component is formed at the releasing bend of the western end of the secondary fault for the left-order alignment of the fault zone, while the thrust component is formed at the restraining bend of the east end for the right-order alignment of the fault zone. Seismic activity of this region suggests that the left-lateral strike-slip of the Lenglongling fault zone plays a significant role in adjustment of the tectonic deformation in the NE Tibetan plateau.

  16. The large 1956 earthquake in the South Aegean: Macroseismic field configuration, faulting, and neotectonics of Amorgos Island

    Science.gov (United States)

    Papadopoulos, Gerassimos A.; Pavlides, Spyros B.

    1992-10-01

    New field observations of the seismic intensity distribution of the large (M s = 7.4) South Aegean (Amorgos) earthquake of 9 July 1956 are presented. Interpretations based on local ground conditions, structural properties of buildings and peculiarities of the rupture process lead to a re-evaluation of the macroseismic field configuration. This, together with the aftershock epicentral distribution, quite well defines the earthquake rupture zone, which trends NE-SW and coincides with the Amorgos Astypalea trough. The lateral extent of the rupture zone, however, is about 40% smaller than that predicted for Aegean earthquakes of M s = 7.4. This discrepancy could be attributed to sea-bottom topography changes, which seem to control the rupture terminations, and to relatively high stressdrop with respect to other Aegean earthquakes. Fault plane solutions obtained by several authors indicate either mainly normal faulting with a significant right-lateral strike-slip component or predominantly strike-slip motion. The neotectonism of Amorgos Island, based on new field observations, aerial photograph analysis and fault mechanisms, is consistent with the dip-slip interpretation. The neotectonic master fault of Amorgos and the 1956 seismic faulting appear to belong to the same tectonic phase (NE-SW strike and a southeasterly dip). However, the significant right-lateral strike-slip component supports the idea that the Amorgos region deviates from the simple description for pure extension in back-arc conditions.

  17. Analysis of Seismotektonic Patterns in Sumatra Region Based on the Focal Mechanism of Earthquake Period 1976-2016

    Science.gov (United States)

    Indah, F. P.; Syafriani, S.; Andiyansyah, Z. S.

    2018-04-01

    Sumatra is in an active subduction zone between the indo-australian plate and the eurasian plate and is located at a fault along the sumatra fault so that sumatra is vulnerable to earthquakes. One of the ways to find out the cause of earthquake can be done by identifying the type of earthquake-causing faults based on earthquake of focal mechanism. The data used to identify the type of fault cause of earthquake is the earth tensor moment data which is sourced from global cmt period 1976-2016. The data used in this research using magnitude m ≥ 6 sr. This research uses gmt software (generic mapping tolls) to describe the form of fault. From the research result, it is found that the characteristics of fault field that formed in every region in sumatera island based on data processing and data of earthquake history of 1976-2016 period that the type of fault in sumatera fault is strike slip, fault type in mentawai fault is reverse fault (rising faults) and dip-slip, while the fault type in the subduction zone is dip-slip.

  18. Geochemistry of travertine deposits in the Eastern Anatolia District: an example of the Karakoçan-Yoğunağaç (Elazığ) and Mazgirt-Dedebağ (Tunceli) travertines, Turkey

    OpenAIRE

    KALENDER, LEYLA; OKAN, ÖZLEM ÖZTEKİN; İNCEÖZ, MURAT; ÇETİNDAĞ, BAHATTİN; YILDIRIM, VESİLE

    2015-01-01

    The Karakoçan-Yoğunağaç (Elazığ) and Mazgirt-Dedebağ (Tunceli) travertines, which are related to thermal springs, are situated on the right-lateral strike-slip Karakoçan Fault Zone (KFZ) and left-lateral strike-slip Pamuklu Fault Zone (PFZ) in eastern Anatolia. The surface area of the travertines varies from m2 to km2. Morphologically, the travertines are classified as ridge, banded, and terrace types due to deposition in different ways, in the releasing/restraining bends of the KFZ and PFZ a...

  19. Three-Dimensional Growth of Flexural Slip Fault-Bend and Fault-Propagation Folds and Their Geomorphic Expression

    Directory of Open Access Journals (Sweden)

    Asdrúbal Bernal

    2018-03-01

    Full Text Available The three-dimensional growth of fault-related folds is known to be an important process during the development of compressive mountain belts. However, comparatively little is known concerning the manner in which fold growth is expressed in topographic relief and local drainage networks. Here we report results from a coupled kinematic and surface process model of fault-related folding. We consider flexural slip fault-bend and fault-propagation folds that grow in both the transport and strike directions, linked to a surface process model that includes bedrock channel development and hillslope diffusion. We investigate various modes of fold growth under identical surface process conditions and critically analyse their geomorphic expression. Fold growth results in the development of steep forelimbs and gentler, wider backlimbs resulting in asymmetric drainage basin development (smaller basins on forelimbs, larger basins on backlimbs. However, topographies developed above fault-propagation folds are more symmetric than those developed above fault-bend folds as a result of their different forelimb kinematics. In addition, the surface expression of fault-bend and fault-propagation folds depends both on the slip distribution along the fault and on the style of fold growth. When along-strike plunge is a result of slip events with gently decreasing slip towards the fault tips (with or without lateral propagation, large plunge-panel drainage networks are developed at the expense of backpanel (transport-opposing and forepanel (transport-facing drainage basins. In contrast, if the fold grows as a result of slip events with similar displacements along strike, plunge-panel drainage networks are poorly developed (or are transient features of early fold growth and restricted to lateral fold terminations, particularly when the number of propagation events is small. The absence of large-scale plunge-panel drainage networks in natural examples suggests that the

  20. Slip Potential of Faults in the Fort Worth Basin

    Science.gov (United States)

    Hennings, P.; Osmond, J.; Lund Snee, J. E.; Zoback, M. D.

    2017-12-01

    Similar to other areas of the southcentral United States, the Fort Worth Basin of NE Texas has experienced an increase in the rate of seismicity which has been attributed to injection of waste water in deep saline aquifers. To assess the hazard of induced seismicity in the basin we have integrated new data on location and character of previously known and unknown faults, stress state, and pore pressure to produce an assessment of fault slip potential which can be used to investigate prior and ongoing earthquake sequences and for development of mitigation strategies. We have assembled data on faults in the basin from published sources, 2D and 3D seismic data, and interpretations provided from petroleum operators to yield a 3D fault model with 292 faults ranging in strike-length from 116 to 0.4 km. The faults have mostly normal geometries, all cut the disposal intervals, and most are presumed to cut into the underlying crystalline and metamorphic basement. Analysis of outcrops along the SW flank of the basin assist with geometric characterization of the fault systems. The interpretation of stress state comes from integration of wellbore image and sonic data, reservoir stimulation data, and earthquake focal mechanisms. The orientation of SHmax is generally uniform across the basin but stress style changes from being more strike-slip in the NE part of the basin to normal faulting in the SW part. Estimates of pore pressure come from a basin-scale hydrogeologic model as history-matched to injection test data. With these deterministic inputs and appropriate ranges of uncertainty we assess the conditional probability that faults in our 3D model might slip via Mohr-Coulomb reactivation in response to increases in injected-related pore pressure. A key component of the analysis is constraining the uncertainties associated with each of the principal parameters. Many of the faults in the model are interpreted to be critically-stressed within reasonable ranges of uncertainty.

  1. Structure of the Hat Creek graben region: Implications for the structure of the Hat Creek graben and transfer of right-lateral shear from the Walker Lane north of Lassen Peak, northern California, from gravity and magnetic anomalies

    Science.gov (United States)

    Langenheim, Victoria; Jachens, Robert C.; Clynne, Michael A.; Muffler, L. J. Patrick

    2016-01-01

    Interpretation of magnetic and new gravity data provides constraints on the geometry of the Hat Creek Fault, the amount of right-lateral offset in the area between Mt. Shasta and Lassen Peak, and confirmation of the influence of pre-existing structure on Quaternary faulting. Neogene volcanic rocks coincide with short-wavelength magnetic anomalies of both normal and reversed polarity, whereas a markedly smoother magnetic field occurs over the Klamath Mountains and its Paleogene cover. Although the magnetic field over the Neogene volcanic rocks is complex, the Hat Creek Fault, which is one of the most prominent normal faults in the region and forms the eastern margin of the Hat Creek Valley, is marked by the eastern edge of a north-trending magnetic and gravity high 20-30 km long. Modeling of these anomalies indicates that the fault is a steeply dipping (~75-85°) structure. The spatial relationship of the fault as modeled by the potential-field data, the youngest strand of the fault, and relocated seismicity suggests that deformation continues to step westward across the valley, consistent with a component of right-lateral slip in an extensional environment. Filtered aeromagnetic data highlight a concealed magnetic body of Mesozoic or older age north of Hat Creek Valley. The body’s northwest margin strikes northeast and is linear over a distance of ~40 km. Within the resolution of the aeromagnetic data (1-2 km), we discern no right-lateral offset of this body. Furthermore, Quaternary faults change strike or appear to end, as if to avoid this concealed magnetic body and to pass along its southeast edge, suggesting that pre-existing crustal structure influenced younger faulting, as previously proposed based on gravity data.

  2. Analysis of the similar epicenter earthquakes on 22 January 2013 and 01 June 2013, Central Gulf of Suez, Egypt

    Science.gov (United States)

    Toni, Mostafa; Barth, Andreas; Ali, Sherif M.; Wenzel, Friedemann

    2016-09-01

    On 22 January 2013 an earthquake with local magnitude ML 4.1 occurred in the central part of the Gulf of Suez. Six months later on 1 June 2013 another earthquake with local magnitude ML 5.1 took place at the same epicenter and different depths. These two perceptible events were recorded and localized by the Egyptian National Seismological Network (ENSN) and additional networks in the region. The purpose of this study is to determine focal mechanisms and source parameters of both earthquakes to analyze their tectonic relation. We determine the focal mechanisms by applying moment tensor inversion and first motion analysis of P- and S-waves. Both sources reveal oblique focal mechanisms with normal faulting and strike-slip components on differently oriented faults. The source mechanism of the larger event on 1 June in combination with the location of aftershock sequence indicates a left-lateral slip on N-S striking fault structure in 21 km depth that is in conformity with the NE-SW extensional Shmin (orientation of minimum horizontal compressional stress) and the local fault pattern. On the other hand, the smaller earthquake on 22 January with a shallower hypocenter in 16 km depth seems to have happened on a NE-SW striking fault plane sub-parallel to Shmin. Thus, here an energy release on a transfer fault connecting dominant rift-parallel structures might have resulted in a stress transfer, triggering the later ML 5.1 earthquake. Following Brune's model and using displacement spectra, we calculate the dynamic source parameters for the two events. The estimated source parameters for the 22 January 2013 and 1 June 2013 earthquakes are fault length (470 and 830 m), stress drop (1.40 and 2.13 MPa), and seismic moment (5.47E+21 and 6.30E+22 dyn cm) corresponding to moment magnitudes of MW 3.8 and 4.6, respectively.

  3. Spatial and Temporal Variations in Slip Partitioning During Oblique Convergence Experiments

    Science.gov (United States)

    Beyer, J. L.; Cooke, M. L.; Toeneboehn, K.

    2017-12-01

    Physical experiments of oblique convergence in wet kaolin demonstrate the development of slip partitioning, where two faults accommodate strain via different slip vectors. In these experiments, the second fault forms after the development of the first fault. As one strain component is relieved by one fault, the local stress field then favors the development of a second fault with different slip sense. A suite of physical experiments reveals three styles of slip partitioning development controlled by the convergence angle and presence of a pre-existing fault. In experiments with low convergence angles, strike-slip faults grow prior to reverse faults (Type 1) regardless of whether the fault is precut or not. In experiments with moderate convergence angles, slip partitioning is dominantly controlled by the presence of a pre-existing fault. In all experiments, the primarily reverse fault forms first. Slip partitioning then develops with the initiation of strike-slip along the precut fault (Type 2) or growth of a secondary reverse fault where the first fault is steepest. Subsequently, the slip on the first fault transitions to primarily strike-slip (Type 3). Slip rates and rakes along the slip partitioned faults for both precut and uncut experiments vary temporally, suggesting that faults in these slip-partitioned systems are constantly adapting to the conditions produced by slip along nearby faults in the system. While physical experiments show the evolution of slip partitioning, numerical simulations of the experiments provide information about both the stress and strain fields, which can be used to compute the full work budget, providing insight into the mechanisms that drive slip partitioning. Preliminary simulations of precut experiments show that strain energy density (internal work) can be used to predict fault growth, highlighting where fault growth can reduce off-fault deformation in the physical experiments. In numerical simulations of uncut experiments with a

  4. New geologic slip rates for the Agua Blanca Fault, northern Baja California, Mexico

    Science.gov (United States)

    Gold, P. O.; Behr, W. M.; Fletcher, J. M.; Hinojosa-Corona, A.; Rockwell, T. K.

    2015-12-01

    Within the southern San Andreas transform plate boundary system, relatively little is known regarding active faulting in northern Baja California, Mexico, or offshore along the Inner Continental Borderland. The inner offshore system appears to be fed from the south by the Agua Blanca Fault (ABF), which strikes northwest across the Peninsular Ranges of northern Baja California. Therefore, the geologic slip rate for the ABF also provides a minimum slip rate estimate for the offshore system, which is connected to the north to faults in the Los Angeles region. Previous studies along the ABF determined slip rates of ~4-6 mm/yr (~10% of relative plate motion). However, these rates relied on imprecise age estimates and offset geomorphic features of a type that require these rates to be interpreted as minima, allowing for the possibility that the slip rate for the ABF may be greater. Although seismically quiescent, the surface trace of the ABF clearly reflects Holocene activity, and given its connectivity with the offshore fault system, more quantitative slip rates for the ABF are needed to better understand earthquake hazard for both US and Mexican coastal populations. Using newly acquired airborne LiDAR, we have mapped primary and secondary fault strands along the segmented western 70 km of the ABF. Minimal development has left the geomorphic record of surface slip remarkably well preserved, and we have identified abundant evidence meter to km scale right-lateral displacement, including new Late Quaternary slip rate sites. We verified potential reconstructions at each site during summer 2015 fieldwork, and selected an initial group of three high potential slip rate sites for detailed mapping and geochronologic analyses. Offset landforms, including fluvial terrace risers, alluvial fans, and incised channel fill deposits, record displacements of ~5-80 m, and based on minimal soil development, none appear older than early Holocene. To quantitatively constrain landform ages

  5. Documentation of programs that compute 1) static tilts for a spatially variable slip distribution, and 2) quasi-static tilts produced by an expanding dislocation loop with a spatially variable slip distribution

    Science.gov (United States)

    McHugh, Stuart

    1976-01-01

    The material in this report is concerned with the effects of a vertically oriented rectangular dislocation loop on the tilts observed at the free surface of an elastic half-space. Part I examines the effect of a spatially variable static strike-slip distribution across the slip surface. The tilt components as a function of distance parallel, or perpendicular, to the strike of the slip surface are displayed for different slip-versus-distance profiles. Part II examines the effect of spatially and temporally variable slip distributions across the dislocation loop on the quasi-static tilts at the free surface of an elastic half space. The model discussed in part II may be used to generate theoretical tilt versus time curves produced by creep events.

  6. Seismic and geodetic signatures of fault slip at the Slumgullion Landslide Natural Laboratory

    Science.gov (United States)

    Gomberg, J.; Schulz, W.; Bodin, P.; Kean, J.

    2011-01-01

    We tested the hypothesis that the Slumgullion landslide is a useful natural laboratory for observing fault slip, specifically that slip along its basal surface and side-bounding strike-slip faults occurs with comparable richness of aseismic and seismic modes as along crustal- and plate-scale boundaries. Our study provides new constraints on models governing landslide motion. We monitored landslide deformation with temporary deployments of a 29-element prism array surveyed by a robotic theodolite and an 88-station seismic network that complemented permanent extensometers and environmental instrumentation. Aseismic deformation observations show that large blocks of the landslide move steadily at approximately centimeters per day, possibly punctuated by variations of a few millimeters, while localized transient slip episodes of blocks less than a few tens of meters across occur frequently. We recorded a rich variety of seismic signals, nearly all of which originated outside the monitoring network boundaries or from the side-bounding strike-slip faults. The landslide basal surface beneath our seismic network likely slipped almost completely aseismically. Our results provide independent corroboration of previous inferences that dilatant strengthening along sections of the side-bounding strike-slip faults controls the overall landslide motion, acting as seismically radiating brakes that limit acceleration of the aseismically slipping basal surface. Dilatant strengthening has also been invoked in recent models of transient slip and tremor sources along crustal- and plate-scale faults suggesting that the landslide may indeed be a useful natural laboratory for testing predictions of specific mechanisms that control fault slip at all scales.

  7. Fault Branching and Long-Term Earthquake Rupture Scenario for Strike-Slip Earthquake

    Science.gov (United States)

    Klinger, Y.; CHOI, J. H.; Vallage, A.

    2017-12-01

    Careful examination of surface rupture for large continental strike-slip earthquakes reveals that for the majority of earthquakes, at least one major branch is involved in the rupture pattern. Often, branching might be either related to the location of the epicenter or located toward the end of the rupture, and possibly related to the stopping of the rupture. In this work, we examine large continental earthquakes that show significant branches at different scales and for which ground surface rupture has been mapped in great details. In each case, rupture conditions are described, including dynamic parameters, past earthquakes history, and regional stress orientation, to see if the dynamic stress field would a priori favor branching. In one case we show that rupture propagation and branching are directly impacted by preexisting geological structures. These structures serve as pathways for the rupture attempting to propagate out of its shear plane. At larger scale, we show that in some cases, rupturing a branch might be systematic, hampering possibilities for the development of a larger seismic rupture. Long-term geomorphology hints at the existence of a strong asperity in the zone where the rupture branched off the main fault. There, no evidence of throughgoing rupture could be seen along the main fault, while the branch is well connected to the main fault. This set of observations suggests that for specific configurations, some rupture scenarios involving systematic branching are more likely than others.

  8. Fault slip and earthquake recurrence along strike-slip faults — Contributions of high-resolution geomorphic data

    KAUST Repository

    Zielke, Olaf; Klinger, Yann; Arrowsmith, J. Ramon

    2015-01-01

    to contribute to better-informed models of EQ recurrence and slip-accumulation patterns. After reviewing motivation and background, we outline requirements to successfully reconstruct a fault's offset accumulation pattern from geomorphic evidence. We address

  9. Right away: A late, right-lateralized category effect complements an early, left-lateralized category effect in visual search.

    Science.gov (United States)

    Constable, Merryn D; Becker, Stefanie I

    2017-10-01

    According to the Sapir-Whorf hypothesis, learned semantic categories can influence early perceptual processes. A central finding in support of this view is the lateralized category effect-namely, the finding that categorically different colors (e.g., blue and green hues) can be discriminated faster than colors within the same color category (e.g., different hues of green), especially when they are presented in the right visual field. Because the right visual field projects to the left hemisphere, this finding has been popularly couched in terms of the left-lateralization of language. However, other studies have reported bilateral category effects, which has led some researchers to question the linguistic origins of the effect. Here we examined the time course of lateralized and bilateral category effects in the classical visual search paradigm by means of eyetracking and RT distribution analyses. Our results show a bilateral category effect in the manual responses, which is combined of an early, left-lateralized category effect and a later, right-lateralized category effect. The newly discovered late, right-lateralized category effect occurred only when observers had difficulty locating the target, indicating a specialization of the right hemisphere to find categorically different targets after an initial error. The finding that early and late stages of visual search show different lateralized category effects can explain a wide range of previously discrepant findings.

  10. Wrong to be Right: Margin Laterality is an Independent Predictor of Biochemical Failure After Radical Prostatectomy.

    Science.gov (United States)

    Kang, Jung J; Reiter, Robert E; Kummer, Nicolas; DeKernion, Jean; Steinberg, Michael L; King, Christopher R

    2018-01-01

    To examine the impact of positive surgical margin (PSM) laterality on failure after radical prostatectomy (RP). A PSM can influence local recurrence and outcomes after salvage radiation. Unlike intrinsic risk factors, a PSM is caused by intervention and thus iatrogenic failures may be elucidated by analyzing margin laterality as surgical approach is itself lateralized. We reviewed 226 RP patients between 1991 and 2013 with PSM. Data includes operation type, pre/postoperative PSA, surgical pathology, and margin type (location, focality, laterality). The median follow-up was 47 months. Biochemical recurrence after RP was defined as PSA≥0.1 ng/mL or 2 consecutive rises above nadir. Ninety-two patients received salvage radiation therapy (SRT). Failure after SRT was defined as any PSA≥0.2 ng/mL or greater than presalvage. Kaplan-Meier and Cox multivariate analyses compared relapse rates. The majority of PSM were iatrogenic (58%). Laterality was associated with differences in median relapse: right 20 versus left 51 versus bilateral 14 months (PRight-sided margins were more likely to progress than left (hazard ratio, 1.67; P=0.04). More right-sided margins were referred for SRT (55% right vs. 23% left vs. 22% bilateral), but were equally salvaged. Only T-stage and pre-SRT PSA independently influenced SRT success. Most PSM are iatrogenic, with right-sided more likely to progress (and sooner) than left sided. Margin laterality is a heretofore unrecognized independent predictor of biochemical relapse and hints at the need to modify the traditional unilateral surgical technique.

  11. Understanding the limitations to the right to strike in essential and ...

    African Journals Online (AJOL)

    The nature of the limitations to the right to strike in essential and public services in the nine sub-regional countries of Southern Africa – South Africa, Botswana, Lesotho, Namibia, Swaziland, Malawi, Mozambique, Zambia and Zimbabwe – is examined in this contribution. While all of these countries share common influences ...

  12. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Pseudotachylytes, as well as the country rock, bear the evidence of conjugate strike slip shearing along NNE–SSW and NW–SE directions, suggesting an N–S compression. The Gangavalli Shear Zone represents the NNE–SSW fault of the conjugate system along which a right lateral shear has produced seismic slip motion ...

  13. The Implications of Strike-Slip Earthquake Source Properties on the Transform Boundary Development Process

    Science.gov (United States)

    Neely, J. S.; Huang, Y.; Furlong, K.

    2017-12-01

    Subduction-Transform Edge Propagator (STEP) faults, produced by the tearing of a subducting plate, allow us to study the development of a transform plate boundary and improve our understanding of both long-term geologic processes and short-term seismic hazards. The 280 km long San Cristobal Trough (SCT), formed by the tearing of the Australia plate as it subducts under the Pacific plate near the Solomon and Vanuatu subduction zones, shows along-strike variations in earthquake behaviors. The segment of the SCT closest to the tear rarely hosts earthquakes > Mw 6, whereas the SCT sections more than 80 - 100 km from the tear experience Mw7 earthquakes with repeated rupture along the same segments. To understand the effect of cumulative displacement on SCT seismicity, we analyze b-values, centroid-time delays and corner frequencies of the SCT earthquakes. We use the spectral ratio method based on Empirical Green's Functions (eGfs) to isolate source effects from propagation and site effects. We find high b-values along the SCT closest to the tear with values decreasing with distance before finally increasing again towards the far end of the SCT. Centroid time-delays for the Mw 7 strike-slip earthquakes increase with distance from the tear, but corner frequency estimates for a recent sequence of Mw 7 earthquakes are approximately equal, indicating a growing complexity in earthquake behavior with distance from the tear due to a displacement-driven transform boundary development process (see figure). The increasing complexity possibly stems from the earthquakes along the eastern SCT rupturing through multiple asperities resulting in multiple moment pulses. If not for the bounding Vanuatu subduction zone at the far end of the SCT, the eastern SCT section, which has experienced the most displacement, might be capable of hosting larger earthquakes. When assessing the seismic hazard of other STEP faults, cumulative fault displacement should be considered a key input in

  14. Micro-seismicity and seismotectonic study in Western Himalaya-Ladakh-Karakoram using local broadband seismic data

    Science.gov (United States)

    Kanna, Nagaraju; Gupta, Sandeep; Prakasam, K. S.

    2018-02-01

    We document the seismic activity and fault plane solutions (FPSs) in the Western Himalaya, Ladakh and Karakoram using data from 16 broadband seismographs operated during June 2002 to December 2003. We locate 206 earthquakes with a local magnitude in the range of 1.5 to 4.9 and calculate FPSs of 19 selected earthquakes based on moment tensor solutions. The earthquakes are distributed throughout the study region and indicate active tectonics in this region. The observed seismicity pattern is quite different than a well-defined pattern of seismicity, along the Main Central Thrust zone, in the eastern side of the study region (i.e., Kumaon-Garhwal Himalaya). In the Himalaya region, the earthquakes are distributed in the crust and upper mantle, whereas in the Ladakh-Karakoram area the earthquakes are mostly confined up to crustal depths. The fault plane solutions show a mixture of thrust, normal and strike-slip type mechanisms, which are well corroborated with the known faults/tectonics of the region. The normal fault earthquakes are observed along the Southern Tibet Detachment, Zanskar Shear Zone, Tso-Morari dome, and Kaurik-Chango fault; and suggest E-W extension tectonics in the Higher and Tethys Himalaya. The earthquakes of thrust mechanism with the left-lateral strike-slip component are seen along the Kistwar fault. The right-lateral strike-slip faulting with thrust component along the bending of the Main Boundary Thrust and Main Central Thrust shows the transpressional tectonics in this part of the Himalaya. The observed earthquakes with right-lateral strike-slip faulting indicate seismically active nature of the Karakoram fault.

  15. Geometry and Kinematics of the Lopukangri Fault System: Implications for Internal Deformation of the Tibetan Plateau

    Science.gov (United States)

    Murphy, M. A.; Taylor, M. H.

    2006-12-01

    We present geologic mapping and structural data from the Lopukangri fault system in south-central Tibet that sheds light on the geometry, kinematics and spatial characteristics of deformation in western Tibet and the western Himalaya. The Lopukangri fault system strikes N09E and extends 150 km from the Lhasa terrane into the Tethyan fold-thrust belt at 84.5° N. Geologic mapping shows that the deformation is accommodated by a northwest dipping oblique fault system, which accommodates both right-lateral and normal dip-slip movement, consistent with right-lateral separations of Quaternary surficial deposits. The fault system juxtaposes amphibolite-grade rocks in its footwall against greenschist-grade rocks in its hanging wall. Deformation is distributed over a 4 km wide zone that predominately records right-lateral normal slip in ductile and brittle shear fabrics. The fault system right-laterally separates the Gangdese batholith, Kailas conglomerate, Great Counter thrust, and the Tethyan fold-thrust belt for 15 km. Age estimates of the Kailas conglomerate in the Kailas region implies that the Lopukangri fault system initiated after the Early Miocene( 23Ma). The observation that the Lopukangri fault system cuts the Indus-Yaly suture zone, rules out active strike-slip faulting along it at this locality. To assess the role of the Lopukangri fault system in accommodating strain within western Tibet, we compare our results with fault-slip data and structural geometries from the Karakoram and Dangardzong (Thakkhola graben) fault systems. The Dangardzong fault shares similar kinematics with the Lopukangri fault system, both display a significant component of right-slip. Although the two faults do not strike into one another, they may be linked via a transfer zone. The Karakoram fault accommodates right-lateral slip in which a portion of the total slip extends from the Tibetan plateau into the Himalayan thrust belt via right-stepover structures. Fault slip data from the

  16. Preliminary slip history of the 2002 Denali earthquake

    Science.gov (United States)

    Ji, C.; Helmberger, D.; Wald, D.

    2002-12-01

    Rapid slip histories for the 2002 Denali earthquake were derived from the IRIS global data before geologists arrived in the field. We were able to predict many of the features they observed. Three models were produced indicating a step-wise improvement in matching the waveform data applying a formalism discussed in Ji et al. (2002). The first model referred to as Phase I is essentially an automated solution where a simple fault plane (300 km long) is fixed agreeing with CMT (Harvard) solution (strike 298 dip =86) assuming the PDE epicenter. The fit to the initial P waves does not work since they do not display a strike-slip polarity pattern. Thus, to continue we added a thrusting event (Phase II) following roughly the fault geometry of the Denali fault based on DEM topography map. While this produced some improvements, major misfits still remained. Before proceeding with Phase III, we did some homework on a foreshock, the Mw=6.7 Nenana event. After modeling this strike-slip event as a distributed fault, we used this relatively simple event to calibrate paths where shifts in P-waves and SH-waves ranged up to 4 and 8 sec respectively. Applying these corrections revealed some discrepancies in the rupture initiation. To produce a consistent picture requires 4 fault segments A, B, C and D. A weak rupture may initiate on a strike-slip Denali fault branch A at a depth of 10 km where a low angle thrust fault plane B intersects A. After about 2 sec, a major event occurred on plane B (strike=221, dip=35) and dominated the rupture of next 8 sec. When rupture B reaches the surface at about 10 sec after initiation, the major portion of the Denali fault (segment C) ruptured eastward with a relatively fast velocity (3 km/sec) producing a large slip concentration (up to 9 m at a depth of 10 km). The surface slip is about 7 km at a 20 km long segment. This feature is near the intersection of the Denali fault and the Totichunda fault (branch D). The rupture on D is relatively

  17. Earthquake Activities Along the Strike-Slip Fault System on the Thailand-Myanmar Border

    Directory of Open Access Journals (Sweden)

    Santi Pailoplee

    2014-01-01

    Full Text Available This study investigates the present-day seismicity along the strike-slip fault system on the Thailand-Myanmar border. Using the earthquake catalogue the earthquake parameters representing seismic activities were evaluated in terms of the possible maximum magnitude, return period and earthquake occurrence probabilities. Three different hazardous areas could be distinguished from the obtained results. The most seismic-prone area was located along the northern segment of the fault system and can generate earthquakes of magnitude 5.0, 5.8, and 6.8 mb in the next 5, 10, and 50 years, respectively. The second most-prone area was the southern segment where earthquakes of magnitude 5.0, 6.0, and 7.0 mb might be generated every 18, 60, and 300 years, respectively. For the central segment, there was less than 30 and 10% probability that 6.0- and 7.0-mb earthquakes will be generated in the next 50 years. With regards to the significant infrastructures (dams in the vicinity, the operational Wachiralongkorn dam is situated in a low seismic hazard area with a return period of around 30 - 3000 years for a 5.0 - 7.0 mb earthquake. In contrast, the Hut Gyi, Srinakarin and Tha Thung Na dams are seismically at risk for earthquakes of mb 6.4 - 6.5 being generated in the next 50 years. Plans for a seismic-retrofit should therefore be completed and implemented while seismic monitoring in this region is indispensable.

  18. Imbricated slip rate processes during slow slip transients imaged by low-frequency earthquakes

    Science.gov (United States)

    Lengliné, O.; Frank, W.; Marsan, D.; Ampuero, J. P.

    2017-12-01

    Low Frequency Earthquakes (LFEs) often occur in conjunction with transient strain episodes, or Slow Slip Events (SSEs), in subduction zones. Their focal mechanism and location consistent with shear failure on the plate interface argue for a model where LFEs are discrete dynamic ruptures in an otherwise slowly slipping interface. SSEs are mostly observed by surface geodetic instruments with limited resolution and it is likely that only the largest ones are detected. The time synchronization of LFEs and SSEs suggests that we could use the recorded LFEs to constrain the evolution of SSEs, and notably of the geodetically-undetected small ones. However, inferring slow slip rate from the temporal evolution of LFE activity is complicated by the strong temporal clustering of LFEs. Here we apply dedicated statistical tools to retrieve the temporal evolution of SSE slip rates from the time history of LFE occurrences in two subduction zones, Mexico and Cascadia, and in the deep portion of the San Andreas fault at Parkfield. We find temporal characteristics of LFEs that are similar across these three different regions. The longer term episodic slip transients present in these datasets show a slip rate decay with time after the passage of the SSE front possibly as t-1/4. They are composed of multiple short term transients with steeper slip rate decay as t-α with α between 1.4 and 2. We also find that the maximum slip rate of SSEs has a continuous distribution. Our results indicate that creeping faults host intermittent deformation at various scales resulting from the imbricated occurrence of numerous slow slip events of various amplitudes.

  19. Irregular focal mechanisms observed at Salton Sea Geothermal Field: Possible influences of anthropogenic stress perturbations

    Science.gov (United States)

    Crandall-Bear, Aren; Barbour, Andrew J.; Schoenball, Martin; Schoenball, Martin

    2018-01-01

    At the Salton Sea Geothermal Field (SSGF), strain accumulation is released through seismic slip and aseismic deformation. Earthquake activity at the SSGF often occurs in swarm-like clusters, some with clear migration patterns. We have identified an earthquake sequence composed entirely of focal mechanisms representing an ambiguous style of faulting, where strikes are similar but deformation occurs due to steeply-dipping normal faults with varied stress states. In order to more accurately determine the style of faulting for these events, we revisit the original waveforms and refine estimates of P and S wave arrival times and displacement amplitudes. We calculate the acceptable focal plane solutions using P-wave polarities and S/P amplitude ratios, and determine the preferred fault plane. Without constraints on local variations in stress, found by inverting the full earthquake catalog, it is difficult to explain the occurrence of such events using standard fault-mechanics and friction. Comparing these variations with the expected poroelastic effects from local production and injection of geothermal fluids suggests that anthropogenic activity could affect the style of faulting.

  20. Strong paleoearthquakes along the Talas-Fergana Fault, Kyrgyzstan

    Directory of Open Access Journals (Sweden)

    A.M. Korzhenkov

    2014-02-01

    Full Text Available The Talas-Fergana Fault, the largest strike-slip structure in Centred. Asia, forms an obliquely oriented boundary between the northeastern and southwestern parts of the Tianshan mountain belt. The fault underwent active right-lateral strike-slip during the Paleozoic, with right-lateral movements being rejuvenated in the Late Cenozoic. Tectonic movements along the intracontinental strike-slip faults contribute to absorb part of the regional crustal shortening linked to the India-Eurasia collision; knowledge of strike-slip motions along the Talas-Fergana Fault are necessary for a complete assessment of the active deformation of the Tianshan orogen. To improve our understanding of the intracontinental deformation of the Tianshan mountain belt and the occurrence of strong earthquakes along the whole length of the Talas-Fergana Fault, we identify features of relief arising during strong paleoearthquakes along the Talas-Fergana Fault, fault segmentation, the length of seismogenic ruptures, and the energy and age of ancient catastrophes. We show that during neotectonic time the fault developed as a dextral strike-slip fault, with possible dextral displacements spreading to secondary fault planes north of the main fault trace. We determine rates of Holocene and Late Pleistocene dextral movements, and our radiocarbon dating indicates tens of strong earthquakes occurring along the fault zone during arid interval of 15800 years. The reoccurrence of strong earthquakes along the Talas-Fergana Fault zone during the second half of the Holocene is about 300 years. The next strong earthquake along the fault will most probably occur along its southeastern chain during the next several decades. Seismotectonic deformation parameters indicate that M > 7 earthquakes with oscillation intensity I > IX have occurred.

  1. The last interglacial period at Guantanamo Bay, Cuba and an estimate of late Quaternary tectonic uplift rate in a strike-slip regime

    Science.gov (United States)

    Schweig, E. S.; Muhs, D. R.; Simmons, K. R.; Halley, R. B.

    2015-12-01

    Guantanamo Bay, Cuba is an area dominated by a strike-slip tectonic regime and is therefore expected to have very low Quaternary uplift rates. We tested this hypothesis by study of an unusually well preserved emergent reef terrace around the bay. Up to 12 m of unaltered, growth-position reef corals are exposed at about 40 sections examined around ˜40 km of coastline. Maximum reef elevations in the protected, inner part of the bay are ˜11-12 m, whereas outer-coast shoreline angles of wave-cut benches are as high as ˜14 m. Fifty uranium-series analyses of unrecrystallized corals from six localities yield ages ranging from ˜134 ka to ˜115 ka, when adjusted for small biases due to slightly elevated initial 234U/238U values. Thus, ages of corals correlate this reef to the peak of the last interglacial period, marine isotope stage (MIS) 5.5. Previously, we dated the Key Largo Limestone to the same high-sea stand in the tectonically stable Florida Keys. Estimates of paleo-sea level during MIS 5.5 in the Florida Keys are ~6.6 to 8.3 m above present. Assuming a similar paleo-sea level in Cuba, this yields a long-term tectonic uplift rate of 0.04-0.06 m/ka over the past ~120 ka. This estimate supports the hypothesis that the tectonic uplift rate should be low in this strike-slip regime. Nevertheless, on the southeast coast of Cuba, east of our study area, we have observed flights of multiple marine terraces, suggesting either (1) a higher uplift rate or (2) an unusually well-preserved record of pre-MIS 5.5 terraces not observed at Guantanamo Bay.

  2. Evidence for fluid-triggered slip in the 2009 Mount Rainier, Washington earthquake swarm

    Science.gov (United States)

    Shelly, David R.; Moran, Seth C.; Thelen, Weston A.

    2013-01-01

    A vigorous swarm of over 1000 small, shallow earthquakes occurred 20–22 September 2009 beneath Mount Rainier, Washington, including the largest number of events ever recorded in a single day at Rainier since seismic stations were installed on the edifice in 1989. Many events were only clearly recorded on one or two stations on the edifice, or they overlapped in time with other events, and thus only ~200 were locatable by manual phase picking. To partially overcome this limitation, we applied waveform-based event detection integrated with precise double-difference relative relocation. With this procedure, detection and location goals are accomplished in tandem, using cross-correlation with continuous seismic data and waveform templates constructed from cataloged events. As a result, we obtained precise locations for 726 events, an improvement of almost a factor of 4. These event locations define a ~850 m long nearly vertical structure striking NNE, with episodic migration outward from the initial hypocenters. The activity front propagates in a manner consistent with a diffusional process. Double-couple-constrained focal mechanisms suggest dominantly near-vertical strike-slip motion on either NNW or ENE striking faults, more than 30° different than the strike of the event locations. This suggests the possibility of en echelon faulting, perhaps with a component of fault opening in a fracture-mesh-type geometry. We hypothesize that the swarm was initiated by a sudden release of high-pressure fluid into preexisting fractures, with subsequent activity triggered by diffusing fluid pressure in combination with stress transfer from the preceding events.

  3. Seismically-triggered soft-sediment deformation structures close to a major strike-slip fault system in the Eastern Alps (Hirlatz cave, Austria)

    Science.gov (United States)

    Salomon, Martina Lan; Grasemann, Bernhard; Plan, Lukas; Gier, Susanne; Schöpfer, Martin P. J.

    2018-05-01

    We investigate episodic soft-sediment deformation structures cross-cut by normal faults preserved in unlithified finely laminated calcite rich sediments in the Hirlatz cave in the Northern Calcareous Alps (Austria). These sediments comprise varve-like alternations of brighter carbonate/quartz rich layers, and darker clay mineral rich layers. The deformed sediments contain abundant millimeter to centimeter-scale soft-sediment structures (load casts, ball-and-pillow structures), sheet slumps (thrust faults and folds), erosive channels filled with slides and chaotic slumps. After deposition and soft-sediment deformation normal faults developed within the entire sedimentary succession, an event that probably correlates with an offset of c. 10 cm of the passage wall above the outcrop. Our major conclusions are: (i) The sediments have a glacial origin and were deposited in the Hirlatz cave under phreatic fluvio-lacustrine conditions. The deposition and the soft-sediment deformation occurred most likely during the last glaciation (i.e. around 25 ka ago); (ii) The liquefaction and formation of the soft-sediment structures in water-saturated stratified layers was triggered by episodic seismic events; (iii) The internally deformed sediments were later displaced by normal faults; (iv) A possible source for the seismic events is the active sinistral Salzach-Ennstal-Mariazeller-Puchberger (SEMP) strike-slip fault which is located about 10 km south of the outcrop and plays a major role in accommodating the extrusion of the Eastern Alps towards the Pannonian Basin. To our knowledge, the described structures are the first report of liquefaction and seismically induced soft-sediment deformations in Quaternary sediments in the Eastern Alps.

  4. Short-and-long-term Slip Rates Along the Carboneras Fault in the Betic Cordillera, Spain

    Science.gov (United States)

    Khazaradze, G.; López, R.; Pallàs, R.; Ortuño, M.; Bordonau, J.; Masana, E.

    2017-12-01

    We present the new results from our long-standing studies to understand the geodynamic behavior of the Carboneras fault, located in the SE Betic Cordilleras of Spain. Specifically, we quantify the geodetic and geologic slip rates for the onland section of the fault. As a result of our previous GPS observations, we have been able to confirm the continuing tectonic activity of the Carboneras fault: we were able to quantify that the geodetic slip rate of the fault equals 1.3±0.2 mm/yr, expressed mainly as a left-lateral strike slip motion (Echeverria et al., 2015). In autumn 2017, with the purpose of revealing a detailed nature of the crustal deformation and its partitioning between different structures, 3 new continuous GPS stations will be established along the fault-perpendicular profile. In addition, since summer 2016, we have conducted surveys of the nearby CuaTeNeo and IGN Regente campaign points. We have also established and measured several new geodetic points in the vicinity of the fault, with the aim of increasing the spatial coverage around it. The GPS measured, short-term slip rates are in surprising agreement with the estimates of the long-term, geologic slip rates based on paleoseismic studies, which indicate a minimum strike-slip rate of 1.31 mm/yr and dip-slip rate of 0.05 mm/yr since 110.3 ka (Moreno et al. 2015). In order to increase the paleoseismic event database, several new sites have been identified along the fault, where further paleoseismic trenching surveys will be performed within the coming year or two. At the site of Tostana, located at the central part of the fault, in winter 2017 seven trenches have been opened and clear evidence of past earthquakes has been encountered. These new data, combined with the findings of the recent geomorphological study of river offsets (Ferrater, 2016) and new GPS observations, should improve the reliability of the existent deformation data and therefore, will help to better understand the seismic hazard

  5. Seismic sequences and swarms in the Latium-Abruzzo-Molise Apennines (central Italy): New observations and analysis from a dense monitoring of the recent activity

    Science.gov (United States)

    Frepoli, A.; Cimini, G. B.; De Gori, P.; De Luca, G.; Marchetti, A.; Monna, S.; Montuori, C.; Pagliuca, N. M.

    2017-08-01

    We present a detailed analysis of the seismic activity in the central Apennines based on a high quality seismogram data set collected from two temporary and three permanent networks. This integrated network recorded, between January 2009 and December 2013, a total of 7011 local earthquakes (6270 selected for this study), with local magnitudes ML ranging from 0.4 to 4.7. Hypocentres were located by using a reference 1D crustal velocity model determined with a genetic algorithm. The majority of the hypocenters are located beneath the axis of the Apenninic belt, while the rest are found along the peri-Tyrrhenian margin. Hypocentral depth distribution extends to a depth of 31 km with a pronounced peak between 8 and 12 km. Both low-to-moderate magnitude seismic sequences and diffuse swarm-like seismicity was observed. There were two major seismic swarms and a seismic sequence, which included the Marsica-Sora ML 4.7 main shock. A total of 468 fault plane solutions were derived from P-wave polarities. This new data set more than quadruples the number of focal mechanisms that was previously available for regional stress field analysis in the study region. The majority of the fault plane solutions in the central Apennines show predominantly normal fault movements, with T-axis trends oriented NE-SW. Focal mechanisms calculated in this study confirm that this area is in extension. For the seismic swarms-sequence in the Marsica-Sora area we also derived the azimuth and plunge of the principal stress axes by inverting fault plane solutions. We find a few right-lateral strike-slip focal mechanisms that possibly identify the prolongation of the strike-slip kinematics in the Gargano-Apulia foreland to the west, and mark the passage to the NW-SE striking normal faults of the inner Apenninic belt. The seismicity and stress distribution we observe might be consistent with a fragmented tectonic scenario in which faults with small dimensions release seismic energy in a diffused way.

  6. Strain analysis and stratigraphic status of Nongkhya, Sumer and ...

    Indian Academy of Sciences (India)

    effect of right and left lateral strike slip movement of Sumer conglomerate at Sumer and Adabasti points, respectively. .... A mere one or .... imagery, hill morphology and isolated exposure of ..... Dasgupta, Associate Editor of the Journal, for his.

  7. Stress and slip partitioning during oblique rifting: comparison between data from the Main Ethiopian Rift and laboratory experiments

    Science.gov (United States)

    Corti, G.; Philippon, M.; Sani, F.; Keir, D.

    2012-04-01

    roughly orthogonal to the extension direction, boundary faults form oblique to the imposed stretching vector: as a group, the faults follow the rift trend, controlled by a pre-existing weak anisotropy, but individually they form oblique to both the rift margin and the extension vector. Detailed analysis of fault displacements suggest that whereas the average displacement on single internal faults is consistent with the imposed direction of extension, slip on boundary faults does not parallel this direction; the average motion on these faults is orthogonal to the faults, resulting in a roughly pure dip-slip motion. This gives rise to a marked difference in fault-slip direction between internal faults (where slip orientation follow the regional extension) and boundary faults (where displacement is oblique to the "regional" extension). A similar scenario is observed for the reconstructed direction of the minimum principal stress that follows the regional stress field within the rift and is re-oriented at rift margins. Minor counterclockwise block rotations accommodate the different slip along the different fault systems. The model-to-nature striking is striking in terms of fault orientation, stress and slip orientation and its across-axis variations. The analogue models thus allows explaining the across-axis variability observed in natural fault-slip and earthquake data. Modeling results support that boundary faults form in response to a local stress re-orientation imposed by a deep seated anisotropy: their displacement trajectories deviate from those imposed by the regional extension, resulting in a pure dip-slip motion in an overall oblique rifting kinematics, as observed in other sectors of the East African Rift. Conversely, internal faults -which form later and affect a weaker, more uniform lithosphere- respond directly to the regional extension direction resulting in a fault slip sub-parallel to the Nubia-Somalia motion. Minor counterclockwise block rotations are

  8. Dynamic Aftershock Triggering Correlated with Cyclic Loading in the Slip Direction

    Science.gov (United States)

    Hardebeck, J.

    2014-12-01

    Dynamic stress changes have been shown to contribute to aftershock triggering, but the physical triggering mechanisms are not fully understood. Some proposed mechanisms are based on dynamic stress loading of the target fault in a direction that encourages earthquake slip (e.g. dynamic Coulomb stress triggering), while other mechanisms are based on fault weakening due to shaking. If dynamic stress loading in the fault slip direction plays a role in aftershock triggering, we would expect to see a relationship between the dynamic stress orientations and the aftershock focal mechanisms. Alternatively, if dynamic stress change triggering functions only through a fault weakening mechanism that is independent of the slip direction of the target fault, no such relationship is expected. I study aftershock sequences of 4 M≥6.7 mainshocks in southern California, and find a small but significant relationship between modeled dynamic stress direction and aftershock focal mechanisms. The mainshock dynamic stress changes have two observed impacts: changing the focal mechanisms in a given location to favor those aligned with the dynamic stress change, and changing the spatial distribution of seismicity to favor locations where the dynamic stress change aligns with the background stress. The aftershock focal mechanisms are significantly more aligned with the dynamic stress changes than the preshock mechanisms for only the first 0.5-1 year following most mainshocks, although for at least 10 years following Hector Mine. Dynamic stress effects on focal mechanisms are best observed at long periods (30-60 sec). Dynamic stress effects are only observed when using metrics based on repeated stress cycling in the same direction, for example considering the dominant stress orientation over the full time series, and not for the peak dynamic stress. These results imply that dynamic aftershock triggering operates at least in part through cyclic loading in the direction of fault slip, although

  9. Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean

    Science.gov (United States)

    Yolsal-Çevikbilen, Seda; Taymaz, Tuncay

    2012-04-01

    We studied source mechanism parameters and slip distributions of earthquakes with Mw ≥ 5.0 occurred during 2000-2008 along the Hellenic subduction zone by using teleseismic P- and SH-waveform inversion methods. In addition, the major and well-known earthquake-induced Eastern Mediterranean tsunamis (e.g., 365, 1222, 1303, 1481, 1494, 1822 and 1948) were numerically simulated and several hypothetical tsunami scenarios were proposed to demonstrate the characteristics of tsunami waves, propagations and effects of coastal topography. The analogy of current plate boundaries, earthquake source mechanisms, various earthquake moment tensor catalogues and several empirical self-similarity equations, valid for global or local scales, were used to assume conceivable source parameters which constitute the initial and boundary conditions in simulations. Teleseismic inversion results showed that earthquakes along the Hellenic subduction zone can be classified into three major categories: [1] focal mechanisms of the earthquakes exhibiting E-W extension within the overriding Aegean plate; [2] earthquakes related to the African-Aegean convergence; and [3] focal mechanisms of earthquakes lying within the subducting African plate. Normal faulting mechanisms with left-lateral strike slip components were observed at the eastern part of the Hellenic subduction zone, and we suggest that they were probably concerned with the overriding Aegean plate. However, earthquakes involved in the convergence between the Aegean and the Eastern Mediterranean lithospheres indicated thrust faulting mechanisms with strike slip components, and they had shallow focal depths (h < 45 km). Deeper earthquakes mainly occurred in the subducting African plate, and they presented dominantly strike slip faulting mechanisms. Slip distributions on fault planes showed both complex and simple rupture propagations with respect to the variation of source mechanism and faulting geometry. We calculated low stress drop

  10. Understanding the Limitations to the Right to Strike in Essential and Public Services in the SADC Region

    Directory of Open Access Journals (Sweden)

    Rochelle le Roux

    2016-05-01

    Full Text Available The nature of the limitations to the right to strike in essential and public services in the nine sub-regional countries of Southern Africa – South Africa, Botswana, Lesotho, Namibia, Swaziland, Malawi, Mozambique, Zambia and Zimbabwe – is examined in this contribution. While all of these countries share common influences and face common challenges, there appears to be a vast disparity in the approaches taken to the right to strike in public and essential services in the region. A brief overview of the demographics and labour markets in the countries under discussion is sketched, the salient features of the ILO's approach to strike in essential and public services is highlighted, and a broad overview of the contrasting and disparate approaches to essential and public services in the region is provided. The focus is, however, on the legislative approach taken to essential service employees in South Africa. It is concluded that – with the exception of South Africa and Namibia – the limitations to the right to strike of public sector employees exceed those endorsed by international conventions, and the broad definition of essential services generally relied upon effectively

  11. Triggered surface slips in the Coachella Valley area associated with the 1992 Joshua Tree and Landers, California, Earthquakes

    Science.gov (United States)

    Rymer, M.J.

    2000-01-01

    The Coachella Valley area was strongly shaken by the 1992 Joshua Tree (23 April) and Landers (28 June) earthquakes, and both events caused triggered slip on active faults within the area. Triggered slip associated with the Joshua Tree earthquake was on a newly recognized fault, the East Wide Canyon fault, near the southwestern edge of the Little San Bernardino Mountains. Slip associated with the Landers earthquake formed along the San Andreas fault in the southeastern Coachella Valley. Surface fractures formed along the East Wide Canyon fault in association with the Joshua Tree earthquake. The fractures extended discontinuously over a 1.5-km stretch of the fault, near its southern end. Sense of slip was consistently right-oblique, west side down, similar to the long-term style of faulting. Measured offset values were small, with right-lateral and vertical components of slip ranging from 1 to 6 mm and 1 to 4 mm, respectively. This is the first documented historic slip on the East Wide Canyon fault, which was first mapped only months before the Joshua Tree earthquake. Surface slip associated with the Joshua Tree earthquake most likely developed as triggered slip given its 5 km distance from the Joshua Tree epicenter and aftershocks. As revealed in a trench investigation, slip formed in an area with only a thin (Salton Trough. A paleoseismic trench study in an area of 1992 surface slip revealed evidence of two and possibly three surface faulting events on the East Wide Canyon fault during the late Quaternary, probably latest Pleistocene (first event) and mid- to late Holocene (second two events). About two months after the Joshua Tree earthquake, the Landers earthquake then triggered slip on many faults, including the San Andreas fault in the southeastern Coachella Valley. Surface fractures associated with this event formed discontinuous breaks over a 54-km-long stretch of the fault, from the Indio Hills southeastward to Durmid Hill. Sense of slip was right-lateral

  12. The 2016 south Alboran earthquake (Mw = 6.4): A reactivation of the Ibero-Maghrebian region?

    Science.gov (United States)

    Buforn, E.; Pro, C.; Sanz de Galdeano, C.; Cantavella, J. V.; Cesca, S.; Caldeira, B.; Udías, A.; Mattesini, M.

    2017-08-01

    On 25 January 2016, an earthquake of magnitude Mw = 6.4 occurred at the southern part of the Alboran Sea, between southern Spain and northern Morocco. This shock was preceded by a foreshock (Mw = 5.1) and followed by a long aftershock sequence. Focal mechanism of main shock has been estimated from slip inversion of body waves at teleseismic distances. Solution corresponds to left-lateral strike-slip motion, showing a complex bilateral rupture, formed by two sub-events, with most energy propagating along a plane oriented N30°E plane dipping to the NW. Relocation of larger events of the aftershock series, show two alignments of epicentres in NE-SW and NNE-SSW direction that intersect at the epicentre of the main shock. We have estimated the focal mechanisms of the largest aftershocks from moment tensor inversion at regional distances. We have obtained two families of focal mechanisms corresponding to strike slip for the NNE-SSW alignment and thrusting motion for the NE-SW alignment. Among the faults present in the area the Al Idrisi fault (or fault zone) may be a good candidate for the source of this earthquake. The study of Coulomb Failure Stress shows that it is possible that the 2016 earthquake was triggered by the previous nearby earthquakes of 1994 (Mw = 5.8) and 2004 (Mw = 6.3). The possible seismic reactivation of the central part of the Ibero-Maghrebian region is an open question, but it is clear that the occurrence of the 2016 earthquake confirms that from 1994 the seismicity of central part of IMR is increasing and that focal mechanism of largest earthquakes in this central part correspond to complex ruptures (or zone of fault).

  13. Deformed Fluvial Terraces of Little Rock Creek Capture Off-Fault Strain Adjacent to the Mojave Section of the San Andreas Fault

    Science.gov (United States)

    Moulin, A.; Scharer, K. M.; Cowgill, E.

    2017-12-01

    Examining discrepancies between geodetic and geomorphic slip-rates along major strike-slip faults is essential for understanding both fault behavior and seismic hazard. Recent work on major strike-slip faults has highlighted off-fault deformation and its potential impact on fault slip rates. However, the extent of off-fault deformation along the San Andreas Fault (SAF) remains largely uncharacterized. Along the Mojave section of the SAF, Little Rock Creek drains from south to north across the fault and has cut into alluvial terraces abandoned between 15 and 30 ka1. The surfaces offer a rare opportunity to both characterize how right-lateral slip has accumulated along the SAF over hundreds of seismic cycles, and investigate potential off-fault deformation along secondary structures, where strain accumulates at slower rates. Here we use both field observations and DEM analysis of B4 lidar data to map alluvial and tectonic features, including 9 terrace treads that stand up to 80 m above the modern channel. We interpret the abandonment and preservation of the fluvial terraces to result from episodic capture of Little Rock Creek through gaps in a shutter ridge north of the fault, followed by progressive right deflection of the river course during dextral slip along the SAF. Piercing lines defined by fluvial terrace risers suggest that the amount of right slip since riser formation ranges from 400m for the 15-ka-riser to 1200m for the 30-ka-riser. Where they are best-preserved NE of the SAF, terraces are also cut by NE-facing scarps that trend parallel to the SAF in a zone extending up to 2km from the main fault. Exposures indicate these are fault scarps, with both reverse and normal stratigraphic separation. Geomorphic mapping reveals deflections of both channel and terrace risers (up to 20m) along some of those faults suggesting they could have accommodated a component of right-lateral slip. We estimated the maximum total amount of strike-slip motion recorded by the

  14. Quaternary Slip History for the Agua Blanca Fault, northern Baja California, Mexico

    Science.gov (United States)

    Gold, P. O.; Behr, W. M.; Rockwell, T. K.; Fletcher, J. M.

    2017-12-01

    The Agua Blanca Fault (ABF) is the primary structure accommodating San Andreas-related right-lateral slip across the Peninsular Ranges of northern Baja California. Activity on this fault influences offshore faults that parallel the Pacific coast from Ensenada to Los Angeles and is a potential threat to communities in northern Mexico and southern California. We present a detailed Quaternary slip history for the ABF, including new quantitative constraints on geologic slip rates, slip-per-event, the timing of most recent earthquake, and the earthquake recurrence interval. Cosmogenic 10Be exposure dating of clasts from offset fluvial geomorphic surfaces at 2 sites located along the western, and most active, section of the ABF yield preliminary slip rate estimates of 2-4 mm/yr and 3 mm/yr since 20 ka and 2 ka, respectively. Fault zone geomorphology preserved at the younger site provides evidence for right-lateral surface displacements measuring 2.5 m in the past two ruptures. Luminescence dating of an offset alluvial fan at a third site is in progress, but is expected to yield a slip rate relevant to the past 10 kyr. Adjacent to this third site, we excavated 2 paleoseismic trenches across a sag pond formed by a right step in the fault. Preliminary radiocarbon dates indicate that the 4 surface ruptures identified in the trenches occurred in the past 6 kyr, although additional dating should clarify earthquake timing and the mid-Holocene to present earthquake recurrence interval, as well as the likely date of the most recent earthquake. Our new slip rate estimates are somewhat lower than, but comparable within error to, previous geologic estimates based on soil morphology and geodetic estimates from GPS, but the new record of surface ruptures exposed in the trenches is the most complete and comprehensively dated earthquake history yet determined for this fault. Together with new and existing mapping of tectonically generated geomorphology along the ABF, our constraints

  15. The geometry of pull-apart basins in the southern part of Sumatran strike-slip fault zone

    Science.gov (United States)

    Aribowo, Sonny

    2018-02-01

    Models of pull-apart basin geometry have been described by many previous studies in a variety tectonic setting. 2D geometry of Ranau Lake represents a pull-apart basin in the Sumatran Fault Zone. However, there are unclear geomorphic traces of two sub-parallel overlapping strike-slip faults in the boundary of the lake. Nonetheless, clear geomorphic traces that parallel to Kumering Segment of the Sumatran Fault are considered as inactive faults in the southern side of the lake. I demonstrate the angular characteristics of the Ranau Lake and Suoh complex pull-apart basins and compare with pull-apart basin examples from published studies. I use digital elevation model (DEM) image to sketch the shape of the depression of Ranau Lake and Suoh Valley and measure 2D geometry of pull-apart basins. This study shows that Ranau Lake is not a pull-apart basin, and the pull-apart basin is actually located in the eastern side of the lake. Since there is a clear connection between pull-apart basin and volcanic activity in Sumatra, I also predict that the unclear trace of the pull-apart basin near Ranau Lake may be covered by Ranau Caldera and Seminung volcanic products.

  16. Scissoring Fault Rupture Properties along the Median Tectonic Line Fault Zone, Southwest Japan

    Science.gov (United States)

    Ikeda, M.; Nishizaka, N.; Onishi, K.; Sakamoto, J.; Takahashi, K.

    2017-12-01

    The Median Tectonic Line fault zone (hereinafter MTLFZ) is the longest and most active fault zone in Japan. The MTLFZ is a 400-km-long trench parallel right-lateral strike-slip fault accommodating lateral slip components of the Philippine Sea plate oblique subduction beneath the Eurasian plate [Fitch, 1972; Yeats, 1996]. Complex fault geometry evolves along the MTLFZ. The geomorphic and geological characteristics show a remarkable change through the MTLFZ. Extensional step-overs and pull-apart basins and a pop-up structure develop in western and eastern parts of the MTLFZ, respectively. It is like a "scissoring fault properties". We can point out two main factors to form scissoring fault properties along the MTLFZ. One is a regional stress condition, and another is a preexisting fault. The direction of σ1 anticlockwise rotate from N170°E [Famin et al., 2014] in the eastern Shikoku to Kinki areas and N100°E [Research Group for Crustral Stress in Western Japan, 1980] in central Shikoku to N85°E [Onishi et al., 2016] in western Shikoku. According to the rotation of principal stress directions, the western and eastern parts of the MTLFZ are to be a transtension and compression regime, respectively. The MTLFZ formed as a terrain boundary at Cretaceous, and has evolved with a long active history. The fault style has changed variously, such as left-lateral, thrust, normal and right-lateral. Under the structural condition of a preexisting fault being, the rupture does not completely conform to Anderson's theory for a newly formed fault, as the theory would require either purely dip-slip motion on the 45° dipping fault or strike-slip motion on a vertical fault. The fault rupture of the 2013 Barochistan earthquake in Pakistan is a rare example of large strike-slip reactivation on a relatively low angle dipping fault (thrust fault), though many strike-slip faults have vertical plane generally [Avouac et al., 2014]. In this presentation, we, firstly, show deep subsurface

  17. Eye-hand laterality and right thoracic idiopathic scoliosis.

    Science.gov (United States)

    Catanzariti, Jean-François; Guyot, Marc-Alexandre; Agnani, Olivier; Demaille, Samantha; Kolanowski, Elisabeth; Donze, Cécile

    2014-06-01

    The adolescent idiopathic scoliosis (AIS) pathogenesis remains unknown. Certain studies have shown that there is a correlation between manual laterality and scoliotic deviation. A full study of manual laterality needs to be paired with one for visual dominance. With the aim of physiopathological research, we have evaluated the manual and visual laterality in AIS. A retrospective study from prospective data collection is used to evaluate the distribution of eye-hand laterality (homogeneous or crossed) of 65 right thoracic AIS (mean age 14.8 ± 1.8 years; mean Cobb angle: 32.8°) and a control group of 65 sex and age-matched (mean age 14.6 ± 1.8 years). The manual laterality was defined by the modified Edinburgh Handedness Inventory. The evaluation of the visual laterality is done using three tests (kaleidoscope test, hole-in-the-card test, distance-hole-in-the-card test). The group of right thoracic AIS presents a significantly higher frequency of crossed eye-hand laterality (63 %) than the control group (63 vs. 29.2 %; p laterality is "right hand dominant-left eye dominant" (82.9 %). There is no relationship with the Cobb angle. Those with right thoracic AIS show a higher occurrence of crossed eye-hand laterality. This could point physiopathological research of AIS towards functional abnormality of the optic chiasma through underuse of cross visual pathways, and in particular accessory optic pathways. It would be useful to explore this by carrying out research on AISs through neuroimaging and neurofunctional exploration.

  18. Ductile bookshelf faulting: A new kinematic model for Cenozoic deformation in northern Tibet

    Science.gov (United States)

    Zuza, A. V.; Yin, A.

    2013-12-01

    It has been long recognized that the most dominant features on the northern Tibetan Plateau are the >1000 km left-slip strike-slip faults (e.g., the Atyn Tagh, Kunlun, and Haiyuan faults). Early workers used the presence of these faults, especially the Kunlun and Haiyuan faults, as evidence for eastward lateral extrusion of the plateau, but their low documented offsets--100s of km or less--can not account for the 2500 km of convergence between India and Asia. Instead, these faults may result from north-south right-lateral simple shear due to the northward indentation of India, which leads to the clockwise rotation of the strike-slip faults and left-lateral slip (i.e., bookshelf faulting). With this idea, deformation is still localized on discrete fault planes, and 'microplates' or blocks rotate and/or translate with little internal deformation. As significant internal deformation occurs across northern Tibet within strike-slip-bounded domains, there is need for a coherent model to describe all of the deformational features. We also note the following: (1) geologic offsets and Quaternary slip rates of both the Kunlun and Haiyuan faults vary along strike and appear to diminish to the east, (2) the faults appear to kinematically link with thrust belts (e.g., Qilian Shan, Liupan Shan, Longmen Shan, and Qimen Tagh) and extensional zones (e.g., Shanxi, Yinchuan, and Qinling grabens), and (3) temporal relationships between the major deformation zones and the strike-slip faults (e.g., simultaneous enhanced deformation and offset in the Qilian Shan and Liupan Shan, and the Haiyuan fault, at 8 Ma). We propose a new kinematic model to describe the active deformation in northern Tibet: a ductile-bookshelf-faulting model. With this model, right-lateral simple shear leads to clockwise vertical axis rotation of the Qaidam and Qilian blocks, and left-slip faulting. This motion creates regions of compression and extension, dependent on the local boundary conditions (e.g., rigid

  19. Focal status epilepticus: follow-up by perfusion- and diffusion MRI

    International Nuclear Information System (INIS)

    El-Koussy, M.; Loevblad, K.O.; Kiefer, C.; Schroth, G.; Mathis, J.; Stepper, F.

    2002-01-01

    Diffusion-weighted MRI demonstrated bright right temporoparietal cortex, right hippocampus, and left cerebellum in a 63-year-old female suffering a focal convulsive status epilepticus. Hyperperfusion was noted in the right temporoparietal region. Two days later, a tendency to normalization of most of the diffusion and perfusion changes was noted, apart from the right hippocampus which became brighter on diffusion- and T2-weighted images. On the tenth day the apparent diffusion coefficient was slightly elevated, getting brighter on T2-weighted images with suspected mild post-contrast enhancement. We postulate that the discharging right hippocampus suffered cytotoxic edema, which later progressed to cell damage. (orig.)

  20. Focal status epilepticus: follow-up by perfusion- and diffusion MRI

    Energy Technology Data Exchange (ETDEWEB)

    El-Koussy, M; Loevblad, K O; Kiefer, C; Schroth, G [Department of Neuroradiology, University of Bern, Inselspital (Switzerland); Mathis, J; Stepper, F [Department of Neurology, University of Bern, Inselspital (Switzerland)

    2002-03-01

    Diffusion-weighted MRI demonstrated bright right temporoparietal cortex, right hippocampus, and left cerebellum in a 63-year-old female suffering a focal convulsive status epilepticus. Hyperperfusion was noted in the right temporoparietal region. Two days later, a tendency to normalization of most of the diffusion and perfusion changes was noted, apart from the right hippocampus which became brighter on diffusion- and T2-weighted images. On the tenth day the apparent diffusion coefficient was slightly elevated, getting brighter on T2-weighted images with suspected mild post-contrast enhancement. We postulate that the discharging right hippocampus suffered cytotoxic edema, which later progressed to cell damage. (orig.)

  1. Variations in strength and slip rate along the san andreas fault system.

    Science.gov (United States)

    Jones, C H; Wesnousky, S G

    1992-04-03

    Convergence across the San Andreas fault (SAF) system is partitioned between strike-slip motion on the vertical SAF and oblique-slip motion on parallel dip-slip faults, as illustrated by the recent magnitude M(s) = 6.0 Palm Springs, M(s) = 6.7 Coalinga, and M(s) = 7.1 Loma Prieta earthquakes. If the partitioning of slip minimizes the work done against friction, the direction of slip during these recent earthquakes depends primarily on fault dip and indicates that the normal stress coefficient and frictional coefficient (micro) vary among the faults. Additionally, accounting for the active dip-slip faults reduces estimates of fault slip rates along the vertical trace of the SAF by about 50 percent in the Loma Prieta and 100 percent in the North Palm Springs segments.

  2. Analogue modelling on the interaction between shallow magma intrusion and a strike-slip fault: Application on the Middle Triassic Monzoni Intrusive Complex (Dolomites, Italy)

    Science.gov (United States)

    Michail, Maria; Coltorti, Massimo; Gianolla, Piero; Riva, Alberto; Rosenau, Matthias; Bonadiman, Costanza; Galland, Olivier; Guldstrand, Frank; Thordén Haug, Øystein; Rudolf, Michael; Schmiedel, Tobias

    2017-04-01

    The southwestern part of the Dolomites in Northern Italy has undergone a short-lived Ladinian (Middle Triassic) tectono-magmatic event, forming a series of significant magmatic features. These intrusive bodies deformed and metamorphosed the Permo-Triassic carbonate sedimentary framework. In this study we focus on the tectono-magmatic evolution of the shallow shoshonitic Monzoni Intrusive Complex of this Ladinian event (ca 237 Ma), covering an area of 20 km^2. This NW-SE elongated intrusive structure (5 km length) shows an orogenic magmatic affinity which is in contrast to the tectonic regime at the time of intrusion. Strain analysis shows anorogenic transtensional displacement in accordance with the ENE-WSW extensional pattern in the central Dolomites during the Ladinian. Field interpretations led to a detailed description of the regional stratigraphic sequence and the structural features of the study area. However, the geodynamic context of this magmatism and the influence of the inherited strike-slip fault on the intrusion, are still in question. To better understand the specific natural prototype and the general mechanisms of magma emplacement in tectonically active areas, we performed analogue experiments defined by, but not limited to, first order field observations. We have conducted a systematic series of experiments in different tectonic regimes (static conditions, strike-slip, transtension). We varied the ratio of viscous to brittle stresses between magma and country rock, by injecting Newtonian fluids both of high and low viscosity (i.e. silicone oil/vegetable oil) into granular materials of varying cohesion (sand, silica flour, glass beads). The evolving surface and side view of the experiments were monitored by photogrammetric techniques for strain analyses and topographic evolution. In our case, the combination of the results from field and analogue experiments brings new insights regarding the tectonic regime, the geometry of the intrusive body, and

  3. Neotectonic inversion of the Hindu Kush-Pamir mountain region

    Science.gov (United States)

    Ruleman, C.A.

    2011-01-01

    The Hindu Kush-Pamir region of southern Asia is one of Earth's most rapidly deforming regions and it is poorly understood. This study develops a kinematic model based on active faulting in this part of the Trans-Himalayan orogenic belt. Previous studies have described north-verging thrust faults and some strike-slip faults, reflected in the northward-convex geomorphologic and structural grain of the Pamir Mountains. However, this structural analysis suggests that contemporary tectonics are changing the style of deformation from north-verging thrusts formed during the initial contraction of the Himalayan orogeny to south-verging thrusts and a series of northwest-trending, dextral strike-slip faults in the modern transpressional regime. These northwest-trending fault zones are linked to the major right-lateral Karakoram fault, located to the east, as synthetic, conjugate shears that form a right-stepping en echelon pattern. Northwest-trending lineaments with dextral displacements extend continuously westward across the Hindu Kush-Pamir region indicating a pattern of systematic shearing of multiple blocks to the northwest as the deformation effects from Indian plate collision expands to the north-northwest. Locally, east-northeast- and northwest-trending faults display sinistral and dextral displacement, respectively, yielding conjugate shear pairs developed in a northwest-southeast compressional stress field. Geodetic measurements and focal mechanisms from historical seismicity support these surficial, tectono-morphic observations. The conjugate shear pairs may be structurally linked subsidiary faults and co-seismically slip during single large magnitude (> M7) earthquakes that occur on major south-verging thrust faults. This kinematic model provides a potential context for prehistoric, historic, and future patterns of faulting and earthquakes.

  4. Ethical and legal consideration of prisoner's hunger strike in Serbia.

    Science.gov (United States)

    Alempijevic, Djordje; Pavlekic, Snezana; Jecmenica, Dragan; Nedeljkov, Aleksandra; Jankovic, Milos

    2011-03-01

    Hunger strike of prisoners and detainees remains a major human rights and ethical issue for medical professionals. We are reporting on a case of a 48-year-old male sentenced prisoner, intravenous heroin user, who went on a hunger strike and died 15 days later. Throughout the fasting period, the prisoner, who was capable of decision making, refused any medical examination. Autopsy findings were not supporting prolonged starvation, while toxicology revealed benzodiazepines and opiates in blood and urine. Cause of death was given as "heroin intoxication" in keeping with detection of 6-MAM. Legal and ethical issues pertinent to medical examination and treatment of prisoners on hunger strike are explored in accordance with legislation and professional ethical standards in Serbia. A recommendation for the best autopsy practice in deaths following hunger strike has been made. © 2011 American Academy of Forensic Sciences.

  5. The 2016 seismic series in the south Alboran Sea: Seismotectonics, Coulomb Failure Stress changes and implications for the active tectonics in the area.

    Science.gov (United States)

    Alvarez-Gómez, José A.; Martín, Rosa; Pérez-López, Raul; Stich, Daniel; Cantavella, Juan V.; Martínez-Díaz, José J.; Morales, José; Soto, Juan I.; Carreño, Emilio

    2017-04-01

    The Southern Alboran Sea, particularly the area offshore Al Hoceima Bay, presents moderate but continuous seismic activity since the Mw 6.0 1994 Al Hoceima earthquake. The maximum magnitude occurred in the area was a Mw 6.3 earthquake in the 2004 Al Hoceima - Tamasint seismic series. Since then, the seismicity in the Al Hoceima area has been usual, with maximum seismic magnitudes around 4. An increase in the seismic rate was registered during 2015, especially from May, culminating in the seismic series in January 2016. The mainshock occurred on January 25th 2016 with a magnitude Mw 6.3 and it was preceded by a Mw 5.1 foreshock on January 21st. The seismic series took place at the western end of the Alboran Ridge. Towards the northeast the Alboran Ridge bends, and seems to be connected with the NW-SE right-lateral transtensional Yusuf Fault. The recorded seismicity is mainly located in the Alboran Ridge area and along the N-S Al-Idrisi Fault that seems to continue southwards, towards the Al Hoceima Bay. The focal mechanisms calculated previously in the area showed a left-lateral strike-slip faulting with some normal component in the Alboran Ridge; but always within a complex system of diffuse deformation and high rupture type variability. We have used 41 computed focal mechanisms of this seismic series to analyze its seismotectonics and structural characteristics. To group the focal mechanisms we used a clustering algorithm using the spatial distribution of the events and also the type of rupture mechanism. For each cluster we have obtained the composed focal mechanism, associating it to a particular fault or family of structures. We have tested the mechanical compatibility of these structures by Coulomb Failure Stress transfer modeling. The mainshock of the series occurred in the Al Idrisi Fault intersecting the western Alboran Ridge. This event triggered aftershocks and independent series in left-lateral strike-slip faults associated with the Al Idrisi Fault

  6. Coseismic slip in the 2010 Yushu earthquake (China, constrained by wide-swath and strip-map InSAR

    Directory of Open Access Journals (Sweden)

    Y. Wen

    2013-01-01

    Full Text Available On 14 April 2010, an Mw = 6.9 earthquake occurred in the Yushu county of China, which caused ~3000 people to lose their lives. Integrated with the information from the observed surface ruptures and aftershock locations, the faulting pattern of this earthquake is derived from the descending wide-swath and ascending strip mode PALSAR data collected by ALOS satellite. We used a layered crustal model and stress drop smoothing constraint to infer the coseismic slip distribution. Our model suggests that the earthquake fault can be divided into four segments and the slip mainly occurs within the upper 12 km with a maximum slip of 2.0 m at depth of 3 km on the Jiegu segment. The rupture of the upper 12 km is dominated by left-lateral strike-slip motion. The relatively small slip along the SE region of Yushu segment suggests a slip deficit there. The inverted geodetic moment is approximately Mw = 6.9, consistent with the seismological results. The average stress drop caused by the earthquake is about 2 MPa with a maximum stress drop of 8.3 MPa. Furthermore, the calculated static Coulomb stress changes in surrounding regions show increased Coulomb stress occurred in the SE region along the Yushu segment but with less aftershock, indicating an increased seismic hazard in this region after the earthquake.

  7. Geologic map of the Bodie Hills, California and Nevada

    Science.gov (United States)

    John, David A.; du Bray, Edward A.; Box, Stephen E.; Vikre, Peter G.; Rytuba, James J.; Fleck, Robert J.; Moring, Barry C.

    2015-01-01

    The Bodie Hills covers about 1,200 km2 straddling the California-Nevada state boundary just north of Mono Lake in the western part of the Basin and Range Province, about 20 km east of the central Sierra Nevada. The area is mostly underlain by the partly overlapping, middle to late Miocene Bodie Hills volcanic field and Pliocene to late Pleistocene Aurora volcanic field (John and others, 2012). Upper Miocene to Pliocene sedimentary deposits, mostly basin-filling sediments, gravel deposits, and fanglomerates, lap onto the west, north, and east sides of the Bodie Hills, where they cover older Miocene volcanic rocks. Quaternary surficial deposits, including extensive colluvial, fluvial, glacial, and lacustrine deposits, locally cover all older rocks. Miocene and younger rocks are tilted ≤30° in variable directions. These rocks are cut by several sets of high-angle faults that exhibit a temporal change from conjugate northeast-striking left-lateral and north-striking right-lateral oblique-slip faults in rocks older than about 9 Ma to north- and northwest-striking dip-slip faults in late Miocene rocks. The youngest faults are north-striking normal and northeast-striking left-lateral oblique-slip faults that cut Pliocene-Pleistocene rocks. Numerous hydrothermal systems were active during Miocene magmatism and formed extensive zones of hydrothermally altered rocks and several large mineral deposits, including gold- and silver-rich veins in the Bodie and Aurora mining districts (Vikre and others, in press).

  8. Near N-S paleo-extension in the western Deccan region, India: Does it link strike-slip tectonics with India-Seychelles rifting?

    Science.gov (United States)

    Misra, Achyuta Ayan; Bhattacharya, Gourab; Mukherjee, Soumyajit; Bose, Narayan

    2014-09-01

    This is the first detailed report and analyses of deformation from the W part of the Deccan large igneous province (DLIP), Maharashtra, India. This deformation, related to the India-Seychelles rifting during Late Cretaceous-Early Paleocene, was studied, and the paleostress tensors were deduced. Near N-S trending shear zones, lineaments, and faults were already reported without significant detail. An E-W extension was envisaged by the previous workers to explain the India-Seychelles rift at ~64 Ma. The direction of extension, however, does not match with their N-S brittle shear zones and also those faults (sub-vertical, ~NE-SW/~NW-SE, and few ~N-S) we report and emphasize in this work. Slickenside-bearing fault planes, brittle shear zones, and extension fractures in meso-scale enabled us to estimate the paleostress tensors (directions and relative magnitudes). The field study was complemented by remote sensing lineament analyses to map dykes and shear zones. Dykes emplaced along pre-existing ~N-S to ~NE-SW/~NW-SE shears/fractures. This information was used to derive regional paleostress trends. A ~NW-SE/NE-SW minimum compressive stress in the oldest Kalsubai Subgroup and a ~N-S direction for the younger Lonavala, Wai, and Salsette Subgroups were deciphered. Thus, a ~NW/NE to ~N-S extension is put forward that refutes the popular view of E-W India-Seychelles extension. Paleostress analyses indicate that this is an oblique rifted margin. Field criteria suggest only ~NE-SW and ~NW-SE, with some ~N-S strike-slip faults/brittle shear zones. We refer this deformation zone as the "Western Deccan Strike-slip Zone" (WDSZ). The observed deformation was matched with offshore tectonics deciphered mainly from faults interpreted on seismic profiles and from magnetic seafloor spreading anomalies. These geophysical findings too indicate oblique rifting in this part of the W Indian passive margin. We argue that the Seychelles microcontinent separated from India only after much of

  9. Dynamics of Endo- and Epicardial Focal Fibrillation Waves at the Right Atrium in a Patient With Advanced Atrial Remodelling.

    Science.gov (United States)

    van der Does, Lisette J M E; Kik, Charles; Bogers, Ad J J C; Allessie, Maurits A; de Groot, Natasja M S

    2016-10-01

    Focal waves appear frequently at the epicardium during persistent atrial fibrillation (AF), however, the origin of these waves is under debate. We performed simultaneous endo-epicardial mapping of the right atrial wall during longstanding persistent AF in a patient undergoing cardiac surgery. During 10 seconds 53 and 59 focal waves appeared at random at respectively the endocardium and epicardium. Repetitive focal activity did not last longer than 3 cycles. Transmural asynchrony and conduction might be the origin of focal waves. Asynchronous propagation of fibrillation waves in 3 dimensions would stabilize the arrhythmia and could explain the limited success of persistent AF ablation. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  10. Segmentation of Slow Slip Events in South Central Alaska Possibly Controlled by a Subducted Oceanic Plateau

    Science.gov (United States)

    Li, Haotian; Wei, Meng; Li, Duo; Liu, Yajing; Kim, YoungHee; Zhou, Shiyong

    2018-01-01

    Recent GPS observations show that slow slip events in south central Alaska are segmented along strike. Here we review several mechanisms that might contribute to this segmentation and focus on two: along-strike variation of slab geometry and effective normal stress. We then test them by running numerical simulations in the framework of rate-and-state friction with a nonplanar fault geometry. Results show that the segmentation is most likely related to the along-strike variation of the effective normal stress on the fault plane caused by the Yakutat Plateau. The Yakutat Plateau could affect the effective normal stress by either lowering the pore pressure in Upper Cook Inlet due to less fluids release or increasing the normal stress due to the extra buoyancy caused by the subducted Yakutat Plateau. We prefer the latter explanation because it is consistent with the relative amplitudes of the effective normal stress in Upper and Lower Cook Inlet and there is very little along-strike variation in Vp/Vs ratio in the fault zone from receiver function analysis. However, we cannot exclude the possibility that the difference in effective normal stress results from along-strike variation of pore pressure due to the uncertainties in the Vp/Vs estimates. Our work implies that a structural anomaly can have a long-lived effect on the subduction zone slip behavior and might be a driving factor on along-strike segmentation of slow slip events.

  11. Buried shallow fault slip from the South Napa earthquake revealed by near-field geodesy.

    Science.gov (United States)

    Brooks, Benjamin A; Minson, Sarah E; Glennie, Craig L; Nevitt, Johanna M; Dawson, Tim; Rubin, Ron; Ericksen, Todd L; Lockner, David; Hudnut, Kenneth; Langenheim, Victoria; Lutz, Andrew; Mareschal, Maxime; Murray, Jessica; Schwartz, David; Zaccone, Dana

    2017-07-01

    Earthquake-related fault slip in the upper hundreds of meters of Earth's surface has remained largely unstudied because of challenges measuring deformation in the near field of a fault rupture. We analyze centimeter-scale accuracy mobile laser scanning (MLS) data of deformed vine rows within ±300 m of the principal surface expression of the M (magnitude) 6.0 2014 South Napa earthquake. Rather than assuming surface displacement equivalence to fault slip, we invert the near-field data with a model that allows for, but does not require, the fault to be buried below the surface. The inversion maps the position on a preexisting fault plane of a slip front that terminates ~3 to 25 m below the surface coseismically and within a few hours postseismically. The lack of surface-breaching fault slip is verified by two trenches. We estimate near-surface slip ranging from ~0.5 to 1.25 m. Surface displacement can underestimate fault slip by as much as 30%. This implies that similar biases could be present in short-term geologic slip rates used in seismic hazard analyses. Along strike and downdip, we find deficits in slip: The along-strike deficit is erased after ~1 month by afterslip. We find no evidence of off-fault deformation and conclude that the downdip shallow slip deficit for this event is likely an artifact. As near-field geodetic data rapidly proliferate and will become commonplace, we suggest that analyses of near-surface fault rupture should also use more sophisticated mechanical models and subsurface geomechanical tests.

  12. Buried shallow fault slip from the South Napa earthquake revealed by near-field geodesy

    Science.gov (United States)

    Brooks, Benjamin A.; Minson, Sarah E.; Glennie, Craig L.; Nevitt, Johanna M.; Dawson, Tim; Rubin, Ron; Ericksen, Todd L.; Lockner, David; Hudnut, Kenneth; Langenheim, Victoria; Lutz, Andrew; Mareschal, Maxime; Murray, Jessica; Schwartz, David; Zaccone, Dana

    2017-01-01

    Earthquake-related fault slip in the upper hundreds of meters of Earth’s surface has remained largely unstudied because of challenges measuring deformation in the near field of a fault rupture. We analyze centimeter-scale accuracy mobile laser scanning (MLS) data of deformed vine rows within ±300 m of the principal surface expression of the M (magnitude) 6.0 2014 South Napa earthquake. Rather than assuming surface displacement equivalence to fault slip, we invert the near-field data with a model that allows for, but does not require, the fault to be buried below the surface. The inversion maps the position on a preexisting fault plane of a slip front that terminates ~3 to 25 m below the surface coseismically and within a few hours postseismically. The lack of surface-breaching fault slip is verified by two trenches. We estimate near-surface slip ranging from ~0.5 to 1.25 m. Surface displacement can underestimate fault slip by as much as 30%. This implies that similar biases could be present in short-term geologic slip rates used in seismic hazard analyses. Along strike and downdip, we find deficits in slip: The along-strike deficit is erased after ~1 month by afterslip. We find no evidence of off-fault deformation and conclude that the downdip shallow slip deficit for this event is likely an artifact. As near-field geodetic data rapidly proliferate and will become commonplace, we suggest that analyses of near-surface fault rupture should also use more sophisticated mechanical models and subsurface geomechanical tests. PMID:28782026

  13. Popliteal vascular entrapment syndrome caused by a rare anomalous slip of the lateral head of the gastrocnemius muscle

    International Nuclear Information System (INIS)

    Liu, Patrick T.; Moyer, Adrian C.; Huettl, Eric A.; Fowl, Richard J.; Stone, William M.

    2005-01-01

    Popliteal vascular entrapment syndrome can result in calf claudication, aneurysm formation, distal arterial emboli, or popliteal vessel thrombosis. The most commonly reported causes of this syndrome have been anomalies of the medial head of the gastrocnemius muscle as it relates to the course of the popliteal artery. We report two cases of rare anomalous slips of the lateral head of the gastrocnemius muscle causing popliteal vascular entrapment syndrome. (orig.)

  14. The 2016 Mihoub (north-central Algeria) earthquake sequence: Seismological and tectonic aspects

    Science.gov (United States)

    Khelif, M. F.; Yelles-Chaouche, A.; Benaissa, Z.; Semmane, F.; Beldjoudi, H.; Haned, A.; Issaadi, A.; Chami, A.; Chimouni, R.; Harbi, A.; Maouche, S.; Dabbouz, G.; Aidi, C.; Kherroubi, A.

    2018-06-01

    On 28 May 2016 at 23:54 (UTC), an Mw5.4 earthquake occurred in Mihoub village, Algeria, 60 km southeast of Algiers. This earthquake was the largest event in a sequence recorded from 10 April to 15 July 2016. In addition to the permanent national network, a temporary network was installed in the epicentral region after this shock. Recorded event locations allow us to give a general overview of the sequence and reveal the existence of two main fault segments. The first segment, on which the first event in the sequence was located, is near-vertical and trends E-W. The second fault plane, on which the largest event of the sequence was located, dips to the southeast and strikes NE-SW. A total of 46 well-constrained focal mechanisms were calculated. The events located on the E-W-striking fault segment show mainly right-lateral strike-slip (strike N70°E, dip 77° to the SSE, rake 150°). The events located on the NE-SW-striking segment show mainly reverse faulting (strike N60°E, dip 70° to the SE, rake 130°). We calculated the static stress change caused by the first event (Md4.9) of the sequence; the result shows that the fault plane of the largest event in the sequence (Mw5.4) and most of the aftershocks occurred within an area of increased Coulomb stress. Moreover, using the focal mechanisms calculated in this work, we estimated the orientations of the main axes of the local stress tensor ellipsoid. The results confirm previous findings that the general stress field in this area shows orientations aligned NNW-SSE to NW-SE. The 2016 Mihoub earthquake sequence study thus improves our understanding of seismic hazard in north-central Algeria.

  15. Evaluation of hypotheses for right-lateral displacement of Neogene strata along the San Andreas Fault between Parkfield and Maricopa, California

    Science.gov (United States)

    Stanley, Richard G.; Barron, John A.; Powell, Charles L.

    2017-12-22

    We used geological field studies and diatom biostratigraphy to test a published hypothesis that Neogene marine siliceous strata in the Maricopa and Parkfield areas, located on opposite sides of the San Andreas Fault, were formerly contiguous and then were displaced by about 80–130 kilometers (km) of right-lateral slip along the fault. In the Maricopa area on the northeast side of the San Andreas Fault, the upper Miocene Bitterwater Creek Shale consists of hard, siliceous shale with dolomitic concretions and turbidite sandstone interbeds. Diatom assemblages indicate that the Bitterwater Creek Shale was deposited about 8.0–6.7 million years before present (Ma) at the same time as the uppermost part of the Monterey Formation in parts of coastal California. In the Parkfield area on the southwest side of the San Andreas Fault, the upper Miocene Pancho Rico Formation consists of soft to indurated mudstone and siltstone and fossiliferous, bioturbated sandstone. Diatom assemblages from the Pancho Rico indicate deposition about 6.7–5.7 Ma (latest Miocene), younger than the Bitterwater Creek Shale and at about the same time as parts of the Sisquoc Formation and Purisima Formation in coastal California. Our results show that the Bitterwater Creek Shale and Pancho Rico Formation are lithologically unlike and of different ages and therefore do not constitute a cross-fault tie that can be used to estimate rightlateral displacement along the San Andreas Fault.In the Maricopa area northeast of the San Andreas Fault, the Bitterwater Creek Shale overlies conglomeratic fan-delta deposits of the upper Miocene Santa Margarita Formation, which in turn overlie siliceous shale of the Miocene Monterey Formation from which we obtained a diatom assemblage dated at about 10.0–9.3 Ma. Previous investigations noted that the Santa Margarita Formation in the Maricopa area contains granitic and metamorphic clasts derived from sources in the northern Gabilan Range, on the opposite side of

  16. Source parameters of the M 6.5 Skyros Island (North Aegean Sea earthquake of July 26, 2001

    Directory of Open Access Journals (Sweden)

    A. Kiratzi

    2002-06-01

    Full Text Available Teleseismic body wave modelling, time domain moment tensor inversion of regional waveforms and spectral analysis of the far-field P-wave pulses are used to derive the source parameters of the July 26, 2001 Skyros earthquake (M 6.5. Its epicentre is located south of the Sporades Islands in the North Aegean Sea (Greece. Previous focal mechanism solutions indicate motion on strike-slip faults. The time domain moment tensor inversion is applied for the first time to the regional waveforms of the recently established broadband network in Greece. Its application gave results which are highly consistent with teleseismic waveform modelling. The results of this study, in combination with the distribution of aftershocks, indicate left-lateral strike slip motion on a NW-SE striking fault with parameters: fault plane (strike = 151°, dip = 83°, rake = 7° and auxiliary plane (strike = 60°, dip = 84°, rake = 173°, depth 12 km and M 0 = 5.98e18 N m. Moreover, the time domain moment tensor inversion technique yielded a pure double couple source with negligible CLVD. The spectral analysis of the far-field P-wave pulses resulted in a fault length L ~ 32 km, stress drop ~ 9 bars and average displacement u ~ 30 cm.These values are in very good agreement with those estimated from empirical scaling relations applicable to the Aegean area.

  17. Misbheaving Faults: The Expanding Role of Geodetic Imaging in Unraveling Unexpected Fault Slip Behavior

    Science.gov (United States)

    Barnhart, W. D.; Briggs, R.

    2015-12-01

    Geodetic imaging techniques enable researchers to "see" details of fault rupture that cannot be captured by complementary tools such as seismology and field studies, thus providing increasingly detailed information about surface strain, slip kinematics, and how an earthquake may be transcribed into the geological record. For example, the recent Haiti, Sierra El Mayor, and Nepal earthquakes illustrate the fundamental role of geodetic observations in recording blind ruptures where purely geological and seismological studies provided incomplete views of rupture kinematics. Traditional earthquake hazard analyses typically rely on sparse paleoseismic observations and incomplete mapping, simple assumptions of slip kinematics from Andersonian faulting, and earthquake analogs to characterize the probabilities of forthcoming ruptures and the severity of ground accelerations. Spatially dense geodetic observations in turn help to identify where these prevailing assumptions regarding fault behavior break down and highlight new and unexpected kinematic slip behavior. Here, we focus on three key contributions of space geodetic observations to the analysis of co-seismic deformation: identifying near-surface co-seismic slip where no easily recognized fault rupture exists; discerning non-Andersonian faulting styles; and quantifying distributed, off-fault deformation. The 2013 Balochistan strike slip earthquake in Pakistan illuminates how space geodesy precisely images non-Andersonian behavior and off-fault deformation. Through analysis of high-resolution optical imagery and DEMs, evidence emerges that a single fault map slip as both a strike slip and dip slip fault across multiple seismic cycles. These observations likewise enable us to quantify on-fault deformation, which account for ~72% of the displacements in this earthquake. Nonetheless, the spatial distribution of on- and off-fault deformation in this event is highly spatially variable- a complicating factor for comparisons

  18. Preliminary results of very fast computation of Moment Magnitude and focal mechanism in the context of tsunami warning

    Science.gov (United States)

    Schindelé, François; Roch, Julien; Rivera, Luis

    2015-04-01

    Various methodologies were recently developed to compute the moment magnitude and the focal mechanism, thanks to the real time access to numerous broad-band seismic data. Several methods were implemented at the CENALT, in particular the W-Phase method developed by H. Kanamori and L. Rivera. For earthquakes of magnitudes in the range 6.5-9.0, this method provides accurate results in less than 40 minutes. The context of the tsunami warning in Mediterranean, a small basin impacted in less than one hour, and with small sources but some with high tsunami potential (Boumerdes 2003), a comprehensive tsunami warning system in that region should include very fast computation of the seismic parameters. The results of the values of Mw, the focal depth and the type of fault (reverse, normal, strike-slip) are the most relevant parameters expected for the tsunami warning. Preliminary results will be presented using data in the North-eastern and Mediterranean region for the recent period 2010-2014. This work is funded by project ASTARTE - - Assessment, Strategy And Risk Reduction for Tsunamis in Europe - FP7-ENV2013 6.4-3, Grant 603839

  19. Analogue modelling of strike-slip fault propagation across a rheological/morphological crustal anisotropy: implications for the morphotectonic evolution of the Gloria Fault - Tore Madeira Rise area in NE Atlantic.

    Science.gov (United States)

    Tomás, Ricardo; Rosas, Filipe M.; Duarte, João C.; Terrinha, Pedro; Kullberg, Maria C.; Almeida, Jaime; Barata, Frederico; Carvalho, Bruno; Almeida, Pedro

    2015-04-01

    The Gloria Fault (GF) marks the E-W dextral transcurrent plate boundary between Eurasia and Africa in NE Atlantic, displaying complying high magnitude (historical and instrumental) seismic activity (e.g. M=7.1 in 1939 and M=8.4 in 1941, Bufforn et al., 1988), and cutting across a NNE-SSW 1000 km long bathymetric ridge: the so called Tore-Madeira Rise - TMR (rising in average 3km above the abyssal plain). The precise origin and tectono-magmatic evolution of the TMR is still not fully understood, although reported wide-angle refraction data points to a rheological configuration comprising an isostatically compensated thickened oceanic crust, possibly formed during a period of high accretion in the Mid-Atlantic Ridge (Pierce and Barton, 1991). Widespread evidence for volcanic activity has also been recognized, spanning from late Cretaceous to Present (Geldmacher et al. 2006, Merle et al. 2009), noticeably with the most recent volcanism (~500 Ky) occurring as tectonically aligned volcanic plugs, distributed along the E-W tectonic trend of the GF-related structures. To better understand the complex interference at play in this key area between the tectonic structures (essentially determined by the Gloria Fault system), the present and past magmatic activity and the resulting seafloor morphology, a series of dynamically scaled analogue modelling experiments have been conceived and carried out. The main focus of this experimental work was to decipher the potential influence of a rheological vs. morphological anisotropy (accounting for the TMR) on the lateral propagation of a major right-lateral strike-slip fault (representing the GF). The preliminary comparison of the obtained experimental results with the natural morphotectonic pattern in the study area reveals, not only a strong tectonic control of the ongoing volcanism, manifested by the observed preferred directions of aligned volcanic plugs, but also a so far unsuspected deflection/distributed pattern of several

  20. On the physical links between the dynamics of the Izu Islands 2000 dike intrusions and the statistics of the induced seismicity

    Science.gov (United States)

    Passarelli, Luigi; Rivalta, Eleonora; Simone, Cesca; Aoki, Yosuke

    2014-05-01

    The emplacement of magma-filled dikes often induce abundant seismicity in the surrounding host rocks. Most of the earthquakes are thought to occur close to the propagating tip (or edges, in 3D) of the dike, where stresses are concentrated. The resulting seismicity often appears as a swarm, controlled mainly by dike-induced stresses and stressing rate and by other factors, such as the background stressing rate, tectonic setting, regional stresses and tectonic history. The spatial distribution and focal mechanisms of the seismicity bear information on the interaction of the dike stress field and the tectonic setting of the area. The seismicity accompanying the intrusion of a dike is usually characterized by weak events, for which it is difficult to calculate the focal mechanisms. Therefore, only for a few well-recorded dike intrusions a catalog of focal mechanisms, allowing to perform a robust statistical analysis, is available. The 2000 dike intrusion at Miyakejima is in this sense an outstanding case, as about 18000 seismic events were recorded in a time span of three months. This seismic swarm was one of the most energetic ever recorded with five M>6 earthquakes. For this swarm a catalog of 1500 focal mechanisms is avalable (NIED, Japan). We perform a clustering analysis of the focal mechanism solutions, in order to infer the most frequent focal mechanism features prior to the intrusion (pre-diking period) and during the co-diking period. As previously suggested, we find that the dike stress field modified substantially the pre-existing seismicity pattern, by shadowing some non-optimally oriented strike-slip structures and increasing seismic rate on optimally oriented strike-slip tectonic structures. Alongside, during the co-diking period a large number of normal and oblique-normal faulting were observed. These events cannot be explained within the tectonics of the intrusion area. We suggest they are directly generated by the intense stress field induced at the

  1. Estimating slip deficit of the North Anatolian Fault beneath the Sea of Marmara, Turkey, using on- and off-shore geodetic data

    Science.gov (United States)

    Yamamoto, R.; Kido, M.; Ohta, Y.; Takahashi, N.; Yamamoto, Y.; Kalafat, D.; Pinar, A.; Ozener, H.; Ozeren, M. S.; Yoshiyuki, K.

    2016-12-01

    The North Anatolian Fault (NAF) in the northern Turkey regionally has right-lateral strike-slip motion. In the last decade, seismic activities have been migrating from east to west along the fault. In 1999, Izmit and Duzce Earthquakes were respectively occurred at 100 km and 200 km east of Istanbul, while it remains un-ruptured in the vicinity of Istanbul beneath the Sea of Marmara. In this region, onshore geodetic tools cannot be used and we instead used "seafloor acoustic extensometers" to detect slip deficit rate across the western part of the NAF (around 27.7 °E). A pair of extensometers can periodically measure precise range (about 3-4 mm precision per 1 km baseline) by observing round-trip time of acoustic signal between the two. We installed four instruments in September 2014 and an additional one in March 2015 across the NAF. We have recovered data for about 600-days through acoustic modem. By correcting travel-times for sound velocity using concurrently measured temperature, pressure and tilt change of instruments, we obtained 8-10 ±1 mm/yr of right-lateral movement at the site. Combing the result with on-shore GNSS data across the Sea of Marmara, we constructed a possible fault model. According to the model in Kaneko et al. (2013), we simply assume a bimodal slip condition on the fault plane that infinitely continues to the E-W direction; full-creep (25 mm/yr as is given at infinite distant from the fault plane) deeper than 15 km and applied an overriding partially locked layer (17 mm/yr slip deficit as is obtained by extensometers). We calculated 2-D displacement field in a homogeneous elastic half-space medium. With this model, N-S variation of on-shore GNSS data across the Sea of Marmara can be reasonably explained. However, due to the lack of GNSS site near the fault plane, constraint on the depth of the partially locked layer is not sufficient. We have newly installed GNSS sites, one of which is closer to the fault plane ( 10 km) than before and

  2. 2-D Deformation analysis of a half-space due to a long dip-slip fault ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    tic deformation in a uniform half-space due to long faults has been attempted by a number of researchers. Singh and Rani (1996) presented step- by-step progress made in the direction of crustal deformation modeling associated with strike-slip and dip-slip faulting in the earth. Cohen (1996) gave convenient formulas for ...

  3. Mesozoic to Cenozoic tectonic transition process in Zhanhua Sag, Bohai Bay Basin, East China

    Science.gov (United States)

    Cheng, Yanjun; Wu, Zhiping; Lu, Shunan; Li, Xu; Lin, Chengyan; Huang, Zheng; Su, Wen; Jiang, Chao; Wang, Shouye

    2018-04-01

    The Zhanhua sag is part of the Bohai Bay intracontinental basin system that has developed since the Mesozoic in East China. The timing of this basin system coincides with the final assembly of East Asia and the development of Western Pacific-type plate margin. Here we use 3-D seismic and core log data to investigate the evolution of this basin and discuss its broad tectonic settings. Our new structural study of Zhanhua sag suggests that there are four major tectonic transitions occurred in the Bohai Bay Basin during Mesozoic and Cenozoic: (1) The first tectonic transition was from stable Craton to thrusting during the Triassic, mainly caused by the South China Block's subduction northward beneath the North China Block, which induced the formation of the NW-striking thrust faults. (2) The second tectonic transition was mainly characterized by a change from compression to extension, which can be further divided into two-stages. At the first stage, two episodes of NW-SE shortening occurred in East Asia during Early-Middle Jurassic and Late Jurassic-earliest Cretaceous, respectively. At the second stage, the extension and left-lateral shearing took place during Early Cretaceous while compression occurred during Late Cretaceous. The NW-striking thrust faults changed to normal faults and the NNE-striking left-lateral strike-slip faults started to influence the eastern part of the basin. (3) The third transition occurred when the NW-SE extension and NNE-striking right-lateral shearing started to form during Paleogene, and the peak deformation happen around 40 Ma due to the change of the subduction direction of Pacific Plate relative to Eurasia Plate. The NE-striking normal faults are the main structure, and the pre-existing NNE-striking strike-slip faults changed from left-lateral to right-lateral. (4) The fourth transition saw the regional subsidence during Neogene, which was probably caused by the India-Asia "Hard collision" between 25 and 20 Ma.

  4. Structural analysis of hanging wall and footwall blocks within the Río Guanajibo fold-and-thrust belt in Southwest Puerto Rico

    Science.gov (United States)

    Laó-Dávila, Daniel A.; Llerandi-Román, Pablo A.

    2017-01-01

    The Río Guanajibo fold-and-thrust belt (RGFT), composed of Cretaceous serpentinite and volcano-sedimentary rocks, represents the deformation front of a contractional event in SW Puerto Rico during the Paleogene. Previous studies inferred structural and stratigraphic relationships from poorly exposed outcrops. New road cuts exposed the Yauco (YF) and El Rayo Formations (ERF) providing insights on the deformation of the hanging wall and footwall. We described the nature and orientation of faults and folds and analyzed the kinematic indicators to characterize the deformation. The YF occurs in the hanging wall and shows a sequence of folded, medium-bedded mudstone and thinly bedded shale and sandstone. Major folds strike NW-SE and are gentle with steeply inclined axial planes and sub-horizontal fold axes. Minor folds are open with moderately inclined axial planes and gently to moderately inclined SE-plunging fold axes. NW-SE striking reverse and thrust faults cut layers and show movement to the SW. Steep left-lateral faults strike NW-SE and NE-SW, and smaller right-lateral strike-slip faults strike NNE-SSW. At the footwall, the ERF consists of bioclastic limestone and polymictic orthoconglomerates and paraconglomerates. Reverse and strike-slip faults cut along lithological contacts. Results suggest that the hanging wall and footwall accommodated strain along preexisting weaknesses, which are dependent on lithology and sedimentary structures. The kinematic analysis suggests that shortening in the NE-SW direction was partitioned between folding and interlayer shortening, accommodated by flexural slip, and reverse and left-lateral faults that resulted from contraction. The RGFT represents the Paleogene back arc deformation of a bivergent thrust system.

  5. Magmatic control along a strike-slip volcanic arc: The central Aeolian arc (Italy)

    KAUST Repository

    Ruch, Joel; Vezzoli, L.; De Rosa, R.; Di Lorenzo, R.; Acocella, V

    2016-01-01

    -slip motion; consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55 ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic

  6. Middle Pleistocene infill of Hinkley Valley by Mojave River sediment and associated lake sediment: Depositional architecture and deformation by strike-slip faults

    Science.gov (United States)

    Miller, David; Haddon, Elizabeth; Langenheim, Victoria; Cyr, Andrew J.; Wan, Elmira; Walkup, Laura; Starratt, Scott W.

    2018-01-01

    avulsed through the valley, rather than continuing toward Lake Manix, during the late Pleistocene. Two dextral strike-slip fault zones, the Lockhart and the Mt. General, fold and displace the distinctive stratigraphic units, as well as surficial late Pleistocene and Holocene deposits. The sedimentary architecture and the two fault zones provide a framework for evaluating groundwater flow in Hinkley Valley.

  7. Hematite (U-Th)/He thermochronometry constrains intraplate strike-slip faulting on the Kuh-e-Faghan Fault, central Iran

    Science.gov (United States)

    Calzolari, Gabriele; Rossetti, Federico; Ault, Alexis K.; Lucci, Federico; Olivetti, Valerio; Nozaem, Reza

    2018-03-01

    The Kuh-e-Faghan strike-slip fault system (KFF), located to the northern edge of the Lut Block in central Iran, developed through a Neogene-Quaternary pulsed history of eastward fault propagation and fault-related exhumation. This system is a consequence of the residual stresses transmitted from the Arabia-Eurasia convergent plate boundary. Here we integrate structural and textural analysis with new and previously published apatite fission-track (AFT) and apatite (U-Th)/He (apatite He) results, chlorite thermomentry, and hematite (U-Th)/He data from hematite-coated brittle fault surfaces to constrain the timing of tectonic activity and refine patterns of late Miocene-Pliocene burial and exhumation associated with the propagation of the KFF. Twenty-nine hematite (U-Th)/He (hematite He) dates from three striated hematite coated slip surfaces from the KFF fault core and damage zone yield individual dates from 12-2 Ma. Petrographic analysis and chlorite thermometry of a polyphase, fossil fluid system in the KFF fault core document that fluid circulation and mineralization transitioned from a closed system characterized by pressure solution and calcite growth to an open system characterized by hot hydrothermal (T = 239 ± 10 °C) fluids and hematite formation. Hematite microtextures and grain size analysis reveal primary and secondary syntectonic hematite fabrics, no evidence of hematite comminution and similar hematite He closure temperatures ( 60-85 °C) in each sample. Integration of these results with thermal history modeling of AFT and apatite He data shows that KFF activity in the late Miocene is characterized by an early stage of fault nucleation, fluid circulation, hematite mineralization, and eastward propagation not associated with vertical movement that lasted from 12 to 7 Ma. Hematite He, AFT, and apatite He data track a second phase of fault system activity involving fault-related exhumation initiating at 7 Ma and continuing until present time. Our new data

  8. Stress Transfer Processes during Great Plate Boundary Thrusting Events: A Study from the Andaman and Nicobar Segments

    Science.gov (United States)

    Andrade, V.; Rajendran, K.

    2010-12-01

    Diglipur (depth: 21 km) and the August 10, 2009, Mw 7.5 normal faulting earthquake near Coco Island (depth: 22 km), within the northern terminus of the 2004 rupture are cited as examples of the alternating pre and post earthquake stress conditions. The major pre and post 2004 clusters were associated with the Andaman Spreading Ridge (ASR). In the Nicobar segment, the most recent earthquake on June 12, 2010, Mw 7.5 (focal depth: 35 km) occurred very close to the plate boundary, through left lateral strike-slip faulting. A segment that does not feature any active volcanoes unlike its northern and southern counterparts, this part of the plate boundary has generated several right lateral strike-slip earthquakes, mostly on the Sumatra Fault System. The left-lateral strike-slip faulting associated with the June 12 event on a nearly N-S oriented fault plane consistent with the trend of the Ninety East ridge and the occasional left-lateral earthquakes prior to the 2004 mega-thrust event suggest the involvement of the Ninety East ridge in the subduction process.

  9. The April 2007 earthquake swarm near Lake Trichonis and implications for active tectonics in western Greece

    Science.gov (United States)

    Kiratzi, A.; Sokos, E.; Ganas, A.; Tselentis, A.; Benetatos, C.; Roumelioti, Z.; Serpetsidaki, A.; Andriopoulos, G.; Galanis, O.; Petrou, P.

    2008-06-01

    We investigate the properties of the April 2007 earthquake swarm (Mw 5.2) which occurred at the vicinity of Lake Trichonis (western Greece). First we relocated the earthquakes, using P- and S-wave arrivals to the stations of the Hellenic Unified Seismic Network (HUSN), and then we applied moment tensor inversion to regional broad-band waveforms to obtain the focal mechanisms of the strongest events of the 2007 swarm. The relocated epicentres, cluster along the eastern banks of the lake, and follow a distinct NNW-ESE trend. The previous strong sequence close to Lake Trichonis occurred in June-December 1975. We applied teleseismic body waveform inversion, to obtain the focal mechanism solution of the strongest earthquake of this sequence, i.e. the 31 December 1975 (Mw 6.0) event. Our results indicate that: a) the 31 December 1975 Mw 6.0 event was produced by a NW-SE normal fault, dipping to the NE, with considerable sinistral strike-slip component; we relocated its epicentre: i) using phase data reported to ISC and its coordinates are 38.486°N, 21.661°E; ii) using the available macroseismic data, and the coordinates of the macroseismic epicentre are 38.49°N, 21.63°E, close to the strongly affected village of Kato Makrinou; b) the earthquakes of the 2007 swarm indicate a NNW-SSE strike for the activated main structure, parallel to the eastern banks of Lake Trichonis, dipping to the NE and characterized by mainly normal faulting, occasionally combined with sinistral strike-slip component. The 2007 earthquake swarm did not rupture the well documented E-W striking Trichonis normal fault that bounds the southern flank of the lake, but on the contrary it is due to rupture of a NW-SE normal fault that strikes at a ˜ 45° angle to the Trichonis fault. The left-lateral component of faulting is mapped for the first time to the north of the Gulf of Patras which was previously regarded as the boundary for strike-slip motions in western Greece. This result signifies the

  10. NW transverse fault system in Southern Bogota, Colombia: New seismologic and structural evidences derived from focal mechanisms and stress field determination

    Science.gov (United States)

    Angel Amaya, J.; Fierro Morales, J.; Ordoñez Potes, M.; Blanco, M.

    2012-12-01

    We present new seismological, morphotectonic and structural data of the Southern Bogota area. The goals of the study were to characterize the NW transverse fault system and to evaluate its effect on seismic wave's generation and propagation. The data set included epicenters of the RSNC (Red Sismologica Nacional de Colombia) catalog over the period 1993-2012, historical description of seismic events (period 1644-1921), structural field data (scale 1:100000) and remote sensors interpretation. The methodology included the structural analysis of over 476 faults having a known sense of offset by using a least squares iterative inversion outlined by Angelier (1984) to determinate the mean deviatoric principal stress tensor. Preliminary conclusions showed that both propagation medium and direction are determined by the structural and mechanic conditions of the Southern Bogota Shear Zone (SBSZ) defined by Fierro & Angel, (2008) as a NW-SE oblique-slip fault zone within sinistral and normal regimes. Based on both data sources (focal mechanism and field structural data) we attempted to reconstruct the stress field starting with a strike slip faulting stress regime (S2 vertical), the solution yielded a ENE-WSW orientation for horizontal principal stress (S1). It is hypothesized that the NW oblique-slip fault zone may generate and/or propagate seismic waves, as a local source, implying local hazard to Bogota the capital city of Colombia with over 8 million habitants.

  11. Kinematics of Post-obduction Deformation of the Tertiary Ridge at Al-Khod Village (Muscat, Oman

    Directory of Open Access Journals (Sweden)

    Andreas Scharf

    2016-11-01

    Full Text Available Structural investigations in post-obductional Paleocene to Eocene limestones of the Tertiary Ridge reveal a ~1 km long WNW-ESE striking strike-slip fault system within the ridge, consisting of two main sub-parallel, strike-slip faults. Considering the geometry of the Harding Strain Ellipse, the orientation of structures between the two strike-slip faults (e.g., Riedel shears, folds, reverse faults point to left-lateral motion. The abundance of large-scale folds (up to 100 m in wave length and amplitude between the two strike-slip faults led us to the interpretation of transpressive conditions in a first approximation. Moreover, the Tertiary Ridge of the study area consists of three distinct structural domains. The faults of Domain A and C are oriented WNW-ESE, but the trend of the faults in the central Domain B differs by ~10°. The left-lateral strike-slip fault system exists only in Domain B. We propose that the direction of greatest stress during Miocene plate convergence (sigma 1 was oriented 032°/212°. Considering the trend of the strike-slip zone and the orientation of sigma 1, the left-lateral motion must have been transpressive. Sigma 1 is perpendicularly oriented to the domains A and C. Prior to the Miocene D2 compressional event the study area was affected by a D1 extensional event, related to the opening of the Red Sea and the Gulf of Aden or to gravity-driven normal faulting. The D2 compressional/transpressional structures of the Miocene are reactivating the D1 structures of the Oligocene.

  12. Seismicity of the Earth 1900–2010 Himalaya and vicinity

    Science.gov (United States)

    Turner, Bethan; Jenkins, Jennifer; Turner, Rebecca; Parker, Amy; Sinclair, Alison; Davies, Sian; Hayes, Gavin P.; Villaseñor, Antonio; Dart, Rirchard L.; Tarr, Arthur C.; Furlong, Kevin P.; Benz, Harley M.

    2013-01-01

    Seismicity in the Himalaya region predominantly results from the collision of the India and Eurasia continental plates, which are converging at a relative rate of 40–50 mm/yr. Northward underthrusting of India beneath Eurasia generates numerous earthquakes and consequently makes this area one of the most seismically hazardous regions on Earth. The surface expression of the plate boundary is marked by the foothills of the north-south trending Sulaiman Range in the west, the Indo-Burmese Arc in the east, and the east-west trending Himalaya Front in the north of India. Along the western margin of the India plate, relative motions between India and Eurasia are accommodated by strike-slip, reverse, and oblique-slip faulting resulting in the complex Sulaiman Range fold and thrust belt, and the major translational Chaman Fault in Afghanistan. Beneath the Pamir‒Hindu Kush Mountains of northern Afghanistan, earthquakes occur to depths as great as 200 km as a result of remnant lithospheric subduction. Further north again, the Tian Shan is a seismically active intra-continental mountain belt defined by a series of east-west trending thrust faults thought to be related to the broad footprint of the India-Eurasia collision. Tectonics in northern India are dominated by motion along the Main Frontal Thrust and associated thrust faults of the India-Eurasia plate boundary, which have resulted in a series of large and devastating earthquakes in (and prior to) the 20th century. The Tibetan Plateau to the north of the main plate boundary is a broad region of uplift associated with the India-Eurasia collision, and is cut by a series of generally east-west trending strike-slip faults. These include the Kunlun, Haiyuan, and the Altyn Tagh faults, all of which are left-lateral structures, and the Kara-Koram right-lateral fault. Throughout the plateau, thrust faults accommodate the north-south compressional component of crustal shortening associated with the ongoing collision of India

  13. Sporadic Creutzfeldt-Jakob disease with focal findings: caveats to current diagnostic criteria

    Science.gov (United States)

    Mader, Edward C.; El-Abassi, Rima; Villemarette-Pittman, Nicole R.; Santana-Gould, Lenay; Olejniczak, Piotr W.; England, John D.

    2013-01-01

    The clinical diagnosis of Creutzfeldt-Jakob disease (CJD) is largely based on the 1998 World Health Organization diagnostic criteria. Unfortunately, rigid compliance with these criteria may result in failure to recognize sporadic CJD (sCJD), especially early in its course when focal findings predominate and traditional red flags are not yet present. A 61-year-old man presented with a 3-week history of epilepsia partialis continua (jerking of the left upper extremity) and a 2-week history of forgetfulness and left hemiparesis; left hemisensory neglect was also detected on admission. Repeated brain magnetic resonance imaging (MRI) showed areas of restricted diffusion in the cerebral cortex, initially on the right but later spreading to the left. Electroence-phalography (EEG) on hospital days 7, 10, and 14 showed right-sided periodic lateralized epileptiform discharges. On day 20, the EEG showed periodic sharp wave complexes leading to a diagnosis of probable sCJD and subsequently to definite sCJD with brain biopsy. Neurological decline was relatively fast with generalized myoclonus and akinetic mutism developing within 7 weeks from the onset of illness. CJD was not immediately recognized because of the patient's focal/lateralized manifestations. Focal/lateralized clinical, EEG, and MRI findings are not uncommon in sCJD and EEG/MRI results may not be diagnostic in the early stages of sCJD. Familiarity with these caveats and with the most current criteria for diagnosing probable sCJD (University of California San Francisco 2007, MRI-CJD Consortium 2009) will enhance the ability to recognize sCJD and implement early safety measures. PMID:23717780

  14. Modeling and Analyzing the Slipping of the Ball Screw

    Directory of Open Access Journals (Sweden)

    Nannan Xu

    Full Text Available AbstractThis paper aims to set up the ball systematic slipping model and analyze the slipping characteristics caused by different factors for a ball screw operating at high speeds. To investigate the ball screw slipping mechanism, transformed coordinate system should be established firstly. Then it is used to set up mathematical modeling for the ball slipping caused by the three main reasons and the speed of slipping can be calculated. Later, the influence of the contact angle, helix angle and screw diameter for ball screw slipping will be analyzed according to the ball slipping model and slipping speeds equation and the slipping analysis will be obtained. Finally, curve of slipping analysis and that of mechanical efficiency of the ball screw analysis by Lin are compared, which will indirectly verify the correctness of the slipping model. The slipping model and the curve of slipping analysis established in this paper will provide theory basis for reducing slipping and improving the mechanical efficiency of a ball screw operating at high speeds.

  15. Pseudodynamic Source Characterization for Strike-Slip Faulting Including Stress Heterogeneity and Super-Shear Ruptures

    KAUST Repository

    Mena, B.; Dalguer, L. A.; Mai, Paul Martin

    2012-01-01

    . (2004), we propose new relationships for PD models for moderate‐to‐large strike‐slip earthquakes that include local supershear rupture speed due to stress heterogeneities. We conduct dynamic rupture simulations using stochastic initial stress

  16. Chest pain in focal musculoskeletal disorders

    DEFF Research Database (Denmark)

    Stochkendahl, Mette Jensen; Christensen, Henrik Wulff

    2010-01-01

    overlapping conditions and syndromes of focal disorders, including Tietze syndrome, costochondritis, chest wall syndrome, muscle tenderness, slipping rib, cervical angina, and segmental dysfunction of the cervical and thoracic spine, have been reported to cause pain. For most of these syndromes, evidence......The musculoskeletal system is a recognized source of chest pain. However, despite the apparently benign origin, patients with musculoskeletal chest pain remain under-diagnosed, untreated, and potentially continuously disabled in terms of anxiety, depression, and activities of daily living. Several...... arises mainly from case stories and empiric knowledge. For segmental dysfunction, clinical features of musculoskeletal chest pain have been characterized in a few clinical trials. This article summarizes the most commonly encountered syndromes of focal musculoskeletal disorders in clinical practice....

  17. Nonlinear dynamical triggering of slow slip

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Paul A [Los Alamos National Laboratory; Knuth, Matthew W [WISCONSIN; Kaproth, Bryan M [PENN STATE; Carpenter, Brett [PENN STATE; Guyer, Robert A [Los Alamos National Laboratory; Le Bas, Pierre - Yves [Los Alamos National Laboratory; Daub, Eric G [Los Alamos National Laboratory; Marone, Chris [PENN STATE

    2010-12-10

    Among the most fascinating, recent discoveries in seismology have been the phenomena of triggered slip, including triggered earthquakes and triggered-tremor, as well as triggered slow, silent-slip during which no seismic energy is radiated. Because fault nucleation depths cannot be probed directly, the physical regimes in which these phenomena occur are poorly understood. Thus determining physical properties that control diverse types of triggered fault sliding and what frictional constitutive laws govern triggered faulting variability is challenging. We are characterizing the physical controls of triggered faulting with the goal of developing constitutive relations by conducting laboratory and numerical modeling experiments in sheared granular media at varying load conditions. In order to simulate granular fault zone gouge in the laboratory, glass beads are sheared in a double-direct configuration under constant normal stress, while subject to transient perturbation by acoustic waves. We find that triggered, slow, silent-slip occurs at very small confining loads ({approx}1-3 MPa) that are smaller than those where dynamic earthquake triggering takes place (4-7 MPa), and that triggered slow-slip is associated with bursts of LFE-like acoustic emission. Experimental evidence suggests that the nonlinear dynamical response of the gouge material induced by dynamic waves may be responsible for the triggered slip behavior: the slip-duration, stress-drop and along-strike slip displacement are proportional to the triggering wave amplitude. Further, we observe a shear-modulus decrease corresponding to dynamic-wave triggering relative to the shear modulus of stick-slips. Modulus decrease in response to dynamical wave amplitudes of roughly a microstrain and above is a hallmark of elastic nonlinear behavior. We believe that the dynamical waves increase the material non-affine elastic deformation during shearing, simultaneously leading to instability and slow-slip. The inferred

  18. [Lightning strike and lesions outside the brain: Clinical cases and a review of the literature].

    Science.gov (United States)

    Morin, A; Lesourd, A; Cabane, J

    2015-01-01

    Every year, 240,000 people are struck by lightning worldwide, causing injuries leading to significant handicaps. Most of the symptoms involve brain lesions; neuromuscular sequelae and myelopathy are less common. We describe five cases of patients struck by lightning with various clinical presentations. The first patient presented painful paresthesias in both upper limbs that disappeared 18 months later; the injury was a plexopathy. The second patient developed proximal weakness in the upper-left limb due to a myopathy. Two patients presented with various motor weaknesses in the lower limbs due to motor neuron disease and myelopathy. The last patient had a transient tetraplegy, which resolved in 5minutes; the diagnosis was keraunoparalysis. Lightning injuries can have many consequences depending on the different mechanisms involved. The clinical presentation is often due to a very focal lesion without any secondary extension. Motor neuron disease probably results from post-traumatic myelopathy. We discuss the ALS-electrocution association, frequently described in the literature. Various peripheral nerve and spinal cord lesions can be seen in lightning strike victims involving myelopathy, motor neuron, muscle and plexus. Clinical syndromes are often atypical but outcome is often favorable. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Focused seismicity triggered by flank instability on Kīlauea's Southwest Rift Zone

    Science.gov (United States)

    Judson, Josiah; Thelen, Weston A.; Greenfield, Tim; White, Robert S.

    2018-03-01

    Swarms of earthquakes at the head of the Southwest Rift Zone on Kīlauea Volcano, Hawai´i, reveal an interaction of normal and strike-slip faulting associated with movement of Kīlauea's south flank. A relocated subset of earthquakes between January 2012 and August 2014 are highly focused in space and time at depths that are coincident with the south caldera magma reservoir beneath the southern margin of Kīlauea Caldera. Newly calculated focal mechanisms are dominantly dextral shear with a north-south preferred fault orientation. Two earthquakes within this focused area of seismicity have normal faulting mechanisms, indicating two mechanisms of failure in very close proximity (10's of meters to 100 m). We suggest a model where opening along the Southwest Rift Zone caused by seaward motion of the south flank permits injection of magma and subsequent freezing of a plug, which then fails in a right-lateral strike-slip sense, consistent with the direction of movement of the south flank. The seismicity is concentrated in an area where a constriction occurs between a normal fault and the deeper magma transport system into the Southwest Rift Zone. Although in many ways the Southwest Rift Zone appears analogous to the more active East Rift Zone, the localization of the largest seismicity (>M2.5) within the swarms to a small volume necessitates a different model than has been proposed to explain the lineament outlined by earthquakes along the East Rift Zone.

  20. Microseismicity at the North Anatolian Fault in the Sea of Marmara offshore Istanbul, NW Turkey

    Science.gov (United States)

    Bulut, Fatih; Bohnhoff, Marco; Ellsworth, William L.; Aktar, Mustafa; Dresen, Georg

    2009-01-01

    The North Anatolian Fault Zone (NAFZ) below the Sea of Marmara forms a “seismic gap” where a major earthquake is expected to occur in the near future. This segment of the fault lies between the 1912 Ganos and 1999 İzmit ruptures and is the only NAFZ segment that has not ruptured since 1766. To monitor the microseismic activity at the main fault branch offshore of Istanbul below the Çınarcık Basin, a permanent seismic array (PIRES) was installed on the two outermost Prince Islands, Yassiada and Sivriada, at a few kilometers distance to the fault. In addition, a temporary network of ocean bottom seismometers was deployed throughout the Çınarcık Basin. Slowness vectors are determined combining waveform cross correlation and P wave polarization. We jointly invert azimuth and traveltime observations for hypocenter determination and apply a bootstrap resampling technique to quantify the location precision. We observe seismicity rates of 20 events per month for M etermine composite focal mechanisms implementing recordings of surrounding permanent land stations. Fault plane solutions have a predominant right-lateral strike-slip mechanism, indicating that normal faulting along this part of the NAFZ plays a minor role. Toward the west we observe increasing components of thrust faulting. This supports the model of NW trending, dextral strike-slip motion along the northern and main branch of the NAFZ below the eastern Sea of Marmara.

  1. Foreshocks during the nucleation of stick-slip instability

    Science.gov (United States)

    McLaskey, Gregory C.; Kilgore, Brian D.

    2013-01-01

    We report on laboratory experiments which investigate interactions between aseismic slip, stress changes, and seismicity on a critically stressed fault during the nucleation of stick-slip instability. We monitor quasi-static and dynamic changes in local shear stress and fault slip with arrays of gages deployed along a simulated strike-slip fault (2 m long and 0.4 m deep) in a saw cut sample of Sierra White granite. With 14 piezoelectric sensors, we simultaneously monitor seismic signals produced during the nucleation phase and subsequent dynamic rupture. We observe localized aseismic fault slip in an approximately meter-sized zone in the center of the fault, while the ends of the fault remain locked. Clusters of high-frequency foreshocks (Mw ~ −6.5 to −5.0) can occur in this slowly slipping zone 5–50 ms prior to the initiation of dynamic rupture; their occurrence appears to be dependent on the rate at which local shear stress is applied to the fault. The meter-sized nucleation zone is generally consistent with theoretical estimates, but source radii of the foreshocks (2 to 70 mm) are 1 to 2 orders of magnitude smaller than the theoretical minimum length scale over which earthquake nucleation can occur. We propose that frictional stability and the transition between seismic and aseismic slip are modulated by local stressing rate and that fault sections, which would typically slip aseismically, may radiate seismic waves if they are rapidly stressed. Fault behavior of this type may provide physical insight into the mechanics of foreshocks, tremor, repeating earthquake sequences, and a minimum earthquake source dimension.

  2. Combined effects of magnetic field and partial slip on obliquely striking rheological fluid over a stretching surface

    International Nuclear Information System (INIS)

    Nadeem, S.; Mehmood, Rashid; Akbar, Noreen Sher

    2015-01-01

    This study explores the collective effects of partial slip and transverse magnetic field on an oblique stagnation point flow of a rheological fluid. The prevailing momentum equations are designed by manipulating Casson fluid model. By applying the suitable similarity transformations, the governing system of equations is being transformed into coupled nonlinear ordinary differential equations. The resulting system is handled numerically through midpoint integration scheme together with Richardson's extrapolation. It is found that both normal and tangential velocity profiles decreases with an increase in magnetic field as well as slip parameter. Streamlines pattern are presented to study the actual impact of slip mechanism and magnetic field on the oblique flow. A suitable comparison with the previous literature is also provided to confirm the accuracy of present results for the limiting case. - Highlights: • The MHD 2-Dimensional flow of Casson fluid is present. • Streamlines pattern are presented to study the actual impact of slip mechanism and magnetic field on the oblique flow. • The prevailing momentum equations are designed by manipulating Casson fluid model. • Obtained coupled ordinary differential equations are investigated numerically. • Graphical results are obtained for each physical parameter

  3. Fault model of the 2017 Jiuzhaigou Mw 6.5 earthquake estimated from coseismic deformation observed using Global Positioning System and Interferometric Synthetic Aperture Radar data

    Science.gov (United States)

    Nie, Zhaosheng; Wang, Di-Jin; Jia, Zhige; Yu, Pengfei; Li, Liangfa

    2018-04-01

    On August 8, 2017, the Jiuzhaigou Mw 6.5 earthquake occurred in Sichuan province, southwestern China, along the eastern margin of the Tibetan Plateau. The epicenter is surrounded by the Minjiang, Huya, and Tazang Faults. As the seismic activity and tectonics are very complicated, there is controversy regarding the accurate location of the epicenter and the seismic fault of the Jiuzhaigou earthquake. To investigate these aspects, first, the coseismic deformation field was derived from Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) measurements. Second, the fault geometry, coseismic slip model, and Coulomb stress changes around the seismic region were calculated using a homogeneous elastic half-space model. The coseismic deformation field derived from InSAR measurements shows that this event was mainly dominated by a left-lateral strike-slip fault. The maximal and minimal displacements were approximately 0.15 m and - 0.21 m, respectively, along line-of-sight observation. The whole deformation field follows a northwest-trending direction and is mainly concentrated west of the fault. The coseismic slip is 28 km along the strike and 18 km along the dip. It is dominated by a left-lateral strike-slip fault. The average and maximal fault slip is 0.18 and 0.85 m, respectively. The rupture did not fully reach the ground surface. The focal mechanism derived from GPS and InSAR data is consistent with the kinematics and geometry of the Huya Fault. Therefore, we conclude that the northern section or the Shuzheng segment of the Huya Fault is the seismogenic fault. The maximal fault slip is located at 33.25°N and 103.82°E at a depth of 11 km, and the release moment is approximately 6.635 × 1018 Nm, corresponding to a magnitude of Mw 6.49, which is consistent with results reported by the US Geological Survey, Global Centroid Moment Tensor, and other researchers. The coseismic Coulomb stress changes enhanced the stress on the northwest and

  4. Earthquake Rupture at Focal Depth, Part I: Structure and Rupture of the Pretorius Fault, TauTona Mine, South Africa

    Science.gov (United States)

    Heesakkers, V.; Murphy, S.; Reches, Z.

    2011-12-01

    We analyze the structure of the Archaean Pretorius fault in TauTona mine, South Africa, as well as the rupture-zone that recently reactivated it. The analysis is part of the Natural Earthquake Laboratory in South African Mines (NELSAM) project that utilizes the access to 3.6 km depth provided by the mining operations. The Pretorius fault is a ~10 km long, oblique-strike-slip fault with displacement of up to 200 m that crosscuts fine to very coarse grain quartzitic rocks in TauTona mine. We identify here three structural zones within the fault-zone: (1) an outer damage zone, ~100 m wide, of brittle deformation manifested by multiple, widely spaced fractures and faults with slip up to 3 m; (2) an inner damage zone, 25-30 m wide, with high density of anastomosing conjugate sets of fault segments and fractures, many of which carry cataclasite zones; and (3) a dominant segment, with a cataclasite zone up to 50 cm thick that accommodated most of the Archaean slip of the Pretorius fault, and is regarded as the `principal slip zone' (PSZ). This fault-zone structure indicates that during its Archaean activity, the Pretorius fault entered the mature fault stage in which many slip events were localized along a single, PSZ. The mining operations continuously induce earthquakes, including the 2004, M2.2 event that rejuvenated the Pretorius fault in the NELSAM project area. Our analysis of the M2.2 rupture-zone shows that (1) slip occurred exclusively along four, pre-existing large, quasi-planer segments of the ancient fault-zone; (2) the slipping segments contain brittle cataclasite zones up to 0.5 m thick; (3) these segments are not parallel to each other; (4) gouge zones, 1-5 mm thick, composed of white `rock-flour' formed almost exclusively along the cataclasite-host rock contacts of the slipping segments; (5) locally, new, fresh fractures branched from the slipping segments and propagated in mixed shear-tensile mode; (6) the maximum observed shear displacement is 25 mm in

  5. Source rupture process of the 2016 Kaikoura, New Zealand earthquake estimated from the kinematic waveform inversion of strong-motion data

    Science.gov (United States)

    Zheng, Ao; Wang, Mingfeng; Yu, Xiangwei; Zhang, Wenbo

    2018-03-01

    On 2016 November 13, an Mw 7.8 earthquake occurred in the northeast of the South Island of New Zealand near Kaikoura. The earthquake caused severe damages and great impacts on local nature and society. Referring to the tectonic environment and defined active faults, the field investigation and geodetic evidence reveal that at least 12 fault sections ruptured in the earthquake, and the focal mechanism is one of the most complicated in historical earthquakes. On account of the complexity of the source rupture, we propose a multisegment fault model based on the distribution of surface ruptures and active tectonics. We derive the source rupture process of the earthquake using the kinematic waveform inversion method with the multisegment fault model from strong-motion data of 21 stations (0.05-0.35 Hz). The inversion result suggests the rupture initiates in the epicentral area near the Humps fault, and then propagates northeastward along several faults, until the offshore Needles fault. The Mw 7.8 event is a mixture of right-lateral strike and reverse slip, and the maximum slip is approximately 19 m. The synthetic waveforms reproduce the characteristics of the observed ones well. In addition, we synthesize the coseismic offsets distribution of the ruptured region from the slips of upper subfaults in the fault model, which is roughly consistent with the surface breaks observed in the field survey.

  6. A novel wireless piezoelectric tire sensor for the estimation of slip angle

    International Nuclear Information System (INIS)

    Erdogan, G; Alexander, L; Rajamani, R

    2010-01-01

    This paper introduces a simple approach for the analysis of tire deformation and proposes a new piezoelectric tire sensor for physically meaningful measurements of tire deformations. Tire deformation measurements in the contact patch can be used for the estimation of slip angle, tire forces, slip ratio and tire–road friction coefficient. The specific case of a wireless tire deformation sensor for the estimation of slip angle is taken up in this paper. A sensor in which lateral sidewall deformation can be decoupled from radial deformation is designed. The slope of the lateral deflection curve in the contact patch is used to calculate slip angle. A specially constructed tire test rig is used to experimentally evaluate the performance of the developed sensor. Results show that the developed sensor can accurately estimate slip angles up to values of 5°

  7. Large-magnitude Dextral Slip on the Wairarapa Fault, New Zealand

    Science.gov (United States)

    Rodgers, D. W.; Little, T.

    2004-12-01

    Dextral slip associated with an 1855 Ms 8.0+ event on the Wairarapa fault near Wellington, New Zealand was reported to be 12+/-1 m along a rupture length of at least 148km (Grapes, 1999), one of the largest single-event strike-slip offsets documented worldwide. Initial results from a new study involving detailed neotectonic mapping and microtopographic surveys of offset landforms (including many beheaded, inactive streams) strongly suggest that dextral slip was as much as 50% greater than previously measured. 1855 surface ruptures were mapped with certainty where a linear scarp characterized by steep slopes (30-90°) and exposed alluvium cuts across active or inactive stream channels. The fifteen individual strands comprising the Wairarapa fault zone that we have mapped to date are 1200+/-700 m long and typically left-stepping. Slip in the stepover zones between these strands is distributed amongst two or more ruptures and intervening anticlines, a situation that causes along-strike variations in slip and which locally complicates the interpretation of 1855 displacement. We focused on seven of the best-preserved sites where low-discharge streams are disrupted by the fault zone, including five that had been previously attributed by Grapes (1999) to coseismic slip during the 1855 earthquake. One of these (Pigeon Bush) includes two sequentially displaced, now beheaded linear stream channels, oriented perpendicular to the fault scarp, that preserve distinct offsets with respect to a single deeply incised, originally contiguous gorge on the opposite side of the fault. To quantify the minimum fault displacements at each site, we made 1:500 scale topographic maps employing n = 2,000-10,000 points collected with GPS and laser instrumentation. Measured dextral slip values, here attributed to the 1855 earthquake, include 16.4+/-1.0m (Hinaburn), 12.9+/-2.0m (Cross Creek), 17.2+/-2.5m (Lake Meadows), 18.7+/-1.0m (Pigeon Bush), 13.0+/-1.5m (Pigeon Bush 2), 15.1+/-1.0m (Pigeon

  8. The Kumamoto Mw7.1 mainshock: deep initiation triggered by the shallow foreshocks

    Science.gov (United States)

    Shi, Q.; Wei, S.

    2017-12-01

    The Kumamoto Mw7.1 earthquake and its Mw6.2 foreshock struck the central Kyushu region in mid-April, 2016. The surface ruptures are characterized with multiple fault segments and a mix of strike-slip and normal motion extended from the intersection area of Hinagu and Futagawa faults to the southwest of Mt. Aso. Despite complex surface ruptures, most of the finite fault inversions use two fault segments to approximate the fault geometry. To study the rupture process and the complex fault geometry of this earthquake, we performed a multiple point source inversion for the mainshock using the data on 93 K-net and Kik-net stations. With path calibration from the Mw6.0 foreshock, we selected the frequency ranges for the Pnl waves (0.02 0.26 Hz) and surface waves (0.02 0.12 Hz), as well as the components that can be well modeled with the 1D velocity model. Our four-point-source results reveal a unilateral rupture towards Mt. Aso and varying fault geometries. The first sub-event is a high angle ( 79°) right-lateral strike-slip event at the depth of 16 km on the north end of the Hinagu fault. Notably the two M>6 foreshocks is located by our previous studies near the north end of the Hinagu fault at the depth of 5 9 km, which may give rise to the stress concentration at depth. The following three sub-events are distributed along the surface rupture of the Futagawa fault, with focal depths within 4 10 km. Their focal mechanisms present similar right-lateral fault slips with relatively small dip angles (62 67°) and apparent normal-fault component. Thus, the mainshock rupture initiated from the relatively deep part of the Hinagu fault and propagated through the fault-bend toward NE along the relatively shallow part of the Futagawa fault until it was terminated near Mt. Aso. Based on the four-point-source solution, we conducted a finite-fault inversion and obtained a kinematic rupture model of the mainshock. We then performed the Coulomb Stress analyses on the two foreshocks

  9. Leakage flow-induced vibration of an eccentric tube-in-tube slip joint

    International Nuclear Information System (INIS)

    Mulcahy, T.M.

    1985-08-01

    Eccentricity of a specific slip-joint design separating two cantilevered, telescoping tubes did not create any self-excited lateral vibrations that had not been observed previously for a concentric slip joint. In fact, the eccentricity made instabilities less likely to occur, but only marginally. Most important, design rules previously established to avoid instabilities for the concentric slip joint remain valid for the eccentric slip joint. 6 refs., 9 figs., 2 tabs

  10. Gait adaptations to awareness and experience of a slip when walking on a cross-slope.

    Science.gov (United States)

    Lawrence, Daniel; Domone, Sarah; Heller, Ben; Hendra, Timothy; Mawson, Susan; Wheat, Jon

    2015-10-01

    Falls that occur as a result of a slip are one of the leading causes of injuries, particularly in the elderly population. Previous studies have focused on slips that occur on a flat surface. Slips on a laterally sloping surface are important and may be related to different mechanisms of balance recovery. This type of slip might result in different gait adaptations to those previously described on a flat surface, but these adaptations have not been investigated. The aim of this study was to assess whether, when walking on a cross-slope, young adults adapted their gait when made aware of a potential slip, and having experienced a slip. Gait parameters were compared for three conditions--(1) Normal walking; (2) Walking after being made aware of a potential slip (participants were told that a slip may occur); (3) Walking after experiencing a slip (Participants had already experienced at least one slip induced using a soapy contaminant). Gait parameters were only analysed for trials in which there was no slippery contaminant present on the walkway. Stride length and walking velocity were significantly reduced, and stance duration was significantly greater in the awareness and experience conditions compared to normal walking, with no significant differences in any gait parameters between the awareness and experience conditions. In addition, 46.7% of the slip trials resulted in a fall. This is higher than reported for slips induced on a flat surface, suggesting slips on a cross-slope are more hazardous. This would help explain the more cautious gait patterns observed in both the awareness and experience conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Valgus Slipped Capital Femoral Epiphysis in Patient with Hypopituitarism

    Directory of Open Access Journals (Sweden)

    Yoshihiro Kotoura

    2017-01-01

    Full Text Available Slipped capital femoral epiphysis (SCFE is a common disease of adolescent and the epiphysis is positioned more posteromedially in relation to the femoral neck shaft with varus SCFE; however, posterolateral displacement of the capital epiphysis, valgus SCFE, occurs less frequently. We report a case of valgus SCFE in a 17-year-old boy with hypopituitarism. After falling down, he experienced difficulty in walking. The radiographs were inconclusive; however three-dimensional computed tomography images showed lateral displacement of the epiphysis on the right femoral head. Valgus SCFE was diagnosed. The patient underwent in situ pinning of both sides. In situ pinning on the left side was performed as a prophylactic pinning because of endocrine abnormalities. At the 1-year follow-up, he could walk without any difficulty and there were no signs of pain. The epiphysis is commonly positioned more posteromedially in relation to the femoral neck shaft with most SCFE, but, in this case, the epiphysis slipped laterally. Differential diagnosis included femoral neck fracture (Delbet-Colonna type 1; however, this was less likely due to the absence of other clinical signs. Therefore, we diagnosed the patient as SCFE. When children complain of leg pain and limp, valgus SCFE that may not be visualized on anteroposterior radiographs needs to be considered.

  12. Incipient Evolution of the Eastern California Shear Zone through a Transpressional Zone along the San Andreas Fault in the San Bernardino Mountains, California

    Science.gov (United States)

    Cochran, W. J.; Spotila, J. A.

    2017-12-01

    Measuring long-term accumulation of strike-slip displacements and transpressional uplift is difficult where strain is accommodated across wide shear zones, as opposed to a single major fault. The Eastern California Shear Zone (ECSZ) in southern California accommodates dextral shear across several strike-slip faults, and is potentially migrating and cutting through a formerly convergent zone of the San Bernardino Mountains (SBM). The advection of crust along the San Andreas fault to the SE has forced these two tectonic regimes into creating a nexus of interacting strike-slip faults north of San Gorgonio Pass. These elements make this region ideal for studying complex fault interactions, evolving fault geometries, and deformational overprinting within a wide shear zone. Using high-resolution topography and field mapping, this study aims to test whether diffuse, poorly formed strike-slip faults within the uplifted SBM block are nascent elements of the ECSZ. Topographic resolution of ≤ 1m was achieved using both lidar and UAV surveys along two Quaternary strike-slip faults, namely the Lake Peak fault and Lone Valley faults. Although the Lone Valley fault cuts across Quaternary alluvium, the geomorphic expression is obscured, and may be the result of slow slip rates. In contrast, the Lake Peak fault is located high elevations north of San Gorgonio Peak in the SBM, and displaces Quaternary glacial deposits. The deposition of large boulders along the escarpment also obscures the apparent magnitude of slip along the fault. Although determining fault offset is difficult, the Lake Peak fault does display evidence for minor right-lateral displacement, where the magnitude of slip would be consistent with individual faults within the ECSZ (i.e. ≤ 1 mm/yr). Compared to the preservation of displacement along strike-slip faults located within the Mojave Desert, the upland region of the SBM adds complexity for measuring fault offset. The distribution of strain across the entire

  13. The effect of hand dominance on martial arts strikes.

    Science.gov (United States)

    Neto, Osmar Pinto; Silva, Jansen Henrique; Marzullo, Ana Carolina de Miranda; Bolander, Richard P; Bir, Cynthia A

    2012-08-01

    The main goal of this study was to compare dominant and non-dominant martial arts palm strikes under different circumstances that usually happen during martial arts and combative sports applications. Seven highly experienced (10±5 years) right hand dominant Kung Fu practitioners performed strikes with both hands, stances with left or right lead legs, and with the possibility or not of stepping towards the target (moving stance). Peak force was greater for the dominant hand strikes (1593.76±703.45 N vs. 1042.28±374.16 N; p<.001), whereas no difference was found in accuracy between the hands (p=.141). Additionally, peak force was greater for the strikes with moving stance (1448.75±686.01 N vs. 1201.80±547.98 N; p=.002) and left lead leg stance (1378.06±705.48 N vs. 1269.96±547.08 N). Furthermore, the difference in peak force between strikes with moving and stationary stances was statistically significant only for the strikes performed with a left lead leg stance (p=.007). Hand speed was higher for the dominant hand strikes (5.82±1.08 m/s vs. 5.24±0.78 m/s; p=.001) and for the strikes with moving stance (5.79±1.01 m/s vs. 5.29±0.90 m/s; p<.001). The difference in hand speed between right and left hand strikes was only significant for strikes with moving stance. In summary, our results suggest that the stronger palm strike for a right-handed practitioner is a right hand strike on a left lead leg stance moving towards the target. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Southeastward increase of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications

    Science.gov (United States)

    Bai, Mingkun; Chevalier, Marie-Luce; Pan, Jiawei; Replumaz, Anne; Leloup, Philippe Hervé; Métois, Marianne; Li, Haibing

    2018-03-01

    The left-lateral strike-slip Xianshuihe fault system located in the eastern Tibetan Plateau is considered as one of the most tectonically active intra-continental fault system in China, along which more than 20 M > 6.5 and more than 10 M > 7 earthquakes occurred since 1700. Therefore, studying its activity, especially its slip rate at different time scales, is essential to evaluate the regional earthquake hazard. Here, we focus on the central segment of the Xianshuihe fault system, where the Xianshuihe fault near Kangding city splays into three branches: the Selaha, Yalahe and Zheduotang faults. In this paper we use precise dating together with precise field measurements of offsets to re-estimate the slip rate of the fault that was suggested without precise age constraints. We studied three sites where the active Selaha fault cuts and left-laterally offsets moraine crests and levees. We measured horizontal offsets of 96 ± 20 m at Tagong levees (TG), 240 ± 15 m at Selaha moraine (SLH) and 80 ± 5 m at Yangjiagou moraine (YJG). Using 10Be cosmogenic dating, we determined abandonment ages at Tagong, Selaha and Yangjiagou of 12.5 (+ 2.5 / - 2.2) ka, 22 ± 2 ka, and 18 ± 2 ka, respectively. By matching the emplacement age of the moraines or levees with their offsets, we obtain late Quaternary horizontal average slip-rates of 7.6 (+ 2.3 / - 1.9) mm/yr at TG and 10.7 (+ 1.3 / - 1.1) mm/yr at SLH, i.e., 5.7-12 mm/yr or between 9.6 and 9.9 mm/yr assuming that the slip rate should be constant between the nearby TG and SLH sites. At YJG, we obtain a lower slip rate of 4.4 ± 0.5 mm/yr, most likely because the parallel Zheduotang fault shares the slip rate at this longitude, therefore suggesting a ∼5 mm/yr slip rate along the Zheduotang fault. The ∼10 mm/yr late Quaternary rate along the Xianshuihe fault is higher than that along the Ganzi fault to the NW (6-8 mm/yr). This appears to be linked to the existence of the Longriba fault system that separates the Longmenshan

  15. The 1992 Tafilalt seismic crisis (Anti-Atlas, Morocco)

    Science.gov (United States)

    Bensaid, Ihsane; Cherkaoui, Taj-Eddine; Medina, Fida; Caldeira, Bento; Buforn, Elisa; Emran, Anas; Hahou, Youssef

    2012-01-01

    The Tafilalt region, located at the eastern end of the Anti-Atlas chain in Morocco, was shaken on 23 and 30 October 1992 by two moderate earthquakes of magnitude mb ˜ 5 and intensity ˜ VI MSK64, which caused two deaths and great damage in the area between Erfoud and Rissani. The review of data available on the seismic crisis allowed us to improve the knowledge on the macroseismic, instrumental and source parameters of the earthquakes. The main results of the present study are: (1) location of the epicentres with the help of data from a close portable network allowed us to propose new epicentral coordinates at 31.361° N, 4.182° W (23 October) and 31.286° N, 4.347° W (30 October); both events have focal depths of 2 km; (2) the shock of 30 October was followed by a series of 305 aftershocks, most of which were located west of Rissani; the 61 best-constrained events had focal depths of 5 to 19 km and magnitudes 0.7 to 3; (3) the largest damage was located in an area between the two epicentres within the Tafilalt valley and was probably amplified by site effects due to the proximity of the water table within the Quaternary sediments; (4) focal mechanisms of the main events correspond to strike-slip faulting with fault planes oriented N-S (left lateral) and E-W (right lateral); the only mechanism available for the aftershocks also corresponds to strike-slip faulting; (5) spectral analysis shows that the scalar seismic moment ( Mo) of the first event is slightly larger than the second; the corresponding values of Mw are 5.1 and 5.0, respectively; (6) the dimensions of the faults for a circular fault model are 7.7 ± 1.4 and 7.4 ± 1.2 km, respectively; the average displacement is 4 cm for the first event and 3.7 cm for the second; the stress drop is 0.4 and 0.3 MPa, respectively, in agreement with standard values; (7) the Coulomb Stress test performed for both earthquakes suggests a relationship between both events only when the used location is at the limit of the

  16. The characteristics of the western extension of the Karakax fault in NW Tibet and its tectonic implications

    Science.gov (United States)

    Ge, C.; Liu, D.; Li, H.; Zheng, Y.; Pan, J.

    2017-12-01

    The Karakax strike-slip fault, located in northwest Tibet, is a mature deformation belt with a long-time evolutionary history, which is also active at present and plays an important role in the tectonic deformation of the northwestern Tibetan Plateau. Nowadays, most geologists consider that the Karakax fault is generally east-west striking along the Karakax river valley, and northwest striking until to the Tashkorgan in the Mazar area. However, an ENE-WSW fault was identified at the Mazar area, which sited at the bend of the Karakax fault, we named this fault as the Matar fault. Via the detailed geological survey, the similar geometry and kinematic characteristics were identified between the Karakax and Matar faults: (1) The similar fault zone scale(Karakax:90 300m; Matar:100 220m); (2) The similar preferred orientation (nearly EW) of the stretching lineations and foliations; (3) All the fault planes of the both faults have a high dip angle and is nearly EW striking; (4) Lots of ductile deformations, such as σ-type quartz rotational mortar, S-C fabric, symmetric drag fold and so on, indicated that the Matar fault is a right-lateral strike-slip and thrust fault during the early ductile deformation stage; (5) the deluvium, sheared by Matar fault, indicated that the Matar fault has already transformed into a left-lateral strike-slip fault during the later brittle deformation stage. All the above showed that the Matar fault has a similar geometry and kinematic characteristics with the Karakax fault, and the former is the probable the western extension of the latter. Moreover, the form of the Karakax-Matar fault may had an impact to the geomorphology of the west Kunlun-Pamir area, such as the strike of the moutains and faults. considering the age of west Kunlun mountains uplifting and Karakax fault activating, we regard that the Matar fault (the westward extension of Karakax fault) may contributes much in forming the modern geomorphology features of the west Kunlun

  17. Båth's law and its relation to the tectonic environment: A case study for earthquakes in Mexico

    Science.gov (United States)

    Rodríguez-Pérez, Q.; Zúñiga, F. R.

    2016-09-01

    We studied 66 mainshocks and their largest aftershocks in the Mexican subduction zone and in the Gulf of California with magnitudes in the range of 5.2 worldwide studies supporting the observation of mechanism dependence of radiated seismic energy. The statistical tests indicate that the only significant difference is for shallow thrust and strike-slip events for these parameters. The statistical comparison of stress drop of shallow thrust versus that of inslab events shows a strongly significant difference with a confidence better than 99%. The comparison of stress drop of shallow thrust events with that of strike-slip events, also indicates a strongly significant difference. We see no dependence of stress drop with magnitude, which is strong evidence of earthquake self-similarity. We do not observe a systematic depth dependence of stress drop. The results also reveal differences in the earthquake rupture among the events. The magnitude difference between the mainshock and the largest aftershock for inslab events is larger than interplate and strike-slip events suggesting focal mechanism dependence of Båth's law. For the case of this parameter, only that for inslab and strike-slip events present a significant difference with 95% confidence.

  18. Focal mechanisms and tidal modulation for tectonic tremors in Taiwan

    Science.gov (United States)

    Ide, S.; Yabe, S.; Tai, H. J.; Chen, K. H.

    2015-12-01

    Tectonic tremors in Taiwan have been discovered beneath the southern Central Range, but their hosting structure has been unknown. Here we constrain the focal mechanism of underground deformation related to tremors, using moment tensor inversion in the very low frequency band and tidal stress analysis. Three types of seismic data are used for two analysis steps: detection of tremors and the moment tensor inversion. Short-period seismograms from CWBSN are used for tremor detection. Broadband seismograms from BATS and the TAIGER project are used for both steps. About 1000 tremors were detected using an envelope correlation method in the high frequency band (2-8 Hz). Broadband seismograms are stacked relative to the tremor timing, and inverted for a moment tensor in the low frequency band (0.02-0.05 Hz). The best solution was obtained at 32 km depth, as a double-couple consistent with a low-angle thrust fault dipping to the east-southeast, or a high-angle thrust with a south-southwest strike. Almost all tremors occur when tidal shear stress is positive and normal stress is negative (clamping). Since the clamping stress is high for a high-angle thrust fault, the low-angle thrust fault is more likely to be the fault plane. Tremor rate increases non-linearly with increasing shear stress, suggesting a velocity strengthening friction law. The high tidal sensitivity is inconsistent with horizontal slip motion suggested by previous studies, and normal faults that dominates regional shallow earthquakes. Our results favor thrust slip on a low-angle fault dipping to the east-southeast, consistent with the subduction of the Eurasian plate. The tremor region is characterized by a deep thermal anomaly with decrease normal stress. This region has also experienced enough subduction to produce metamorphic fluids. A large amount of fluid and low vertical stress may explain the high tidal sensitivity.

  19. Focal CT abnormality and epileptogenic focus

    International Nuclear Information System (INIS)

    Yagi, Kazuichi; Mihara, Tadahiro; Tottori, Takayasu; Matsuda, Kazumi; Watanabe, Yutaka; Seino, Masakazu

    1989-01-01

    In 31 patients with temporal lobe epilepsy, the precise site of epileptogenic focus was determined by means of a depth EEG recording as one of the presurgical evaluations. In 13 patients, a CT scan revealed focal lesions; 7 in the left temporal lobe and 6 in the right temporal lobe. In 5 of the 7 patients and in 5 of the 6 patients the epileptogenic foci were determined in the temporal lobe on the side of a CT lesion. However, in 2 of the patients with a CT lesion in the left temporal lobe, independent epileptogenic foci were found in both the temporal lobes, and in the other patient with a CT lesion in the right temporal lobe, they were found in the right frontal and left temporal lobes. Thus, the CT lesions agreed in lateralization and focality with the epileptogenic foci in 10 of the 13 patients (77%), but they disagreed in 3 (23%). A CT lesion disclosed in the temporal lobe does not necessarily indicate the side and/or site where the epileptogenic focus may be localized. Although exceptions may be made, spatial disagreement was exemplified between the CT lesion and epileptogenic focus. Therefore, extreme caution has to be taken on the side and/or site of the epileptogenic focus when functional surgical indication is to be made. (author)

  20. Impairments in proverb interpretation following focal frontal lobe lesions.

    Science.gov (United States)

    Murphy, Patrick; Shallice, Tim; Robinson, Gail; MacPherson, Sarah E; Turner, Martha; Woollett, Katherine; Bozzali, Marco; Cipolotti, Lisa

    2013-09-01

    The proverb interpretation task (PIT) is often used in clinical settings to evaluate frontal "executive" dysfunction. However, only a relatively small number of studies have investigated the relationship between frontal lobe lesions and performance on the PIT. We compared 52 patients with unselected focal frontal lobe lesions with 52 closely matched healthy controls on a proverb interpretation task. Participants also completed a battery of neuropsychological tests, including a fluid intelligence task (Raven's Advanced Progressive Matrices). Lesions were firstly analysed according to a standard left/right sub-division. Secondly, a finer-grained analysis compared the performance of patients with medial, left lateral and right lateral lesions with healthy controls. Thirdly, a contrast of specific frontal subgroups compared the performance of patients with medial lesions with patients with lateral frontal lesions. The results showed that patients with left frontal lesions were significantly impaired on the PIT, while in patients with right frontal lesions the impairments approached significance. Medial frontal patients were the only frontal subgroup impaired on the PIT, relative to healthy controls and lateral frontal patients. Interestingly, an error analysis indicated that a significantly higher number of concrete responses were found in the left lateral subgroup compared to healthy controls. We found no correlation between scores on the PIT and on the fluid intelligence task. Overall our results suggest that specific regions of the frontal lobes contribute to the performance on the PIT. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

  1. Spatial Variation of Slip Behavior Beneath the Alaska Peninsula Along Alaska-Aleutian Subduction Zone

    Science.gov (United States)

    Li, Shanshan; Freymueller, Jeffrey T.

    2018-04-01

    We resurveyed preexisting campaign Global Positioning System (GPS) sites and estimated a highly precise GPS velocity field for the Alaska Peninsula. We use the TDEFNODE software to model the slip deficit distribution using the new GPS velocities. We find systematic misfits to the vertical velocities from the optimal model that fits the horizontal velocities well, which cannot be explained by altering the slip distribution, so we use only the horizontal velocities in the study. Locations of three boundaries that mark significant along-strike change in the locking distribution are identified. The Kodiak segment is strongly locked, the Semidi segment is intermediate, the Shumagin segment is weakly locked, and the Sanak segment is dominantly creeping. We suggest that a change in preexisting plate fabric orientation on the downgoing plate has an important control on the along-strike variation in the megathrust locking distribution and subduction seismicity.

  2. Seismicity of the 24 May 2014 Mw 7.0 Aegean Sea earthquake sequence along the North Aegean Trough

    Science.gov (United States)

    Görgün, Ethem; Görgün, Burçak

    2015-11-01

    The northern Aegean Sea was hit by a large size (Mw = 7.0) earthquake on 2014 May 24. Centroid moment tensor solutions for 40 events with moment magnitudes (Mw) between 3.3 and 7.0 are computed by applying a waveform inversion method on data from the Turkish and Greek broadband seismic networks. The time span of data covers the period between 2014 May 24 and 2014 June 26. The mainshock is a shallow focus strike-slip event at a depth of 15 km. Focal depths of aftershocks range from 6 to 30 km. The seismic moment (Mo) of the mainshock is estimated as 4.60 × 1019 Nm. The calculated rupture duration of the North Aegean Sea mainshock is 40 s. The focal mechanisms of the aftershocks are mainly strike-slip faulting with a minor normal component. The geometry of focal mechanisms reveals a strike-slip faulting regime with NE-SW trending direction of T-axis in the entire activated region. A stress tensor inversion of focal mechanism data is performed to acquire a more accurate picture of the northern Aegean Sea stress field along the North Aegean Trough. The stress tensor inversion results indicate a predominant strike-slip stress regime with a NW-SE oriented maximum principal compressive stress (σ1). In the development of the North Aegean Trough in Aegean Sea is in good agreement with the resolved stress tensors. With respect the newly determined focal mechanisms, the effect of the propagating of the North Anatolian Fault into Aegean Sea is very clearly pronounced. According to high-resolution hypocenter relocation of the North Aegean Sea seismic sequence, three main clusters are revealed. The aftershock activity in the observation period between 2014 May 24 and 2014 July 31 extends from the mainshock cluster from NE to the SW direction. Seismic cross-sections indicate that a complex pattern of the hypocenter distribution with the activation of seventeen segments. The eastern cluster is associated with a fault plane trending mainly ENE-WSW and dipping vertical, while the

  3. Distortion of time interval reproduction in an epileptic patient with a focal lesion in the right anterior insular/inferior frontal cortices.

    Science.gov (United States)

    Monfort, Vincent; Pfeuty, Micha; Klein, Madelyne; Collé, Steffie; Brissart, Hélène; Jonas, Jacques; Maillard, Louis

    2014-11-01

    This case report on an epileptic patient suffering from a focal lesion at the junction of the right anterior insular cortex (AIC) and the adjacent inferior frontal cortex (IFC) provides the first evidence that damage to this brain region impairs temporal performance in a visual time reproduction task in which participants had to reproduce the presentation duration (3, 5 and 7s) of emotionally-neutral and -negative pictures. Strikingly, as compared to a group of healthy subjects, the AIC/IFC case considerably overestimated reproduction times despite normal variability. The effect was obtained in all duration and emotion conditions. Such a distortion in time reproduction was not observed in four other epileptic patients without insular or inferior frontal damage. Importantly, the absolute extent of temporal over-reproduction increased in proportion to the magnitude of the target durations, which concurs with the scalar property of interval timing, and points to an impairment of time-specific rather than of non temporal (such as motor) mechanisms. Our data suggest that the disability in temporal reproduction of the AIC/IFC case would result from a distorted memory representation of the encoded duration, occurring during the process of storage and/or of recovery from memory and leading to a deviation of the temporal judgment during the reproduction task. These findings support the recent proposal that the anterior insular/inferior frontal cortices would be involved in time interval representation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. 3-D structure of the crust and uppermost mantle at the junction between the Southeastern Alps and External Dinarides from ambient noise tomography

    Science.gov (United States)

    Guidarelli, Mariangela; Aoudia, Abdelkrim; Costa, Giovanni

    2017-12-01

    We use ambient noise tomography to investigate the crust and the uppermost mantle structure beneath the junction between the Southern Alps, the Dinarides and the Po Plain. We obtained Rayleigh wave empirical Green's functions from cross-correlation of vertical component seismic recordings for three years (2010-2012) using stations from networks in Italy, Slovenia, Austria, Croatia, Serbia and Switzerland. We measure group and phase velocity dispersion curves from the reconstructed Rayleigh waves in the period range 5-30 and 8-37 s, respectively, and we invert the surface wave velocities for tomographic images on a grid of 0.1° × 0.1°. After the tomography, the group velocities are then inverted to compute the 3-D shear wave velocity model of the crust and the upper mantle beneath the region. Our shear wave velocity model provides the 3-D image of the structure in the region between Northeastern Italy, Slovenia and Austria. The velocity variations at shallow depths correlate with known geological and tectonic domains. We find low velocities below the Po Plain, the northern tip of the Adriatic and the Pannonian Basin, whereas higher velocities characterize the Alpine chain. The vertical cross-sections reveal a clear northward increase of the crustal thickness with a sharp northward dipping of the Moho that coincides at the surface with the leading edge of the Alpine thrust front adjacent to the Friuli Plain in Northeastern Italy. This geometry of the Moho mimics fairly well the shallow north dipping geometry of the decollement inferred from permanent GPS velocity field where high interseismic coupling is reported. From the northern Adriatic domain up to the Idrija right lateral strike-slip fault system beneath Western Slovenia, the crustal thickness is more uniform. Right across Idrija fault, to the northeast, and along its strike, we report a clear change of the physical properties of the crust up to the uppermost mantle as reflected by the lateral distribution

  5. Strikes in Serbia since 2000 to 2005

    OpenAIRE

    Novaković Nada

    2005-01-01

    In this article author deals with main characteristics of strikes in Serbia within the period 2000–2005. Analysis starts with thesis that strike is open class conflict within class divided society. Therefore strike is radical form of trade union struggle for workers rights. Main questions in the analysis were: on social structure as a background of strikes, on organizations and trade unions included in it, on effects of strikes in Serbia in the given period. Main thesis of the article is that...

  6. A Comparison of Geodetic and Geologic Rates Prior to Large Strike-Slip Earthquakes: A Diversity of Earthquake-Cycle Behaviors?

    Science.gov (United States)

    Dolan, James F.; Meade, Brendan J.

    2017-12-01

    Comparison of preevent geodetic and geologic rates in three large-magnitude (Mw = 7.6-7.9) strike-slip earthquakes reveals a wide range of behaviors. Specifically, geodetic rates of 26-28 mm/yr for the North Anatolian fault along the 1999 MW = 7.6 Izmit rupture are ˜40% faster than Holocene geologic rates. In contrast, geodetic rates of ˜6-8 mm/yr along the Denali fault prior to the 2002 MW = 7.9 Denali earthquake are only approximately half as fast as the latest Pleistocene-Holocene geologic rate of ˜12 mm/yr. In the third example where a sufficiently long pre-earthquake geodetic time series exists, the geodetic and geologic rates along the 2001 MW = 7.8 Kokoxili rupture on the Kunlun fault are approximately equal at ˜11 mm/yr. These results are not readily explicable with extant earthquake-cycle modeling, suggesting that they may instead be due to some combination of regional kinematic fault interactions, temporal variations in the strength of lithospheric-scale shear zones, and/or variations in local relative plate motion rate. Whatever the exact causes of these variable behaviors, these observations indicate that either the ratio of geodetic to geologic rates before an earthquake may not be diagnostic of the time to the next earthquake, as predicted by many rheologically based geodynamic models of earthquake-cycle behavior, or different behaviors characterize different fault systems in a manner that is not yet understood or predictable.

  7. Lateral Attitude Change.

    Science.gov (United States)

    Glaser, Tina; Dickel, Nina; Liersch, Benjamin; Rees, Jonas; Süssenbach, Philipp; Bohner, Gerd

    2015-08-01

    The authors propose a framework distinguishing two types of lateral attitude change (LAC): (a) generalization effects, where attitude change toward a focal object transfers to related objects, and (b) displacement effects, where only related attitudes change but the focal attitude does not change. They bring together examples of LAC from various domains of research, outline the conditions and underlying processes of each type of LAC, and develop a theoretical framework that enables researchers to study LAC more systematically in the future. Compared with established theories of attitude change, the LAC framework focuses on lateral instead of focal attitude change and encompasses both generalization and displacement. Novel predictions and designs for studying LAC are presented. © 2014 by the Society for Personality and Social Psychology, Inc.

  8. Active stress from earthquake focal mechanisms along the Padan-Adriatic side of the Northern Apennines (Italy), with considerations on stress magnitudes and pore-fluid pressures

    Science.gov (United States)

    Boncio, Paolo; Bracone, Vito

    2009-10-01

    The active tectonic regime along the outer Northern Apennines (Padan-Adriatic area) is a matter of debate. We analyse the active tectonic regime by systematically inverting earthquake focal mechanisms in terms of their driving stress field, comparing two different stress inversion methods. Earthquakes within the area often deviate from Andersonian conditions, being characterized by reverse or transpressional slip on high-angle faults even if the regime is almost purely thrust faulting (e.g. Reggio Emilia 1996 and Faenza 2000 earthquakes). We analyse the stress conditions at faulting for the Reggio Emilia and Faenza earthquakes in order to infer the stress magnitudes and the possible role of fluid pressures. The stress analysis defines a consistent pattern of sub-horizontal active deviatoric compression arranged nearly perpendicular to the eastern front of the Padan-Adriatic fold-and-thrust system, independent of the stress inversion method used. The results are consistent with active compression operating within the Padan-Adriatic belt. The stress field is thrust faulting (sub-vertical σ3), except for the Cesena-Forlì and Ancona areas, where a strike-slip regime (sub-vertical or steeply-plunging σ2) operates. The strike-slip regimes are interpreted as being caused by the superposition of local tensional stresses due to oroclinal bending (i.e. rotations of the belt about vertical axes) on the regional compressional stress field. Kinematic complexities characterize the 1996 Reggio Emilia seismic sequence. The distribution of these complexities is not random, suggesting that they are due to local variations of the regional stress field within the unfaulted rocks surrounding the coseismic rupture. The stress conditions at faulting for the Reggio Emilia 1996 and Faenza 2000 earthquakes, coupled with the observation that seismicity in the Padan-Adriatic area often occurs in swarms, suggest that high pore-fluid pressures (Pf ≥ 70% of the lithostatic load) operate

  9. Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 Tohoku earthquake

    KAUST Repository

    Goda, Katsuichiro; Mai, Paul Martin; Yasuda, Tomohiro; Mori, Nobuhito

    2014-01-01

    In this study, we develop stochastic random-field slip models for the 2011 Tohoku earthquake and conduct a rigorous sensitivity analysis of tsunami hazards with respect to the uncertainty of earthquake slip and fault geometry. Synthetic earthquake slip distributions generated from the modified Mai-Beroza method captured key features of inversion-based source representations of the mega-thrust event, which were calibrated against rich geophysical observations of this event. Using original and synthesised earthquake source models (varied for strike, dip, and slip distributions), tsunami simulations were carried out and the resulting variability in tsunami hazard estimates was investigated. The results highlight significant sensitivity of the tsunami wave profiles and inundation heights to the coastal location and the slip characteristics, and indicate that earthquake slip characteristics are a major source of uncertainty in predicting tsunami risks due to future mega-thrust events.

  10. Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 Tohoku earthquake

    KAUST Repository

    Goda, Katsuichiro

    2014-09-01

    In this study, we develop stochastic random-field slip models for the 2011 Tohoku earthquake and conduct a rigorous sensitivity analysis of tsunami hazards with respect to the uncertainty of earthquake slip and fault geometry. Synthetic earthquake slip distributions generated from the modified Mai-Beroza method captured key features of inversion-based source representations of the mega-thrust event, which were calibrated against rich geophysical observations of this event. Using original and synthesised earthquake source models (varied for strike, dip, and slip distributions), tsunami simulations were carried out and the resulting variability in tsunami hazard estimates was investigated. The results highlight significant sensitivity of the tsunami wave profiles and inundation heights to the coastal location and the slip characteristics, and indicate that earthquake slip characteristics are a major source of uncertainty in predicting tsunami risks due to future mega-thrust events.

  11. The 11 May 2011 earthquake at Lorca (SE Spain viewed in a structural-tectonic context

    Directory of Open Access Journals (Sweden)

    R. L. M. Vissers

    2011-10-01

    Full Text Available The Lorca earthquake of 11 May 2011 in the Betic Cordillera of SE Spain occurred almost exactly on the Alhama de Murcia fault, a marked fault that forms part of a NE-SW trending belt of faults and thrusts. The fault belt is reminiscent of a strike-slip corridor, but recent structural studies have provided clear evidence for reverse motions on these faults. Focal mechanisms of the main earthquake, but also of a foreshock, are strikingly consistent with structural observations on the Alhama de Murcia fault. This strengthens the conclusion that, rather than a strike-slip fault, the fault is at present a contractional fault with an oblique reverse sense of motion, presumably in response to the NW-directed motion of Africa with respect to Europe.

  12. Torts Liability for Strike Action and Third Party Rights.

    Science.gov (United States)

    Raday, Frances

    1979-01-01

    Studies the nature of the torts liability incurred in strikes and the extent of existing immunities bestowed on strikers and their organizers, and explores the principles that should govern liability and immunity. Available from Israel Law Review Association, c/o Faculty of Law, Hebrew University of Jerusalem, Mount Scopus, P.O.B. 24100, Jerusalem…

  13. ILO: Grev Hakkına İlişkin Kriz / ILO: Crisis in Terms of Right to Strike

    Directory of Open Access Journals (Sweden)

    Sevda KÖSE

    2018-02-01

    Full Text Available Bu çalışmanın amacı, 2012 yılında Uluslararası Çalışma Örgütü Konferansındaki işveren grubunun grev hakkı ile ilgili yaptığı sert itirazların Uluslararası Çalışma Örgütü (ILO bağlamında bir krize yol açıp açmadığının incelenmesidir. ILO ve denetim mekanizmaları aracılığı ile oluşturulan içtihatlar bağlamında 60 yıl boyunca grev hakkına, örgütlenme özgürlüğünün bir parçası olarak yer verilerek, toplu sözleşme, sendika hakkı ve grev hakkı bir bütün olarak düşünülmüştür. Bu içtihatların, grev hakkının uluslararası alanda tanınmasına olan katkısı fazladır. Bu durum ta ki 2012 yılındaki ILO Konferansı’na kadar devam etmiştir. İşveren grubundan ciddi bir itiraz ile birlikte grev hakkı ile ilgili ILO’da bir kriz olup olmadığı sorusu gündeme gelmeye başlamıştır. Bu durum ILO’nun denetim mekanizmasının etkinliğinin sorgulanmasına neden olurken aynı zamanda ILO’nun denetim organları içindeki eşgüdümün de eleştirilmesine yol açmıştır. / The purpose of this study is to examine whether the rigid objections made by the employers’ group at the International Labor Organization Conference in 2012 on the right to strike led to a crisis the context of the International Labor Organization. For sixty years in the context of jurispurudence of ILO’s superbody mechanicsm when it is thought that right to strike has been included as a part of freedom of association and at the same time, the right to collective bargaining, trade union rights and right to strike has been considered as a whole. This situation continued until 2012 ILO Conference. With a serious objection from the employers’ group, the question of whether there was a crisis in the ILO regarding the right to strike began to come to the fore. This led to the questioning of the effectiveness of the ILO’s superbody mechanism and at the same time the ILO’s criticism of its coordination

  14. Asymmetrical slip propensity: required coefficient of friction.

    Science.gov (United States)

    Seo, Jung-suk; Kim, Sukwon

    2013-07-31

    Most studies in performing slips and falls research reported their results after the ipsilateral leg of subjects (either right foot or left foot) was guided to contact the contaminated floor surface although many studies indicated concerns for asymmetries of legs in kinematic or kinetic variables. Thus, the present study evaluated if dominant leg's slip tendency would be different from non-dominant leg's slip tendency by comparing the Required Coefficient of Friction (RCOF) of the two lower limbs. Forty seven health adults participated in the present study. RCOF was measured when left or right foot of subjects contacted the force platforms respectively. Paired t-test was performed to test if RCOF and heel velocity (HCV) of dominant legs was different from that of non-dominant legs. It was suggested that the asymmetry in RCOFs and HCV between the two lower limbs existed. The RCOFs of non-dominant legs were higher than that of dominant legs. The results indicated that asymmetry in slip propensity, RCOF, was existed in lower extremity. The results from the study suggested that it would be benefit to include a variable, such as asymmetry, in slips and falls research.

  15. Impairments in proverb interpretation following focal frontal lobe lesions☆

    Science.gov (United States)

    Murphy, Patrick; Shallice, Tim; Robinson, Gail; MacPherson, Sarah E.; Turner, Martha; Woollett, Katherine; Bozzali, Marco; Cipolotti, Lisa

    2013-01-01

    The proverb interpretation task (PIT) is often used in clinical settings to evaluate frontal “executive” dysfunction. However, only a relatively small number of studies have investigated the relationship between frontal lobe lesions and performance on the PIT. We compared 52 patients with unselected focal frontal lobe lesions with 52 closely matched healthy controls on a proverb interpretation task. Participants also completed a battery of neuropsychological tests, including a fluid intelligence task (Raven’s Advanced Progressive Matrices). Lesions were firstly analysed according to a standard left/right sub-division. Secondly, a finer-grained analysis compared the performance of patients with medial, left lateral and right lateral lesions with healthy controls. Thirdly, a contrast of specific frontal subgroups compared the performance of patients with medial lesions with patients with lateral frontal lesions. The results showed that patients with left frontal lesions were significantly impaired on the PIT, while in patients with right frontal lesions the impairments approached significance. Medial frontal patients were the only frontal subgroup impaired on the PIT, relative to healthy controls and lateral frontal patients. Interestingly, an error analysis indicated that a significantly higher number of concrete responses were found in the left lateral subgroup compared to healthy controls. We found no correlation between scores on the PIT and on the fluid intelligence task. Overall our results suggest that specific regions of the frontal lobes contribute to the performance on the PIT. PMID:23850600

  16. Determinations of directions of the mean stress field in Sichuan-Yunnan region from a number of focal mechanism solutions

    Science.gov (United States)

    Zhong, Ji-Mao; Cheng, Wan-Zheng

    2006-07-01

    Based on the spatial orientation and slip direction of the fault plane solutions, we present the expression of corresponding mechanical axis tensor in geographic coordinate system, and then put forward a method for calculating average mechanical axis tensor and its eigenvalues, which involves solving the corresponding eigenequation. The method for deducing mean stress field from T, B, and P axes parameters of a number of focal mechanism solutions has been verified by inverting data of mean stress fields in Fuyun region and in Tangshan region with fitting method of slip direction, and both results are consistent. To study regional average stress field, we need to choose a population of focal mechanism solutions of earthquakes in the massifs where there are significant tectonic structures. According to the focal mechanism solutions of 256 moderate-strong earthquakes occurred in 13 seismic zones of Sichuan-Yunnan region, the quantitative analysis results of stress tensor in each seismic zone have been given. The algorithm of such method is simple and convenient, which makes the method for analyzing tectonic stress field with large amount of focal mechanism solution data become quantified.

  17. The 1987 Whittier Narrows, California, earthquake: A Metropolitan shock

    OpenAIRE

    Hauksson, Egill; Stein, Ross S.

    1989-01-01

    Just 3 hours after the Whittier Narrows earthquake struck, it became clear that a heretofore unseen geological structure was seismically active beneath metropolitan Los Angeles. Contrary to initial expectations of strike-slip or oblique-slip motion on the Whittier fault, whose north end abuts the aftershock zone, the focal mechanism of the mainshock showed pure thrust faulting on a deep gently inclined surface [Hauksson et al., 1988]. This collection of nine research reports spans the spectru...

  18. Complex evolution of transient slip derived from precise tremor locations in western Shikoku, Japan

    Science.gov (United States)

    Shelly, David R.; Beroza, Gregory C.; Ide, Satoshi

    2007-10-01

    Transient slip events, which occur more slowly than traditional earthquakes, are increasingly being recognized as important components of strain release on faults and may substantially impact the earthquake cycle. Surface-based geodetic instruments provide estimates of the overall slip distribution in larger transients but are unable to capture the detailed evolution of such slip, either in time or in space. Accompanying some of these slip transients is a relatively weak, extended duration seismic signal, known as nonvolcanic tremor, which has recently been shown to be generated by a sequence of shear failures occurring as part of the slip event. By precisely locating the tremor, we can track some features of slip evolution with unprecedented resolution. Here, we analyze two weeklong episodes of tremor and slow slip in western Shikoku, Japan. We find that these slip transients do not evolve in a smooth and steady fashion but contain numerous subevents of smaller size and shorter duration. In addition to along-strike migration rates of ˜10 km/d observed previously, much faster migration also occurs, usually in the slab dip direction, at rates of 25-150 km/h over distances of up to ˜20 km. We observe such migration episodes in both the updip and downdip directions. These episodes may be most common on certain portions of the plate boundary that generate strong tremor in intermittent bursts. The surrounding regions of the fault may slip more continuously, driving these stronger patches to repeated failures. Tremor activity has a strong tidal periodicity, possibly reflecting the modulation of slow slip velocity by tidal stresses.

  19. A Robust Localization, Slip Estimation, and Compensation System for WMR in the Indoor Environments

    Directory of Open Access Journals (Sweden)

    Zakir Ullah

    2018-05-01

    Full Text Available A novel approach is proposed for the path tracking of a Wheeled Mobile Robot (WMR in the presence of an unknown lateral slip. Much of the existing work has assumed pure rolling conditions between the wheel and ground. Under the pure rolling conditions, the wheels of a WMR are supposed to roll without slipping. Complex wheel-ground interactions, acceleration and steering system noise are the factors which cause WMR wheel slip. A basic research problem in this context is localization and slip estimation of WMR from a stream of noisy sensors data when the robot is moving on a slippery surface, or moving at a high speed. DecaWave based ranging system and Particle Filter (PF are good candidates to estimate the location of WMR indoors and outdoors. Unfortunately, wheel-slip of WMR limits the ultimate performance that can be achieved by real-world implementation of the PF, because location estimation systems typically partially rely on the robot heading. A small error in the WMR heading leads to a large error in location estimation of the PF because of its cumulative nature. In order to enhance the tracking and localization performance of the PF in the environments where the main reason for an error in the PF location estimation is angular noise, two methods were used for heading estimation of the WMR (1: Reinforcement Learning (RL and (2: Location-based Heading Estimation (LHE. Trilateration is applied to DecaWave based ranging system for calculating the probable location of WMR, this noisy location along with PF current mean is used to estimate the WMR heading by using the above two methods. Beside the WMR location calculation, DecaWave based ranging system is also used to update the PF weights. The localization and tracking performance of the PF is significantly improved through incorporating heading error in localization by applying RL and LHE. Desired trajectory information is then used to develop an algorithm for extracting the lateral slip along

  20. Universal slip dynamics in metallic glasses and granular matter - linking frictional weakening with inertial effects

    Science.gov (United States)

    Denisov, Dmitry V.; Lőrincz, Kinga A.; Wright, Wendelin J.; Hufnagel, Todd C.; Nawano, Aya; Gu, Xiaojun; Uhl, Jonathan T.; Dahmen, Karin A.; Schall, Peter

    2017-03-01

    Slowly strained solids deform via intermittent slips that exhibit a material-independent critical size distribution. Here, by comparing two disparate systems - granular materials and bulk metallic glasses - we show evidence that not only the statistics of slips but also their dynamics are remarkably similar, i.e. independent of the microscopic details of the material. By resolving and comparing the full time evolution of avalanches in bulk metallic glasses and granular materials, we uncover a regime of universal deformation dynamics. We experimentally verify the predicted universal scaling functions for the dynamics of individual avalanches in both systems, and show that both the slip statistics and dynamics are independent of the scale and details of the material structure and interactions, thus settling a long-standing debate as to whether or not the claim of universality includes only the slip statistics or also the slip dynamics. The results imply that the frictional weakening in granular materials and the interplay of damping, weakening and inertial effects in bulk metallic glasses have strikingly similar effects on the slip dynamics. These results are important for transferring experimental results across scales and material structures in a single theory of deformation dynamics.

  1. Dynamic response to strike-slip tectonic control on the deposition and evolution of the Baranof Fan, Gulf of Alaska

    Science.gov (United States)

    Walton, Maureen A. L.; Gulick, Sean P. S.; Reece, Robert S.; Barth, Ginger A.; Christeson, Gail L.; VanAvendonk, Harm J.

    2014-01-01

    The Baranof Fan is one of three large deep-sea fans in the Gulf of Alaska, and is a key component in understanding large-scale erosion and sedimentation patterns for southeast Alaska and western Canada. We integrate new and existing seismic reflection profiles to provide new constraints on the Baranof Fan area, geometry, volume, and channel development. We estimate the fan’s area and total sediment volume to be ∼323,000 km2 and ∼301,000 km3, respectively, making it among the largest deep-sea fans in the world. We show that the Baranof Fan consists of channel-levee deposits from at least three distinct aggradational channel systems: the currently active Horizon and Mukluk channels, and the waning system we call the Baranof channel. The oldest sedimentary deposits are in the northern fan, and the youngest deposits at the fan’s southern extent; in addition, the channels seem to avulse southward consistently through time. We suggest that Baranof Fan sediment is sourced from the Coast Mountains in southeastern Alaska, transported offshore most recently via fjord to glacial sea valley conduits. Because of the translation of the Pacific plate northwest past sediment sources on the North American plate along the Queen Charlotte strike-slip fault, we suggest that new channel formation, channel beheadings, and southward-migrating channel avulsions have been influenced by regional tectonics. Using a simplified tectonic reconstruction assuming a constant Pacific plate motion of 4.4 cm/yr, we estimate that Baranof Fan deposition initiated ca. 7 Ma.

  2. The evolutionary psychology of left and right: costs and benefits of lateralization.

    Science.gov (United States)

    Vallortigara, Giorgio

    2006-09-01

    Why do the left and right sides of the vertebrate brain play different functions? Having a lateralized brain, in which each hemisphere carries out different functions, is ubiquitous among vertebrates. The different specialization of the left and right side of the brain may increase brain efficiency--and some evidence for that is reported here. However, lateral biases due to brain lateralization (such as preferences in the use of a limb or, in animals with laterally placed eyes, of a visual hemifield) usually occur at the population level, with most individuals showing similar direction of bias. Individual brain efficiency does not require the alignment of lateralization in the population. Why then are not left--and right-type individuals equally common? Not only humans, but most vertebrates show a similar pattern. For instance, in the paper I report evidence that most toads, chickens, and fish react faster when a predator approaches from the left. I argue that invoking individual brain efficiency (lateralization may increase fitness), evolutionary chance or direct genetic mechanisms cannot explain this widespread pattern. Instead, using concepts from mathematical theory of games, I show that alignment of lateralization at the population level may arise as an "evolutionarily stable strategy" when individually asymmetrical organisms must coordinate their behavior with that of other asymmetrical organisms. Thus, the population structure of lateralization may result from genes specifying the direction of asymmetries which have been selected under "social" pressures.

  3. Testing Pixel Translation Digital Elevation Models to Reconstruct Slip Histories: An Example from the Agua Blanca Fault, Baja California, Mexico

    Science.gov (United States)

    Wilson, J.; Wetmore, P. H.; Malservisi, R.; Ferwerda, B. P.; Teran, O.

    2012-12-01

    We use recently collected slip vector and total offset data from the Agua Blanca fault (ABF) to constrain a pixel translation digital elevation model (DEM) to reconstruct the slip history of this fault. This model was constructed using a Perl script that reads a DEM file (Easting, Northing, Elevation) and a configuration file with coordinates that define the boundary of each fault segment. A pixel translation vector is defined as a magnitude of lateral offset in an azimuthal direction. The program translates pixels north of the fault and prints their pre-faulting position to a new DEM file that can be gridded and displayed. This analysis, where multiple DEMs are created with different translation vectors, allows us to identify areas of transtension or transpression while seeing the topographic expression in these areas. The benefit of this technique, in contrast to a simple block model, is that the DEM gives us a valuable graphic which can be used to pose new research questions. We have found that many topographic features correlate across the fault, i.e. valleys and ridges, which likely have implications for the age of the ABF, long term landscape evolution rates, and potentially provide conformation for total slip assessments The ABF of northern Baja California, Mexico is an active, dextral strike slip fault that transfers Pacific-North American plate boundary strain out of the Gulf of California and around the "Big Bend" of the San Andreas Fault. Total displacement on the ABF in the central and eastern parts of the fault is 10 +/- 2 km based on offset Early-Cretaceous features such as terrane boundaries and intrusive bodies (plutons and dike swarms). Where the fault bifurcates to the west, the northern strand (northern Agua Blanca fault or NABF) is constrained to 7 +/- 1 km. We have not yet identified piercing points on the southern strand, the Santo Tomas fault (STF), but displacement is inferred to be ~4 km assuming that the sum of slip on the NABF and STF is

  4. UAVSAR observations of triggered slip on the Imperial, Superstition Hills, and East Elmore Ranch Faults associated with the 2010 M 7.2 El Mayor-Cucapah earthquake

    Science.gov (United States)

    Donnellan, Andrea; Parker, Jay; Hensley, Scott; Pierce, Marlon; Wang, Jun; Rundle, John

    2014-03-01

    4 April 2010 M 7.2 El Mayor-Cucapah earthquake that occurred in Baja California, Mexico and terminated near the U.S. Mexican border caused slip on the Imperial, Superstition Hills, and East Elmore Ranch Faults. The pattern of slip was observed using radar interferometry from NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) instrument collected on 20-21 October 2009 and 12-13 April 2010. Right-lateral slip of 36 ± 9 and 14 ± 2 mm occurred on the Imperial and Superstition Hills Faults, respectively. Left-lateral slip of 9 ± 2 mm occurred on the East Elmore Ranch Fault. The widths of the zones of displacement increase northward suggesting successively more buried fault motion to the north. The observations show a decreasing pattern of slip northward on a series of faults in the Salton Trough stepping between the El Mayor-Cucapah rupture and San Andreas Fault. Most of the motion occurred at the time of the M 7.2 earthquake and the UAVSAR observations are consistent with field, creepmeter, GPS, and Envisat observations. An additional 28 ± 1 mm of slip at the southern end of the Imperial Fault over a <1 km wide zone was observed over a 1 day span a week after the earthquake suggesting that the fault continued to slip at depth following the mainshock. The total moment release on the three faults is 2.3 × 1023-1.2 × 1024 dyne cm equivalent to a moment magnitude release of 4.9-5.3, assuming shallow slip depths ranging from 1 to 5 km.

  5. Focal mechanisms and inter-event times of low-frequency earthquakes reveal quasi-continuous deformation and triggered slow slip on the deep Alpine Fault

    Science.gov (United States)

    Baratin, Laura-May; Chamberlain, Calum J.; Townend, John; Savage, Martha K.

    2018-02-01

    Characterising the seismicity associated with slow deformation in the vicinity of the Alpine Fault may provide constraints on the stresses acting on a major transpressive margin prior to an anticipated great (≥M8) earthquake. Here, we use recently detected tremor and low-frequency earthquakes (LFEs) to examine how slow tectonic deformation is loading the Alpine Fault late in its typical ∼300-yr seismic cycle. We analyse a continuous seismic dataset recorded between 2009 and 2016 using a network of 10-13 short-period seismometers, the Southern Alps Microearthquake Borehole Array. Fourteen primary LFE templates are used in an iterative matched-filter and stacking routine, allowing the detection of similar signals corresponding to LFE families sharing common locations. This yields an 8-yr catalogue containing 10,000 LFEs that are combined for each of the 14 LFE families using phase-weighted stacking to produce signals with the highest possible signal-to-noise ratios. We show that LFEs occur almost continuously during the 8-yr study period and highlight two types of LFE distributions: (1) discrete behaviour with an inter-event time exceeding 2 min; (2) burst-like behaviour with an inter-event time below 2 min. We interpret the discrete events as small-scale frequent deformation on the deep extent of the Alpine Fault and LFE bursts (corresponding in most cases to known episodes of tremor or large regional earthquakes) as brief periods of increased slip activity indicative of slow slip. We compute improved non-linear earthquake locations using a 3-D velocity model. LFEs occur below the seismogenic zone at depths of 17-42 km, on or near the hypothesised deep extent of the Alpine Fault. The first estimates of LFE focal mechanisms associated with continental faulting, in conjunction with recurrence intervals, are consistent with quasi-continuous shear faulting on the deep extent of the Alpine Fault.

  6. Active tectonics within the NW and SE extensions of the Pambak-Sevan-Syunik fault: Implications for the present geodynamics of Armenia

    Science.gov (United States)

    Ritz, Jeff; Avagyan, A.; Mkrtchyan, M.; Nazari, H.; Blard, P. H.; Karakhanian, A.; Philip, H.; Balescu, Sanda; Mahan, Shannon; Huot, Sebastien; Münch, P.; Lamothe, M.

    2016-01-01

    This study analyzes the active tectonics within the northwestern and southeastern extensions of the Pambak-Sevan-Syunik fault (PSSF), a major right-lateral strike-slip fault cutting through Armenia. Quantifying the deformations in terms of geometry, kinematics, slip rates and earthquake activity, using cosmogenic 3He, OSL/IRSL and radiocarbon dating techniques, reveal different behaviors between the two regions. Within the northwestern extension, in the region of Amasia, the PSSF bends to the west and splits into two main WNW–ESE trending reverse faults defining a compressional pop-up structure. We estimate an uplift rate and a shortening rate of 0.5 ± 0.1 mm/y and 1.4 ± 0.6 mm/y, respectively. This suggests that most of the ∼2 mm/y right lateral movement of the PSSF seems to be absorbed within the Amasia pop-structure. Within the southeastern extension, the PSSF shows signs of dying out within the Tsghuk Volcano region at the southernmost tip of the Syunik graben. There, the tectonic activity is characterized by a very slow NS trending normal faulting associated with a slight right-lateral movement. Slip rates analyses (i.e. vertical slip rate, EW stretching rate at 90° to the fault, and right-lateral slip rate of ∼0.2 mm/y, ∼0.1 mm/y and ∼0.05 mm/y, respectively) lead to the conclusion that the right lateral movement observed further north along the PSSF is mainly transferred within other active faults further west within the Karabagh (Hagari fault or other structures further northwestwards). Comparing our slip rates with those estimated from GPS data suggests that most of the deformation is localized and seismic, at least within the Tsghuk region. The geometrical and kinematic pattern observed within the two terminations of the PSSF suggests that the fault and its surrounding crustal blocks are presently rotating anticlockwise, as also observed within the GPS velocity field. This is consistent with the recent kinematic models proposed for the

  7. Vanishing stick-slip friction in few-layer graphenes: the thickness effect.

    Science.gov (United States)

    Xu, Liang; Ma, Tian-Bao; Hu, Yuan-Zhong; Wang, Hui

    2011-07-15

    We report the thickness dependence of intrinsic friction in few-layer graphenes, adopting molecular dynamics simulations. The friction force drops dramatically with decreasing number of layers and finally approaches zero with two or three layers. The results, which are robust over a wide range of temperature, shear velocity, and pressure are quantitatively explained by a theoretical model with regard to lateral stiffness, slip length, and maximum lateral force, which could provide a new conceptual framework for understanding stick-slip friction. The results reveal the crucial role of the dimensional effect in nanoscale friction, and could be helpful in the design of graphene-based nanodevices.

  8. Influencia de un bloque rígido en un sistema de fallas de rumbo: modelamiento análogo Influence of a rigid block in a strike-slip fault system: analogue modelling

    Directory of Open Access Journals (Sweden)

    Thierry Nalpas

    2011-01-01

    Full Text Available En este trabajo se presenta un estudio de modelamiento análogo sobre la naturaleza, geometría y cinemática de la deformación a lo largo de fallas de rumbo dada la presencia de un bloque rígido en su trayectoria de deformación. Los modelos análogos están apropiadamente escalados considerando las características reológicas de los materiales que se desean contrastar en la deformación. Dos grandes parámetros fueron probados: la configuración del bloque rígido, variando su forma y tamaño, y el monto del desplazamiento. Los resultados experimentales muestran el desarrollo de rotaciones, fallas y pliegues como producto de la presencia de un bloque rígido en la trayectoria de falla. Los diversos casos geométricos probados pueden ser empleados para su comparación con sistemas de fallas de rumbo en los cuales existen diferencias litológicas de comportamiento reológico diferencial, como por ejemplo el caso del 'Núcleo rígido de Limón Verde' al sur de Chuquicamata, ubicado en la trayectoria del sistema de fallas de Domeyko.This work addresses the kinematic effects of a rigid block in strike-slip systems by using analogue models. The experiments (size, behaviour of materials were scaled down in order to represent deformation of the tested rheologic contrast conditions in deformation. Two main parameters were tested: the configuration of the rigid block, changing its form and size, and the amount of displacement. The experiments evidenced the development of rotations, faults and folds along the fault trajectory, as resulting from the presence of the rigid block during the deformation. Testing of diverse geometric situations may be used for comparison to strike-slip fault systems in which different lithologies and rheologic behaviour exist, for example, presence of the 'Limón Verde rigid core' along the Domeyko fault system, just south of Chuquicamata.

  9. Acute transient hemiparesis induced by lightning strike.

    Science.gov (United States)

    Rahmani, Seyed Hesam; Faridaalaee, Gholamreza; Jahangard, Samira

    2015-07-01

    According to data from the National Oceanic and Atmospheric Administration,in the years from 1959 to 1994, lightning was responsible for more than 3000 deaths and nearly 10,000 casualties. The most important characteristic features of lightning injuries are multisystem involvement and widely variable severity. Lightning strikes are primarily a neurologic injury that affects all 3 components of the nervous system: central, autonomic,and peripheral. Neurologic complications of lightning strikes vary from transient benign symptoms to permanent disability. Many patients experience a temporary paralysis called keraunoparalysis. Here we reported a 22-year-old mountaineer man with complaining of left sided hemiparesis after being hit by a lightning strike in the mountain 3 hours ago. There was no loss of consciousness at hitting time. On arrival the patient was alert, awake and hemodynamically stable. In neurologic examination cranial nerves were intact, left sided upper and lower extremity muscle force was I/V with a combination of complete sensory loss, and right-sided muscle force and sensory examination were normal. There is not any evidence of significant vascular impairment in the affected extremities. Brain MRI and CT scan and cervical MRI were normal. During 2 days of admission, with intravenous hydration, heparin 5000 unit SC q12hr and physical therapy of the affected limbs, motor and sensory function improved and was normal except mild paresthesia. He was discharged 1 day later for outpatient follow up while vitamin B1 100mg orally was prescribed.Paresthesia improved after 3 days without further sequels.

  10. The complex evolution of transient slip revealed by precise tremor locations in western Shikoku, Japan

    Science.gov (United States)

    Shelly, D. R.; Beroza, G. C.; Ide, S.

    2007-12-01

    Transient slow slip events are increasingly being recognized as important components of strain release on faults and may substantially impact the earthquake cycle. Surface-based geodetic instruments provide estimates of the overall slip distribution in larger transients but are unable to capture the detailed evolution of such slip, either in time or space. Accompanying some of these slip transients is a relatively weak, extended duration seismic signal, known as non-volcanic tremor, which has recently been shown to be generated by a sequence of shear failures occurring as part of the slip event. By precisely locating the tremor, we can track some features of slip evolution with unprecedented resolution. Here, we analyze two weeklong episodes of tremor and slow slip in western Shikoku, Japan. We find that these slip transients do not evolve in a smooth and steady fashion but contain numerous sub-events of smaller size and shorter duration. In addition to along-strike migration rates of about 10 km/day observed previously, much faster migration also occurs, usually in the slab dip direction, at rates of 25-150 km/hour over distances of up to 20 km. We observe such migration episodes in both the up-dip and down-dip directions. These episodes may be most common on certain portions of the plate boundary that generate strong tremor in intermittent bursts. The surrounding regions of the fault may slip more continuously, driving these stronger patches to repeated failures. Tremor activity has a strong tidal periodicity, possibly reflecting the modulation of slow slip velocity by tidal stresses.

  11. Slip initiation in alternative and slip-resistant footwear.

    Science.gov (United States)

    Chander, Harish; Wade, Chip; Garner, John C; Knight, Adam C

    2017-12-01

    Slips occur as a result of failure of normal locomotion. The purpose of this study is to analyze the impact of alternative footwear (Crocs™, flip-flops) and an industry standard low-top slip-resistant shoe (SRS) under multiple gait trials (normal dry, unexpected slip, alert slip and expected slip) on lower extremity joint kinematics, kinetics and muscle activity. Eighteen healthy male participants (age: 22.28 ± 2.2 years; height: 177.66 ± 6.9 cm; mass: 79.27 ± 7.6 kg) completed the study. Kinematic, kinetic and muscle activity variables were analyzed using a 3(footwear) × 4(gait trials) repeated-measures analysis of variance at p = 0.05. Greater plantar flexion angles, lower ground reaction forces and greater muscle activity were seen on slip trials with the alternative footwear. During slip events, SRS closely resembled normal dry biomechanics, suggesting it to be a safer footwear choice compared with alternative footwear.

  12. Evidence for Truncated Exponential Probability Distribution of Earthquake Slip

    KAUST Repository

    Thingbaijam, Kiran Kumar; Mai, Paul Martin

    2016-01-01

    Earthquake ruptures comprise spatially varying slip on the fault surface, where slip represents the displacement discontinuity between the two sides of the rupture plane. In this study, we analyze the probability distribution of coseismic slip, which provides important information to better understand earthquake source physics. Although the probability distribution of slip is crucial for generating realistic rupture scenarios for simulation-based seismic and tsunami-hazard analysis, the statistical properties of earthquake slip have received limited attention so far. Here, we use the online database of earthquake source models (SRCMOD) to show that the probability distribution of slip follows the truncated exponential law. This law agrees with rupture-specific physical constraints limiting the maximum possible slip on the fault, similar to physical constraints on maximum earthquake magnitudes.We show the parameters of the best-fitting truncated exponential distribution scale with average coseismic slip. This scaling property reflects the control of the underlying stress distribution and fault strength on the rupture dimensions, which determines the average slip. Thus, the scale-dependent behavior of slip heterogeneity is captured by the probability distribution of slip. We conclude that the truncated exponential law accurately quantifies coseismic slip distribution and therefore allows for more realistic modeling of rupture scenarios. © 2016, Seismological Society of America. All rights reserverd.

  13. Evidence for Truncated Exponential Probability Distribution of Earthquake Slip

    KAUST Repository

    Thingbaijam, Kiran K. S.

    2016-07-13

    Earthquake ruptures comprise spatially varying slip on the fault surface, where slip represents the displacement discontinuity between the two sides of the rupture plane. In this study, we analyze the probability distribution of coseismic slip, which provides important information to better understand earthquake source physics. Although the probability distribution of slip is crucial for generating realistic rupture scenarios for simulation-based seismic and tsunami-hazard analysis, the statistical properties of earthquake slip have received limited attention so far. Here, we use the online database of earthquake source models (SRCMOD) to show that the probability distribution of slip follows the truncated exponential law. This law agrees with rupture-specific physical constraints limiting the maximum possible slip on the fault, similar to physical constraints on maximum earthquake magnitudes.We show the parameters of the best-fitting truncated exponential distribution scale with average coseismic slip. This scaling property reflects the control of the underlying stress distribution and fault strength on the rupture dimensions, which determines the average slip. Thus, the scale-dependent behavior of slip heterogeneity is captured by the probability distribution of slip. We conclude that the truncated exponential law accurately quantifies coseismic slip distribution and therefore allows for more realistic modeling of rupture scenarios. © 2016, Seismological Society of America. All rights reserverd.

  14. Analysing earthquake slip models with the spatial prediction comparison test

    KAUST Repository

    Zhang, L.; Mai, Paul Martin; Thingbaijam, Kiran Kumar; Razafindrakoto, H. N. T.; Genton, Marc G.

    2014-01-01

    Earthquake rupture models inferred from inversions of geophysical and/or geodetic data exhibit remarkable variability due to uncertainties in modelling assumptions, the use of different inversion algorithms, or variations in data selection and data processing. A robust statistical comparison of different rupture models obtained for a single earthquake is needed to quantify the intra-event variability, both for benchmark exercises and for real earthquakes. The same approach may be useful to characterize (dis-)similarities in events that are typically grouped into a common class of events (e.g. moderate-size crustal strike-slip earthquakes or tsunamigenic large subduction earthquakes). For this purpose, we examine the performance of the spatial prediction comparison test (SPCT), a statistical test developed to compare spatial (random) fields by means of a chosen loss function that describes an error relation between a 2-D field (‘model’) and a reference model. We implement and calibrate the SPCT approach for a suite of synthetic 2-D slip distributions, generated as spatial random fields with various characteristics, and then apply the method to results of a benchmark inversion exercise with known solution. We find the SPCT to be sensitive to different spatial correlations lengths, and different heterogeneity levels of the slip distributions. The SPCT approach proves to be a simple and effective tool for ranking the slip models with respect to a reference model.

  15. Analysing earthquake slip models with the spatial prediction comparison test

    KAUST Repository

    Zhang, L.

    2014-11-10

    Earthquake rupture models inferred from inversions of geophysical and/or geodetic data exhibit remarkable variability due to uncertainties in modelling assumptions, the use of different inversion algorithms, or variations in data selection and data processing. A robust statistical comparison of different rupture models obtained for a single earthquake is needed to quantify the intra-event variability, both for benchmark exercises and for real earthquakes. The same approach may be useful to characterize (dis-)similarities in events that are typically grouped into a common class of events (e.g. moderate-size crustal strike-slip earthquakes or tsunamigenic large subduction earthquakes). For this purpose, we examine the performance of the spatial prediction comparison test (SPCT), a statistical test developed to compare spatial (random) fields by means of a chosen loss function that describes an error relation between a 2-D field (‘model’) and a reference model. We implement and calibrate the SPCT approach for a suite of synthetic 2-D slip distributions, generated as spatial random fields with various characteristics, and then apply the method to results of a benchmark inversion exercise with known solution. We find the SPCT to be sensitive to different spatial correlations lengths, and different heterogeneity levels of the slip distributions. The SPCT approach proves to be a simple and effective tool for ranking the slip models with respect to a reference model.

  16. Intra-Continental Deformation by Mid-Crustal Shearing and Doming in a Cenozoic Compressive Setting Along the Ailao Shan-Red River Shear Zone

    Science.gov (United States)

    Zhang, B.

    2016-12-01

    Large-scale lateral strike-slip shear zones have been a key point in the debate about the deformation mechanisms of Asia in response to the India-Asia collision. The exhumed gneiss has been attributed to lateral strike-slip shear zone. This hypothesis has been challenged by recent discoveries indicating that a contractional doming deformation prior to the initiation of lateral strike-slip shearing. The Cenozoic Xuelong Shan antiformal dome is located at the northern segment of the Ailao Shan-Red River shear zone. Subhorizontal foliation in the gneiss core are recognized, representing a broad top-to-NE shear initiated under amphibolite facies conditions and propagated into greenschist facies in the mantling schist and strike-slip shear zone. Quartz CPOs and opening angles of crossed girdle fabrics in quartz suggest that the deformation temperatures increased with increasing structural depth from 300-500 °C in the mantling schist to ≥650 °C in the gneissic core. This trend is mirrored by variations in the metamorphic grade of the syn-kinematic mineral assemblages and microstructures, which ranges from garnet + amphibole + biotite + sillimanite + rutite + feldspar in the core to garnet + staurolite + biotite + epidote + muscovite within the limb units. Five-stage deformation is identified: (1) a broad top-to-NE shear in the subhorizontal level (D1); (2) opposing reverse-sense shear along the two schist limbs of the dome during contraction-related doming (D2-D3); (3) sinistral strike-slip shearing within the eastern limb (D4); and (4) extensional deformation (D5). The antiformal dome formation had been roughly coeval with top-to-NE ductile shearing in the mid-crust at 32 Ma or earlier. The geometries of the antiformal dome in the Xuelong Shan dome are similar to those associated with the antiform in the Dai Nui Con Voi, Diancang Shan and Ailao Shan zones. It is likely that the complex massifs, which define a regional linear gneiss dome zone in Cenozoic intra

  17. Focal Stenosis in Right Upper Lobe Bronchus in a Recurrently Wheezing Child Sequentially Studied by Multidetector-row Spiral Computed Tomography and Scintigraphy

    Directory of Open Access Journals (Sweden)

    I-Chen Chen

    2009-12-01

    Full Text Available Lower respiratory tract infections associated with wheezing are not uncommon in infants and young children. Among the wheezing-associated disorders, allergic etiologies are more commonly encountered than anatomic anomalies. We present a 3-year-old girl with a sudden attack of asthmatic symptoms including dyspnea, cyanosis and diffuse wheezing. Based on a history of choking, and atelectasis in the right upper lobe detected by chest films, flexible tracheobronchoscopy was arranged and incidentally detected a stenotic orifice in the right upper lobe bronchus. Multidetector-row spiral computed tomography and pulmonary scintigraphy subsequently also disclosed the focal stenosis. She suffered from recurrent wheezing, pneumonia and lung atelectasis during 1 year of follow-up. We emphasize the diagnosis, clinical course and management of focal stenosis in the right upper lobe bronchus.

  18. Tectonic interpretation of the Andrew Bain transform fault: Southwest Indian Ocean

    Science.gov (United States)

    Sclater, John G.; Grindlay, Nancy R.; Madsen, John A.; Rommevaux-Jestin, Celine

    2005-09-01

    Between 25°E and 35°E, a suite of four transform faults, Du Toit, Andrew Bain, Marion, and Prince Edward, offsets the Southwest Indian Ridge (SWIR) left laterally 1230 km. The Andrew Bain, the largest, has a length of 750 km and a maximum transform domain width of 120 km. We show that, currently, the Nubia/Somalia plate boundary intersects the SWIR east of the Prince Edward, placing the Andrew Bain on the Nubia/Antarctica plate boundary. However, the overall trend of its transform domain lies 10° clockwise of the predicted direction of motion for this boundary. We use four transform-parallel multibeam and magnetic anomaly profiles, together with relocated earthquakes and focal mechanism solutions, to characterize the morphology and tectonics of the Andrew Bain. Starting at the southwestern ridge-transform intersection, the relocated epicenters follow a 450-km-long, 20-km-wide, 6-km-deep western valley. They cross the transform domain within a series of deep overlapping basins bounded by steep inward dipping arcuate scarps. Eight strike-slip and three dip-slip focal mechanism solutions lie within these basins. The earthquakes can be traced to the northeastern ridge-transform intersection via a straight, 100-km-long, 10-km-wide, 4.5-km-deep eastern valley. A striking set of seismically inactive NE-SW trending en echelon ridges and valleys, lying to the south of the overlapping basins, dominates the eastern central section of the transform domain. We interpret the deep overlapping basins as two pull-apart features connected by a strike-slip basin that have created a relay zone similar to those observed on continental transforms. This transform relay zone connects three closely spaced overlapping transform faults in the southwest to a single transform fault in the northeast. The existence of the transform relay zone accounts for the difference between the observed and predicted trend of the Andrew Bain transform domain. We speculate that between 20 and 3.2 Ma, an

  19. Source parameters of the 2016 Menyuan earthquake in the northeastern Tibetan Plateau determined from regional seismic waveforms and InSAR measurements

    Science.gov (United States)

    Liu, Yunhua; Zhang, Guohong; Zhang, Yingfeng; Shan, Xinjian

    2018-06-01

    On January 21st, 2016, a Ms 6.4 earthquake hit Menyuan County, Qinghai province, China. The nearest known fault is the Leng Long Ling (LLL) fault which is located approximately 7 km north of the epicenter. This fault has mainly shown sinistral strike-slip movement since the late Quaternary Period. However, the focal mechanism indicates that it is a thrust earthquake, which is different from the well-known strike-slip feature of the LLL fault. In this study, we determined the focal mechanism and primary nodal plane through multi-step inversions in the frequency and time domain by using the broadband regional seismic waveforms recorded by the China Digital Seismic Network (CDSN). Our results show that the rupture duration was short, within 0-2 s after the earthquake, and the rupture expanded upwards along the fault plane. Based on these fault parameters, we then solve for variable slip distribution on the fault plane using the InSAR data. We applied a three-segment fault model to simulate the arc-shaped structure of the northern LLL fault, and obtained a detailed slip distribution on the fault plane. The inversion results show that the maximum slip is 0.43 m, and the average slip angle is 78.8°, with a magnitude of Mw 6.0 and a focal depth of 9.38 km. With the geological structure and the inversion results taken into consideration, it can be suggested that this earthquake was caused by the arc-shaped secondary fault located at the north side of the LLL fault. The secondary fault, together with the LLL fault, forms a normal flower structure. The main LLL fault extends almost vertically into the base rock and the rocks between the two faults form a bulging fault block. Therefore, we infer that this earthquake is the manifestation of a neotectonics movement, in which the bulging fault block is lifted further up under the compresso-shear action caused by the Tibetan Plateau pushing towards the northwest direction.

  20. Seismic attribute detection of faults and fluid pathways within an active strike-slip shear zone: New insights from high-resolution 3D P-Cable™ seismic data along the Hosgri Fault, offshore California

    Science.gov (United States)

    Kluesner, Jared W.; Brothers, Daniel

    2016-01-01

    Poststack data conditioning and neural-network seismic attribute workflows are used to detect and visualize faulting and fluid migration pathways within a 13.7 km2 13.7 km2 3D P-Cable™ seismic volume located along the Hosgri Fault Zone offshore central California. The high-resolution 3D volume used in this study was collected in 2012 as part of Pacific Gas and Electric’s Central California Seismic Imaging Project. Three-dimensional seismic reflection data were acquired using a triple-plate boomer source (1.75 kJ) and a short-offset, 14-streamer, P-Cable system. The high-resolution seismic data were processed into a prestack time-migrated 3D volume and publically released in 2014. Postprocessing, we employed dip-steering (dip and azimuth) and structural filtering to enhance laterally continuous events and remove random noise and acquisition artifacts. In addition, the structural filtering was used to enhance laterally continuous edges, such as faults. Following data conditioning, neural-network based meta-attribute workflows were used to detect and visualize faults and probable fluid-migration pathways within the 3D seismic volume. The workflow used in this study clearly illustrates the utility of advanced attribute analysis applied to high-resolution 3D P-Cable data. For example, results from the fault attribute workflow reveal a network of splayed and convergent fault strands within an approximately 1.3 km wide shear zone that is characterized by distinctive sections of transpressional and transtensional dominance. Neural-network chimney attribute calculations indicate that fluids are concentrated along discrete faults in the transtensional zones, but appear to be more broadly distributed amongst fault bounded anticlines and structurally controlled traps in the transpressional zones. These results provide high-resolution, 3D constraints on the relationships between strike-slip fault mechanics, substrate deformation, and fluid migration along an active

  1. Aseismic Transform Fault Slip at the Mendocino Triple Junction From Characteristically Repeating Earthquakes

    Science.gov (United States)

    Materna, Kathryn; Taira, Taka'aki; Bürgmann, Roland

    2018-01-01

    The Mendocino Triple Junction (MTJ), at the northern terminus of the San Andreas Fault system, is an actively deforming plate boundary region with poorly constrained estimates of seismic coupling on most offshore fault surfaces. Characteristically repeating earthquakes provide spatial and temporal descriptions of aseismic creep at the MTJ, including on the oceanic transform Mendocino Fault Zone (MFZ) as it subducts beneath North America. Using a dataset of earthquakes from 2008 to 2017, we find that the easternmost segment of the MFZ displays creep during this period at about 65% of the long-term slip rate. We also find creep at slower rates on the shallower strike-slip interface between the Pacific plate and the North American accretionary wedge, as well as on a fault that accommodates Gorda subplate internal deformation. After a nearby M5.7 earthquake in 2015, we observe a possible decrease in aseismic slip on the near-shore MFZ that lasts from 2015 to at least early 2017.

  2. Effect of Slip Time in Forming Neo-Esophageal Stenosis After Replacement of a Thoracic Esophagus With Nitinol Artificial Esophagus.

    Science.gov (United States)

    Liang, Xian-Liang; Liang, Jian-Hui

    2015-07-01

    Attempts have been made to investigate the effect of slip time of nitinol artificial esophagus for forming neo-esophageal stenosis after replacement of a thoracic esophagus with nitinol artificial esophagus in 20 experimental pigs. The pigs whose slip time was less than 90 days postoperatively had severe dysphagia (Bown's III) immediately after they were fed, and the dysphagia aggravated gradually later on (Bown's III-IV). The pigs whose slip time was more than 90 days postoperatively had mild/moderate dysphagia (Bown's I-II) immediately after they were fed, and the dysphagia relieved gradually later on (Bown's II-I-0). The ratios between the diameter of neo-esophagus in different slip time and normal esophagus were 25% (at 2 months postoperatively), 58% (at 4 months postoperatively), and 93% (at 6 months postoperatively), respectively. The relationship between nitinol artificial esophagus slip time and neo-esophageal stenosis showed a positive correlation. After replacement of a thoracic esophagus with nitinol artificial esophagus, the artificial esophageal slip time not only affected the original diameter of the neo-esophagus immediately, but also affected the neo-esophageal scar stricture forming process later on. The narrowing of neo-esophagus is caused by overgrowth of scar tissue. But there is the positive correlation between artificial esophagus slip time and neo-esophageal stenosis, so this can be a way of overcoming neo-esophageal stenosis by delaying slip time of artificial esophagus. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  3. Soil slips and debris flows on terraced slopes

    Science.gov (United States)

    Crosta, G. B.; Dal Negro, P.; Frattini, P.

    Terraces cover large areas along the flanks of many alpine and prealpine valleys. Soil slips and soil slips-debris flows are recurrent phenomena along terraced slopes. These landslides cause damages to people, settlements and cultivations. This study investigates the processes related to the triggering of soil slip-debris flows in these settings, analysing those occurred in Valtellina (Central Alps, Italy) on November 2000 after heavy prolonged rainfalls. 260 landslides have been recognised, mostly along the northern valley flank. About 200 soil slips and slumps occurred in terraced areas and a third of them evolved into debris flows. Field work allowed to recognise the settings at soil slip-debris flow source areas. Landslides affected up to 2.5 m of glacial, fluvioglacial and anthropically reworked deposits overlying metamorphic basement. Laboratory and in situ tests allowed to characterise the geotechnical and hydraulic properties of the terrains involved in the initial failure. Several stratigraphic and hydrogeologic factors have been individuated as significant in determining instabilities on terraced slopes. They are the vertical changes of physical soil properties, the presence of buried hollows where groundwater convergence occurs, the rising up of perched groundwater tables, the overflow and lateral infiltration from superficial drainage network, the runoff concentration by means of pathways and the insufficient drainage of retaining walls.

  4. The Legislative Process as a Safeguard of the Public Servant´S Right to Go on Strike

    Directory of Open Access Journals (Sweden)

    Edilene Lôbo

    2016-10-01

    Full Text Available The right to go on strike can only be realized after a specific national bill – such law has been denied for decades. Acknowledged the omission it should be remedied. The Supreme Court, nonetheless, declared the legislative gap but created, by analogy, rules and procedural issues, bestowing upon the remaining courts discretion to establish a stricter regime and erga omnes effect replacing the legislator. This work criticizes the right´s regulation through judicial rulings removed from the legislative process. The methodology utilized, supported by Estate´s  functions  separation  and  democratic  process  theories,  consisted  in  exam  of legislation, court rulings AND specialized literature.

  5. Heterogeneous slip and rupture models of the San Andreas fault zone based upon three-dimensional earthquake tomography

    Energy Technology Data Exchange (ETDEWEB)

    Foxall, William [Univ. of California, Berkeley, CA (United States)

    1992-11-01

    Crystal fault zones exhibit spatially heterogeneous slip behavior at all scales, slip being partitioned between stable frictional sliding, or fault creep, and unstable earthquake rupture. An understanding the mechanisms underlying slip segmentation is fundamental to research into fault dynamics and the physics of earthquake generation. This thesis investigates the influence that large-scale along-strike heterogeneity in fault zone lithology has on slip segmentation. Large-scale transitions from the stable block sliding of the Central 4D Creeping Section of the San Andreas, fault to the locked 1906 and 1857 earthquake segments takes place along the Loma Prieta and Parkfield sections of the fault, respectively, the transitions being accomplished in part by the generation of earthquakes in the magnitude range 6 (Parkfield) to 7 (Loma Prieta). Information on sub-surface lithology interpreted from the Loma Prieta and Parkfield three-dimensional crustal velocity models computed by Michelini (1991) is integrated with information on slip behavior provided by the distributions of earthquakes located using, the three-dimensional models and by surface creep data to study the relationships between large-scale lithological heterogeneity and slip segmentation along these two sections of the fault zone.

  6. Analysis of Focal Mechanism and Microseismicity around the Lusi Mud Eruption Site, East Java, Indonesia

    Science.gov (United States)

    Karyono, Karyono; Obermann, Anne; Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Abdurrokhim, Abdurrokhim; Masturyono, Masturyono; Hadi, Soffian

    2016-04-01

    The 29th of May 2006 numerous eruption sites started in northeast Java, Indonesia following to a M6.3 earthquake striking the island.Within a few weeks an area or nearly 2 km2 was covered by boiling mud and rock fragments and a prominent central crater (named Lusi) has been erupting for the last 9.5 years. The M.6.3 seismic event also triggered the activation of the Watukosek strike slip fault system that originates from the Arjuno-Welirang volcanic complex and extends to the northeast of Java hosting Lusi and other mud volcanoes. Since 2006 this fault system has been reactivated in numerous instances mostly following to regional seismic and volcanic activity. However the mechanism controlling this activity have never been investigated and remain poorly understood. In order to investigate the relationship existing between seismicity, volcanism, faulting and Lusi activity, we have deployed a network of 31 seismometers in the framework of the ERC-Lusi Lab project. This network covers a large region that monitors the Lusi activity, the Watukosek fault system and the neighboring Arjuno-Welirang volcanic complex. In particular, to understand the consistent pattern of the source mechanism, relative to the general tectonic stress in the study area, a detailed analysis has been carried out by performing the moment tensor inversion for the near field data collected from the network stations. Furthermore these data have been combined with the near field data from the regional network of the Meteorological, Climatological and Geophysical Agency of Indonesia that covers the whole country on a broader scale. Keywords: Lusi, microseismic event, focal mechanism

  7. The July 11, 1995 Myanmar-China earthquake: A representative event in the bookshelf faulting system of southeastern Asia observed from JERS-1 SAR images

    Science.gov (United States)

    Ji, Lingyun; Wang, Qingliang; Xu, Jing; Ji, Cunwei

    2017-03-01

    On July 11, 1995, an Mw 6.8 earthquake struck eastern Myanmar near the Chinese border; hereafter referred to as the 1995 Myanmar-China earthquake. Coseismic surface displacements associated with this event are identified from JERS-1 (Japanese Earth Resources Satellite-1) SAR (Synthetic Aperture Radar) images. The largest relative displacement reached 60 cm in the line-of-sight direction. We speculate that a previously unrecognized dextral strike-slip subvertical fault striking NW-SE was responsible for this event. The coseismic slip distribution on the fault planes is inverted based on the InSAR-derived deformation. The results indicate that the fault slip was confined to two lobes. The maximum slip reached approximately 2.5 m at a depth of 5 km in the northwestern part of the focal region. The inverted geodetic moment was approximately Mw = 6.69, which is consistent with seismological results. The 1995 Myanmar-China earthquake is one of the largest recorded earthquakes that has occurred around the "bookshelf faulting" system between the Sagaing fault in Myanmar and the Red River fault in southwestern China.

  8. Recurrent Bilateral Focal Myositis.

    Science.gov (United States)

    Nagafuchi, Hiroko; Nakano, Hiromasa; Ooka, Seido; Takakuwa, Yukiko; Yamada, Hidehiro; Tadokoro, Mamoru; Shimojo, Sadatomo; Ozaki, Shoichi

    This report describes a rare case of recurrent bilateral focal myositis and its successful treatment via methotrexate. A 38-year-old man presented myalgia of the right gastrocnemius in May 2005. Magnetic resonance imaging showed very high signal intensity in the right gastrocnemius on short-tau inversion recovery images. A muscle biopsy revealed inflammatory CD4+ cell-dominant myogenic change. Focal myositis was diagnosed. The first steroid treatment was effective. Tapering of prednisolone, however, repeatedly induced myositis relapse, which progressed to multiple muscle lesions of both lower limbs. Initiation of methotrexate finally allowed successful tapering of prednisolone, with no relapse in the past 4 years.

  9. Structural and microstructural evolution of fault zones in Cretaceous poorly lithified sandstones of the Rio do Peixe basin, Paraiba, NE Brazil

    Science.gov (United States)

    Balsamo, Fabrizio; Nogueira, Francisco; Storti, Fabrizio; Bezerra, Francisco H. R.; De Carvalho, Bruno R.; André De Souza, Jorge

    2017-04-01

    are arranged in conjugate system consisting of NNW-SSE- and WNW-ESE-trending fault zones with left-lateral and right-lateral kinematics, respectively. Compared to extensional fault zones, strike-slip fault zones have narrow fault cores (few cm thick) and up to 2-3 m-thick damage zones. Microstructural observations indicate that cataclasis with pervasive grain size reduction is the dominant deformation mechanisms within the fault core, thus suggesting that late-stage strike-slip faulting occurred when sandstones were partially lithified by diagenetic processes. Alternatively, the change in deformation mechanisms may indicate faulting at greater depth. Structural and microstructural data suggest that fault zones in the Rio do Peixe basin developed in a progression from "ductile" (sensu Rutter, 1986) to more "brittle" deformation during changes from extensional to strike-slip kinematic fields. Such rheological and stress configuration evolution is expected to impact the petrophysical and permeability structure of fault zones in the study area.

  10. Paradoxical vocal changes in a trained singer by focally cooling the right superior temporal gyrus.

    Science.gov (United States)

    Katlowitz, Kalman A; Oya, Hiroyuki; Howard, Matthew A; Greenlee, Jeremy D W; Long, Michael A

    2017-04-01

    The production and perception of music is preferentially mediated by cortical areas within the right hemisphere, but little is known about how these brain regions individually contribute to this process. In an experienced singer undergoing awake craniotomy, we demonstrated that direct electrical stimulation to a portion of the right posterior superior temporal gyrus (pSTG) selectively interrupted singing but not speaking. We then focally cooled this region to modulate its activity during vocalization. In contrast to similar manipulations in left hemisphere speech production regions, pSTG cooling did not elicit any changes in vocal timing or quality. However, this manipulation led to an increase in the pitch of speaking with no such change in singing. Further analysis revealed that all vocalizations exhibited a cooling-induced increase in the frequency of the first formant, raising the possibility that potential pitch offsets may have been actively avoided during singing. Our results suggest that the right pSTG plays a key role in vocal sensorimotor processing whose impact is dependent on the type of vocalization produced. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Unscented Kalman Filter-Trained Neural Networks for Slip Model Prediction

    Science.gov (United States)

    Li, Zhencai; Wang, Yang; Liu, Zhen

    2016-01-01

    The purpose of this work is to investigate the accurate trajectory tracking control of a wheeled mobile robot (WMR) based on the slip model prediction. Generally, a nonholonomic WMR may increase the slippage risk, when traveling on outdoor unstructured terrain (such as longitudinal and lateral slippage of wheels). In order to control a WMR stably and accurately under the effect of slippage, an unscented Kalman filter and neural networks (NNs) are applied to estimate the slip model in real time. This method exploits the model approximating capabilities of nonlinear state–space NN, and the unscented Kalman filter is used to train NN’s weights online. The slip parameters can be estimated and used to predict the time series of deviation velocity, which can be used to compensate control inputs of a WMR. The results of numerical simulation show that the desired trajectory tracking control can be performed by predicting the nonlinear slip model. PMID:27467703

  12. New insights into Late Quaternary slip rate of the thrust fault zone, northern margin of the Qilian Shan, NE Tibet

    Science.gov (United States)

    Hai-bo, Y.; Yang, X., Sr.; LI, A.; Huang, X.; Huang, W.

    2017-12-01

    mainly controlled by the eastward extrusion of material along the left-lateral Haiyuan strike-slip Fault.

  13. Geological and Seismological Analysis of the 13 February 2001 Mw 6.6 El Salvador Earthquake: Evidence for Surface Rupture and Implications for Seismic Hazard

    OpenAIRE

    Canora Catalán, Carolina; Martínez Díaz, José J.; Villamor Pérez, María Pilar; Berryman, K.R.; Álvarez Gómez, José Antonio; Pullinger, Carlos; Capote del Villar, Ramón

    2010-01-01

    The El Salvador earthquake of 13 February 2001 (Mw 6.6) caused tectonic rupture on the El Salvador fault zone (ESFZ). Right-lateral strike-slip surface rupture of the east–west trending fault zone had a maximum surface displacement of 0.60 m. No vertical component was observed. The earthquake resulted in widespread landslides in the epicentral area, where bedrock is composed of volcanic sediments, tephra, and weak ignimbrites. In the aftermath of the earthquake, widespread dama...

  14. Role of Transtension in Rifting at the Pacific-North America Plate Boundary

    Science.gov (United States)

    Stock, J. M.

    2011-12-01

    Transtensional plate motion can be accommodated either in a localized zone of transtensional rifting or over a broader region. Broader zones of deformation can be classified either as diffuse deformation or strain partitioning (one or more major strike-slip shear zones geographically offset from a region of a extensional faulting). The Pacific-North America plate boundary in southwestern North America was transtensional during much of its history and has exhibited the full range of these behaviors at different spatial scales and in different locations, as recorded by fault motions and paleomagnetic rotations. Here we focus on the northern Gulf of California part of the plate boundary (Upper and Lower Delfin basin segments), which has been in a zone of transtensional Pacific-North America plate boundary motion ever since the middle Miocene demise of adjacent Farallon-derived microplates. Prior to the middle Miocene, during the time of microplate activity, this sector of North America experienced basin-and-range normal faults (core complexes) in Sonora. However there is no evidence of continued extensional faulting nor of a Gulf-related topographic depression until after ca 12 Ma when a major ignimbrite (Tuff of San Felipe/ Ignimbrite of Hermosillo) was deposited across the entire region of the future Gulf of California rift in this sector. After 12 Ma, faults disrupted this marker bed in eastern Baja California and western Sonora, and some major NNW-striking right-lateral faults are inferred to have developed near the Sonoran coast causing offset of some of the volcanic facies. However, there are major tectonic rotations of the volcanic rocks in NE Baja California between 12 and 6 Ma, suggesting that the plate boundary motion was still occurring over a broad region. By contrast, after about 6 Ma, diminished rotations in latest Miocene and Pliocene volcanic rocks, as well as fault slip histories, show that plate boundary deformation became localized to a narrower

  15. Stress distribution of metatarsals during forefoot strike versus rearfoot strike: A finite element study.

    Science.gov (United States)

    Li, Shudong; Zhang, Yan; Gu, Yaodong; Ren, James

    2017-12-01

    Due to the limitations of experimental approaches, comparison of the internal deformation and stresses of the human man foot between forefoot and rearfoot landing is not fully established. The objective of this work is to develop an effective FE modelling approach to comparatively study the stresses and energy in the foot during forefoot strike (FS) and rearfoot strike (RS). The stress level and rate of stress increase in the Metatarsals are established and the injury risk between these two landing styles is evaluated and discussed. A detailed subject specific FE foot model is developed and validated. A hexahedral dominated meshing scheme was applied on the surface of the foot bones and skin. An explicit solver (Abaqus/Explicit) was used to stimulate the transient landing process. The deformation and internal energy of the foot and stresses in the metatarsals are comparatively investigated. The results for forefoot strike tests showed an overall higher average stress level in the metatarsals during the entire landing cycle than that for rearfoot strike. The increase rate of the metatarsal stress from the 0.5 body weight (BW) to 2 BW load point is 30.76% for forefoot strike and 21.39% for rearfoot strike. The maximum rate of stress increase among the five metatarsals is observed on the 1st metatarsal in both landing modes. The results indicate that high stress level during forefoot landing phase may increase potential of metatarsal injuries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A calcified epidermoid cyst within right lateral ventricle: A report of a rare case

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar Sahoo

    2016-01-01

    Full Text Available A young patient reported to neurosurgery outdoor department with symptoms of increased intracranial pressure. Noncontrast computed tomography examination showed a single calcified mass within right lateral ventricle with mild hydrocephalus. Contrast-enhanced magnetic resonance imaging revealed nonenhancing single mass within right lateral ventricle with mild hydrocephalus. Intraventricular calcified choroid papilloma/calcified epidermoid were radiological differentials. The mass was excised, removed from the lateral ventricles and found to be calcified epidermoid on gross and microscopic examination, which is rare.

  17. Mixed linear-nonlinear fault slip inversion: Bayesian inference of model, weighting, and smoothing parameters

    Science.gov (United States)

    Fukuda, J.; Johnson, K. M.

    2009-12-01

    Studies utilizing inversions of geodetic data for the spatial distribution of coseismic slip on faults typically present the result as a single fault plane and slip distribution. Commonly the geometry of the fault plane is assumed to be known a priori and the data are inverted for slip. However, sometimes there is not strong a priori information on the geometry of the fault that produced the earthquake and the data is not always strong enough to completely resolve the fault geometry. We develop a method to solve for the full posterior probability distribution of fault slip and fault geometry parameters in a Bayesian framework using Monte Carlo methods. The slip inversion problem is particularly challenging because it often involves multiple data sets with unknown relative weights (e.g. InSAR, GPS), model parameters that are related linearly (slip) and nonlinearly (fault geometry) through the theoretical model to surface observations, prior information on model parameters, and a regularization prior to stabilize the inversion. We present the theoretical framework and solution method for a Bayesian inversion that can handle all of these aspects of the problem. The method handles the mixed linear/nonlinear nature of the problem through combination of both analytical least-squares solutions and Monte Carlo methods. We first illustrate and validate the inversion scheme using synthetic data sets. We then apply the method to inversion of geodetic data from the 2003 M6.6 San Simeon, California earthquake. We show that the uncertainty in strike and dip of the fault plane is over 20 degrees. We characterize the uncertainty in the slip estimate with a volume around the mean fault solution in which the slip most likely occurred. Slip likely occurred somewhere in a volume that extends 5-10 km in either direction normal to the fault plane. We implement slip inversions with both traditional, kinematic smoothing constraints on slip and a simple physical condition of uniform stress

  18. Bayesian inference and interpretation of centroid moment tensors of the 2016 Kumamoto earthquake sequence, Kyushu, Japan

    Science.gov (United States)

    Hallo, Miroslav; Asano, Kimiyuki; Gallovič, František

    2017-09-01

    On April 16, 2016, Kumamoto prefecture in Kyushu region, Japan, was devastated by a shallow M JMA7.3 earthquake. The series of foreshocks started by M JMA6.5 foreshock 28 h before the mainshock. They have originated in Hinagu fault zone intersecting the mainshock Futagawa fault zone; hence, the tectonic background for this earthquake sequence is rather complex. Here we infer centroid moment tensors (CMTs) for 11 events with M JMA between 4.8 and 6.5, using strong motion records of the K-NET, KiK-net and F-net networks. We use upgraded Bayesian full-waveform inversion code ISOLA-ObsPy, which takes into account uncertainty of the velocity model. Such an approach allows us to reliably assess uncertainty of the CMT parameters including the centroid position. The solutions show significant systematic spatial and temporal variations throughout the sequence. Foreshocks are right-lateral steeply dipping strike-slip events connected to the NE-SW shear zone. Those located close to the intersection of the Hinagu and Futagawa fault zones are dipping slightly to ESE, while those in the southern area are dipping to WNW. Contrarily, aftershocks are mostly normal dip-slip events, being related to the N-S extensional tectonic regime. Most of the deviatoric moment tensors contain only minor CLVD component, which can be attributed to the velocity model uncertainty. Nevertheless, two of the CMTs involve a significant CLVD component, which may reflect complex rupture process. Decomposition of those moment tensors into two pure shear moment tensors suggests combined right-lateral strike-slip and normal dip-slip mechanisms, consistent with the tectonic settings of the intersection of the Hinagu and Futagawa fault zones.[Figure not available: see fulltext.

  19. Case of slipped capital femoral epiphysis following radiation

    Energy Technology Data Exchange (ETDEWEB)

    Terada, Hiroshi; Usui, Hiroshi; Nakamura, Yutaka; Chiba, Masahiro; Yamaji, Shushin; Oba, Yoshihiro

    1987-06-01

    A 12-year-old boy presented with pain of the right hip joint and claudication. At the age of 7 months, the patient had received prophylactic irradiation of 30 Gy to the pelvic area including lumbar vertebrae and bilateral hip joints following extirpation of the right undescended testicle for embryonal carcinoma. Roentgenograph showed slipped capial femoral epiphysis. A review of the literature suggests that bone growth and hormonal changes in the early stage of puberty are involved, in addition to radiation damaged epiphyseal cartilage, in the pathophysiologic mechanisms of radiation induced slipped capital femoral epiphysis. (Namekawa, K.).

  20. New constraints on slip rates of the Fodongmiao-Hongyazi fault in the Northern Qilian Shan, NE Tibet, from the 10Be exposure dating of offset terraces

    Science.gov (United States)

    Yang, Haibo; Yang, Xiaoping; Huang, Xiongnan; Li, An; Huang, Weiliang; Zhang, Ling

    2018-01-01

    The Fodongmo-Hongyazi fault (FHF) is a major thrust of Northeastern Tibet, bounding the Qilian Shan. It accommodates crustal shortening across this region and has produced a strong historical earthquake. Until now the slip rate has been poorly constrained, limiting our understanding of its role in the accommodation of deformation across this region. In this paper, faulted terraces at two sites on the western and middle segments of the FHF were mapped with satellite imagery and field observations. Chronological constraints are placed on the ages of displaced river terraces at these sites using terrestrial cosmogenic nuclide (TCN) exposure dating. These ages combined with offsets measured from SPOT 6 DEM's yield average vertical slip rates of 1.3 ± 0.1 mm/yr for the western segment since ∼207 ka and 0.9 ± 0.1 mm/yr since ∼46 ka for the middle segment. These data suggest that the FHF accommodates ∼15-20% of the total shortening across the Qilian Shan (5.5-7 mm/yr). In addition, comparisons of our data with published slip rates along the Northern Qilian Thrust Fault Zone show that the fastest tectonic uplift occurs along the western portion of the Northern Qilian Shan. This is consistent with estimates deduced from geomorphology. The western portion of the Qilian Shan is mainly controlled by compressional deformation produced by the northward movement of the Northeastern Tibetan Plateau, while the eastern Qilian Shan is mainly controlled by the eastward extrusion of material along the left-lateral Haiyuan strike-slip Fault.

  1. Postseismic deformation associated with the 2008 Mw 7.9 Wenchuan earthquake, China: Constraining fault geometry and investigating a detailed spatial distribution of afterslip

    Science.gov (United States)

    Jiang, Zhongshan; Yuan, Linguo; Huang, Dingfa; Yang, Zhongrong; Chen, Weifeng

    2017-12-01

    We reconstruct two types of fault models associated with the 2008 Mw 7.9 Wenchuan earthquake, one is a listric fault connecting a shallowing sub-horizontal detachment below ∼20 km depth (fault model one, FM1) and the other is a group of more steeply dipping planes further extended to the Moho at ∼60 km depth (fault model two, FM2). Through comparative analysis of the coseismic inversion results, we confirm that the coseismic models are insensitive to the above two type fault geometries. We therefore turn our attention to the postseismic deformation obtained from GPS observations, which can not only impose effective constraints on the fault geometry but also, more importantly, provide valuable insights into the postseismic afterslip. Consequently, FM1 performs outstandingly in the near-, mid-, and far-field, whether considering the viscoelastic influence or not. FM2 performs more poorly, especially in the data-model consistency in the near field, which mainly results from the trade-off of the sharp contrast of the postseismic deformation on both sides of the Longmen Shan fault zone. Accordingly, we propose a listric fault connecting a shallowing sub-horizontal detachment as the optimal fault geometry for the Wenchuan earthquake. Based on the inferred optimal fault geometry, we analyse two characterized postseismic deformation phenomena that differ from the coseismic patterns: (1) the postseismic opposite deformation between the Beichuan fault (BCF) and Pengguan fault (PGF) and (2) the slightly left-lateral strike-slip motions in the southwestern Longmen Shan range. The former is attributed to the local left-lateral strike-slip and normal dip-slip components on the shallow BCF. The latter places constraints on the afterslip on the southwestern BCF and reproduces three afterslip concentration areas with slightly left-lateral strike-slip motions. The decreased Coulomb Failure Stress (CFS) change ∼0.322 KPa, derived from the afterslip with viscoelastic influence

  2. A calcified epidermoid cyst within right lateral ventricle: A report of a rare case

    OpenAIRE

    Ranjan Kumar Sahoo; Debahuti Mohapatra; Pradipta Tripathy

    2016-01-01

    A young patient reported to neurosurgery outdoor department with symptoms of increased intracranial pressure. Noncontrast computed tomography examination showed a single calcified mass within right lateral ventricle with mild hydrocephalus. Contrast-enhanced magnetic resonance imaging revealed nonenhancing single mass within right lateral ventricle with mild hydrocephalus. Intraventricular calcified choroid papilloma/calcified epidermoid were radiological differentials. The mass was excised, ...

  3. Tectonique et volcanisme tardi-Pan Africains (580-560 M.a.) dans l'Anti-Atlas Central (Maroc): interprétation géodynamique à l'échelle du NW de l'Afrique

    Science.gov (United States)

    Azizi Samir, M. R.; Ferrandini, J.; Tane, J. L.

    The structural analysis of the Precambrian III (Infracambrian) volcanic formations that outcrop in the Bou Azzer-El Graara anticlinal has revealed two complementary phases: i) a NW-SE distension, ii) N100° to N120°E left-lateral strike-slip to normal faults, parallel to the Pan-African suture. Microtectonic and stratigraphic criteria establish that the tectonic activity is syn-volcanic, while the determination of the principal stress directions prove the genetic relationship between the two phases. Evidences of NW-SE oriented distension in the PIII volcanics of other areas of south Morocco show the regional extension of the tectonic setting. Our model suggests a left-lateral strike-slip between two cratonic blocks that collided during a previous B2 phase (around 600 M.a.). During this strike-slip movement, the principal stress axis sl tilted from horizontal to 50°N while the vertical plane s1 - s2 slightly rotated from N30° to N40°E. The PIII volcanic production was triggered by the extensive wrenching-distending movement and accompanied the reactivation of WNW-ESE faults of the Panafrican basement. Coeval extension along NE-SW faults is marked by the emplacement of numerous andesitic porphyritic dykes along this direction. This rift evolution is part of the global framework that includes two Proto-Atlantic or Iapetus, (2) to the east, in the Trans-Saharian range, the E-W late-Panafrican compression with N-S left-lateral strike-slip. The extension leads to thinning of the crust, existence of a gulf during the Adoudounien transgression and emplacement of alkali magmatism at the base of these transgressive series.

  4. Teleseismic analysis of the 1990 and 1991 earthquakes near Potenza

    Directory of Open Access Journals (Sweden)

    G. Ekstrom

    1994-06-01

    Full Text Available Analysis of the available teleseismic data for two moderate earthquakes near the town of Potenza in the Southern Apennines shows that both involve strike-slip faulting on a plane oriented approximately east-west. Only the larger, 5 May 1990, earthquake is sufficiently large for analysis by conventional teleseismic waveform inversion methods, and is seen to consist of a foreshock followed 11 seconds later by the main release of moment. The focal mechanism and seismic moment of the 26 May 1991 earthquake is determined by quantitative comparison of its 15-60 s period surface waves with those generated by the 5 May 1990 event. The focal mechanisms for the two events are found to be very similar. The 1991 earthquake has a scalar moment that is approximately 18% that of the 1990 mainshock. Comparison of higher frequency P waves for the two events, recorded at regional distance, shows that the ratio of trace amplitudes is smaller than the ratio of scalar moments, suggesting that the stress drop for the 1991 event is distinctly smaller than for the 1990 mainshock.

  5. Pedestrians in wintertime-effects of using anti-slip devices.

    Science.gov (United States)

    Berggård, Glenn; Johansson, Charlotta

    2010-07-01

    Pedestrians slipping and falling is a major safety problem around the world, not least in countries with long winters such as Sweden. About 25000-30000 people need medical care every year for treatment of fall injuries in Sweden. Use of appropriate shoes and anti-slip devices are examples of individual measures that have been suggested to prevent slipping and falling. An intervention study was performed during the period February to April 2008. The study, which focused on healthy adults in northern Sweden, examined the effect of using anti-slip devices on daily walking journeys and prevention of slip and falls. The respondents were divided into three groups: an Intervention Group, a Control Group, with similar distribution of gender and age, and a Comparison Group. Four questionnaires were distributed: (1) background, (2) daily diary of distance walked and occurrence of incidents or accidents reported weekly, (3) detailed incident or fall report and (4) experiences of using anti-slip devices for those who used these devices during the trial period. Half of the respondents stated that they had previous experience of using anti-slip devices. In this study, 52% of the respondents used anti-slip devices. Anti-slip devices improve the walking capability during wintertime. Among those using appropriate anti-slip devices, the average daily walking distance was found to be statistically significantly longer compared to people not using anti-slip devices. This study indicates that an increase in daily walking distance can be made without increasing the risk of slips/falls when using anti-slip devices. The study also indicates that by using appropriate anti-slip devices and having information about when and where to use them, based on their design, people avoid having slips and falls. The respondents experienced in using anti-slip devices in this study will continue to use them and will also recommend others to use anti-slip devises. Copyright 2010 Elsevier Ltd. All rights

  6. The impact of static stress change, dynamic stress change, and the background stress on aftershock focal mechanisms

    Science.gov (United States)

    Hardebeck, Jeanne L.

    2014-01-01

    The focal mechanisms of earthquakes in Southern California before and after four M ≥ 6.7 main shocks provide insight into how fault systems respond to stress and changes in stress. The main shock static stress changes have two observed impacts on the seismicity: changing the focal mechanisms in a given location to favor those aligned with the static stress change and changing the spatial distribution of seismicity to favor locations where the static stress change aligns with the background stress. The aftershock focal mechanisms are significantly aligned with the static stress changes for absolute stress changes of ≥ 0.02 MPa, for up to ~20 years following the main shock. The dynamic stress changes have similar, although smaller, effects on the local focal mechanisms and the spatial seismicity distribution. Dynamic stress effects are best observed at long periods (30–60 s) and for metrics based on repeated stress cycling in the same direction. This implies that dynamic triggering operates, at least in part, through cyclic shear stress loading in the direction of fault slip. The background stress also strongly controls both the preshock and aftershock mechanisms. While most aftershock mechanisms are well oriented in the background stress field, 10% of aftershocks are identified as poorly oriented outliers, which may indicate limited heterogeneity in the postmain shock stress field. The fault plane orientations of the outliers are well oriented in the background stress, while their slip directions are not, implying that the background stress restricts the distribution of available fault planes.

  7. Older adults who have previously fallen due to a trip walk differently than those who have fallen due to a slip.

    Science.gov (United States)

    Wright, Rachel L; Peters, Derek M; Robinson, Paul D; Watt, Thomas N; Hollands, Mark A

    2015-01-01

    Studying the relationships between centre of mass (COM) and centre of pressure (COP) during walking has been shown to be useful in determining movement stability. The aim of the current study was to compare COM-COP separation measures during walking between groups of older adults with no history of falling, and a history of falling due to tripping or slipping. Any differences between individuals who have fallen due to a slip and those who have fallen due to a trip in measures of dynamic balance could potentially indicate differences in the mechanisms responsible for falls. Forty older adults were allocated into groups based on their self-reported fall history during walking. The non-faller group had not experienced a fall in at least the previous year. Participants who had experienced a fall were split into two groups based on whether a trip or slip resulted in the fall(s). A Vicon system was used to collect full body kinematic trajectories. Two force platforms were used to measure ground reaction forces. The COM was significantly further ahead of the COP at heel strike for the trip (14.3 ± 2.7 cm) and slip (15.3 ± 1.1 cm) groups compared to the non-fallers (12.0 ± 2.7 cm). COM was significantly further behind the COP at foot flat for the slip group (-14.9 ± 3.6 cm) compared to the non-fallers (-10.3 ± 3.9 cm). At mid-swing, the COM of the trip group was ahead of the COP (0.9 ± 1.6 cm), whereas for the slip group the COM was behind the COP (-1.2 ± 2.2 cm). These results show identifiable differences in dynamic balance control of walking between older adults with a history of tripping or slipping and non-fallers. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Effect of basement structure and salt tectonics on deformation styles along strike: An example from the Kuqa fold-thrust belt, West China

    Science.gov (United States)

    Neng, Yuan; Xie, Huiwen; Yin, Hongwei; Li, Yong; Wang, Wei

    2018-04-01

    The Kuqa fold-thrust belt (KFTB) has a complex thrust-system geometry and comprises basement-involved thrusts, décollement thrusts, triangle zones, strike-slip faults, transpressional faults, and pop-up structures. These structures, combined with the effects of Paleogene salt tectonics and Paleozoic basement uplift form a complex structural zone trending E-W. Interpretation and comprehensive analysis of recent high-quality seismic data, field observations, boreholes, and gravity data covering the KFTB has been performed to understand the characteristics and mechanisms of the deformation styles along strike. Regional sections, fold-thrust system maps of the surface and the sub-salt layer, salt and basement structure distribution maps have been created, and a comprehensive analysis of thrust systems performed. The results indicate that the thrust-fold system in Paleogene salt range can be divided into five segments from east to west: the Kela-3, Keshen, Dabei, Bozi, and Awate segments. In the easternmost and westernmost parts of the Paleogene salt range, strike-slip faulting and basement-involved thrusting are the dominant deformation styles, as basement uplift and the limits of the Cenozoic evaporite deposit are the main controls on deformation. Salt-core detachment fold-thrust systems coincide with areas of salt tectonics, and pop-up, imbricate, and duplex structures are associated with the main thrust faults in the sub-salt layer. Distribution maps of thrust systems, basement structures, and salt tectonics show that Paleozoic basement uplift controlled the Paleozoic foreland basin morphology and the distribution of Cenozoic salt in the KFTB, and thus had a strong influence on the segmented structural deformation and evolution of the fold-thrust belt. Three types of transfer zone are identified, based on the characteristics of the salt layer and basement uplift, and the effects of these zones on the fault systems are evaluated. Basement uplift and the boundary of

  9. Fethiye-Burdur Fault Zone (SW Turkey): a myth?

    Science.gov (United States)

    Kaymakci, Nuretdin; Langereis, Cornelis; Özkaptan, Murat; Özacar, Arda A.; Gülyüz, Erhan; Uzel, Bora; Sözbilir, Hasan

    2017-04-01

    Fethiye Burdur Fault Zone (FBFZ) is first proposed by Dumont et al. (1979) as a sinistral strike-slip fault zone as the NE continuation of Pliny-Strabo trench in to the Anatolian Block. The fault zone supposed to accommodate at least 100 km sinistral displacement between the Menderes Massif and the Beydaǧları platform during the exhumation of the Menderes Massif, mainly during the late Miocene. Based on GPS velocities Barka and Reilinger (1997) proposed that the fault zone is still active and accommodates sinistral displacement. In order to test the presence and to unravel its kinematics we have conducted a rigorous paleomagnetic study containing more than 3000 paleomagnetic samples collected from 88 locations and 11700 fault slip data collected from 198 locations distributed evenly all over SW Anatolia spanning from Middle Miocene to Late Pliocene. The obtained rotation senses and amounts indicate slight (around 20°) counter-clockwise rotations distributed uniformly almost whole SW Anatolia and there is no change in the rotation senses and amounts on either side of the FBFZ implying no differential rotation within the zone. Additionally, the slickenside pitches and constructed paleostress configurations, along the so called FBFZ and also within the 300 km diameter of the proposed fault zone, indicated that almost all the faults, oriented parallel to subparallel to the zone, are normal in character. The fault slip measurements are also consistent with earthquake focal mechanisms suggesting active extension in the region. We have not encountered any significant strike-slip motion in the region to support presence and transcurrent nature of the FBFZ. On the contrary, the region is dominated by extensional deformation and strike-slip components are observed only on the NW-SE striking faults which are transfer faults that accommodated extension and normal motion. Therefore, we claim that the sinistral Fethiye Burdur Fault (Zone) is a myth and there is no tangible

  10. A new estimate for present-day Cocos-Caribbean Plate motion: Implications for slip along the Central American Volcanic Arc

    Science.gov (United States)

    DeMets, Charles

    Velocities from 153 continuously-operating GPS sites on the Caribbean, North American, and Pacific plates are combined with 61 newly estimated Pacific-Cocos seafloor spreading rates and additional marine geophysical data to derive a new estimate of present-day Cocos-Caribbean plate motion. A comparison of the predicted Cocos-Caribbean direction to slip directions of numerous shallow-thrust subduction earthquakes from the Middle America trench between Costa Rica and Guatemala shows the slip directions to be deflected 10° clockwise from the plate convergence direction, supporting the hypothesis that frequent dextral strike-slip earthquakes along the Central American volcanic arc result from partitioning of oblique Cocos-Caribbean plate convergence. Linear velocity analysis for forearc locations in Nicaragua and Guatemala predicts 14±2 mm yr-1 of northwestward trench-parallel slip of the forearc relative to the Caribbean plate, possibly decreasing in magnitude in El Salvador and Guatemala, where extension east of the volcanic arc complicates the tectonic setting.

  11. Correlation between Focal Nodular Low Signal Changes in Hoffa’s Fat Pad Adjacent to Anterior Femoral Cartilage and Focal Cartilage Defect Underlying This Region and Its Possible Implication

    Directory of Open Access Journals (Sweden)

    Chermaine Deepa Antony

    2016-01-01

    Full Text Available Purpose. This study investigates the association between focal nodular mass with low signal in Hoffa’s fat pad adjacent to anterior femoral cartilage of the knee (FNMHF and focal cartilage abnormality in this region. Method. The magnetic resonance fast imaging employing steady-state acquisition sequence (MR FIESTA sagittal and axial images of the B1 and C1 region (described later of 148 patients were independently evaluated by two reviewers and categorized into four categories: normal, FNMHF with underlying focal cartilage abnormality, FNMHF with normal cartilage, and cartilage abnormality with no FNMHF. Results. There was a significant association (p=0.00 between FNMHF and immediate adjacent focal cartilage abnormality with high interobserver agreement. The absence of focal nodular lesions next to the anterior femoral cartilage has a very high negative predictive value for chondral injury (97.8%. Synovial biopsy of focal nodular lesion done during arthroscopy revealed some fibrocollagenous tissue and no inflammatory cells. Conclusion. We postulate that the FNMHF adjacent to the cartilage defects is a form of normal healing response to the cartilage damage. One patient with FHMHF and underlying cartilage abnormality was rescanned six months later. In this patient, the FNMHF disappeared and normal cartilage was observed in the adjacent region which may support this theory.

  12. Transparent meta-analysis: does aging spare prospective memory with focal vs. non-focal cues?

    Directory of Open Access Journals (Sweden)

    Bob Uttl

    Full Text Available BACKGROUND: Prospective memory (ProM is the ability to become aware of a previously-formed plan at the right time and place. For over twenty years, researchers have been debating whether prospective memory declines with aging or whether it is spared by aging and, most recently, whether aging spares prospective memory with focal vs. non-focal cues. Two recent meta-analyses examining these claims did not include all relevant studies and ignored prevalent ceiling effects, age confounds, and did not distinguish between prospective memory subdomains (e.g., ProM proper, vigilance, habitual ProM (see Uttl, 2008, PLoS ONE. The present meta-analysis focuses on the following questions: Does prospective memory decline with aging? Does prospective memory with focal vs. non-focal cues decline with aging? Does the size of age-related declines with focal vs. non-focal cues vary across ProM subdomains? And are age-related declines in ProM smaller than age-related declines in retrospective memory? METHODS AND FINDINGS: A meta-analysis of event-cued ProM using data visualization and modeling, robust count methods, and conventional meta-analysis techniques revealed that first, the size of age-related declines in ProM with both focal and non-focal cues are large. Second, age-related declines in ProM with focal cues are larger in ProM proper and smaller in vigilance. Third, age-related declines in ProM proper with focal cues are as large as age-related declines in recall measures of retrospective memory. CONCLUSIONS: The results are consistent with Craik's (1983 proposal that age-related declines on ProM tasks are generally large, support the distinction between ProM proper vs. vigilance, and directly contradict widespread claims that ProM, with or without focal cues, is spared by aging.

  13. "Thunderstruck": penetrating thoracic injury from lightning strike.

    Science.gov (United States)

    van Waes, Oscar J F; van de Woestijne, Pieter C; Halm, Jens A

    2014-04-01

    Lightning strike victims are rarely presented at an emergency department. Burns are often the primary focus. This case report describes the improvised explosive device like-injury to the thorax due to lightning strike and its treatment, which has not been described prior in (kerauno)medicine. Penetrating injury due to blast from lightning strike is extremely rare. These "shrapnel" injuries should however be ruled out in all patients struck by lightning. Copyright © 2013 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  14. Slow Earthquake Hunters: A New Citizen Science Project to Identify and Catalog Slow Slip Events in Geodetic Data

    Science.gov (United States)

    Bartlow, N. M.

    2017-12-01

    Slow Earthquake Hunters is a new citizen science project to detect, catalog, and monitor slow slip events. Slow slip events, also called "slow earthquakes", occur when faults slip too slowly to generate significant seismic radiation. They typically take between a few days and over a year to occur, and are most often found on subduction zone plate interfaces. While not dangerous in and of themselves, recent evidence suggests that monitoring slow slip events is important for earthquake hazards, as slow slip events have been known to trigger damaging "regular" earthquakes. Slow slip events, because they do not radiate seismically, are detected with a variety of methods, most commonly continuous geodetic Global Positioning System (GPS) stations. There is now a wealth of GPS data in some regions that experience slow slip events, but a reliable automated method to detect them in GPS data remains elusive. This project aims to recruit human users to view GPS time series data, with some post-processing to highlight slow slip signals, and flag slow slip events for further analysis by the scientific team. Slow Earthquake Hunters will begin with data from the Cascadia subduction zone, where geodetically detectable slow slip events with a duration of at least a few days recur at regular intervals. The project will then expand to other areas with slow slip events or other transient geodetic signals, including other subduction zones, and areas with strike-slip faults. This project has not yet rolled out to the public, and is in a beta testing phase. This presentation will show results from an initial pilot group of student participants at the University of Missouri, and solicit feedback for the future of Slow Earthquake Hunters.

  15. Pore Pressure Evolution in Shallow Subduction Earthquake Sequences and Effects on Aseismic Slip Transients -- Numerical Modeling With Rate and State Friction

    Science.gov (United States)

    Liu, Y.; Rice, J. R.

    2005-12-01

    In 3D modeling of long tectonic loading and earthquake sequences on a shallow subduction fault [Liu and Rice, 2005], with depth-variable rate and state friction properties, we found that aseismic transient slip episodes emerge spontaneously with only a simplified representation of effects of metamorphic fluid release. That involved assumption of a constant in time but uniformly low effective normal stress in the downdip region. As suggested by observations in several major subduction zones [Obara, 2002; Rogers and Dragert, 2003; Kodaira et al, 2004], the presence of fluids, possibly released from dehydration reactions beneath the seismogenic zone, and their pressurization within the fault zone may play an important role in causing aseismic transients and associated non-volcanic tremors. To investigate the effects of fluids in the subduction zone, particularly on the generation of aseismic transients and their various features, we develop a more complete physical description of the pore pressure evolution (specifically, pore pressure increase due to supply from dehydration reactions and shear heating, decrease due to transport and dilatancy during slip), and incorporate that into the rate and state based 3D modeling. We first incorporated two important factors, dilatancy and shear heating, following Segall and Rice [1995, 2004] and Taylor [1998]. In the 2D simulations (slip varies with depth only), a dilatancy-stabilizing effect is seen which slows down the seismic rupture front and can prevent rapid slip from extending all the way to the trench, similarly to Taylor [1998]. Shear heating increases the pore pressure, and results in faster coseismic rupture propagation and larger final slips. In the 3D simulations, dilatancy also stabilizes the along-strike rupture propagation of both seismic and aseismic slips. That is, aseismic slip transients migrate along the strike faster with a shorter Tp (the characteristic time for pore pressure in the fault core to re

  16. Preemptive strikes: Fear, hope, and defensive aggression.

    Science.gov (United States)

    Halevy, Nir

    2017-02-01

    Preemptive strikes are costly and harmful. Existing models of defensive aggression focus narrowly on the role fear plays in motivating preemptive strikes. Theoretically integrating the literatures on conflict, decision making, and emotion, the current research investigated how specific emotions associated with certainty or uncertainty, including fear, anger, disgust, hope, and happiness, influence preemptive strikes. Study 1 demonstrated that hope negatively predicts defensive exits from relationships in choice dilemmas. Studies 2 and 3 experimentally manipulated risk of being attacked in an incentivized, interactive decision making task-the Preemptive Strike Game. Risk of being attacked fueled preemptive strikes; reduced feelings of hope partially mediated this effect in Study 3. Studies 4 and 5 investigated preemptive strikes under uncertainty (rather than risk). In Study 4, reasoning about the factors that make one trustful of others curbed preemptive strikes; cogitating about the factors that underlie discrete emotions, however, did not influence defensive aggression. Study 5 demonstrated that the valence and uncertainty appraisals of incidental emotions interact in shaping preemptive strikes. Specifically, recalling an autobiographical emotional experience that produced hope significantly decreased attack rates relative to fear, happiness, and a control condition. Fear, anger, disgust, and happiness were either unrelated to preemptive strikes or showed inconsistent relationships with preemptive strikes across the 5 studies. These findings shed light on how emotions shape defensive aggression, advance knowledge on strategic choice under risk and uncertainty, and demonstrate hope's positive effects on social interactions and relationships. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Radiopneumographic characteristics of focal pneumonia in children

    International Nuclear Information System (INIS)

    Smirnova, A.A.

    1980-01-01

    Zonal ventilation and blood flow were studied by the radiopneumography method in 50 children of school age with lower-lobe-of-the lung focal pneumonia (26 with left-side and 24 with right-side). It is established that during right-side localization of pneumonic focus preserved was the predomination of ventilation of right lung relative to left. Complete normalization of common and regional indexes of ventilation and blood flow was established by the 21st day from the beginning of treatment during right-side focal pneumonias. In case of left-side localization of pneumonic focus only partial reduction of external respiration and perfusion comes. Therefore, compensatory and reducing capabilities of right lung are preferrable

  18. Constant Fault Slip-Rates Over Hundreds of Millenia Constrained By Deformed Quaternary Palaeoshorelines: the Vibo and Capo D'Orlando Faults, Southern Italy.

    Science.gov (United States)

    Meschis, M.; Roberts, G.; Robertson, J.; Houghton, S.; Briant, R. M.

    2017-12-01

    Whether slip-rates on active faults accumulated over multiple seismic events is constant or varying over tens to hundreds of millenia timescales is an open question that can be addressed through study of deformed Quaternary palaeoshorelines. It is important to know the answer so that one can judge whether shorter timescale measurements (e.g. Holocene palaeoseismology or decadal geodesy) are suitable for determining earthquake recurrence intervals for Probabilistic Seismic Hazard Assessment or more suitable for studying temporal earthquake clustering. We present results from the Vibo Fault and the Capo D'Orlando Fault, that lie within the deforming Calabrian Arc, which has experienced damaging seismic events such as the 1908 Messina Strait earthquake ( Mw 7) and the 1905 Capo Vaticano earthquake ( Mw 7). These normal faults deform uplifted Late Quaternary palaeoshorelines, which outcrop mainly within their hangingwalls, but also partially in their footwalls, showing that a regional subduction and mantle-related uplift outpaces local fault-related subsidence. Through (1) field and DEM-based mapping of palaeoshorelines, both up flights of successively higher, older inner edges, and along the strike of the faults, and (2) utilisation of synchronous correlation of non-uniformly-spaced inner edge elevations with non-uniformly spaced sea-level highstand ages, we show that slip-rates decrease towards fault tips and that slip-rates have remained constant since 340 ka (given the time resolution we obtain). The slip-rates for the Capo D'Orlando Fault and Vibo Fault are 0.61mm/yr and 1mm/yr respectively. We show that the along-strike gradients in slip-rate towards fault tips differ for the two faults hinting at fault interaction and also discuss this in terms of other regions of extension like the Gulf of Corinth, Greece, where slip-rate has been shown to change through time through the Quaternary. We make the point that slip-rates may change through time as fault systems grow

  19. Lightning Strike in Pregnancy With Fetal Injury.

    Science.gov (United States)

    Galster, Kellen; Hodnick, Ryan; Berkeley, Ross P

    2016-06-01

    Injuries from lightning strikes are an infrequent occurrence, and are only rarely noted to involve pregnant victims. Only 13 cases of lightning strike in pregnancy have been previously described in the medical literature, along with 7 additional cases discovered within news media reports. This case report presents a novel case of lightning-associated injury in a patient in the third trimester of pregnancy, resulting in fetal ischemic brain injury and long-term morbidity, and reviews the mechanics of lightning strikes along with common injury patterns of which emergency providers should be aware. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  20. SLOW SLIP EVENTS: PARAMETERS, CONDITIONS OF OCCURRENCE, AND FUTURE RESEARCH PROSPECTS

    Directory of Open Access Journals (Sweden)

    G. G. Kocharyan

    2014-01-01

    propagation along the fault strike are variable from a few hundred metres to 20–30 km/day. Slip velocities tend to decrease with scale (Fig. 7.Various slip modes were realized in laboratory experiments with slider model. Main specific features of slow slip along faults were simulated in the laboratory conditions. Possibilities for implementation of different deformation regimes were mainly determined by structure of simulated fault gouge. At equal Coulombic strength, small variations of structural characteristics, such as granulometric composition, grain shape, presence of fluid and its viscosity, may critically impact the deformation mode (Fig. 12.As evidenced by the data consolidated and analysed in this article, conditionally stable regimes of deformation of crustal discontinuities are a common phenomenon. Studies of such transitional deformation regimes seem promising for establishment of regularities in generation and evolution of dynamic events, such earthquakes, tectonic rock bursts, and slope events.

  1. Velocities of dislocation groups in very thin neutron-irradiated copper single crystals measured by slip line cinematography

    Energy Technology Data Exchange (ETDEWEB)

    Potthoff, H.H. (Technische Univ. Braunschweig (Germany, F.R.). Inst. fuer Metallphysik und Nukleare Festkoerperphysik)

    1983-05-16

    Slip line development on very thin flat single crystals of neutron-irradiated Cu (thickness down to only 15 to 20 ..mu..m, orientation for single glide, yield region, room temperature) is recorded by high-speed cinematography during tensile deformation. In such very thin crystals glide dislocations on the slip plane must be arranged in a rather simple way. Drops in tensile load occuring during initiation of single slip lines at the Lueders band front indicate that in the beginning of a slip line development dislocation groups traverse the whole glide plane in very short times. Evaluating the data measured for the slip line growth v/sub s/ >= 10 cm/s is found for screw dislocations and v/sub e/ >= v/sub s/ for edge dislocations. For later stages on thin crystals and for all stages on thick crystals (>= several 100 ..mu..m) slip line development is much slower and slip line show many cross slip events which then appear to control the mean velocity of the dislocations.

  2. Late Quaternary eruption of the Ranau Caldera and new geological slip rates of the Sumatran Fault Zone in Southern Sumatra, Indonesia

    Science.gov (United States)

    Natawidjaja, Danny Hilman; Bradley, Kyle; Daryono, Mudrik R.; Aribowo, Sonny; Herrin, Jason

    2017-12-01

    Over the last decade, studies of natural hazards in Sumatra have focused primarily on great earthquakes and associated tsunamis produced by rupture of the Sunda megathrust. However, the Sumatran Fault and the active volcanic arc present proximal hazards to populations on mainland Sumatra. At present, there is little reliable information on the maximum magnitudes and recurrence intervals of Sumatran Fault earthquakes, or the frequency of paroxysmal caldera-forming (VEI 7-8) eruptions. Here, we present new radiocarbon dates of paleosols buried under the voluminous Ranau Tuff that constrain the large caldera-forming eruption to around 33,830-33,450 calender year BP (95% probability). We use the lateral displacement of river channels incised into the Ranau Tuff to constrain the long-term slip rate of two segments of the Sumatran Fault. South of Ranau Lake, the Kumering segment preserves isochronous right-lateral channel offsets of approximately 350 ± 50 m, yielding a minimum slip rate of 10.4 ± 1.5 mm/year for the primary active fault trace. South of Suoh pull-apart depression, the West Semangko segment offsets the Semangko River by 230 ± 60 m, yielding an inferred slip rate of 6.8 ± 1.8 mm/year. Compared with previous studies, these results indicate more recent high-volume volcanism in South Sumatra and increased seismic potency of the southernmost segments of the Sumatran Fault Zone.

  3. Estimation of vertical slip rate in an active fault-propagation fold from the analysis of a progressive unconformity at the NE segment of the Carrascoy Fault (SE Iberia)

    Science.gov (United States)

    Martin-Banda, Raquel; Insua-Arevalo, Juan Miguel; Garcia-Mayordomo, Julian

    2017-04-01

    Many studies have dealt with the calculation of fault-propagation fold growth rates considering a variety of kinematics models, from limb rotation to hinge migration models. In most cases, the different geometrical and numeric growth models are based on horizontal pre-growth strata architecture and a constant known slip rate. Here, we present the estimation of the vertical slip rate of the NE Segment of the Carrascoy Fault (SE Iberian Peninsula) from the geometrical modeling of a progressive unconformity developed on alluvial fan sediments with a high depositional slope. The NE Segment of the Carrascoy Fault is a left-lateral strike slip fault with reverse component belonging to the Eastern Betic Shear Zone, a major structure that accommodates most of the convergence between Iberian and Nubian tectonics plates in Southern Spain. The proximity of this major fault to the city of Murcia encourages the importance of carrying out paleosismological studies in order to determinate the Quaternary slip rate of the fault, a key geological parameter for seismic hazard calculations. This segment is formed by a narrow fault zone that articulates abruptly the northern edge of the Carrascoy Range with the Guadalentin Depression through high slope, short alluvial fans Upper-Middle Pleistocene in age. An outcrop in a quarry at the foot of this front reveals a progressive unconformity developed on these alluvial fan deposits, showing the important reverse component of the fault. The architecture of this unconformity is marked by well-developed calcretes on the top some of the alluvial deposits. We have determined the age of several of these calcretes by the Uranium-series disequilibrium dating method. The results obtained are consistent with recent published studies on the SW segment of the Carrascoy Fault that together with offset canals observed at a few locations suggest a net slip rate close to 1 m/ka.

  4. Late Quaternary slip history of the Mill Creek strand of the San Andreas fault in San Gorgonio Pass, southern California: The role of a subsidiary left-lateral fault in strand switching

    Science.gov (United States)

    Kendrick, Katherine J.; Matti, Jonathan; Mahan, Shannon

    2015-01-01

    The fault history of the Mill Creek strand of the San Andreas fault (SAF) in the San Gorgonio Pass region, along with the reconstructed geomorphology surrounding this fault strand, reveals the important role of the left-lateral Pinto Mountain fault in the regional fault strand switching. The Mill Creek strand has 7.1–8.7 km total slip. Following this displacement, the Pinto Mountain fault offset the Mill Creek strand 1–1.25 km, as SAF slip transferred to the San Bernardino, Banning, and Garnet Hill strands. An alluvial complex within the Mission Creek watershed can be linked to palinspastic reconstruction of drainage segments to constrain slip history of the Mill Creek strand. We investigated surface remnants through detailed geologic mapping, morphometric and stratigraphic analysis, geochronology, and pedogenic analysis. The degree of soil development constrains the duration of surface stability when correlated to other regional, independently dated pedons. This correlation indicates that the oldest surfaces are significantly older than 500 ka. Luminescence dates of 106 ka and 95 ka from (respectively) 5 and 4 m beneath a younger fan surface are consistent with age estimates based on soil-profile development. Offset of the Mill Creek strand by the Pinto Mountain fault suggests a short-term slip rate of ∼10–12.5 mm/yr for the Pinto Mountain fault, and a lower long-term slip rate. Uplift of the Yucaipa Ridge block during the period of Mill Creek strand activity is consistent with thermochronologic modeled uplift estimates.

  5. The Tonalá fault in southeastern Mexico: Evidence that the Central America forearc sliver is not being detached?

    Science.gov (United States)

    Guzman-Speziale, M.; Molina-Garza, R. S.

    2012-12-01

    The Tonalá fault is a NW-SE oriented feature that flanks the Chiapas Massif on its southwestern side. Several authors coincide that the fault originally developed as a right-lateral structure in the Jurassic, but was reactivated as a left-lateral fault in the Miocene. Seismicity along the fault is low: Only one earthquake with magnitude 5.0 or larger is reported along the Tonalá fault in the years 1964 to present. Fault-plane solutions determined by the Mexican Seismological Survey for earthquakes along the fault show left-lateral, strike-slip faulting. The Tonalá fault lies on the northwestern continuation of the Central America volcanic arc. The volcanic arc is the site of medium-sized (magnitudes up to 6.5) shallow, right-lateral, strike-slip earthquakes. This has led several workers to propose that the forearc sliver is being detached from the Caribbean plate along the arc, moving northward. GPS studies have confirmed relative motion between the Chortis block and the forearc sliver. Recent and current motion along the Tonalá fault is in contradiction with motion and detachment of the forearc sliver along the Central America volcanic arc. Left-lateral motion along it cannot accomodate northwest displacement of the forearc sliver. Motion of the Central America forearc would require NW directed compression between the continental shelf of Chiapas and the forearc itself, which is not observed. Therefore, either another fault (or faults) accomodates right-lateral motion and detachment of the forearc sliver, or the sliver is not being detached and relative motion between the forearc sliver and the Chortis block corresponds to displacement of the latter. We suggest that, as proposed by previous authors, the Tonalá fault is instead part of a fault system that runs from the state of Oaxaca (the Valle Nacional fault), forming an arc concave to the northeast, and running perpendicular to the maximum slope of subduction in the area.

  6. Slow slip events in Guerrero, Mexico, and consequences on strain accumulation over the past 15 years.

    Science.gov (United States)

    Radiguet, M.; Cotton, F.; Cavalié, O.; Pathier, E.; Kostoglodov, V.; Vergnolle, M.; Campillo, M.; Walpersdorf, A.; Cotte, N.; Santiago, J.; Franco, S.

    2012-12-01

    Continuous Global Positioning System (cGPS) time series in Guerrero, Mexico, reveal the widespread existence of large Slow Slip Events (SSEs) at the boundary between the Cocos and North American plates. The existence of these SSEs asks the question of how seismic and aseismic slips complement each other in subduction zones. We examined the last three SSEs that occurred in 2001/2002, 2006 and 2009/2010, and their impact on the strain accumulation along the Guerrero subduction margin. We use continuous cGPS time series and InSAR images to evaluate the surface displacement during SSEs and inter-SSE periods. The slip distributions on the plate interface associated with each SSE, as well as the inter-SSE (short-term) coupling rates are evaluated by inverting these surface displacements. Our results reveal that the three analyzed SSEs have equivalent moment magnitudes of around 7.5 and their lateral extension is variable.The slip distributions for the three SSEs show that in the Guerrero gap area, the slow slip occurs at shallower depth (updip limit around 15-20 km) than in surrounding regions. The InSAR data provide additional information for the 2006 SSE. The joint inversion of InSAR and cGPS data confirms the lateral variation of the slip distribution along the trench, with shallower slip in the Guerrero seismic gap, west of Acapulco, and deeper slip further east. Inversion of inter-SSE displacement rates reveal that during the inter-SSE time intervals, the interplate coupling is high in the area where the slow slip subsequently occurs. Over a 12 year period, corresponding to three cycles of SSEs, our results reveal that the accumulated slip deficit in the Guerrero gap area is only ¼ of the slip deficit accumulated on both sides of the gap. Moreover, the regions of large slip deficit coincide with the rupture areas of recent large earthquakes. We conclude that the SSEs account for a major portion of the overall moment release budget in the Guerrero gap. If large

  7. Slip in the 2010-2011 Canterbury Earthquakes, New Zealand and implications for future seismic hazard in Christchurch

    Science.gov (United States)

    Elliott, J. R.; Nissen, E.; England, P. C.; Jackson, J. A.; Lamb, S.; Li, Z.; Oehlers, M.; Parsons, B. E.

    2011-12-01

    The September 2010 Mw 7.1 Darfield and February 2011 Mw 6.3 Christchurch (New Zealand) earthquakes occurred on previously unknown faults. We use InSAR, field mapping, aerial photographs, high-resolution satellite imagery, a LiDAR DEM, SAR amplitude offsets and teleseismic body-wave modelling to constrain the pattern of faulting in these earthquakes. The InSAR phase measurement revealed a complex pattern of ground deformation, and the fault source geometry and slip model was difficult to constrain with this data set alone. By combining the fault rupture from field observations and measured offset roads and hedges in the satellite/aerial imagery, we were able to reduce the number of free parameters in our fault model. The fault model obtained using these constraints revealed slip on multiple strike-slip segments and secondary thrust faults associated with the Darfield mainshock. The main fault rupture is about 45 km long, and is confined largely to the upper 10 km of the crust. Slip on the individual fault segments of up to 8 m at 4 km depth indicates large stress drops of about 10 MPa, which may imply an immature fault rather than rupture on an established fault. We find good agreement between horizontal offsets and slip vectors determined in the field with those derived from the remote aerial and satellite imagery. We also find good agreement between the predicted surface slip from the InSAR-derived fault model and these offsets. LiDAR determined vertical offsets of 0.1-1.4 m are consistent with the small dip-slip values predicted in the InSAR model. The orientations of the P-axes for the reverse and strike-slip segments are consistent with those expected from the GPS-derived strain field which shows a principal contraction direction ENE-WSW (Wallace et al., 2007). However, the absence of any geomorphic indicators for previous large earthquakes, obscured by the gravels of the Canterbury Plain, led to the notion that the Christchurch area was in the interior of a

  8. Strike action by nurses in South Africa: A value clarification

    Directory of Open Access Journals (Sweden)

    Marie Muller

    2001-09-01

    Full Text Available The Labour Relations Act (South Africa, 1991 made provision for protected strike action by employees, subject to certain conditions, procedures and negotiated agreements. This led to the removal of the strike clause in the Nursing Act (South Africa, 1992. The labour rights of all citizens are entrenched in the Constitution of the country (South Africa, 1996. Participation in strike action by the nurse/ midwife, regardless of the legal requirements and specifications, does, however, pose an ethical question. It is therefore necessary to conduct a value clarification on strike action by nurses in South Africa. The purpose of this research is to explore and describe the perceived values of participants from an accessible population on this phenomenon. A qualitative, exploratory and descriptive research design was deployed. The perceived values of nurses on strike action were collected by means of an openended questionnaire/sketch. Over a period of three years a purposive and convenient sampling method was used, involving all the enrolled post basic nursing/midwifery students/ learners at a particular Nursing Education Institution. The justification of the sample was further enhanced by also collecting data on the participants’ age and provincial distribution location. Although a 63% sample realisation (of the accessible population was achieved, this represents only 1,5% of the registered nursing/midwifery population in the country. A descriptive analysis of the participants’ age and provincial distribution was undertaken, as well as a content analysis of their perceived values on strike action. The mean age of the participants was 48 years, which could be attributed to the fact that most of them were enrolled for a post-basic Diploma in Community Nursing Science. Most of the responses (52,7% were against strike action and 32,5% supported strike action by nurses as a constitutional and legal right. A fairly substantial number of participants (14

  9. Southern Appalachian Regional Seismic Network

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, S.C.C.; Johnston, A.C.; Chiu, J.M. [Memphis State Univ., TN (United States). Center for Earthquake Research and Information

    1994-08-01

    The seismic activity in the southern Appalachian area was monitored by the Southern Appalachian Regional Seismic Network (SARSN) since late 1979 by the Center for Earthquake Research and Information (CERI) at Memphis State University. This network provides good spatial coverage for earthquake locations especially in east Tennessee. The level of activity concentrates more heavily in the Valley and Ridge province of eastern Tennessee, as opposed to the Blue Ridge or Inner Piedmont. The large majority of these events lie between New York - Alabama lineament and the Clingman/Ocoee lineament, magnetic anomalies produced by deep-seated basement structures. Therefore SARSN, even with its wide station spacing, has been able to define the essential first-order seismological characteristics of the Southern Appalachian seismic zone. The focal depths of the southeastern U.S. earthquakes concentrate between 8 and 16 km, occurring principally beneath the Appalachian overthrust. In cross-sectional views, the average seismicity is shallower to the east beneath the Blue Ridge and Piedmont provinces and deeper to the west beneath the Valley and Ridge and the North American craton. Results of recent focal mechanism studies by using the CERI digital earthquake catalog between October, 1986 and December, 1991, indicate that the basement of the Valley and Ridge province is under a horizontal, NE-SW compressive stress. Right-lateral strike-slip faulting on nearly north-south fault planes is preferred because it agrees with the trend of the regional magnetic anomaly pattern.

  10. Southern Appalachian Regional Seismic Network

    International Nuclear Information System (INIS)

    Chiu, S.C.C.; Johnston, A.C.; Chiu, J.M.

    1994-08-01

    The seismic activity in the southern Appalachian area was monitored by the Southern Appalachian Regional Seismic Network (SARSN) since late 1979 by the Center for Earthquake Research and Information (CERI) at Memphis State University. This network provides good spatial coverage for earthquake locations especially in east Tennessee. The level of activity concentrates more heavily in the Valley and Ridge province of eastern Tennessee, as opposed to the Blue Ridge or Inner Piedmont. The large majority of these events lie between New York - Alabama lineament and the Clingman/Ocoee lineament, magnetic anomalies produced by deep-seated basement structures. Therefore SARSN, even with its wide station spacing, has been able to define the essential first-order seismological characteristics of the Southern Appalachian seismic zone. The focal depths of the southeastern U.S. earthquakes concentrate between 8 and 16 km, occurring principally beneath the Appalachian overthrust. In cross-sectional views, the average seismicity is shallower to the east beneath the Blue Ridge and Piedmont provinces and deeper to the west beneath the Valley and Ridge and the North American craton. Results of recent focal mechanism studies by using the CERI digital earthquake catalog between October, 1986 and December, 1991, indicate that the basement of the Valley and Ridge province is under a horizontal, NE-SW compressive stress. Right-lateral strike-slip faulting on nearly north-south fault planes is preferred because it agrees with the trend of the regional magnetic anomaly pattern

  11. Effective slip lengths for flows over surfaces with nanobubbles: the effects of finite slip

    International Nuclear Information System (INIS)

    Hendy, S C; Lund, N J

    2009-01-01

    We consider effective slip lengths for flows of simple liquids over surfaces contaminated by gaseous nanobubbles. In particular, we examine whether the effects of finite slip over the liquid-bubble interface are important in limiting effective slip lengths over such surfaces. Using an expression that interpolates between the perfect slip and finite slip regimes for flow over bubbles, we conclude that for the bubble dimensions and coverages typically reported in the literature the effects of finite slip are secondary, reducing effective slip lengths by only 10%. Further, we find that nanobubbles do not significantly increase slip lengths beyond those reported for bare hydrophobic surfaces.

  12. Short- to mid-term follow-up effectiveness of US-guided focal extracorporeal shock wave therapy in the treatment of elbow lateral epicondylitis.

    Science.gov (United States)

    Trentini, R; Mangano, T; Repetto, I; Cerruti, P; Kuqi, E; Trompetto, C; Franchin, F

    2015-09-01

    Lateral epicondylitis of the elbow is a common and disabling overuse syndrome. Several treatment modalities are currently available for this condition, but the optimal treatment method remains undefined. Extracorporeal shock wave therapy (ESWT) has been widely used in the last 10 years, although conflicting results are present in the literature. In this study, we evaluated 36 patients (37 elbows), with a mean follow-up time of 24.8 months. Focal ESWT was administered by means of an electromagnetic generator equipped with in-line ultrasound guidance, during one or more cycles of 3-4 weekly sessions. In the setting of the study, patients were clinically evaluated and subjective satisfaction and rate of relapse were investigated. A positive response was described in 75.7 % of the patients after treatment. Mean quickDASH score and VAS attested at 5.5 and 1.1, respectively. Roles and Maudsley score was rated as I or II in 33 cases. Four patients resulted not responders to the therapy, while 5 patients complained one or more episodes of symptoms relapse. No influence on the final outcome was evident with respect to demographic features and previous therapies as well. Response rate to further ESWT cycles in patients refractory to the first cycle of ESWT was 33.3 %. Focal ESWT represents a valuable and safe solution in case of elbow lateral epicondylitis, both in newly diagnosed and previously treated cases, representing a definitive treatment in the majority of patients. Patients refractory to a 3- to 4-session ESWT cycle have lower chances of positive response after further ESWT cycles.

  13. Women, transition and strikes in Serbia

    Directory of Open Access Journals (Sweden)

    Novaković Nada G.

    2014-01-01

    Full Text Available The author, in a sociological way, describes and analyzes the concepts of transition, privatization and strikes in Serbia, particularly the place of women in it. It examines the most important economic and social causes and consequences of these phenomena. The main hypothesis is: women's strikes in the Serbian transition are less efficient than strikes and public protests of women in the developed world and the second Yugoslavia. A strike is a class conflict, in which the workers are fighting for their social and economic rights, threatened by the capitalist class. Elites in government and state authorities protect the interests of big capital at the detriment of the interests of the majority of workers. Exploring women's strikes in transition reveals the nature of the social and political system. Their strikes in enterprises, the blocking of public spaces and public protests are systemic, ie. class determined. As the transition was very fast, the resistance of the strikers was inefficient, and the protests of women became an expression of desperation against the loss of jobs and basic resources for lifehood. In short, this research is about the main causes, the organizational forms and the consequences of strikes in which the majority were women. For this purpose, the author chose to describe an array of strikes in the industries and the companies where women are most employed. The choice of strikes in the economic sector is not accidental, but a consequence of the fact that the women there were the most vulnerable. Women in public institutions and companies had much higher financial and social position. They are less likely to strike and publicly protested. After 2000, these strikes were more successful than worker's strikes in textile, food processing, manufacturing and trade. Relationship between the government and the public towards them was tainted by self-interest and selective. The main criterion for the selection of companies and

  14. Preliminary soil-slip susceptibility maps, southwestern California

    Science.gov (United States)

    Morton, Douglas M.; Alvarez, Rachel M.; Campbell, Russell H.; Digital preparation by Bovard, Kelly R.; Brown, D.T.; Corriea, K.M.; Lesser, J.N.

    2003-01-01

    This group of maps shows relative susceptibility of hill slopes to the initiation sites of rainfall-triggered soil slip-debris flows in southwestern California. As such, the maps offer a partial answer to one part of the three parts necessary to predict the soil-slip/debris-flow process. A complete prediction of the process would include assessments of “where”, “when”, and “how big”. These maps empirically show part of the “where” of prediction (i.e., relative susceptibility to sites of initiation of the soil slips) but do not attempt to show the extent of run out of the resultant debris flows. Some information pertinent to “when” the process might begin is developed. “When” is determined mostly by dynamic factors such as rainfall rate and duration, for which local variations are not amenable to long-term prediction. “When” information is not provided on the maps but is described later in this narrative. The prediction of “how big” is addressed indirectly by restricting the maps to a single type of landslide process—soil slip-debris flows. The susceptibility maps were created through an iterative process from two kinds of information. First, locations of sites of past soil slips were obtained from inventory maps of past events. Aerial photographs, taken during six rainy seasons that produced abundant soil slips, were used as the basis for soil slip-debris flow inventory. Second, digital elevation models (DEM) of the areas that were inventoried were used to analyze the spatial characteristics of soil slip locations. These data were supplemented by observations made on the ground. Certain physical attributes of the locations of the soil-slip debris flows were found to be important and others were not. The most important attribute was the mapped bedrock formation at the site of initiation of the soil slip. However, because the soil slips occur in surficial materials overlying the bedrocks units, the bedrock formation can only serve as

  15. Bookshelf faulting and transform motion between rift segments of the Northern Volcanic Zone, Iceland

    Science.gov (United States)

    Green, R. G.; White, R. S.; Greenfield, T. S.

    2013-12-01

    Plate spreading is segmented on length scales from 10 - 1,000 kilometres. Where spreading segments are offset, extensional motion has to transfer from one segment to another. In classical plate tectonics, mid-ocean ridge spreading centres are offset by transform faults, but smaller 'non-transform' offsets exist between slightly overlapping spreading centres which accommodate shear by a variety of geometries. In Iceland the mid-Atlantic Ridge is raised above sea level by the Iceland mantle plume, and is divided into a series of segments 20-150 km long. Using microseismicity recorded by a temporary array of 26 three-component seismometers during 2009-2012 we map bookshelf faulting between the offset Askja and Kverkfjöll rift segments in north Iceland. The micro-earthquakes delineate a series of sub-parallel strike-slip faults. Well constrained fault plane solutions show consistent left-lateral motion on fault planes aligned closely with epicentral trends. The shear couple across the transform zone causes left-lateral slip on the series of strike-slip faults sub-parallel to the rift fabric, causing clockwise rotations about a vertical axis of the intervening rigid crustal blocks. This accommodates the overall right-lateral transform motion in the relay zone between the two overlapping volcanic rift segments. The faults probably reactivated crustal weaknesses along the dyke intrusion fabric (parallel to the rift axis) and have since rotated ˜15° clockwise into their present orientation. The reactivation of pre-existing rift-parallel weaknesses is in contrast with mid-ocean ridge transform faults, and is an important illustration of a 'non-transform' offset accommodating shear between overlapping spreading segments.

  16. Focal Mechanism of Semi-Volcanic Deep Low-Frequency Earthquakes in Eastern Shimane

    Science.gov (United States)

    Aso, N.; Ohta, K.; Ide, S.

    2012-12-01

    Many deep low-frequency earthquakes (LFEs) occur near the island arc Mohorovicic discontinuities and far from both active volcanoes and plate boundaries. They are quite similar to volcanic LFEs beneath active volcanoes, which infers some fluid movement in the source region, and we regard them as "semi-volcanic" LFEs [Aso et al., 2011; 2012 (submitted)]. Several previous studies determined the focal mechanisms of volcanic and semi-volcanic LFEs using a small portion of information of the waveforms. Although the estimated focal mechanisms are various, they may not necessary support the variety of the actual physical process, owing to the large determination error [e.g., Nishidomi and Takeo, 1996; Ohmi and Obara, 2002; Nakamichi et al., 2003]. Here we determine the focal mechanisms by waveform inversion for LFEs in eastern Shimane in western Japan, where many LFEs occurred in a quiet region. The locations are also close to the fault plane of the 2000 western Tottori earthquake of Mw6.6, and right beneath Yokota volcano, which is a Quaternary volcanic cluster. We estimated the focal mechanisms of semi-volcanic LFEs in eastern Shimane by moment tensor inversion. The data are velocity seismograms at five stations of Hi-net near the epicenters. For each seismogram, we extracted a 1.5-second time window beginning from 0.2 seconds before the arrivals of either P-wave in a vertical component or S-wave in a horizontal component. The arrival time of each phase is picked manually first, and then corrected to minimize the variance between observed and synthetic waveforms. The local site amplification is estimated using far-field body waves from deep intraslab earthquakes, and collected for each seismogram. The synthetic waveforms were calculated using the discrete wavenumber integration method developed by Takeo [1985] for a horizontally layered structure. For 38 LFEs, which are equal to or larger than M1.2 (JMA magnitude) and recorded at all five stations, the focal mechanisms

  17. Mechanical properties of conjugate faults in the Makran accretionary prism estimated from InSAR observations of coseismic deformation due to the 2013 Baluchistan (Mw 7.7) earthquake

    Science.gov (United States)

    Dutta, R.; Harrington, J.; Wang, T.; Feng, G.; Vasyura-Bathke, H.; Jonsson, S.

    2017-12-01

    Interferometric Synthetic Aperture Radar (InSAR) measurements allow us to study various mechanical and rheological properties around faults. For example, strain localizations along faults induced by nearby earthquakes observed by InSAR have been explained by the elastic response of compliant fault zones (CFZ) where the elastic moduli is reduced with respect to that of the surrounding rock. We observed similar strain localizations (up to 1-3 cm displacements in the line-of-sight direction of InSAR) along several conjugate faults near the rupture of the 2013 Mw7.7 Baluchistan (Pakistan) earthquake in the accretionary prism of the Makran subduction zone. These conjugate compliant faults, which have strikes of N30°E and N45°W, are located 15-30 km from the mainshock fault rupture in a N-S compressional stress regime. The long-term geologic slip direction of these faults is left-lateral for the N30°E striking faults and right-lateral for the N45°W striking faults. The 2013 Baluchistan earthquake caused WSW-ENE extensional coseismic stress changes across the conjugate fault system and the observed strain localizations shows opposite sense of motion to that of the geologic long-term slip. We use 3D Finite Element modeling (FEM) to study the effects extensional coseismic stresses have on the conjugate CFZs that is otherwise loaded in a compressional regional stress. We use coseismic static displacements due to the earthquake along the FEM domain boundaries to simulate the extensional coseismic stress change acting across the fault system. Around 0.5-2 km wide CFZs with reduction in shear modulus by a factor of 3 to 4 can explain the observed InSAR strain localizations and the opposite sense of motion. The InSAR measurements were also used to constrain the ranges of the length, width and rigidity variations of the CFZs. The FEM solution shows that the N45°W striking faults localize mostly extensional strain and a small amount of left-lateral shear (opposite sense to

  18. Velocities of dislocation groups in very thin neutron-irradiated copper single crystals measured by slip line cinematography

    International Nuclear Information System (INIS)

    Potthoff, H.H.

    1983-01-01

    Slip line development on very thin flat single crystals of neutron-irradiated Cu (thickness down to only 15 to 20 μm, orientation for single glide, yield region, room temperature) is recorded by high-speed cinematography during tensile deformation. In such very thin crystals glide dislocations on the slip plane must be arranged in a rather simple way. Drops in tensile load occuring during initiation of single slip lines at the Lueders band front indicate that in the beginning of a slip line development dislocation groups traverse the whole glide plane in very short times. Evaluating the data measured for the slip line growth v/sub s/ >= 10 cm/s is found for screw dislocations and v/sub e/ >= v/sub s/ for edge dislocations. For later stages on thin crystals and for all stages on thick crystals (>= several 100 μm) slip line development is much slower and slip line show many cross slip events which then appear to control the mean velocity of the dislocations. (author)

  19. Active tectonics of the Binalud Mountains, a key puzzle segment to describe Quaternary deformations at the northeastern boundary of the Arabia-Eurasia collision

    Science.gov (United States)

    Shabanian, Esmaeil; Bellier, Olivier; Siame, Lionel L.; Abbassi, Mohammad R.; Leanni, Laetitia; Braucher, Régis; Farbod, Yassaman; Bourlès, Didier L.

    2010-05-01

    In northeast Iran, the Binalud Mountains accommodate part of active convergence between the Arabian and Eurasian plates. This fault-bounded mountain range has been considered a key region to describe Quaternary deformations at the northeastern boundary of the Arabia-Eurasia collision. But, the lack of knowledge on active faulting hampered evaluating the geological reliability of tectonic models describing the kinematics of deformation in northeast Iran. Morphotectonic investigations along both sides of the Binalud Mountains allowed us to characterize the structural and active faulting patterns along the Neyshabur and Mashhad fault systems on the southwest and northeast sides of the mountain range, respectively. We applied combined approaches of morphotectonic analyses based on satellite imageries (SPOT5 and Landsat ETM+), STRM and site-scale digital topographic data, and field surveys complemented with in situ-produced 10Be exposure dating to determine the kinematics and rate of active faulting. Three regional episodes of alluvial surface abandonments were dated at 5.3±1.1 kyr (Q1), 94±5 kyr (Q3), and 200±14 kyr (S3). The geomorphic reconstruction of both vertical and right-lateral fault offsets postdating these surface abandonment episodes yielded Quaternary fault slip rates on both sides of the Binalud Mountains. On the Neyshabur Fault System, thanks to geomorphic reconstructions of cumulative offsets recorded by Q3 fan surfaces, slip rates of 2.7±0.8 mm/yr and 2.4±0.2 mm/yr are estimated for right-lateral and reverse components of active faulting, respectively. Those indicate a total slip rate of 3.6±1.2 mm/yr for the late Quaternary deformation on the southwest flank of the Binalud Mountains. Reconstructing the cumulative right-lateral offset recorded by S3 surfaces, a middle-late Quaternary slip rate of 1.6±0.1 mm/yr is determined for the Mashhad Fault System. Altogether, our geomorphic observations reveal that, on both sides of the Binalud Mountains

  20. [Force-feeding of hunger-striking prisoners].

    Science.gov (United States)

    Glick, Shimon

    2014-09-01

    In contrast to the position of the World Medical Association and the Ethics Council of the Israel Medical Association, the author argues for forced-feeding of hunger-striking prisoners when their condition reaches a stage of danger of death or permanent injury. This position is based on the priority of human life over autonomy, and of a communitarian ethic. This position is supported by a District Court decision ordering the feeding of a hunger-striking prisoner, by a Supreme Court decision imposing surgery on a non-consenting prisoner, and in line with Israel's Patient's Right Law.

  1. Structural development and stress evolution of an arcuate fold-and-thrust system, southwestern Greater Caucasus, Republic of Georgia

    Science.gov (United States)

    Tibaldi, A.; Bonali, F. L.; Russo, E.; Pasquarè Mariotto, F. A.

    2018-05-01

    The southern front of the Greater Caucasus is quite rectilinear in plan view, with the exception of part of the Rioni Basin, where marine and continental deposits of Cretaceous-Neogene age were locally folded and uplifted; this resulted in the formation of an arcuate fold-and-thrust system that extends 45 km into the foreland. Although previous studies suggested that this system has developed only since Miocene times, our new detailed and systematic field measurements of brittle and ductile structures show a very complex history, consisting in four main phases of brittle deformation and folding, dated from Eocene to Quaternary times. We collected microtectonic data at 248 faults, and calculated the related paleostress tensors. The first two phases which we document here, predated folding and were characterised by dominant transcurrent faulting and subordinate reverse motions; the greatest principal stress σ1 was perpendicular and later parallel to the mountain belt. Afterwards, NW-SE, E-W and NE-SW trending, south-vergent asymmetrical folds started to form. In the western sector of the study area, folds are sinuous in plan view, whereas to the east they show a left-stepping, en-échelon geometry. Another two, brittle deformation phases took place after the folding, due to the activity of a set of right-lateral, strike-slip faults that strike NW-SE and NE-SW, respectively, as well as by left-lateral strike-slip faults, mostly striking NW-SE, NE-SW and NNE-SSW. These two additional phases were produced by a NE-SW to N-S trending σ1. The arcuate belt is marked by along-strike variations in the tectonic regime and deformation geometry, plus belt-parallel stretching. Based on our field data, integrated with published analogue models, we suggest a possible explanation for the Rioni structure, in terms of the oblique, asymmetric indentation of an upper crustal blocks moving to the SSW.

  2. Predicting timing of foot strike during running, independent of striking technique, using principal component analysis of joint angles.

    Science.gov (United States)

    Osis, Sean T; Hettinga, Blayne A; Leitch, Jessica; Ferber, Reed

    2014-08-22

    As 3-dimensional (3D) motion-capture for clinical gait analysis continues to evolve, new methods must be developed to improve the detection of gait cycle events based on kinematic data. Recently, the application of principal component analysis (PCA) to gait data has shown promise in detecting important biomechanical features. Therefore, the purpose of this study was to define a new foot strike detection method for a continuum of striking techniques, by applying PCA to joint angle waveforms. In accordance with Newtonian mechanics, it was hypothesized that transient features in the sagittal-plane accelerations of the lower extremity would be linked with the impulsive application of force to the foot at foot strike. Kinematic and kinetic data from treadmill running were selected for 154 subjects, from a database of gait biomechanics. Ankle, knee and hip sagittal plane angular acceleration kinematic curves were chained together to form a row input to a PCA matrix. A linear polynomial was calculated based on PCA scores, and a 10-fold cross-validation was performed to evaluate prediction accuracy against gold-standard foot strike as determined by a 10 N rise in the vertical ground reaction force. Results show 89-94% of all predicted foot strikes were within 4 frames (20 ms) of the gold standard with the largest error being 28 ms. It is concluded that this new foot strike detection is an improvement on existing methods and can be applied regardless of whether the runner exhibits a rearfoot, midfoot, or forefoot strike pattern. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A Wideband Magnetoresistive Sensor for Monitoring Dynamic Fault Slip in Laboratory Fault Friction Experiments.

    Science.gov (United States)

    Kilgore, Brian D

    2017-12-02

    A non-contact, wideband method of sensing dynamic fault slip in laboratory geophysical experiments employs an inexpensive magnetoresistive sensor, a small neodymium rare earth magnet, and user built application-specific wideband signal conditioning. The magnetoresistive sensor generates a voltage proportional to the changing angles of magnetic flux lines, generated by differential motion or rotation of the near-by magnet, through the sensor. The performance of an array of these sensors compares favorably to other conventional position sensing methods employed at multiple locations along a 2 m long × 0.4 m deep laboratory strike-slip fault. For these magnetoresistive sensors, the lack of resonance signals commonly encountered with cantilever-type position sensor mounting, the wide band response (DC to ≈ 100 kHz) that exceeds the capabilities of many traditional position sensors, and the small space required on the sample, make them attractive options for capturing high speed fault slip measurements in these laboratory experiments. An unanticipated observation of this study is the apparent sensitivity of this sensor to high frequency electomagnetic signals associated with fault rupture and (or) rupture propagation, which may offer new insights into the physics of earthquake faulting.

  4. Lateral displacement of the right kidney by the colon: an anatomic variation demonstrated by CT

    International Nuclear Information System (INIS)

    Silverman, P.M.; Kelvin, F.M.; Korobkin, M.

    1983-01-01

    Lateral displacement of the kidney on a urogram can be caused by a variety of retroperitoneal abnormalities, including enlarged lymph nodes, primary or metastatic neoplasm, aortic aneurysm, hematoma, abscess, or even benign accumulations of fat. CT commonly is used to evaluate the cause of renal displacement and often suggests the correct etiology. An unusual case is reported in which CT demonstrated that lateral displacement of the right kidney was caused by insinuation of an otherwise normal right colon between the kidney and the right psoas muscle. The authors are not aware of any previous report of this benign anatomic variant

  5. Retrieving Precise Three-Dimensional Deformation on the 2014 M6.0 South Napa Earthquake by Joint Inversion of Multi-Sensor SAR.

    Science.gov (United States)

    Jo, Min-Jeong; Jung, Hyung-Sup; Yun, Sang-Ho

    2017-07-14

    We reconstructed the three-dimensional (3D) surface displacement field of the 24 August 2014 M6.0 South Napa earthquake using SAR data from the Italian Space Agency's COSMO-SkyMed and the European Space Agency's Sentinel-1A satellites. Along-track and cross-track displacements produced with conventional SAR interferometry (InSAR) and multiple-aperture SAR interferometry (MAI) techniques were integrated to retrieve the east, north, and up components of surface deformation. The resulting 3D displacement maps clearly delineated the right-lateral shear motion of the fault rupture with a maximum surface displacement of approximately 45 cm along the fault's strike, showing the east and north components of the trace particularly clearly. These maps also suggested a better-constrained model for the South Napa earthquake. We determined a strike of approximately 338° and dip of 85° by applying the Okada dislocation model considering a single patch with a homogeneous slip motion. Using the distributed slip model obtained by a linear solution, we estimated that a peak slip of approximately 1.7 m occurred around 4 km depth from the surface. 3D modelling using the retrieved 3D maps helps clarify the fault's nature and thus characterize its behaviour.

  6. Shear-stress-induced structural arrangement of water molecules in nanoscale Couette flow with slipping at wall boundary

    International Nuclear Information System (INIS)

    Lin, Jau-Wen

    2014-01-01

    This study investigated the structuring of water molecules in a nanoscale Couette flow with the upper plate subjected to lateral forces with various magnitudes and water slipping against a metal wall. It was found that when the upper plate is subjected to a force, the water body deforms into a parallelepiped. Water molecules in the channel are then gradually arranged into lattice positions, creating a layered structure. The structural arrangement of water molecules is caused by the water molecules accommodating themselves to the increase in energy under the application of a lateral force on the moving plate. The ordering arrangement of water molecules increases the rotational degree of freedom, allowing the molecules to increase their Coulomb potential energy through polar rotation that accounts for the energy input through the upper plate. With a force continuously applied to the upper plate, the water molecules in contact with the upper plate move forward until slip between the water and upper plate occurs. The relation between the structural arrangement of water molecules, slip at the wall, and the shear force is studied. The relation between the slip and the locking/unlocking of water molecules to metal atoms is also studied

  7. A Kinematic Model of Slow Slip Constrained by Tremor-Derived Slip Histories in Cascadia

    Science.gov (United States)

    Schmidt, D. A.; Houston, H.

    2016-12-01

    We explore new ways to constrain the kinematic slip distributions for large slow slip events using constraints from tremor. Our goal is to prescribe one or more slip pulses that propagate across the fault and scale appropriately to satisfy the observations. Recent work (Houston, 2015) inferred a crude representative stress time history at an average point using the tidal stress history, the static stress drop, and the timing of the evolution of tidal sensitivity of tremor over several days of slip. To convert a stress time history into a slip time history, we use simulations to explore the stressing history of a small locked patch due to an approaching rupture front. We assume that the locked patch releases strain through a series of tremor bursts whose activity rate is related to the stressing history. To test whether the functional form of a slip pulse is reasonable, we assume a hypothetical slip time history (Ohnaka pulse) timed with the occurrence of tremor to create a rupture front that propagates along the fault. The duration of the rupture front for a fault patch is constrained by the observed tremor catalog for the 2010 ETS event. The slip amplitude is scaled appropriately to match the observed surface displacements from GPS. Through a forward simulation, we evaluate the ability of the tremor-derived slip history to accurately predict the pattern of surface displacements observed by GPS. We find that the temporal progression of surface displacements are well modeled by a 2-4 day slip pulse, suggesting that some of the longer duration of slip typically found in time-dependent GPS inversions is biased by the temporal smoothing. However, at some locations on the fault, the tremor lingers beyond the passage of the slip pulse. A small percentage (5-10%) of the tremor appears to be activated ahead of the approaching slip pulse, and tremor asperities experience a driving stress on the order of 10 kPa/day. Tremor amplitude, rather than just tremor counts, is needed

  8. Rupture directivity and slip distribution of the M 4.3 foreshock to the 1992 Joshua Tree earthquake, Southern California

    Science.gov (United States)

    Mori, J.

    1996-01-01

    Details of the M 4.3 foreshock to the Joshua Tree earthquake were studied using P waves recorded on the Southern California Seismic Network and the Anza network. Deconvolution, using an M 2.4 event as an empirical Green's function, corrected for complicated path and site effects in the seismograms and produced simple far-field displacement pulses that were inverted for a slip distribution. Both possible fault planes, north-south and east-west, for the focal mechanism were tested by a least-squares inversion procedure with a range of rupture velocities. The results showed that the foreshock ruptured the north-south plane, similar to the mainshock. The foreshock initiated a few hundred meters south of the mainshock and ruptured to the north, toward the mainshock hypocenter. The mainshock (M 6.1) initiated near the northern edge of the foreshock rupture 2 hr later. The foreshock had a high stress drop (320 to 800 bars) and broke a small portion of the fault adjacent to the mainshock but was not able to immediately initiate the mainshock rupture.

  9. Fluid Collection in the Right Lateral Portion of the Superior Aortic Recess Mimicking a Right Mediastinal Mass: Assessment with Chest Posterior Anterior and MDCT

    International Nuclear Information System (INIS)

    Shn, Dong Rock; Ryu, Dae Shick; Park, Man Soo; Jung, Seung Mun; Ahn, Jae Hong; Lee, Jong Hyeog; Choi, Soo Jung

    2012-01-01

    We observed patients in whom the fluid collection in the right lateral portion of the superior aortic recess on computed tomography (CT) scans mimicked a right anterior mediastinal mass on chest PA radiographs. The purpose of this study was to assess chest PA and CT features of these patients. All chest PA radiographs and CT scans in 9 patients were reviewed by two radiologists on a consensus basis; for the presence of pleural effusion, pulmonary edema and heart size on chest PA radiographs. For the portion of the fluid collection in the superior aortic recess (SAR), a connection between the right lateral portion of the SAR (rSAR) and posterior portion of the SAR (pSAR) on CT scans, and the distance between the right lateral margin of the rSAR and the right lateral margin of the superior vena cava. Fluid collection in the rSAR on CT scans caused a right anterior mediastinal mass or a bulging contour on chest PA radiographs in all women patients. All patients showed cardiomegaly, five patients had pleural effusion, and two patients had mild pulmonary edema. Further, eight patients showed a connection between the rSAR and the pSAR. The characteristic features of these patients are the right anterior mediastinal mass-like opacity due to fluid collection in the rSAR, are bulging contour with a smooth margin and cardiomegaly regardless of pulmonary edema on the chest PA radiographs, and fluid connection between the rSAR and the pSAR on CT scans

  10. Fluid Collection in the Right Lateral Portion of the Superior Aortic Recess Mimicking a Right Mediastinal Mass: Assessment with Chest Posterior Anterior and MDCT

    Energy Technology Data Exchange (ETDEWEB)

    Shn, Dong Rock; Ryu, Dae Shick; Park, Man Soo; Jung, Seung Mun; Ahn, Jae Hong; Lee, Jong Hyeog; Choi, Soo Jung [Dept. of Radiology, Gangneung Asan Hospital, College of Medicine, University of Ulsan, Gangneung (Korea, Republic of)

    2012-09-15

    We observed patients in whom the fluid collection in the right lateral portion of the superior aortic recess on computed tomography (CT) scans mimicked a right anterior mediastinal mass on chest PA radiographs. The purpose of this study was to assess chest PA and CT features of these patients. All chest PA radiographs and CT scans in 9 patients were reviewed by two radiologists on a consensus basis; for the presence of pleural effusion, pulmonary edema and heart size on chest PA radiographs. For the portion of the fluid collection in the superior aortic recess (SAR), a connection between the right lateral portion of the SAR (rSAR) and posterior portion of the SAR (pSAR) on CT scans, and the distance between the right lateral margin of the rSAR and the right lateral margin of the superior vena cava. Fluid collection in the rSAR on CT scans caused a right anterior mediastinal mass or a bulging contour on chest PA radiographs in all women patients. All patients showed cardiomegaly, five patients had pleural effusion, and two patients had mild pulmonary edema. Further, eight patients showed a connection between the rSAR and the pSAR. The characteristic features of these patients are the right anterior mediastinal mass-like opacity due to fluid collection in the rSAR, are bulging contour with a smooth margin and cardiomegaly regardless of pulmonary edema on the chest PA radiographs, and fluid connection between the rSAR and the pSAR on CT scans.

  11. Focal fatty infiltra- tion and focal fatty sparing of the liver

    African Journals Online (AJOL)

    Enrique

    Department of Radiology. Nelson Mandela School of Health Sciences. Durban. Fig. 1a. Unenhanced CT of the liver in case 1 demonstrates multiple focal low density regions in both lobes of the liver. Region of interest 1 over the fatty left lobe measured 10 HU while region of interest 2 over the right lobe measure 40 HU in.

  12. Tectonic evolution of the Qumran Basin from high-resolution 3.5-kHz seismic profiles and its implication for the evolution of the northern Dead Sea Basin

    Science.gov (United States)

    Lubberts, Ronald K.; Ben-Avraham, Zvi

    2002-02-01

    The Dead Sea Basin is a morphotectonic depression along the Dead Sea Transform. Its structure can be described as a deep rhomb-graben (pull-apart) flanked by two block-faulted marginal zones. We have studied the recent tectonic structure of the northwestern margin of the Dead Sea Basin in the area where the northern strike-slip master fault enters the basin and approaches the western marginal zone (Western Boundary Fault). For this purpose, we have analyzed 3.5-kHz seismic reflection profiles obtained from the northwestern corner of the Dead Sea. The seismic profiles give insight into the recent tectonic deformation of the northwestern margin of the Dead Sea Basin. A series of 11 seismic profiles are presented and described. Although several deformation features can be explained in terms of gravity tectonics, it is suggested that the occurrence of strike-slip in this part of the Dead Sea Basin is most likely. Seismic sections reveal a narrow zone of intensely deformed strata. This zone gradually merges into a zone marked by a newly discovered tectonic depression, the Qumran Basin. It is speculated that both structural zones originate from strike-slip along right-bending faults that splay-off from the Jordan Fault, the strike-slip master fault that delimits the active Dead Sea rhomb-graben on the west. Fault interaction between the strike-slip master fault and the normal faults bounding the transform valley seems the most plausible explanation for the origin of the right-bending splays. We suggest that the observed southward widening of the Dead Sea Basin possibly results from the successive formation of secondary right-bending splays to the north, as the active depocenter of the Dead Sea Basin migrates northward with time.

  13. Intra-arc Seismicity: Geometry and Kinematic Constraints of Active Faulting along Northern Liquiñe-Ofqui and Andean Transverse Fault Systems [38º and 40ºS, Southern Andes

    Science.gov (United States)

    Sielfeld, G.; Lange, D.; Cembrano, J. M.

    2017-12-01

    Intra-arc crustal seismicity documents the schizosphere tectonic state along active magmatic arcs. At oblique-convergent margins, a significant portion of bulk transpressional deformation is accommodated in intra-arc regions, as a consequence of stress and strain partitioning. Simultaneously, crustal fluid migration mechanisms may be controlled by the geometry and kinematics of crustal high strain domains. In such domains shallow earthquakes have been associated with either margin-parallel strike-slip faults or to volcano-tectonic activity. However, very little is known on the nature and kinematics of Southern Andes intra-arc crustal seismicity and its relation with crustal faults. Here we present results of a passive seismicity study based on 16 months of data collected from 33 seismometers deployed along the intra-arc region of Southern Andes between 38˚S and 40˚S. This region is characterized by a long-lived interplay among margin-parallel strike-slip faults (Liquiñe-Ofqui Fault System, LOFS), second order Andean-transverse-faults (ATF), volcanism and hydrothermal activity. Seismic signals recorded by our network document small magnitude (0.2P and 2,796 S phase arrival times have been located with NonLinLoc. First arrival polarities and amplitude ratios of well-constrained events, were used for focal mechanism inversion. Local seismicity occurs at shallow levels down to depth of ca. 16 km, associated either with stratovolcanoes or to master, N10˚E, and subsidiary, NE to ENE, striking branches of the LOFS. Strike-slip focal mechanisms are consistent with the long-term kinematics documented by field structural-geology studies. Unexpected, well-defined NW-SE elongated clusters are also reported. In particular, a 72-hour-long, N60˚W-oriented seismicity swarm took place at Caburgua Lake area, describing a ca. 36x12x1km3 faulting crustal volume. Results imply a unique snapshot on shallow crustal tectonics, contributing to the understanding of faulting processes

  14. Determination Hypocentre and Focal Mechanism Earthquake of Oct 31, 2016 in Bone, South Sulawesi

    Science.gov (United States)

    Altin Massinai, Muhammad; Fawzy Ismullah M, Muhammad

    2018-03-01

    Indonesian Meteorology, Climatology and Geophysics Agency (BMKG) recorded an earthquake with M4.6 on at October 31, 2016 at Bone District, around 80 Km northeast form Makassar, South Sulawesi. The earthquake occurred 18:18:14 local time in 4.7°S, 120°E with depth 10 Km. Seismicity around location predicted caused by activity Walennae fault. We reprocessed earthquake data to determine precise hypocentre location and focal mechanism. The P- and S-wave arrival time got from BMKG used as input HYPOELLIPSE code to determine hypocentre. The results showed that the earthquake occurred 10:18:14.46 UTC in 4.638°S, 119.966°E with depth 24.76 Km. The hypocentre resolved 10 Km fix depth and had lower travel time residual than BMKG result. Focal mechanism determination used Azmtak code based on the first arrival polarity at earthquake waveform manually picked. The result showed a reverse mechanism with strike direction 38°, dip 44°, rake angle 134° on fault plane I and strike direction 164°, dip 60°, rake angle 56° on fault plane II. So, the earthquake which may be related to a reverse East Walennae Fault.

  15. A case report: Familial glucocorticoid deficiency associated with familial focal segmental glomerulosclerosis

    Directory of Open Access Journals (Sweden)

    Ram Nanik

    2012-12-01

    Full Text Available Abstract Background Familial glucocorticoid deficiency (FGD is a rare autosomal recessive disorder characterized by isolated glucocorticoid deficiency in the presence of normal plasma renin and aldosterone level. Focal segmental glomerulosclerosis (FSGS is a form of glomerular disease associated with proteinuria and nephritic syndrome. This is the first case of familial glucocorticoid deficiency associated with familial focal segmental glomerulosclerosis. Case presentation An eight month old boy presented with increased genital pigmentation. Initial investigation revealed that he was glucocorticoid deficient and was started on hydrocortisone and fludrocortisone with a diagnosis of primary adrenal insufficiency. Later fludrocortisone was withdrawn and he was diagnosed to have isolated glucocorticoid deficiency. He later developed focal segmental glomerulosclerosis for which he underwent renal transplantation at the age of five years. Now at the age of twelve years, this boy is doing well on hydrocortisone treatment. His two siblings and a first degree cousin also had isolated glucocorticoid deficiency. One of the above two siblings died due to renal failure secondary to focal segmental glomerulosclerosis. Conclusion Patients with familial glucocorticoid deficiency should be carefully followed for development of features of nephrotic syndrome.

  16. [Effects of acupuncture at left and right Hegu (LI 4) for cerebral function laterality].

    Science.gov (United States)

    Wang, Linying; Xu, Chunsheng; Zhu, Yifang; Li, Chuanfu; Yang, Jun

    2015-08-01

    To explore the cerebral function laterality of acupuncture at left and right Hegu (LI 4) by using functional magnetic resonance imaging (fMRI) and provide objective evidences for side selection of Hegu (LI 4) in the clinical application. Eighty healthy volunteers were randomly divided into a left-acupoint group and a right-acupoint group, and they were treated with acupuncture at left Hegu (LI 4) and right Hegu (LI 4) respectively. After the arrival of qi, the task-state fMRI data in both groups was collected, and analysis of functional neuroimages (AFNI) software was used to perform intra-group and between-group comparisons. After acupuncture, acupuncture feelings were recorded and MGH acupuncture sensation scale (MASS) was recorded. The difference of MASS between the two groups was not significant (P>0. 05). The result of left-acupoint group showed an increased signal on right cerebral hemisphere, while the right-acupoint group showed extensive signal changes in both cerebral hemispheres. The analysis between left-acupoint group and retroflex right-acupoint group showed differences in brain areas. The central effect of acupuncture at left and right Hegu (LI 4) is dissymmetry, indicating right hemisphere laterality. The right lobus insularis and cingulate gyrus may be the key regions in the acupuncture at Hegu (LI 4).

  17. The role of bed-parallel slip in the development of complex normal fault zones

    Science.gov (United States)

    Delogkos, Efstratios; Childs, Conrad; Manzocchi, Tom; Walsh, John J.; Pavlides, Spyros

    2017-04-01

    Normal faults exposed in Kardia lignite mine, Ptolemais Basin, NW Greece formed at the same time as bed-parallel slip-surfaces, so that while the normal faults grew they were intermittently offset by bed-parallel slip. Following offset by a bed-parallel slip-surface, further fault growth is accommodated by reactivation on one or both of the offset fault segments. Where one fault is reactivated the site of bed-parallel slip is a bypassed asperity. Where both faults are reactivated, they propagate past each other to form a volume between overlapping fault segments that displays many of the characteristics of relay zones, including elevated strains and transfer of displacement between segments. Unlike conventional relay zones, however, these structures contain either a repeated or a missing section of stratigraphy which has a thickness equal to the throw of the fault at the time of the bed-parallel slip event, and the displacement profiles along the relay-bounding fault segments have discrete steps at their intersections with bed-parallel slip-surfaces. With further increase in displacement, the overlapping fault segments connect to form a fault-bound lens. Conventional relay zones form during initial fault propagation, but with coeval bed-parallel slip, relay-like structures can form later in the growth of a fault. Geometrical restoration of cross-sections through selected faults shows that repeated bed-parallel slip events during fault growth can lead to complex internal fault zone structure that masks its origin. Bed-parallel slip, in this case, is attributed to flexural-slip arising from hanging-wall rollover associated with a basin-bounding fault outside the study area.

  18. Analysis and Simulation of 3D Scattering due to Heterogeneous Crustal Structure and Surface Topography on Regional Phases; Magnitude and Discrimination

    Science.gov (United States)

    2009-07-07

    inversion technique that is based on different weights for relatively high frequency waveform modeling of Pnl and relatively long period surface waves (Tan...et al., 2006). Pnl and surface waves are also allowed to shift in time to take into account of uncertainties in velocity structure. Joint...inversion of Pnl and surface waves provides better constraints on focal depth as well as source mechanisms. The pure strike-slip mechanism of the earthquake

  19. Acceleration Slip Regulation Strategy for Distributed Drive Electric Vehicles with Independent Front Axle Drive Motors

    Directory of Open Access Journals (Sweden)

    Lingfei Wu

    2015-05-01

    Full Text Available This paper presents an acceleration slip regulation strategy for distributed drive electric vehicles with two motors on the front axle. The tasks of the strategy include controlling the slip ratio to make full use of the road grip and controlling the yaw rate to eliminate the lateral movement due to the difference between motor torques. The rate of the slip ratio change can be controlled by controlling the motor torque, so that the slip ratio can be controlled by applying a proportional-integral control strategy to control the rate of the slip ratio change. The yaw rate can be controlled to almost zero by applying torque compensation based on yaw rate feedback. A coordination control strategy for the slip ratio control and yaw rate control is proposed based on analysis of the priorities and features of the two control processes. Simulations were carried out using MATLAB/Simulink, and experiments were performed on a hardware-in-loop test bench with actual motors. The results of the simulations and experiments showed that the proposed strategy could improve the longitudinal driving performance and straight line driving stability of the vehicle.

  20. Slipping on pedestrian surfaces: methods for measuring and evaluating the slip resistance.

    Science.gov (United States)

    Wetzel, Christoph; Windhövel, Ulrich; Mewes, Detlef; Ceylan, Orhan

    2015-01-01

    Tripping, slipping and falling accidents are among the types of accident with a high incidence. This article describes the requirements concerning slip resistance, as well as the state of the art of slip resistance measurement standards in the European Community and the USA. The article also describes how risk assessment can be performed in the field.

  1. Footwear Matters: Influence of Footwear and Foot Strike on Load Rates during Running.

    Science.gov (United States)

    Rice, Hannah M; Jamison, Steve T; Davis, Irene S

    2016-12-01

    Running with a forefoot strike (FFS) pattern has been suggested to reduce the risk of overuse running injuries, due to a reduced vertical load rate compared with rearfoot strike (RFS) running. However, resultant load rate has been reported to be similar between foot strikes when running in traditional shoes, leading to questions regarding the value of running with a FFS. The influence of minimal footwear on the resultant load rate has not been considered. This study aimed to compare component and resultant instantaneous loading rate (ILR) between runners with different foot strike patterns in their habitual footwear conditions. Twenty-nine injury-free participants (22 men, seven women) ran at 3.13 m·s along a 30-m runway, with their habitual foot strike and footwear condition. Ground reaction force data were collected. Peak ILR values were compared between three conditions; those who habitually run with an RFS in standard shoes, with an FFS in standard shoes, and with an FFS in minimal shoes. Peak resultant, vertical, lateral, and medial ILR were lower (P strike. When running with an FFS, peak posterior ILR were lower (P strike. Therefore, it appears that footwear alters the load rates during running, even with similar foot strike patterns.

  2. MORE THAN A LABOR DISPUTE: THE PATCO STRIKE OF 1981

    Directory of Open Access Journals (Sweden)

    Paul L. Butterworth

    2005-01-01

    Full Text Available On August 3, 1981, 13,000 air traffic controllers walked off the job. Under US law, the strike was illegal. President Ronald Reagan ordered the strikers as a group to return to work; when they did not, he ordered individual strikers to return, and again they refused. Two days later the president fired the strikers. Reagan's action transformed relations between organized labor and American management, and created the worst turbulence to hit the American airways in recent history. “More Than a Labor Dispute” examines the work stoppage and aftermath through the eyes of two controllers and a pilot, all of whom worked during the strike.

  3. Size-affected single-slip behavior of Rene N5 microcrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shade, P.A., E-mail: paul.shade@wpafb.af.mil [Department of Materials Science and Engineering, Ohio State University, 477 Watts Hall, 2041 College Road, Columbus, OH 43210 (United States); Air Force Research Laboratory, Materials and Manufacturing Directorate, 2230 10th Street, Wright-Patterson AFB, OH 45433 (United States); Uchic, M.D.; Dimiduk, D.M. [Air Force Research Laboratory, Materials and Manufacturing Directorate, 2230 10th Street, Wright-Patterson AFB, OH 45433 (United States); Viswanathan, G.B.; Wheeler, R. [UES Inc., 4401 Dayton-Xenia Road, Dayton, OH 45432 (United States); Fraser, H.L. [Department of Materials Science and Engineering, Ohio State University, 477 Watts Hall, 2041 College Road, Columbus, OH 43210 (United States)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Microcompression testing was conducted on the single crystal superalloy Rene N5. Black-Right-Pointing-Pointer All microcrystals exhibited size-affected plastic flow. Black-Right-Pointing-Pointer Dendrite core microcrystals were stronger than those from interdendritic regions. - Abstract: Microcompression testing was conducted on the cast single crystal nickel-base superalloy Rene N5. Microcrystals were selectively fabricated from either dendrite core or interdendritic regions. The compression axis was oriented for single-slip deformation and microcrystal diameters ranged from 2.5 to 80 {mu}m. All microcrystals displayed several hallmarks of size-affected plastic flow, including a size-affected and stochastic flow-stress and initial strain hardening rate, as well as an intermittent flow response. The magnitude of size-affected flow-stress scaling behavior was dependent upon the plastic strain level of the flow-stress measurement, with increasing size-dependence for increasing strain levels. TEM analysis demonstrated the activation of multiple slip-systems, despite the microcrystals being oriented for single-slip deformation. Zig-zag slip was also observed in microcrystals that achieved flow stresses of {approx}1300 MPa or higher. For microcrystals fabricated within interdendritic regions the flow-stress values are, on average, lower compared to dendrite core microcrystals. This difference in flow-stress is especially pronounced for microcrystals which are 5 {mu}m in diameter. The microcrystal diameter for which bulk-like properties are estimated to be observed is approximately 350 {mu}m, which is approaching the measured primary dendrite arm spacing for this crystal (430 {mu}m).

  4. Proximity of the Seismogenic Dog Valley Fault to Stampede and Prosser Creek Dams Near Truckee, California

    Science.gov (United States)

    Cronin, V. S.; Strasser, M. P.

    2017-12-01

    The M 6.0 Truckee earthquake of 12 September 1966 caused a variety of surface effects observed over a large area, but the rupture plane of the causative fault did not displace the ground surface. The fault that generated the earthquake was named the Dog Valley fault [DVF], and its ground trace was assumed to be within a zone of subparallel drainage lineaments. The plunge and trend of the dip vector for the best fault-plane solution is 80° 134° with 0° rake, corresponding to a steep NE striking left-lateral strike-slip fault (Tsai and Aki, 1970). The Stampede Dam was completed along the trend of the Dog Valley fault in 1970, just four years after the Truckee earthquake, and impounds almost a quarter-million acre-feet of water. Failure of Stampede Dam would compromise Boca Dam downstream and pose a catastrophic threat to people along the Truckee River floodplain to Reno and beyond. Two 30 m long trenches excavated across a suspected DVF trend by the US Bureau of Reclamation in the 1980s did not find evidence of faulting (Hawkins et al., 1986). The surface trace of the DVF has remained unknown. We used the Seismo-Lineament Analysis Method [SLAM] augmented with a total least squares analysis of the focal locations of known or suspected aftershocks, along with focal mechanism data from well located events since 1966, to constrain the search for the DVF ground trace. Geomorphic analysis of recently collected aerial lidar data along this composite seismo-lineament has lead to a preliminary interpretation that the DVF might extend from the Prosser Creek Reservoir near 39.396°N 120.168°W through or immediately adjacent to the Stampede Dam structure. A second compound geomorphic lineament is sub-parallel to this line 1.6 km to the northwest, and might represent another strand of the DVF. As noted by Hawkins et al. (1986), human modification of the land surface complicates structural-geomorphic analysis. Fieldwork in 2016 took advantage of drought conditions to examine

  5. Source model and Coulomb stress change of 2017 Mw 6.5 Philippine (Ormoc) Earthquake revealed by SAR interferometry

    Science.gov (United States)

    Tsai, M. C.; Hu, J. C.; Yang, Y. H.; Hashimoto, M.; Aurelio, M.; Su, Z.; Escudero, J. A.

    2017-12-01

    Multi-sight and high spatial resolution interferometric SAR data enhances our ability for mapping detailed coseismic deformation to estimate fault rupture model and to infer the Coulomb stress change associated with a big earthquake. Here, we use multi-sight coseismic interferograms acquired by ALOS-2 and Sentinel-1A satellites to estimate the fault geometry and slip distribution on the fault plane of the 2017 Mw 6.5 Ormoc Earthquake in Leyte island of Philippine. The best fitting model predicts that the coseismic rupture occurs along a fault plane with strike of 325.8º and dip of 78.5ºE. This model infers that the rupture of 2017 Ormoc earthquake is dominated by left-lateral slip with minor dip-slip motion, consistent with the left-lateral strike-slip Philippine fault system. The fault tip has propagated to the ground surface, and the predicted coseismic slip on the surface is about 1 m located at 6.5 km Northeast of Kananga city. Significant slip is concentrated on the fault patches at depth of 0-8 km and an along-strike distance of 20 km with varying slip magnitude from 0.3 m to 2.3 m along the southwest segment of this seismogenic fault. Two minor coseismic fault patches are predicted underneath of the Tononan geothermal field and the creeping segment of the northwest portion of this seismogenic fault. This implies that the high geothermal gradient underneath of the Tongonan geothermal filed could prevent heated rock mass from the coseismic failure. The seismic moment release of our preferred fault model is 7.78×1018 Nm, equivalent to Mw 6.6 event. The Coulomb failure stress (CFS) calculated by the preferred fault model predicts significant positive CFS change on the northwest segment of the Philippine fault in Leyte Island which has coseismic slip deficit and is absent from aftershocks. Consequently, this segment should be considered to have increasing of risk for future seismic hazard.

  6. Quantifying slip balance in the earthquake cycle: Coseismic slip model constrained by interseismic coupling

    KAUST Repository

    Wang, Lifeng; Hainzl, Sebastian; Mai, Paul Martin

    2015-01-01

    The long-term slip on faults has to follow, on average, the plate motion, while slip deficit is accumulated over shorter time scales (e.g., between the large earthquakes). Accumulated slip deficits eventually have to be released by earthquakes and aseismic processes. In this study, we propose a new inversion approach for coseismic slip, taking interseismic slip deficit as prior information. We assume a linear correlation between coseismic slip and interseismic slip deficit, and invert for the coefficients that link the coseismic displacements to the required strain accumulation time and seismic release level of the earthquake. We apply our approach to the 2011 M9 Tohoku-Oki earthquake and the 2004 M6 Parkfield earthquake. Under the assumption that the largest slip almost fully releases the local strain (as indicated by borehole measurements, Lin et al., 2013), our results suggest that the strain accumulated along the Tohoku-Oki earthquake segment has been almost fully released during the 2011 M9 rupture. The remaining slip deficit can be attributed to the postseismic processes. Similar conclusions can be drawn for the 2004 M6 Parkfield earthquake. We also estimate the required time of strain accumulation for the 2004 M6 Parkfield earthquake to be ~25 years (confidence interval of [17, 43] years), consistent with the observed average recurrence time of ~22 years for M6 earthquakes in Parkfield. For the Tohoku-Oki earthquake, we estimate the recurrence time of~500-700 years. This new inversion approach for evaluating slip balance can be generally applied to any earthquake for which dense geodetic measurements are available.

  7. Quantifying slip balance in the earthquake cycle: Coseismic slip model constrained by interseismic coupling

    KAUST Repository

    Wang, Lifeng

    2015-11-11

    The long-term slip on faults has to follow, on average, the plate motion, while slip deficit is accumulated over shorter time scales (e.g., between the large earthquakes). Accumulated slip deficits eventually have to be released by earthquakes and aseismic processes. In this study, we propose a new inversion approach for coseismic slip, taking interseismic slip deficit as prior information. We assume a linear correlation between coseismic slip and interseismic slip deficit, and invert for the coefficients that link the coseismic displacements to the required strain accumulation time and seismic release level of the earthquake. We apply our approach to the 2011 M9 Tohoku-Oki earthquake and the 2004 M6 Parkfield earthquake. Under the assumption that the largest slip almost fully releases the local strain (as indicated by borehole measurements, Lin et al., 2013), our results suggest that the strain accumulated along the Tohoku-Oki earthquake segment has been almost fully released during the 2011 M9 rupture. The remaining slip deficit can be attributed to the postseismic processes. Similar conclusions can be drawn for the 2004 M6 Parkfield earthquake. We also estimate the required time of strain accumulation for the 2004 M6 Parkfield earthquake to be ~25 years (confidence interval of [17, 43] years), consistent with the observed average recurrence time of ~22 years for M6 earthquakes in Parkfield. For the Tohoku-Oki earthquake, we estimate the recurrence time of~500-700 years. This new inversion approach for evaluating slip balance can be generally applied to any earthquake for which dense geodetic measurements are available.

  8. Striking Clepsydras

    Science.gov (United States)

    Nam, Moon-Hyon

    The term "Striking Clepsydra" is a shortened translation of the Korean name Jagyeongnu (自擊漏, tzu-chi lou in Chinese, literally "automatic-striking water-clock"). It was given to the two monumental time-keeping installations built by chief court engineer Yeong-sil Jang in AD 1432-38 under King Sejong (r. AD 1418-50) of the Joseon dynasty (1392-1910) in Seoul. These were housed separately in the Gyeongbok palace complex as major installations of the Royal Observatory Ganuidae equipped during 1432-38. One was the Striking Palace Clepsydra Borugangnu that was employed as the standard time-keeper from 1434, and the other was the Striking Heavenly Clepsydra Heumgyeonggangnu that was put into use not only as the symbol of Neo-Confucian ideology from 1438, but also as a demonstrational orrery and time-keeper. These were restored several times through the dynasty after loss by fires and warfare, and clepsydra-making technologies were succeeded by the development of armillary clocks in 1669. The National Palace Museum of Korea recreated the 1434 Striking Palace Clepsydra of King Sejong, and the replica was installed for permanent exhibition from November 2007.

  9. Seismogeodesy of the 2014 Mw6.1 Napa earthquake, California: Rapid response and modeling of fast rupture on a dipping strike-slip fault

    Science.gov (United States)

    Melgar, Diego; Geng, Jianghui; Crowell, Brendan W.; Haase, Jennifer S.; Bock, Yehuda; Hammond, William C.; Allen, Richard M.

    2015-07-01

    Real-time high-rate geodetic data have been shown to be useful for rapid earthquake response systems during medium to large events. The 2014 Mw6.1 Napa, California earthquake is important because it provides an opportunity to study an event at the lower threshold of what can be detected with GPS. We show the results of GPS-only earthquake source products such as peak ground displacement magnitude scaling, centroid moment tensor (CMT) solution, and static slip inversion. We also highlight the retrospective real-time combination of GPS and strong motion data to produce seismogeodetic waveforms that have higher precision and longer period information than GPS-only or seismic-only measurements of ground motion. We show their utility for rapid kinematic slip inversion and conclude that it would have been possible, with current real-time infrastructure, to determine the basic features of the earthquake source. We supplement the analysis with strong motion data collected close to the source to obtain an improved postevent image of the source process. The model reveals unilateral fast propagation of slip to the north of the hypocenter with a delayed onset of shallow slip. The source model suggests that the multiple strands of observed surface rupture are controlled by the shallow soft sediments of Napa Valley and do not necessarily represent the intersection of the main faulting surface and the free surface. We conclude that the main dislocation plane is westward dipping and should intersect the surface to the east, either where the easternmost strand of surface rupture is observed or at the location where the West Napa fault has been mapped in the past.

  10. Lightning Often Strikes Twice

    Science.gov (United States)

    2005-01-01

    Contrary to popular misconception, lightning often strikes the same place twice. Certain conditions are just ripe for a bolt of electricity to come zapping down; and a lightning strike is powerful enough to do a lot of damage wherever it hits. NASA created the Accurate Location of Lightning Strikes technology to determine the ground strike point of lightning and prevent electrical damage in the immediate vicinity of the Space Shuttle launch pads at Kennedy Space Center. The area surrounding the launch pads is enmeshed in a network of electrical wires and components, and electronic equipment is highly susceptible to lightning strike damage. The accurate knowledge of the striking point is important so that crews can determine which equipment or system needs to be retested following a strike. Accurate to within a few yards, this technology can locate a lightning strike in the perimeter of the launch pad. As an added bonus, the engineers, then knowing where the lightning struck, can adjust the variables that may be attracting the lightning, to create a zone that will be less susceptible to future strikes.

  11. Is lithostatic loading important for the slip behavior and evolution of normal faults in the Earth's crust?

    International Nuclear Information System (INIS)

    Kattenhorn, Simon A.; Pollard, David D.

    1999-01-01

    Normal faults growing in the Earth's crust are subject to the effects of an increasing frictional resistance to slip caused by the increasing lithostatic load with depth. We use three-dimensional (3-D) boundary element method numerical models to evaluate these effects on planar normal faults with variable elliptical tip line shapes in an elastic solid. As a result of increasing friction with depth, normal fault slip maxima for a single slip event are skewed away from the fault center toward the upper fault tip. There is a correspondingly greater propagation tendency at the upper tip. However, the tall faults that would result from such a propagation tendency are generally not observed in nature. We show how mechanical interaction between laterally stepping fault segments significantly competes with the lithostatic loading effect in the evolution of a normal fault system, promoting lateral propagation and possibly segment linkage. Resultant composite faults are wider than they are tall, resembling both 3-D seismic data interpretations and previously documented characteristics of normal fault systems. However, this effect may be greatly complemented by the influence of a heterogeneous stratigraphy, which can control fault nucleation depth and inhibit fault propagation across the mechanical layering. Our models demonstrate that although lithostatic loading may be an important control on fault evolution in relatively homogeneous rocks, the contribution of lithologic influences and mechanical interaction between closely spaced, laterally stepping faults may predominate in determining the slip behavior and propagation tendency of normal faults in the Earth's crust. (c) 1999 American Geophysical Union

  12. Serial neuroradiological studies in focal cerebritis

    International Nuclear Information System (INIS)

    Hatta, S.; Mochizuki, H.; Kuru, Y.; Miwa, H.; Kondo, T.; Mori, H.; Mizuno, Y.

    1994-01-01

    We report serial neuroradiological studies in a patient with focal cerebritis in the head of the left caudate nucleus. On the day after the onset of symptoms, CT showed an ill-defined low density lesion. The lack of contrast enhancement appeared to be the most important finding for differentiating focal cerebritis from an encapsulated brain abscess or a tumour. MRI two days later revealed the centre of the lesion to be of slightly low intensity on T1-weighted inversion recovery (IR) images and very low intensity on T2-weighted spin echo images, which appeared to correspond to the early cerebritis stage of experimentally induced cerebritis and brain abscess. Ten days after the onset of symptoms, CT revealed a thin ring of enhancement in the head of the caudate nucleus, and a similar small ring was seen in the hypothalamus 16 days after the onset, corresponding to the late cerebritis stage. MRI nine days later revealed ill-defined high signal lesions within the involved area on the T1-weighted IR images. To our knowledge, this is the first published MRI documentation of the early cerebritis stage developing into an encapsulated brain abscess. The mechanisms underlying of these radiographic changes are discussed. (orig.)

  13. Investigation of left and right lateral fluid percussion injury in C57BL6/J mice: In vivo functional consequences.

    Science.gov (United States)

    Schurman, Lesley D; Smith, Terry L; Morales, Anthony J; Lee, Nancy N; Reeves, Thomas M; Phillips, Linda L; Lichtman, Aron H

    2017-07-13

    Although rodent models of traumatic brain injury (TBI) reliably produce cognitive and motor disturbances, behavioral characterization resulting from left and right hemisphere injuries remains unexplored. Here we examined the functional consequences of targeting the left versus right parietal cortex in lateral fluid percussion injury, on Morris water maze (MWM) spatial memory tasks (fixed platform and reversal) and neurological motor deficits (neurological severity score and rotarod). In the MWM fixed platform task, right lateral injury produced a small delay in acquisition rate compared to left. However, injury to either hemisphere resulted in probe trial deficits. In the MWM reversal task, left-right performance deficits were not evident, though left lateral injury produced mild acquisition and probe trial deficits compared to sham controls. Additionally, left and right injury produced similar neurological motor task deficits, impaired righting times, and lesion volumes. Injury to either hemisphere also produced robust ipsilateral, and modest contralateral, morphological changes in reactive microglia and astrocytes. In conclusion, left and right lateral TBI impaired MWM performance, with mild fixed platform acquisition rate differences, despite similar motor deficits, histological damage, and glial cell reactivity. Thus, while both left and right lateral TBI produce cognitive deficits, laterality in mouse MWM learning and memory merits consideration in the investigation of TBI-induced cognitive consequences. Copyright © 2017. Published by Elsevier B.V.

  14. Coseismic deformation of the 2001 El Salvador and 2002 Denali fault earthquakes from GPS geodetic measurements

    Science.gov (United States)

    Hreinsdottir, Sigrun

    2005-07-01

    GPS geodetic measurements are used to study two major earthquakes, the 2001 MW 7.7 El Salvador and 2002 MW 7.9 Denali Fault earthquakes. The 2001 MW 7.7 earthquake was a normal fault event in the subducting Cocos plate offshore El Salvador. Coseismic displacements of up to 15 mm were measured at permanent GPS stations in Central America. The GPS data were used to constrain the location of and slip on the normal fault. One month later a MW 6.6 strike-slip earthquake occurred in the overriding Caribbean plate. Coulomb stress changes estimated from the M W 7.7 earthquake suggest that it triggered the MW 6.6 earthquake. Coseismic displacement from the MW 6.6 earthquake, about 40 mm at a GPS station in El Salvador, indicates that the earthquake triggered additional slip on a fault close to the GPS station. The MW 6.6 earthquake further changed the stress field in the overriding Caribbean plate, with triggered seismic activity occurring west and possibly also to the east of the rupture in the days to months following the earthquake. The MW 7.9 Denali Fault earthquake ruptured three faults in the interior of Alaska. It initiated with a thrust motion on the Susitna Glacier fault but then ruptured the Denali and Totschunda faults with predominantly right-lateral strike-slip motion unilaterally from west to east. GPS data measured in the two weeks following the earthquake suggest a complex coseismic rupture along the faults with two main regions of moment release along the Denali fault. A large amount of additional data were collected in the year following the earthquake which greatly improved the resolution on the fault, revealing more details of the slip distribution. We estimate a total moment release of 6.81 x 1020 Nm in the earthquake with a M W 7.2 thrust subevent on Susitna Glacier fault. The slip on the Denali fault is highly variable, with 4 main pulses of moment release. The largest moment pulse corresponds to a MW 7.5 subevent, about 40 km west of the Denali

  15. Stress state and movement potential of the Kar-e-Bas fault zone, Fars, Iran

    Science.gov (United States)

    Sarkarinejad, Khalil; Zafarmand, Bahareh

    2017-08-01

    The Kar-e-Bas or Mengharak basement-inverted fault is comprised of six segments in the Zagros foreland folded belt of Iran. In the Fars region, this fault zone associated with the Kazerun, Sabz-Pushan and Sarvestan faults serves as a lateral transfer zone that accommodates the change in shortening direction from the western central to the eastern Zagros. This study evaluates the recent tectonic stress regime of the Kar-e-Bas fault zone based on inversion of earthquake focal mechanism data, and quantifies the fault movement potential of this zone based on the relationship between fault geometric characteristics and recent tectonic stress regimes. The trend and plunge of σ 1 and σ 3 are S25°W/04°-N31°E/05° and S65°E/04°-N60°W/10°, respectively, with a stress ratio of Φ = 0.83. These results are consistent with the collision direction of the Afro-Arabian continent and the Iranian microcontinent. The near horizontal plunge of maximum and minimum principle stresses and the value of stress ratio Φ indicate that the state of stress is nearly strike-slip dominated with little relative difference between the value of two principal stresses, σ 1 and σ 2. The obliquity of the maximum compressional stress into the fault trend reveals a typical stress partitioning of thrust and strike-slip motion in the Kar-e-Bas fault zone. Analysis of the movement potential of this fault zone shows that its northern segment has a higher potential of fault activity (0.99). The negligible difference between the fault-plane dips of the segments indicates that their strike is a controlling factor in the changes in movement potential.

  16. Structural evolution of Cenozoic basins in northeastern Tunisia, in response to sinistral strike-slip movement on the El Alia-Teboursouk Fault

    Science.gov (United States)

    Bejaoui, Hamida; Aïfa, Tahar; Melki, Fetheddine; Zargouni, Fouad

    2017-10-01

    This paper resolves the structural complexity of Cenozoic sedimentary basins in northeastern Tunisia. These basins trend NE-SW to ∼ E-W, and are bordered by old fracture networks. Detailed descriptions of the structural features in outcrop and in subsurface data suggest that the El Alia-Teboursouk Fault zone in the Bizerte area evolved through a series of tectonic events. Cross sections, lithostratigraphic correlations, and interpretation of seismic profiles through the basins show evidence for: (i) a Triassic until Jurassic-Early Cretaceous rifting phase that induced lateral variations of facies and strata thicknesses; (ii) a set of faults oriented NE-SW, NW-SE, N-S, and E-W that guided sediment accumulation in pull-apart basins, which were subject to compressive and transpressive deformation during Eocene (Lutetian-Priabonian), Miocene (Tortonian), and Pliocene-Quaternary; and (iii) NNW-SSE to NS contractional events that occurred during the Late Pliocene. Part of the latest phase has been the formation of different synsedimentary folded structures with significant subsidence inversion. Such events have been responsible for the reactivation of inherited faults, and the intrusion of Triassic evaporites, ensuring the role of a slip layer. The combined effects of the different paleoconstraints and halokinetic movements are at the origin of the evolution of these pull-apart basins. The subsurface data suggest that an important fault displacement occurred during the Mesozoic-Cenozoic. The patterns of sediment accumulation in the different basins reflect a high activity of deep ancient faults.

  17. Sustained frictional instabilities on nanodomed surfaces: Stick-slip amplitude coefficient

    DEFF Research Database (Denmark)

    Quignon, Benoit; Pilkington, Georgia A.; Thormann, Esben

    2013-01-01

    to sustained frictional instabilities, effectively with no contact frictional sliding. The amplitude of the stick-slip oscillations, σf, was found to correlate with the topographic properties of the surfaces and scale linearly with the applied load. In line with the friction coefficient, we define the slope......-defined nanodomes comprising densely packed prolate spheroids, of diameters ranging from tens to hundreds of nanometers. Our results show that the average lateral force varied linearly with applied load, as described by Amontons' first law of friction, although no direct correlation between the sample topographic...... properties and their measured friction coefficients was identified. Furthermore, all the nanodomed textures exhibited pronounced oscillations in the shear traces, similar to the classic stick-slip behavior, under all the shear velocities and load regimes studied. That is, the nanotextured topography led...

  18. High Frequency Near-Field Ground Motion Excited by Strike-Slip Step Overs

    Science.gov (United States)

    Hu, Feng; Wen, Jian; Chen, Xiaofei

    2018-03-01

    We performed dynamic rupture simulations on step overs with 1-2 km step widths and present their corresponding horizontal peak ground velocity distributions in the near field within different frequency ranges. The rupture speeds on fault segments are determinant in controlling the near-field ground motion. A Mach wave impact area at the free surface, which can be inferred from the distribution of the ratio of the maximum fault-strike particle velocity to the maximum fault-normal particle velocity, is generated in the near field with sustained supershear ruptures on fault segments, and the Mach wave impact area cannot be detected with unsustained supershear ruptures alone. Sub-Rayleigh ruptures produce stronger ground motions beyond the end of fault segments. The existence of a low-velocity layer close to the free surface generates large amounts of high-frequency seismic radiation at step over discontinuities. For near-vertical step overs, normal stress perturbations on the primary fault caused by dipping structures affect the rupture speed transition, which further determines the distribution of the near-field ground motion. The presence of an extensional linking fault enhances the near-field ground motion in the extensional regime. This work helps us understand the characteristics of high-frequency seismic radiation in the vicinities of step overs and provides useful insights for interpreting the rupture speed distributions derived from the characteristics of near-field ground motion.

  19. Precise Relative Location of San Andreas Fault Tremors Near Cholame, CA, Using Seismometer Clusters: Slip on the Deep Extension of the Fault?

    Science.gov (United States)

    Shelly, D. R.; Ellsworth, W. L.; Ryberg, T.; Haberland, C.; Fuis, G.; Murphy, J.; Nadeau, R.; Bürgmann, R.

    2008-12-01

    Non-volcanic tremor, similar in character to that generated at some subduction zones, was recently identified beneath the strike-slip San Andreas Fault (SAF) in central California (Nadeau and Dolenc, 2005). Using a matched filter method, we closely examine a 24-hour period of active SAF tremor and show that, like tremor in the Nankai Trough subduction zone, this tremor is composed of repeated similar events. We take advantage of this similarity to locate detected similar events relative to several chosen events. While low signal-to-noise makes location challenging, we compensate for this by estimating event-pair differential times at 'clusters' of nearby temporary and permanent stations rather than at single stations. We find that the relative locations consistently form a near-linear structure in map view, striking parallel to the surface trace of the SAF. Therefore, we suggest that at least a portion of the tremor occurs on the deep extension of the fault, similar to the situation for subduction zone tremor. Also notable is the small depth range (a few hundred meters or less) of many of the located tremors, a feature possibly analogous to earthquake streaks observed on the shallower portion of the fault. The close alignment of the tremor with the SAF slip orientation suggests a shear slip mechanism, as has been argued for subduction tremor. At times, we observe a clear migration of the tremor source along the fault, at rates of 15-40 km/hr.

  20. Additional Muscle Slip of Bicipital Aponeurosis and its Anomalous Relationship with the Median Cubital Vein

    Directory of Open Access Journals (Sweden)

    Nandini Bhat

    2017-03-01

    Full Text Available The cubital region of the arm is a common site for recording blood pressure, taking blood for analysis and administering intravenous therapy and blood transfusions. During the routine dissection of a 70-year-old male cadaver at the Kasturba Medical College, Manipal, Karnataka, India, in 2015, it was observed that the aponeurotic insertion of the biceps brachii muscle divided into two slips. The medial slip fused normally with the deep fascia of the forearm, while flexor carpi radialis muscle fibres originated from the lateral slip. There was also a single vein in the forearm, the cephalic vein, which bifurcated to form the median cubital vein and the cephalic vein proper. The median cubital vein, further reinforced by the radial vein, passed deep to the two slips of the bicipital aponeurosis and then continued as the basilic vein. During venepuncture, medical practitioners should be aware of potential cubital fossa variations which could lead to nerve entrapment syndromes.

  1. Co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake

    Science.gov (United States)

    Yagi, Yuji; Kikuchi, Masayuki; Nishimura, Takuya

    2003-11-01

    We analyzed continuous GPS data to investigate the spatio-temporal distribution of co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake (Mw = 7.7). To get better resolution for co-seismic and post-seismic slip distribution, we imposed a weak constraint as a priori information of the co-seismic slip determined by seismic wave analyses. We found that the post-seismic slip during 100 days following the main-shock amount to as much moment release as the main-shock, and that the sites of co-seismic slip and post-seismic slip are partitioning on a plate boundary region in complimentary fashion. The major post-seismic slip was triggered by the mainshock in western side of the co-seismic slip, and the extent of the post-seismic slip is almost unchanged with time. It rapidly developed a shear stress concentration ahead of the slip area, and triggered the largest aftershock.

  2. Lateralization in the invertebrate brain: left-right asymmetry of olfaction in bumble bee, Bombus terrestris.

    Directory of Open Access Journals (Sweden)

    Gianfranco Anfora

    Full Text Available Brain and behavioural lateralization at the population level has been recently hypothesized to have evolved under social selective pressures as a strategy to optimize coordination among asymmetrical individuals. Evidence for this hypothesis have been collected in Hymenoptera: eusocial honey bees showed olfactory lateralization at the population level, whereas solitary mason bees only showed individual-level olfactory lateralization. Here we investigated lateralization of odour detection and learning in the bumble bee, Bombus terrestris L., an annual eusocial species of Hymenoptera. By training bumble bees on the proboscis extension reflex paradigm with only one antenna in use, we provided the very first evidence of asymmetrical performance favouring the right antenna in responding to learned odours in this species. Electroantennographic responses did not reveal significant antennal asymmetries in odour detection, whereas morphological counting of olfactory sensilla showed a predominance in the number of olfactory sensilla trichodea type A in the right antenna. The occurrence of a population level asymmetry in olfactory learning of bumble bee provides new information on the relationship between social behaviour and the evolution of population-level asymmetries in animals.

  3. Fault geometry of 2015, Mw7.2 Murghab, Tajikistan earthquake controls rupture propagation: Insights from InSAR and seismological data

    Science.gov (United States)

    Sangha, Simran; Peltzer, Gilles; Zhang, Ailin; Meng, Lingsen; Liang, Cunren; Lundgren, Paul; Fielding, Eric

    2017-03-01

    Combining space-based geodetic and array seismology observations can provide detailed information about earthquake ruptures in remote regions. Here we use Landsat-8 imagery and ALOS-2 and Sentinel-1 radar interferometry data combined with data from the European seismology network to describe the source of the December 7, 2015, Mw7.2 Murghab (Tajikistan) earthquake. The earthquake reactivated a ∼79 km-long section of the Sarez-Karakul Fault, a NE oriented sinistral, trans-tensional fault in northern Pamir. Pixel offset data delineate the geometry of the surface break and line of sight ground shifts from two descending and three ascending interferograms constrain the fault dip and slip solution. Two right-stepping, NE-striking segments connected by a more easterly oriented segment, sub-vertical or steeply dipping to the west were involved. The solution shows two main patches of slip with up to 3.5 m of left lateral slip on the southern and central fault segments. The northern segment has a left-lateral and normal oblique slip of up to a meter. Back-projection of high-frequency seismic waves recorded by the European network, processed using the Multitaper-MUSIC approach, focuses sharply along the surface break. The time progression of the high-frequency radiators shows that, after a 10 second initiation phase at slow speed, the rupture progresses in 2 phases at super-shear velocity (∼4.3-5 km/s) separated by a 3 second interval of slower propagation corresponding to the passage through the restraining bend. The intensity of the high-frequency radiation reaches maxima during the initial and middle phases of slow propagation and is reduced by ∼50% during the super-shear phases of the propagation. These findings are consistent with studies of other strike-slip earthquakes in continental domain, showing the importance of fault geometric complexities in controlling the speed of fault propagation and related spatiotemporal pattern of the high-frequency radiation.

  4. New Constraints on Late Pleistocene - Holocene Slip Rates and Seismic Behavior Along the Panamint Valley Fault Zone, Eastern California

    Science.gov (United States)

    Hoffman, W.; Kirby, E.; McDonald, E.; Walker, J.; Gosse, J.

    2008-12-01

    buried by the debris-flow lobe, exhibit progressively larger displacement (up to 10-12 m). Well-preserved bar and swale morphology, incipient varnishing of surface boulders, and weak soil development all suggest that this surface is Late Holocene in age. We are working to confirm this inference, but if correct, it suggests that this fault system may have experienced ~3-4 events in the relatively recent past. Finally, preliminary surface ages from even older surfaces along this portion of the fault zone place limits on the slip rate over Late Pleistocene time. Cosmogenic 10Be surface clast dating of an alluvial surface with well-developed pavement and moderate soil development near Happy Canyon suggests a surface age of 30-35 kyr. We are working to refine this estimate with new dating and soil characterization, but our preliminary reconstructions of displacement of this surface across the two primary fault strands are consistent with slip rates that exceed ~3 mm/yr. Overall, these results are consistent with the inference that the Panamint Valley fault zone is the primary structure that accomplishes transfer of right-lateral shear across the Garlock Fault.

  5. Collective Labor Disputes and Strikes in Russia: The Impact of Judicial Precedents and Enforcement

    Directory of Open Access Journals (Sweden)

    Elena Gerasimova

    2017-01-01

    Full Text Available The right to strike is recognized in the Constitution and the Labor Code of the Russian Federation as a means to resolve collective labor disputes. However, in Russia labor protests come up for discussion much more frequently than strikes. In recent years the number of labor protests in Russia, including various forms of work stoppage, has increased significantly compared to previous years, but the number of legally constituted collective labor disputes and strikes has remained very low. The legislation on resolution of collective labor disputes and mounting strikes is quite restrictive in Russia, and its enforcement also encourages employees to seek alternative ways to settle collective labor conflicts. There is little empirical research on the judicial implementation of these norms and its influence on the enforcement of legislation. Therefore, this paper analyses the reasoning of courts in cases on the legality of strikes, their interpretations of the law, and the impact these decisions have on the enforcement of the legislation on resolution of collective labor disputes and strikes. Our conclusion is that the courts act as another restrictive influence on the resolution of collective labor disputes and the exercise of the right to strike in Russia.

  6. Genital automatisms: Reappraisal of a remarkable but ignored symptom of focal seizures.

    Science.gov (United States)

    Dede, Hava Özlem; Bebek, Nerses; Gürses, Candan; Baysal-Kıraç, Leyla; Baykan, Betül; Gökyiğit, Ayşen

    2018-03-01

    Genital automatisms (GAs) are uncommon clinical phenomena of focal seizures. They are defined as repeated fondling, grabbing, or scratching of the genitals. The aim of this study was to determine the lateralizing and localizing value and associated clinical characteristics of GAs. Three hundred thirteen consecutive patients with drug-resistant seizures who were referred to our tertiary center for presurgical evaluation between 2009 and 2016 were investigated. The incidence of specific kinds of behavior, clinical semiology, associated symptoms/signs with corresponding ictal electroencephalography (EEG) findings, and their potential role in seizure localization and lateralization were evaluated. Fifteen (4.8%) of 313 patients had GAs. Genital automatisms were identified in 19 (16.4%) of a total 116 seizures. Genital automatisms were observed to occur more often in men than in women (M/F: 10/5). Nine of fifteen patients (60%) had temporal lobe epilepsy (right/left: 4/5) and three (20%) had frontal lobe epilepsy (right/left: 1/2), whereas the remaining two patients could not be classified. One patient was diagnosed as having Rasmussen encephalitis. Genital automatisms were ipsilateral to epileptic focus in 12 patients and contralateral in only one patient according to ictal-interictal EEG and neuroimaging findings. Epileptic focus could not be lateralized in the last 2 patients. Genital automatisms were associated with unilateral hand automatisms such as postictal nose wiping or manual automatisms in 13 (86.7%) of 15 and contralateral dystonia was seen in 6 patients. All patients had amnesia of the performance of GAs. Genital automatisms are more frequent in seizures originating from the temporal lobe, and they can also be seen in frontal lobe seizures. Genital automatisms seem to have a high lateralizing value to the ipsilateral hemisphere and are mostly concordant with other unilateral hand automatisms. Men exhibit GAs more often than women. Copyright © 2017

  7. Modulating phonemic fluency performance in healthy subjects with transcranial magnetic stimulation over the left or right lateral frontal cortex.

    Science.gov (United States)

    Smirni, Daniela; Turriziani, Patrizia; Mangano, Giuseppa Renata; Bracco, Martina; Oliveri, Massimiliano; Cipolotti, Lisa

    2017-07-28

    A growing body of evidence have suggested that non-invasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), can improve the performance of aphasic patients in language tasks. For example, application of inhibitory rTMS or tDCs over the right frontal lobe of dysphasic patients resulted in improved naming abilities. Several studies have also reported that in healthy controls (HC) tDCS application over the left prefrontal cortex (PFC) improve performance in naming and semantic fluency tasks. The aim of this study was to investigate in HC, for the first time, the effects of inhibitory repetitive TMS (rTMS) over left and right lateral frontal cortex (BA 47) on two phonemic fluency tasks (FAS or FPL). 44 right-handed HCs were administered rTMS or sham over the left or right lateral frontal cortex in two separate testing sessions, with a 24h interval, followed by the two phonemic fluency tasks. To account for possible practice effects, an additional 22 HCs were tested on only the phonemic fluency task across two sessions with no stimulation. We found that rTMS-inhibition over the left lateral frontal cortex significantly worsened phonemic fluency performance when compared to sham. In contrast, rTMS-inhibition over the right lateral frontal cortex significantly improved phonemic fluency performance when compared to sham. These results were not accounted for practice effects. We speculated that rTMS over the right lateral frontal cortex may induce plastic neural changes to the left lateral frontal cortex by suppressing interhemispheric inhibitory interactions. This resulted in an increased excitability (disinhibition) of the contralateral unstimulated left lateral frontal cortex, consequently enhancing phonemic fluency performance. Conversely, application of rTMS over the left lateral frontal cortex may induce a temporary, virtual lesion, with effects similar to those reported in left frontal

  8. Anterior-posterior and lateral hemispheric alterations in cortical glucose utilization in Alzheimer's disease

    International Nuclear Information System (INIS)

    Friedland, T.F.; Budinger, T.F.; Jaqust, W.J.; Yano, Y.; Huesman, R.H.; Knittel, B.; Koss, E.; Ober, B.A.

    1984-01-01

    The anatomical and chemical features of Alzheimer's disease (AD) are not distributed evenly throughout the brain. However, the nature of this focality has not been well established in vivo. Dynamic studies using the Donner 280-Crystal Positron Tomograph with (F-18)2-fluorodeoxyglucose were performed in 17 subjects meeting current research criteria for AD, and in 7 healthy age-matched control subjects. Glucose metabolic rates in the temporal-parietal cortex are 27% lower in AD than in controls. Ratios of activity density reveal consistently lower metabolic rates in temporal-parietal than frontal cortex in the AD group, while healthy aged subjects have equal metabolic rates in the two areas. Similar findings have been reported by other laboratories. A major finding is a striking lateral asymmetry of cortical metabolism in AD which does not favor either hemisphere. (The asymmetry is 13% in the AD group, 3% in controls, p<.005.) This has not been previously reported in AD. The consistency with which anterior-posterior metabolic differences are found in AD suggests that the focality of the metabolic changes may be used to develop a noninvasive diagnostic test for the disorder. The metabolic asymmetry in AD may be compared to the clinical and pathological asymmetry found in Creutzfeldt-Jakob disease, and may represent an additional link between AD and the subacute spongiform encephalopathies

  9. Cholelithiasis with atrophy of the right lateral hepatic lobe in a horse Colelitíase com atrofia do lobo lateral direito em um cavalo

    Directory of Open Access Journals (Sweden)

    Renato de Lima Santos

    2007-04-01

    Full Text Available A 22 year-old horse developed cholelithiasis with marked atrophy of the right lateral hepatic lobe. The horse had a history of intermittent colic since three years of age, and one of the first episodes of colic was associated with icterus. The size of the right lateral hepatic lobe was extremely reduced. There was a large choledocholith in the common hepatic duct, and several hepatoliths and choleliths in the intra- and extra-hepatic billiary ducts. Microscopically, there was severe atrophy of the right lobe with diffuse proliferation of connective tissue and billiary ducts. The left lateral lobe had peri-portal fibrosis with proliferation of billiary ducts, and billiary stasis. Chemical analysis of the calculi detected amorphous and triple phosphate, bilirubin, calcium, and iron.Um cavalo de 22 anos de idade desenvolveu quadro de colelitíase severa com atrofia do lobo lateral direito. O animal tinha histórico de cólica recorrente, desde os três anos de idade, sendo que um dos primeiros episódios de cólica foi acompanhado de icterícia. O lobo hepático lateral direito estava extremamente diminuído de volume. Havia um grande coledocólito localizado no ducto hepático comum e inúmeros hepatólitos e colélitos nos ductos biliares intra e extra-hepáticos. Microscopicamente, foi observada atrofia acentuada do lobo direito, com proliferação difusa de tecido conjuntivo fibroso e de ductos biliares. O lobo lateral esquerdo apresentava fibrose periportal difusa associada à proliferação acentuada de ductos biliares e estase biliar. Análise química das concreções detectou fosfato triplo e amorfo, bilirrubina, cálcio e ferro.

  10. Characterizing the potential for fault reactivation related to CO2 injection through subsurface structural mapping and stress field analysis, Wellington Field, Sumner County, KS

    Science.gov (United States)

    Schwab, D.; Bidgoli, T.; Taylor, M. H.

    2015-12-01

    South-central Kansas has experienced an unprecedented increase in seismic activity since 2013. The spatial and temporal relationship of the seismicity with brine disposal operations has renewed interest in the role of fluids in fault reactivation. This study focuses on determining the suitability of CO2 injection into a Cambro-Ordovician reservoir for long-term storage and a Mississippian reservoir for enhanced oil recovery in Wellington Field, Sumner County, Kansas. Our approach for determining the potential for induced seismicity has been to (1) map subsurface faults and estimate in-situ stresses, (2) perform slip and dilation tendency analysis to identify optimally-oriented faults relative to the estimated stress field, and (3) monitor surface deformation through cGPS data and InSAR imaging. Through the use of 3D seismic reflection data, 60 near vertical, NNE-striking faults have been identified. The faults range in length from 140-410 m and have vertical separations of 3-32m. A number of faults appear to be restricted to shallow intervals, while others clearly cut the top basement reflector. Drilling-induced tensile fractures (N=78) identified from image logs and inversion of earthquake focal mechanism solutions (N=54) are consistent with the maximum horizontal stress (SHmax) oriented ~E-W. Both strike-slip and normal-slip fault plane solutions for earthquakes near the study area suggest that SHmax and Sv may be similar in magnitude. Estimates of stress magnitudes using step rate tests (Shmin = 2666 psi), density logs (Sv = 5308 psi), and calculations from wells with drilling induced tensile fractures (SHmax = 4547-6655 psi) are determined at the gauge depth of 4869ft. Preliminary slip and dilation tendency analysis indicates that faults striking 0°-20° are stable, whereas faults striking 26°-44° may have a moderate risk for reactivation with increasing pore-fluid pressure.

  11. The immunological synapse: a focal point for endocytosis and exocytosis.

    Science.gov (United States)

    Griffiths, Gillian M; Tsun, Andy; Stinchcombe, Jane C

    2010-05-03

    There are many different cells in the immune system. To mount an effective immune response, they need to communicate with each other. One way in which this is done is by the formation of immunological synapses between cells. Recent developments show that the immune synapse serves as a focal point for exocytosis and endocytosis, directed by centrosomal docking at the plasma membrane. In this respect, formation of the immunological synapse bears striking similarities to cilia formation and cytokinesis. These intriguing observations suggest that the centrosome may play a conserved role in designating a specialized area of membrane for localized endocytosis and exocytosis.

  12. Integration of remote sensing, geochemical and field data in the Qena-Safaga shear zone: Implications for structural evolution of the Eastern Desert, Egypt

    Science.gov (United States)

    El-Din, Gamal Kamal; Abdelkareem, Mohamed

    2018-05-01

    The Qena-Safaga shear zone (QSSZ) represents a significant structural characteristic in the Eastern Desert of Egypt. Remote Sensing, field and geochemical data were utilized in the present study. The results revealed that the QSSZ dominated by metamorphic complex (MC) that intruded by syn-tectonic granitoids. The low angle thrust fault brings calc-alkaline metavolcanics to overlie MC and its association. Subsequently, the area is dissected by strike-slip faults and the small elongated basins of Hammamat sediments of Precambrian were accumulated. The MC intruded by late-to post-tectonic granites (LPG) and Dokhan Volcanics which comprise felsic varieties forming distinctive columnar joints. Remote sensing analysis and field data revealed that major sub-vertical conspicuous strike-slip faults (SSF) including sinistral NW-SE and dextral ca. E-W shaped the study area. Various shear zones that accompanying the SSF are running NW-SE, NE-SW, E-W, N-S and ENE-WSW. The obtained shear sense presented a multiphase of deformation on each trend. i.e., the predominant NW-SE strike-slip fault trend started with sinistral displacement and is reactivated during later events to be right (dextral) strike slip cutting with dextral displacement the E-W trending faults; while NE-SW movements are cut by both the N-S and NNW - SSE trends. Remote sensing data revealed that the NW-SE direction that dominated the area is associated with hydrothermal alteration processes. This allowed modifying the major and trace elements of the highly deformed rocks that showed depletion in SiO2 and enrichments in Fe2O3, MnO, Al2O3, TiO2, Na2O, K2O, Cu, Zn and Pb contents. The geochemical signatures of major and trace elements revealed two types of granites including I-type calc-alkaline granites (late-to post-tectonic) that formed during an extensional regime. However, syn-tectonic granitoids are related to subduction-related environment.

  13. The right hippocampus leads the bilateral integration of gamma-parsed lateralized information

    Science.gov (United States)

    Benito, Nuria; Martín-Vázquez, Gonzalo; Makarova, Julia; Makarov, Valeri A; Herreras, Oscar

    2016-01-01

    It is unclear whether the two hippocampal lobes convey similar or different activities and how they cooperate. Spatial discrimination of electric fields in anesthetized rats allowed us to compare the pathway-specific field potentials corresponding to the gamma-paced CA3 output (CA1 Schaffer potentials) and CA3 somatic inhibition within and between sides. Bilateral excitatory Schaffer gamma waves are generally larger and lead from the right hemisphere with only moderate covariation of amplitude, and drive CA1 pyramidal units more strongly than unilateral waves. CA3 waves lock to the ipsilateral Schaffer potentials, although bilateral coherence was weak. Notably, Schaffer activity may run laterally, as seen after the disruption of the connecting pathways. Thus, asymmetric operations promote the entrainment of CA3-autonomous gamma oscillators bilaterally, synchronizing lateralized gamma strings to converge optimally on CA1 targets. The findings support the view that interhippocampal connections integrate different aspects of information that flow through the left and right lobes. DOI: http://dx.doi.org/10.7554/eLife.16658.001 PMID:27599221

  14. Unravelling Boléro: progressive aphasia, transmodal creativity and the right posterior neocortex.

    Science.gov (United States)

    Seeley, William W; Matthews, Brandy R; Crawford, Richard K; Gorno-Tempini, Maria Luisa; Foti, Dean; Mackenzie, Ian R; Miller, Bruce L

    2008-01-01

    Most neurological lesion studies emphasize performance deficits that result from focal brain injury. Here, we describe striking gains of function in a patient with primary progressive aphasia, a degenerative disease of the human language network. During the decade before her language deficits arose, Anne Adams (AA), a lifelong scientist, developed an intense drive to produce visual art. Paintings from AA's artistic peak revealed her capacity to create expressive transmodal art, such as renderings of music in paint, which may have reflected an increased subjective relatedness among internal perceptual and conceptual images. AA became fascinated with Maurice Ravel, the French composer who also suffered from a progressive aphasia, and painted his best-known work, 'Boléro', by translating its musical elements into visual form. Later paintings, achieved when AA was nearly mute, moved towards increasing photographic realism, perhaps because visual representations came to dominate AA's mental landscape during this phase of her illness. Neuroimaging analyses revealed that, despite severe degeneration of left inferior frontal-insular, temporal and striatal regions, AA showed increased grey matter volume and hyperperfusion in right posterior neocortical areas implicated in heteromodal and polysensory integration. The findings suggest that structural and functional enhancements in non-dominant posterior neocortex may give rise to specific forms of visual creativity that can be liberated by dominant inferior frontal cortex injury.

  15. Seismotectonics of the Nicobar Swarm and the geodynamic implications for the 2004 Great Sumatran Earthquake

    Science.gov (United States)

    Lister, Gordon

    2017-04-01

    facilitated by hydrothermal activity related to a seamount, or by magma intrusion. However, the swarm is located where the transpressional regime of the Sumatran strike-slip fault system changes to that of the 'microplate-bounding' transtensional wrench involved in the Andaman Sea spreading centre. The swarm thus may be the result of the confluence of two tectonic modes of afterslip on the main rupture, with arc-normal compression to the south, and arc-normal extension to the north. The orientations of the controlling faults can be related to the right-lateral Sumatran strike-slip system, and to oceanic transforms in the spreading system. Faults parallel to the Andaman Sea spreading system axis reactivated as left-lateral strike-slip faults during the period of afterslip. Analysis of the orientation groups shows that the swarm involved synchronous but geometrically incompatible movements on opposing but conjugate fault plane sets with trends that are consistent with Mohr-Coulomb failure, even though the orientation groups delineated require slip in many different directions on these planes. The fault planes allow inference of regional deviatoric stress axes with the principal compressive stress parallel to the prior distortion inferred using satellite geodesy.

  16. New evidence for Oligocene to Recent slip along the San Juan fault, a terrane-bounding structure within the Cascadia forearc of southern British Columbia, Canada

    Science.gov (United States)

    Harrichhausen, N.; Morell, K. D.; Regalla, C.; Lynch, E. M.

    2017-12-01

    Active forearc deformation in the southern Cascadia subduction zone is partially accommodated by faults in the upper crust in both Washington state and Oregon, but until recently, these types of active forearc faults have not been documented in the northern part of the Cascadia forearc on Vancouver Island, British Columbia. Here we present new evidence for Quaternary slip on the San Juan fault that indicates that this terrane-bounding structure has been reactivated since its last documented slip in the Eocene. Field work targeted by newly acquired hi-resolution lidar topography reveals a deformed debris flow channel network developed within colluvium along the central portion of the San Juan fault, consistent with a surface-rupturing earthquake with 1-2 m of offset since deglaciation 13 ka. Near the western extent of the San Juan fault, marine sediments are in fault contact with mélange of the Pandora Peak Unit. These marine sediments are likely Oligocene or younger in age, given their similarity in facies and fossil assemblages to nearby outcrops of the Carmanah Group sediments, but new dating using strontium isotope stratigraphy will confirm this hypothesis. If these sediments are part of the Carmanah Group, they occur further east and at a higher elevation than previously documented. The presence of Oligocene or younger marine sediments, more than 400 meters above current sea level, requires a substantial amount of Neogene rock uplift that could have been accommodated by slip on the San Juan fault. A preliminary analysis of fault slickensides indicates a change in slip sense from left-lateral to normal along the strike of the fault. Until further mapping and analysis is completed, however, it remains unclear whether this kinematic change reflects spatial and/or temporal variability. These observations suggest that the San Juan fault is likely part of a network of active faults accommodating forearc strain on Vancouver Island. With the recent discovery of

  17. Levels of conflict in reasoning modulate right lateral prefrontal cortex.

    Science.gov (United States)

    Stollstorff, Melanie; Vartanian, Oshin; Goel, Vinod

    2012-01-05

    Right lateral prefrontal cortex (rlPFC) has previously been implicated in logical reasoning under conditions of conflict. A functional magnetic resonance imaging (fMRI) study was conducted to explore its role in conflict more precisely. Specifically, we distinguished between belief-logic conflict and belief-content conflict, and examined the role of rlPFC under each condition. The results demonstrated that a specific region of rlPFC is consistently activated under both types of conflict. Moreover, the results of a parametric analysis demonstrated that the same region was modulated by the level of conflict contained in reasoning arguments. This supports the idea that this specific region is engaged to resolve conflict, including during deductive reasoning. This article is part of a Special Issue entitled "The Cognitive Neuroscience of Thought". Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Seismic sources in El Salvador. A geological and geodetic contribution

    Science.gov (United States)

    Alonso-Henar, J.; Martínez-Díaz, J. J.; Benito, B.; Alvarez-Gomez, J. A.; Canora, C.; Capote, R.; Staller, A.; Tectónica Activa, Paleosismicidad y. Riesgos Asociados UCM-910368

    2013-05-01

    El Salvador Fault Zone is a deformation band of 150 km long and 20 km wide within the Salvadorian volcanic arc. This shear band distributes the deformation between main strike-slip faults trending N90°-100°E and around 30 km long, and secondary normal faults trending between N120°E and N170°E. The ESFZ continues westward and is relieved by the Jalpatagua Fault. Eastward ESFZ becomes less clear disappearing at Golfo de Fonseca. The ESFZ deforms and offsets quaternary deposits with a right lateral movement in its main segments. Five segments have been proposed for the whole fault zone, from the Jalpatagua Fault to the Golfo de Fonseca. Paleoseismic studies in the Berlin and San Vicente Segments reveal an important amount of quaternary deformation. In fact, the San Vicente Segment was the source of the February 13, 2001 destructive earthquake. In this work we propose 18 capable seismic sources within El Salvador. The slip rate of each source has been obtained through out the combination of GPS data and paleoseismic data when it has been possible. We also have calculated maximum theoretical intensities produced by the maximum earthquakes related with each fault. We have taken into account several scenarios considering different possible surface rupture lengths up to 50 km and Mw 7.6 in some of the strike slip faults within ESFZ.

  19. Co- and postseismic slip distribution for the 2011 March 9 earthquake based on the geodetic data: Role on the initiation of the 2011 Tohoku earthquake

    Science.gov (United States)

    Ohta, Y.; Hino, R.; Inazu, D.; Ohzono, M.; Mishina, M.; Nakajima, J.; Ito, Y.; Sato, T.; Tamura, Y.; Fujimoto, H.; Tachibana, K.; Demachi, T.; Osada, Y.; Shinohara, M.; Miura, S.

    2012-04-01

    A large foreshock with M7.3 occurred on March 9, 2011 at the subducting Pacific plate interface followed by the M9.0 Tohoku earthquake 51 hours later. We propose a slip distribution of the foreshock deduced from dense inland GPS sites and Ocean Bottom Pressure gauge (OBP) sites. The multiple OBP gauges were installed before the M7.3 foreshock in and around the focal area. We succeed to collect the OBP gauge data in 9 sites, which included two cabled OBPs in off Kamaishi (TM1, TM2). The inland GPS horizontal coseismic displacements are estimated based on baseline analyses to show the broad area of displacement field up to ~30mm directing to the focal area. In contrast, there is no coherent signal in the vertical components. The several OBP sites, for example, P2 and P6 sites located the westward from the epicenter of the foreshock clearly detected the coseismic displacement. The estimated coseismic displacement reached more than 100mm in P6 sites. Intriguingly, GJT3 sites, which the most nearly OBP sites from the epicenter, did not show the significant displacement. Based on the inland GPS sites and OBPs data, we estimated a coseismic slip distribution in the subducting plate interface. The estimated slip distribution can explain observations including the vertical displacement obtained at the OBP sites. The amount of moment release is equivalent to Mw 7.2. The spatio-temporal aftershock distribution of the foreshock shows a southward migration from our estimated fault model. We suggest that aseismic slip occurred after the M7.3 earthquake. The onshore GPS data also supports the occurrence of the afterslip in the southwestward area of the coseismic fault. We estimated the sub-daily coordinates every three hours at the several coastal GPS sites to reveal the time evolutional sequences suggesting the postseismic deformation, especially in the horizontal components. We also examine volumetric strain data at Kinka-san Island, which is situated at the closest distance

  20. New method for evaluation of perigastric invasion of gastric cancer by right lateral position CT

    International Nuclear Information System (INIS)

    Shirakawa, T.; Fukuda, K.; Tada, S.

    1996-01-01

    The purpose of this study was to evaluate usefulness of right lateral position CT in determining invasion of gastric cancer into adjacent organs. We assessed whether position shift, a change in the relative location of a gastric tumor and adjacent organs between the supine position and right lateral position CT, was a useful sign for absence of invasion into perigastric organs. In 37 patients with advanced gastric cancer with doubtful invasion into adjacent organs by conventional CT after 500 ml water oral intake, additive right lateral CT was performed. Of 24 cases of lesions in the gastric body, 16 had a position shift and no invasion into adjacent organs at surgery (T3), and 8 had no position shift and invasion (T4). The accuracy was 100%. Six gastric cardial and 7 pyloric tumors showed no position shift, and 3 cardial and 2 pyloric tumors were proved to be nonivasive (T3). The accuracy of cardial and pyloric tumor was 50 and 71%. We concluded that position shift may be useful in the diagnosis of invasion of adjacent organs by gastric cancer, limited to in cases with gastric body cancer. (orig.)

  1. Left or right? Lateralizing temporal lobe epilepsy by dynamic amygdala fMRI.

    Science.gov (United States)

    Ives-Deliperi, Victoria; Butler, James Thomas; Jokeit, Hennric

    2017-05-01

    In this case series, the findings of 85 functional MRI studies employing a dynamic fearful face paradigm are reported. Previous findings have shown the paradigm to generate bilateral amygdala activations in healthy subjects and unilateral activations in patients with MTLE, in the contralateral hemisphere to seizure origin. Such findings suggest ipsilateral limbic pathology and offer collateral evidence in lateralizing MTLE. The series includes 60 patients with TLE, 12 patients with extra-temporal lobe epilepsy, and 13 healthy controls. Functional MRI studies using a 1.5T scanner were conducted over a three-year period at a single epilepsy center and individual results were compared with EEG findings. In the cohort of unilateral TLE patients, lateralized activations of the amygdala were concordant with EEG findings in 76% of patients (77% lTLE, 74% rTLE). The differences in the mean lateralized indices of the lTLE, rTLE, and healthy control groups were all statistically significant. Lateralized amygdala activations were concordant with EEG findings in only 31% of the 12 patients with extra-temporal lobe epilepsy and bilateral amygdala activations were generated in all but one of the healthy control subjects. This case series further endorses the utility of the dynamic fearful face functional MRI paradigm using the widely available 1.5T as an adjunctive investigation to lateralize TLE. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Fluid Pressures at the Shoe-Floor-Contaminant Interface During Slips: Effects of Tread & Implications on Slip Severity

    Science.gov (United States)

    Beschorner, Kurt E.; Albert, Devon L.; Chambers, April J.; Redfern, Mark S.

    2018-01-01

    Previous research on slip and fall accidents has suggested that pressurized fluid between the shoe and floor is responsible for initiating slips yet this effect has not been verified experimentally. This study aimed to 1) measure hydrodynamic pressures during slipping for treaded and untreaded conditions; 2) determine the effects of fluid pressure on slip severity; and 3) quantify how fluid pressures vary with instantaneous resultant slipping speed, position on the shoe surface, and throughout the progression of the slip. Eighteen subjects walked on known dry and unexpected slippery floors, while wearing treaded and untreaded shoes. Fluid pressure sensors, embedded in the floor, recorded hydrodynamic pressures during slipping. The maximum fluid pressures (mean+/−standard deviation) were significantly higher for the untreaded conditions (124 +/−75 kPa) than the treaded conditions (1.1 +/−0.29 kPa). Maximum fluid pressures were positively correlated with peak slipping speed (r = 0.87), suggesting that higher fluid pressures, which are associated with untreaded conditions, resulted in more severe slips. Instantaneous resultant slipping speed and position of sensor relative to the shoe sole and walking direction explained 41% of the fluid pressure variability. Fluid pressures were primarily observed for untreaded conditions. This study confirms that fluid pressures are relevant to slipping events, consistent with fluid dynamics theory (i.e. the Reynolds equation), and can be modified with shoe tread design. The results suggest that the occurrence and severity of unexpected slips can be reduced by designing shoes/floors that reduce underfoot fluid pressures. PMID:24267270

  3. Coseismic Slip Deficit of the 2017 Mw 6.5 Ormoc Earthquake That Occurred Along a Creeping Segment and Geothermal Field of the Philippine Fault

    Science.gov (United States)

    Yang, Ying-Hui; Tsai, Min-Chien; Hu, Jyr-Ching; Aurelio, Mario A.; Hashimoto, Manabu; Escudero, John Agustin P.; Su, Zhe; Chen, Qiang

    2018-03-01

    Coseismic surface deformation imaged through interferometric synthetic aperture radar (InSAR) measurements was used to estimate the fault geometry and slip distribution of the 2017 Mw 6.5 Ormoc earthquake along a creeping segment of the Philippine Fault on Leyte Island. Our best fitting faulting model suggests that the coseismic rupture occurred on a fault plane with high dip angle of 78.5° and strike angle of 325.8°, and the estimated maximum fault slip of 2.3 m is located at 6.5 km east-northeast of the town of Kananga. The recognized insignificant slip in the Tongonan geothermal field zone implies that the plastic behavior caused by high geothermal gradient underneath the Tongonan geothermal field could prevent the coseismic failure in heated rock mass in this zone. The predicted Coulomb failure stress change shows that a significant positive Coulomb failure stress change occurred along the SE segment of central Philippine Fault with insignificant coseismic slip and infrequent aftershocks, which suggests an increasing risk for future seismic hazard.

  4. EU Water Governance: Striking the Right Balance between Regulatory Flexibility and Enforcement?

    Directory of Open Access Journals (Sweden)

    Olivia O. Green

    2013-06-01

    Full Text Available Considering the challenges and threats currently facing water management and the exacerbation of uncertainty by climate change, the need for flexible yet robust and legitimate environmental regulation is evident. The European Union took a novel approach toward sustainable water resource management with the passage of the EU Water Framework Directive in 2000. The Directive promotes sustainable water use through long-term protection of available water resources, progressively reduces discharges of hazardous substances in ground and surface waters, and mitigates the effects of floods and droughts. The lofty goal of achieving good status of all waters requires strong adaptive capacity, given the large amounts of uncertainty in water management. Striking the right balance between flexibility in local implementation and robust and enforceable standards is essential to promoting adaptive capacity in water governance, yet achieving these goals simultaneously poses unique difficulty. Applied resilience science reveals a conceptual framework for analyzing the adaptive capacity of governance structures that includes multiple overlapping levels of control or coordination, information flow horizontally and vertically, meaningful public participation, local capacity building, authority to respond to changed circumstances, and robust monitoring, system feedback, and enforcement. Analyzing the Directive through the lens of resilience science, we highlight key elements of modern European water management and their contribution to the resilience of the system and conclude that the potential lack of enforcement and adequate feedback of monitoring results does not promote managing for resilience. However, the scale-appropriate governance aspects of the EU approach promotes adaptive capacity by enabling vertical and horizontal information flow, building local capacity, and delegating control at multiple relevant scales.

  5. Limits of recovery against slip-induced falls while walking.

    Science.gov (United States)

    Yang, Feng; Bhatt, Tanvi; Pai, Yi-Chung

    2011-10-13

    Slip-induced falls in gait often have devastating consequences. The purposes of this study were 1) to select the determinants that can best discriminate the outcomes (recoveries or falls) of an unannounced slip induced in gait (and to find their corresponding threshold, i.e., the limits of recovery, which can clearly separate these two outcomes), and 2) to verify these results in a subset of repeated-slip trials. Based on the data collected from 69 young subjects during a slip induced in gait, nine different ways of combining the center of mass (COM) stability, the hip height, and its vertical velocity were investigated with the aid of logistic regression. The results revealed that the COM stability (s) and limb support (represented by the quotient of hip vertical velocity to hip height, S(hip)) recorded at the instant immediately prior to the recovery step touchdown were sufficiently sensitive to account for all (100%) variance in falls, and specific enough to account for nearly all (98.3%) variability in recoveries. This boundary (S(hip)=-0.22s-0.25), which quantifies the risk of falls in the stability-limb support quotient (s-S(hip)) domain, was fully verified using second-slip and third-slip trials (n=76) with classification of falls at 100% and recoveries at 98.6%. The severity of an actual fall is likely to be greater further below the boundary, while the likelihood of a fall diminishes above it. Finally, the slope of the boundary also indicates the tradeoff between the stability and limb support, whereby high stability can compensate for the insufficiency in limb support, or vice versa. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. The 12th June 2017 Mw = 6.3 Lesvos earthquake from detailed seismological observations

    Science.gov (United States)

    Papadimitriou, P.; Kassaras, I.; Kaviris, G.; Tselentis, G.-A.; Voulgaris, N.; Lekkas, E.; Chouliaras, G.; Evangelidis, C.; Pavlou, K.; Kapetanidis, V.; Karakonstantis, A.; Kazantzidou-Firtinidou, D.; Fountoulakis, I.; Millas, C.; Spingos, I.; Aspiotis, T.; Moumoulidou, A.; Skourtsos, E.; Antoniou, V.; Andreadakis, E.; Mavroulis, S.; Kleanthi, M.

    2018-04-01

    A major earthquake (Mwö=ö6.3) occurred on the 12th of June 2017 (12:28 GMT) offshore, south of the SE coast of Lesvos Island, at a depth of 13ökm, in an area characterized by normal faulting with an important strike-slip component in certain cases. Over 900 events of the sequence between 12 and 30 June 2017 were manually analyzed and located, employing an optimized local velocity model. Double-difference relocation revealed seven spatially separated groups of events, forming two linear branches, roughly aligned N130°E, compatible with the strike of known mapped faults along the southern coast of Lesvos Island. Spatiotemporal analysis indicated gradual migration of seismicity towards NW and SE from the margins of the main rupture, while a strong secondary sequence at a separate fault patch SE of the mainshock, oriented NW-SE, was triggered by the largest aftershock (Mwö=ö5.2) that occurred on 17 June. The focal mechanisms of the mainshock (φö=ö122°, δö=ö40° and λö=ö-83°) and of the major aftershocks were determined using regional moment tensor inversion. In most cases normal faulting was revealed with the fault plane oriented in a NW-SE direction, dipping SW, with the exception of the largest aftershock that was characterized by strike-slip faulting. Stress inversion revealed a complex stress field south of Lesvos, related both to normal, in an approximate E-W direction, and strike-slip faulting. All aftershocks outside the main rupture, where gradual seismicity migration was observed, are located within the positive lobes of static stress transfer determined by applying the Coulomb criterion for the mainshock. Stress loading on optimal faults under a strike-slip regime explains the occurrence of the largest aftershock and the seismicity that was triggered at the eastern patch of the rupture zone.

  7. Seismic slip on clay nano-foliation

    Science.gov (United States)

    Aretusini, S.; Pluemper, O.; Passelègue, F. X.; Spagnuolo, E.; Di Toro, G.

    2017-12-01

    Deformation processes active at seismic slip rates (ca. 1 m/s) on smectite-rich slipping zones are not well understood, although they likely control the mechanical behaviour of: i) subduction zone faults affected by tsunamigenic earthquakes (e.g. Japan Trench affected by Tohoku-Oki 2011 earthquake), ii) plate-boundary faults (e.g. San Andreas Fault), and iii) landslide decollements (e.g. 1963 Vajont landslide). Here we present a set of rotary experiments performed on water-dampened 2 mm thick clay-rich (70% wt. smectite and 30% wt. opal) gouge layers sheared at slip rates V ranging from 0.01 to 1.3 m/s, for 3 m of displacement under 5 MPa normal stress. Microstructural analyses were conducted on pre- and post-sheared gouges using focused ion beam scanning electron and transmission electron microscopy. All sheared gouges were slip weakening in the first 0.1 m of displacement, with friction coefficient decreasing from 0.3-0.45 to 0.5-0.15. Then, with progressive slip, gouges evolved to slip-strengthening (final friction coefficient of 0.35-0.48) at V ≤0.1 m/s and slip-neutral (final friction of 0.05) at V=1.3 m/s. Despite the large difference in the imposed slip rate and frictional behaviour, the slipping zone always consisted of a nano-foliation defined by sub-micrometric smectite crystals wrapping opal grains. The nano-foliated layer thickness decreased from 1.5 mm at V≤0.1 m/s to 0.15 mm at V=1.3 m/s. The presence of a similar nano-foliation in all the smectite-rich wet gouges suggests the activation of similar deformation processes, dominated by frictional slip on grain boundary and basal planes. The variation of deformed thickness with slip rate shows that dynamic weakening, occurring only at seismic slip rates, is controlled by strain localization.

  8. A case of pathological rib fractures: focal osteolysis or osteoporosis?

    Science.gov (United States)

    Vrbanić, T S L; Novak, S; Sestan, B; Tudor, A; Gulan, G

    2008-03-01

    This paper reports on a unique, previously unreported, successful outcome in the case of a patient with focal osteolytic lesions of the ribs as a first sign of osteoporosis. The lesions were detected by chance after acute cough-induced rib fractures were seen on plain chest radiographs. The diagnosis had to be approached as a diagnosis of exclusion since known causes of the osteolytic process had to be eliminated. The authors describe multiple focal osteolytic lesions with rib fractures appearing in a pattern that could be confused with metastases. Laboratory results were normal. Final diagnosis was based on plain radiography, bone scan and bone densitometry. Pharmacomedical treatments for osteoporosis were applied. The patient was observed between the year 2000 and 2005. Five years later radiological and bone scintigraphy revealed resolution of the lesion. We conclude that osteoporosis should be included in the differential diagnosis of asymptomatic focal osteolysis of the ribs with rib fractures as a complication of acute cough. The case suggests that focal osteolytic lesions of the ribs may regress over time and become scintigraphically inactive.

  9. Simulation of engine auxiliary drive V-belt slip motion. Part 1. Development of belt slip model; Engine hoki V belt slip kyodo no simulation. 1. Belt slip model no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kurisu, T [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    V-belts are widely used for driving auxiliary components of an engine. Inadequet design of such belt system sometimes results in troubles such as belt squeak, side rubber separation and/or bottom rubber crack. However, there has been no design tools which can predict belt slip quantitatively. The author developed a motion simulation program of Auxiliary Drive V-Belt System considering belt slip. The program showed good prediction accuracy for belt slip motion. This paper describes the simulation model. 1 ref., 12 figs.

  10. Atypical language laterality is associated with large-scale disruption of network integration in children with intractable focal epilepsy.

    Science.gov (United States)

    Ibrahim, George M; Morgan, Benjamin R; Doesburg, Sam M; Taylor, Margot J; Pang, Elizabeth W; Donner, Elizabeth; Go, Cristina Y; Rutka, James T; Snead, O Carter

    2015-04-01

    Epilepsy is associated with disruption of integration in distributed networks, together with altered localization for functions such as expressive language. The relation between atypical network connectivity and altered localization is unknown. In the current study we tested whether atypical expressive language laterality was associated with the alteration of large-scale network integration in children with medically-intractable localization-related epilepsy (LRE). Twenty-three right-handed children (age range 8-17) with medically-intractable LRE performed a verb generation task in fMRI. Language network activation was identified and the Laterality index (LI) was calculated within the pars triangularis and pars opercularis. Resting-state data from the same cohort were subjected to independent component analysis. Dual regression was used to identify associations between resting-state integration and LI values. Higher positive values of the LI, indicating typical language localization were associated with stronger functional integration of various networks including the default mode network (DMN). The normally symmetric resting-state networks showed a pattern of lateralized connectivity mirroring that of language function. The association between atypical language localization and network integration implies a widespread disruption of neural network development. These findings may inform the interpretation of localization studies by providing novel insights into reorganization of neural networks in epilepsy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Implementing a C++ Version of the Joint Seismic-Geodetic Algorithm for Finite-Fault Detection and Slip Inversion for Earthquake Early Warning

    Science.gov (United States)

    Smith, D. E.; Felizardo, C.; Minson, S. E.; Boese, M.; Langbein, J. O.; Guillemot, C.; Murray, J. R.

    2015-12-01

    The earthquake early warning (EEW) systems in California and elsewhere can greatly benefit from algorithms that generate estimates of finite-fault parameters. These estimates could significantly improve real-time shaking calculations and yield important information for immediate disaster response. Minson et al. (2015) determined that combining FinDer's seismic-based algorithm (Böse et al., 2012) with BEFORES' geodetic-based algorithm (Minson et al., 2014) yields a more robust and informative joint solution than using either algorithm alone. FinDer examines the distribution of peak ground accelerations from seismic stations and determines the best finite-fault extent and strike from template matching. BEFORES employs a Bayesian framework to search for the best slip inversion over all possible fault geometries in terms of strike and dip. Using FinDer and BEFORES together generates estimates of finite-fault extent, strike, dip, preferred slip, and magnitude. To yield the quickest, most flexible, and open-source version of the joint algorithm, we translated BEFORES and FinDer from Matlab into C++. We are now developing a C++ Application Protocol Interface for these two algorithms to be connected to the seismic and geodetic data flowing from the EEW system. The interface that is being developed will also enable communication between the two algorithms to generate the joint solution of finite-fault parameters. Once this interface is developed and implemented, the next step will be to run test seismic and geodetic data through the system via the Earthworm module, Tank Player. This will allow us to examine algorithm performance on simulated data and past real events.

  12. The relationship between the opening of South China Sea and the formation of the Tibetan Plateau (Invited)

    Science.gov (United States)

    Mo, X.

    2010-12-01

    The South China Sea is one of the largest marginal seas in western Pacific and underwent a complex history. Xu et al.(2004) suggested that the evolution of the South China Sea can be divided into two first order phases: Paleogene (—Early Miocene) rifting and Neogene post- rifting. An oceanic crust was formed during 32-17 Ma. Whether or not the opening of South China Sea were related to Indo-Eurasia collision and the formation of the Tibetan Plateau is one of challenging problem in Earth sciences. With an exception of the southwestern China, the Chinese continent has become an united continent in the Triassic by the Indosinian orogeny. However, the Qinghai-Tibet area in SW China was still an oceanic region, that is, the Neo-Tethys. During the period of 145-100 Ma, the Lhasa terrane collided with the Qiangtang terrane and added to the south margin of the Eurasian continent. On the other hand, the Indian plate subducted underneath the Eurasian continent since Jurassic- Cretaceous. Subsequently, collision between the two continents, India and Eurasia, were completed during 65-40 Ma, and went into a post-collisional stage, characterized by intra-continental movements, including intra-continental subduction, overthrust, strike-slip and so on. The Tibetan Plateau, the highest plateau in the world had been formed by multi-stage uplifts. Several huge strike-slip shear zone such as the Red River Fault and the Altyn were formed during that period. The >1000-km-long Oligocene—Miocene left-lateral Red River shear zone (RRSZ) and the Pliocene—active right-lateral Red River fault (RRF), stretching from SE Tibet to the South China Sea, has been cited as a lithospheric scale strike-slip fault. The age of RRSZ was recently determined no earlier than 31.9-24.2Ma and no later than 21.7 Ma (Searle et al., 2010). Many geologists believe that there possibly be close relationship between the opening of the South China Sea and Indo-Eurasia collision and the formation of the Tibetan

  13. Electro-optical hybrid slip ring

    Science.gov (United States)

    Hong, En

    2005-11-01

    The slip ring is a rotary electrical interface, collector, swivel or rotary joint. It is a physical system that can perform continuous data transfer and data exchange between a stationary and a rotating structure. A slip ring is generally used to transfer data or power from an unrestrained, continuously rotating electro-mechanical system in real-time, thereby simplifying operations and eliminating damage-prone wires dangling from moving joints. Slip rings are widely used for testing, evaluating, developing and improving various technical equipment and facilities with rotating parts. They are widely used in industry, especially in manufacturing industries employing turbo machinery, as in aviation, shipbuilding, aerospace, defense, and in precise facilities having rotating parts such as medical Computerized Tomography (CT) and MRI scanners and so forth. Therefore, any improvement in slip ring technology can impact large markets. Research and development in this field will have broad prospects long into the future. The goal in developing the current slip ring technology is to improve and increase the reliability, stability, anti-interference, and high data fidelity between rotating and stationary structures. Up to now, there have been numerous approaches used for signal and data transfer utilizing a slip ring such as metal contacts, wires, radio transmission, and even liquid media. However, all suffer from drawbacks such as data transfer speed limitations, reliability, stability, electro-magnetic interference and durability. The purpose of the current research is to break through these basic limitations using an optical solution, thereby improving performance in current slip ring applications. This dissertation introduces a novel Electro-Optical Hybrid Slip Ring technology, which makes "through the air" digital-optical communication between stationary and rotating systems a reality with high data transfer speed, better reliability and low interference susceptibility

  14. TRIM15 is a focal adhesion protein that regulates focal adhesion disassembly

    Science.gov (United States)

    Uchil, Pradeep D.; Pawliczek, Tobias; Reynolds, Tracy D.; Ding, Siyuan; Hinz, Angelika; Munro, James B.; Huang, Fang; Floyd, Robert W.; Yang, Haitao; Hamilton, William L.; Bewersdorf, Joerg; Xiong, Yong; Calderwood, David A.; Mothes, Walther

    2014-01-01

    ABSTRACT Focal adhesions are macromolecular complexes that connect the actin cytoskeleton to the extracellular matrix. Dynamic turnover of focal adhesions is crucial for cell migration. Paxillin is a multi-adaptor protein that plays an important role in regulating focal adhesion dynamics. Here, we identify TRIM15, a member of the tripartite motif protein family, as a paxillin-interacting factor and a component of focal adhesions. TRIM15 localizes to focal contacts in a myosin-II-independent manner by an interaction between its coiled-coil domain and the LD2 motif of paxillin. Unlike other focal adhesion proteins, TRIM15 is a stable focal adhesion component with restricted mobility due to its ability to form oligomers. TRIM15-depleted cells display impaired cell migration and reduced focal adhesion disassembly rates, in addition to enlarged focal adhesions. Thus, our studies demonstrate a cellular function for TRIM15 as a regulatory component of focal adhesion turnover and cell migration. PMID:25015296

  15. Focal junctions retard lateral movement and disrupt fluid phase connectivity in the plasma membrane

    DEFF Research Database (Denmark)

    Vind-Kezunovic, D.; Wojewodzka, U.; Gniadecki, R.

    2008-01-01

    ,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI-C-18:0), which specifically partitions to the liquid-disordered (L-d), non-raft phase, was also enriched in focal junctions and its mobility was slightly retarded. Cross-linking of GM(1) by CTB or raft aggregation by methyl...

  16. Global medicine: Is it ethical or morally justifiable for doctors and other healthcare workers to go on strike?

    Science.gov (United States)

    2013-01-01

    Background Doctor and healthcare worker (HCW) strikes are a global phenomenon with the potential to negatively impact on the quality of healthcare services and the doctor-patient relationship. Strikes are a legitimate deadlock breaking mechanism employed when labour negotiations have reached an impasse during collective bargaining. Striking doctors usually have a moral dilemma between adherence to the Hippocratic tenets of the medical profession and fiduciary obligation to patients. In such circumstances the ethical principles of respect for autonomy, justice and beneficence all come into conflict, whereby doctors struggle with their role as ordinary employees who are rightfully entitled to a just wage for just work versus their moral obligations to patients and society. Discussion It has been argued that to deny any group of workers, including "essential workers" the right to strike is akin to enslavement which is ethically and morally indefensible. While HCW strikes occur globally, the impact appears more severe in developing countries challenged by poorer socio-economic circumstances, embedded infrastructural deficiencies, and lack of viable alternative means of obtaining healthcare. These communities appear to satisfy the criteria for vulnerability and may be deserving of special ethical consideration when doctor and HCW strikes are contemplated. Summary The right to strike is considered a fundamental right whose derogation would be inimical to the proper functioning of employer/employee collective bargaining in democratic societies. Motivations for HCW strikes include the natural pressure to fulfil human needs and the paradigm shift in modern medical practice, from self-employment and benevolent paternalism, to managed healthcare and consumer rights. Minimizing the incidence and impact of HCW strikes will require an ethical approach from all stakeholders, and recognition that all parties have an equal moral obligation to serve the best interests of society

  17. Global medicine: is it ethical or morally justifiable for doctors and other healthcare workers to go on strike?

    Science.gov (United States)

    Chima, Sylvester C

    2013-01-01

    Doctor and healthcare worker (HCW) strikes are a global phenomenon with the potential to negatively impact on the quality of healthcare services and the doctor-patient relationship. Strikes are a legitimate deadlock breaking mechanism employed when labour negotiations have reached an impasse during collective bargaining. Striking doctors usually have a moral dilemma between adherence to the Hippocratic tenets of the medical profession and fiduciary obligation to patients. In such circumstances the ethical principles of respect for autonomy, justice and beneficence all come into conflict, whereby doctors struggle with their role as ordinary employees who are rightfully entitled to a just wage for just work versus their moral obligations to patients and society. It has been argued that to deny any group of workers, including "essential workers" the right to strike is akin to enslavement which is ethically and morally indefensible. While HCW strikes occur globally, the impact appears more severe in developing countries challenged by poorer socio-economic circumstances, embedded infrastructural deficiencies, and lack of viable alternative means of obtaining healthcare. These communities appear to satisfy the criteria for vulnerability and may be deserving of special ethical consideration when doctor and HCW strikes are contemplated. The right to strike is considered a fundamental right whose derogation would be inimical to the proper functioning of employer/employee collective bargaining in democratic societies. Motivations for HCW strikes include the natural pressure to fulfil human needs and the paradigm shift in modern medical practice, from self-employment and benevolent paternalism, to managed healthcare and consumer rights. Minimizing the incidence and impact of HCW strikes will require an ethical approach from all stakeholders, and recognition that all parties have an equal moral obligation to serve the best interests of society. Employers should implement

  18. Estimates of fluid pressure and tectonic stress in hydrothermal/volcanic areas:a methodological approach

    Directory of Open Access Journals (Sweden)

    G. Vilardo

    2005-06-01

    Full Text Available An analytical approach to estimate the relative contribution of the fluid pressure and tectonic stress in hydrothermal/ volcanic areas is proposed assuming a Coulomb criterion of failure. The analytical procedure requires the coefficient of internal friction, cohesion, rock density, and thickness of overburden to be known from geological data. In addition, the orientation of the principal stress axes and the stress ratio must be determined from the inversion of fault-slip or seismic data (focal mechanisms. At first, the stress magnitude is calculated assuming that faulting occurs in 'dry' conditions (fluid pressure=0. In a second step, the fluid pressure is introduced performing a grid search over the orientation of 1 fault planes that slip by shear failure or 2 cracks that open under different values of fluid pressure and calculating the consistency with the observed fault planes (i.e. strike and dip of faults, cracks, nodal planes from focal mechanisms. The analytical method is applied using fault-slip data from the Solfatara volcano (Campi Flegrei, Italy and seismic data (focal mechanisms from the Vesuvius volcano (Italy. In these areas, the fluid pressure required to activate faults (shear fractures and cracks (open fractures is calculated. At Solfatara, the ratio between the fluid pressure and the vertical stress ?is very low for faults ( ?=0.16 and relatively high for cracks ( ?=0.5. At Vesuvius, ?=0.6. Limits and uncertainties of the method are also discussed.

  19. The feature of the focal mechanism solutions and tectonic stress field around the focus of Zaduo earthquake (Ms 6.3) in eastern Tibet

    Science.gov (United States)

    Yang, Y.; Zeng, Z.; Shuang, X.; Li, X.

    2017-12-01

    On 17th October, 2016, an earthquake of Ms6.3 occurred in Zaduo County, Qinghai Province (32.9°N, 95.0°E), 159 km away from the epicenter of Yushu Ms7.3 earthquake in 2011. The earthquake is located in the eastern Tibet Plateau and the north region of Eastern Himalayan Syntaxis. Using the broadband seismic waveform data form regional networks, we determined the focal mechanism solutions (FMSs) of 83 earthquakes (M>3.5) occurred in Zaduo and its adjacent areas from 2009 to 2017. We also collected another 63 published FMSs and then inversed the current tectonic stress field in study region using the damped linear inversion method. The results show that the Zaduo earthquake is a normal oblique earthquake. The FMSs in our study region are mainly in strike-slip and normal fault patterns. The strike-slip earthquakes are mainly distributed in Yushu-Ganzi, Zaduo and Yanshiping fault zones, and the normal faulting events occurred in Nu Jiang fault zone and Nierong County and its vicinity, the south and southwest of the study areas. The tectonic stress field results indicate that the stress distribution in the north and east of the study region changes homogeneously and slowly. From west to east, the σ1 gradually changes from NNE to NE direction, and the σ3 varies from NWW to NW direction. Both the maximum (σ1) and minimum (σ3) principal stress axes in the study area are nearly horizontal, except in the Nu Jiang fault zone and its vicinity, the south of the study area, which is in a normal faulting stress regime (σ1 is vertical and σ3 is horizontal). The localized normal faulting stress field in the south area, which is almost limited in a semicircle, indicates that a high pressure and low viscosity body with low S-wave velocity and high conductivity might exists beneath the anomaly area. And there may be another semicircle abnormal area beyond the south of the study region. Waveform data for this study are provided by Data Management Centre of China National Seismic

  20. High spirituality may be associated with right hemispheric lateralization in Korean adults living with epilepsy.

    Science.gov (United States)

    Lee, Sang-Ahm; Ko, Myung-Ah; Choi, Eun-Ju; Jeon, Ji-Ye; Ryu, Han Uk

    2017-11-01

    Although it is known that epilepsy and spirituality are related, spirituality in epilepsy has received relatively little clinical and scientific attention. Therefore, we investigated which epilepsy-related factors are associated with high spirituality in Korean adults living with epilepsy. This cross-sectional study was conducted in two university hospitals in Korea. Spirituality was assessed using the 6-item Spirituality Self-Rating Scale (SSRS). The participants were categorized into high and low spirituality groups according to the median SSRS score. The presumptive seizure onset zone was determined based on the clinical semiology, electroencephalography, and magnetic resonance imaging findings. Of the 180 participants, 61.7% declared that they had a religious affiliation. The median SSRS score was 15 (interquartile range: 7, 22). The high spirituality subgroup consisted of 92 (51.1%) participants. In the univariate analyses, the high spirituality group was significantly associated with female sex (p<0.05), older age (p<0.01), longer epilepsy duration (p<0.05), polytherapy (p<0.05), complex partial seizure (p<0.05), levetiracetam or topiramate usage (p<0.05), and a right-lateralized seizure onset zone. The multiple logistic regression analysis identified right hemispheric lateralization as the only independent factor associated with high spirituality (odds ratio: 2.410, 95% confidence interval: 1.051-5.528, p<0.05). High spirituality may be associated with right hemispheric lateralization but not with the temporal localization of the seizure onset zone in Korean adults with epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Cerebral lateralization for the processing of spatial coordinates and categories in left-and right-handers.

    Science.gov (United States)

    LAENG, B; PETERS, M

    1995-04-01

    Subjects judged whether a tachistoscopially lateralized drawing was identical or different to a drawing seen immediately before in free vision. The drawings depicted natural objects (e.g. animals). On half of the trials the tachistoscopic drawing presented the same objects but either the categorical or the coordinate spatial relations (according to Kosslyn's definitions [23]) between the objects were transformed. In the first experiment 38 right-handed subjects (half males and half females) were tested. Categorical judgements were faster when the match drawing appeared in the right visual field, whereas coordinate judgements were faster when the match drawing appeared in the left visual field. In the second experiment 26 right-handed and 40 left-handed subjects participated. Almost all the subjects were female. Right-handed subjects replicated the findings of the subjects in the first experiment. However, the LHs did not show any difference in response times between spatial conditions and visual fields. These findings support Kosslyn's hypothesis that the left and right hemispheres are specialized respectively for processing categorical and coordinate spatial relations. Moreover, they also suggest that this lateralization pattern is not typical of left-handers.

  2. "3D_Fault_Offsets," a Matlab Code to Automatically Measure Lateral and Vertical Fault Offsets in Topographic Data: Application to San Andreas, Owens Valley, and Hope Faults

    Science.gov (United States)

    Stewart, N.; Gaudemer, Y.; Manighetti, I.; Serreau, L.; Vincendeau, A.; Dominguez, S.; Mattéo, L.; Malavieille, J.

    2018-01-01

    Measuring fault offsets preserved at the ground surface is of primary importance to recover earthquake and long-term slip distributions and understand fault mechanics. The recent explosion of high-resolution topographic data, such as Lidar and photogrammetric digital elevation models, offers an unprecedented opportunity to measure dense collections of fault offsets. We have developed a new Matlab code, 3D_Fault_Offsets, to automate these measurements. In topographic data, 3D_Fault_Offsets mathematically identifies and represents nine of the most prominent geometric characteristics of common sublinear markers along faults (especially strike slip) in 3-D, such as the streambed (minimum elevation), top, free face and base of channel banks or scarps (minimum Laplacian, maximum gradient, and maximum Laplacian), and ridges (maximum elevation). By calculating best fit lines through the nine point clouds on either side of the fault, the code computes the lateral and vertical offsets between the piercing points of these lines onto the fault plane, providing nine lateral and nine vertical offset measures per marker. Through a Monte Carlo approach, the code calculates the total uncertainty on each offset. It then provides tools to statistically analyze the dense collection of measures and to reconstruct the prefaulted marker geometry in the horizontal and vertical planes. We applied 3D_Fault_Offsets to remeasure previously published offsets across 88 markers on the San Andreas, Owens Valley, and Hope faults. We obtained 5,454 lateral and vertical offset measures. These automatic measures compare well to prior ones, field and remote, while their rich record provides new insights on the preservation of fault displacements in the morphology.

  3. GPS Versus Seismological Observations in two Seismogenic Zones in the Adria-Alps- Pannon System; Block Motion vs. Diffuse Deformation, Increased Earthquake Potential vs. Aseismic Slip

    Science.gov (United States)

    Grenerczy, G.; Bus, Z.; Toth, L.; Monus, P.

    2008-12-01

    The tectonic activity, seismicity and the associated seismic hazard is highly variable in the Adria-Alps-Pannon region. The engine of the system is the Adria microplate that compresses a puzzle of crustal blocks towards the European Platform. Based on seismicity and data of continuous and campaign style GPS measurements between 1991 and 2007 we investigated the existence of different blocks and their present kinematics. At the resolution and signal level we have, deformation seems to be more diffuse and block motion is no longer recognizable over the Pannonian basin towards the Carpathains. Although towards the basin seismicity decreases to moderate, the vulnerability is still high, as three capital cities are located near to the two most active seismic zones in this subregion. Each cities and their suburbs produce about 30- 40 % of the GDP of the respective countries. In the second par of our analysis these two seismically active areas, the Mur-Murz and Central Pannonian zones, are investigated. Uniform strain rates and relative displacements were calculated for these regions. The GPS data confirm the mostly left lateral strike slip character of the Mur-Murz fault zone and suggest a contraction between the eastward moving Alpine-North Pannonian unit and the Carpathians. The computation of the seismic strain rate was based on the Kostrov summation. The averaged unit norm seismic moment tensor, which describes the characteristic style of deformation, has been obtained by using the available focal mechanism solutions, whereas the annual seismic moment release showing the rate of the deformation was estimated using the catalogs of historical and recent earthquakes. Our analysis reveals that in both zones the geodetic strain rate is significantly larger than the seismic deformation. Based on the weakness of the lithosphere, the stress magnitudes and the regional features of seismicity, we suggest that the low value of the seismic/geodetic strain rate ratio in the

  4. Effects of obesity on dynamic stability control during recovery from a treadmill-induced slip among young adults.

    Science.gov (United States)

    Yang, Feng; Kim, JaeEun; Yang, Fei

    2017-02-28

    This study sought to investigate the effects of obesity on falls and dynamic stability control in young adults when subject to a standardized treadmill-induced gait-slip. Forty-four young adults (21 normal-weight and 23 obese) participated in this study. After their muscle strength was assessed at the right knee under maximum voluntary isometric (flexion and extension) contractions, participants were moved to an ActiveStep treadmill. Following 5 normal walking trials on the treadmill, all participants encountered an identical and unexpected slip defined as a perturbation in the anterior direction with the magnitude of 24-cm slip distance and 2.4-m/s peak slip velocity. The trials were categorized as a fall or recovery based on the reliance of the subject on external support following the slip. Compared with the normal-weight group, the obese group demonstrated less relative muscle strength and fell more responding to the slip (78.3% vs. 40.0%, p=0.009). After adjusting the body height and gender, the results indicated that the obese group was 19.1-time (95% confidence interval: [2.06, 177.36]) more prone to a fall than the normal-weight group when experiencing the same treadmill-induced slip. The obese group showed significantly impaired dynamic stability after slip possibly due to the inability of controlling the trunk segment׳s backward lean movement. Obesity measurements explained more slip outcome variance than did the strength measurements (53.4% vs. 18.1%). This study indicates that obesity most likely influences the ability to recover from slip perturbations. It is important to develop interventions to improve the capability of balance recovery among individuals with obesity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Subduction and vertical coastal motions in the eastern Mediterranean

    Science.gov (United States)

    Howell, Andy; Jackson, James; Copley, Alex; McKenzie, Dan; Nissen, Ed

    2017-10-01

    Convergence in the eastern Mediterranean of oceanic Nubia with Anatolia and the Aegean is complex and poorly understood. Large volumes of sediment obscure the shallow structure of the subduction zone, and since much of the convergence is accommodated aseismically, there are limited earthquake data to constrain its kinematics. We present new source models for recent earthquakes, combining these with field observations, published GPS velocities and reflection-seismic data to investigate faulting in three areas: the Florence Rise, SW Turkey and the Pliny and Strabo Trenches. The depths and locations of earthquakes reveal the geometry of the subducting Nubian plate NE of the Florence Rise, a bathymetric high that is probably formed by deformation of sediment at the surface projection of the Anatolia-Nubia subduction interface. In SW Turkey, the presence of a strike-slip shear zone has often been inferred despite an absence of strike-slip earthquakes. We show that the GPS-derived strain-rate field is consistent with extension on the orthogonal systems of normal faults observed in the region and that strike-slip faulting is not required to explain observed GPS velocities. Further SW, the Pliny and Strabo Trenches are also often interpreted as strike-slip shear zones, but almost all nearby earthquakes have either reverse-faulting or normal-faulting focal mechanisms. Oblique convergence across the trenches may be accommodated either by a partitioned system of strike-slip and reverse faults or by oblique slip on the Aegean-Nubia subduction interface. The observed late-Quaternary vertical motions of coastlines close to the subduction zone are influenced by the interplay between: (1) thickening of the material overriding the subduction interface associated with convergence, which promotes coastal uplift; and (2) subsidence due to extension and associated crustal thinning. Long-wavelength gravity data suggest that some of the observed topographic contrasts in the eastern

  6. Focal hot spot induced by a central subclavian line on bone scan.

    Science.gov (United States)

    Moslehi, Masood; Cheki, Mohsen; Dehghani, Tohid; Eftekhari, Mansoureh

    2014-01-01

    The diagnostic accuracy of nuclear medicine reporting can be improved by awareness of these instrument-related artifacts. Both awareness and experience are also important when it comes to detecting and identifying normal (and abnormal) variants. We present a case of hot spot on the upper right chest in the region of right subclavicular region resulting from injection of radiotracer from central subclavian line. A 52-year-old woman with a history of left breast cancer and recent bone pain was referred to our nuclear medicine department for skeletal survey. Anterior views of chest show a focus of increased radiotracer uptake corresponding to anterior arch of one of the right second rib. The nuclear physician reported it as a focal rib bony lesion and recommended radiological evaluation. As technician later explained, physicians realized that injection site was a central subclavian line on the right side and hot spot on that region is due to injection site. The appearance of both skeletal and soft-tissue uptake depends heavily on imaging technique (such as the route of radiotracer administration) and the interpreting physicians should be aware of the impact of technical factors on image quality.

  7. Anterior-posterior and lateral hemispheric alterations in cortical glucose utilization in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Friedland, T.F.; Budinger, T.F.; Jaqust, W.J.; Yano, Y.; Huesman, R.H.; Knittel, B.; Koss, E.; Ober, B.A.

    1984-01-01

    The anatomical and chemical features of Alzheimer's disease (AD) are not distributed evenly throughout the brain. However, the nature of this focality has not been well established in vivo. Dynamic studies using the Donner 280-Crystal Positron Tomograph with (F-18)2-fluorodeoxyglucose were performed in 17 subjects meeting current research criteria for AD, and in 7 healthy age-matched control subjects. Glucose metabolic rates in the temporal-parietal cortex are 27% lower in AD than in controls. Ratios of activity density reveal consistently lower metabolic rates in temporal-parietal than frontal cortex in the AD group, while healthy aged subjects have equal metabolic rates in the two areas. Similar findings have been reported by other laboratories. A major finding is a striking lateral asymmetry of cortical metabolism in AD which does not favor either hemisphere. (The asymmetry is 13% in the AD group, 3% in controls, p<.005.) This has not been previously reported in AD. The consistency with which anterior-posterior metabolic differences are found in AD suggests that the focality of the metabolic changes may be used to develop a noninvasive diagnostic test for the disorder. The metabolic asymmetry in AD may be compared to the clinical and pathological asymmetry found in Creutzfeldt-Jakob disease, and may represent an additional link between AD and the subacute spongiform encephalopathies.

  8. Joint Source Location and Focal Mechanism Inversion: efficiency, accuracy and applications

    Science.gov (United States)

    Liang, C.; Yu, Y.

    2017-12-01

    The analysis of induced seismicity has become a common practice to evaluate the results of hydraulic fracturing treatment. Liang et al (2016) proposed a joint Source Scanning Algorithms (jSSA for short) to obtain microseismic events and focal mechanisms simultaneously. The jSSA is superior over traditional SSA in many aspects, but the computation cost is too significant to be applied in real time monitoring. In this study, we have developed several scanning schemas to reduce computation time. A multi-stage scanning schema is proved to be able to improve the efficiency significantly while also retain its accuracy. A series of tests have been carried out by using both real field data and synthetic data to evaluate the accuracy of the method and its dependence on noise level, source depths, focal mechanisms and other factors. The surface-based arrays have better constraints on horizontal location errors (0.5). For sources with varying rakes, dips, strikes and depths, the errors are mostly controlled by the partition of positive and negative polarities in different quadrants. More evenly partitioned polarities in different quadrants yield better results in both locations and focal mechanisms. Nevertheless, even with bad resolutions for some FMs, the optimized jSSA method can still improve location accuracies significantly. Based on much more densely distributed events and focal mechanisms, a gridded stress inversion is conducted to get a evenly distributed stress field. The full potential of the jSSA has yet to be explored in different directions, especially in earthquake seismology as seismic array becoming incleasingly dense.

  9. Strain rate effect on fault slip and rupture evolution: Insight from meter-scale rock friction experiments

    Science.gov (United States)

    Xu, Shiqing; Fukuyama, Eiichi; Yamashita, Futoshi; Mizoguchi, Kazuo; Takizawa, Shigeru; Kawakata, Hironori

    2018-05-01

    We conduct meter-scale rock friction experiments to study strain rate effect on fault slip and rupture evolution. Two rock samples made of Indian metagabbro, with a nominal contact dimension of 1.5 m long and 0.1 m wide, are juxtaposed and loaded in a direct shear configuration to simulate the fault motion. A series of experimental tests, under constant loading rates ranging from 0.01 mm/s to 1 mm/s and under a fixed normal stress of 6.7 MPa, are performed to simulate conditions with changing strain rates. Load cells and displacement transducers are utilized to examine the macroscopic fault behavior, while high-density arrays of strain gauges close to the fault are used to investigate the local fault behavior. The observations show that the macroscopic peak strength, strength drop, and the rate of strength drop can increase with increasing loading rate. At the local scale, the observations reveal that slow loading rates favor generation of characteristic ruptures that always nucleate in the form of slow slip at about the same location. In contrast, fast loading rates can promote very abrupt rupture nucleation and along-strike scatter of hypocenter locations. At a given propagation distance, rupture speed tends to increase with increasing loading rate. We propose that a strain-rate-dependent fault fragmentation process can enhance the efficiency of fault healing during the stick period, which together with healing time controls the recovery of fault strength. In addition, a strain-rate-dependent weakening mechanism can be activated during the slip period, which together with strain energy selects the modes of fault slip and rupture propagation. The results help to understand the spectrum of fault slip and rock deformation modes in nature, and emphasize the role of heterogeneity in tuning fault behavior under different strain rates.

  10. Focal myositis: A review.

    Science.gov (United States)

    Devic, P; Gallay, L; Streichenberger, N; Petiot, P

    2016-11-01

    Amongst the heterogeneous group of inflammatory myopathies, focal myositis stands as a rare and benign dysimmune disease. Although it can be associated with root and/or nerve lesions, traumatic muscle lesions and autoimmune diseases, its triggering factors remain poorly understood. Defined as an isolated inflammatory pseudotumour usually restricted to one skeletal muscle, clinical presentation of focal myositis is that of a rapidly growing solitary mass within a single muscle, usually in the lower limbs. Electromyography shows spontaneous activity associated with a myopathic pattern. MRI reveals a contrast enhanced enlarged muscle appearing hyper-intense on FAT-SAT T2 weighted images. Adjacent structures are spared and there are no calcifications. Serum creatine kinase (CK) levels are usually moderately augmented and biological markers of systemic inflammation are absent in most cases. Pathological histological features include marked variation in fibre size, inflammatory infiltrates mostly composed of T CD4+ lymphocytes and macrophages, degenerating/regenerating fibres and interstitial fibrosis. Differential diagnoses are numerous and include myositis of other origin with focal onset. Steroid treatment should be reserved for patients who present with major pain, nerve lesions, associated autoimmune disease, or elevated C reactive protein or CK. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Fast characterization of moment magnitude and focal mechanism in the context of tsunami warning in the NEAM region : W-phase and PDFM2 algorithms.

    Science.gov (United States)

    Schindelé, François; Roch, Julien; Duperray, Pierre; Reymond, Dominique

    2016-04-01

    Over past centuries, several large earthquakes (Mw ≥ 7.5) have been reported in the North East Atlantic and Mediterranenan sea (NEAM) region. Most of the tsunami potential seismic sources in the NEAM region, however, are in a magnitude range of 6.5 ≤ Mw ≤ 7.5 (e.g. tsunami triggered by the earthquake of Boumerdes in 2003 of Mw = 6.9). The CENALT (CENtre d'ALerte aux Tsunamis) in operation since 2012 as the French National Tsunami Warning Centre (NTWC) and Candidate Tsunami Service Provider (CTSP) has to issue warning messages within 15 minutes of the earthquake origin time. The warning level is currently based on a decision matrix depending on the magnitude, and the location of the hypocenter. Two seismic source inversion methods are implemented at CENALT: the W-phase algorithm, based on the so-called W-phase and PDFM2 algorithm , based on the surface waves and first P wave motions. They both give accurate moment magnitude and focal magnitude respectively in 10 min and 20 min. The results of the Mw magnitude, focal depth and type of fault (reverse, normal, strike-slip) are the most relevant parameters used to issue tsunami warnings. In this context, we assess the W-phase and PDFM2 methods with 29 events of magnitude Mw ≥ 5.8 for the period 2010-2015 in the NEAM region. Results with 10 and 20 min for the W-phase algorithm and with 20 and 30 min for the PDFM2 algorithm are compared to the Global Centroid Moment Tensor catalog. The W-phase and PDFM2 methods gives accurate results respectively in 10 min and 20 min. This work is funded by project ASTARTE -- Assessment, Strategy And Risk Reduction for Tsunamis in Europe - FP7-ENV2013 6.4-3, Grant 603839

  12. Determination of Focal Mechanisms of Non-Volcanic Tremors Based on S-Wave Polarization Data Corrected for the Effects of Anisotropy

    Science.gov (United States)

    Imanishi, K.; Uchide, T.; Takeda, N.

    2014-12-01

    We propose a method to determine focal mechanisms of non-volcanic tremors (NVTs) based on S-wave polarization angles. The successful retrieval of polarization angles in low S/N tremor signals owes much to the observation that NVTs propagate slowly and therefore they do not change their location immediately. This feature of NVTs enables us to use a longer window to compute a polarization angle (e.g., one minute or longer), resulting in a stack of particle motions. Following Zhang and Schwartz (1994), we first correct for the splitting effect to recover the source polarization angle (anisotropy-corrected angle). This is a key step, because shear-wave splitting distorts the particle motion excited by a seismic source. We then determine the best double-couple solution using anisotropy-corrected angles of multiple stations. The present method was applied to a tremor sequence at Kii Peninsula, southwest Japan, which occurred at the beginning of April 2013. A standard splitting and polarization analysis were subject to a one-minute-long moving window to determine the splitting parameters as well as anisotropy-corrected angles. A grid search approach was performed at each hour to determine the best double-couple solution satisfying one-hour average polarization angles. Most solutions show NW-dipping low-angle planes consistent with the plate boundary or SE-dipping high-angle planes. Because of 180 degrees ambiguity in polarization angles, the present method alone cannot distinguish compressional quadrant from dilatational one. Together with the observation of very low-frequency earthquakes near the present study area (Ito et al., 2007), it is reasonable to consider that they represent shear slip on low-angle thrust faults. It is also noted that some of solutions contain strike-slip component. Acknowledgements: Seismograph stations used in this study include permanent stations operated by NIED (Hi-net), JMA, Earthquake Research Institute, together with Geological Survey of

  13. [A case of focal epilepsy manifesting multiple psychiatric auras].

    Science.gov (United States)

    Ezura, Michinori; Kakisaka, Yosuke; Jin, Kazutaka; Kato, Kazuhiro; Iwasaki, Masaki; Fujikawa, Mayu; Aoki, Masashi; Nakasato, Nobukazu

    2015-01-01

    We present a case of epilepsy with multiple types of focal seizures that were misdiagnosed as psychiatric disorders. A 20-year-old female patient presented with a variety of episodes, including loss of consciousness, deja vu, fear, delusion of possession, violent movements, and generalized convulsions. Each of these symptoms appeared in a stereotypic manner. She was initially diagnosed with a psychiatric disorder and treated with psychoactive medications, which had no effect. Long-term video electroencephalography revealed that her episodes of violent movement with impaired consciousness and secondarily generalized seizure were epileptic events originating in the right hemisphere. High-field brain magnetic resonance imaging for detecting subtle lesions revealed bilateral lesions from periventricular nodular heterotopia. Her final diagnosis was right hemispheric focal epilepsy. Carbamazepine administration was started, which successfully controlled all seizures. The present case demonstrates the pitfall of diagnosing focal epilepsy when it presents with multiple types of psychiatric aura. Epilepsy should thus be included in differential diagnoses, considering the stereotypic nature of symptoms, to avoid misdiagnosis.

  14. Focal intramural pericardial effusion and cardiac tamponade associated with necrotic adipose tissue in a dog.

    Science.gov (United States)

    Krentz, Terence A; Schutrumpf, Robert J; Zitz, Julie C

    2017-07-15

    CASE DESCRIPTION A 1-year-old castrated male German Shepherd Dog was examined because of an acute onset of lethargy, tachypnea, and inappetence. CLINICAL FINDINGS On initial physical examination, the dog was tachypneic with muffled heart sounds on thoracic auscultation and a palpable abdominal fluid wave. Transthoracic echocardiography revealed focal intramural pericardial effusion and cardiac tamponade. TREATMENT AND OUTCOME The patient underwent emergency therapeutic pericardiocentesis, followed by right lateral intercostal thoracotomy and subtotal pericardiectomy. A 3 × 5-cm mass located between the parietal and visceral layers of the pericardium was resected. The histologic diagnosis was necrotic adipose tissue with granulomatous inflammation and fibroplasia. The patient also underwent exploratory laparotomy and umbilical herniorrhaphy during the same anesthetic episode and recovered from surgery without apparent complications. There were no further clinical signs of cardiac disease. CLINICAL RELEVANCE The patient described in the present report underwent successful subtotal pericardiectomy for treatment of a benign focal lesion causing recurrent pericardial effusion and cardiac tamponade. Prompt diagnosis and intervention may have contributed to the positive outcome in this case.

  15. Structural analysis of the Tabaco anticline, Cerrejón open-cast coal mine, Colombia, South America

    Science.gov (United States)

    Cardozo, Néstor; Montes, Camilo; Marín, Dora; Gutierrez, Iván; Palencia, Alejandro

    2016-06-01

    The Tabaco anticline is a 15 km long, south plunging, east-vergent anticline in northern Colombia, close to the transpressional collisional margin between the Caribbean and South American plates. In the Cerrejón open-cast coal mine, systematic mapping of coal seams in the middle to upper Paleocene Cerrejón Formation has yielded an exceptional dataset consisting of 10 horizontal slices (sea level to 90 m elevation, regularly spaced at 10 m intervals) through the anticline. Coal seams and fault traces in these slices are used to construct a 3D model of the anticline. This 3D model shows tighter folds within lower coal seams, NW-vergent thrusts and related folds on the gentler western limb, and strike-slip faults on the steeper eastern limb. Fault slip-tendency analysis is used to infer that these two faulting styles resulted from two different stress fields: an earlier one consistent with thrusting and uplift of the Perijá range, and a later one consistent with strike-slip faulting (Oca, Ranchería and Samán faults). Our preferred interpretation is that the anticline developed its eastern vergence during the early stages (late Paleocene-early Eocene) of tilting of the Santa Marta massif. Later NW-vergent thrusting on the western limb (early to middle Eocene) was related to western propagation of the Perijá thrust system. These results contribute to the understanding of the structural evolution of the area. They are also a good example of the complex interplay between detachment folding, thrusting, and strike-slip faulting during the growth of a km-size fold in a transpressive setting.

  16. Laboratory generated M -6 earthquakes

    Science.gov (United States)

    McLaskey, Gregory C.; Kilgore, Brian D.; Lockner, David A.; Beeler, Nicholas M.

    2014-01-01

    We consider whether mm-scale earthquake-like seismic events generated in laboratory experiments are consistent with our understanding of the physics of larger earthquakes. This work focuses on a population of 48 very small shocks that are foreshocks and aftershocks of stick–slip events occurring on a 2.0 m by 0.4 m simulated strike-slip fault cut through a large granite sample. Unlike the larger stick–slip events that rupture the entirety of the simulated fault, the small foreshocks and aftershocks are contained events whose properties are controlled by the rigidity of the surrounding granite blocks rather than characteristics of the experimental apparatus. The large size of the experimental apparatus, high fidelity sensors, rigorous treatment of wave propagation effects, and in situ system calibration separates this study from traditional acoustic emission analyses and allows these sources to be studied with as much rigor as larger natural earthquakes. The tiny events have short (3–6 μs) rise times and are well modeled by simple double couple focal mechanisms that are consistent with left-lateral slip occurring on a mm-scale patch of the precut fault surface. The repeatability of the experiments indicates that they are the result of frictional processes on the simulated fault surface rather than grain crushing or fracture of fresh rock. Our waveform analysis shows no significant differences (other than size) between the M -7 to M -5.5 earthquakes reported here and larger natural earthquakes. Their source characteristics such as stress drop (1–10 MPa) appear to be entirely consistent with earthquake scaling laws derived for larger earthquakes.

  17. Aftershock Activity Triggered By the 2014 Earthquake (Mw=6.5), and Its Implications for the Future Seismic Risk in the Marmara Sea, Turkey

    Science.gov (United States)

    Polat, O.; Kilic, T.; Turkoglu, M.; Kaplan, M.; Kilicarslan, O.; Özer, Ç.; Gok, E.

    2014-12-01

    We have performed aftershocks analysis triggered by 24.05.2014 (Mw=6.5) Gokceada Island (GI) earthquake where occurred at the W of North Anatolian Fault zone. Mainshock was widely felt in Aegean and Marmara regions of Turkey. Major damage in 228 homes was reported. Other 49 residences suffered moderate or light damage. We have well located 699 events over 1041 by at least 5 stations for one month period after the mainshock. Double difference relocation algorithm allowed us to minimize rms values less than 0.39. Initial results show clear unilateral rupture towards Gallipoli Peninsula at the W of Marmara Sea region. Aftershocks show linearity with an extension of ~110 km length, ~25 km width. Largest aftershock (Mw=5.3) was at the NE end of activation zone. Depths are mainly confined from 5 to 25 km ranges. Two locking depths are detected beneath 8 km in Lemnos Basin and Saros Trough. We also constructed focal mechanisms from regional moment tensor solutions. Digital waveform data obtained from AFAD (Turkey) and HT-AUTH (Greece). Focal mechanisms reflect complex tectonic settings. Nevertheless numerous mechanisms show dominant dextral strike-slip motions aligned NE-SW direction with minor reverse component. State of stress before the mainshock was pure shear regime. But two principal stress axes are observed as oblique for the aftershocks showing ambiguity between compression and shear. It is likely that the mean stress regime has changed after the GI earthquake. If this is so, we may expect that the strike-slip component would slowly increase later in order to recover the conditions existing before. Coulomb stress values rise at the edges of the fault segment due to accumulation of slip. We observed strong spatial correlation between the static stress change after 2014 GI earthquake and the segment that ruptured during the 1912 Murefte-Ganos (Mw=7.4) earthquake. The analysis showed that the areas of positive static stress changes reach to seismic gap in the Marmara

  18. Armenia-To Trans-Boundary Fault: AN Example of International Cooperation in the Caucasus

    Science.gov (United States)

    Karakhanyan, A.; Avagyan, A.; Avanesyan, M.; Elashvili, M.; Godoladze, T.; Javakishvili, Z.; Korzhenkov, A.; Philip, S.; Vergino, E. S.

    2012-12-01

    Studies of a trans-boundary active fault that cuts through the border of Armenia to Georgia in the area of the Javakheti volcanic highland have been conducted since 2007. The studies have been implemented based on the ISTC 1418 and NATO SfP 983284 Projects. The Javakheti Fault is oriented to the north-northwest and consists of individual segments displaying clear left-stepping trend. Fault mechanism is represented by right-lateral strike-slip with normal-fault component. The fault formed distinct scarps, deforming young volcanic and glacial sediments. The maximum-size displacements are recorded in the central part of the fault and range up to 150-200 m by normal fault and 700-900 m by right-lateral strike-slip fault. On both flanks, fault scarps have younger appearance, and displacement size there decreases to tens of meters. Fault length is 80 km, suggesting that maximum fault magnitude is estimated at 7.3 according to the Wells and Coppersmith (1994) relation. Many minor earthquakes and a few stronger events (1088, Mw=6.4, 1899 Mw=6.4, 1912, Mw=6.4 and 1925, Mw=5.6) are associated with the fault. In 2011/2012, we conducted paleoseismological and archeoseismological studies of the fault. By two paleoseismological trenches were excavated in the central part of the fault, and on its northern and southern flanks. The trenches enabled recording at least three strong ancient earthquakes. Presently, results of radiocarbon age estimations of those events are expected. The Javakheti Fault may pose considerable seismic hazard for trans-boundary areas of Armenia and Georgia as its northern flank is located at the distance of 15 km from the Baku-Ceyhan pipeline.

  19. Morphology and slip rate of the Hurunui section of the Hope Fault, South Island, New Zealand

    International Nuclear Information System (INIS)

    Langridge, R.M.; Berryman, K.R.

    2005-01-01

    The Hurunui section of the Hope Fault is a newly defined, 42 km long geomorphic fault section which extends from Harper Pass to the Hope-Boyle River confluence. Reconnaissance mapping along the Hurunui section from Hope Shelter to Harper Pass provided new data on its location, geomorphology, displacement, and slip rate. More than 200 previously published field observations of dextrally and vertically displaced landforms along the fault provide data on the distribution of displacement along the fault trace. Five radiocarbon dates found in association with offset geomorphic features are presented and two new measures of dextral slip rate are calculated. At McKenzie Stream, a late Holocene fan complex is cut by the Hope Fault. Young abandoned and active channels on this surface show dextral offsets of up to 22 ± 2 m along a south-facing scarp with a height of up to 5 m. Woody litter from a unit in this complex has yielded a radiocarbon age of 2331 ± 55 yr BP and a corresponding minimum horizontal slip rate of 8.1-11.0 mm/yr. At Macs Knob, large dextral deflections of stream catchments are linked to episodes of glacial resetting of the landscape. Correlation of the offset of 'Macs stream' (166 ± 17 m) with a post-Aranuian age peat (10,782 ± 60 yr BP) yields a maximum horizontal slip rate of 13.0 ± 1.5 mm/yr. The single-event dextral displacement, based on offset stream channels at McKenzie fan, is 3.2-3.8 m (av. c. 3.4 m). The ratio of dextral to vertical slip is c. 7 ± 2:1, indicating that the Hope Fault has a dominantly strike-slip sense of motion. The average recurrence interval for the last 5-7 events (i.e., to produce 19-24 m slip at McKenzie fan) is 310-490 yr. The age of the most recent surface-rupturing earthquake at this site is not known, though felt effects, fault scaling, and landscape arguments indicate it was not the AD 1888 North Canterbury earthquake. (author). 48 refs., 10 figs., 2 tabs

  20. Effect of public transport strikes on air pollution levels in Barcelona (Spain).

    Science.gov (United States)

    Basagaña, Xavier; Triguero-Mas, Margarita; Agis, David; Pérez, Noemí; Reche, Cristina; Alastuey, Andrés; Querol, Xavier

    2018-01-01

    Public transport strikes can lead to an increase of the number of private vehicle trips, which in turn can increase air pollution levels. We aimed to estimate the change in air pollution concentrations during public transport strikes in the city of Barcelona (Spain). Data on strikes of the metro, train or bus systems were collected from government records (2005-2016). We collected daily concentrations of NOx; particulate matter with an aerodynamic diameter smaller than 10μm (PM10), 2.5μm (PM2.5), and 1μm (PM1); particle number concentration (N); black carbon (BC) and CO from research and official monitoring stations. We fitted linear regression models for each pollutant with the strike indicator as an independent variable, and models were adjusted for day of the week, month, year, and holiday periods. During the study period, there were 208days affected by a strike of the metro (28), train (106) or bus (91) systems. Half of the strikes were partial, most of them were single-day strikes, there was little overlap between strikes of the different transport systems, and all strikes had to comply with mandatory minimal services. When pooling all types of strikes, NOx and BC showed higher levels during strike days in comparison with non-strike days (increase between 4.1% and 7.7%, with higher increases for NO). The increases in these concentrations were more evident during full day and multiday metro strikes. In conclusion, alterations in public transport have consequences on air quality. This highlights the importance of public transport in reducing air pollution concentrations in cities. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Unravelling the Mysteries of Slip Histories, Validating Cosmogenic 36Cl Derived Slip Rates on Normal Faults

    Science.gov (United States)

    Goodall, H.; Gregory, L. C.; Wedmore, L.; Roberts, G.; Shanks, R. P.; McCaffrey, K. J. W.; Amey, R.; Hooper, A. J.

    2017-12-01

    The cosmogenic isotope chlorine-36 (36Cl) is increasingly used as a tool to investigate normal fault slip rates over the last 10-20 thousand years. These slip histories are being used to address complex questions, including investigating slip clustering and understanding local and large scale fault interaction. Measurements are time consuming and expensive, and as a result there has been little work done validating these 36Cl derived slip histories. This study aims to investigate if the results are repeatable and therefore reliable estimates of how normal faults have been moving in the past. Our approach is to test if slip histories derived from 36Cl are the same when measured at different points along the same fault. As normal fault planes are progressively exhumed from the surface they accumulate 36Cl. Modelling these 36Cl concentrations allows estimation of a slip history. In a previous study, samples were collected from four sites on the Magnola fault in the Italian Apennines. Remodelling of the 36Cl data using a Bayesian approach shows that the sites produced disparate slip histories, which we interpret as being due to variable site geomorphology. In this study, multiple sites have been sampled along the Campo Felice fault in the central Italian Apennines. Initial results show strong agreement between the sites we have processed so far and a previous study. This indicates that if sample sites are selected taking the geomorphology into account, then 36Cl derived slip histories will be highly similar when sampled at any point along the fault. Therefore our study suggests that 36Cl derived slip histories are a consistent record of fault activity in the past.

  2. Fixed recurrence and slip models better predict earthquake behavior than the time- and slip-predictable models 1: repeating earthquakes

    Science.gov (United States)

    Rubinstein, Justin L.; Ellsworth, William L.; Chen, Kate Huihsuan; Uchida, Naoki

    2012-01-01

    The behavior of individual events in repeating earthquake sequences in California, Taiwan and Japan is better predicted by a model with fixed inter-event time or fixed slip than it is by the time- and slip-predictable models for earthquake occurrence. Given that repeating earthquakes are highly regular in both inter-event time and seismic moment, the time- and slip-predictable models seem ideally suited to explain their behavior. Taken together with evidence from the companion manuscript that shows similar results for laboratory experiments we conclude that the short-term predictions of the time- and slip-predictable models should be rejected in favor of earthquake models that assume either fixed slip or fixed recurrence interval. This implies that the elastic rebound model underlying the time- and slip-predictable models offers no additional value in describing earthquake behavior in an event-to-event sense, but its value in a long-term sense cannot be determined. These models likely fail because they rely on assumptions that oversimplify the earthquake cycle. We note that the time and slip of these events is predicted quite well by fixed slip and fixed recurrence models, so in some sense they are time- and slip-predictable. While fixed recurrence and slip models better predict repeating earthquake behavior than the time- and slip-predictable models, we observe a correlation between slip and the preceding recurrence time for many repeating earthquake sequences in Parkfield, California. This correlation is not found in other regions, and the sequences with the correlative slip-predictable behavior are not distinguishable from nearby earthquake sequences that do not exhibit this behavior.

  3. Accommodation of missing shear strain in the Central Walker Lane, western North America: Constraints from dense GPS measurements

    Science.gov (United States)

    Bormann, Jayne M.; Hammond, William C.; Kreemer, Corné; Blewitt, Geoffrey

    2016-04-01

    We present 264 new interseismic GPS velocities from the Mobile Array of GPS for Nevada Transtension (MAGNET) and continuous GPS networks that measure Pacific-North American plate boundary deformation in the Central Walker Lane. Relative to a North America-fixed reference frame, northwestward velocities increase smoothly from ∼4 mm/yr in the Basin and Range province to 12.2 mm/yr in the central Sierra Nevada resulting in a Central Walker Lane deformation budget of ∼8 mm/yr. We use an elastic block model to estimate fault slip and block rotation rates and patterns of deformation from the GPS velocities. Right-lateral shear is distributed throughout the Central Walker Lane with strike-slip rates generally Bodie Hills, Carson Domain, and Mina Deflection are between 1-4°/Myr, lower than published paleomagnetic rotation rates, suggesting that block rotation rates have decreased since the Late to Middle Miocene.

  4. Velocity- and slip-dependent weakening on the Tohoku plate boundary fault: shallow coseismic slip facilitated by foreshock afterslip

    Science.gov (United States)

    Ito, Y.; Ikari, M.; Ujiie, K.; Kopf, A.

    2016-12-01

    Understanding of role of slow earthquakes as they relate to the occurrence of both megathrust earthquakes and tsunami earthquakes is necessary to mitigate these disasters in the near future. Laboratory shearing experiments is one of important approach to evaluate these relationships. Here, we use powdered gouge samples from JFAST (IODP Expedition 343) Hole C0019E, core sample 17R-1, which is the plate boundary fault zone in the Japan Trench subduction zone. In this region, both large coseismic slip during the 2011 Tohoku-Oki earthquake as well as discrete slow slip events (SSE) have occurred. Experiments were conducted in a single-direct shear apparatus under normal stress of 16 MPa, with total shear displacements of up to 16 mm. We evaluate both the velocity- and slip-dependence of friction by extracting the velocity-dependent friction parameters a, b, and Dc, and measuring the rate of change in friction coefficient with shear displacement as the slip-dependence of friction. We report that in friction experiments using the Tohoku fault zone samples, an increase in sliding velocity exceeding that of earthquake afterslip can induce a change from steady-state frictional strength or slip hardening friction to slip-weakening frictional behavior. Our results show that the slip weakening is observed when the slip velocity exceeds 1 x 10-6 m/s during our experiments, while steady-state frictional strength or slip hardening is observed below 1x10-6 m/s. In the Japan Trench region, two slow events were observed at the downdip edge of the mainshock coseismic slip zone (< 30 m) were observed. These are an episodic SSE with a slip velocity of 0.1 x 10-6, and afterslip after the largest foreshock with a slip velocity of 2 x 10-6 m/s. This suggests that the afterslip may have facilitated the large coseismic slip during the mainshock on the plate boundary fault of the Tohoku-Oki earthquake.

  5. Spatiotemporal evolution of premonitory fault slip prior to stick-slip instability: New insight into the earthquake preparation

    Science.gov (United States)

    Zhuo, Y. Q.; Liu, P.; Guo, Y.; Ji, Y.; Ma, J.

    2017-12-01

    Premonitory fault slip, which begins with quasistatic propagation followed by quasidynamic propagation, may be a key clue bridging the "stick" state and "slip" state of a fault. More attentions have been paid for a long time to the temporal resolution of measurement than the spatial resolution, leading to the incomplete interpretation for the spatial evolution of premonitory slip, particularly during the quasistatic phase. In the present study, measurement of the quasistatic propagation of premonitory slip is achieved at an ultrahigh spatial resolution via a digital image correlation method. Multiple premonitory slip zones are observed and found to be controlled spatially by the fault contact heterogeneity, particularly the strong contact patches that prevent the propagation of premonitory slip and accumulate strain. As a result, premonitory slip is accelerated within constrained week contact spaces and consequently triggers the breakout of quasidynamic propagation. The results provide new insights into the quasistatic propagation of premonitory slip and may offer new interpretations for the earthquake nucleation process. This work is fund by the National Natural Science Foundation of China (Grant No. 41572181), the Basic Scientific Funding of Chinese National Nonprofit Institutes (Grant No. IGCEA1415, IGCEA1525), and the Early-Stage Work of Key Breakthrough Plan in Seismology from China Earthquake Administration.

  6. Autologous US-guided PRP injection versus US-guided focal extracorporeal shock wave therapy for chronic lateral epicondylitis: A minimum of 2-year follow-up retrospective comparative study.

    Science.gov (United States)

    Alessio-Mazzola, Mattia; Repetto, Ilaria; Biti, Besmir; Trentini, Roberto; Formica, Matteo; Felli, Lamberto

    2018-01-01

    To compare the efficacy of two independent groups of patients treated with ultrasound (US)-guided extracorporeal shock wave (ESW) therapy and with US-guided injection of platelet-rich plasma (PRP) for chronic lateral epicondylitis (LE) with a minimum of 2-year follow-up. We retrospectively evaluated 63 patients treated for chronic LE (31 patients with autologous US-guided PRP injection and 32 patients with US-guided focal ESW therapy) from 2009 to 2014. All the patients were evaluated by means of Roles-Maudsley (RM) score, quick Disabilities of Arm, Shoulder, and Hand (QuickDASH) score, visual analogic scale (VAS) and patient-rated tennis elbow evaluation (PRTEE) to retrospectively assess the pain relief, level of activity, the self-reported function and subjective satisfaction at minimum of 2-year follow-up. Both US-guided autologous PRP injection and US-guided focal ESW administration proved effective in chronic LE with significant improvement in the QuickDASH, VAS, RM and PRTEE scores ( p 0.05). The mean time between treatment and symptom resolution was significantly shorter for the PRP treatment ( p = 0.0212); furthermore, the mean time to return to the normal activities was quicker for PRP group ( p = 0.0119). Both PRP injection and ESW therapy are feasible and safe options for the treatment of chronic LE with low risk of complications and with good long-term follow-up results. US-guided PRP injection has quick efficacy when compared with US-guided focal ESW therapy.

  7. Stabilizing Stick-Slip Friction

    International Nuclear Information System (INIS)

    Capozza, Rosario; Barel, Itay; Urbakh, Michael; Rubinstein, Shmuel M.; Fineberg, Jay

    2011-01-01

    Even the most regular stick-slip frictional sliding is always stochastic, with irregularity in both the intervals between slip events and the sizes of the associated stress drops. Applying small-amplitude oscillations to the shear force, we show, experimentally and theoretically, that the stick-slip periods synchronize. We further show that this phase locking is related to the inhibition of slow rupture modes which forces a transition to fast rupture, providing a possible mechanism for observed remote triggering of earthquakes. Such manipulation of collective modes may be generally relevant to extended nonlinear systems driven near to criticality.

  8. Slip rate and tremor genesis in Cascadia

    Science.gov (United States)

    Wech, Aaron G.; Bartlow, Noel M.

    2014-01-01

    At many plate boundaries, conditions in the transition zone between seismogenic and stable slip produce slow earthquakes. In the Cascadia subduction zone, these events are consistently observed as slow, aseismic slip on the plate interface accompanied by persistent tectonic tremor. However, not all slow slip at other plate boundaries coincides spatially and temporally with tremor, leaving the physics of tremor genesis poorly understood. Here we analyze seismic, geodetic, and strainmeter data in Cascadia to observe for the first time a large, tremor-generating slow earthquake change from tremor-genic to silent and back again. The tremor falls silent at reduced slip speeds when the migrating slip front pauses as it loads the stronger adjacent fault segment to failure. The finding suggests that rheology and slip-speed-regulated stressing rate control tremor genesis, and the same section of fault can slip both with and without detectable tremor, limiting tremor's use as a proxy for slip.

  9. Distinctly visible right upper lobe bronchus on the lateral chest: A clue to adolescent cystic fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Reinig, J.W.; Sanchez, F.W.; Thomason, D.M.; Gobien, R.P.

    1985-05-01

    Radiographic differentiation between cystic fibrosis and asthma presenting in teenagers and young adults can be difficult. Many patients with a late presentation of cystic fibrosis display minimal changes on a chest radiograph. However, a large majority (90%) of cystic fibrosis patients with an essentially normal PA chest radiograph will have a distinctly outlined orifice of right upper lobe bronchus on a lateral chest film as opposed to a small number of asthmatics (25%) or normal patients (18%). This observation correlates well with the pathologic finding that the initial pulmonary involvement in cystic fibrosis is typically in the right upper lobe in adolescents. Teenager or young adult patients presenting with a history of repeated respiratory infections, asthma-like symptoms and a distinctly visible right upper lobe bronchus on a lateral chest film should be sweat-tested to exclude cystic fibrosis.

  10. Active faults paragenesis and the state of crustal stresses in the Late Cenozoic in Central Mongolia

    Directory of Open Access Journals (Sweden)

    V. A. Sankov

    2015-01-01

    Full Text Available Active faults of the Hangay-Hentiy tectonic saddle region in Central Mongolia are studied by space images interpretation, relief analysis, structural methods and tectonic stress reconstruction. The study results show that faults activation during the Late Cenozoic stage was selective, and a cluster pattern of active faults is typical for the study region. Morphological and genetic types and the kinematics of faults in the Hangay-Hentiy saddle region are related the direction of the ancient inherited structural heterogeneities. Latitudinal and WNW trending faults are left lateral strike-slips with reverse or thrust component (Dzhargalantgol and North Burd faults. NW trending faults are reverse faults or thrusts with left lateral horizontal component. NNW trending faults have right lateral horizontal component. The horizontal component of the displacements, as a rule, exceeds the vertical one. Brittle deformations in fault zones do not conform with the Pliocene and, for the most part, Pleistocene topography. With some caution it may be concluded that the last phase of revitalization of strike slip and reverse movements along the faults commenced in the Late Pleistocene. NE trending disjunctives are normal faults distributed mainly within the Hangay uplift. Their features are more early activation within the Late Cenozoic and the lack of relation to large linear structures of the previous tectonic stages. According to the stress tensor reconstructions of the last phase of deformation in zones of active faults of the Hangay-Hentiy saddle using data on tectonic fractures and fault displacements, it is revealed that conditions of compression and strike-slip with NNE direction of the axis of maximum compression were dominant. Stress tensors of extensional type with NNW direction of minimum compression are reconstructed for the Orkhon graben. It is concluded that the activation of faults in Central Mongolia in the Pleistocene-Holocene, as well as

  11. The effect of lateral variations of friction on crustal faulting

    Directory of Open Access Journals (Sweden)

    M. Cocco

    1994-06-01

    Full Text Available We propose that lateral variations in fault friction control the heterogeneity of slip observed in large earthquakes, We model these variations using a rate and state-dependent friction law, where we differentiate velocity-weakening into strong and weak-seismic fields, and velocity-strengthening into compliant and viscous fields. The strong-seismic field comprises the seismic slip concentrations, or asperities. The two «intermediate» frictional fields, weak-seismic and compliant, modulate both the tectonic loading and the dynamic rupture process. During the interseismic period, the compliant and viscous regions slip aseismically while the strong-seismic regions remain locked, evolving into stress concentrations that fail only in main shocks. The weak-seismic regions contain most of the interseismic activity and aftershocks, but also «creep seismically», that is, most of the weak-seismic area slips aseismically, actuating the seismicity on the remaining area. This «mixed» frictional behavior can be obtained from a sufficiently heterogenous distribution for the critical slip distance. The interseismic slip provides an inherent rupture resistance: dynamic rupture fronts decelerate as they penetrate into these unloaded compliant or creeping weak-seismic areas, diffusing into broad areas of accelerated afterslip. Aftershocks occur in both the weak-seismic and compliant areas around the fault, but most of the stress is diffused through aseismic slip. Rapid afterslip on these peripheral areas can also produce aftershocks within the main shock rupture area, by reloading weak fault areas that slipped in the main shock and then healed. We test this frictional model by comparing the interevent seismicity and aftershocks to the coseismic slip distribution for the 1966 Parkfield, 1979 Coyote Lake, and 1984 Morgan Hill earthquakes.

  12. Analytical approximations for stick-slip vibration amplitudes

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Fidlin, A.

    2003-01-01

    , the amplitudes, and the base frequencies of friction-induced stick¿slip and pure-slip oscillations. For stick¿slip oscillations, this is accomplished by using perturbation analysis for the finite time interval of the stick phase, which is linked to the subsequent slip phase through conditions of continuity...

  13. The 2014, MW6.9 North Aegean earthquake: seismic and geodetic evidence for coseismic slip on persistent asperities

    Science.gov (United States)

    Konca, Ali Ozgun; Cetin, Seda; Karabulut, Hayrullah; Reilinger, Robert; Dogan, Ugur; Ergintav, Semih; Cakir, Ziyadin; Tari, Ergin

    2018-05-01

    We report that asperities with the highest coseismic slip in the 2014 MW6.9 North Aegean earthquake persisted through the interseismic, coseismic and immediate post-seismic periods. We use GPS and seismic data to obtain the source model of the 2014 earthquake, which is located on the western extension of the North Anatolian Fault (NAF). The earthquake ruptured a bilateral, 90 km strike-slip fault with three slip patches: one asperity located west of the hypocentre and two to the east with a rupture duration of 40 s. Relocated pre-earthquake seismicity and aftershocks show that zones with significant coseismic slip were relatively quiet during both the 7 yr of interseismic and the 3-month aftershock periods, while the surrounding regions generated significant seismicity during both the interseismic and post-seismic periods. We interpret the unusually long fault length and source duration, and distribution of pre- and post-main-shock seismicity as evidence for a rupture of asperities that persisted through strain accumulation and coseismic strain release in a partially coupled fault zone. We further suggest that the association of seismicity with fault creep may characterize the adjacent Izmit, Marmara Sea and Saros segments of the NAF. Similar behaviour has been reported for sections of the San Andreas Fault, and some large subduction zones, suggesting that the association of seismicity with creeping fault segments and rapid relocking of asperities may characterize many large earthquake faults.

  14. The prevention of slipping accidents: a review and discussion of work related to the methodology of measuring slip resistance

    OpenAIRE

    Leclercq , Sylvie

    1999-01-01

    International audience; The recommendations made after the analysis of accidents following an incident of slipping often include the use of anti-slip footwear and/or the installation of an anti-slip floor covering. Such recommendations make it necessary to study biomechanical and tribologic phenomena that occur during slipping, in particular in order to develop criteria for the evaluation of the slip resistance of footwear and floor surfaces. Consequently, research which deals with the preven...

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    However, disposition of the basins and their structural architecture indicate that the kinematics of all the basins cannot be extensional. To maintain kinematic compatibility with other basins as well as the bulk lateral extension, some basins ought to be of strike-slip origin. The disposition, shape and structural architecture of ...

  16. Focal myositis

    International Nuclear Information System (INIS)

    Kransdorf, M.J.; Temple, H.T.; Sweet, D.E.

    1998-01-01

    Focal myositis is a pseudotumor of soft tissue that typically occurs in the deep soft tissue of the extremities, and is a relatively rare lesion. There is a wide clinical spectrum, with approximately one-third of patients with focal myositis subsequently developing polymyositis, and clinical symptoms of generalized weakness, fever, myalgia, and weight loss, with elevation of creatine phosphokinase. We report the case of a patient with focal myositis who subsequently developed myositis ossificans-like features. (orig.)

  17. Is the foot striking pattern more important than barefoot or shod conditions in running?

    Science.gov (United States)

    Shih, Yo; Lin, Kuan-Lun; Shiang, Tzyy-Yuang

    2013-07-01

    People have advocated barefoot running, claiming that it is better suited to human nature. Humans usually run barefoot using a forefoot strike and run shod using a heel strike. The striking pattern was thought to be a key factor that contributes to the benefit of barefoot running. The purpose of this study is to use scientific data to prove that the striking pattern is more important than barefoot or shod conditions for runners on running injuries prevention. Twelve habitually male shod runners were recruited to run under four varying conditions: barefoot running with a forefoot strike, barefoot running with a heel strike, shod running with a forefoot strike, and shod running with a heel strike. Kinetic and kinematic data and electromyography signals were recorded during the experiments. The results showed that the lower extremity can gain more compliance when running with a forefoot strike. Habitually shod runners can gain more shock absorption by changing the striking pattern to a forefoot strike when running with shoes and barefoot conditions. Habitually shod runners may be subject to injuries more easily when they run barefoot while maintaining their heel strike pattern. Higher muscle activity in the gastrocnemius was observed when running with a forefoot strike, which may imply a greater training load on the muscle and a tendency for injury. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Efficacy and tolerability of high-dose phenobarbital in children with focal seizures.

    Science.gov (United States)

    Okumura, Akihisa; Nakahara, Eri; Ikeno, Mitsuru; Abe, Shinpei; Igarashi, Ayuko; Nakazawa, Mika; Takasu, Michihiko; Shimizu, Toshiaki

    2016-04-01

    We retrospectively reviewed the outcomes of children with focal epilepsy treated with oral high-dose phenobarbital. We reviewed data on children (agedphenobarbital (>5 mg/kg/day to maintain a target serum level >40 μg/mL) for at least 6 months. Seizure frequency was evaluated after phenobarbital titration, and 1 and 2 years after high-dose phenobarbital treatment commenced. Treatment was judged effective when seizure frequencies fell by ⩾75%. Seven boys and eight girls were treated. The median age at commencement of high-dose phenobarbital therapy was 30 months. The maximal serum phenobarbital level ranged from 36.5 to 62.9 μg/mL. High-dose PB was effective in seven. In two patients, treatment was transiently effective, but seizure frequency later returned to the baseline. High-dose PB was ineffective in six. No significant association between effectiveness and any clinical variable was evident. Drowsiness was recorded in nine patients, but no patient developed a behavioral problem or hypersensitivity. Oral high-dose phenobarbital was effective in 7 of 15 patients with focal epilepsy and well tolerated. High-dose PB may be useful when surgical treatment is difficult. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  19. Gait Retraining From Rearfoot Strike to Forefoot Strike does not change Running Economy.

    Science.gov (United States)

    Roper, Jenevieve Lynn; Doerfler, Deborah; Kravitz, Len; Dufek, Janet S; Mermier, Christine

    2017-12-01

    Gait retraining is a method for management of patellofemoral pain, which is a common ailment among recreational runners. The present study investigated the effects of gait retraining from rearfoot strike to forefoot strike on running economy, heart rate, and respiratory exchange ratio immediately post-retraining and one-month post-retraining in recreational runners with patellofemoral pain. Knee pain was also measured. Sixteen participants (n=16) were randomly placed in the control (n=8) or experimental (n=8) group. A 10-minute treadmill RE test was performed by all subjects. The experimental group performed eight gait retraining running sessions where foot strike pattern was switched from rearfoot strike to forefoot strike, while the control group received no intervention. There were no significant differences for running economy (p=0.26), respiratory exchange ratio (p=0.258), or heart rate (p=0.248) between the groups. Knee pain reported on a visual analog scale was also significantly reduced (pstrike to forefoot strike did not affect running economy up to one-month post-retraining while reducing running-related patellofemoral pain. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Effect of Forefoot Strike on Lower Extremity Muscle Activity and Knee Joint Angle During Cutting in Female Team Handball Players.

    Science.gov (United States)

    Yoshida, Naruto; Kunugi, Shun; Mashimo, Sonoko; Okuma, Yoshihiro; Masunari, Akihiko; Miyazaki, Shogo; Hisajima, Tatsuya; Miyakawa, Shumpei

    2015-06-01

    The purpose of this study is to examine the effects of different strike forms, during cutting, on knee joint angle and lower limb muscle activity. Surface electromyography was used to measure muscle activity in individuals performing cutting manoeuvres involving either rearfoot strikes (RFS) or forefoot strikes (FFS). Three-dimensional motion analysis was used to calculate changes in knee angles, during cutting, and to determine the relationship between muscle activity and knee joint angle. Force plates were synchronized with electromyography measurements to compare muscle activity immediately before and after foot strike. The valgus angle tends to be smaller during FFS cutting than during RFS cutting. Just prior to ground contact, biceps femoris, semitendinosus, and lateral head of the gastrocnemius muscle activities were significantly greater during FFS cutting than during RFS cutting; tibialis anterior muscle activity was greater during RFS cutting. Immediately after ground contact, biceps femoris and lateral head of the gastrocnemius muscle activities were significantly greater during FFS cutting than during RFS cutting; tibialis anterior muscle activity was significantly lower during FFS cutting. The results of the present study suggest that the hamstrings demonstrate greater activity, immediately after foot strike, during FFS cutting than during RFS cutting. Thus, FFS cutting may involve a lower risk of anterior cruciate ligament injury than does RFS cutting.

  1. [Hunger striking in prisons: ethics and the ethical and legal aspects].

    Science.gov (United States)

    García-Guerrero, J

    2013-01-01

    Hunger strike is a common form of protest in prisons and is a potential cause of many types of problems, both for the prison administration and the doctors who care for prisoners who participate in one. Issues of conflict of rights and obligations involved, and how to treat people who are subject to the Administration, which in this case takes the position of guarantor, have created major controversies over doctrine. Conscientious objection and the conflict of dual loyalty of doctors working in prisons are also issues closely linked to a prison hunger strike. In this paper we review the solution given to the problem of treatment of a prison hunger strike from three perspectives: ethics, ethical and legal.

  2. Focal myositis

    Energy Technology Data Exchange (ETDEWEB)

    Kransdorf, M.J. [Saint Mary`s Hospital, Richmond, VA (United States). Dept. of Radiol.]|[Department of Radiologic Pathology, Armed Forces Institute of Pathology, Washington, DC (United States); Temple, H.T. [Department of Orthopedic Surgery, University of Virginia Health Sciences Center, Charlottesville, Virginia (United States)]|[Department of Orthopedic Pathology, Armed Forces Institute of Pathology, Washington, DC (United States); Sweet, D.E. [Department of Orthopedic Pathology, Armed Forces Institute of Pathology, Washington, DC (United States)

    1998-05-01

    Focal myositis is a pseudotumor of soft tissue that typically occurs in the deep soft tissue of the extremities, and is a relatively rare lesion. There is a wide clinical spectrum, with approximately one-third of patients with focal myositis subsequently developing polymyositis, and clinical symptoms of generalized weakness, fever, myalgia, and weight loss, with elevation of creatine phosphokinase. We report the case of a patient with focal myositis who subsequently developed myositis ossificans-like features. (orig.) With 3 figs., 25 refs.

  3. Choosing words: left hemisphere, right hemisphere, or both? Perspective on the lateralization of word retrieval

    Science.gov (United States)

    Ries, Stephanie K.; Dronkers, Nina F.; Knight, Robert T.

    2015-01-01

    Language is considered to be one of the most lateralized human brain functions. Left hemisphere dominance for language has been consistently confirmed in clinical and experimental settings and constitutes one of the main axioms of neurology and neuroscience. However, functional neuroimaging studies are finding that the right hemisphere also plays a role in diverse language functions. Critically, the right hemisphere may also compensate for the loss or degradation of language functions following extensive stroke-induced damage to the left hemisphere. Here, we review studies that focus on our ability to choose words as we speak. Although fluidly performed in individuals with intact language, this process is routinely compromised in aphasic patients. We suggest that parceling word retrieval into its sub-processes—lexical activation and lexical selection—and examining which of these can be compensated for after left hemisphere stroke can advance the understanding of the lateralization of word retrieval in speech production. In particular, the domain-general nature of the brain regions associated with each process may be a helpful indicator of the right hemisphere's propensity for compensation. PMID:26766393

  4. Molecular dynamics simulation of cross-slip and the intersection of dislocations in copper

    CERN Document Server

    Li, Maozhen; Gao, K W; Qiao, L J

    2003-01-01

    The molecular dynamics method is used to simulate cross-slip by thermal activation at 30 K and the intersection of dislocations in copper containing 1.6 x 10 sup 6 atoms using the embedded atom method potential. The results show that an extended screw dislocation can recombine through thermal activation at 30 K into a constriction on the surface because of stress imbalance and the constriction will split again in the other slip plane. Removing the constriction along the extended dislocation results in a cross-slip of the screw dislocation at low temperature. After the intersection between a moving right-hand screw dislocation DC and a perpendicular left-hand dislocation BA, whose ends are fixed on the surfaces, an extended jog corresponding to a row of one-third vacancies forms in BA and a trail of vacancies behind DC. If the intersected dislocation is a right-hand screw dislocation AB, the jog formed in AB corresponds to a row of one-third interstitials and the point defects behind DC are interstitials. Afte...

  5. Slip of Spreading Viscoplastic Droplets.

    Science.gov (United States)

    Jalaal, Maziyar; Balmforth, Neil J; Stoeber, Boris

    2015-11-10

    The spreading of axisymmetric viscoplastic droplets extruded slowly on glass surfaces is studied experimentally using shadowgraphy and swept-field confocal microscopy. The microscopy furnishes vertical profiles of the radial velocity using particle image velocimetry (PIV) with neutrally buoyant tracers seeded in the fluid. Experiments were conducted for two complex fluids: aqueous solutions of Carbopol and xanthan gum. On untreated glass surfaces, PIV demonstrates that both fluids experience a significant amount of effective slip. The experiments were repeated on glass that had been treated to feature positive surface charges, thereby promoting adhesion between the negatively charged polymeric constituents of the fluids and the glass surface. The Carbopol and xanthan gum droplets spread more slowly on the treated surface and to a smaller radial distance. PIV demonstrated that this reduced spreading was associated with a substantial reduction in slip. For Carbopol, the effective slip could be eliminated entirely to within the precision of the PIV measurements; the reduction in slip was less effective for xanthan gum, with a weak slip velocity remaining noticeable.

  6. SLIP CASTING METHOD

    Science.gov (United States)

    Allison, A.G.

    1959-09-01

    S>A process is described for preparing a magnesium oxide slip casting slurry which when used in conjunction with standard casting techniques results in a very strong "green" slip casting and a fired piece of very close dimensional tolerance. The process involves aging an aqueous magnestum oxide slurry, having a basic pH value, until it attains a specified critical viscosity at which time a deflocculating agent is added without upsetting the basic pH value.

  7. A Model for Low-Frequency Earthquake Slip

    Science.gov (United States)

    Chestler, S. R.; Creager, K. C.

    2017-12-01

    Using high-resolution relative low-frequency earthquake (LFE) locations, we calculate the patch areas (Ap) of LFE families. During episodic tremor and slip (ETS) events, we define AT as the area that slips during LFEs and ST as the total amount of summed LFE slip. Using observed and calculated values for AP, AT, and ST, we evaluate two end-member models for LFE slip within an LFE family patch. In the ductile matrix model, LFEs produce 100% of the observed ETS slip (SETS) in distinct subpatches (i.e., AT ≪ AP). In the connected patch model, AT = AP, but ST ≪ SETS. LFEs cluster into 45 LFE families. Spatial gaps (˜10 to 20 km) between LFE family clusters and smaller gaps within LFE family clusters serve as evidence that LFE slip is heterogeneous on multiple spatial scales. We find that LFE slip only accounts for ˜0.2% of the slip within the slow slip zone. There are depth-dependent trends in the characteristic (mean) moment and in the number of LFEs during both ETS events (only) and the entire ETS cycle (Mcets and NTets and Mcall and NTall, respectively). During ETS, Mc decreases with downdip distance but NT does not change. Over the entire ETS cycle, Mc decreases with downdip distance, but NT increases. These observations indicate that deeper LFE slip occurs through a larger number (800-1,200) of small LFEs, while updip LFE slip occurs primarily during ETS events through a smaller number (200-600) of larger LFEs. This could indicate that the plate interface is stronger and has a higher stress threshold updip.

  8. Kinematics and Dynamics of the Makran Subduction Zone

    Science.gov (United States)

    Penney, C.; Tavakoli, F.; Sobouti, F.; Copley, A.; Priestley, K. F.; Jackson, J. A.

    2016-12-01

    The Makran subduction zone, along the southern coasts of Iran and Pakistan, hosts the world's largest exposed accretionary prism. In contrast to the circum-Pacific subduction zones, the Makran has not been extensively studied, with seismic data collected in the offshore region presenting only a time-integrated picture of the deformation. We investigate spatio-temporal variations in the deformation of the accretionary prism and the insights these offer into subduction zone driving forces and megathrust rheology. We combine seismology, geodesy and field observations to study the 2013 Mw 6.1 Minab earthquake, which occurred at the western end of the accretionary prism. We find that the earthquake was a left-lateral rupture on an ENE-WSW plane, approximately perpendicular to the previously mapped faults in the region. The causative fault of the Minab earthquake is one of a series of left-lateral faults in the region which accommodate a velocity field equivalent to right-lateral shear on N-S planes by rotating clockwise about vertical axes. Another recent strike-slip event within the Makran accretionary wedge was the 2013 Mw 7.7 Balochistan earthquake, which occurred on a fault optimally oriented to accommodate the regional compression by thrusting. The dominance of strike-slip faulting within the onshore prism, on faults perpendicular to the regional compression, suggests that the prism may have reached the maximum elevation which the megathrust can support, with the compressional forces which dominated in the early stages of the collision now balanced by gravitational forces. This observation allows us to estimate the mean shear stress on the megathrust interface and its effective coefficient of friction.

  9. Regional cerebral blood flow changes associated with focal electrically administered seizure therapy (FEAST).

    Science.gov (United States)

    Chahine, George; Short, Baron; Spicer, Ken; Schmidt, Matthew; Burns, Carol; Atoui, Mia; George, Mark S; Sackeim, Harold A; Nahas, Ziad

    2014-01-01

    Use of electroconvulsive therapy (ECT) is limited by cognitive disturbance. Focal electrically-administered seizure therapy (FEAST) is designed to initiate focal seizures in the prefrontal cortex. To date, no studies have documented the effects of FEAST on regional cerebral blood flow (rCBF). A 72 year old depressed man underwent three single photon emission computed tomography (SPECT) scans to capture the onset and resolution of seizures triggered with right unilateral FEAST. We used Bioimage Suite for within-subject statistical analyses of perfusion differences ictally and post-ictally compared with the baseline scan. Early ictal increases in regional cerebral blood flow (rCBF) were limited to the right prefrontal cortex. Post-ictally, perfusion was reduced in bilateral frontal and occipital cortices and increased in left motor and precuneus cortex. FEAST appears to triggers focal onsets of seizure activity in the right prefrontal cortex with subsequent generalization. Future studies are needed on a larger sample. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Recurring extensional and strike-slip tectonics after the Neoproterozoic collisional events in the southern Mantiqueira province

    Directory of Open Access Journals (Sweden)

    Renato P. Almeida

    2012-06-01

    Full Text Available In Eastern South America, a series of fault-bounded sedimentary basins that crop out from Southern Uruguay to Southeastern Brazil were formed after the main collisional deformation of the Brasiliano Orogeny and record the tectonic events that affected the region from the Middle Ediacaran onwards. We address the problem of discerning the basin-forming tectonics from the later deformational events through paleostress analysis of more than 600 fault-slip data, mainly from the Camaquã Basin (Southern Brazil, sorted by stratigraphic level and cross-cutting relationships of superposed striations, and integrated with available stratigraphic and geochronological data. Our results show that the Camaquã Basin was formed by at least two distinct extensional events, and that rapid paleostress changes took place in the region a few tens of million years after the major collision (c.a. 630 Ma, probably due to the interplay between local active extensional tectonics and the distal effects of the continued amalgamation of plates and terranes at the margins of the still-forming Gondwana Plate. Preliminary paleostress data from the Castro Basin and published data from the Itajaí Basin suggest that these events had a regional nature.No Leste da América do Sul, um conjunto de bacias sedimentares que afloram do sul do Uruguai ao sudeste do Brasil formou-se após os eventos colisionais da Orogenia Brasiliana, registrando os eventos tectônicos que afetaram a região a partir do Mesoediacarano. O problema da distinção entre a tectônica formadora das bacias e os eventos deformacionais posteriores é aqui abordado através da análise de paleotensões de mais de 600 dados de falhas com estrias, obtidos principalmente na Bacia Camaquã (Sul do Brasil, que foram classificados por nível estratigráfico e relações de corte entre estrias sobrepostas, e intergrados a dados estratigráficos e geocronológicos disponíveis. Nossos resultados revelam que a Bacia Camaqu

  11. A viscoplastic shear-zone model for deep (15-50 km) slow-slip events at plate convergent margins

    Science.gov (United States)

    Yin, An; Xie, Zhoumin; Meng, Lingsen

    2018-06-01

    A key issue in understanding the physics of deep (15-50 km) slow-slip events (D-SSE) at plate convergent margins is how their initially unstable motion becomes stabilized. Here we address this issue by quantifying a rate-strengthening mechanism using a viscoplastic shear-zone model inspired by recent advances in field observations and laboratory experiments. The well-established segmentation of slip modes in the downdip direction of a subduction shear zone allows discretization of an interseismic forearc system into the (1) frontal segment bounded by an interseismically locked megathrust, (2) middle segment bounded by episodically locked and unlocked viscoplastic shear zone, and (3) interior segment that slips freely. The three segments are assumed to be linked laterally by two springs that tighten with time, and the increasing elastic stress due to spring tightening eventually leads to plastic failure and initial viscous shear. This simplification leads to seven key model parameters that dictate a wide range of mechanical behaviors of an idealized convergent margin. Specifically, the viscoplastic rheology requires the initially unstable sliding to be terminated nearly instantaneously at a characteristic velocity, which is followed by stable sliding (i.e., slow-slip). The characteristic velocity, which is on the order of <10-7 m/s for the convergent margins examined in this study, depends on the (1) effective coefficient of friction, (2) thickness, (3) depth, and (4) viscosity of the viscoplastic shear zone. As viscosity decreases exponentially with temperature, our model predicts faster slow-slip rates, shorter slow-slip durations, more frequent slow-slip occurrences, and larger slow-slip magnitudes at warmer convergent margins.

  12. Direct measurement of wall slip and slip layer thickness of non-Brownian hard-sphere suspensions in rectangular channel flows

    Science.gov (United States)

    Jesinghausen, Steffen; Weiffen, Rene; Schmid, Hans-Joachim

    2016-09-01

    Wall slip is a long-known phenomenon in the field of rheology. Nevertheless, the origin and the evolution are not completely clear yet. Regarding suspensions, the effect becomes even more complicated, because different mechanisms like pure slip or slip due to particle migration have to be taken into account. Furthermore, suspensions themselves show many flow anomalies and the isolation of slip is complicated. In order to develop working physical models, further insight is necessary. In this work, we measured experimentally the wall slip velocities of different highly filled suspensions in a rectangular slit die directly with respect to the particle concentration and the particle size. The slip velocities were obtained using a particle image velocimetry (PIV) system. The suspensions consisting of a castor oil-cinnamon oil blend and PMMA particles were matched in terms of refractive indexes to appear transparent. Hereby, possible optical path lengths larger than 15 mm were achieved. The slip velocities were found to be in a quadratic relation to the wall shear stress. Furthermore, the overall flow rate as well as the particle concentration has a direct influence on the slip. Concerning the shear stress, there seem to be two regions of slip with different physical characteristics. Furthermore, we estimated the slip layer thickness directly from the velocity profiles and propose a new interpretation. The PIV technique is used to investigate the viscosity and implicit the concentration profile in the slit die. It is shown that the particle migration process is quite fast.

  13. Pseudodynamic Source Characterization for Strike-Slip Faulting Including Stress Heterogeneity and Super-Shear Ruptures

    KAUST Repository

    Mena, B.

    2012-08-08

    Reliable ground‐motion prediction for future earthquakes depends on the ability to simulate realistic earthquake source models. Though dynamic rupture calculations have recently become more popular, they are still computationally demanding. An alternative is to invoke the framework of pseudodynamic (PD) source characterizations that use simple relationships between kinematic and dynamic source parameters to build physically self‐consistent kinematic models. Based on the PD approach of Guatteri et al. (2004), we propose new relationships for PD models for moderate‐to‐large strike‐slip earthquakes that include local supershear rupture speed due to stress heterogeneities. We conduct dynamic rupture simulations using stochastic initial stress distributions to generate a suite of source models in the magnitude Mw 6–8. This set of models shows that local supershear rupture speed prevails for all earthquake sizes, and that the local rise‐time distribution is not controlled by the overall fault geometry, but rather by local stress changes on the faults. Based on these findings, we derive a new set of relations for the proposed PD source characterization that accounts for earthquake size, buried and surface ruptures, and includes local rise‐time variations and supershear rupture speed. By applying the proposed PD source characterization to several well‐recorded past earthquakes, we verify that significant improvements in fitting synthetic ground motion to observed ones is achieved when comparing our new approach with the model of Guatteri et al. (2004). The proposed PD methodology can be implemented into ground‐motion simulation tools for more physically reliable prediction of shaking in future earthquakes.

  14. The effects of preferred and non-preferred running strike patterns on tissue vibration properties.

    Science.gov (United States)

    Enders, Hendrik; von Tscharner, Vinzenz; Nigg, Benno M

    2014-03-01

    To characterize soft tissue vibrations during running with a preferred and a non-preferred strike pattern in shoes and barefoot. Cross-sectional study. Participants ran at 3.5 m s(-1) on a treadmill in shoes and barefoot using a rearfoot and a forefoot strike for each footwear condition. The preferred strike patterns for the subjects were a rearfoot strike and a forefoot strike for shod and barefoot running, respectively. Vibrations were recorded with an accelerometer overlying the belly of the medial gastrocnemius. Thirteen non-linearly scaled wavelets were used for the analysis. Damping was calculated as the overall decay of power in the acceleration signal post ground contact. A higher damping coefficient indicates higher damping capacities of the soft tissue. The shod rearfoot strike showed a 93% lower damping coefficient than the shod forefoot strike (pforefoot strike showed a trend toward a lower damping coefficient compared to a barefoot rearfoot strike. Running barefoot with a forefoot strike resulted in a significantly lower damping coefficient than a forefoot strike when wearing shoes (pstrike showed lower damping compared to a barefoot rearfoot strike (p<0.001). While rearfoot striking showed lower vibration frequencies in shod and barefoot running, it did not consistently result in lower damping coefficients. This study showed that the use of a preferred movement resulted in lower damping coefficients of running related soft tissue vibrations. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  15. The 2016 Kumamoto earthquake sequence.

    Science.gov (United States)

    Kato, Aitaro; Nakamura, Kouji; Hiyama, Yohei

    2016-01-01

    Beginning in April 2016, a series of shallow, moderate to large earthquakes with associated strong aftershocks struck the Kumamoto area of Kyushu, SW Japan. An M j 7.3 mainshock occurred on 16 April 2016, close to the epicenter of an M j 6.5 foreshock that occurred about 28 hours earlier. The intense seismicity released the accumulated elastic energy by right-lateral strike slip, mainly along two known, active faults. The mainshock rupture propagated along multiple fault segments with different geometries. The faulting style is reasonably consistent with regional deformation observed on geologic timescales and with the stress field estimated from seismic observations. One striking feature of this sequence is intense seismic activity, including a dynamically triggered earthquake in the Oita region. Following the mainshock rupture, postseismic deformation has been observed, as well as expansion of the seismicity front toward the southwest and northwest.

  16. The 2016 Kumamoto earthquake sequence

    Science.gov (United States)

    KATO, Aitaro; NAKAMURA, Kouji; HIYAMA, Yohei

    2016-01-01

    Beginning in April 2016, a series of shallow, moderate to large earthquakes with associated strong aftershocks struck the Kumamoto area of Kyushu, SW Japan. An Mj 7.3 mainshock occurred on 16 April 2016, close to the epicenter of an Mj 6.5 foreshock that occurred about 28 hours earlier. The intense seismicity released the accumulated elastic energy by right-lateral strike slip, mainly along two known, active faults. The mainshock rupture propagated along multiple fault segments with different geometries. The faulting style is reasonably consistent with regional deformation observed on geologic timescales and with the stress field estimated from seismic observations. One striking feature of this sequence is intense seismic activity, including a dynamically triggered earthquake in the Oita region. Following the mainshock rupture, postseismic deformation has been observed, as well as expansion of the seismicity front toward the southwest and northwest. PMID:27725474

  17. West-directed thrusting south of the eastern Himalayan syntaxis indicates clockwise crustal flow at the indenter corner during the India-Asia collision

    Science.gov (United States)

    Haproff, Peter J.; Zuza, Andrew V.; Yin, An

    2018-01-01

    Whether continental deformation is accommodated by microplate motion or continuum flow is a central issue regarding the nature of Cenozoic deformation surrounding the eastern Himalayan syntaxis. The microplate model predicts southeastward extrusion of rigid blocks along widely-spaced strike-slip faults, whereas the crustal-flow model requires clockwise crustal rotation along closely-spaced, semi-circular right-slip faults around the eastern Himalayan syntaxis. Although global positioning system (GPS) data support the crustal-flow model, the surface velocity field provides no information on the evolution of the India-Asia orogenic system at million-year scales. In this work, we present the results of systematic geologic mapping across the northernmost segment of the Indo-Burma Ranges, located directly southeast of the eastern Himalayan syntaxis. Early research inferred the area to have experienced either right-slip faulting accommodating northward indentation of India or thrusting due to the eastward continuation of the Himalayan orogen in the Cenozoic. Our mapping supports the presence of dip-slip thrust faults, rather than strike-slip faults. Specifically, the northern Indo-Burma Ranges exposes south- to west-directed ductile thrust shear zones in the hinterland and brittle fault zones in the foreland. The trends of ductile stretching lineations within thrust shear zones and thrust sheets rotate clockwise from the northeast direction in the northern part of the study area to the east direction in the southern part of the study area. This clockwise deflection pattern of lineations around the eastern Himalayan syntaxis mirrors the clockwise crustal-rotation pattern as suggested by the crustal-flow model and contemporary GPS velocity field. However, our finding is inconsistent with discrete strike-slip deformation in the area and the microplate model.

  18. Embryonic left-right separation mechanism allows confinement of mutation-induced phenotypes to one lateral body half of bilaterians.

    Science.gov (United States)

    Ma, Kun

    2013-12-01

    A fundamental question in developmental biology is how a chimeric animal such as a bilateral gynandromorphic animal can have different phenotypes confined to different lateral body halves, and how mutation-induced phenotypes, such as genetic diseases, can be confined to one lateral body half in patients. Here, I propose that embryos of many, if not all, bilaterian animals are divided into left and right halves at a very early stage (which may vary among different types of animals), after which the descendants of the left-sided and right-sided cells will almost exclusively remain on their original sides, respectively, throughout the remaining development. This embryonic left-right separation mechanism allows (1) mutations and the mutation-induced phenotypes to be strictly confined to one lateral body half in animals and humans; (2) mothers with bilateral hereditary primary breast cancer to transmit their disease to their offspring at twofold of the rate compared to mothers with unilateral hereditary breast cancer; and (3) a mosaic embryo carrying genetic or epigenetic mutations to develop into either an individual with the mutation-induced phenotype confined unilaterally, or a pair of twins displaying complete, partial, or mirror-image discordance for the phenotype. Further, this left-right separation mechanism predicts that the two lateral halves of a patient carrying a unilateral genetic disease can each serve as a case and an internal control, respectively, for genetic and epigenetic comparative studies to identify the disease causations. © 2013 Wiley Periodicals, Inc.

  19. Slip-dependent weakening on shallow plate boundary fault in the Japan subduction zone: shallow coseismic slip facilitated by foreshock afterslip

    Science.gov (United States)

    Ito, Yoshi; Ikari, Matt; Ujiie, Kohtaro; Kopf, Achim

    2017-04-01

    Understanding of role of slow earthquakes as they relate to the occurrence of both megathrust earthquakes and tsunami earthquakes is necessary to mitigate these disasters in the near future. Laboratory shearing experiments is one of important approach to evaluate these relationships. Here, we use powdered gouge samples from JFAST (IODP Expedition 343) Hole C0019E, core sample 17R-1, which is the plate boundary fault zone in the Japan Trench subduction zone. In this region, both large coseismic slip during the 2011 Tohoku-Oki earthquake as well as discrete slow slip events (SSE) have occurred. Experiments were conducted in a single-direct shear apparatus under normal stress of 16 MPa, with total shear displacements of up to 16 mm. We evaluate the slip-dependence of friction by extracting the velocity-dependent friction parameters a, b, and Dc , and also measure the rate of change in friction coefficient with shear displacement as the slip-dependence of friction. We report that in friction experiments using the Tohoku fault zone samples, an increase in sliding velocity exceeding that of earthquake afterslip can induce a change from steady-state frictional strength or slip hardening friction to slip-weakening frictional behavior. Our results show that the slip weakening is observed when the slip velocity exceeds 3.7 × 10-6 m/s during our experiments, while steady-state frictional strength or slip hardening is observed below 1 × 10-6 m/s. In the Japan Trench region, two slow events prior to the mainshock were observed in the mainshock area with a coseismic slip exceeding 30 m . One event is an episodic SSE with a slip velocity of 0.1 × 10-6 , and the other is afterslip after the largest Tohoku earthquake foreshock with a slip velocity exceeding 2 × 10-6 m/s. Our experiments show that slip-weakening friction should be expected at the afterslip rate, suggesting that the afterslip may have facilitated the large coseismic slip during the mainshock on the plate boundary

  20. Oblique transfer of extensional strain between basins of the middle Rio Grande rift, New Mexico: Fault kinematic and paleostress constraints

    Science.gov (United States)

    Minor, Scott A.; Hudson, Mark R.; Caine, Jonathan S.; Thompson, Ren A.

    2013-01-01

    The structural geometry of transfer and accommodation zones that relay strain between extensional domains in rifted crust has been addressed in many studies over the past 30 years. However, details of the kinematics of deformation and related stress changes within these zones have received relatively little attention. In this study we conduct the first-ever systematic, multi-basin fault-slip measurement campaign within the late Cenozoic Rio Grande rift of northern New Mexico to address the mechanisms and causes of extensional strain transfer associated with a broad accommodation zone. Numerous (562) kinematic measurements were collected at fault exposures within and adjacent to the NE-trending Santo Domingo Basin accommodation zone, or relay, which structurally links the N-trending, right-stepping en echelon Albuquerque and Española rift basins. The following observations are made based on these fault measurements and paleostresses computed from them. (1) Compared to the typical northerly striking normal to normal-oblique faults in the rift basins to the north and south, normal-oblique faults are broadly distributed within two merging, NE-trending zones on the northwest and southeast sides of the Santo Domingo Basin. (2) Faults in these zones have greater dispersion of rake values and fault strikes, greater dextral strike-slip components over a wide northerly strike range, and small to moderate clockwise deflections of their tips. (3) Relative-age relations among fault surfaces and slickenlines used to compute reduced stress tensors suggest that far-field, ~E-W–trending σ3 stress trajectories were perturbed 45° to 90° clockwise into NW to N trends within the Santo Domingo zones. (4) Fault-stratigraphic age relations constrain the stress perturbations to the later stages of rifting, possibly as late as 2.7–1.1 Ma. Our fault observations and previous paleomagnetic evidence of post–2.7 Ma counterclockwise vertical-axis rotations are consistent with increased